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Standard first-principles total energy and force calculations were extended to the 

calculations of harmonic force constant matrices and third order lattice anharmonicity 

tensors with an efficient super-cell finite-difference algorithm. Phonon spectra calculated 

within this algorithm are in excellent agreement with other theoretical results calculated 

with density perturbation functional theory, as well as the available experimental 

measurements. The newly proposed algorithm for lattice anharmonicity was implemented 

with both empirical Tersoff potentials and first-principle density functional theory 

methods. A self testing scheme for the validity of 3rd order lattice anharmonicity 
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was also proposed and sumrule enforcement has been investigated to ensure the 

numerical accuracy. 

Statistical ensemble of phonons was then adopted to calculate and simulate the 

equilibrium thermal properties of solid materials. With the forces calculated from first-

principle theory, fundamental thermal properties such as heat capacity, thermal expansion 

were calculated within the quasi-harmonic approximation. Kinetic theory was 

implemented to predict the non-equilibrium thermal transport properties such as phonon 

life time and thermal conductivity. 

With the newly developed computational method, we have studied the thermal 

and thermal transport properties of two material systems Si136 and MgO. Our calculation 

predicted that a negative thermal expansion exist in Si136 at temperature lower than 124K, 

and was then confirmed by experimental measurement. Green-Kubo calculation yielded 

90% reduction of thermal conductivity in Si136 compared with diamond structured Si. 

Cause of this reduction was then investigated using kinetic transport theory. For MgO, 

the pressure dependence of lattice anharmonicity was studied. Both intrinsic 

anharmonicity and extrinsic isotope induced phonon scattering have been considered. 

The isotope effect on the lattice thermal conductivity was discussed. Preliminary results 

of lattice thermal conductivity at a wide range of temperature were then presented. At 

room temperature, our theory calculated lattice thermal conductivity is 51 W/K/m, in a 

good agreement with experimental measurement 54 W/K/m. In addition, two models 

were proposed to estimate the pressure dependence of the lattice thermal conductivity.  
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CHAPTER 1 

 

 

 INTRODUCTION 

 

 Atom-scale numerical simulation techniques, especially those based on the first- 

principles electronic-structure theories,  have become powerful tools to understand 

structures, formations, dynamics, and many other physical and chemical properties of real 

and complex materials systems. First-principles simulations and calculations are capable 

of predicting various materials properties when no or limited experimental data are 

available, because they directly solve the electronic structures at the level of quantum 

mechanics and do not depend on any empirical parameters that are either suggested based 

on a priori  theoretical assumptions or fitted with a set of experimental data. Therefore, 

first-principles techniques are ideal to (1) construct realistic atomistic structural models 

for complex materials systems, provide unbiased interpretation of complicated 

experimental data, and gain insights on chemical trends of materials properties, (2) 

predict materials properties at conditions where experimental measurements are not yet 

feasible, for example extreme high pressure, and (3) design novel artificial materials with 

optimized physical/chemical properties. 
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Despite rapid progresses on numerical algorithms and significant increases in 

computer speed and memory during the last two decades, the intensive computational 

loads limit the first-principles simulation studies to models less than a couple of hundred 

atoms and over periods no more than  a few of thousand simulation steps on a typical 

single CPU workstation. Nevertheless, the recent development in parallel computers, 

especially the relatively low-cost Beowulf type computer clusters, provides new 

opportunities. A major part of the research work in this dissertation is to implement and 

further develop efficient parallel algorithms to calculate harmonic phonon spectra and 

lattice anharmonicity using first-principles density functional theory (DFT). We have 

successfully developed a real-space super-cell based algorithm that can accurately 

calculate both harmonic force constant matrices and 3rd order lattice anharmonicity 

tensors for a wide range of material systems. To the best of our knowledge, our new 

numerical algorithm for the 3rd order lattice anharmonicity calculation is the first of this 

kind. Group theory has been adopted to ensure the rotational symmetry relation among 

the tensor elements, and sumrule enforcement to the tensor are made to ensure the 

translational symmetry of the crystal system. In addition, evaluation of Grüneisen 

parameters has been proposed to justify the accuracy of this complex tensor. Our first-

principles-method calculated  total energies, phonon spectra, and lattice anharmonicity 

are then adopted to predict (1) thermodynamic potentials  of crystals at different (T,P) 

conditions within the statistical quasi-harmonic approximation (QHA), and (2) lattice 

thermal conductivity based on the kinetic transport theory. An alternative simulation 
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approach based on the Green-Kubo theory is also implemented to evaluate the lattice 

thermal conductivity as comparison. 

 Results of first-principles calculation of two material systems are presented in 

this dissertation. The first is nano-open crystalline type-II silicon clathrate (Si136) 

materials. This new Si allotrope has an open-cage structure, isostructural with low-

density inclusion compounds of H2O-ice. It has a cubic framework in which each cubic 

unit-cell contains sixteen 20-atom “cages” (dodecahedra) and eight 28-atom “cages” 

(hexakaidecahedra). In addition to the elemental “guest-free” form of Si136, various 

“guest” atoms, including alkali or alkaline earth metals, or halogens, can be incorporated 

inside the atomic cages to form binary or ternary compounds. Both pristine and guest-

encapsulated clathrate materials have significant technological potential because they 

exhibit a very wide spectrum of materials properties. In 1995, Slack predicted that open 

framework structures containing encapsulated rattling guest atoms may exhibit lowered 

“glass-like” thermal conductivity due to scattering of acoustic heat-carrying phonons by 

the guest atoms, while leaving the electrical conductivity via the framework channels 

largely unaffected.1 And then G.S. Nolas confirmed this prediction by measuring the 

conductivity for Sr8Ga8Ge30, which has thermal conductivity 2 orders of magnitude 

smaller than diamond structured Ge (d-Ge). 2  In 2000, J. Dong et al. 3  performed a 

theoretical calculation for both guest-free and guest-encapsulated type I Ge46, revealing 

that one order of reduction comes from the rattlers inside the cages, and the other order of 

reduction comes from open framework itself. After the guest-free type II clathrate was 

successfully synthesized by Cryko4, Nolas5 measured the thermal conductivity for guest-

free Si136 in 2003, and the measurement showed that guest-free Si136 itself exhibits a 
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rather low thermal conductivity, which suggests the open framework is the key reason for 

the reduction of the thermal conductivity. Meanwhile, little theoretical work has been 

devoted to the study of these unusual expanded-framework semiconducting crystals, 

including studies of both fundamental thermal properties and thermal conductivity. As a 

first step in this area, we use first-principles theoretical methods to predict the measurable 

thermal properties (such as heat capacity and thermal expansion) of the guest-free 

clathrate Si136. Our results are analyzed and then compared with previous data on the 

well-known ground state diamond-structured phase of this element (d-Si) 6 . Despite 

noticeable differences in materials density, compressibility, and electronic structures, we 

find that the two phases have very comparable heat capacities and thermal expansibilities. 

One important prediction of our calculations is that the clathrate-structured polymorph 

Si136 should exhibit a region of negative thermal expansion below 124K, like the 

diamond-structured phase. This prediction has been confirmed by an experimental 

measurement. Then we calculate the time-correlation functions of heat current in both d-

Si and Si136 using classical molecular dynamics (MD) with an empirical Tersoff potential 

at equilibrium micro-canonical (N,E,V) conditions, and derive the non-equilibrium 

thermal transport properties based on statistical fluctuation-dissipation theory 7  (the 

Green-Kubo formula). The calculation indicates that thermal conductivity of Si136 is only 

about 10.6% of that of d-Si. We further adopt the kinetic transport theory to 

quantitatively analyze the contributions from two major effects to this observed large 

reduction. Our calculation shows that the major contribution to the reduction of thermal 

conductivity in Si136 comes from the flattering in phonon dispersion, which reduces the 

thermal conductivity by a factor of 0.8. The increase of lattice anharmonicity in Si136 
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contributes to a further reduction by a factor of 0.3. The overall estimated reduction of 

lattice thermal conductivity reduction based on the kinetic theory is 14% 

( (1 0.8) (1 0.3))= − × − , which is in consistent with the results obtained with the Green-

Kubo Formula. 

 The second material system studied is magnesium oxide (MgO), which is 

considered to be an end-member component of the lower mantle minerals. Thermal 

conductivity (κ ) data of Earth’s constituent minerals are important for understanding any 

geophysical process that involves heat.8,9,10 Probing the lattice anharmonicity in MgO is a 

precursor to studying more complex mineral structures and compositions relevant to the 

Earth. Although several rapid developments in experimental techniques were reported in 

recent years11,12,13,14,15, some pressure (P) and temperature (T) conditions of the Earth’s 

interiors (for example, T > 2300K or P > 100GPa) remain inaccessible for accurate 

measurement of κ at the current stage. Furthermore, the issue of contact associated errors 

for the thermal transport measurements has been raised and discussed.14 The systematic 

errors of this type are especially important for accurately determining the pressure 

dependence in thermal transport properties. At the same time, little theoretical effort has 

been devoted to the first-principles calculation of this important thermal transport 

property of minerals, including ideal crystalline minerals (i.e. containing no 

isotope/composition disorder, no isolated or extended defects, or no finite-size grain 

boundaries). Current understanding on lattice anharmonicity and its pressure dependence 

is limited. Recently, Oganov and Dorogokupets reported a study on the anharmonicity 

effects on the thermodynamic potentials of MgO using a first-principles method16.  In 

addition to the conventional quasi-harmonic approximation (QHA) results (including 
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both harmonic and anharmonic contributions), an additional correction term, whose 

magnitude scales as a function of T2, was estimated using MD simulations. Individual 

interatomic anharmonicity terms were not explicitly evaluated. The authors reported that 

at ambient pressure, the lattice anharmonicity evaluated with the QHA approach led to a 

noticeable overestimation in the lattice thermal expansion, an equilibrium thermal 

property that is believed to be closely related to lattice anharmonicity. In this work, we 

provide a first-principles calculation of harmonic phonon spectra, 3rd order lattice 

anharmonicity in MgO. Explicit calculation of phonon relaxation time in both intrinsic 

anharmonicity and extrinsic isotope induced phonon scattering processes have been 

calculated.  Lattice thermal conductivity at a wide temperature range and ambient 

pressure has been calculated with 4 4 4× ×  q-point grids for the Brillouin zone integration. 

Within the single relaxation time approximation (SRTA), two models are proposed to 

estimate the pressure dependence of lattice thermal conductivity. 

The rest of this dissertation is organized as following:  Chapters 2 and 3 review 

the fundamental theories adopted in our theoretical studies of materials and present some 

of the implementation details of computational methodologies. Chapter 4 presents a 

detailed first-principles prediction of equilibrium thermal properties of Si136 clathrate. 

Chapter 5 reports an empirical (Tersoff) potential based molecular dynamics (MD) 

simulation study and an evaluation of lattice thermal conductivity based on the Green-

Kubo theory of two tetrahedrally bonded Si crystals: d-Si and Si136. Chapter 6 studies the 

3rd order lattice anharmonicity and 1st order approximation of phonon-phonon scattering 

rates using the same empirical (Tersoff) potentials and re-exams the ratio of lattice 

thermal conductivity between Si136 and d-Si based on the kinetic transport theory. 
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Chapter 7 presents the first-principles prediction of pressure dependence of lattice 

anharmonicity in MgO and the temperature and pressure dependence of the lattice 

thermal conductivity. Isotope effect on the lattice thermal conductivity of MgO is also 

discussed. Finally, Chapter 8 concludes the key results of our studies and suggests related 

future research topics. 
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CHAPTER 2  

 

 

FIRST-PRINCIPLES ATOM-SCALE SIMULATION AND MODELING OF 

CRYSTALLINE SOLIDS 

 

2.1 First-Principles Density Functional Theory (DFT) 

An accurate total energy theory, which predicts the energy of an N-atom 

material system at a given structural configuration, is the foundation for all atom-scale 

simulation and modeling. Because of the large mass ratios between nuclei and electrons 

inside an atom and the fact that electronic structures of core-electrons are not 

environment-sensitive, an atom inside a solid are often considered as a positively-charged 

ion (including nuclei and core electrons) surrounded by a group of negatively charged 

valence electrons, and ions and electrons move at different time-scales. Born and 

Oppenheimer 17  (BO) proposed an adiabatic approximation, which assumes electrons

respond instantaneously to the motion of ions. Within the BO approximation, the 

electrons are moving in an external potential from a configuration of static ions, and the 

total energy can be written as:  

({ }) ({ }) ({ , })ion ion I e e i ion e I iE E R E r E R r− − −= + +
v vv v                              (2.1) 

where IR
v

 is the position of thI  ion with I  from 1 to ionN , and ir
r is the position of thi  
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valence electron with i  from 1 to Ne. While ion ionE −  is simply Coulomb energy. The exact 

solution of the last two terms, often referred as electronic energy, for a real bulk solid is a 

formidable task because it requires solving an interacting many-body Hamiltonian 

equation. Meanwhile, a wide range of total energy theories, from simple empirical two-

body force field types to computationally intensive quantum Monte Carlo methods, have 

been developed to approximate the electronic energies of various solid-state materials 

systems. First-principles electronic-structure based total energy theories refer to the class 

of theories that (1) explicitly describe the motion of electrons with quantum mechanics 

and (2) adopt no empirical fitting parameters. Most of the calculations reported in this 

dissertation are calculated within the Density Functional Theory (DFT), which have been 

successfully adopted to predict structural, elastic and dynamical properties for a wide 

range of solids in the past 20 to 30 years.  

  The DFT was proposed by Hohenberg and Kohn (HK)18, who showed that the 

total energy of Ne electrons is a unique functional of the total electron density, and the 

minimum value of the total energy functional is the ground state energy, the density that 

yields the minimum energy is the ground state density. Kohn and Sham (KS)19 later 

demonstrated that the problem of strongly interacting electrons can be mapped to a rather 

simple problem of single electron moving in an effective potential, if the exchange-

correlation potential is known. The KS energy functional is: 

[ ] 3( ) ( ( )) ( ) ( ) ( ( )) ( ( ))electronic ion hatree xcE n r T n r V r n r d r E n r E n r= + + +∫
v v v v v v           (2.2) 

where ( )n rv is electron charge density, T  is the kinetic energy of the system, ( )ionV rv  is 
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the ionic potential, 
2

3 3( ) ( ')( ( )) '
2 'hartree
e n r n rE n r d rd r

r r
=

−∫
v v

v v v
v v  is the long rang coulomb 

interaction between the  electrons. ( ( ))xcE n rv  is the exchange-correlation energy. For a 

given nuclei configuration { }IR
v

, the KS Schrödinger equation is: 

2
2 ( ( )) ( ) ( )

2 eff i i iV n r r r
m

ϕ ε ϕ
⎡ ⎤
− ∇ + =⎢ ⎥
⎣ ⎦

h v v v ,                              (2.3a) 

where 

( ( )) ( ( )) ( ( )) ( ( ))eff hatree xc ionV n r V n r V n r V n r= + +v v v v ,                        (2.3b) 

and 

2( ) ( )i
i

n r rϕ= ∑v v .                                                   (2.3c) 

The KS theory provides a single-electron approach to exactly calculate the total 

energy of a many-electron system if the exchange correlation energy is known. To study 

real solids, further approximations, such as local density approximation19 (LDA) or 

generalized gradient approximation 20  (GGA), are often used to approximate the 

exchange-correlation interactions of many electrons.  Unless specified otherwise, results 

reported in this dissertation are obtained with the LDA. To self-consistently solve the KS 

equation, the electronic wave-functions are expanded with a chosen basis sets. The 

particular implementation of DFT theory is the Vienna ab initio Simulation Package 

(VASP)21, which adopts the planewave basis. And the j-th eigen-function of the k-point is 

written as:  

( )
,, ( ) i G k r

j j k Gk
G

r c eϕ + ⋅
+= ∑

vv v
r v v

v

r ,                                            (2.4) 
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where G
v

 is the reciprocal lattice vectors, k
v

 is wave-vector. The KS equation in 

reciprocal space can be derived by plugging Equ. (2.4) into Equ. (2.3a): 

2 2

,' ' , '
'

( ')
2 eff i iGG k G i k G

G

k G V G G c c
m

δ ε+ +

⎧ ⎫
+ + − =⎨ ⎬

⎩ ⎭
∑ v v v vv v
v

v v v vh  .                           (2.5) 

Solution can be found by diagonalizing the Hamiltonian matrix whose matrix element is 

2 2

', ' ( ')
2 effGGk G k GH k G V G G

m
δ+ + = + + −v v v vv v

v v v vh . Since terms with large kinetic energy 

2 2

2
k G

m
+

v vh  are relatively small, all the terms whose kinetic energy larger than a chosen 

cutoff energy, ie., 

2 2

2 cutk G E
m

+ ≤
v vh ,                                                     (2.6) 

are set as zeros in order to reduce computation loads. 

 To further reduce computation loads, only wave functions of (bond-forming) 

valence electrons are solved explicitly, and the effects of (environment-insensitive) core 

electrons are approximated with the so-called pseudo-potentials (PP). Two widely 

adopted pseudo-potential types are norm conserving pseudo potentials22 and ultra-soft 

pseudo-potentials 23  (USPP). Unless stated otherwise, the studies reported here are 

performed with the USPPs.   

To evaluate the forces on the thi   ion, we need to simply calculate the first-order 

derivatives the total energy with respect of the corresponding position IR
v

: 

I I I I I IF E H H H H= −∇ = −∇ Φ Φ = − Φ ∇ Φ − ∇ Φ Φ − Φ ∇ Φ
v

.     (2.7).  

The first term on the right is called Feynman-Hellmann (F-H) force, and the remaining 
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two terms are called Pulay forces. The Feynman-Hellmann theorem24  states that Pulay 

forces vanish when the calculation has reached self-consistency and the basis set 

orthornomality persists and are independent of the atomic positions. Therefore, in the 

plane-wave implemented pseudo potential calculation, the F-H forces are exact forces if 

the plane wave basis is complete and the electron configuration has been relaxed 

sufficiently so that the calculated wave functions is as close as possible to that of the real 

eigenstates.  

 

2.2 Atom-Scale Simulation and Modeling 

2.2.1 Structural Models and Crystal Symmetries 

 Solid is a macroscopic state of matter and a bulk solid usually consists ~1023 

atoms “linked” with their neighbors with relatively strong chemical bonds. Because of 

the rigidity of the inter-atomic interactions, as the first order approximation, atoms inside 

a solid are considered to be “fixed” in space. A crystal is a solid whose constituent 

atoms/molecules arranged in an ordered fashion. An ideal crystal can be described as a 

three-dimensional (3D) periodic array of points in real space (lattice) with a set of atoms 

arranged at each lattice point (atomic basis). Each lattice points are equivalent, and a 

vector that links two lattice points are called a lattice vector. Because of lattice 

periodicity, i.e. a crystal is indistinguishable when it is shifted by a lattice vector, we can 

define a unit-cell, which is a 3D box that can fill in all the lattice space by translation 

without leaving any gaps. A unit cell box is specified by three unit-cell vectors 1 2 3, ,a a av v v , 

with 1 2 3( , , )a a a  representing the lengths of lattice vectors and ( , , )α β γ representing the 
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angles between two lattice vectors. Any lattice vector can be indexed with 

1 2 3( , , )n n n : 1 2 3 1 1 2 2 3 3( , , )latticeR n n n n a n a n a= + +
r r r r  . There are seven distinct crystal systems, 

i.e. cubic (c), hexagonal (hex), tetragonal (tet), rhombohedral (rhm), orthorhombic (orth), 

monoclinic (mono), and triclinic (tric). For example, a lattice with unit-cell vectors being 

1 ( ,0,0)a a=
r , 2 (0, ,0)a a=

r , 3 (0,0, )a a=
r   is cubic lattice because 1 2 3a a a a= = =  and 

90α β γ= = = o . Similarly, a lattice with 1 ( ,0,0)a a=
r , 2 ( / 2, 3 / 2 ,0)a a a= −

r , and 

3 (0,0, )a c=
r  is hexagonal because 1 2 3a a a= ≠  , 90α γ= = o , and 120β = o . Additionally, 

three centering arrangements, i.e. base-centered (bac), face-centered (fc), or body 

centered (bc), exist.  Using the combination of seven crystal systems and three lattice 

centering arrangements, we can categorize all 3D lattices into 14 Bravais lattice types. 

