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A G-design is a partition of edge set of Kv in which each element induces a copy of

G. The existence of G-designs with the additional property that they contain no proper

subsystems has been previously settled when G ∈ {K3,K4 − e} by Rodger and Spicer.

In this dissertation, we first solved the problem of G-designs with no subsystems where

G = P3, considering the problem for both designs and maximum packings with non-empty

leaves. We then completely settled the problem for the general case of Pm-designs which

contain no proper subsystems for every value of m and v.

We also solved another problem. A 4-cycle system is said to be diagonally switchable

if each 4-cycle can be replaced by another 4-cycle obtained by replacing one pair of non-

adjacent edges of the original 4-cycle by its diagonals so that the transformed set of 4-cycles

forms another 4-cycle system. The existence of diagonally switchable 4-cycle system of Kv

has already been solved [1]. In this paper we give an alternative proof of this result and use

the method to prove a new result for Kv − I, where I is any one factor of Kv.
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Chapter 1

Introduction

For any two graphs G and H, a G-decomposition of H is an ordered pair T = (V,D),

where V is the vertex set of H and D is a partition of the edge set of H, each element of

which induces a copy of G. For any graph G and any set L of edges in Kv, a G-packing

with a leave L of order v is an ordered pair T = (V,B), where V is the vertex set of Kv and

B is a partition of the edge set of Kv − L, each element of which induces a copy of G. A

G-packing of order v with leave L is said to be maximum if there is no G-packing of order v

with leave L′ such that |L′| < |L|. A proper subsystem of T is an ordered pair S = (V ′, B′)

where V ′ ⊂ V , B′ ⊂ B and (V ′, B′) is a G-design of Kv′ for |V | > |V ′| = v′ > 1. A

G-packing with L = ∅ is said to be a G-design.

When considering graph decompositions the most natural question is to find the set

of values of v for which there exists a decomposition of Kv into edge-disjoint copies of a

fixed graph G. This set of values is called as the spectrum of G-decompositions of Kv. This

question has been settled for many G, for example, where G is: Kv for v ∈ {3, 4} [10, 12], a

star [19], a path [18], any graph with no more than four vertices [3], or a connected graph

with no more than five edges [9], a cycle [11, 2, 16]. For an up to date survey see [6].

Another question considered in the literature concerns the existence of G-designs which

contain no proper subsystems. That is, for which values of v is it possible to find a G-design

(V,C) of order v such that there does not exist a G-design (W,D) where W ⊂ V and D ⊂ C.

Doyen [8] settled this question for Steiner triple systems (that is,when G = K3). Rodger

and Spicer solved this problem when G = K4 − e [15]. The reader may also be interested
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to note that the related problem for Steiner quadruple systems has been considered, but is

still unsolved [14].

The main result in this dissertation is to solve the problem of G-designs with no proper

subsystems for the particular case where G = P3, considering the problem for both designs

and for maximum packings with non-empty leaves. We then solve the problem for the

general case in which G = Pm, a simple path with m edges, and H = Kv for every value of

m and v.

A second problem is also solved. A C4-decomposition of G is also known in the literature

as a 4-cycle system of order G. A C4-decomposition of Kv is said to be a 4-cycle system of

order v and is denoted by 4CS(v). Such a decomposition exists if and only if v ≡ 1 (mod 8)

[13]. In this dissertation we consider a class of 4-cycle systems with diagonally switchable

property. A set of 4-cycles is said to be diagonally switchable if each 4-cycle can be replaced

by another 4-cycle obtained by replacing one pair of non-adjacent edges of the original 4-

cycle by its diagonals. In this dissertation we solve the problem of a C4-decomposition of a

graph G with the property of being diagonally switchable, where G is Kv or Kv−I. Here, I

is any one factor of Kv. A 1-factor I of a complete graph is a spanning one regular subgraph

of Kv. Note that in order to have a 1-factor v has to be even.

The decomposition of the complete graph Kv into diagonally switchable 4-cycles has

already been solved [1], but we have come up with another construction. This construction

not only solves the case for Kv in a more efficient way, but is also powerful enough to easily

solve the case for Kv − I.
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Chapter 2

Maximum Packings of Kv with copies of P3

which contain no proper subsystems

2.1 Introduction

We now turn our attention to decompositions of Kv with copies of P3 which contain

no proper subsystems. We will consider this problem for both designs and for maximum

packings with non-empty leaves. The constructions used here are of interest in their own

right, being neat modifications of the Bose construction for Steiner triple systems.

Before proceeding to the constructions, we need some definitions and notation. Let

(a, b, c, d) denote the 3-path induced by the edge set {{a, b}, {b, c}, {c, d}} (see figure 2.1).

cc b

a d

Figure 2.1: Example-1: P3

Suppose (V,B) is a P3-packing of order v and suppose (V ′, B′) is a subsystem of (V,B).

Notice that if P1 = (a, b, c, d) ∈ B′ then {a, c} ⊂ V ′; so if P2 is the 3-path containing the

edge {a, c} then any subsystem containing P1 must also contain all the vertices in P2. We

denote this fact by writing P1 → P2. We also write P1 → {a, c} to denote the fact that any
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subsystem containing P1 must contain the vertices in {a, c} and we will write {a, b} → P1

to note that the edge {a, b} is in P1.

2.2 Constructions

We consider three cases in turn, depending on the congruence of v (mod 3). In all the

following constructions, in any ordered pair reduce arithmetic operations modulo k in the

first component and modulo 3 in the second component.

2.2.1 Case A: v = 3k.

We begin with a construction of a P3-design.

The 3k Construction. Let V = Zk ×{1, 2, 3} and G be a copy of K3k defined on the

vertex set V and define a collection B of copies of P3 as follows (see figure 2.2).

(1) Type 1: for each x ∈ Zk, let

P1(x) = ((x + 1, 2), (x, 1), (x, 3), (x, 2)) ∈ B.

(2) Type 2: for {x, y} ⊆ Zk, x 6= y, let

P2(x, y) = ((x + 1, 2), (y, 1), (x, 1), (y + 1, 2)) ∈ B.

(3) Type 3: for 0 ≤ x < y ≤ k − 1 and for 3 ≤ i ≤ 4, let

Pi(x, y) = ((x, i), (y, i− 1), (x, i− 1), (y, i)) ∈ B.

In this case every maximum packing has empty leave, so a P3-design is required. We

now show this is what The 3k Construction produces.
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0 1 2 K-2 K-1

P1

P2

P3 P4

Figure 2.2: The 3k Construction

Proposition 2.2.1. The 3k Construction produces a P3-design of order 3k.

Proof. The total number of paths in a P3-design of order v = 3k is
(

v

2

)
/3 = k(3k−1)/2.

We begin by counting the number of paths in B.

The number of Type 1 paths is clearly k. For 2 ≤ i ≤ 4, Pi(x, y) contains k(k − 1)/2

choices for x and y. Therefore |B| = k + 3k(k − 1)/2 = k(3k − 1)/2 as required.

Now it remains to show that each edge e in E(K3k) occurs in some P3 in B. If

e = {(x, i), (y, i)} with x, y ∈ Zk, x 6= y and 1 ≤ i ≤ 3, then e occurs in Pi+1(x, y). If

e = {(x, i), (x, j)}where 1 ≤ i < j ≤ 3 then e occurs in P2(x− 1, x) if i = 1 and j = 2 and

otherwise it occurs in P1(x). If e = {(x, i), (y, i + 1)} where 1 ≤ i ≤ 3 and {x, y} ⊆ Zk,

x 6= y, then e occurs in

(i) Pi+1(x, y) if 2 ≤ i ≤ 3,

(ii) P2(x, y − 1) if i = 1 and y 6= x + 1, and

(iii) P1(x) otherwise.

5



Proposition 2.2.2. The P3-design (V,B) of order v = 3k constructed using The 3k Con-

struction contains no proper subsystems.

Proof. Suppose (V ′, B′) is a subsystem of (V,B). We consider each possible copy of

P3 in B′ by considering three cases in turn, eventually showing that in fact V ′ = V .

Case 1: The subsystem contains P1(x) for some x ∈ Zk. Notice that

P1(x) → {(x, 2), (x+1, 2)} → P3(x, x+1) → {(x+1, 2), (x+1, 3)} → P1(x+1). There-

fore, if P1(x) ∈ B′ for some x ∈ Zk then P1(x) ∈ B′ for all x ∈ Zk. Since
⋃

x∈Zk

V (P1(x)) = V

it follows that V ′ = V .

Case 2: The subsystem contains Pi(x, y) for some i ∈ {3, 4} and some x, y ∈ Zk with

x < y. Then Pi(x, y) → {(y, i− 1), (y, i)} → P1(y). So by Case 1, V ′ = V .

Case 3: The subsystem contains P2(x, y) for some x, y ∈ Zk with x < y. Then

P2(x, y) → {(x + 1, 2), (y + 1, 2)} → P3(x + 1, y + 1). So by Case 2, V ′ = V .

Therefore since V ′ 6= Ø, V ′ = V . So (V,B) contains no proper subsystems.

2.2.2 Case B: v = 3k + 1.

We begin with a construction of a P3-design.

The 3k + 1 Construction. Let V = {{∞} ∪ (Zk × {1, 2, 3})} and G be a copy of

K3k+1 defined on the vertex set V and define a collection B of copies of P3 as follows (see

figure 2.3).

(1) Type 1: for each x ∈ Zk, let

P1,1(x) = (∞, (x, 2), (x, 3), (x, 1))

P1,2(x) = ((x, 3),∞, (x, 1), (x + 1, 2)).

P1(x) = {P1,i(x) | 1 ≤ i ≤ 2} and P1(x) ⊆ B.

(2) Type 2: for {x, y} ⊆ Zk, x 6= y, let

P2(x, y) = ((x + 1, 2), (y, 1), (x, 1), (y + 1, 2)) ∈ B.
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(3) Type 3: for 0 ≤ x < y ≤ k − 1 and for 3 ≤ i ≤ 4, let

Pi(x, y) = ((x, i), (y, i− 1), (x, i− 1), (y, i)) ∈ B.

In this case every maximum packing has empty leave, so a P3-design is required. The

following result shows this is what The 3k + 1 Construction produces.

0 1 2 K-2 K-1

P11

P2

P3 P4

P12

Figure 2.3: The 3k + 1 Construction

For those familiar with modifications of the Bose construction for Steiner triple systems

to produce P3-designs, one would expect to see subsystems on the vertex set {{∞}∪ (Zk ×

{1, 2, 3})}. As the following shows, such subsystems are destroyed by a bijection mapping

the edge{(x, 1), (y, 2)} to {(x, 1), (y+1)} (seeP1,2). This has the dual effect of keeping paths

intact and creates no subsystems in the process, as the following shows.

Proposition 2.2.3. The 3k + 1 Construction produces a P3-design of order 3k + 1.

Proof. The total number of paths in a P3-design of order 3k+1 is
(

v

2

)
/3 = k(3k+1)/2.

We begin by counting the number of paths in B.