For example, a cubic lattice with the face-center arrangement belongs to the face-

centered-cubic (fcc) Bravais lattice type, and its primitive unit-cell lattice vectors 

are: 1 (0,0.5 ,0.5 )a a a=
r , 2 (0.5 ,0,0.5 )a a a=

r , 3 (0.5 ,0.5 ,0)a a a=
r , with 1 2 3

2
2

a a a a= = = , 

and 60α β γ= = = o . The volume of the fcc primitive unit cell is ¼ of that of the 

conventional cubic cell. Three material systems studied in this dissertation, d-Si, Si136, 

and B1-MgO, happen to belong to the same fcc Bravais lattice type. The equilibrium 

phases of silicon and magnesium oxide at ambient conditions adopted the A4 (diamond 

type) lattice and the B1 (NaCl type) lattice respectively, and each contains two atoms per 

fcc unit-cell. Si136 crystals adopt the type-II clathrate lattice with 34 atoms per fcc unit-

cell (or 136 atoms per cubic cell), 
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 The arrangement of atoms in the unit-cell can be uniquely specified with the 

locations of atoms inside a unit-cell using a set of internal coordinates ( , , )i i iu v w , 

where 1, , ai N= L , and aN  is the number of atoms per unit cell. For example, the two Si 

atoms in a unit-cell of d-Si locate at (0, 0, 0) and (1 4 ,1 4 ,1 4 ) sites, while the one Mg 

atom and one O atom in the B1-structured MgO locate at (0,0,0) and (1 2 ,1 2 ,1 2 ) sites 

respectively. The position of each atom in the crystal can then be specified with its lattice 

indices 1 2 3( , , )n n n  and basis index i . For example, the position of i-th atom in the 

1 2 3( , , )n n n  cell is   

1 2 3 1 2 3 1 1 2 2 3 3( , , , ) ( , , ) ( ) ( ) ( )lattice i i i iR n n n i R n n n r n u a n v a n w a= + = + + + + +
r r r r r r .          (2.8) 

 As atoms of same type are indistinguishable, a group of sites occupied by the 

same type of atoms might be symmetrically equivalent, i.e. the crystal remains 

unchanged after a point-group (PG) (rotation) operation and/or a space-group (SG) 

(rotation and gliding) operation. The symmetry of a crystal is determined by the numbers 

and types of its PG and SG symmetry operators. For 3D crystals, there are 32 point 

groups and 230 space groups25. For example, both d-Si and B1-MgO crystals belong to 

the hO  point group, while their space group symmetries are  3Fd m   (#227 in the 230 SG 

list) and 3Fm m  (#225 in the 230 SG list) respectively.    

Symmetry, being a dominant feature of crystals, should be and has been greatly 

taken advantage of in our calculations. We have implemented a FORTRAN code 

(FindSG.f90) to examine all the space group symmetry operators by combining all the 

possible point-group symmetry operations with possible glide plane and screw axis. We 
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also constructed an atom-atom mapping under each discovered symmetry operation, 

which is implemented within a code called Find1on1.f90. For example, after a given 

operation, atom #1 at position #1 moves to the position originally occupied by atom 5.  

We refer this as atom #1 is mapped to atom #5 with the specified operation. The output 

file of code Find1on1.f90 is called 1on1map.dat, which contains every possible 

symmetry operator and the atom-atom mapping under its operation. This information will 

be utilized in our derivation of irreducible single displacement moves in phonon 

calculations and paired displacement moves in anharmonicity calculation. Here we 

attached an example of 1on1map.dat file: 

 

 
116                                                                                        index of symmetry operator 
-1.0000000000   0.0000000000   0.0000000000   
 0.0000000000  -1.0000000000   0.0000000000                     rotational operator  
 0.0000000000    0.000000000   -1.0000000000                                               
 0.8125000000    0.062500000    0.5625000000                           glide operator 
     1     115 
     2     114 
     3     113 
     4     116 
     5     127 
     6     126 
     7     125 
     
      
                                                                            atom-atom map under current operator 
  
 
   118     14 
   119      13 
   120      16 
   121      11 
   122      10 
   123       9 
   124      12 
   125       7 
   126       6 
   127       5 
   128       8 



 
 

16

The periodicity and symmetry of a crystal lattice can be detected by experimental 

techniques, such as X-ray diffraction. According to the Laue’s diffraction condition26 or 

the equivalent Braggs’ Law27, the atoms, being the scatters in the crystal, will scatter the 

incoming wave with wave-vector k
v

 to all the directions, only those outgoing waves 'k
v

 

satisfying the Laue’s diffraction condition, 'k k G− =
v v v

,  will interfere constructively. Here 

G
v

is a lattice vector in the reciprocal space, or momentum space (k-space), of a crystal. 

The reciprocal lattice vectors of a crystal are defined based on the corresponding real 

space unit-cell vectors:    

2 3
1

1 2 3

3 1
2

2 3 1

1 2
3

3 1 2

2
( )

2
( )

2
( )

a ab
a a a

a ab
a a a

a ab
a a a

π

π

π

×
=

⋅ ×
×

=
⋅ ×
×

=
⋅ ×

v

v

v

                                               (2.9) 

Obviously, 2i j ija b πδ⋅ =
vv for i  and j  being 1, 2, or 3. In the case of the fcc unit cell, the 

reciprocal lattice vectors are 1
4 1 1 1( , , )

2 2 2
b

a
π

= −
v

, 2
4 1 1 1( , , )

2 2 2
b

a
π

= −
v

 and 

3
4 1 1 1( , , )

2 2 2
b

a
π

= −
v

, which form a body-centered cubic (bcc) structure with lattice 

constant 4
a
π . A reciprocal lattice vector is labeled with ( , , )h k l  index: 

1 2 3hklG hb kb lb= + +
v v vv

 with , ,h k l∈integers. Each lattice vector hklG
v

 in reciprocal space is 

associated with a set of parallel planes whose miller indexes are ( )hkl  in direct space. 

hklG
v

 is normal to these planes and the inter-plane spacing hkld  is equal to 2 / hklm Gπ
v

, 
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where m  is the common divider of ( , , )h k l .  In the case of elastic scattering, 'k k=
v v

, 

and the Braggs’ Law can be easily derived from the Laue’s law as: 

2 sinhkld θ λ=                                                              (2.10) 

where λ  is the wavelength of the incoming wave, and θ  is the incident angels with 

respect to the family of planes ( )hkl . 

Studying reciprocal lattice vectors is of close relevance to the Fourier 

decomposition of lattice-periodic functions. For example, the potential ( )U rv  for 

electrons in a crystal is a periodic over the lattice: ( ) ( )U r U r R= +
vv v , where R

v
 is the 

direct lattice vectors. Decomposing it with a Fourier series based this translational 

symmetry, we have 

ik r ik R ik r
k k

k k

e U e e U⋅ ⋅ ⋅=∑ ∑
v v vvv v

v v
v v

  ⇒   ( ) iG r
G

G

U r e U⋅= ∑
v v

v
v

v                            (2.11) 

From above equation, it is easy to derive that 1ik Re ⋅ =
v v

, or equivalently 2k R nπ⋅ =
v v

 where 

n is an integer. If k
v

 is the reciprocal lattice vector, 1 2 3k hb kb lb G= + + ≡
v v v v v

, then the above 

requirement is automatically fulfilled. 

Like direct lattices, reciprocal lattices also have the translational symmetry; any 

vector k
v

 is equivalent to vector k G+
v v

, therefore one unit cell in the reciprocal space will 

be enough to describe the lattice. The often used reciprocal unit cell is Wigner-Seitz 

primitive cell, which is also called first Brillouin zone (BZ), and often only k
v

 within the 

BZ are calculated explicitly. When a infinitely large crystal is approximated with a large 

supercell containing  1 2 3cellN N N N= × ×   unit-cells ( 1 2 3, ,N N N  are the numbers of unit 

cells along lattice vector direction 1 2 3, ,a a av v v  respectively) satisfying the Born-von Karman 
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periodic boundary condition, the number of k-points within BZ is cellN  being the number 

of unit cells in direct space. When cellN →∞  , for example in a real solids is Ncell in order 

of 1023, the grids would be so dense that we can consider the distribution of k vectors 

inside is quasi-continuous.  

The evaluation of many physical properties involves integrating the periodic 

functions of k-vector in the BZ, therefore, the decent dense k-point sampling is crucial in 

order to yield accurate results, usually convergence test is desired in real calculation. 

Among all the uniform k-points sampled in BZ, many of them are dependent on the 

others due to the lattice point symmetry. All the independent k-points as well as their 

equivalent ones can be found by applying them the symmetry operations of the point 

group that the direct lattice belongs to, and only evaluation of the periodic function at 

these independent ones are necessary, which is central idea of Monkhorst-Pack28 k-point 

sampling method. We have been able to calculate a lot of physical quantities, such as 

mode Grüneisen parameters, phonon frequencies, mode group velocities, etc., over these 

reduced k-point set and then assign the calculated physical quantities to all the other 

equivalent k-points according to symmetry map. If the quantity is a scalar, we can simply 

assign the same value at an independent k-point to all the other equivalent k-points. 

However, if the physical quantity is a vector (for example, group velocity gV
v

) or higher-

order tensors, they might be different at two equivalent k points. This is because scalars 

stay invariant under the point group symmetry operation, while vectors and tensor usually 

don’t. 
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Finding the number of equivalent k-points and the map between the reduced k-

point set and full coarse grids is done by code named as distinctK.f90. It reads in the unit 

cell information and 1 2 3, ,N N N  which determines the meshes, and will generate the 

coarse grid data, the reduced k-point set and also the map between them. Physical 

quantities over the coarse grids can be fully recovered by the code named Rebuilt.f90. 

In summary, unit-cell models are adopted to describe lattices and atomic basis of 

crystals. Based on its unit-cell lattice parameters and atomic arrangements inside the unit 

cell, a crystal is structurally categorized in term of space groups, point groups, and /or 

Bravais lattice types etc. International Tables for Crystallography is a useful reference 

for detailed crystallography information of lattices, such as the space-group symmetry 

operators and all the symmetry-allowed Wyckoff sites for atoms in lattices belonging to 

each of 230 space groups.   

 

2.2.2 Energy Minimization and Equation of State 

In total energy calculation, cell shape and internal coordinates are allowed to relax 

if necessary and the total energy of the system will be calculated at each molecular 

dynamic step. The whole process is an iteration process. Iteration stops when the 

minimum energy is found, and corresponding structure is the equilibrium or optimized 

structure. The completion of a total energy calculation requires massive coding, and now 

it has become a standard technique and has been encoded into a package. There are many 

packages available, such as ABINIT29, VASP30, SIESTA31, QUANTUM ESPRESSO32 

etc. Our calculation were all carried out by VASP, which performs ab initio quantum-
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mechanical molecular dynamics using density functional theory with pseudo-potential 

and plane wave basis set. For more details of this package, one can refer to VASP 

website30. 

The most important files in a VASP calculation are: INCAR, POSCAR, POTCAR 

and KPOINTS. And they can be customized according to the needs. INCAR contains 

information such as relaxation scheme, molecular dynamics iteration steps, energy cutoff 

for plane wave basis set, etc.; POSCAR contains the structural information, such as 

lattice vectors and internal atomic coordinates; POTCAR contains the pseudo-potential of 

nuclei; And KPOINTS contains the k-point sampling over the BZ for energy integration.  

 Even though VASP allows the relaxation of the structure, including cell volume, 

cell shape, and internal coordinates, volume relaxation is not recommended in VASP 

when one tries to find the equilibrium structure and the minimum energy30. It is due to 

the fact that the arising of Pulay stress induced from the volume relaxation intends to 

result in an underestimation of the equilibrium volume, and then provide the minimum 

energy with rather large error bar.30 However, this can be avoided by doing volume 

conserving calculations. The equilibrium structure can be found by doing constant-

volume relaxation for multiple volume points with the same energy cutoff, and then 

fitting the energy-volume to an equation of state to get reliable lattice parameters and 

bulk modulus even with rather small energy cutoffs. 

 There are several versions of equation of state; the one we adopted in our 

calculations is 3rd order Birch-Murnaghan equation of state33.   

( ) ( )22 3 2 3
0 0 0 0

9( ) ( ) 1 1 (4 ')(1 ( ) ) 2
8

E V E KV V V K V V= + − + − − ,               (2.12) 
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where , ,E V K  and 'K  are energy, volume, bulk modulus and its pressure derivative 

respectively. Those with subscript 0 indicate their equilibrium value.    

                                                

2.2.3 Lattice Vibration 

 Chemical bonds that hold atoms together to form a solid are NOT 100% rigid. In 

reality, atoms always oscillate around their minimal energy positions. As the amplitudes 

of atomic motion are relatively small compared to the inter-atomic spacing, we can 

expand the total energy totE  about its equilibrium value using Taylor expansion: 

0 0

0

23 3
0 0
1 3 / /

1 , 1

1 3 33

/
, , 1

1( ,..., ) ( ) ( )
2

( ,..., )
1 ( ) . .
6

n n n n

n n

N N

static N i i jx x x x
i i ji i j

tot N N

i j kx x
i j k i j k

E EE x x x x x
x x x

E x x
E x x x h o

x x x

= =
= =

=
=

⎧ ⎫∂ ∂
+ Δ + Δ Δ +⎪ ⎪∂ ∂ ∂⎪ ⎪= ⎨ ⎬

∂⎪ ⎪Δ Δ Δ +⎪ ⎪∂ ∂ ∂⎩ ⎭

∑ ∑

∑
(2.13) 

Here, staticE  is the minimal energy when all atoms are at their equilibrium 

positions. 0
nx and nx  are the nth equilibrium and instantaneous atomic coordinates 

respectively, N is the total number of atoms, 3 represent ( , , )x y z  three coordinate 

directions; and 0
n n nx x xΔ = −  is the position deviation from equilibrium. The first order 

derivatives of the total energy 0/
( )

n nx x
i

E
x =

∂
∂

 are associated with the forces on the atoms, 

which are zero at an equilibrium configuration. If we consider the atoms are connected 

with “springs”, the 2nd order derivatives 0

2

/
( )

n nx x
i j

E
x x =

∂
∂ ∂

 can be interpreted as the harmonic 
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spring force constants. All higher-order derivatives represent the anharmonic spring 

forces among atoms. 

 Within the harmonic approximation which neglects all the 3rd and higher order 

terms in Equ. (2.13), the classical Hamiltonian of this strongly coupled anharmonic N-

atom system is now simplified to a harmonic system: 

23 3
0 0

1 3 1 3 1 3
1 , 1

1 1( ,..., ; ,..., ) ( ,..., )
2 2

N N
i

N N static N ij i j
i i ji

pH x x p p E x x x x
m

φ
= =

Δ Δ = + + Δ Δ∑ ∑ .          (2.14) 

For a crystal, instead of dealing with force constant matrix of an infinitely large 

periodic system in real space, we can take advantage of lattice periodicity and define the 

dynamic matrices D of a unit-cell in the BZ of the reciprocal space:  

        0,
, 0( ) exp[ ( )]i jl

i j jl i
l i j

D q iq R R
m m
α β

α β

Φ
= × − ⋅ −∑

r rr r ,                                     (2.15) 

where qv  is a q-point (k-point is conventionally used for electronic energy calculation, 

and q-point for vibrational energy calculation) in the BZ,  , 1, ,i j n= L  are index of  

atoms in the unit cell, , 1,2,3α β =  are index of three coordinates. ,i jm m  are masses of 

atom i  and j  respectively, jlR
r

 stands for the spatial location of atom j  in the thl  unit 

cell relative to the origin of the reference cell: 0th . The summation is taken over all the 

unit cells under consideration, depending on the super cell size chosen for the system. 

Super cell should be big enough such that the interaction between the atom inside the 

super cell with all its images outside the super cell are negligible, but it is 

computationally unnecessary to use a cell larger than the one that already converges the 
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energy. Element of force constant matrix 
2

0,
0

tot
i jl

i jl

E
x xα β
α β

∂
Φ =

∂ ∂
 is the second order total 

energy derivative with respect to the displacement of atom i  in the reference cell along 

α  direction ( 0)u iα  and of atom j  in thl  unit cell along β  direction ( )u jlβ  away from 

their equilibrium positions.  

The eigen-frequency (ω) and eigen-vector e  of the νth vibration eigen-mode at a 

reciprocal space q-point with wave vector qv  can be calculated by solving the following 

eigen problem: 

2( ) ( , ) ( , ) ( , )q q q qν ω ν ν=D e ev v v v ,                                          (2.16) 

Thus the harmonic vibration in a perfect crystal can be considered as a superposition of 

normal modes ( , )q νv  with various frequencies. Each normal mode represents a special 

type of vibration whose characteristic frequency is ( , )q vω v , where qv  is the wave vector 

whose magnitude is the reciprocal of the wavelength of the lattice wave, and v  is the 

index that specifies the polarization of the wave. At each qv  point, there are in total 3n 

number of normal modes, three of which are acoustic vibration modes and the rest 3n-3 

are optical modes (n is the number of atoms in the unit cell). The vibration frequency of 

an acoustic mode approaches zero at the long wavelength limit, ie., 0q →v , and these 

low-frequency acoustic vibration correspond to the sound waves in the lattice. 

 We have implemented and further developed a real-space super-cell technique to 

calculate the force-constant matrix Φ  with first-principles methods. Additional LOTO 

splitting is then added for correction in ionic systems.34 We first start with a fully relaxed 

structure, i.e. each atom is at its zero-force, minimal energy position, and then calculate 
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atomic forces on atoms when a single atom is displaced by a small, yet finite 

displacement.  From Equ. (2.13), the ( , ,0)iα  component of the forces can be derived as: 

0 0

0

''

2 3

0 / / '
'0 0 0 '

4

/ ' ''
' 0 ' ''

1( ) ( )
2

1 ( ) . .
6

n n n n

n n
ml

tot tot tot
i jl jl klx x x x

jl kl jli i jl i jl kl

tot
jl kl mlx x

kl jl i jl kl ml

E E EF x x x
x x x x x x

E x x x h o
x x x x

ξ

α β β γ
β γ βα α β α β γ

β γ ξ
γ β α β γ ξ

= =

=

∂ ∂ ∂
= − = − Δ − Δ Δ −

∂ ∂ ∂ ∂ ∂ ∂

∂
Δ Δ Δ +

∂ ∂ ∂ ∂

∑ ∑∑

∑∑∑
,(2.17) 

where l  and 'l  are index of unit cell, 0 indicates the reference unit cell, , , 1, ,i j k n= L  

are index of atoms in the unit cell with n being the number of atoms in the unit cell, 

, , 1,2, 3orα β γ =  are three Cartesian component. The 4th order anharmonicity is also 

included, but our algorithm will make it cancelled off, thus the energy actually is cut off 

at 5th and beyond. According to Equ. (2.17), if we displace only one atom, say j, in the thl  

cell by Δ , ie., jlxβΔ = +Δ , the α  component of the force felt by atom i in the reference 

cell is going to be:  

2 3
0 0, 0, , 0, , ,

1 1
2 6

I
i i jl i jl jl i jl jl jlF A Bα α β α β β α β β β= −Φ Δ − Δ − Δ ,                       (2.18a) 

Similarly, if we displace atom j in the thl  cell by −Δ , ie., jlxβΔ = −Δ , the α  component 

of the force felt by atom i in the reference cell will be: 

2 3
0 0, 0, , 0, , ,

1 1
2 6

II
i i jl i jl jl i jl jl jlF A Bα α β α β β α β β β= +Φ Δ − Δ + Δ ,                     (2.18b) 

In order to cancel off the fourth order anharomonicity contribution, we also displace atom 

j in the thl  cell by 2+ Δ  and 2− Δ , the forces are: 

2 3
0 0, 0, , 0, , ,

4 82
2 6

III
i i jl i jl jl i jl jl jlF A Bα α β α β β α β β β= − Φ Δ − Δ − Δ ,                    (2.18c) 

and 
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2 3
0 0, 0, , 0, , ,

4 82
2 6

IV
i i jl i jl jl i jl jl jlF A Bα α β α β β α β β β= + Φ Δ − Δ + Δ                      (2.18d) 

respectively. Now combine Equ. (2.18a) and Equ. (2.18b), we get 

3
0 0 0, 0, , ,

12
3

I II
i i i jl i jl jl jlF F Bα α α β α β β β− = − Φ Δ − Δ .                             (2.19a) 

and combine Equ. (2.18c) and (2.18d), we get 

3
0 0 0, 0, , ,

84
3

III IV
i i i jl i jl jl jlF F Bα α α β α β β β− = − Φ Δ − Δ .                             (2.19b) 

From Equ. (2.19a) and (2.19b), we have the 2nd order force constant as: 

0 0 0 0
0,

8 8
12

I II III IV
i i i i

i jl
F F F Fα α α α

α β
− + + −

Φ =
Δ

.                                      (2.20) 

As one can see from Equ. (2.20), each matrix element 0,i jlα βΦ  can be achieved by 

extracting the HF force element 0iFα  in the total energy calculation for a super cell with 

atom j  in the thl  unit cell displaced by Δ  along β  direction, while others remain in 

their equilibrium positions. For a 3 3N N×  force constant matrix, in principle, one should 

complete 2 6N×  total number of total energy calculation in order to get the full matrix. 