The number of Type 1 paths is clearly 2k. For 2 ≤ i ≤ 4, Pi(x, y) contains k(k − 1)/2

choices for x and y. Therefore |B| = 2k + 3k(k − 1)/2 = k(3k + 1)/2 as required.

7



Now it remains to show that each edge e in E(K3k+1) occurs in some P3 in B. If

e = {(x, i), (y, i)} with x, y ∈ Zk, x 6= y and 1 ≤ i ≤ 3, then e occurs in Pi+1(x, y). If

e = {(x, i), (x, j)} where 1 ≤ i < j ≤ 3 then e occurs in P2(x− 1, x) if i = 1 and j = 2 and

otherwise it occurs in P1,1(x). If e = {∞, (x, i)} where1 ≤ i ≤ 3 then e occurs in P1(x). If

e = {(x, i), (y, i + 1)} where 1 ≤ i ≤ 3 and {x, y} ⊆ Zk, x 6= y, then e occurs in

(i) Pi+1(x, y) if 2 ≤ i ≤ 3,

(ii) P2(x, y − 1) if i = 1 and y 6= x + 1, and

(iii) P1,2(x) otherwise.

Proposition 2.2.4. The P3-design (V,B) of order v = 3k+1 constructed using The 3k+1

Construction contains no proper subsystems.

Proof. Suppose (V ′, B′) is a subsystem of (V,B). We consider each possible copy of

P3 in B′ by considering four cases in turn, eventually showing that in fact V ′ = V .

Case 1: The subsystem contains P1,1(x) for some x ∈ Zk. Notice that

P1,1(x) → {(∞, (x, 1)} → P1,2(x) → {∞, (x + 1, 2))} → P1,1(x + 1). Therefore, if

P1,1(x) ∈ B′ for some x ∈ Zk then P1,1(x) ∈ B′ for all x ∈ Zk. Since
⋃

x∈Zk

V (P1,1(x)) = V , it

follows that V ′ = V .

Case2: The subsystem contains P1,2(x) for some x ∈ Zk. Notice that

P1,2(x) → {(x, 1), (x, 3)} → P1,1(x). So by Case 1, V ′ = V .

Case 3: The subsystem contains Pi(x, y) for some i ∈ {3, 4} and some x, y ∈ Zk with

x < y. Then Pi(x, y) → {(x, i− 1), (x, i)} → P1,1(x). So by Case 1, V ′ = V .

Case 4: The subsystem contains P2(x, y) for some x, y ∈ Zk with x < y. Then

P2(x, y) → {(x + 1, 2), (y + 1, 2)} → P3(x + 1, y + 1). So by Case 3, V ′ = V .

8



Since V ′ 6= Ø, V ′ = V . So (V,B) contains no proper subsystems.

2.2.3 Case C: v = 3k + 2.

We begin with a construction of a P3-design.

The 3k + 2 Construction. Let V = {{∞1,∞2} ∪ (Zk × {1, 2, 3})} and G be a copy

of K3k+2 defined on the vertex set V and define a collection B of copies of P3 as follows.

(1) Type 1: for each x ∈ Zk, let

P1,1(x) = (∞2, (x, 3),∞1, (x, 1))

P1,2(x) = ((x, 2),∞2, (x, 1), (x + 1, 2))

P1,3(x) = (∞1, (x, 2), (x, 3), (x, 1)).

P1(x) = {P1,i(x) | 1 ≤ i ≤ 3} and P1(x) ⊆ B (see figure 2.4).

P11

P12

∞1 ∞2

P13

Figure 2.4: P1(x)

(2) Type 2: for {x, y} ⊆ Zk, x 6= y, let

P2(x, y) = ((x + 1, 2), (y, 1), (x, 1), (y + 1, 2)) ∈ B.

(3) Type 3: for 0 ≤ x < y ≤ k − 1 and for 3 ≤ i ≤ 4, let

Pi(x, y) = ((x, i), (y, i− 1), (x, (i− 1), (y, i))) ∈ B.

In this case every maximum packing has leave L of size 1. The following result shows

this is what The 3k + 2 Construction produces.

9



Proposition 2.2.5. The 3k + 2 Construction produces a P3-packing of order 3k + 2 with a

leave L = {∞1,∞2} of size 1.

Proof. The total number of paths in a maximum P3-packing of order 3k +2 with leave

of size 1 is
(

v

2

)
/3− 1 = 3(k2 + k)/2. We begin by counting the number of paths in B.

The number of Type 1 paths is clearly 3k. For 2 ≤ i ≤ 4, in defining Pi(x, y) contains

k(k− 1)/2 choices for x and y. Therefore |B| = 3k +3k(k− 1)/2 = 3(k2 + k)/2 as required.

Now it remains to show that each edge e in E(K3k+2)− {∞1,∞2} occurs in some P3

in B. If e = {(x, i), (y, i)} with x, y ∈ Zk, x 6= y and 1 ≤ i ≤ 3, then e occurs in Pi+1(x, y).

If e = {∞1, (x, i)} or {∞2, (x, i)} with x ∈ Zk, 1 ≤ i ≤ 3, then e occurs in P1(x). If

e = {(x, i), (x, j)} with x ∈ Zk, 1 ≤ i ≤ j ≤ 3 and i 6= 1, j 6= 2 then e occurs in P1,3(x)

otherwise occurs in P2(x− 1, x). If e = {(x, i), (y, i + 1)} where 1 ≤ i ≤ 3 and {x, y} ⊆ Zk,

x 6= y then e occurs in

(i) Pi+1(x, y) if 2 ≤ i ≤ 3,

(ii) P2(x, y − 1) if i = 1 and y 6= x + 1, and

(iii) P1,2(x) otherwise.

Proposition 2.2.6. The maximum P3-packing (V,B) of order v = 3k+2 constructed using

The 3k + 2 Construction contains no proper subsystems.

Proof. Suppose (V ′, B′) is a subsystem of (V,B). We consider each possible copy of

P3 in B′ by considering five cases in turn, eventually showing that in fact V ′ = V .

Case 1: The subsystem contains P1,1(x) for some x ∈ Zk. Notice that

P1,1(x) → {∞2, (x, 1)} → P1,2(x) → {∞1, (x + 1, 2)} → P1,1(x + 1).

10



Therefore, if P1,1(x) ∈ B′ for some x ∈ Zk then P1,i(x) ∈ B′ for all x ∈ Zk where

1 ≤ i ≤ 2. Since
⋃

x∈Zk

⋃
1≤i≤2

V (P1,i(x)) = V , it follows that V ′ = V .

Case 2: The subsystem contains P1,2(x) for some x ∈ Zk. Notice that

P1,2(x) → {(x, 2), (x + 1, 2)} → P3(x, x + 1) → {∞2, (x, 3))} → P1,1(x). So by Case 1,

V ′ = V .

Case 3: The subsystem contains P1,3(x) for some x ∈ Zk. Notice that

P1,3(x) → {∞1, (x, 1))} → P1,1(x). So by Case 1, V ′ = V .

Case 4: The subsystem contains P2(x, y) for some x, y ∈ Zk with x < y. Then

P2(x, y) → {(x, 1), (x + 1, 2)} → P1,2(x). So by Case 2, V ′ = V .

Case 5: The subsystem contains Pi(x, y) for some i ∈ {3, 4} and some x, y ∈ Zk with

x < y. Then Pi(x, y) → {(x, i− 1)(x, i)} → P1,3(x). So by Case 1, V ′ = V .

Therefore since V ′ 6= Ø, V ′ = V . So (V,B) contains no proper subsystems.

2.2.4 Remarks

The constructions described in this section can easily be adapted to construct Pm-

designs for odd values of m and specific, and a related construction will produce Pm-designs

when m is even. These constructions are likely to produce a framework for constructing

Pm-designs with no subsystems for all values of v and m, providing the small values of v

can be settled. The results in Chapter 3 abandon this approach since it seems that solving

the problem for small values of v can be extended to a method that works for all v.
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Chapter 3

Decomposition of a Kv into copies of Pm

which contain no proper subsystems

In this chapter we solve the G-design problem with no subsystems for the case G = Pm,

a simple path with m edges, for every value of m. The existence of Pm-decompositions of

Kv was solved by Tarsi [18], by proving the following result.

Theorem 3.1 ([18]). A necessary and sufficient condition for the existence of a decompo-

sition of a complete multigraph λKv into edge disjoint simple paths of length m is

v = 1, or

λv(v − 1) ≡ 0 (mod 2m) and v ≥ m + 1.

(3.1)

The approach used in proving the result involves both modifications of Tarsi’s con-

structions and in some cases to come up with a completely new construction to make sure

that the Pm-designs have no subsystems. We have created new techniques to check for

subsystems in our constructions. These proof techniques can be easily applied to check for

subsystems in many G-designs. The following section contains the basic ideas and notation

which will be used throughout the rest of the chapter.

3.1 Notation and Basic Ideas

For any G-decomposition T = (V,C), it will be useful to let E(T ) denote the edges

occurring in
⋃
c∈C

c; in particular, if S = (W,D) is a subsystem of T , then E(S) = E(Kv′),
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where v′ = |W |. In the following constructions, the set of vertices of Kv will be either

V = Zv or Zv−1∪{∞}. Let v = |V | and ε = |E(T )| denote the total number of vertices and

edges respectively. Let the trail T = {{x0, x1}, {x1, x2}, . . . , {xn−1, xn}} (not all vertices

need be distinct) be denoted by (x0, x1, . . . , xn), and if T is a path P then let the cycle

P + {x0, xn} also be denoted by (x0, x1, . . . , xn); it will be clear from the context which

structure is being used. For each trail T = (x0, x1, . . . , xn) on the vertex set Zz or Zz ∪{∞}

(so z = v or v − 1 respectively), let T + i be the trail (x0 + i, x1 + i, . . . , xn + i), where

each sum is reduced modulo z if xj 6= ∞, and where ∞ + i is defined to be ∞. If T1 =

(x0, x1, . . . , xn) and T2 = (y0, y1, . . . , yn) are two trails with xn = y0, then denote the

concatenation of T1 and T2 by T1 + T2 = (x0, x1, . . . , xn = y0, y1, . . . , yn). If x 6= ∞ and

y 6= ∞ are two elements of Zz for some z ∈ {v, v − 1}, then the edge {x, y} is said to be of

difference k if k = min{|y − x|, z − |y − x|}. The set of all differences will be denoted by

Dv = {1, 2, . . . , bv/2c}.

One of the basic ingredients used in the constructions is the trail

C(v, k) = (0, k + 1, 1, k + 2, . . . , k − 1, v − 1, k, 0), (3.2)

where k ∈ Dv and k < (v − 3)/2. Notice that C(v, k) has length 2v and contains all the

edges of differences k and k + 1.

For any trail T = (v1, v2, . . . , vk) and k ≥ m, let T/m be the set of m-trails {(vi, . . . , vi+m) |

i ∈ {zm + 1 | 0 ≤ z ≤ bk − 1/mc − 1}}. Notice that the edges in T/m partition all but at

most the last m− 1 of the edges in T . Our aim is to pick T carefully so that each element

in T/m is a path. For any trail T = (v1, v2, . . . , vk), if vi and vj are the first occurrences of

a and b respectively in T then let S(T, a, b) denote the subtrail (vi, vi+1, . . . , vj) of T . For

x, y ∈ Zz with x 6= y, let I(x, y) be the path (x, x + 1, x + 2, . . . , y) consisting entirely of

edges of difference 1 reducing the sums modulo z.
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In order to prove that a given G-decomposition (V,C) does not have a subsystem

(W,D), the argument here is usually based on the observation that if {x, y} ⊆ W , then

there exists a path c ∈ C containing the edge {x, y}, implying that V (c) ⊆ W . This obser-

vation is denoted by {x, y} → V (c). Often a specific vertex α ∈ V (c) is of specific interest,

so we similarly write {x, y} → α to indicate that since {x, y} ⊆ W it follows that α ∈ W .

A common technique used here to show that a Pm-design has no subsystems when v is even

is to focus on the pairs of vertices joined by an edge of difference v/2, showing that either

the edge {u, u + v/2} → {u + 1, u + v/2 + 1} or {u, u + v/2} → {u − 1, u + v/2 − 1}; in

either case we say that the next half difference is also in the subsystem.

3.2 Preliminary Results

In order to prove the main result we first make the following useful observations.

Lemma 3.2. If m ≥ 2v/3 then every Pm-decomposition of Kv has no subsystems.

Proof. Suppose S = (W,D) is a subsystem of the Pm-decomposition (V,C) of Kv.

Then since D contains a path |W | ≥ m + 1. Consider an edge {x, y}, where x ∈ W and

y ∈ V −W . Since S is a subsystem, each edge in the path P that contains the edge {x, y}

has at least one end in V −W . Therefore | V −W |≥ dm/2e. So |V | = |W | + |V −W | ≥

m + 1 + m/2 = 3m/2 + 1 ≥ |V |+ 1, a contradiction. Hence the Pm-decomposition contains

no subsystems.

We now prove a lemma that is used regularly in later constructions. It considers the

concatenation of various copies of C(v, k) (see Equation 3.2).
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Lemma 3.3. Suppose that i, j ∈ Dv with v/2 > j > i, and that j − i is odd. Let T be the

trail formed by the concatenation C(v, i) + C(v, i + 2) + · · · + C(v, j − 1). If T contains a

cycle C induced by consecutive vertices, then the length of C is at least 2i + 1.

Proof. We prove the result by showing that if T contains x consecutive edges that form

a cycle C then x ≥ 2i + 1.

Looking at the structure of C(v, i), any cycle consisting only of edges in C(v, i) has

length 2i + 2. If C contains edges from both C(v, l) and C(v, l + 2) then C must contain

precisely the first 2l edges in C(v, l+2) together with the edge {0, l} in C(v, l), so has length

2l + 1. Since l ≥ i, we can conclude that the length of the smallest cycle in T is 2i + 1.

Corollary 3.4. Suppose that i, j ∈ Dv with v/2 > j > i, and that j− i is odd. Let T be the

trail formed by the concatenation C(v, i) + C(v, i + 2) + · · ·+ C(v, j− 1). If m ≤ 2i then all

trails in T/m are paths.

Proof. From Lemma 3.3 it follows that each cycle formed by the consecutive vertices

in T has length at least 2i + 1. Since m ≤ 2i, we can conclude that all trails in T/m are

paths.

Next we consider a similar concatenation.

Corollary 3.5. Suppose that i, j ∈ Dv with v/2 > j > i, that j− i is odd, and that x ∈ Zz.

Let T be the trail formed by the concatenation I(x, 0)+C(v, i)+C(v, i+2)+ · · ·+C(v, j−1).

If

m ≤


min{v + x− 2i− 2, 2i} when x ≥ i + 1, and

min{v + x− 1, 2i} otherwise

then all trails in T/m are paths.

Proof. Let C be any cycle formed by the consecutive vertices in T . If C consists only

of edges in I(x, 0)+C(v, i) then C must contain precisely the v−x edges in I(x, 0) together
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with the first 2x − 2i − 1 edges of C(v, i) if x ≥ i + 1 and the first 2x edges of C(v, i)

otherwise. If C contains edges from both C(v, l) and C(v, l + 2) then from Lemma 3.3 it

follows that the length of the C must be 2i + 1.

Thus we can conclude that whenever

m <


min{v + x− 2i− 1, 2i + 1} when x ≥ i + 1, and

min{v + x, 2i + 1} otherwise ,

all trails in T/m are paths.

3.3 The Main Result

Now we state and prove the main theorem.

Theorem 3.6. Let m ≥ 3. There exists a Pm-decomposition (V,C) of Kv containing no

subsystems if and only if either

v = 1, or m divides
(

v

2

)
and v ≥ m + 1. (3.3)

Proof. The necessary condition follows from two observations that if Kv contains at

least one edge (so v > 1) then C must contain at least one path and so |V | ≥ m + 1; and

since each of the
(

v

2

)
edges in Kv occurs in exactly one path and each path contains exactly

m edges.

In order to prove the sufficiency we now consider two cases depending on whether v is

odd or even, each case considering various subcases in turn. In view of Theorem 3.1 and

Lemma 3.2, if m ≥ 2v/3 then Pm-decompositions exist and clearly have no subsystems; so

we can assume that m < 2v/3. In particular, since v ≥ m+1 ≥ 4 it follows that m ≤ v− 2.

Case A: v is odd.
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Let C0 = (v0, v1, v2, . . . , vv) be a hamiltonian cycle defined by

vi=


∞ if i ∈ {0, v}, and

(−1)id(i− 1)/2e otherwise,

where each sum is reduced modulo v (see figure 3.1). Let Ci = C0+i for each i ∈ Zv−1. Then

clearly Ci = Ci+(v−1)/2 for i ∈ Z(v−1)/2. Also note that {Ci | i ∈ Z(v−1)/2} is the standard

hamiltonian decomposition of Kv. Form an Euler tour (e1, e2, . . . , eε) by the concatenation

C0 + C1 + · · · + C(v−3)/2 (see figure 3.2). For each i ∈ Zv(v−1)/2m, let πi be the trail

induced by {eim+1, eim+2, . . . , e(i+1)m} (see figure 3.3). Then (V,C) = (Zv−1 ∪ {∞}, {πi |

i ∈ Zv(v−1)/2m}) is a Pm-decomposition of Kv. Suppose S = (W,D) is any subsystem

in this Pm-decomposition of Kv. Now we consider various possibilities, arriving at the

contradiction W = V in each case.

0

∞

1

24

3

5

Figure 3.1: Example of C0 in K7
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0

∞

1

24

3

5

Figure 3.2: Example of Euler tour on K7

0

∞

1

2
4

3

5

Figure 3.3: Example with v = 7 and m = 3
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Case 1: Suppose {∞, i} ∈ E(S) for some i.

We will show that {∞, i} → i + 1. By repeating this argument we can conclude that

W = V .

Since m ≥ 3 and Ci = (∞, i, i + 1, . . . , i + (v − 1)/2 + 1, i + (v − 1)/2,∞), clearly

{∞, i} → i + 1 except possibly if

(a) {∞, i} is the last edge of some πj and i < (v − 1)/2, or

(b) {∞, i} is the first edge of some πj and i ≥ (v − 1)/2.

We now consider each exceptional case in turn.

Case 1a: Suppose {∞, i} is the last edge of some πj and i < (v − 1)/2.

Since m ≥ 3, in this case πj = (. . . , i + (v − 1)/2, i− 1 + (v − 1)/2,∞, i), so clearly

{∞, i} → i + (v − 1)/2. (3.4)

Then for some k, {∞, i + (v − 1)/2} is in the path πj+k = (. . . , i + (v − 1)/2,∞, i + 1, . . . )

or in the path πj+k = (. . . , i + (v − 1)/2,∞) in C.

In the first case Equation 3.4 implies that V (πj+k) ⊆ W , so i + 1 ∈ W as required.

Otherwise E(Ci) − {∞, i} =
k⋃

l=1

E(πj+l). So |V | − 1 = |E(Ci) − {∞, i}| is divisible

by m. So this case only arises when |V | ≡ 1 (mod m). So since πj+k = (. . . , i + 1 + (v −

1)/2, i + (v − 1)/2,∞), we have {∞, i} → {∞, i + (v − 1)/2} → i + 1 + (v − 1)/2. Then,

since |V | ≡ 1 (mod m), it follows that E(Ci+1)−{∞, i+1+(v−1)/2} =
2k⋃

l=k+1

E(πj+l) and

so πj+(2k+1) = (i + 1 + (v− 1)/2,∞, i + 2, . . . ) implying that {∞, i} → i + 2. But {i, i + 2}

is in πj+(k+1) = (∞, i + 1, i + 2, i, . . . ). Hence {∞, i} → i + 1, so i + 1 ∈ W as required.

Case 1b: Suppose {∞, i} is the first edge of some πj and i ≥ (v − 1)/2.
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Since m ≥ 3, in this case πj = (i,∞, i− (v− 1)/2 + 1, i− (v− 1)/2 + 2, . . . ), so clearly

{∞, i} → i− (v − 1)/2 + 2. (3.5)

Then for some k, {∞, i−(v−1)/2+2} is in the path πj+k = (· · · , i+1,∞, i−(v−1)/2+2, . . . )

or in the path πj+k = (∞, i − (v − 1)/2 + 2, i − (v − 1)/2 + 3, . . . ) in C. So in either case

Equation 3.5 implies that

V (πj+k) ⊆ W (3.6)

In the first case Equation 3.6 immediately implies that i + 1 ∈ W as required.

Otherwise E(Ci+1 = Ci−(v−1)/2+1) + {∞, i} =
k−1⋃
l=0

E(πj+l). So |V | + 1 = |E(Ci+1) +

{∞, i}| is divisible by m. So this case only arises when |V | + 1 ≡ 0 (mod m). Therefore

πj+(2k−1) = (. . . , i + 2,∞, i− (v− 1)/2 + 3). By Equation 3.6, {∞, i− (v− 1)/2 + 3} ⊆ W ,

which implies that V (πj+2k−1) ⊆ W . Therefore i + 2 ∈ W . Finally, notice that πj+(k−1) =

(. . . , i, i + 2, i + 1,∞). Hence {i, i + 2} → {i + 1} and so i + 1 ∈ W as required.

Case 2: Suppose {i, i + 1} ∈ E(S) for some i 6= ∞.

We will show that {i, i + 1} → {∞, j} for some j. Then the result follows by Case 1.

Since the edge {i, i+1} is either immediately precedes or follows {∞, i} in some Cx, clearly

{i, i + 1} → {∞, i} except possibly if

(a) {i, i + 1} is the first edge of some πj and i < (v − 1)/2, or

(b) {i, i + 1} is the last edge of some πj and i ≥ (v − 1)/2.