Even for small systems, it is quite time consuming to complete all these calculations. 

However, the symmetry contained in the structure indicates that a lot of calculations are 

redundant; one should only carry out the calculation for those independence ones, and 

then recover all the others by proper symmetry operations. It will be shown that taking 

symmetry into consideration can greatly reduce the computation load and thus save a 

great amount of time. 

All the irreducible single atom displacement can be found by Code named 

Moves_Analysis.f90. 1on1map.dat, which contains the symmetry information for given 
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system, is the only input required for this code. This code generates a list of irreducible 

moves as well as the mapping information for reconstruction. The detail algorithm is 

explained in the next 5 paragraphs. 

In Cartesian setting, each atom can be displaced in 6 directions x+ , y+ , z+ , x− , 

y− , z− , and  they are defined as the bases. In total we have 6 bases ( 6Nbasis = ), and 

they have the vector forms in the following and are labeled from 1 to 6 in the order as 

they appear: 

1 0 0 1 0 0
0 , 1 , 0 , 0 , 1 , 0
0 0 1 0 0 1

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

For a system containing N atom in the cell, there are in total 6N  number of such 

single moves. During the initialization process, they will be labeled from 1 to 6N, and 

each of them has independence flag 1 indicating they are temporarily independent of one 

another. The index of each move directly determines the atom index and direction in the 

cell and vise versa.  

_ ( _ 1) _Index move Index atom Nbasis Index basis= − × + ,                 (2.21) 

__ int 1Index moveIndex atom
Nbasis

⎛ ⎞= +⎜ ⎟
⎝ ⎠

,                                  (2.22) 

_ _ ( _ 1)Index basis Index move Index atom Nbasis= − − × .                   (2.23) 

Table 2.1 One-to-one correspondence of the index for the displacement to the index of 

atom being displaced. 

1 2 3 4 5 6 L  j L 6N-5 6N-4 6N-3 6N-2 6N-1 6N
 

atom #1 atom #N 
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The one-to-one correspondence between the index of moves for single-atom 

displacement and the atom itself can be seen above. We are aiming to find independent 

single ones among these 6N moves in order to reduce computation load. We start a loop 

over all the moves first, for thj  move with index _i move (Note, we use _i  and _f  to 

indicate initial and final respectively), we found its atom index _i atom   and basis index 

_i basis  by using Equ. (2.22) and Equ. (2.23), and then run a loop over all the operators. 

Under each operator in 1on1map.dat, we can find the atom index _f atom  which is 

equivalent to _i atom according to the atom-atom mapping in the file, and also, the basis 

index _f basis  can be found by operating the operator to the initial basis: 

_ _f basis Operator i basis= ⊗ .                                         (2.24) 

With the knowledge of  _f atom  and _f basis ,  move index _f move  can be 

determined by Equ. (2.21). If index _f move  is larger than _i move  and its 

independence flag is still 1, then we updated its independence flag to 2, and record the 

index _i move  as well as the operator that correlates them. Of course, if index _f move  

is smaller than _i move  or its independence flag is 2, we don’t need to take action to it, 

since it has been dealt with or it is no longer independent. 

 By doing a loop over all the single moves and then a loop over all the operators, 

we have finished the update of independence flag for each move, and those remaining as 

1 are the independent ones. With the independent move index, we know what atom and 

in which direction we should displace to carry out the F-H force calculation. Of course, 

for those dependent ones, their dependence and the corresponding operator have been 

recorded so that we can reconstruct the full force matrix later.  
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How far should one displace the atom from its equilibrium position in the force 

constant calculation? We intend to choose as small displacement as possible, since the 

irreducible moves are arrived by assuming the displacement does not change the crystal 

symmetry, which, in fact, does. Most often a displacement of 0.2% work rather well and 

the convergence test is desired for the exceptions. 

Now we have got the force constant for all the irreducible moves. However, the 

dynamics matrix is built upon the full force constant matrix (see Equ. (2.15)). Thus a 

construction of full force constant matrix based on the irreducible move results shall be 

performed. This is done by our reconstruction code named Rebuild_FullFM.f90.  

Let’s explain the major algorithm for force reconstruction for single moves. We 

start with a loop over moves, for a given move index _f move , if its independence flag 

is 1, we don’t need to do anything since the forces are calculated directly; but if the flag 

is 2, it means that this move is dependent on some other move with index _i move  

through an operator. Index _i move  must be smaller than index _f move  since this is the 

way we saved them in Move_Analysis.f90 code, and because of this, the forces on all the 

atoms due to displacement _i move  must have been available first. Knowing the forces 

on all the atoms due to the displacement _i move , we can easily find the forces due to 

_f move  by symmetry operation. 

 Suppose the forces exerting on the atom _i atom  due to the displacement 

_i move  is _i force  , since _f move  is dependent upon _i move  through an Operator , 

the force _i force  felt by _i atom in _i move  calculation will become the force 

_f force  felt by _f atom  in _f move . The Operator  is used to figure out what 
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_f force  and _f atom  are. _f atom  is the atom that the _i atom  corresponds to in the 

atom-atom mapping under the current Operator , and _f force  can be calculated by: 

_ _f force Operator i force= ⊗ .                                          (2.25) 

Since the atom-atom mapping under each operator is one on one, a loop over all the 

atoms in the cell will generate the full force matrix due  to the _f move .  

By far, we have been able to use symmetry to figure out irreducible moves for 

force constant calculation and also reconstructed force constant matrix. It is obvious that 

symmetry has greatly reduced our calculation load. In addition, it also reduces the 

numerical error in the sense that recovered forces from symmetry are the same as its 

dependent if they are indeed the same, but if we carry out F-H force calculation for both, 

we might end up with slightly different force vectors between these calculations purely 

due to numerical error. This is especially important if there is a cancel-out effect.  

 We have further developed a paired-displacement algorithm to evaluate third-

order anharmonicity tensor A  with element 
3

0, , '
0 '

i jl kl
i jl kl

EA
x x xα β γ
α β γ

∂
=
∂ ∂ ∂

. We propose to 

displace a pair of coordinates in the following fashion. Instead of displacing one atom, we 

now displace a pair of atoms at the same time. If we displace both atom j in thl  unit cell 

and atom k in 'thl  unit cell by Δ , ie., ',jl klx xβ γΔ = +Δ Δ = +Δ , the α  component of the 

force felt by atom i in reference cell is going to be: 

2
0 0, 0, ' 0, , 0, ', ' 0, , '

3
0, , , 0, ', ', ' 0, , ', ' 0, ', ,

1( ) ( 2 )
2

1 ( 2 2 )
6

V
i i jl i kl i jl jl i kl kl i jl kl

i jl jl jl i kl kl kl i jl kl kl i kl jl jl

F A A A

B B B B

α α β α γ α β β α γ γ α β γ

α β β β α γ γ γ α β γ γ α γ β β

= − Φ +Φ Δ − + + Δ −

+ + + Δ
,    (2.26a) 
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 Similarly, if ',jl klx xβ γΔ = +Δ Δ = −Δ , then 

2
0 0, 0, ' 0, , 0, ', ' 0, , '

3
0, , , 0, ', ', ' 0, , ', ' 0, ', ,

1( ) ( 2 )
2

1 ( 2 2 )
6

VI
i i jl i kl i jl jl i kl kl i jl kl

i jl jl jl i kl kl kl i jl kl kl i kl jl jl

F A A A

B B B B

α α β α γ α β β α γ γ α β γ

α β β β α γ γ γ α β γ γ α γ β β

= − Φ −Φ Δ − + − Δ −

− + − Δ
,    (2.26b) 

if ',jl klx xβ γΔ = −Δ Δ = +Δ , then 

2
0 0, 0, ' 0, , 0, ', ' 0, , '

3
0, , , 0, ', ', ' 0, , ', ' 0, ', ,

1( ) ( 2 )
2

1 ( 2 2 )
6

VII
i i jl i kl i jl jl i kl kl i jl kl

i jl jl jl i kl kl kl i jl kl kl i kl jl jl

F A A A

B B B B

α α β α γ α β β α γ γ α β γ

α β β β α γ γ γ α β γ γ α γ β β

= − Φ +Φ Δ − + − Δ −

− + − + Δ
,   (2.26c) 

and if ',jl klx xβ γΔ = −Δ Δ = −Δ , then 

2
0 0, 0, ' 0, , 0, ', ' 0, , '

3
0, , , 0, ', ', ' 0, , ', ' 0, ', ,

1( ) ( 2 )
2

1 ( 2 2 )
6

VIII
i i jl i kl i jl jl i kl kl i jl kl

i jl jl jl i kl kl kl i jl kl kl i kl jl jl

F A A A

B B B B

α α β α γ α β β α γ γ α β γ

α β β β α γ γ γ α β γ γ α γ β β

= + Φ +Φ Δ − + + Δ +

+ + + Δ
 .  (2.26d) 

Note that we consider j k=  being a generalized pair of atoms. Combine Equ. (2.26a) and 

Equ. (2.26d), we get 

2 2 2
0 0 0, , 0, ', ' 0, , '2V VIII

i i i jl jl i kl kl i jl klF F A A Aα α α β β α γ γ α β γ+ = − Δ − Δ − Δ ,                    (2.27a) 

Combine Equ. (2.26b) and Equ. (2.26c), we get 

2 2 2
0 0 0, , 0, ', ' 0, , '2VI VII

i i i jl jl i kl kl i jl klF F A A Aα α α β β α γ γ α β γ+ = − Δ − Δ + Δ ,                     (2.27b) 

From Equ. (2.27a) and Equ. (2.27b), we will have: 

0 0 0 0
0, , ' 24

V VI VII VIII
i i i i

i jl kl
F F F FA α α α α

α β γ
− + + −

=
Δ

.                                  (2.28) 
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Special case like , , 'j k l lβ γ= = =  is considered separately. 0, ,i jl jlAα β β  can be 

determined by forces from single atom displacement. Combine Equ. (2.18a) and Equ. 

(2.18b), we get 

2
0 0 0, ,

I II
i i i jl jlF F Aα α α β β+ = − Δ .                                  (2.29a) 

and combine Equ. (2.18c) and Equ. (2.18d), we get 

2
0 0 0, ,4III IV

i i i jl jlF F Aα α α β β+ = − Δ .                                      (2.29b) 

From both Equ. (2.29a) and Equ. (2.29b), we have 

0 0 0 0
0, , 23

I II III IV
i i i i

i jl jl
F F F FA α α α α

α β β
+ − −

=
Δ

 .                                 (2.30) 

Equ. (2.28) and Equ. (2.30) have clearly related the 0, , 'i jl klAα β γ  terms to the F-H 

forces due to displacement of single and pair atoms which can be calculated through ab 

initio method. Each element of 0, , 'i jl klAα β γ  can be achieved by extracting the F-H force 

element 0iFα  in the total energy calculation for a super cell with atom j  in the thl  unit 

cell displaced by Δ , −Δ , 2Δ  or 2− Δ  along β  direction and atom k in the ' thl  unit cell 

displaced by Δ , −Δ , 2Δ  or 2− Δ  along γ  direction, while others remain in their 

equilibrium positions. Compared with force constant matrix, the full tensor evaluation 

requires 2
6NC  more calculation due to pair moves. Again we took advantage of crystal 

symmetry. Moves_Analysis.f90 generates not only independent single moves for force 

constant calculation, but also independent pair moves for 3rd order anharmonicity 

calculation.  
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Single independent move analysis and the full force matrix reconstruction have 

been explained in detail previously in this section; here we add the explanation for the 

derivation of irreducible pair moves as well as the reconstruction. 

First of all, we assign each pair moves ( , )i j  a unique number which is defined as : 

_ ( , ) ( 1)Index pair i j i Nmoves j= − × +                                      (2.31) 

where i, and j are index of moves, as defined in Equ. (2.21), and 

Nmoves Nbasis Natom= × , Nbasis  is 6 as defined earlier, and Natom  is the number of 

atoms in the super cell. Since the forces induced by displacement of pair ( , )i j  and pair 

( , )j i  are the same, we only need to consider those terms with i j≤ , ie., the upper 

triangle of Table 2.2. 

 

Table 2.2 One-to-one correspondence of index for the pair displacement to that for the 

single atom displacement. 

 

(1 1) 6 1N− × +  2 L L  6 1N −  6N  

(2 1) 6 1N− × +  6 2N +  L L  2 6 1N× −  2 6N×  

M  M  M  M  M  M  

M  M  M  ( 1) 6i N j− × +  M  M  

M  M  M  M  M  M  

(6 1) 6 1N N− × +  L  L L  6 6 1N N× −  6 6N N×  
 

As one can see, the pair index number, acts like an identity, uniquely defines the 

pair moves ( , )i j . Like we do to single moves, we also assign each pair move an 

i-m
ov

e 

j-move 
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independent flag and they are initially assuming to be 1, meaning they are independent of 

one another. First, we start with a loop over i-move from 1 to 6N, and another loop over 

j-move from i-move to 6N, note that only those equal to or larger than i-move are 

considered. Then, we add in another loop over all the operators in 1on1map.dat. For each 

operator, we need to find pair move ( , )i j  the symmetry equivalence ( , )m n  under its 

operation. The process of finding m-move for i-move and n-move for j-move is the same 

as that we have addressed for single atom displacement when we construct the force 

constant matrix. Basically, we figure out correspondent displaced atom (i-atom and j-

atom) and direction (i-basis and j-basis) for pair move ( , )i j ; then find correspondent pair 

atom (m-atom and n-atom) for (i-atom and j-atom), and displacement direction (m-basis 

and n-basis) for  (i-basis and j-basis), and thus get the index move m-move and n-move 

( , )m n . Recall that only pairs i j≤  are considered, we need to swap the order of m and n 

if m n> . If _ ( , ) _ ( , )Index pair m n Index pair i j> , we will update its independence flag 

_ ( , )Independence pair m n  to 2, and record the symmetry operator _ ( , )OP pair m n for 

reconstruction use. 

There is one special case we need to consider separately. It is when pair move 

happens on the same atom while in opposite directions, it means that the atom is not 

displaced at all, therefore forces felt by all the atoms should be zero. We set 

independence flag as 0 for such pair moves.  

After we complete all the loops, all the independent pair moves will have 

independence unchanged, i.e., the independence flag remains as 1, and we will only carry 

out H-F force calculation for those independent pair moves. Forces due to the dependent 
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ones can be derived from symmetry and it is also done by the reconstruction code named 

Rebuild_FullFM.f90. This code serves two purposes, it rebuilds the forces due to all the 

single moves based on the knowledge of those from the irreducible singe moves, and also 

the forces due to all the pair moves based on those from the irreducible pair moves. 

 The force construction of pair moves is similar to that of single moves except that 

we now record everything for _Index pair  instead of _Index move . If the independence 

flag is 0, then all the forces will be set as zero. If the independence flag is 1, we will keep 

the F-H forces unchanged; if the independence flag is 2, we rebuild all the forces with the 

knowledge of mapping information and operator index. 

 As defined earlier, tensor A is a 3 3 3N N N× ×  matrix. With N being the number 

of atoms in the supercell, usually in the order of 100, we are dealing with a tensor 

containing around 62.7 10×  number of elements. Since individual i jkA  term represents 

the response of the system to the displacement of atoms in the supercell ( , , )i j k , and the 

crystal symmetry indicates that such response can be due to other possible combinations 

( ', ', ')i j k . Therefore, the full tensor A  can be represented by only rather small number 

of independent i jkA  terms after incorporating with the symmetry. How to find those 

independent i jkA  terms and then the symmetry map from those independent terms to full 

tensor has been implemented in the code named Get_Aind_map.f90. In d-Si system, 128-

atom supercell was used in calculation, our calculation with Tersoff empirical potential 

shows that there are only 28 nonzero ijkA  terms with the approximation that only terms 

involving 2nd nearest neighbors are considered. 
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Another important issue is the sumrule enforcement. Numerical calculation might 

not preserve the intrinsic physics as desired, especially translational symmetry of the 

crystal. Those divergences could be avoided by the sumrule enforcement. For 3rd order 

anharmonicity, its sumrule is enforced by setting the following: 

0, ' ', '' '' '' ''
' ' '' '' 1,2,3

0k k l k l k l
k l k l

A rα β γ γ
γ =

=∑∑ ∑ ,                                        (2.32) 

where klrγ  is the thγ  component of the vector locating the thk  lattice atom in the thl  unit 

cell. If α β= , Equ. (2.32) corresponds to the sumrule for self terms, and if they are 

different, it then corresponds to the sumrule for cross terms. Both should be enforced in 

order to avoid the divergence due to the numerical error. 

Figure 2.1 shows that the sumrule enforcement has indeed improved our 

calculation. We plotted the Grüneisen dispersion using two difference methods: Finite 

Difference Approach (FDA) and Anharmonicity Approach (AA) (will see in section 

(3.1.2)). Before we confined the ijkA  data to satisfy the sumrule, the Grüneisen data from 

AA match well with FDA results at all the q-points except those transverse modes near Γ 

point. They basically diverge upon approaching gamma point. On the other hand, the 

sumrule enforced i jkA  data has successfully eliminated the divergence near gamma point; 

the whole set of data sit right on top of the FDA data.  
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Figure 2.1 Comparison of Grüneisen parameters calculated from FDA (blue circle) and 

AA, which include both sumrule un-enforced (red diamond) and sumrule enforced (black 

square) results. 
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CHAPTER 3  

 

 

STATISTICAL THEORIES OF PHONONS 

 

3.1 Quantum Theory of Lattice Vibration  

3.1.1  Phonons: Harmonic Frequencies and Group Velocities  

 Adopting proper normal modes of lattice vibration ( )vQ qv  and ( )vP qv  as a new 

basis set: 

3
*

1

( ) ( , ) ( )
n

vQ q m e q v x qα α α
α=

= ∑v v v v                                              (3.1) 

3
*

1

( ) ( , ) ( )
n

vP q m e q v p qα α α
α=

= ∑v v v v                                               (3.2) 

where ( , )e q vv v is the eigen-vector of normal mode ( , )q vv , ( )x qα
v is the Fourier 

transformation of atomic coordinates xα , mα is the mass of the atom. The Hamiltonian of 

harmonic lattice vibration can be written as a summation of 3N simple harmonic 

oscillators:  

3
2 22

1

1 1( ) ( ( ) ( , ) ( ) )
2 2

n

v v
v

H q P q q v Q qω
=

= +∑v v v v                                 (3.3) 
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Each normal mode ( , )q vv  is characterized with its eigen-vector representing the vibration 

pattern and the corresponding vibration frequency ( )v qω v . 

The square of the amplitude of a vibration mode is proportional to the vibration 

energy of the given vibration mode. Within the classical mechanics, such vibration 

energy is a continuous variable, while quantum mechanics only allows a set of quantized 

energy level for the vibration mode with frequency ω:  

1( )
2n nε ω= + h , where 0,1,2 .n = L                                        (3.4) 

Total harmonic vibration energy is the summation of energy of all the normal modes, ie.,: 

1 1( ) ( )
2lattice v v

q vq

E q n q
N

ω ⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑∑
v

v v
h .                                       (3.5) 

where h  is the Planck constant, 1 ( )
2 v qω v
h  is the zero energy of the normal mode, ( )vn qv  

is the vibration energy level index  of the normal mode. The particle representation of this 

quantization of lattice vibration energy is often called phonons, and ( )vn qv  can be 

correspondingly interpreted as the number of phonons occupied at the normal mode 

( , )q vv . At thermal equilibrium, a solid now can be treated as a system containing a 

collection of independent (or weakly coupled) phonons.  

 The group velocity of a phonon is defined as: 

( , ) ( , )g qv q i q iω= ∇ v
v v v                                                     (3.6) 

Since 21 1( , ) ( , ) ( , ) ( ) ( , )
2 2q q qq i q i e q i q e q iω ω
ω ω

∇ = ∇ = ∇ Dv v v
v v v v v v , the mode group velocity 

can be derived using the Feynman-Hellmann theorem : 



 
 

39

1( , ) ( , ) ( ) ( , )
2g qv q i e q i q e q i
ω

= ∇ Dvv v v v v v                                      (3.7) 

 

3.1.2 Quasi-Harmonic Approximation and Mode Grüneisen Parameters 

 When lattice anharmonicity contribution to the vibration energy is relatively small, 

the effects of anharmonicity can be approximated with the quasi-harmonic approximation 

(QHA), where the harmonic oscillator model is valid, yet the oscillation frequencies 

become volume-dependent. The mode Grüneisen parameter, defined as  

,
,

ln ( )
ln

q v
q v

d V
d V
ω

γ ≡ −
v

v .                                                     (3.8) 

is introduced to quantify the effect of anharmonicity on each phonon mode. 

Apply the Feynman-Hellmann theorem to Equ. (3.8), we can evaluate each mode 

Grüneisen parameters with the calculated volume derivatives of dynamical matrix 

( ) /qd dVD v and the eigen-vectors of phonon modes:  

, 2
,

( ) ( )
2

q
q v v v

q

dV q q
dVγ

γ
ω

= −
D

e e
v

v

v

v v .                                        (3.9) 

where V is volume of the unit-cell, ,q γωv  and ( )v qer v  are eigen-frequency and eigenvector 

of ν-th eigen-mode at the qv  point in the BZ respectively, and ( ) /qd dVD v  is the volume 

derivative of the dynamical matrix, and the first order derivative is approximated by finite 

difference method. 

On the other hand, volume derivatives of dynamical matrix can also be evaluated 

using the 3rd order lattice anharmonicity based on a perturbation approach: 35 
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* '
( ')

, 0, ' ', '' '' '' ''
' ' '' '' '

1 ( ) ( )
6 ( )

k k
iq R lv v

q v k k l k l k l
k k l k lv k k

e q e qA e r
q M M

α β

α β γ γ
αβγ

γ
ω

⋅= − ∑∑∑∑
vv

v

v v

v ,               (3.10) 

where klrγ  is the γ  component of the vector locating the thk  lattice atom in the thl  unit 

cell. Equ. (3.10) further provides an indirect way to verify the calculated 3rd order lattice 

anharmonicity tensors by comparing the ,q vγ v  results obtained using Equ. (3.9) and Equ. 

(3.10). Unlike 2nd force constant matrix, which has phonon calculation to examine 

whether or not those calculated elements are reasonable values, 3rd order tensor A  is not 

known to have direct relation to any measurable physical quantities. And the precise 

representation of both phonon modes and anharmonic forces are required in order to 

calculate accurately the phonon life time and the intrinsic lattice thermal conductivity. 

The consistency between two methods will definitely provide us confidence of applying 

our anharmonicity data to compute phonon-phonon scattering rate in phonon life time 

and thermal conductivity calculation. 

 

3.1.3 Anharmonicity Induced Phonon-Phonon Scatterings 

Any lattice imperfection (such as finite-size grain boundaries, defects, and 

isotopes etc) or anharmonicity might cause interactions among phonons. In this work, we 

focus on the effects of lattice anharmonicity. As the first step, we ignore 4th and higher 

order anharmonicity, and investigate only the three-phonon scattering mechanism.  Four-

phonon scattering may be important at high temperature, which will be explored in future 

work. 
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In general, three-phonon processes can be categorized into two types. One is the 

annihilation process, in which one phonon is annihilated; the other one is creation process, 

in which one additional phonon is created. Two types of scattering scheme in 3-phonon 

processes are shown in Figure 3.1.   

 

Figure 3.1 Schematic figures for two types of 3-phonon processes. 

  

The concept of scattering carries with it the implication that the rate of scattering 

is relatively small and for the interaction that produces scattering to be regarded as a 

small perturbation36. Scattering rate, which determines the phonon life time, can be 

obtained using standard quantum-mechanical time-dependent perturbation theory as 

embodied in Fermi Golden Rule37. 

22 ( )f
i f iP f H iπ δ ε ε= Δ −

h
                                        (3.11) 

where i  is initial state with energy iε  and f  is the final state with energy fε  under 

perturbation HΔ . In the case of lattice anharmonicity induced 3-phonon scattering 

Type I 

q 

q' 

q'' 

Type II 

q 
q' 

q'' 
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mechanism, { }( , )ii n q v= , { }( , )ff n q v= , and the perturbation is the 3rd order 

lattice anharmonic energy, ie., 

0, , '
'

1 ( 0) ( ) ( ')
6 i jl kl

i jl kl

H A x i x jl x klα β γ α β γ
α β γ

Δ = Δ Δ Δ∑∑∑                      (3.12) 

With normal coordinates as the new basis, HΔ can be written as: 

' '', , ,
' ''

1 1 ( , ') ( ) ( ') ( '')
6 q q q g i j k i j k

q q q

H A q q X q X q X q
N α β γ α β γ

αβγ

δ + +Δ = ∑∑∑∑ v v v v
v v v

v v v v v        (3.13) 

where 

                                  ( ' ')
, , 0, , '

. '

( , ') i q l q l
i j k i jl kl

l l

A q q A eα β γ α β γ
− ⋅ + ⋅= ∑

v vv vv v                                     (3.14) 

and  

( , )( ) ( , )
v v

e q vX q Q q v
m

α
α = ∑

v
v                                              (3.15) 

Combine Equ. (3.5), (3.11), (3.13), and (3.14) and (3.15), we have transition rates ''
, '
q

q qP
v
v v  

for type I scattering event and ', ''q q
qP
v v
v  for type II scattering event as: 

'' ''
, ' , '( ) ( ')( ( '') 1)q o o o q

q q i j k q qP n q n q n q S= +
v v
v v v v

v v v                                  (3.16) 

where  

2
2

''
, ' 2 1 2

( , ') ( ) ( ') ( '')
24 ( , ) ( ', ) ( '', ) ( )

i j k
q
q q

A q q e q e q e qhS
N q i q j q k m m m

αβγ α β γ

αβγ α β γπ ω ω ω
= ∑

v
v v

v v v v

v v v  

' '',( ( , ) ( ', ) ( '', )) q q q gq i q j q kδ ω ω ω δ + −⋅ + − v v v v
v v v

h h h  

and 

', '' ' . ''( )( ( ') 1)( ( '') 1)q q o o o q q
q i j k qP n q n q n q S= + +
v v v v
v v

v v v                         (3.17) 
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where 

2
2

'. ''
2 1 2

( , ') ( ) ( ') ( '')
24 ( , ) ( ', ) ( '', ) ( )

i j k
q q
q

A q q e q e q e qhS
N q i q j q k m m m

αβγ α β γ

αβγ α β γπ ω ω ω
= ∑

v v
v

v v v v

v v v  

' '',( ( , ) ( ', ) ( '', )) q q q gq i q j q kδ ω ω ω δ − −⋅ − − v v v v
v v v

h h h  

 

3.2 Equilibrium Thermal Properties 

3.2.1 Statistical Ensemseble Theory of Independent Phonons 

As discussed Section 3.1, the thermal excitation of a perfect crystal is now 

described as a system of  independent phonons, which are indistinguishable quantum 

particles that obey Bose-Einstain statistics. As a result, ,q vnv , the equilibrium average 

number of phonon at the ( , )q vv  mode, is found to be 
,, /

1( , )
1q v Bq v k Tn T

e ωω =
−

v
v

h
, and the 

equilibrium averaged vibration energy is , ,
,

1 1 ( , )
2vibration q v q v

q vq

E n T
N

ω ω⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑ v v
vr
h .  

The same result can be derived based on the equilibrium ensemble theory. Within 

the harmonic approximation, the canonical partition function /j BE k T

j

Z e−= ∑  can be 

easily derived as:  

,
1 2 3

,
1 2

/ 2
( ) /

/
,0 0 0 1

Bk v
N B

Bk v
N

k T
k T

k T
k vn n n

eZ e
e

ω
ε ε ε

ω

−∞ ∞ ∞
− + + +

−
= = =

= = ∏
−

∑∑ ∑
v

v

h

L
v h

L .                         (3.18) 

Any other thermodynamic quantities, such as the total energy totE , entropy S , and 

Helmholtz free energy F  of a harmonic crystal, can be derived from the partition 

function Z. For example: 
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,

,
, /

, ,

1 1 1
2 1q v B

q v
tot static vibration static q v k T

q v q vq q

E E E E
N N e ω

ω
ω= + = + +

−∑ ∑ v

v

v
h

v vr r

h
h ,          (3.19) 

,

,

,

,

ln 1 1(ln ( ) ) ln(1 )

( 1)

q v

B

q v

B

q v k T
B V B

q vq k T

ZS k Z T k e
T N T

e

ω

ω

ω −
⎛ ⎞

∂ ⎜ ⎟= + = − −⎜ ⎟∂ ⎜ ⎟−⎝ ⎠

∑
v

v

h
v

h
vr

h
,     (3.20) 

( ), /
,

, ,

1 1ln ln 1
2

q v Bk TB
static B static q v

q v q vq q

k TF E k T Z E e
N N

ωω −= − = + + −∑ ∑ vh
v

v vr r
h .      (3.21) 

 As shown in Equ. (3.21), the inputs required to calculate the thermodynamic 

potentials are the static total energy ( )staticE V and harmonic phonon spectra ,q vωv , both can 

be calculated with the first-principles total energy theory discussed in previous section.  

 

3.2.2 Macroscopic Thermal Properties within the QHA 

 To connect the first-principles calculated thermodynamic potentials with 

experimental measurements, we can further evaluate the thermal properties based on the 

macroscopic thermodynamic theories.  For example, to predict the iso-thermal equations 

of state, we simply perform volume derivative of the Helmholtz free energy 

(
T

FP
V
∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠

): 

,
,

,

1 1( ( , ) )
2

q vstatic
q v

q vq

ddEP n T
dV N dV

ω
ω ⎛ ⎞

= − − + ⎜ ⎟
⎝ ⎠

∑
v

v
vv

h
.                        (3.22) 

 Based on the QHA and the notation of mode Grüneisen parameters ( ,q vγ v ) 

introduced in Section 3.1.2, we can re-write the Equ. (3.22) as:   

, , ,
,

( ) 1 1 1( , ) ( ) ( , ) ( ( , ) )
2

static
static thermal q q q

q vq

dE VP T V P V P T V n T
dV V N ν ν νω ω γ= + = − + +∑ v v v

vv
h .(3.23) 
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 With predicted P(V,T) equation of state, we can readily calculate all the 

measurable thermal quantities, such as isothermal compressibility: 

                                                  1
T

T

V
V P

κ ∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠
,                                                       (3.24) 

or coefficient of thermal expansion 

                            
( )
( ) ( )1 1 V

T V
P T

P TV P T
V T V P V

α κ
∂ ∂∂⎛ ⎞= = − = ∂ ∂⎜ ⎟∂ ∂ ∂⎝ ⎠

.                             (3.25) 

 The specific heat capacity of the system is the derivative of the total energy: 

,

,

,

, , /
, ,

2 / 2
,

2/
,

1 1 1
1

1

q v B

q v B

q v B

tot
V q v q v k T

q v q vV Vq q

k T
k vB

k T
q vq B

EC c
T N N T e

qk e
N k T e

ω

ω

ω

ω

ω −

−

∂ ∂⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟∂ ∂ −⎝ ⎠ ⎝ ⎠

⎛ ⎞
= ⎜ ⎟

⎡ ⎤⎝ ⎠ −⎣ ⎦

∑ ∑

∑

v

v

v

v v
h

v vv v

hv

hvv

h

v
h

,          (3.26) 

where  

,

,

2 / 2
, ,

, , 2/

( , )
( )

1

q v B

q v B

k T
q v q v

q v V q v B k T
B

n T ec k
T k T e

ω

ω

ω ω
ω

−

−

∂ ⎛ ⎞
= = ⎜ ⎟∂ ⎡ ⎤⎝ ⎠ −⎣ ⎦

v

v

h
v v

v v
h

h
h                    (3.27) 

 is the mode heat capacity. At low temperature Bk Tωh � , VC  is proportional to 3T  , it 

corrects the classical behavior at low T; and at high temperature Bk Tωh � , it saturates 

to a constant which is close to Dulong-Petit limit of 3 /Bk atom . 38 

 Another important thermodynamic parameter that links thermal and mechanical 

properties is the (bulk) Grüneisen parameter, which is defined as: 

                                   ln( ) ( )
lng V S

V T

P T VV
E V C

αγ
κ

∂ ∂
≡ = − =

∂ ∂
.                                         (3.28) 

Plug Equ. (3.25), (3.26), and (3.27) into Equ. (3.28), we get  
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,
,( ) q

g V q v
qV V

cV P
C T C

νγ γ∂
= =

∂ ∑
v

v
v

.                                              (3.29) 

This result shows that the bulk Grüneisen parameter gγ  is simply the heat capacity 

weighted average mode Grüneisen parameter ,q vγ v . 

 

3.3 Non-Equilibirum Thermal Transport Theories 

3.3.1 Kinetic Transport Theory  

 At thermal equilibrium, thermal energy flows insides a system randomly from one 

part to another at the microscopic level. Yet, there is no net heat current at the 

macroscopic level, i.e. the statistically averaged heat current is exactly zero. On the other 

hand, the Fourier’s Law states a net heat current J
r

 appears wherever a spatial gradient 

(∇
r

) of temperatures (T) exists, and the amount of the current is proportional to T∇
r

 :  

J Tκ= − ∇
rr t .                                                     (3.30) 

Here κt  is the non-equilibrium transport coefficient called thermal conductivity.   

Any thermally excitatble particles inside a solid can contribute to the thermal 

currents. For semiconducting/insulating materials, lattice vibration is the dominant factor 

to the heat conduction, and phonons are considered as the the main carriers of thermal 

energy in this case. According to the simple kinect transport model, the microscopic heat 

current can be expressed as : 

,

1 ( , ) ( , ) ( , )g
q iq

J n q i q i v q i
N

ω= ∑
vv

r rv v v
h                                    (3.31) 
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where the ( , ) ( , )n q i q iωv v
h  term represents the thermal energy of a phonon mode 

( , )q iv , and ( , )gv q ir v  is the corresponding group velocity of those phonons. Within this 

kinetic model, the lattice thermal conductivity can be simply expressed as: 

,

1 ( , ) ( , ) ( , ) ( , )V g g
q iq

c q i v q i v q i q i
N

α β
αβκ τ= ∑

vr

v v v v                                (3.32) 

where ( , )Vc q iv , ( , )gv q iα v , and ( , )q iτ v  are  the heat capacity, α  component of group 

velocity , and phonon life time of the normal mode ( , )q iv  respectively.  Heat capacity 

contribution from each mode is given by Equ. (3.27) and group velocity of each phonon 

mode is defined in Equ. (3.6).  

The challenge in kinetic method is to calculate the phonon life time for each 

normal mode. In pure harmonic crystal, phonon life time is infinity; the phonon spectrum 

consists of several pure δ-function peaks. The anharmonic forces in the crystal causes 

the phonon spectrum to shift and broaden, leading to finite phonon life time, which is the 

reciprocal of the full-width at half-maximum (FWHM) of the peak. Those line shifts and 

line width can be measured by a variety of experimental techniques, such as neutron 

scattering.  

Phonon life time can be determined by phonon scattering rate. The variation of 

the phonon occupation number with time happens in the diffusion process, scattering 

process or by adding external field. 

( ) ( ) ( )scattering diffusion field
dn dn dn dn
dt dt dt dt

= + +                                  (3.33) 
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If there is no external field in a thermal equilibrium system, 0dn
dt

=  and ( ) 0field
dn
dt

= , 

thus ( ) ( )scattering diffusion
dn dn
dt dt

= − . Phonon life time τ , the time gap between two 

consecutive phonon collisions, is introduced in the relaxation time approximation which 

states that: 

( )
o

diffusion
dn n n n
dt τ τ

Δ −
≈ =                                              (3.34) 

where n  is the phonon occupation number at any condition, while on  is the equilibrium 

phonon occupation number, which follows the well-known Bose-Einstein distribution: 

                     1
1B

o
k Tn

e ω=
−h

.                                                    (3.35) 

There are several phonon scattering mechanism that contributes to term ( )scattering
dn
dt

, here 

we only consider the 3rd order anharmonicity induced 3-phonon process in the phonon-

phonon scattering mechanism, assuming other contributions are negligible. Under the two 

approximations just made, Equ. (3.33) for each normal mode characterized by q-vector qv  

and polarization index i  reduces to: 

3

( ) ( )
( )
i i

phononi

n q dn q
q dtτ −

Δ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

v v

v                                        (3.36) 

 Due to the fact that the energy excitation in oscillators can only happen in two 

consecutive energy levels, change of phonon occupation number with respect to the time 

in the 3-phonon process can be written as: 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3

''
, '

', ''' ''

( )

( ) 1 ( ') 1 ( '') ( ) ( ') ( '') 1

1 ( ) 1 ( ') ( '') ( ) ( ') 1 ( '') 1
2

i

phonon

q
i j k i j k q q

q qq q
i j k i j k q

dn q
dt

n q n q n q n q n q n q S

n q n q n q n q n q n q S

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎧ ⎫⎡ ⎤+ + − + +⎣ ⎦⎪ ⎪= ⎨ ⎬
⎡ ⎤+ − + +⎪ ⎪⎣ ⎦⎩ ⎭

∑∑

v
v v

v v
v v

v

v

v v v v v v

v v v v v v

   (3.37) 

where the summation is taken over all the possible combination of two other normal 

modes ( ', )q jv  and ( '', )q kv  other the one under consideration ( , )q iv  in the 3-phonon 

scattering process. ( )in qv , ( ')jn qv  and ( '')kn qv   are the phonon occupation number of 

mode ( , )q iv , ( ', )q jv  and ( '', )q kv  respectively. The first term represents the type I 

scattering, negative sign in the first bracket indicates a reversed type I scattering; 

similarly to second term which represents the type II scattering, 1/2 comes from the over-

counting of  ( ', '')q qv v  pair since they are equivalent in the type II scattering mechanism. 

 Energy conservation in both processes shows that the following relationships hold: 

( )( )( ) ( )( )( )( ) 1 ( ') 1 ( '') ( ) ( ') ( '') 1o o o o o o
i j k i j kn q n q n q n q n q n q+ + = +v v v v v v  for type I scattering, 

and 

( )( )( ) ( )( )( )( ) 1 ( ') ( '') ( ) ( ') 1 ( '') 1o o o o o o
i j k i j kn q n q n q n q n q n q+ − + +v v v v v v  for type II scattering. 