Observe that in both the exceptional cases {i, i+1} → i−1, since πj = (i, i+1, i−1, . . . )

or πj = (. . . , i− 1, i + 1, i) respectively. So for all x,

either {x, x + 1} → {∞, x}, or {x, x + 1} → {x, x− 1}. (3.7)
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But, since C0 = (∞, 0, 1, . . . ) implies {0, 1} → {∞, 0}, recursively applying the observation

3.7 implies that for all i {i, i + 1} → {∞, j} for some j (since at worst j = 0).

Case 3: Suppose {i, i + j} ∈ E(S) for some i 6= ∞, j > 1.

Notice that if {i, i + j} is in some path πj then πj contains at least one of the vertices

i − 1, i + 1, i + j − 1 or i + j + 1. In any of these cases {i, i + j} → {k, k + 1} for some

k ∈ {i− 1, i, i + j − 1, i + j}. So the result follows by Case 2.

Case B: v is even.

We will solve this case by considering different subcases in turn depending on the length

of the path.

Case 1: m = v − 2.

By Lemma 3.2 and from the fact that m ≥ 3, we can conclude that Pm-decompositions

of Kv contain no subsystems.

Case 2: m = v − 3.

Since m < 2v/3 and in this case m = v − 3, it follows that v < 9. By the necessary

condition that m must divide
(

v

2

)
, the only situation that needs to be solved is when

v = 6 and m = 3. If v = 6, let Z(3) be the zigzag path defined by (0, 2, 5, 3). So

(V,C) = (Z6, {{Z(3) + i | i ∈ Z3} ∪ (0, 1, 2, 3) ∪ (3, 4, 5, 0)}) is a P3-decomposition of K6.

Suppose S = (W,D) is any subsystem in this P3-decomposition. Let πj ∈ D be any

path of length 3. Suppose πj = Z(3) + i for some i ∈ Z3. Each path Z(3) + i contains

the edge {k, k + 3} of half difference for some k. Since k and k + 3 have different parity, it

follows that Z(3) + i contains both k + 1 and k + 4. So W must contain the vertices of the

next half difference, which implies that Z(3) + (i + 1) ∈ D. By repeating this argument we

can conclude that V ({Z(3) + i|i ∈ Z3}) = W = V .
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Suppose πj = (0, 1, 2, 3) or (3, 4, 5, 0). In either of these cases πj → {0, 3} → Z(3)+1 ∈

D. Then the result follows by the above argument.

Case 3: m ≤ v − 4 and v −m ≡ 3 (mod 4).

Without loss of generality we can assume m ≤ v − 7, because v − m 6≡ 3 (mod 4)

when m > v − 7. Observe that in this case m is odd (since v is even in Case B and

v −m ≡ 3 (mod 4)).

Let Z(m) be the zigzag path (v0, v1, . . . , vm) defined by

vi=


(−1)i+1d(i + 1)/2e for 0 ≤ i ≤ bm/2c, and

vm−i + v/2 otherwise ,

where each sum is reduced modulo v. Notice that the set of m-paths Z = {Z(m) + i | i ∈

Zv/2} partitions all the edges of differences in {2, 3, . . . , dm/2e} ∪ {v/2} (see figure 3.4).

0
1V-1

V+2/2
V/2

V-2/2

2
V-2

V+4/2 V-4/2

Figure 3.4: Example with m = 7 and general v

Let T = (v1, v2, . . . , vk) be the trail formed by the concatenation I(m, 0)+C(v, dm/2e+

1) + C(v, dm/2e + 3) + · · · + C(v, v/2 − 2). Apply Corollary 3.5 to T using x = m and

i = dm/2e+1 = (m+3)/2. Notice that in this case, if m ≥ 5 then x = m ≥ (m+5)/2 = i+1

and the condition of the Corollary 3.5 is met, and otherwise m = 3 in which case x = m ≤ i,
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so clearly m ≤ min{2i, v +x}. Thus we can conclude that all trails in T/m are paths. Note

that in Case 3 v − m ≡ 3 (mod 4), so dm/2e + 1 ≡ v/2 − 2(mod 2). So T/m is a set of

m-paths which partitions all the edges of differences in {dm/2e+1, dm/2e+2, . . . , v/2− 1}

and the v−m edges of difference 1 from the vertex m forward to the vertex 0. So (V,C) =

(Zv, {Z ∪ T/m ∪ I(0,m)}) is a Pm-decomposition of Kv.

Suppose S = (W,D) is any subsystem in this Pm-decomposition of Kv. Let πj ∈ D be

any path of length m. Now we consider various possibilities, arriving at the contradiction

W = V in each case.

Case 3a: Suppose that πj = Z(m) + i for some i ∈ Zv/2.

Each path Z(m) + i contains the edge {k, k + v/2} of half difference for some k

Suppose m ≥ 5. Then Z(m)+ i contains both k+1 and k+v/2+1 (if m ≡ 1 (mod 4))

or both k − 1 and k + v/2− 1 (if m ≡ 3 (mod 4)). So W must contain one pair of vertices

in the next half difference, which implies that either Z(m) + (i + 1) or Z(m) + (i− 1) ∈ D.

By repeating this argument we can conclude that V (Z) = W = V .

Suppose m = 3. Then Z(m) + i → {k− 2, k + v/2− 2} → Z(m) + i− 2. So recursively

it follows that X = {k − 2i, k + v/2 − 2i | i ∈ Zv/2} ⊆ W . Since v − m ≡ 3 (mod 4) and

m = 3, it follows that v/2 is odd so k and k + v/2 have different parity. So X = V ; so

W = V .

Case 3b: Suppose that πj ∈ I(0,m) ∪ T/m ∈ D.

We will show that πj → Z(m)+ i ∈ D for some i, then the result follows from Case 3a.

Suppose m ≥ 5. Every πj ∈ I(0,m) ∪ T/m contains a pair of vertices {k, k + 2} for

some k, and the edge {k, k + 2} ∈ Z(m) + i for some i. So Z(m) + i ∈ D as required.

Suppose m = 3. Then one of the following occurs.

(i) πj contains the edge {k, k + 2}. So, as above, Z(m) + i ∈ D for some i.
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(i) πj = (k, k+l, k+1, k+l+1) is contained in a C trail. In this case the edge {k, k+1} is

in some πn that must contain either k−1 or k+2. So S contains an edge of difference

2 (either {k, k + 2} or {k − 1, k + 1}). So S contains an edge in Z(m) + i for some i.

(ii) πj = (k, 0, k + 3, 1) straddles two C trails. In this case the edge {0, 1} ∈ I(0, 3). So S

contains the edge {0, 2} ∈ Z(m) + 1.

Hence the result follows by Case 3a.

Case 4: m ≤ v − 4 and v −m ≡ 1 (mod 4).

Without loss of generality we can assume m ≤ v − 5, because v − m 6≡ 1 (mod 4)

when m > v − 5. Observe that in this case m is odd (since v is even in Case B and

v −m ≡ 1 (mod 4)).

Let Z1(m) be the zigzag path (v0, v1, . . . , vm) defined by

vi=


(−1)i+1di/2e for 0 ≤ i ≤ bm/2c, and

vm−i + v/2 otherwise ,

where each sum is reduced modulo v. Notice that the set of m-paths Z1 = {Z1(m) + i | i ∈

Zv/2} partitions all the edges of differences in {1, 2, . . . , bm/2c} ∪ {v/2} (see figure 3.5).

Let T = (v1, v2, . . . , vk) be the trail formed by the concatenation C(v, bm/2c + 1) +

C(v, bm/2c+3)+ · · ·+C(v, v/2−2); note that in Case 4 v−m ≡ 1 (mod 4), so bm/2c+1 ≡

v/2 − 2 (mod 2). Using i = bm/2c + 1 = (m + 1)/2, clearly m ≤ 2i, so Corollary 3.4 can

be applied to T to conclude that all trails in T/m are paths. So T/m is a set of m-paths

which partitions all the edges of differences in {bm/2c + 1, bm/2c + 2, . . . , v/2 − 1}. So

(V,C) = (Zv, {Z1 ∪ T/m}) is a Pm-decomposition of Kv.

Suppose S = (W,D) is any subsystem in this Pm-decomposition. Let πj ∈ D be any

path of length m. Then either πj = Z1(m) + i for some i ∈ Zv/2 or πj ∈ T/m. We will

show that W = V in both these cases.
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0
1V-1

V+2/2
V/2

V-2/2

2
V-2

V+4/2 V-4/2

Figure 3.5: Example with m = 7 and general v

Suppose that πj = Z1(m) + i for some i ∈ Zv/2. Each path Z1(m) + i contains the

edge {k, k + v/2} of half difference for some k. Since m ≥ 3, Z1(m) + i contains both k + 1

and k + v/2 + 1 (if m ≡ 1 (mod 4)) or both k − 1 and k + v/2− 1 (if m ≡ 3 (mod 4)). So

W must contain one pair of vertices in the next half difference, which implies that either

Z1(m) + (i + 1) or Z1(m) + (i− 1) ∈ D. By repeating this argument we can conclude that

V (Z1) = W = V .

If πj ∈ T/m, then since m ≥ 3, πj = (k, k + l, k + 1, k + 1 + l, . . . ) for some k and

for some l, which implies that the edge {k, k + 1} is in some Z1(m) + i ∈ D. So the result

follows by the previous argument.

Case 5: m ≤ v − 4 and v −m ≡ 2 (mod 4).

We will solve this case by considering two subcases in turn. Without loss of generality

we can assume m ≤ v − 6, because v − m 6≡ 2 (mod 4) when m > v − 6. Observe that in

this case m is even (since v is even in Case B and v −m ≡ 2 (mod 4)).

Case 5a: m ≤ v/2.

Let Z2(m) be the zigzag path (v0, v1, . . . , vm) define by
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vi=


(−1)i+1d(i + 1)/2e for 0 ≤ i ≤ m/2− 1,

vm−(i+1) + v/2 for m/2 ≤ i ≤ m− 1, and

vm−1 + 1 for i = m,

where each sum is reduced modulo v. Notice that the set of m-paths Z2 = {Z2(m)− i | i ∈

Zv/2} partitions all the edges of differences in {2, 3, . . . ,m/2} ∪ {v/2} and the v/2 edges of

difference 1 in I(0, v/2) (see figure 3.6).

0
1V-1

V+2/2
V/2

V-2/2

2
V-2

V+4/2 V-4/2

Figure 3.6: Example with m = 8 and general v

Let T = (v1, v2, . . . , vk) be the trail formed by the concatenation I(v/2, 0)+C(v,m/2+

1) + C(v,m/2 + 3) + · · · + C(v, v/2 − 2). Apply Corollary 3.5 to T using x = v/2 and

i = m/2 + 1; notice that in Case 5a m ≤ v/2, so x = v/2 ≥ m/2 + 2 = i + 1 and

m ≤ min{2i, v + x − 2i − 2} since m ≥ 4. So clearly the condition of the Corollary 3.5

is met. Thus we can conclude that all trails in T/m are paths. Note that in Case 5

v − m ≡ 2 (mod 4), so m/2 + 1 ≡ v/2 − 2(mod 2). So T/m is a set of m-paths which

partitions all the edges of differences in {m/2 + 1,m/2 + 2, . . . , v/2− 1} and the v/2 edges

of difference 1 in I(v/2, 0). So (V,C) = (Zv, {Z2 ∪ T/m}) is a Pm-decomposition of Kv.
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Suppose S = (W,D) is any subsystem in this Pm-decomposition. Let πj ∈ D be any

path of length m. Then either πj = Z2(m) − i for some i ∈ Zv/2 or πj ∈ T/m. We will

show that W = V in both these cases.