 We now adopt the Single-Mode Excitation Approximation (SMEA), which states 

that ( )in qv  is the only one that deviates from the equilibrium value ( )o
in qv , i.e.: 

( ) ( ) ( )

( ') ( ')

( '') ( '')

o
i i i

o
j j

o
k k

n q n q n q

n q n q

n q n q

= + Δ

=

=

v v v

v v

v v
                                             (3.38) 
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After considering energy conservation and further neglecting the 2nd and higher order of 

nΔ , the first term in the Equ. (3.37) is reduced to ( ) ''
, '( ) ( '') ( ')o o q

i k j q qn q n q n q SΔ ⋅ −
v
v v

v v v  and the 

second term ( ) ', ''1 ( ) ( ') ( '') 1
2

o o q q
i j k qn q n q n q S− Δ ⋅ + +

v v
v

v v v . Now we have: 

( ) ( )'' ', ''
, '

' ''3

( ) 1( ) ( '') ( ') ( ') ( '') 1
2

o o q o o q qi
i k j q q j k q

q qphonon

dn q n q n q n q S n q n q S
dt −

⎧ ⎫⎛ ⎞ = Δ ⋅ − − + +⎨ ⎬⎜ ⎟
⎩ ⎭⎝ ⎠

∑∑
v v v
v v v

v v

v
v v v v v .(3.39) 

Note that the common term ( )in qΔ v  has been factored out since it is independent of the 

summation. Combine Equ. (3.36) and (3.39), we have reached an expression for mode 

phonon life time: 

( ) ( )'' ', ''
, '

' ''

11 ( '') ( ') ( ') ( '') 1( ) 2
o o q o o q q

k j q q j k q
i q q

n q n q S n q n q Sqτ
⎧ ⎫= − − + +⎨ ⎬
⎩ ⎭

∑∑
v v v
v v v

v v

v v v v
v            (3.40) 

where on  can be calculated by knowing the phonon spectra, and ''
, '

q
q qS
v
v v  and ', ''q q

qS
v v
v  are 

related to both phonon spectra and lattice anharmonicity through Equ. (3.16) and Equ. 

(3.17) respectively. 

 In summary, phonon life times can be calculated by knowing phonon spectra and 

lattice anharmonicity. Combining mode phonon life time, mode heat capacity and mode 

group velocity, we have the mode contribution to the thermal conductivity. A decent k-

grid sampling is desired to get an accurate result for thermal conductivity. Tetrahedron 

method provides a more accurate result than simple summation in terms of BZ 

integration. 
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3.3.2 Green-Kubo Formula 

 Non-equilibirum transport properties are also associated with the fluctuation 

phenomena at thermal equilibirum. According to the Fluctuation-Dissipation Theorem 

(FDT) of Green-Kubo39  , thermal conductivity (κ ) is associated with the autocorrelation 

function of the fluctuated heat current at thermal equilibrium: 

2 0
( ) (0)

B

J t J dt
k Tαβ α βκ

∞Ω
= ∫                                            (3.41)  

where , , ,x y zα β = , Ω  is the volume of the system under consideration, Bk  is 

Boltzmann constant, T  is temperature, Jα  is the α component of the heat current, L  

represents an ensemble average. The integration is taken over the time period from zero 

to infinity. 

The most fundamental assumption of the FDT is that the mechanism that allows a 

system at a stable thermodynamic equilibrium resorting from an external disturb is the 

same as the mechanism that create a steady-state flow at a non-equilibrium condition. 

The linear response theory assumes that the response of the system is linearly 

proportional to the external disturb, and then the transport coefficients are proportional to 

the magnitude of the fluctuations at equilibrium. A statistical approach to define 

fluctuation is the time-correlation function of two given physical quantities (For example 

A and B), which can be obtained by taking time dependent quantity A(t) at given time t, 

and another quantity B(t’) at different time t’, and averaging the product of these two 

time dependent quantities over some equilibrium ensemble. If A is the same as B, then it 
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is called autocorrelation function. The choice of the time scale origin is arbitrary and the 

ensemble average is invariant under time displacement, therefore: 

( ) ( ') (0) ( ' )A t B t A B t t= −                                          (3.42) 

Just like Equ. (3.41) shows, thermal conductivity, the linear response property of 

the system to the temperature gradient, can be evaluated from the autocorrelation 

function of the system heat current in thermodynamic equilibrium. In practice, most auto-

correlation functions lie between two extremes: strong correlation functioncos( )tω with 

( ) sin( )A t tω=  and weak correlation function exp( / )t τ−  with ( ) 1A t =  or -1. 

 Now the problem is how to calculate the time dependent heat current for a 

thermodynamically equilibrium system. Here we follow J.R. Hardy’s notation40, under 

the assumption that the Hamiltonian is in the form:
2

2
i

i
i i

pH V
m

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ , where ipv  is the 

momentum, im  is the mass, iV  is the potential energy associated with the thi  particle and 

the summation is taken over all the particles in the system. The heat current, or energy 

flux as used in Ref. (40), is then expressed as: 

2 21 1( ) , . .
2 2 2

i i i
i i j j

i iji i i

p p pJ V q q V H c
m m i m

⎧ ⎫⎛ ⎞ ⎡ ⎤⎪ ⎪= + + − +⎨ ⎬⎜ ⎟ ⎢ ⎥Ω ⎪ ⎪⎝ ⎠ ⎣ ⎦⎩ ⎭
∑ ∑

vv v v

h
               (3.43) 

where Ω  is the volume of the system, h  is Planck constant, iqv  is the position of the thi  

particle. H.c. stands for the Hermitian Conjugate.  In the classical limit, heat current can 

be reduced to: 

1 ( ) ( ) i
i i i i j j

i ij j

VJ v E E q q v
q

⎧ ⎫⎛ ⎞∂⎪ ⎪= − + − ⋅⎜ ⎟⎨ ⎬⎜ ⎟Ω ∂⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑

v v v v v
v .                    (3.44) 
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here ivv  is the velocity , iE  is instantaneous energy and iE  is the averaged energy of the 

thi  particle. The evaluation of time-dependent heat current is obtained by performing 

molecular dynamics (MD) simulations. Empirical Tersoff potential has been used in our 

study of silicon materials.  

 The Wiener-Khintchine theorem enables the power spectrum of the correlation 

function to be obtained without having to construct the correlation function itself. If we 

have the Fourier transform of the time-dependent heat current: 

( ) ( )exp( )F J t i t dtω ω= −∫                                          (3.45) 

then the power spectrum of the heat current autocorrelation could be obtained by: 

2( ) ( )Z Fω ω=                                                    (3.46) 

Code Current_Correlation.f90 is the implementation for self correlation of the 

heat current in Equ. (3.41). Multiple runs have been performed to reduce the numerical 

error. The ensemble averaged heat current autocorrelation function, one the one hand, can 

estimate the thermal conductivity through Equ. (3.41); on the other hand, its Fourier 

transformation gives the power spectrum of heat current, which can tell the distribution of 

the vibrational frequencies (phonon frequencies) that contributes to the reduction of 

thermal conductivity. Power spectrum analysis is done by code Powerspectrum.f90 
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CHAPTER 4 

 

 

THERMAL PROPERTIES OF TYPE II CLATHRATE Si136 

 

4.1 Introduction 

Modern microelectronics technology is based largely on the semiconducting, 

diamond-structured silicon (d-Si). Several metastable forms, including amorphous (a-

Si)41 and nano-structured (nano-Si) silicon42, also have a variety of industrial applications. 

High-density polymorphic forms of Si, which are synthesized under high-pressure 

conditions, have been explored in great detail both theoretically and experimentally.43 A 

common feature of the observed high-pressure phases is the increase of the coordination 

numbers of Si atoms from four (as in the ground state d-Si and meta-stable a-Si or nano-

Si) to six or eight. This structural change is accompanied by a change in the electronic 

properties from semiconducting to metallic. Unfortunately, the technological applications 

of these octahedrally or eight coordinated Si materials are limited since none of those Si 

solids is recovered metastably to ambient conditions. Recently, a novel low-density 

crystalline form of elemental Si was synthesized by removal of Na atoms from the 

clathrate-structured framework compounds NaxSi136
44,45,4 prepared by controlled thermal 

decomposition of NaSi. In contrast to the dense high-pressure phases, the atoms in this 
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new low density Si material are fully tetrahedrally bonded, and it is a wider-gap 

semiconductor (Eg = 1.9 eV)4. The new Si allotrope has the type-II clathrate structure, 

isostructural with low-density inclusion compounds of H2O-ice, that has a cubic 

framework in which each cubic unit-cell contains sixteen 20-atom “cages” (dodecahedra) 

and eight 28-atom “cages” (hexakaidecahedra) (For example, Figure 1 in Ref. 44). In 

addition to the elemental “guest-free” form of Si136, various “guest” atoms, including 

alkali or alkaline earth metals, or halogens, can be incorporated inside the atomic cages to 

form binary or ternary compounds. Another closely related crystal structure is the type-I 

clathrate structure. Although various series of guest-encapsulated binary or ternary 

compounds involving Si framework atoms have been prepared in many laboratories, no 

one has yet reported a guest-free elemental solid with the type-I clathrate structure, and 

Si136 remains as the only low density allotrope of the element that is metastably available 

at ambient conditions.  

 Both pristine and guest-encapsulated clathrate materials have significant 

technological potential because they exhibit a very wide spectrum of materials properties. 

For example, electrical conductivity of Si clathrates ranges from wide-gap 

semiconducting4 to metallic 46  and even superconducting (Tc=6-8 K) in (Na,Ba)-

containing Si clathrates.47,48 In recent years, the potential applications of Si, Ge, and Sn-

based clathrate-structured materials in thermoelectric devices have led to intensive 

research.49,50,51,52 In 1995, Slack predicted that open framework structures containing 

encapsulated rattling guest atoms may exhibit lowered “glass-like” thermal conductivity 

due to scattering of acoustic heat-carrying phonons by the guest atoms, while leaving the 

electrical conductivity via the framework channels largely unaffected.1 Such materials 
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were described in terms of the “phonon-glass electron-crystal” paradigm (PGEC).53,54 

This model then raised the possibility of “tuning” the host-guest chemistry of clathrates 

independently to result in a desirable combination of electrical and thermal properties. 

Promising results were demonstrated by Nolas et al, 49,50,52,55 and they have since been 

extended by other authors.56,57,58,59 However, the “rattling” of guest atoms within the 

cages is not the only mechanism to reduce the thermal conductivity of clathrate materials. 

Using molecular dynamics simulations, Dong et al showed that the lattice thermal 

conductivity (κ) of guest-free Ge46 clathrates could be lowered by at least one order of 

magnitude compared with that of the corresponding diamond-structured Ge crystals.3 

Recently, Nolas et al.52 demonstrated experimentally that the guest-free clathrate material 

Si136 had an extremely low thermal conductivity, as low as that of amorphous SiO2, and 

the smallest value recorded among crystalline solids. This major difference between the 

two crystalline polymorphs of Si can be caused by either significant increase in lattice 

anharmonicity in the clathrate-structured material, or the flattening in the phonon 

dispersion relations associated with formation of the low-density structure, that is 

correlated with the presence of five-membered rings. 

 Most work on clathrate materials to date has focused on their synthesis and 

structure characterization,60 , 61 , 62  and transport measurements,46, 63  however, studies of 

their fundamental thermal properties remain limited. It is especially important to explore 

any special features in the thermal expansion, heat capacity and lattice thermal 

conductivity of these unusual of expanded-framework semiconducting crystals. As a first 

step in this area, we used first-principles theoretical methods to predict the measurable 

thermal properties (such as heat capacity and thermal expansion) of the guest-free 
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clathrate Si136. Our results are analyzed and compared with previous data on the well-

known ground state diamond-structured phase of this element. 64  Despite noticeable 

differences in materials density, compressibility, and electronic structures, we find that 

the two phases have very comparable heat capacities and thermal expansibilities. One 

important prediction of our calculations is that the clathrate-structured polymorph Si136 

should exhibit a region of negative thermal expansion below 140K, like the diamond-

structured phase. This prediction is validated by our experimental measurements.  

 

4.2 Crystal Lattices and Static Equation of State 

The two Si polymorphs happen to belong to the same face-centered-cubic (fcc) 

3Fd m  symmetry space group (#227). The Si atoms in the diamond structure occupy a 

single 8a site with Td symmetry, without any internal degrees of freedom. However, the 

type-II clathrate lattice contains three distinct sites; 8a (Td) site, 32e (C3v), and 96g (Cs), 

that have independent sets of internal coordinates (x32e, x96g, z96g). For static equation of 

state (EOS) calculations of Si136, the internal coordinates were optimized by minimizing 

the total static energy while maintaining the external lattice vectors at fixed values. The 

calculated lattice total static energies at various volumes of d-Si and Si136 crystals are 

fitted to a 3rd-order Birch-Murnaghan equation of state (BM-EoS), and the fitting 

parameters are listed in Table 4.1, along with experimental data.64,65 

The LDA calculations show that the minimal static energy of Si136 is only 79 

meV/atom (i.e. 917 K in the temperature unit) higher than that of the ground state d-Si. 

Such small energetic differences suggest the clathrate phases are energetically accessible 

phases. If there exist energetic barriers to prevent back transformation to the ground state 
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diamond phase, the clathrate phases are possible meta-stable phases. This result is 

consistent with the observed metastability and recovery to ambient conditions of the 

guest-free clathrate phase Si136, synthesized experimentally.4 The calculated (static) 

equilibrium cubic lattice constants are 0.5397 nm and 1.455 nm for the 8-atom unit-cell 

of d-Si and 136-atom unit-cell of Si136 respectively. These are in excellent agreement 

with experimental measurements of 0.5431 nm and 1.4644 nm for d-Si64and Si136
65 

respectively. Because of its more complex crystal structure, the lattice periodicity in Si136 

clathrate is approximately 2 – 3 times of that of d-Si. The mass density of the guest-free 

clathrate is 13% less than that of d-Si. This decrease of density is accompanied by a 17% 

increase of the compressibility (κ=1/Ko) in Si136.  

 

Table 4.1: LDA calculated static (T=0K) Birch-Murnaghan equation of state of the 

ground state diamond phase Si (d-Si) and the meta-stable type-II clathrate phase of Si 

(Si136), and available experimental parameters. The experimental data are for T = 298 K 

and they are taken from Ref [64] for d-Si and Ref. [65] for Si136. 

 d-Si 
LDA                   EXPT. 

Si136 
LDA                    EXPT. 

E0(eV/atom) -5.954 - -5.875 - 

V0(Å3/atom) 19.650 20.024 22.650 23.091 

B0(GPa) 95.54 98 81.877 90 

B’ 3.936 - 3.937 5.2 
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4.3 Lattice Phonon Spectra 

 

Figure 4.1: LDA calculation of (a) phonon dispersion relations, (b) vibrational density of 

states, and (c) mode Grüneisen parameters of d-Si at the equilibrium volume. 

 

Figure 4.2: LDA calculation of (a) phonon dispersion relations, (b) vibrational density of 

states, and (c) mode Grüneisen parameters of Si136 clathrate at the equilibrium volume. 



 
 

60

 

Figure 4.3 (a)  4-fold “folded” phonon dispersion plots of d-Si, calculated with unit-cell 

size four times that of the primitive cell ( 4cell primitivea a= × = 2.16 nm), along with (b) the 

re-plotted phonon dispersion of Si136 ( clathratea = 1.46 nm). 

 

Figure 4.1 and 4.2 shows the LDA calculated phonon spectra of the two Si 

crystals at their respective static equilibrium volumes, at T = 0 K. Since both Si 

polymorphs are based on tetrahedrally-coordinated Si atoms with similar sp3 Si-Si 

bonding, we expect the local force constants and vibrational properties to have analogous 

behavior. Three regions within the calculated ωi( qr ) relations in d-Si (Figure 4.2(a) and 

4.3(b)) can be identified as due to (a) TA branches (low frequency), (b) low/medium 

frequency modes due to LA branches, and (c) high frequency optic modes. At first sight, 

the phonon dispersion relations of Si136 (Figure 4.2(a)) appear to be considerably more 

complex than those for d-Si (Figure 4.1(a)). To better illustrate the “folding” effects due 
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to the enlarged unit cells of clathrate materials, we plotted the “folded” phonon dispersion 

relation of d-Si in Figure 4.3(a) using a unit-cell of four times of the primitive unit-cell, 

along with the re-plotted phonon dispersion relation of Si136 clathrate in Figure 4.3(b). 

Clearly, some phonon modes of the clathrate phase can be approximately mapped on to 

the phonon branches of d-Si, with the dispersion relations “folded” back towards the first 

Brillouin zone of d-Si. This observation is important, because it means that the elastic 

properties and phonon propagation relations within d-Si and Si136 at small wave-vectors 

are similar to each other. To further illustrate this similarity, we listed the calculated 

group velocities of acoustic phonon modes in d-Si and Si136 in Table 4.2.  

 

Table 4.2 Comparison of acoustic velocities (m/s) for d-Si (experimental vs. LDA 

calculated) and Si136 . The experimental data labeled with (a) and (b) are taken from Ref. 

66 and 67 respectively.   

Direction Mode d-Si  
EXPT. 

d-Si  
LDA 

Si136  
LDA 

TA 5843a 5109 4800 [001] 
LA 8433a 8268 8346 

TA1 4673a 4090 4783 
TA2 5830a 5126 4860 [011] 

LA 9134a 8782 8271 
TA1 5099b 4462 4859 
TA2 5099b 4462 4859 [111] 

LA 9245b 8982 8283 
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The acoustic phonon velocities in Si136 differ from their counterparts in d-Si only 

by a few percent. However, some “gaps” are developed within the Si136’s ωi(k) relations 

and they cause important modifications of the Umklapp processes, that results in a 

dramatic reduction of the thermal conductivity for the Si136 polymorph. Meanwhile, a 

prominent “flattening” can be seen in several of the phonon branches of Si136 compared 

with d-Si: especially in the low-frequency regime between 150-200 cm-1, where many 

branches are nearly dispersionless (i.e., nearly zero group velocities).   

The overall features of the vibrational density of states (VDOS) of Si136 and d-Si 

appear quite similar, on initial inspection (Figure 4.1(b) and 4.2(b)). However, there are 

notable differences between the two that can be attributed to specific structural features. 

First, the Si136 structure contains 5-membered rings; these cause the expansion of the unit 

cell motif and the decrease in density, compared with d-Si. This is manifested in the 

nature and appearance of van Hove singularities within the VDOS. Such singularities are 

intrinsic to highly symmetric crystals with small unit cells, such as d-Si, and they are 

readily visible in the g(ω) functions. They are absent in the VDOS of Si136; the g(ω) plots 

show instead a “saw tooth” behavior in the middle of the strong bands in the VDOS 

(Figure 4.2(b)).  Second, due to the flattening in the phonon dispersions discussed in the 

above text, a sharp peak in the VDOS g(ω) of Si136 emerges at around 175 cm-1. Third, a 

blue shift of about 30 cm-1 is observed among the highest frequency transverse optic (TO) 

bands of Si136, with respect to d-Si. Our theoretical results of the phonon spectra in Si 

clathrates are in agreement with a previous theoretical study using empirical potentials.68 

However, those calculations were based on a Tersoff potential that did not reproduce the 
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30 cm-1 shift in TO frequencies predicted by the first-principles methods. Also, the nearly 

dispersionless phonon branches occurring near 200 cm-1 predicted by the first-principles 

calculations were more “spread out” in frequency, in the empirical study.    

 

Figure 4.4 The theoretical mode Grüneisen parameters γi along three high-symmetry 

directions. The γi of LA (cross) and optic (triangles) phonon modes are all positive; the 

LA branches have values that lie within a narrow range (~+0.75) and those associated 

with optic modes range between +0.8 to +1.6. 

 

We also find overall similarities but certain essential differences among the 

Grüneisen parameters of d-Si vs. Si136 (i.e. ln
ln

i
i V

ωγ ∂
= −

∂
), corresponding to the phonon 

modes in the two structures (Figure 4.1(c), 4.2(c)). The calculated mode shifts are 

compared with experimental values in Table 4.3. To compare our calculations with 

previous predictions of Wei et al. 69  for d-Si, we have plotted iγ along three high-
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symmetry directions (Figure 4.4). Our calculated Grüneisen parameters indicate that iγ  

ranges between -2 and +1.6 cm-1/GPa, for all phonon branches. The iγ  values for TA 

modes (circles) are negative, with the most negative values located at the Brillouin zone 

boundary (X or L points). The implications of such negative Grüneisen parameters for 

TA phonons on the thermal properties of d-Si and Si136 at low T are discussed further 

below. The iγ  values of LA (cross) and optic (triangles) phonon modes are all positive; 

the LA branches have values that lie within a narrow range (~+0.75) and those associated 

with optic modes range between +0.8 to +1.6. The distinct character of the TA vs. LA 

branches, and their derived optic phonons, are illustrated in Figure 4.1(c), using qr -points 

sampled uniformly over a 10 10 10× ×  grid.  

The iγ  vs. ωi plot for Si136 clathrate is shown in Figure 4.2(c), using qr -points 

sampled uniformly over a 5 5 5× ×  grid. We can identify similar regions in the 

corresponding plot for d-Si (Figure 4.1(c)). Although the boundaries between the three 

regions are less well defined for Si136 compared with d-Si, 99% of the optic phonon 

branches for Si136 can be characterized as derived from TA-like, LA-like, or optic 

branches issued from d-Si. The values of the Grüneisen parameters iγ  for Si136 for these 

groups of modes are similar to those for d-Si; the highest values in both phases are at 

around +1.6, but the lowest value of iγ  in Si136 is ~ -1.6, as compared with -2 in d-Si. 

The calculated zone-center frequencies and their pressure derivatives (reported as 

mode Grüneisen parameters) are generally in excellent agreement with experimentally 

measured Raman data (Figure 4.5 and Table 4.3). Selected Raman spectra of Si136 

collected at compression are shown in Figure 4.6 and the corresponding Raman shifts vs. 
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pressure are plotted in Figure 4.7. Experimental results from our collaborators agree with 

previous data, for the pressure shifts measured for three Raman active modes of Si136
70. 

The Grüneisen parameters are defined as ln1 ( )i
i T

T P
ωγ

κ
∂

=
∂

, where κT is the 

compressibility, and its value for Si136 was taken from Ref. 65. The two lowest frequency 

modes (T2g and Eg) are derived directly from the top of the acoustic branches, folded due 

to the lattice expansion within the Brillouin zone. These appear as distinct peaks in the 

Raman spectra of Si136, and they exhibit a marked frequency decrease with increasing 

pressure, as predicted by the theoretical calculations.71 The high-frequency modes that 

are associated with Si-Si stretching vibrations (>400 cm-1) all exhibit positive Grüneisen 

shifts also as predicted.  

 

Figure 4.5 Raman spectrum obtained for Si136 at ambient P and T. There is a weak peak 

at ~520 cm-1 that corresponds mainly to a trace of d-Si impurity in the sample. However, 

there is also a calculated mode at 516 cm-1 for Si136 clathrate at this position. 
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Figure 4.6 Selected Raman spectra of Si136 collected at compression. Asterisk marks 

diamond-phase silicon. 

 

There are some discrepancies between the theoretical and experimentally 

observed pressure shifts, mainly occurring in the mid-frequency region between 200 cm-1 

and 400 cm-1. The T2g, Eg and A1g modes at 325, 360 and 387 cm-1 are observed to have 

negative pressure shifts, although they are all predicted to have positive Grüneisen 

parameters. However, that spectral region contains mixed contributions from Si-Si 

stretching and bending vibrations and it is expected that small deviations from the actual 

potential energy surface could cause large changes in the coupling between the two types 
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of motion and the resulting pressure shifts of individual modes. However, there is good 

overall agreement between the observed and calculated mode frequencies at the Brillouin 

zone center, and with the overall pattern of Grüneisen shifts as a function of pressure. 
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Figure 4.7  Pressure dependence of Raman shifts of Si136 and d-Si. 
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Table 4.3 LDA calculated and experimentally measured Raman frequencies (ω) and 

mode Grüneisen parameters (γi) for clathrate-structured Si136.    

Mode Frequency cm-1 

(Theory) 

Frequency cm-1 

(Experiment) 

Grüneisen 

parameters 

(γi) 

(Theory) 

Grüneisen 

parameters (γi) 

(Experiment) 

T2g 121 117 -1.17 -1.32±0.04 

Eg 130 130 -0.71 -0.86±0.04 

T2g 176 184 -1.22 -- 

T2g 267 271 0.94 1.01±0.04 

A1g 316 -- 1.04 -- 

T2g 325 324 0.93 -1.17±0.04 

Eg 360 360 1.18 -0.66±0.04 

A1g 397 387 1.08 -0.89±0.05 

T2g 406 401 1.49 0.97±0.04 

A1g 458 454 1.22 1.33±0.04 

Eg 463 1.26 

T2g 466 

 

466 1.09 

 

-- 

T2g 473 472 1.42 -- 

Eg 483 480 1.33 1.21±0.07 

T2g 487 488 1.04 1.39±0.07 

(Si) 516 520 0.94 0.95±0.005 

2-phonon  920   

2-phonon  965   
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4.4 Thermodynamic Potentials and T-P Phase Relations 

Use Equ. (3.21), we calculated the Helmholtz free energy F over a fine grid of T 

points, and fitted the V dependency of free energy F at each temperature using the 3rd-

order BM-EOS. Then, we constructed the Gibbs free energy G(T,P) via the Legendre 

transformations. We derived all other thermodynamic quantities as derivatives of the 

F(T,V) or G(T,P) functions. We plot the vibrational entropies, i.e. 

1

0
( ) ( ) ( ) ( 1) ln(1 )B Bk T k T

P V B
B

G FS k g d e e
T T k T

ω ωωω ω
−∞ −

⎛ ⎞∂ ∂
= − = − = − − −⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠

∫
h h

h , of the d-Si and 

Si136 phases,  as functions of T at their respective static equilibrium volumes (Figure 4.8). 

The metastable Si136 polymorph possesses slightly larger entropy (Svib) than d-Si; more 

exactly by 0.132 kB/atom at 300 K, and 0.156 kB/atom at 600 K.  

 

 

Figure 4.8 The LDA predicted vibrational entropies in d-Si (solid line) and Si136 (dashed 

line). 
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This small entropy difference (ΔS) between the Si136 and d-Si polymorphs results 

in a positive and steep dPtr/dT slope for the equilibrium phase boundary between the two 

phases (Figure 4.9). The phase transition is predicted to lie at negative pressure (-P), i.e., 

in the tensile stressed regime.65,72 The Si136 phase is predicted to become more stable than 

d-Si at P = –3.84 GPa, at T=0 K. The transition pressure Ptr becomes –3.11 GPa at 1200 

K, and the Clapeyron slope (dPtr/dT) is predicted to be 0.0007 GPa/K, at T=600 K. The 

steep slope of the transition pressure indicates that the metastable phase boundary 

between the Si136 and d-Si polymorphs of elemental Si intercepts the melting curve at 

negative pressure, so that Si136 never becomes an equilibrium phase at positive pressure 

values.72  

 

Figure 4.9 The theoretically predicted equilibrium T-P phase boundary between the 

ground state diamond phase and the Si136 clathrate phase. Note that the transition to the 

“expanded” polymorph of the element occurs within the tensile regime, at negative 

pressure. 
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4.5 Thermal Properties  

We also calculated the thermal properties for the Si136 clathrate-structured 

polymorph at P=0. We first predicted the specific heat capacity ( )p P
SC T
T
∂

=
∂

 (Figure 

4.10) under isobaric conditions based on the calculated vibrational entropies as a function 

of temperature at zero pressure (Figure 4.10). The discrete symbols in Figure 4.10 

correspond to experimental data d-Si.52 Our quasi-harmonic computational results are 

clearly valid for d-Si; the theoretical prediction lies within a few percent of experimental 

data.73,74 The calculated Cp of Si136 is ~0.05 kB/atom greater than that of d-Si at room 

temperature. The measured Cp of Si136 has been reported by Nolas et al.52 Although the 

reported values are noticeably higher than our calculation results, the same group re-

measured the Cp data recently and the updated experimental data is in much closer 

agreement with our predicted Cp data.75  

 

Figure 4.10 The calculated and measured specific isobaric heat capacities in d-Si and 

Si136. 
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We then used our LDA results to predict the α(T) relations at P=0. It is well 

known that d-Si exhibits a region of negative thermal expansion (NTE) between T =0-

150 K, that is often ascribed to anharmonic phonon-phonon interactions, but that is well 

reproduced by quasi-harmonic ab initio calculations69 as well as MD simulations.76 In our 

study, the phonon properties as a function of the temperature were evaluated within the 

LDA, according to the quasi-harmonic model. The predicted α(T) behavior at low T for 

d-Si and Si136 calculated at the same level of theory is shown in Figure 4.11. The result 

for d-Si indicates a marked NTE region at low temperature, as observed experimentally. 

Si136 also reveals itself as a NTE material, with a minimum in the α(T) function appearing 

between 0-125K. Low temperature X-ray diffraction (Figure 4.12) measurements from 

our collaborators are in agreement with this predicted NTE behavior for Si136.  The 

variation in the cubic unit cell parameter (ao) with T (Figure 4.13) was determined from 

three high angle reflections (733, 660, 751) in Figure 4.12.  The precision in the 

experimental data (shown as error bars in Figure 4.13) is ultimately limited by the 

intrinsic peak widths of the Si136 sample; this peak broadening is attributed to defects 

associated with the Na-loss occurring during formation of the guest-free clathrate. 

However, the data points collected are sufficient to show at least a flattening in the α(T) 

data between 5-200 K, with a minimum apparent near  90-120 K, that may be statistically 

significant (Figure 4.13). Following this, the data exhibit a positive α(T) at higher T. The 

LDA calculated temperature dependence of the coefficient of thermal expansion (α) is in 

excellent agreement with the experimental result.  
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Figure 4.11 The theoretically predicted linear coefficients of lattice thermal expansion at 

P=0 in d-Si and Si136.  

 

Figure 4.12 High-resolution X-ray powder diffraction data for Si136 illustrated at three 

temperatures (5K – bottom, 145K - middle, 275K - top).  The three high angle reflections 

used in the data fitting are marked with an asterisk and represent (in order) the 733, 660 

and 751 reflections. 
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Figure 4.13 Low temperature variation (T = 5 - 275 K) variation in unit cell lattice 

constant (α) for clathrate-structured Si136 obtained by fitting to high angle powder X-ray 

diffraction data. The line drawn through the data points is a guide to the eye. 

 

The origin of the low-T NTE behavior in d-Si can be associated with the negative 

Grüneisen parameter for a TA phonon that reaches the Brillouin zone boundary at ~ 200 

cm-1. The NTE in Si136 can be traced to a similar cause, as a Raman active mode near this 

frequency unusually has a large negative Grüneisen parameter that is both calculated 

theoretically and observed experimentally (Figure 4.2 and Table 4.3). 

 

4.6. Conclusions 

We have studied the thermal properties of the novel guest-free clathrate 

polymorph of silicon (Si136) based on first-principles calculations combined with 

experimental X-ray and Raman scattering measurements. The Si136 clathrate is metastable 
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compared with the d-Si phase at ambient P and T. Theory indicates that it becomes 

thermodynamically stable within a negative pressure regime, at P = -2 to -4 GPa. The 

dPtr/dT Clapeyron slope is estimated as 7 × 10-4 GPa/K from ab initio calculations. 

Although it has been shown previously that some properties, such as the electronic band 

gap, are critically dependent upon the lattice expansion between the diamond-structured 

and “expanded-volume” clathrate polymorphs, our current studies reveal that the thermal 

properties of the two phases involving long-wavelength phonons are similar to each other. 

The vibrational properties of Si136 phonons are similar to those of d-Si, and they can be 

understood in terms of Brillouin zone reduction following the unit cell expansion 

between d-Si and Si136. The phonon modes in the two phases also have very similar 

characteristics. We find that the coefficients of thermal expansion in the two Si phases 

are comparable in our studies, which suggests that it is less likely that the significant 

reduction of lattice thermal conductivity in clathrate materials is mainly caused by any 

large increases of anharmonic lattice interactions in clathrate systems.  
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 CHAPTER 5  

 

 

THERMAL CONDUCTIVITY OF TETRHEDRALLY BONDED SILICON 

CRYSTALS – THE GREEN-KUBO APPROACH 

 

5.1 Introduction  

 Thermoelectricity is a class of fundamental physical phenomena that involves 

direct conversion between thermal and electrical and thermal energies.  Thermoelectric 

devices have been developed for applications such as power generation with waste heat 

in automobile engines, or solid-state cooling for microelectronic devices. The key 

limiting factor of current thermoelectric technologies is the lack of high-performance 

thermoelectric materials, whose efficiency is described with a dimension-less figure of 

merit 2 /ZT S Tσ κ= , where T, S, σ  and κ  are temperature, Seebeck coefficient, 

electrical and thermal conductivity respectively. For many practical applications, the ZT 

of a thermoelectric material should at least be 3 or larger. As electrical and thermal 

transport properties of solids are correlated through phonon scattering at microscopic 

level, large /σ κ ratio is rare in conventional materials systems. An ideal high ZT 

thermoelectric material must simultaneously have a low thermal conductivityκ  and a 

high Seebeck coefficient S  and electrical conductivity σ . Usually, electrical transport 
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has a strong dependence on carrier concentration. For example, the electrical conductivity 

in semiconductors can be altered by several orders of magnitudes by doping. In contrast, 

the lattice thermal conductivity of a material is difficult to control at a given (T,P) 

condition. 

 In 1995, Slack predicted that crystals with open framework structures and 

encapsulated rattling guest atoms may exhibit “glass-like” low thermal conductivity due 

to the scattering of acoustic heat-carrying phonons by the guest atoms, while leaving the 

high electrical conductivity via the framework channels largely unaffected.1 Such 

materials were described in terms of the “phonon-glass-electron-crystal” paradigm 

(PGEC).53,54 This model then raised the possibility of “tuning” the host-guest chemistry 

in Si, Ge, or Sn based clathrate materials to achieve a desirable combination of electrical 

and thermal properties. Later, promising results have been demonstrated by Nolas et al, 

49,77 ,78,79 with type-I Ge clathrates with Sr atoms at the guest sites and Ga and Ge atoms at 

framework sites (Sr8Ga8Ge38),  and their studies have since been extended by other 

authors.80,81,82,83 The measured lattice thermal conductivity of Sr8Ga8Ge38 is two-order of 

magnitude lower than that of d-Ge.  

 In addition to the importance to thermoelectric applications, such glass-like low 

thermal conductivity in a crystalline system is of great interests from materials theory 

point of view. Several years ago, Dong et al. predicted that “rattling” of guest atoms 

within the cages are not the only contributors to this significant reduction in thermal 

conductivity of the measured clathrate materials.3 Using statistical Green-Kubo theory 

and molecular dynamics simulations, they demonstrated that the lattice thermal 

conductivity (κ ) of guest-free Ge46 clathrates could be lowered by about one order of 
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magnitude compared with that of the corresponding diamond-structured Ge crystals.3 

They reported an unexplained oscillation feature in the time correlation function of heat 

current in Ge46 clathrate, and this feature is of close relevance to the factor of ten 

reduction in κ . The encapsulated guest atoms provide an additional one order of 

magnitude reduction in lattice conductivity of Ge clathrates. This prediction of significant 

reduction in guest-free Ge clathrates remains un-verified since no laboratories have 

successfully removed encapsulated guest atoms from the Ge-based clathrates. The only 

pristine clathrate system that has been synthesized is the type-II silicon clathrate (Si136).  

Si136, which is very similar to d-Si in the aspects of local Si-Si bonding environment, 

thermal properties, and mechanic properties, is an ideal material system for studying the 

“structural effects” of lattice thermal conductivity. Recently, Nolas et al.52 demonstrated 

experimentally that the guest-free Si136 had an extremely low thermal conductivity, as 

low as that of amorphous SiO2. With the two order magnitude reduction of κ from the d-

Si, the κ  of Si136 crystals is the smallest value recorded among crystalline solids. This 

experimental measurement is in consistent with the prediction of Dong et al. on the 

significant reduction of κ  for guest-free clathrate systems. Yet, the measured reduction is 

one order of magnitude larger. 

 The current study aims to (1) theoretically predict the ratio of lattice thermal 

conductivity of d-Si and Si136, and (2) quantitatively estimate the effect of each factor that 

contributes to the reduction of lattice thermal conductivity in Si136. Although the previous 

study has demonstrated a factor of ten in κ  reduction in clathrate, the calculations were 

based on the Ge-based type-I clathrate. The current study directly examines the type-II Si 

clathrates. The simulation techniques adopted here are similar to those of the previous 
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study on the Ge46 clathrate. The molecular dynamics (MD) simulations were performed 

based on an empirical potential due to the requirement of large numbers of MD steps 

( 61.5 10×  steps) and large super cell models. The accuracy of an empirical interatomic 

potential depends on the set of experimental data adopted in fitting. Typically, the 

potentials are fitted with measured structural, dynamic, and elastic properties. On the 

other hand, the lattice thermal conductivity is strongly influenced by lattice 

anharmonicity, which was not included in the fitting processes of the adopted empirical 

potentials. Nevertheless, the ratio between the calculated lattice conductivity of the two 

Si phases that contain similar the local bonding environment is expected to be insensitive 

to the exact value of lattice anharmonicity. Compared to the previous studies of Ge 

systems, we adopted a much larger super cell models  (2744 atoms for d-Si and 3672 

atoms for Si136) to further reduce correlation artifacts due to the periodic boundary 

conditions. Dependence of thermal conductivity on the super cell size for bulk silicon has 

been studied by Volz and Chen84 and their results are served as the guide for our choice 

of super cell.  

 

5.2 Empirical Si-Si Potential 

The empirical potential adopted in this study is developed by Tersoff85. The 

interatomic interaction among Si atoms in a tetrahedral bonding environment is modeled 

as in Equ. (5.1) and fitting parameters for silicon are listed in Table 5.1.  
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Table 5.1 Fitting parameters for silicon to be used in Equ. (5.1). 

A(eV) 31.8308 10×  B(eV) 24.7118 10×  
1

( )λ
−

Α
o

 2.4799 
1

( )μ
−

Α
o

 1.7322 β  61.1000 10−×  n  17.8734 10−×

c  51.0039 10×  d  11.6217 10×  h  
15.9825 10−− ×

 

( )R Α
o

 2.7 ( )S Α
o

 3.0   
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Table 5.2 listed the calculated 3rd order Birch-Murnaghan equations of state of the 

two Si phases, the diamond-structure Si (d-Si) and type-II clathrate (Si136), using the 

empirical Tersoff potential described above. As a comparison, the results of our first-

principles LDA calculations and experiment (more details can be found in Chapter 4) are 

also listed. The Tersoff potential predicted energetic difference between the Si136 and d-Si 

phases is in excellent agreement with that predicted by LDA calculations. Note that the 

Tersoff potentials are fitted with the measured structural and elastic data of d-Si, and 

consequently its calculated V0 and B0 are nearly identical to those of room temperature 

experimental data of d-Si. The more importance issue that the Tersoff potential correctly 

predicted the differences in structural and elastic properties of the two tetrahedrally 

bonded Si phases.  As shown in Table 5.2, the Tersoff potential predicted increase in 

volume and reduction in bulk modulus are about 14.72% and 13.18% respectively. The 

same numbers predicted by the LDA calculations are 15.27% and 14.30% respectively, 

while the experimental data at room temperature are15.32% and 8.16% respectively. 
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Table 5.2 Comparison between VASP results and Tersoff MD results: Equilibrium Birch-

Murnaghan equation of state fitting parameters for d-Si and Si136 together with 

experimental data. 

  d-Si   Si136  

 Tersoff LDA Expt. Tersoff LDA Expt. 