Case 5a(i): Suppose that πj = Z2(m)− i for some i ∈ Zv/2.

Each path Z2(m)− i contains the edge {k, k + v/2} of half difference for some k.

Suppose m ≥ 6. Then Z2(m)− i contains both k+1 and k+v/2+1 (if m ≡ 2 (mod 4))

or both k − 1 and k + v/2− 1 (if m ≡ 0 (mod 4)). So W must contain one pair of vertices

in the next half difference, which implies that either Z2(m)− (i−1) or Z2(m)− (i+1) ∈ D.

By repeating this argument we can conclude that V (Z2) = W = V .

Suppose m = 4. Then Z2(m)− i → {k−2, k+v/2−2} → Z2(m)− i−2. So recursively

it follows that X = {k − 2i, k + v/2 − 2i | i ∈ Zv/2} ⊆ W . Since v − m ≡ 2 (mod 4) and

m = 4 it follows that v/2 is odd so k and k + v/2 have different parity. So X = V ; so

W = V .

Case 5a(ii): Suppose that πj ∈ T/m ∈ D.

Since m ≥ 4, every πj ∈ T/m contains a pair of vertices {k, k + 2} for some k; since

{k, k + 2} ∈ E(Z2(m)− i), it follows that Z2(m)− i ∈ D for some i. So πj → Z(m)− i for

some i, so the result follows by Case 5a(i).

Case 5b: v/2 < m < 2v/3.

First observe that in this case m ≥ 6, since when m = 4 there is no even v which

satisfies v/2 < 4 < 2v/3. Recall that S(T, a, b) was defined to be a subtrail of T from a to

b.

Let D1 = I(m, 0) + S(C(v,m/2 + 1), 0,m − v/2); it is easy to check D1 is a path of

length m. Denote by Tl, the final segment from m− v/2 to 0 remaining of C(v,m/2 + 1);

then note that |E(Tl)| = 3v − 2m > m. Let T = (v1, v2, . . . , vk) be the trail formed by the

concatenation I(0,m− v/2) + Tl + C(v,m/2 + 3) + · · ·+ C(v, v/2− 2). Note that in Case
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5 v − m ≡ 2 (mod 4), so m/2 + 3 ≡ v/2 − 2(mod 2), so T has all the edges of differences

m/2 + 1, . . . , v/2 − 1, and v/2 edges of difference 1 from the vertex m forward (through

0) to m − v/2. We now show that trails in T/m are paths by showing that if T contains

consecutive vertices that form a cycle C then it has length more than m; so let C be a cycle

formed by the consecutive vertices in T . Since |E(Tl)| > m, we need only consider 3 cases.

(i) Suppose C consists only of edges in I(0,m− v/2) + Tl. If C is in Tl then since Tl is a

subgraph of C(v,m/2 + 1) we can use Lemma 3.3 to conclude that the length of C is

greater than m. If C contains edges from the path I(0,m − v/2) then note that the

first vertex to be repeated in T is either (m−v/2)+m/2+2 or 0. The number of edges

between first two appearances of 3m/2−v/2+2 in T is m+4 > m; and the number of

edges between first two appearances of 0 in T is (2v−m−4)− (2m−v)+(m−v/2) =

5v/2− 2m− 4 > m since m < 2v/3 and v > 8. So the length of C is greater than m.

(ii) If C is in Tl + C(v,m/2 + 3) + · · ·+ C(v, v/2− 2) then C is in C(v,m/2 + 1) + · · ·+

C(v, v/2 − 2). So we can use Lemma 3.3 to conclude that the length of C is greater

than m.

Therefore, by the above observations, it follows that, D1 ∪ T/m is a set of m-paths

which partitions all the edges of differences in {m/2 + 1,m/2 + 2, . . . , v/2− 1} and the v/2

edges of difference 1 from the vertex m forward (through 0) to m− v/2.

Let Z3(m− 1) be the zigzag path (v0, v1, . . . , vm−1) of length m− 1 defined by

vi=


(−1)i+1d(i + 1)/2e for 0 ≤ i ≤ m/2− 1, and

vm−(i+1) + v/2 for m/2 ≤ i ≤ m− 1.

Observe that the paths in D1 ∪ T/m include v/2 edges of difference 1, one in L(x) =

{(x, x + 1), (x + v/2, x + v/2 + 1)} for each x ∈ Zv/2. Thus the set L of the remaining

v/2 edges of difference 1 also has exactly one edge in L(x) for each x ∈ Zv/2; so to each
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path in {Z3(m − 1) + i | i ∈ Zv/2} we can add one edge from L to form the set M of v/2

simple m-paths. Notice that the set of m-paths M partitions all the edges of differences in

{2, 3, . . . ,m/2} ∪ {v/2} and the remaining v/2 edges in I(m − v/2,m) of difference 1. So

(V,C) = (Zv, {M ∪D1 ∪ T/m}) is a Pm-decomposition of Kv.

Suppose S = (W,D) is any subsystem in this Pm-decomposition. Let πj ∈ D be any

path of length m. Now we consider various possibilities for πj , arriving at the contradiction

W = V in each case.

Suppose that πj ∈ M . Each path πj ∈ M contains the edge {k, k + v/2} of half

difference for some k. Since m ≥ 6, πj also contains both k + 1 and k + v/2 + 1 (if

m ≡ 2 (mod 4)) or both k − 1 and k + v/2 − 1 (if m ≡ 0 (mod 4)). So W must contain

one pair of vertices in the next half difference. By repeating the argument we can conclude

that V (M) = W = V .

Suppose that πj ∈ D1 ∪ T/m. Since m ≥ 6, every πj ∈ D1 ∪ T/m contains a pair

of vertices {k, k + 2} for some k, which implies that D contains the path πi ∈ M which

contains the edge {k, k + 2}. Then the result follows by the previous argument.

Case 6: m ≤ v − 4 and v −m ≡ 0 (mod 4).

We will solve this case by considering three subcases in turn. Observe that in this case m

is even (since v is even in Case B and v −m ≡ 0 (mod 4)).

Case 6a: m < v/2.

Let Z4(m) be the tailed zigzag path (v0, v1, . . . , vm) defined by

vi=


(−1)id(i + 2)/2e for 0 ≤ i ≤ m/2− 1,

vm−(i+1) + v/2 for m/2 ≤ i ≤ m− 1, and

vm−1 − 1 = v/2 for i = m,
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where each sum is reduced modulo v. Notice that the set of m-paths Z4 = {Z4(m)− i | i ∈

Zv/2} partitions all the edges of differences in {3, 4, . . . ,m/2+1}∪{v/2} and the v/2 edges

of difference 1 in I(1, v/2 + 1) (see figure 3.7).
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V+2/2
V/2

V-2/2

2
V-2

V+4/2 V-4/2
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Figure 3.7: Example with m = 8 and general v

Let C2(x) = (x, x + 2, x + 4, . . . , x) be the trail (it is a cycle) of length v/2. Let

T = (v1, v2, . . . , vk) be the trail formed by the concatenation C2(v/2 + 1) + {v/2 + 1, v/2 +

2} + C2(v/2 + 2) + I(v/2 + 2, 1) + {C(v,m/2 + 2) + 1} + · · · + {C(v, v/2 − 2) + 1}; note

that in Case 6 v−m ≡ 0 (mod 4), so m/2+2 ≡ v/2− 2 (mod 2). So T has all the edges of

difference 2, of differences m/2+2, . . . , v/2−1, and the edges in I(1, v/2+1). If T contains

consecutive vertices that form a cycle C then we now show that the length of C is more

than m by considering the following 3 cases.

(i) Suppose C consists only of edges in C2(v/2 + 1) + {v/2 + 1, v/2 + 2}+ C2(v/2 + 2) +

I(v/2+2, 1). Observe that the least number of edges between two appearances of any

vertex in C2(v/2 + 1) + {v/2 + 1, v/2 + 2}+ C2(v/2 + 2) + I(v/2 + 2, 1) is clearly at

least v/2. Since m < v/2, it follows that the length of C is greater than m.
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(ii) Suppose C is in I(v/2 + 2, 1) + {C(v,m/2 + 2) + 1}. Since C(v,m/2 + 2) + 1 is

isomorphic to C(v,m/2 + 2), we can apply Lemma 3.3 to conclude that any cycle

consisting only of edges in C(v,m/2 + 2) + 1 has length m + 6. If C contains edges

from the path I(v/2 + 2, 1) then since the second vertex in C(v,m/2 + 2) + 1 is less

than v/2 + 1 (all differences in T are at most v/2) which is not in I(v/2 + 2, 1), it

follows that the length of C is greater than v/2 > m.

(iii) Suppose C is in {C(v,m/2 + 2) + 1}+ · · ·+ C{(v, v/2− 2) + 1}. Then observe that

C(v,m/2 + j) + 1 is isomorphic to C(v,m/2 + j) for all j, so we can use Lemma 3.3

to conclude that the length of C is greater than m.

Therefore, by the above observations, T/m partitions into paths of length m all the

edges of differences in {m/2 + 2, . . . , v/2 − 1} ∪ {2} and the v/2 edges of difference 1 in

I(v/2 + 1, 1). So (V,C) = (Zv, {Z4 ∪ T/m}) is a Pm-decomposition of Kv.

Suppose S = (W,D) is any subsystem in this Pm-decomposition. Let πj ∈ D be any

path of length m. Then either πj = Z4(m) − i for some i ∈ Zv/2 or πj ∈ T/m. We will

show that W = V in both these cases.

Case 6a(i): Suppose that πj = Z4(m)− i for some i ∈ Zv/2.

Each path Z4(m)− i contains the edge {k, k + v/2} of half difference for some k.

Suppose m ≥ 6. Then Z4(m)− i contains both k+1 and k+v/2+1 (if m ≡ 0 (mod 4))

or both k − 1 and k + v/2− 1 (if m ≡ 2 (mod 4)). So W must contain one pair of vertices

in the next half difference which implies that either Z4(m)− (i+1) or Z4(m)− (i− 1) ∈ D.

By repeating this argument we can conclude that V (Z4) = W = V .

Suppose m = 4 (so, being Case 6, v ≡ m ≡ 0 (mod 4)). Then Z4(m)− i → {k + 3, k +

v/2 + 3} → Z4(m) − i + 3. So recursively it follows that X = {k + 3i, k + v/2 + 3i | i ∈

Zv/2} ⊆ W . So X = V = W unless v ≡ 0 (mod 3).
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Hence the only case that remains to be solved is when m = 4 and v ≡ 0 (mod 3) (so

actually v ≡ 0 (mod 12), since in this case v ≡ 0 (mod 4) as well). So finally suppose that

v ≡ 0 (mod 12) and m = 4. Notice that in this exceptional case,

for any x ∈ V, {x, x + v/2} → {x + 3, x + 3 + v/2}. (3.8)

So if {x, x + v/2} ⊆ W then we can recursively apply Equation 3.8 to {x, x + v/2} to see

that {y ∈ V | y ≡ x (mod 3)} ⊆ W . In particular, since {k, k + v/2} ⊆ W , it follows

that A = {a ∈ V | a ≡ k (mod 3)} ⊆ W . But since each path containing an edge of half

difference joining vertices in A also contains an edge of difference 1, we in fact know that

A′ = {b ∈ V | b ≡ k − 1 (mod 3), 1 ≤ b ≤ v/2} ⊆ W . Then observe that if b ≥ 4 and

b ∈ A′ then {b, b − 3} → {b − 3, b − 3 + v/2}. So by applying Equation 3.8 recursively to

{b−3, b−3+v/2}, where b ∈ A′ and b ≥ 4 we will get that B = {b ∈ V | b ≡ k−1 (mod 3)} ⊆

W . So {k, k +v/2} → {a | a ≡ k or k−1 (mod 3)}. In particular {k−1, k +v/2−1} ⊆ W ,

so similarly {k− 1, k + v/2− 1} → {a | a ≡ k− 1 or k− 2 (mod 3)}. Hence W = V in this

case.

Case 6a(ii): Suppose that πj ∈ T/m.

Now we consider various possibilities for πj . If πj contains two vertices that are joined

by an edge that occurs in Z4(m) − i for some i, then the result follows from Case 6a(i).

Notice that if m ≥ 4 then each edge of difference 3 occurs in Z4(m) − i for some i, and if

m ≥ 6 then each edge of difference 4 occurs in Z4(m)− i for some i.

Suppose m ≥ 6. Every πj ∈ T/m contains the vertices in {x, x + 3} or {x, x + 4} for

some x. So every subsystem S containing πj contains an edge of difference 3 or 4; so S

contains an edge in Z4(m)− i for some i.

Suppose m = 4. Then one of the following occurs.
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(i) πj = (. . . , k, k + 2, k + 4, . . . ). In this case the edge {k, k + 4} is in a path that must

contain either k−1 or k+5. So S contains an edge of difference 3 (either {k−1, k+2}

or {k + 2, k + 5}), so S contains Z4(m)− i for some i.

(ii) πj contains 3 consecutive edges in I(v/2 + 2, 1). In this case πj contains a pair

of vertices distance 3 apart, so S contains an edge of difference 3. So S contains

Z4(m)− i for some i.

(iii) πj contains edges in I(v/2 + 2, 1) + C(v,m/2 + 2) + 1. In view of the Case(ii) we can

assume that πj contains at most 2 edges from I(v/2 + 2, 1). So S contains an edge

of difference 2 or 3. If S contains an edge of difference 2 then S contains a path that

was just considered in Case(i). If S contains an edge of difference 3, then S contains

Z4(m)− i for some i.

(iv) πj = (k, k + l, k + 1, k + l + 1, k + 2). In this case the edge {k, k + 2} is in a path that

was just considered in Case(i). So S contains Z4(m)− i for some i.

Case 6b: v/2 ≤ m < 3v/4, and m ≤ v − 8.

First define the sub zigzag path (v′0, v
′
1, . . . , v

′
m/2−1) of length m/2− 1 by

v′i = (−1)i+1d(i + 1)/2e for 0 ≤ i ≤ m/2− 1.

Then let Z5(m) be the zigzag path (v0, v1, . . . , vm) defined by

vi=


v′(m/2−1)−i for 0 ≤ i ≤ m/2− 1,

vm/2−1 + 1 for i = m/2, and

vm−i + v/2 for m/2 + 1 ≤ i ≤ m,

where each sum is reduced modulo v. Notice that the set of m-paths Z5 = {Z5(m) − i |

i ∈ Zv/2} partitions all the edges of differences in {2, 3, . . . ,m/2}, v/2 edges of difference

v/2− 1, and the v/2 edges of difference 1 in I(v/2, 0) (see figure 3.8).
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Figure 3.8: Example with m = 8 and general v

Let A be the trail defined by (0, v/2, 1, v/2 + 1, 2, . . . , v − 1, v/2) of length v which

covers the edges of difference v/2 and remaining edges of difference v/2 − 1. Notice that

the only vertex appearing more than once in A is v/2 which appears twice.

If m > v/2 then let C = S(A, 0, v − m) + I(v − m, v/2). C is a trail of length

3v/2−m > m. Let Tl be the final segment of A after the subtrail S(A, 0, v −m) has been

removed. Observe that the length of Tl is 2m−v. Clearly B = I(0, v−m)+Tl is an m-path.

Note that if m = v/2 then let B = I(0, v/2) and C = A.

In either case, let F be the subtrail of C containing the last m edges and let E be the

subtrail of C formed by removing F . F is an m-path because the only vertex repeated in

C is v/2 which appears as both the second and the last vertex. Note that

E=


S(C, 0, (3v/2− 2m)/2) if 3v/2− 2m is even, and

S(C, 0, v/2 + b(3v/2− 2m)/2c) otherwise.

Let T = (v1, v2, . . . , vk) be the trail formed by the concatenation C(v,m/2 + 1) +

C(v,m/2 + 3) + · · · + C(v, v/2 − 3) + E. Again we show that the trails in T/m are paths

by showing that each cycle C in T has length more than m; so let C be a cycle in T .
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(i) Suppose C consists only of edges in C(v,m/2+1)+C(v,m/2+3)+ · · ·+C(v, v/2−3)

then by Lemma 3.3 we can conclude that the length of C is greater than m.

(ii) C contains edges from both C(v, v/2 − 3) and E. First observe that, since m ≥

max{4, v/2} and since m ≤ v−8, it follows that v ≥ 16. Hence 3v/4−m < v/2−3 <

v/2+ b(3v/2− 2m)/2c. The first vertex to be repeated in C(v, v/2−3)+E is v/2−3

and the number of edges between it’s appearances is v − 5(> m), which implies that

the length of C is greater than m.

Therefore, by the above observations, we can conclude that all trails in T/m are paths.

Note that in Case 5 v−m ≡ 2 (mod 4), so m/2+3 ≡ v/2−3 (mod 2). So T/m∪B∪F is a

set of m-paths which partitions all the edges of differences in {m/2 + 1,m/2 + 2, . . . , v/2−

2} ∪ {v/2}, the remaining v/2 edges of difference v/2− 1, and the v/2 edges of difference 1

in I(0, v/2). So (V,C) = (Zv, {Z5 ∪B ∪ F ∪ T/m}) is a Pm-decomposition of Kv.

Suppose S = (W,D) is any subsystem in this Pm-decomposition. Let πj ∈ D be any

path of length m. We will now consider various possibilities for πj and show that W = V

in each possibility. First observe that since v ≥ 16, m ≥ v/2 implies that m ≥ 8.

Suppose that πj = Z5(m)− i for some i ∈ Zv/2.

Each Z5(m)− i contains the edge {k, k + (v/2− 1)} for some k. Therefore πj contains

both k − 1 and k − 1 + (v/2− 1). So W must contain the edge {k − 1, k − 1 + (v/2− 1)},

which implies that Z5(m)− (i + 1) ∈ D. By repeating this argument we can conclude that

V (Z5) = W = V .

Suppose that πj ∈ B ∪ F ∪ T/m.

Every πj ∈ B∪F ∪T/m contains a pair of vertices {k, k +2} for some k, which implies

that the edge {k, k + 2} is in some Z5(m) − i for some i. Hence the result follows by the

previous argument.

Case 6c: v/2 ≤ m ≤ 2v/3,m > v − 8.
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Without loss of generality we can assume that m = v−4, because v−m ≡ 0 (mod 4) in

Case 6. By Lemma 3.2 m ≤ 2v/3, so in this case v/2 ≤ v− 4 ≤ 2v/3, implying 8 ≤ v ≤ 12.

Since v is even and m has to divide
(

v

2

)
, this implies that the only exceptional case that

needs to be solved is when v = 8 and m = 4.

So finally suppose that v = 8 and m = 4. Then let (V,C) = (Z7∪{∞}, {Z6+i | i ∈ Z7})

is a P4- decomposition of K8 where Z6 = (∞, 0, 6, 1, 5). This decomposition contains no

subsystems because whenever {∞, x} is in any subsystem, {∞, x} → x+1 for some x ∈ Z7,

which implies that whenever Z6 + i is in any subsystem Z6 + (i + 1) is also in the same

subsystem. By repeating this argument we can conclude that V ({Z6 + i | i ∈ Z7}) = V .
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Chapter 4

Decomposition of a Kv and Kv − I into

diagonally switchable 4-cycle systems

In this chapter we solve the problem of decomposing a complete graph Kv and Kv−F ,

where F is any one factor, into 4-cycles having the property of being diagonally switchable.

4.1 Introduction

A C4-decomposition of G is also known as a 4-cycle system of order G. A C4-

decomposition of Kv is said to be a 4-cycle system of order v and is denoted by 4CS(v). It

is already known that the spectrum of 4CS(v) is precisely the set of all v ≡ 1 (mod 8) [13].

In this chapter we consider a class of 4-cycle systems with diagonally switchable property.

In order to define diagonally switchable property, first let (a, b, c, d) denote the 4-cycle

induced by the edge set {{a, b}, {b, c}, {c, d}, {d, a}}. The 4-cycle (a, b, c, d) is said to have

diagonals {a, c} and {b, d}. Using the four points a, b, c, d two more new 4-cycles (a, c, b, d)

and (a, b, d, c) can be constructed by replacing, respectively, each pair of non-adjacent edges

of the original 4-cycle (a, b, c, d) by its diagonals. We will call such transformations diagonal

switches (see figure 4.1).

A 4-cycle system (V, F ) of G is said to be diagonally switchable if each element of I

can be replaced by one of its diagonal switches to get a new set of 4-cycles F̄ such that

(V, F̄ ) is an another 4-cycle system of G (we use F̄ throughout the rest of the chapter to

denote the set of 4-cycles formed from I after performing diagonal switches, which produce

another 4-cycle system).
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Figure 4.1: Diagonal Switches

A 4-cycle system (V, F ) of Kv in which F is diagonally switchable is denoted by

DS4CS(v). A pair of 4-cycles (a, b, c, d) and (a′, b′, c′, d′) is said to have a double-diamond

configuration D if they have a common diagonal. In order DS4CS(v) to exist, no two

4-cycles in the original 4CS(v) can share a diagonal as all diagonals of the original 4-cycle

system become edges of the transformed system. So diagonally switchable 4-cycle decompo-

sitions must be double-diamond avoiding decompositions. Configurations in 4-cycle systems

were studied by Bryant, Grannell, Griggs and Mac̆aj; among other results they proved the

following theorem [5].

Theorem 4.1. There exists a double-diamond-avoiding 4CS(v) for all v ≡ 1 (mod 8).