E0(eV/atom) -4.630 -5.954 - -4.591 -5.875 - 

V0(Å3/atom) 20.035 19.650 20.024 22.984 22.650 23.091 

B0(GPa) 97.560 95.54 98 84.701 81.877 90 

B’ 4.294 3.936 - 4.280 3.937 5.2 

  

Next, we compared the calculated phonon spectra by two theoretical methods. It 

has been shown that, in Si136, 102 eigenmodes have only 42 distinct frequencies. The 

irreducible representation of Si136 given by: 

1 2 1 2 1 2 1 23 1 4 5 8 3 4 8 5Raman IR
g g g g g u u u u uA A E T T A A E T TΓ = + + + + + + + + +  

where the superscript Raman and IR indicate that the mode is Raman active and IR active 

respectively. Phonon mode representation at Gamma point can be identified by mode 

symmetry analysis (Appendix I). Table 5.3 listed the results of calculated Gamma point 

phonon frequencies of Si136 by the Tersoff potential and LDA methods. 
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Table 5.3 Si136 Г point phonon frequencies from both Tersoff MD and VASP calculation. 
Mode 

representation 
Frequency (cm-1) 

(Tersoff) 
Frequency (cm-1) 

LDA IR active Raman 
active 

T2g 135 117   
T1g 141 127  yes 
Eg 148 128   

T2u 165 143   
T1g 175 147  yes 
Eu 189 157   

T1u 206 165 yes  
T2u 209 169   
T1g 241 169  yes 
A2g 243 173   
T1u 248 174 yes  
T2g 249 186   
T1u 278 263 yes  
T2g 278 269   
A2u 289 278   
Eu 313 289   

A1g 334 314   
T2g 341 322   
Eg 383 359   

T2u 394 365   
T1u 410 376 yes  
A2u 426 391   
A1g 434 393   
T2g 434 404   
A2u 449 415   
T1g 426 420  yes 
T1u 463 424 yes  
A1g 483 456   
Eu 485 446   

T1u 503 454 yes  
T2u 504 459   
Eg 504 459   

T2g 506 465   
Eu 511 460   

T2g 518 471   
A1u 523 477   
T1g 524 474  yes 
T1u 525 474 yes  
Eg 528 481   

T2g 529 482   
T2u 532 484   
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The full phonon dispersions of d-Si and Si136 from this empirical potential 

calculation are shown in Figure 5.1 and 5.2 respectively.  

 

Figure 5.1 Phonon dispersion of d-Si using Tersoff empirical potential. 

 

Figure 5.2 Phonon dispersion of Si136 using Tersoff empirical potential. 

 



 
 

85

Over all, the results of Si136 and d-Si calculated with the Si Tersoff potential are in 

good agreement with those obtained with the first-principles DFT method.  

 

5.3 Results and Discussions 

In the current study, a 2744-atom super cell, i.e. 7 7 7× × of the 8-atom cubic unit 

cell, and a 3672-atom super cell (a 3 3 3× ×  of the 136-atom cubic cell) have been chosen 

d-Si and type-II Si136 clathrate respectively. In the MD simulation, we chose the single 

simulation time-step as 1 fs, and the simulations have been run for 221 and 220 steps for d-

Si and Si136 respectively. The powers of 2 were chosen for the time steps because it is 

computationally more efficient during the Fourier transformation (FT) in the correlation 

function calculation. Before initiating each micro-canonical (NVE) MD simulation, each 

system was equilibrated for a period of 100 ps with a constant temperature Gaussian 

thermostat 86 , which rescales the velocities of atoms at each time step to achieve a 

constant system temperature; and the results have been averaged with multiple starting 

configurations to minimize the statistical error. 

  Thermal conductivity of d-Si and Si136 at room temperature was calculated by 

using Equ. (3.41). For a cubic system, αβκ κ= if α β=  and zero otherwise, where κ  is: 

                                 20 0
( ) ( ) (0)

3 B

G t J t J dt
k T α α

α

κ
∞ ∞Ω

= = ∑∫ ∫ .                                  (5.2) 

The direct calculation of the time-averaged correlation function G(t) is time-consuming. 

Instead, we first do Fourier-transformation for the heat current function J(t), then 
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calculate the power-spectrum  of the ( ) (0)J t Jα α  based on the convolution theorem87 , 

and finally carry out  an inverse Fourier transformation of the power spectrum.  

The better illustrate the time-decay in the correlation functions, we define a 

normalized correlation function ( )g t as: 

( ) ( ) (0)( )
(0) (0) (0)

G t J t Jg t
G J J

< >
= =

< >
                                             (5.3) 

For a simple system whose heat current autocorrelation function decays simply as an 

exponential function of time, i.e.  ( )
t

g t e τ−= , the calculated κ  is (0)G τ . Compared with 

the simple kinetic model given by Equ. (3.32), the (0)G  and τ  can be interpreted as the 

averaged 21
3 V gC V  and phonon life time respectively.  

 

Figure 5.3 Macroscopic heat current fluctuations with time of d-Si system 
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 As described in previous section, the total macroscopic current J(t) fluctuates 

around zero at equilibrium. Our MD calculated fluctuation of macroscopic heat current in 

d-Si is illustrated in Figure 5.3. The magnitude of this fluctuation is proportional to G(0), 

as defined Equ. (5.3). At T=300K, the calculated G(0) for d-Si is 34.45 W/K/M/ps. 

Figure 5.4 shows our calculated normalized heat current autocorrelation in d-Si as a 

function of time for a time period of 400ps. The ( )g t  starts at a value of unity, and falls 

rapidly during the first 0.03ps to about 0.32. Then the value starts to decay at a relatively 

slow rate with a small oscillation added to the descending function of time, and goes to 

zero beyond 400ps. The small oscillation is not due to statistics as the results are obtained 

with ensemble averaged over at least 8 different initial conditions.  

   

 

Figure 5.4 The normalized time correlation function ( )g t  at room temperature for d-Si. 

(a) an overall look; (b) close-up look at the beginning of the MD run; (c) close-up look at 

decaying of ( )g t after a long time MD run. 
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 It is also worth to point out that the g(t) correlation function does NOT decay 

exponentially. Therefore the averaged phonon life time can not be uniquely defined. 

Fitting the data with the simple exponential function for some short time periods, we get 

the fitted “τ ” ranging from above 200ps around t=5ps to less than 50ps for t around 

100ps.  Nevertheless, we define intτ   as the integral of the normalized correlation function 

g(t) from 0t = to t →∞ , and our  intτ  at T=300K is estimated to be 14ps for d-Si.  Based 

on this definition, we obtained the calculated lattice thermal conductivity of d-Si at 300K 

is around 480 W/K/M. This value is about twice larger than the experimental measured 

value (283 W/K/M) of isotope enriched pure d-Si crystal 88 . The factor of two 

overestimation of lattice thermal conductivity based on the empirical Tersoff potentials is 

considered reasonable as the intrinsic lattice anharmonicity is not tested in the fitting 

process of Tersoff potentials. The under-estimation of lattice anharmonicity by the 

adopted Si Tersoff potential is likely to be the same in both d-Si and Si136. In the rest of 

the study, we limit our discussions primarily on the ratio between the two calculated 

lattice thermal conductivities, instead of on their absolute values.   
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Figure 5.5 Macroscopic heat current fluctuations with time of Si136 system 

  

Figure 5.6 The normalized time-dependent correlation function ( )g t  at room temperature 

for Si136. (a) an overall look; (b) close-up look at the beginning of the MD run; (c) close-

up look at decaying of ( )g t after a long time MD run. 
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A small segment of J(t) function of Si136 is plotted in Figure 5.5. The overall 

feature is similar to that of d-Si. More interestingly, the G(0) of Si136 is estimated to be 

36.66 W/K/M/ps, which is very close to the value in d-Si.  On the other hand, the 

correlation function of the heat current in Si136 is dramatically different from that in d-Si. 

As shown in Figure 5.6, the g(t) oscillates between positive and negative one, while the 

envelope of the oscillation decays in a fashion similar to that in g(t) of d-Si. This 

oscillation feature was first found in the g(t) of  Ge46 by Dong et al.3.  

 Due to the fact that the thermal conductivity is proportional to the integration of 

g(t), i.e. the area beneath the ( )g t  curves,  it is obvious that the oscillation appearing in 

Si136 system will cause the “cancellation effect”. The effect of this oscillation can be 

illustrated with the following model:  

( ) cos( )
tt
j

j j
j

g t Ae B e tττ ω
−−= +∑                                         (5.4) 

Obviously the time-integration of all the Bj related terms gives zero, and the integration 

of g(t) over time produces:   

int Aτ τ= .                                                           (5.5) 

Effectively, there is factor of ‘A” reduction in the calculated lattice conductivity. For the 

results of Si136 at 300K, the calculated intτ  is as small as 1.4ps, about 10% of that 

calculated for d-Si. As the G(0) are comparable in d-Si and Si136,  our Green-Kubo 

calculations predicted that the lattice thermal conductivity of Si136 (κ at 300K ~ 51 

W
mK ) is only about 10.6% of that d-Si (482 W mK ).  Our predicted one-order of 

magnitude reduction in type-II Si clathrates is comparable to the previous findings in 
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type-I Ge clathrates, while the experiment measurement of Nolas et al.5 reported a much 

larger two-order of magnitude reduction in Si136.  

  To reveal the origins of the oscillations terms in the g(t) of Si136, we performed 

the power spectrum analysis for both d-Si and Si136, and the results are plotted in Figure 

5.7 and 5.8 respectively.  To compare with the phonon spectra, the frequency is converted 

in the unit of cm-1.  As expected, the high-frequency components in d-Si are negligibly 

small, while there are several strong high-frequency peaks in the power spectrum of Si136. 

The intensity of the peaks represents the relative magnitude of jB  terms in the model 

described by Equ. (5.4). A closer examination further reveals that the strong peaks in the 

power spectrum of Si136 coincide only with the vibration frequencies of the Γ-point T1u 

phonon modes, whose calculated frequencies are  206, 248, 278, 410, 463, 503 and 526  

cm-1. The four strongest high-frequency peaks in the power spectrum appear at the 

frequencies of 206, 248, 410 and 463 cm-1. There are also two weak peaks around 278 

and 503 cm-1.   
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Figure 5.7 Power Spectrum of heat current autocorrelation function for d-Si. 
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Figure 5.8 Power Spectrum of heat current autocorrelation function for Si136 

 

The observed T1u mode associated oscillation in current correlation function g(t) 

is consistent with group theory. If a crystal is thermally excited in a single vibration eigen 

mode, the kinetic and potential energy will be transferred among atoms periodically. 

Equivalently, this can be viewed as having non-zero “heat current” at a given site at an 

instance. Yet, because the current that is associated with the vibration is also periodic, 

there is no net thermal energy flux at any atom site over a vibration period. Note that this 

periodic site heat current is distinctly different from those heat currents caused by a 

statistical random process. Although a site heat current can be non-zero for many 

vibration modes, the only non-vanishing TOTAL heat currents are those associated with 

the T1u vibration modes. This is a general result for any crystals. We now predict that the 

oscillation feature in the correlation functions of heat current exists in all the crystals that 

contain T1u vibration modes. 
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The int 136

int

( )
( )

Si
d Si

τ
τ − ratio is around 1/10, and according to Equ. (5.5), the 

reduction might related to either the reduction of A, i.e. the increase of component of 

oscillation terms in g(t), or the reduction ofτ , i.e. the increase of decay rate due to 

phonon-phonon scattering. To quantitatively estimate the contribution from each term, 

we performed the low-pass filtering on the g(t) plot to eliminate the high-frequency 

components, which include and are not limited to the major oscillation terms. The results 

are plotted in Figure 5.9 and Figure 5.10 for d-Si and Si136 respectively.  

The filtered g(t) functions are plotted as the red solid lines. The effective (0)effG  

are estimated  0.256 (0) 8.82d Si
WG mKps−× =  and 

136
0.045 (0) 1.65Si

WG mKps× =  for d-

Si and Si136 respectively. As a result, we estimate a factor of 0.187 reduction in the 

effective G(0) of Si136, comparing with d-Si which contains similar tetrahedral Si-Si 

bonds, which is associated with the oscillation feature in Si clathrates. 

 



 
 

94

 

Figure 5.9 Normalized the heat current autocorrelation of d-Si before (black line) and 

after (red line) the low-pass filter with filtering frequency 0.5Hz. 

 

 

Figure 5.10 Normalized the heat current autocorrelation of Si136 before (black line) and 

after (red line) the low-pass filter with filtering frequency 0.5Hz. 
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 The log(g(t)) plots are shown in Figure 5.11. The overall decay rates in the two 

plots are comparable. Again, neither plot is a simple linear function; hence it is difficult 

to uniquely define an effective effτ simply from these plots. Based on the model of 

int(0) (0)eff effG Gκ τ τ= = , we estimate the ratio of effτ in Si136 and d-Si is around 0.57, 

which suggests about 43% reduction in the effective phonon life time in Si136.  

 

Figure 5.11 log plot of the normalized low-pass (0.5Hz) filtered heat current 

autocorrelation of d-Si (black line) and Si136 (red line). 

 

5.4 Conclusion 

 We have carried out a series of large super-cell MD simulations of d-Si and Si136 

to evaluate the autocorrelation function of heat current when the systems are at thermal 

equilibrium. The lattice thermal conductivity is calculated based on Green-Kubo formula.  

We find that κ  in Si136 is only 10.4% of that in dSi, and the reduction is contributed by 
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an 81.3% reduction of (0)effG  and a 43% reduction of effτ  in Si136 compared to d-Si.  

Our predicted 89.4% reduction of κ in type-II Si clathrate is close to the predicted 

reduction in type-I Ge clathrate. Meanwhile, Nolas reported a 96.7% reduction in Si136 in 

2001, which is significantly larger than the theoretical results presented here. Further 

experimental and theoretical studies are needed to resolve this discrepancy. 
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CHAPTER 6 

 

 

LATTICE ANHARMONICITY OF TETRAHEDRALLY BONDED SILICON 

CRYSTALS 

 

6.1 Introduction 

 In chapter 5, we have calculated the thermal conductivity for d-Si and Si136 using 

Green-Kubo formula with empirical Tersoff potential. The calculation revealed that the 

thermal conductivity of Si136 is only about 10.6% of that of d-Si at 300K. According to 

kinetic theory, this reduction could be caused by noticeable decrease of heat capacity, or 

significant increase in lattice anharmonicity in the clathrate-structured material, or the 

flattening in the phonon dispersion relations associated with formation of the low-density 

structure, which is correlated with the presence of five-membered rings. However Green-

Kubo formulism does not provide such detail information but a final thermal conductivity. 

It is the purpose of this chapter to investigate the individual contribution to the reduction 

of lattice thermal conductivity in Si136. To yield an apple to apple comparison, 

Tersoffpotential was again used in this study. 

 Both heat capacity and group velocity can be calculated with harmonic phonon 

spectra, while phonon life time has to take consideration of lattice anharmonicity. The 
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algorithm to calculate third order anharmonicity has been presented in Chapter 3, where 

symmetry of crystal system has been greatly taken advantage of. 128-atom d-Si and 136-

atom Si136 super cells were used in the calculation for both harmonicity and 

anharmonicity. Harmonic phonon calculation is the same as what we do for first 

principles method in chapter 4 and will not be repeated here. The dimension of 

anharmonicity tensor A  is 384 384 384× ×  and 408 408 408× ×  for d-Si and Si136 

respectively. Among all the elements of tensor A , most of them are near zero and thus 

negligible compared to major terms, since the effect of displacement of atom i to atom j 

is almost none if, as far as atom i is concerned, atom j is farther than its second or third 

nearest neighbors. Thus a cutoff distance can be chosen for the truncation of these terms. 

Our calculation for both d-Si and Si136 showed the distance between an atom and its 

second nearest neighbor is large enough to serve as the cutoff. 

 

6.2 Single Effective Phonon Life Time Approximation 

Exact evaluation of the kinetic transport model in Equ. (3.32) requires the 

information of life-time of each phonon mode. As the first-order approximation, where 

we assume all phonon modes have the same effective life time effτ , the kinetic transport 

equation can be simplified as: 

2

,

1 1[ ( , ) ( , )]
3 V g eff

q vq

C q v V q v
N

κ τ= ∑
vv

v v                                         (6.1) 

Under this single effective phonon life time approximation, we are able to calculate term 

2

,

1 1 ( , ) ( , )
3 V g

q vq

C q v V q v
N ∑

vv

v v  using the calculated phonon spectra, and estimate the value of 
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effτ  based on the experimentally measured heat conductivity for d-Si. We have found the 

temperature dependence of effτ  (blue-plus-dashed line in Figure 6.1) by performing a 

calculation for mode heat capacity and group velocity at various temperature points for d-

Si. 

 Assuming Si136 and d-Si have the same effective phonon life time: 136Si dSi
eff effτ τ= , 

we have calculated heat conductivity for Si136 which is shown as the red-diamond-dashed 

square in Figure 6.1. Mode heat capacity and group velocity for both systems were 

calculated with k-point grids 16 16 16× ×  and 8 8 8× ×  for d-Si and Si136 respectively. The 

experimental data are based on natural Si crystals, which include isotope disorder. At 

T=300K, the isotope-enriched d-Si is about 60% higher in κ  , comparing with natural d-

Si.  
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Figure 6.1 Fitted effective phonon life time effτ  of d-Si to its experimental heat 

conductivity. Temperature dependence of Si136 was estimated assuming the equal effτ . 
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Again, we focus on the ratio between the κ  of Si136 and d-Si.  Figure 6.1 showed 

that thermal conductivity of Si136 is much lower than that of d-Si assuming that they have 

the same effective phonon life time. At 300K, the effective effτ  is about 25.92 ps. κ  of d-

Si is 156 W/Km and κ  of Si136 is 31.8 W/Km, yielding a conductivity ratio 136 20%Si

dSi

κ
κ

= . 

This ratio is in good agreement of the estimated ratio in G(0)eff in our Green-Kubo study.   

 

6.3 Lattice Anharmonicity  

 To estimate the ratio of effτ , we directly calculated the 3rd order lattice 

anharmonicity tensor A using our newly developed finite difference algorithm, in which 

atoms are only allowed to move along x-direction, y-direction, or z-direction by Δ of the 

same magnitude, the absolute value of each individual term is thus dependent on the 

setting of the Cartesian coordinates. Table 6.1 and Table 6.2 list the coordinates of some 

representative atoms in the super cell of d-Si and Si136 respectively. The coordinates of 

these atoms are relative to the Cartesian axes showed in Figure 6.1 and Figure 6.2 for d-

Si and Si136 respectively, which provide a direct visualization of their atomic model. In d-

Si, all the atoms are positioned at the same Wyckoff site 8a, each silicon atom is 

neighbored by 4 equivalent silicon atoms. However, in Si136, the neighbors are not all 

equivalent, each atom at 8a site is neighbored to 4 atoms which are all at 32e site; each 

atom at 32e site is neighbored to 1 atom at 8a site and 3 atoms at 96g site; and each atom 

at 96g is neighbored to 1 atom at 32e site and 3 atoms at 96g site. 
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Table 6.1 List of coordinates of all 4 first nearest neighbors of two representative atoms 

at Wyckoff site 8a in our chosen super-cell of d-Si. 

Site (example 
atom index) 

Neighbor Site 
(example atom 

index) 

Relative coordinates of 
the neighbors in our 

chosen cell 
Bond Length 

8a (#65) (1.345,1.345,1.345) 2.352 

8a (#68) (1.345,-1.345,-1.345) 2.352 

8a (#77) (-1.345,1.345,-1.345) 2.352 
8a (#1) 

8a (#113) (-1.345,-1.345,1.345) 2.352 

8a (#1) (-1.345,-1.345,-1.345) 2.352 

8a (#2) ( 1.345, 1.345,-1.345) 2.352 

8a (#5) ( 1.345,-1.345, 1.345) 2.352 
8a (#65) 

8a(#17) (-1.345, 1.345, 1.345) 2.352 

 

 

 

Figure 6.2 Atomic model of d-Si. 
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Table 6.2 List of coordinates of all 4 first nearest neighbors of one representative atom 

for each Wyckoff site in our chosen super-cell of Si136. 