The existence spectrum of DS4CS(v)s was determined by Adams, Bryant, Grannell

and Griggs [1]. In this chapter we give an alternative proof of their result. This construction

not only solves the case for Kv in a more efficient way, but is also powerful enough to easily

prove a new result, considering the case for Kv − F , where F is any 1-factor of Kv. The

constructions used here are recursive in nature, requiring fewer special cases than the proof

in [1]. The basic building blocks in our constructions are holey self-orthogonal latin squares
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or holey SOLS. The method is then applied to the releated problem of finding 4-cycle systems

of Kv − F with the diagonally switchable property using self-orthogonal latin squares.

A self-orthogonal latin square of order v, or SOLS(v) is a latin square of order v which

is orthogonal to its transpose. It is well known [4] that an SOLS(v) exists for all values of

v, v 6= 2, 3, or 6.

Let V be a set and H = {H1,H2, . . . ,Hk} be a set of nonempty subsets which partitions

the set V . A holey SOLS or HSOLS of type hn1
1 hn2

2 . . . hnk
k is an ordered pair L = (V, ◦) of

order |V | = v =
∑

1≤i≤k

nihi in which:

(1) every cell of L is either empty or contains a symbol of V ;

(2) every symbol of V occurs at most once in any row or column of L;

(3) the subarrays Hi × Hi are empty for 1≤ i ≤ k (these subarrays are referred to as

holes);

(4) the symbol x ∈ V occurs in a row or column y if and only if (x, y) ∈ (V × V ) \

∪k
i=1(Hi ×Hi);

(5) the superposition of L with its transpose yields every ordered pair in (V × V ) \

∪k
i=1(Hi ×Hi).

We briefly denote a holey SOLS of type hn1
1 hn2

2 . . . hnk
k by HSOLS(hn1

1 hn2
2 . . . hnk

k ). Finding

necessary and sufficient conditions for the existence of HSOLS(hn1
1 hn2

2 . . . hnk
k ) is still an

open problem. For the purposes of our proof the following results are sufficient.

Theorem 4.2.

(1) For h ≥ 2, there exists an HSOLS(hn) if and only if n ≥ 4 [17] .

(2) Suppose that n, u are positive integers and u 6= 12. Then there exists an HSOLS(12nu1)

if and only if n ≥ 4 and n ≥ 1 + u/6 (Theorem7.1 in [20]).
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4.2 Preliminary Results

We begin with a result from [1], where each system referred to in the following result is

constructed explicitly (they also constructed systems of order 177 and 209 but these special

cases are not needed in the constructions presented here).

Lemma 4.3. [1] For all v ≡ 1 (mod 8) with 25 ≤ v ≤ 137, v 6= {97, 121, 129}, there exists

a DS4CS(v).

The following result was known to the authors of [1] but was accidentally omitted in

[1].

Lemma 4.4. There does not exist a diagonally switchable 4-cycle system of order 9.

Proof. First note that, there are only 8 non-isomorphic 4CS(9)s [7], of which seven have

double-diamond configurations. In view of the discussion in the introduction, there is, there-

fore only one candidate for being diagonally switchable, namely (V, F ) = (Z9, {(0, 1, 5, 2)+i |

i ∈ Z9}), where each sum is reduced modulo 9.

Observe that F contains the 4-cycles (0, 1, 5, 2), (5, 6, 1, 7) and (8, 0, 4, 1). No matter

how (8, 0, 4, 1) is switched, the resulting 4-cycle contains the edge {0, 1}. So (0, 1, 5, 2)

must be switched to (0, 5, 1, 2) (not switched to (0, 5, 2, 1)). But this 4-cycle contains the

edge {5, 1} and hence when the 4-cycle (5, 6, 1, 7) is switched, the edge {5, 1} is covered

twice. Hence there does not exist a DS4CS(9).

4.3 Constructions

We consider three cases in turn, v ≡ 1 (mod 24) and v ≥ 97, v ≡ 9 (mod 24) and

v ≥ 129, and v ≡ 17 (mod 24) and v ≥ 161.
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4.3.1 Case A: v = 24s + 1, s ≥ 4.

We begin with a construction of a 4CS(v). To deal with this case we need HSOLS(12s)

s ≥ 4, which is known to exist (see Theorem 4.2).

The 24s + 1 Construction. Let s ≥ 4. Let V = {{∞} ∪ (Z12s × {1, 2})} and let G

be a copy of K24s+1 defined on the vertex set V . Let (Z12s, ◦) be a HSOLS(12s) having the

hole set H = {Hi | i ∈ Zs} where Hi = {12i, 12i + 1, . . . , 12i + 11}. Define a collection F of

copies of 4-cycles as follows.

(1) Type 1: For each i ∈ Zs, let

Si = ({∞} ∪ (Hi × {1, 2}), Fi) be a DS4CS(25) (see Lemma 4.3).

Let Fi ⊆ F .

(2) Type 2: For each {a, b} ⊆ Z12s, {a, b} 6⊆ Hi and for each i ∈ Zs, let

((a, 1), (b, 1), (a ◦ b, 2), (b ◦ a, 2)) ∈ F.

Proposition 4.3.1. The 24s+1 Construction produces a diagonally switchable 4CS(24s+

1).

Proof. The total number of 4-cycles in a 4-cycle system of order v = 24s+1 is
(
v
2

)
/4 =

3s(24s + 1). We begin by counting the number of 4-cycles in F .

The number of Type 1 4-cycles is clearly
∑

i∈Zs
75|Fi| = 75s. For each {a, b} ⊆ Z12s,

{a, b} 6⊆ Hi there are
(
12s
2

)
− s

(
12
2

)
= 72s(s− 1) choices for a and b. Therefore |F | = 75s +

72s(s− 1) = 3s(24s+1) as required.

To see (V, F ) is a 4-cycle system, it remains to show that each edge e in E(K24s+1)

occurs in some 4-cycle in F . If e = {∞, (x, j)} or {(x, 1), (y, 1)}, or {(x, 1), (y, 2)} where

{x, y} ⊆ Hi for i ∈ Zs and 1 ≤ j ≤ 2 then e occurs in a Type 1 cycle. Now suppose

{x, y} 6⊆ Hi for i ∈ Zs. Clearly {(x, 1), (y, 1)} occurs in a Type-2 cycle. If e = {(x, 1), (y, 2)}
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then e occurs in the Type 2 cycle ((x, 1), (b, 1), (x◦b, 2), (b◦x, 2)) where b is chosen to satisfy

b ◦ x = y. If e = {(x, 2), (y, 2)} then e occurs in the Type 2 cycle ((a, 1), (b, 1), (a ◦ b, 2), (b ◦

a, 2)) where a and b are chosen by the self-orthogonal property (5) to satisfy a ◦ b = x and

b ◦ a = y.

To see that (V, F ) is diagonally switchable, observe that by replacing Fi with F̄i for

each i ∈ Zs, and replacing each 4-cycle ((a, 1), (b, 1), (a ◦ b, 2), (b ◦ a, 2)) by ((a, 1), (b, 1), (b ◦

a, 2), (a ◦ b, 2)) for each {a, b} ⊆ Z12s, {a, b} 6⊆ Hi for i ∈ Zs, we get a new set of 4-cycles

F̄ which can be seen to form another 4-cycle system of K24s+1 using essentially the same

proof that showed (V, F ) is a 4-cycle system.

4.3.2 Case B: v = 24s + 9, s ≥ 5.

We begin with a construction of a 4CS(v). To deal with this case we need HSOLS(12s−1161)

s− 1 ≥ 4, which is known to exist (see Theorem 4.2).

The 24s+9 Construction. Let s ≥ 5. Let V = {{∞}∪(Z12s+4×{1, 2})} and let G be

a copy of K24s+9 defined on the vertex set V . Let (Z12s+4, ◦) be a HSOLS(12s−1161) s−1 ≥

4 having the hole set H = {Hi | i ∈ Zs} where Hs−1 = {12s − 12, 12s − 11, . . . , 12s + 3}

and Hi = {12i, 12i + 1, . . . , 12i + 11} for each i ∈ Zs−1. Define a collection F of copies of

4-cycles as follows.

(1) Type 1: Let Ss−1 = ({∞} ∪ (Hs−1 × {1, 2}), Fs−1) be a DS4CS(33), and

for each i ∈ Zs−1, let Si = ({∞}∪ (Hi×{1, 2}), Fi) be a DS4CS(25)(see Lemma 4.3).

Let Fi ⊆ F for each i ∈ Zs.

(2) Type 2: For each {a, b} ⊆ Z12s+4, {a, b} 6⊆ Hi and for each i ∈ Zs, let

((a, 1), (b, 1), (a ◦ b, 2), (b ◦ a, 2)) ∈ F.
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Proposition 4.3.2. The 24s+9 Construction produces a diagonally switchable 4CS(24s+

9).

Proof. The total number of 4-cycles in a 4-cycle system of order v = 24s+9 is
(
v
2

)
/4 =

(3s + 1)(24s + 9). We begin by counting the number of 4-cycles in F .

The number of Type 1 4-cycles is clearly
∑

i∈Zs−1
75|Fi| + |Fs−1| = 75(s − 1)+132 =

75s+57. For each {a, b} ⊆ Z12s+4, {a, b} 6⊆ Hi there are
(
12s+4

2

)
− (s − 1)

(
12
2

)
−

(
16
2

)
=

72s2 − 24s − 48 choices for a and b. Therefore |F | = 75s+57+ 72s2 - 24s - 48 = (3s+1)

(24s+9) as required.

To see (V, F ) is a 4-cycle system, it remains to show that each edge e in E(K24s+9)

occurs in some 4-cycle in F . If e = {∞, (x, j)} or {(x, 1), (y, 1)}, or {(x, 1), (y, 2)} where

{x, y} ⊆ Hi for i ∈ Zs and 1 ≤ j ≤ 2 then e occurs in a Type 1 cycle. Now suppose

{x, y} 6⊆ Hi for i ∈ Zs. Clearly {(x, 1), (y, 1)} occurs in a Type-2 cycle. If e = {(x, 1), (y, 2)}

then e occurs in the Type 2 cycle ((x, 1), (b, 1), (x◦b, 2), (b◦x, 2)) where b is chosen to satisfy

b ◦ x = y. If e = {(x, 2), (y, 2)} then e occurs in the Type 2 cycle ((a, 1), (b, 1), (a ◦ b, 2), (b ◦

a, 2)) where a and b are chosen by the self-orthogonal property (5) to satisfy a ◦ b = x and

b ◦ a = y.

To see that (V, F ) is diagonally switchable, observe that by replacing Fi with F̄i for

each i ∈ Zs, and replacing each 4-cycle ((a, 1), (b, 1), (a ◦ b, 2), (b ◦ a, 2)) by ((a, 1), (b, 1), (b ◦

a, 2), (a ◦ b, 2)) for each {a, b} ⊆ Z12s+4, {a, b} 6⊆ Hi for i ∈ Zs, we get a new set of 4-cycles

F̄ which can be seen to form another 4-cycle system of K24s+9 using essentially the same

proof that showed (V, F ) is a 4-cycle system.

4.3.3 Case C: v = 24s + 17, s ≥ 6.

We begin with a construction of a 4CS(v). To deal with this case we need HSOLS(12s−1201)

s− 1 ≥ 5, which is known to exist [20].
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The 24s + 17 Construction. Let s ≥ 6. Let V = {{∞} ∪ (Z12s+8 × {1, 2})} and let

G be a copy of K24s+17 defined on the vertex set V . Let (Z12s+8, ◦) be a HSOLS(12s−1201)

s−1 ≥ 5 having the hole set H = {Hi | i ∈ Zs} where Hs−1 = {12s−12, 12s−11, . . . , 12s+7}

and Hi = {12i, 12i + 1, . . . , 12i + 11} for each i ∈ Zs−1. Define a collection F of copies of

4-cycles as follows.

(1) Type 1: Let Ss−1 = ({∞} ∪ (Hs−1 × {1, 2}), Fs−1) be a DS4CS(41), and

for each i ∈ Zs−1, let Si = ({∞}∪ (Hi×{1, 2}), Fi) be a DS4CS(25)(see Lemma 4.3).

Let Fi ⊆ F for each i ∈ Zs.

(2) Type 2: For each {a, b} ⊆ Z12s+8, {a, b} 6⊆ Hi and for each i ∈ Zs, let

((a, 1), (b, 1), (a ◦ b, 2), (b ◦ a, 2)) ∈ F.

Proposition 4.3.3. The 24s+17 Construction produces a diagonally switchable 4CS(24s+

17).

Proof. The total number of 4-cycles in a 4-cycle system of order v = 24s + 17 is(
v
2

)
/4 = (3s + 2)(24s + 17). We begin by counting the number of 4-cycles in F .

The number of Type 1 4-cycles is clearly
∑

i∈Zs−1
75Fi + |Fs−1| = 75(s − 1)+205 =

75s+130. For each {a, b} ⊆ Z12s+8, {a, b} 6⊆ Hi there are
(
12s+8

2

)
− (s − 1)

(
12
2

)
−

(
20
2

)
=

72s2+24s−96 choices for a and b. Therefore |F | = 75s+130+ 72s2+ 24s-96 = 72s2+99s+34

= (3s+2) (24s+17) as required.

To see (V, F ) is a 4-cycle system, it remains to show that each edge e in E(K24s+17)

occurs in some 4-cycle in F . If e = {∞, (x, j)} or {(x, 1), (y, 1)}, or {(x, 1), (y, 2)} where

{x, y} ⊆ Hi for i ∈ Zs and 1 ≤ j ≤ 2 then e occurs in a Type 1 cycle. Now suppose

{x, y} 6⊆ Hi for i ∈ Zs. Clearly {(x, 1), (y, 1)} occurs in a Type-2 cycle. If e = {(x, 1), (y, 2)}

then e occurs in the Type 2 cycle ((x, 1), (b, 1), (x◦b, 2), (b◦x, 2)) where b is chosen to satisfy

b ◦ x = y. If e = {(x, 2), (y, 2)} then e occurs in the Type 2 cycle ((a, 1), (b, 1), (a ◦ b, 2), (b ◦
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a, 2)) where a and b are chosen by the self-orthogonal property (5) to satisfy a ◦ b = x and

b ◦ a = y.

To see that (V, F ) is diagonally switchable, observe that by replacing Fi with F̄i for

each i ∈ Zs, replacing, and replacing each 4-cycle ((a, 1), (b, 1), (a ◦ b, 2), (b ◦ a, 2)) by

((a, 1), (b, 1), (b ◦ a, 2), (a ◦ b, 2)) for each {a, b} ⊆ Z12s+8, {a, b} 6⊆ Hi for i ∈ Zs, we get a

new set of 4-cycles F̄ which can be seen to form another 4-cycle system of K24s+17 using

essentially the same proof that showed (V, F ) is a 4-cycle system.

4.3.4 The Main Result

Now we will state and prove the main theorem

Theorem 4.5. There exists a diagonally switchable 4-cycle system of order v (DS4CS(v))

if and only if v ≡ 1 (mod 8), v ≥ 17, with the possible exception of v = 17.

Proof. In view of Lemmas 4.3 and 4.4, we can assume v ≥145 or v ∈ {97, 121, 129}.

Let v = 24s + h where h ∈ {1, 9, 17}. If h = 1 then use s ≥ 4, which implies that

v ≡ 1 (mod 24) and v ≥ 97 which is covered by Case A. If h = 9 then use s ≥ 5, which

implies that v ≡ 9 (mod 24) and v ≥ 129 which is covered by Case B. If h = 17 then use

s ≥ 6, which implies that v ≡ 17 (mod 24) and v ≥ 161, which is covered by Case C.

4.4 Decompositions of Kv − I

Now we will use the same proof technique to decompose Kv − I into diagonally switch-

able 4-cycles, where I is any 1-factor of Kv. The basic building blocks in our constructions

are self-orthogonal latin squares or SOLS.

Theorem 4.6. There exists a 4-cycle system of Kv − I having the diagonally switchable

property if and only if v is even and v 6∈ {4, 6}.
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Proof. To prove the necessary condition first note that in order to have a 1-factor v

has to be even. Secondly observe that any 4-cycle in K4−I is going to cover both the edges

of the 1-factor after the diagonal switch. Hence K4− I cannot have a diagonally switchable

4-cycle system.

Now consider K6 − I where I is any 1-factor of K6. Let I = {{a, b}, {c, d}, {e, f}}

be any 1-factor of K6. Let (V, F ) be any diagonally switchable 4-cycle system of K6 − I.

Clearly a and b cannot be in the same 4-cycle in F , since {a, b} cannot be an edge in any

4-cycle nor in any of their diagonal switches. Similarly c, d and e, f cannot be in the same

4-cycle. Now consider the 4-cycle containing the edge {e, d}, by the above observation that

4-cycle cannot have c and f as it’s vertices. Therefore it should contain the edge {a, b}, a

contradiction. Hence K6 − I has no diagonally switchable 4-cycle system.

In order to prove the sufficiency we now consider two cases.

Case A: v = 12.

In the following construction, in any ordered pair reduce arithmetic operations modulo

5 in the second component. Let V = {{∞1,∞2} ∪ (Z5 × {1, 2})} and let G be a copy

of K12 − I defined on the vertex set V where I = {{(i, 1), (i, 2)} | i ∈ Z5} and define a

collection F of copies of 4-cycles as follows (see figure 4.2).

(1) Type 1: for each i ∈ Z5, let

C1(i) = ((i, 1), (i + 1, 1), (i + 4, 1), (i + 2, 2)) ∈ F.

(2) Type 2: for each i ∈ Z5, let

C2(i) = (∞1, (i + 1, 2), (i + 2, 2), (i + 3, 1)) ∈ F.

(3) Type 3: for each i ∈ Z5, let

C3(i) = (∞2, (i + 1, 2), (i + 3, 2), (i + 2, 1)) ∈ F.
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(0,1)

(1,1) (1,2)

(0,2)

(2,1)

(3,1)

(4,1) (4,2)

(3,2)

(2,2)

∞1 ∞2

C1(i)

C2(i) C3(i)

Figure 4.2: 4-cycle system of K12 − I

Now we prove that this construction produces a 4-cycle system of K12 − I. We begin

by counting the number of 4-cycles in F . There are five 4-cycles of each type. The total

number of 4-cycles in a 4-cycle system of K12−I is (
(
12
2

)
−6)/4 = 15. Hence |F | = 3.5 = 15

as required.

To see (V, F ) is a 4-cycle system, it remains to show that each edge e in E(K12 − I)

occurs in some 4-cycle in F . If e = {∞i, (x, j)} with x ∈ Z5 and 1 ≤ i, j ≤ 2 then e

occurs in some Ci+1(k). If e = {(x, 1), (y, 1)} with x, y ∈ Z5 then e occurs in some C1(k).

If e = {(x, 1), (x + 2, 2)} with x ∈ Z5 then e occurs in C1(x). If e = {(x, 1), (x + 1, 2)}

with x ∈ Z5 then e occurs in C3(x − 2). If e = {(x, 2), (x + 1, 1)} with x ∈ Z5 then e

occurs in C2(x − 2). If e = {(x, 2), (x + 2, 1)} with x ∈ Z5 then e occurs in C1(x − 2). If

e = {(x, 2), (x + 1, 2)} with x ∈ Z5 then e occurs in C2(x − 1). If e = {(x, 2), (x + 2, 2)}

with x ∈ Z5 then e occurs in C3(x− 1).

To prove (V, F ) is diagonally switchable, observe that no two 4-cycles in F share a

diagonal. Now by replacing each C1(i) = ((i, 1), (i + 1, 1), (i + 4, 1), (i + 2, 2)) ∈ C with

C ′
1(i) = ((i, 1), (i + 4, 1), (i + 1, 1), (i + 2, 2)), and replacing each C2(i) = (∞1, (i + 1, 2), (i +
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2, 2), (i + 3, 1)) ∈ C with C ′
2(i) = (∞1, (i + 2, 2), (i + 1, 2), (i + 3, 1)), and each C3(i) =

(∞2, (i + 1, 2), (i + 3, 2), (i + 2, 1)) ∈ C with C ′
3(i) = (∞2, (i + 3, 2), (i + 1, 2), (i + 2, 1)), we

get a new set of 4-cycles F̄ (see figure 4.3).

It is easy to check that (V, F̄ ) forms another 4-cycle system.

(0,1)

(1,1) (1,2)

(0,2)

(2,1)

(3,1)

(4,1) (4,2)

(3,2)

(2,2)

∞1 ∞2

C’1(i)

C’2(i) C’3(i)

Figure 4.3: DS4CS(K12 − I)

Case B: v 6= 4, 6, 12

Let V = Zv/2×{1, 2} and let G be a copy of Kv − I defined on the vertex set V where

I = {{(i, 1), (i, 2)} | i ∈ Zv/2}. Let (Zv/2, ◦) be a SOLS(v/2) (this is known to exist since

v is even and v 6= 4, 6, 12). Define a collection F of copies of 4-cycles as follows. For each

{a, b} ⊆ Zv/2, let ((a, 1), (b, 1), (a ◦ b, 2), (b ◦ a, 2)) ∈ F.

Now we prove that this construction produces a 4-cycle system of Kv − I. The total

number of 4-cycles in a 4-cycle system of Kv − I is (
(
v
2

)
− (v/2))/4 = v(v− 2)/8. We begin

by counting the number of 4-cycles in F .
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For each {a, b} ⊆ Zv/2, there are
(
v/2
2

)
choices for a and b. Therefore |F | = v(v − 2)/8

as required. Using the same argument as in the proof of Proposition 4.3.3, it is easy to see

that each edge e of Kv − I is in a 4-cycle in F .

To see (V, F ) is diagonally switchable, observe that by replacing each 4-cycle ((a, 1), (b, 1), (a◦

b, 2), (b ◦ a, 2)) by ((a, 1), (b, 1), (b ◦ a, 2), (a ◦ b, 2)) for each {a, b} ⊆ Zv/2, we get a new set

of 4-cycles F̄ which can be easily seen to form another 4-cycle system of Kv/2 − I.
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