Site 
(example 

atom index)

Neighbor Site
(example 

atom index) 

Relative coordinates of 
the neighbors in our 

chosen cell 

Bond 
Length other 

32e (#9) (1.345,1.345,1.345) 2.330  

32e (#16) (1.345,-1.345,-1.345) 2.330  

32e (#19) (-1.345,1.345,-1.345) 2.330  
8a (#1) 

32e (#22) (-1.345,-1.345,1.345) 2.330  

8a (#1) (-1.345,-1.345,-1.345) 2.330  

96g (#42) (-0.503, -0.503, 2.244) 2.354  

96g (#60) (2.244, -0.503, -0.503) 2.354  
32e (#9) 

96g (#75) (-0.503, 2.244, -0.503) 2.354  

32e (#9) (0.503, 0.503, -2.244) 2.354  

96g (#54) (-1.684,-1.684, 0.000) 2.382 Type (a) 

96g (#114) (-0.908, 1.971, 0.908) 2.352 Type (b) 
96g (#42) 

96g (#126) (1.971,-0.908, 0.908) 2.352 Type (b) 

 

 

Figure 6.3 Atomic model of Si136. Three different types of atoms have been indicated by 

different color: 8a (red), 32e (blue) and 96g (gold). 
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 Under current Cartesian setting, there are in total 28 nonzero independent ijkA  

terms for d-Si. Si136 structure is more complex, hence the number of independent terms is 

much more, our calculation yields 426 nonzero independent terms. Our data suggests that 

those ijkA  which associate with bond stretching are the major terms, which we think is 

very reasonable in physics. Interatomic potential is the most unsymmetrical along that 

direction, on the one side, atoms is strongly “bonded” with another atom; on the other 

side, there is no atom at all. Since every atom in both d-Si and Si136 is tetrahedrally 

bonded with the other four silicon atoms, comparison of ijkA  along bond direction is 

desired. However current Cartesian setting does not provide a direct evaluation of these 

terms, but they can be derived using a coordinate transformation. 

Figure 6.4 shows such a transformation schematically. Given a bond linked by 2 

atoms (#1 and #2), In the original Cartesian setting (x,y,z), there are in total 216 ijkA  

terms associated with these two atoms, let’s call them ( , , )oldA i j k , a 6 6 6× ×  tensor 

where , , 1,2, 3i j k or=  represents the displacements of atom #1 along original x, y, and z 

direction respectively, and , , 4,5, 6i j k or=  the displacements of atom #2. What we are 

looking for are those ijkA  in the new coordinates setting (x’,y’,z’) with , , 3, ,6i j k or= , 

meaning the displacements from these two atoms along bond direction z’, which 

corresponds to the bond stretching. The transformation is such that: 

( , , )ijk il jm kl old
lmn

A T T T A l m n=∑                                           (6.2) 
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and 

cos cos sin cos sin 0 0 0
sin cos 0 0 0 0

cos sin sin sin cos 0 0 0
0 0 0 cos cos sin cos sin
0 0 0 sin cos 0
0 0 0 cos sin sin sin cos

θ ϕ θ ϕ ϕ
θ θ

θ ϕ θ ϕ ϕ
θ ϕ θ ϕ ϕ
θ θ
θ ϕ θ ϕ ϕ

−
−

=
−

−

T  

where oldΑ  and Α  are both 6 6 6× ×  tensor involving all the terms associated with these 

two atoms before and after the transformation. T  is the transformation matrix, ϕ  is the 

angle between the bond direction (z’) and z axis of original Cartesian setting, and θ  is the 

angel between the projected bond in x-y plane and x axis. 

After rotation, any bond between two atoms that are tetrahedrally bonded can be 

rotated to z’ direction like what we showed here in Figure 6.4, where the new z axis (z’) 

is along bond direction. Both new x (x’) and new y (y’) axes are not specified because 

choice of them does not affect the bond-stretching terms as long as they both are 

perpendicular to z’. 

 

Figure 6.4 A schematic show of coordinate transformation to yield a bond-stretching Aijk . 

θ 

φ 

y 

z 

x 

z’  

#1 

#2 
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Figure 6.5 Any bond between two atoms that are tetrahedrally bonded can be rotated to z’ 

direction like what we showed here. 

 

For each bond there are four possible combinations of , ,i j k  that corresponds to a 

bond stretching and they are 333 336 366, ,A A A  and 666A , while the order of ( , , )i j k  does not 

change the value. The calculation shows that if a bond is connected by two atoms at the 

same Wyckoff site, then 333 666A A= −  and 336 366A A= − . The coordinates and bonding of 

both systems are listed in Table 6.1 and Table 6.2 showing that there is only one type of 

bond in d-Si (8a-8a), while there are four types of bonds in Si136, and they are 8a-32e, 

32e-96g, 96g-96g(a), 96g-96g(b). Pressure dependence of bond-stretching ijkA  for all 

these 5 types of bond has been investigated and they are shown in Figure 6.6 for d-Si and 

Figure 6.7-6.10 for Si136 respectively. 
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Figure 6.6 Pressure dependence of bond stretching Aijk terms in d-Si. 

 

 

Figure 6.7 Pressure dependence of 8a-32e bond stretching Aijk terms in Si136. 

 

1 

65 

-y 
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Figure 6.8 Pressure dependence of 32e-96g bond stretching Aijk terms in Si136. 

 

 

Figure 6.9 Pressure dependence of 96g-96g type (a) bond stretching Aijk terms in Si136. 
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Figure 6.10 Pressure dependence of 96g-96g type (b) bond stretching Aijk terms in Si136. 

 

As one can see from Figure 6.7-6.10, the bond stretching anharmonicity varies for 

different types of bonds, and they all increase with pressure in a slightly different rate. d-

Si has only one type of bond, while Si136 has four different types of bond. To compare the 

anharmonicity contribution to lattice thermal conductivity of d-Si with that of Si136, we 

first calculated the averaged bond-stretching anharmonicity for Si136. According to the 

bonding nature of Si136, we define the anharmonicity associated with each site as:  

8 32(8 ) a e
ijk ijkA a A −=                                                    (6.3a) 

32 8 2 32 96 2( ) 3 ( )
(32 )

4

e a e g
ijk ijk

ijk

A A
A e

− −+ ×
=                              (6.3b) 

96 32 2 (96 96 ) 2 (96 96 ) 2( ) ( ) 2 ( )
(96 )

4

g e g g a g g b
ijk ijk ijk

ijk

A A A
A g

− − −+ + ×
=           (6.3c) 
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The overall averaged ijkA  for Si136 is then given by: 

8 (8 ) 32 (32 ) 96 (96)
136

ijk ijk ijk
ijk

A a A e A
A

× + × + ×
=                          (6.4) 

The averaged site anharmonicity and overall bond anharmonicity at zero pressure 

is listed in Table (6.3) 

 

Table 6.3 Averaged site anharmonicity and overall bond anharmonicity of Si136. 

Aijk (8 )A a  (32 )A e  (96 )A g  333A  

A333 42.731 40.009 37.682 38.527 

A336 42.360 40.037 38.505 39.092 

 

The absolute bond anharmonicity represents the contribution of anharmonic 

energy to the total energy. In order to compare anharmonicity contribution of Si136 and d-

Si to the lattice thermal conductivity, we propose a dimensionless quantity: relative 

anharmonicity ξ : 

 ijkA
B

ξ =                                                           (6.5) 

where B is the bulk modulus. ijkA  is in the unit of eV/Å3,which is equivalent to 160 GPa, 

and B is in the unit of GPa. 2ξ  is proportional to the phonon scattering rate, and thus 

inversely proportional to the phonon life time. Table (6.4) listed ξ  for both d-Si and Si136 



 
 

110

and it is shown that 136 118.3%Si

dSi

ξ
ξ

=  if ξ  is calculated from A333, leading to ~30% 

reduction of effective phonon life time in Si136 ( 136 70%Si

dSi

τ
τ

≈ ).  

 

Table 6.4 Comparison of relative anharmoncity between d-Si and Si136 

System B(GPa) 333A ( eV/Å3) 333 /A B  336A ( eV/Å3) 336 /A B  

d-Si 97.560 38.527 63.19 39.522 64.82 

Si136 84.701 39.561 74.73 39.092 73.85 

 

As mentioned in chapter 3, the reliability of 3rd order force constants are tested by 

calculating Grüneisen parameters using Equ. (3.10), and then comparing them with those 

calculated using finite difference method Equ. (3.9), our calculated Grüneisen parameters 

from both methods for d-Si and Si136 are presented in Figure 6.11 and Figure 6.12 

respectively. Excellent match between the Grüneisen parameters calculated via 

anharmonicity approach and finite difference approach shows that our calculated third 

anharmonicity tensor A is trustable. This is a very necessary first step in order to 

accurately calculate the phonon life time and lattice thermal conductivity.  
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Figure 6.11 Mode Grüneisen parameters of d-Si calculated from FDA and AA. 

 

Figure 6.12 Mode Grüneisen parameters of Si136 calculated from FDA and AA 
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6.4 Conclusion 

 In a summary, we have investigated the causes of reduction of lattice thermal 

conductivity in Si136 compared to d-Si. Section 6.2 shows that the flattering of the phonon 

dispersion (lowed phonon group velocity) in Si136 leads to a reduction of thermal 

conductivity to 20% of d-Si. Section 6.3 calculated the lattice anharmonicity and 

analyzed the bond-stretching anharmonicity. The comparison of the relative 

anharmonicity of the two systems implied that reduction of phonon life time in Si136 is 

also another cause (phonon life time of Si136 is reduced by anther factor 70%). The 

Kinetic theory suggests that the lattice thermal conductivity of Si136 is about 14% 

( 20% 70%= × ) of that of d-Si. And note that this ratio is a ball-park estimation, it 

provides a upper limit for ratio 136Si

dSi

κ
κ

. And detail phonon life calculation is desired to give 

more rigorous comparison.  
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CHAPTER 7  

 

 

LATTICE THEMRAL CONDUCTIVITY OF MgO 

 

7.1 Introduction 

Thermal conductivity (κ ) data of Earth’s constituent minerals are important for 

understanding any geophysical process that involves heat89,90,91. Although several rapid 

developments in experimental techniques were reported in recent years92,93,94,95,96, some 

pressure (P) and temperature (T) conditions of the Earth’s interiors (for example, T > 

2300K or P > 100GPa) remain inaccessible for accurate measurement of κ  at the current 

stage. Furthermore, the issue of contact associated errors for the thermal transport 

measurements has been raised and discussed14. The systematic errors of this type are 

especially important for accurately determining the pressure dependence in thermal

transport properties. At the same time, little theoretical effort has been devoted to the first 

principles calculations of this important thermal transport property of minerals, including 

ideal crystalline minerals (i.e. containing no isotope/composition disorder, no isolated or 

extended defects, or no finite-size grain boundaries). Current understanding on lattice 

anharmonicity and its pressure dependence is limited. Using the statistical linear response 

theory (Green-Kubo formula), Cohen reported the first theoretical calculation of lattice 
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thermal conductivity in MgO97. The preliminary results reported in that study revealed an 

unusual pressure dependence of κ , and Cohen suggested that the phonon-phonon 

scattering at compression may behave differently at low and high  pressure ranges.  The 

interatomic potential adopted in that study was a non-empirical ionic VIB model. The 

equilibrium properties of MgO, such as thermal equation of state, predicted by this model 

are in reasonable agreement with experiment 98 . While equilibrium structural and 

energetic properties are largely determined by the harmonic inter-atomic interactions, 

(non-equilibrium) thermal transport properties are intrinsically influenced by lattice 

anharmonicity. Yet, the VIB model has not been tested systematically for the 

anharmonicity. Neither lattice anharmonicity nor phonon-phonon scattering is explicitly 

evaluated in the Green-Kubo type of calculations. Their effects are interpreted through 

the calculated correlation function of heat currents. To ensure convergence of time 

integrals of the correlation functions, the calculations of this class often require molecular 

dynamics (MD) simulation time of order of 1000 ps, a formidable computation task for 

accurate first principles techniques, such as fully self-consistent planewave methods.  

Recently, Oganov and Dorogokupets reported a study about the anharmonicity effects on 

the thermodynamic potentials of MgO using a first-principles method99.  In addition to 

the conventional quasi-harmonic approximation (QHA) results (including both harmonic 

and anharmonic contributions), an additional correction term, whose magnitude scales as 

a function of T2, was estimated using MD simulations. Individual interatomic 

anharmonicity terms were not explicitly evaluated. Comparing to the calculation of heat 

current correlation functions, significantly less MD simulation time is needed to 

reasonably approximate the ensemble average. The authors reported that at ambient 
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pressure, the lattice anharmonicity evaluated with the QHA approach led to a noticeable 

overestimation in the lattice thermal expansion, an equilibrium thermal property that is 

believed to be closely related to lattice anharmonicity.  

This work provides a first-principles calculation of harmonic phonon spectra and 

3rd order lattice anharmonicity in MgO. Explicit calculation of both anharmonicity and 

mass-disorder induced phonon life time have been carried out. Lattice thermal 

conductivity at a wide range of temperature has then been calculated using kinetic 

transport theory. Finally two models have been proposed to estimate the pressure 

dependence of lattice thermal conductivity of MgO. The simple oxide MgO is considered 

to be an end-member component of the lower mantle. Probing the lattice anharmonicity 

and thermal conductivity of MgO is a precursor to studying more complex mineral 

structures and compositions relevant to the Earth. The direct derivation of harmonic force 

constant matrices and the 3rd order anharmonicity tensors were carried out numerically 

using an efficient supercell finite-displacement (SFD) technique. The calculated lattice 

anharmonicity were carefully tested, and the pressure dependence is predicted. Results of 

the 3rd order lattice anharmonicity are the necessary inputs for obtaining phonon-phonon 

scattering rates, and such rates are needed for evaluating phonon life time and lattice 

thermal conductivity based on non-equilibrium transport theories, such as kinetic 

transport theory or more sophisticated Boltzmann transport equation (BTE). We have 

adopted kinetic transport theory in our current study of lattice thermal conductivity. The 

preliminary results of lattice thermal conductivity over a wide range of temperature at 

ambient pressure are based on a 4 4 4× ×  q-point sampling over the BZ. In addition to the 

anharmonicity induced phonon-phonon scattering, we also considered the mass disorder 
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(isotope effect) induced phonon-phonon scattering, and isotope effects on the lattice 

thermal conductivity at difference temperature will also be discussed.  Explicit 

calculation of lattice thermal conductivity at high pressure is not presented but will be 

reported in the future. In this dissertation, we simply discussed the implication for the 

pressure dependence of lattice thermal conductivity based on the single relaxation time 

approximation (SRTA). A characteristic feature of these SRTA models is that the thermal 

conductivity of a mineral is simplified into two contributing terms: the harmonic 

dynamics related heat capacity and group velocity term and the anharmonic dynamics 

related relaxation time term. The pressure dependency of the harmonic term is evaluated 

with our first-principles phonon data, whereas the pressure effects on relaxation time are 

predicted based on some simple assumptions. These models will serve as the baseline 

models for our future data obtained based on the explicit kinetic transport calculations.     

 

7.2 Crystal Structure and Equation of State 

Two-atom face-centered-cubic (fcc) unit-cell models were used in the EoS 

calculation. The Brillouin zone integration for electronic energy was calculated using the 

tetrahedron method over a 24 24 24× ×  Monkhorst-Pack grid. Wave functions of valence 

electrons in Mg (2p63s2) atoms and O (2s22p4) atoms were expanded in a set of plane 

waves, while the core electrons (i.e. 1s22s2 in Mg and 1s2 in O) were replaced with the 

Projector Augmented Wave (PAW) potentials. To achieve better numerical accuracy, the 

semi-core 2p electrons in Mg atoms were treated as valence electrons in our calculations. 

The adopted kinetic energy cutoff value for plane waves was 400eV.  
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 The fitting parameters to 3rd Birch-Murnaghan equation of states are listed in 

Table 7.1, experimental measurements and other theory results are also listed for 

comparison. Comparing to the experimental data at room temperature 100 , our static 

calculation underestimates the V0 at 300K by 3%, while it overestimates the bulk 

modulus at 300K by 8%. The errors reported here are typical of calculations of this class, 

and our results are consistent with previous theoretical results16,101,102,103 (Table 7.1). We 

further find that including free energy contribution due to lattice vibration further 

improves the agreement between LDA calculated and experimental V0 and B0.104  

 

Table 7.1 Our LDA calculated static equilibrium properties of MgO fitted by 3rd order 

Birch-Murnaghan equation of state, compared with previous theoretical results and 

experimental measurement. Experimental data was taken at room temperature. 

EOS Parameters LDA(this work) LDAa LDAb LDAc GGAd Expt.e 

V0(Å3/MgO) 18.1 19.05 18.8 19.2 18.1 18.7 

B0(GPa) 172.7 172.6 159 159.7 172 160.2 

B’ 4.2 4.0 4.30 4.26 4.09 3.99 

 

7.3 Phonon and Grüneisen Parameters 

A 128-atom super cell model with only Γ-point sampling in the Brillouin zone 

was used in the calculation for H-F forces. Phonon calculation was based on the finite 
                                                 
a Reference 99 
b Reference 101 
c Reference 102 
d Reference 103 
e Reference 100 
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difference method, which, however, can not handle well the optical modes for ionic 

systems. Thus additional LOTO correction has been made for optic phonons. The results 

of our LDA calculated phonon dispersion relation at 0 GPa and 68 GPa are plotted in 

Figure 7.1a and 7.2a respectively, and they are in excellent agreement with the available 

experimental data105,106, as well as two previously published theoretical result101,107 using 

density perturbation functional theory (DPFT). Other phonon related properties, such as 

phonon density state (phDOS, Figure 7.1b and 7.2b), or phonon group velocity (Figure 

7.1c and 7.2c), can be readily derived from the calculated phonon dispersion curves 

and/or dynamical matrices. 

 

 

Figure 7.1 LDA calculated harmonic phonon spectra, phonon density of state and group 

velocity of MgO at 0 GPa. Experiment data of phonon dispersion measured by Peckham 

(1967) and Sangster et al. (1970) are also shown for comparison. 
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Figure 7.2 LDA calculated phonon spectra, phonon density of state and group velocity of 

MgO at 68 GPa. 

 

 

Figure 7.3 LDA calculated Grüneisen parameter as a function of temperature at 0 GPa. 
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Equilibrium thermodynamic properties of MgO at high-pressure have also been 

calculated within the statistical QHA. In this dissertation, I will focus only on Grüneisen 

parameter ( thγ ), a dimensionless parameter that is commonly adopted in empirical 

models of lattice thermal conductivity because of its intrinsic connection with lattice 

anharmonicity8,108. The γth of a mineral can be obtained based on the measured P-T-V 

EOS:  

( ) ( )th V V
V

P V PV
U C T

γ ∂ ∂
≡ =

∂ ∂
,                                              (7.1) 

where ( ) ( )V V V
U SC T
T T

∂ ∂
= =

∂ ∂
 is the heat capacity. Within the QHA, the bulk thγ  can also 

be expressed in term of averaged phonon mode Grüneisen 

parameters log ( )( )
log

i
i

d Vg V
d V

ω
≡ − : 

( , ) ( )
( , )

( , )

i i
i

th
V

c T V g V
T V

C T V
γ =

∑
,                                           (7.3) 

where iω  is the vibration frequency of the ith phonon mode , and 

/

/
2

2

1[( ( , ) ) ]
2( , ) ( )

( 1)

i B

k Ti B

k Ti i
i

i B
B

d n T ec T V k
dT k T e

ω

ωω ω ω+
= =

−
h

hh h  represents the mode heat capacity 

of the corresponding phonon, and the total heat capacity V i
i

C c=∑ sums contributions 

from each phonon. Our calculated thγ  at the equilibrium volume is shown in Figure 7.3. 

The high temperature limit of thγ   is estimated to be 1.39, about 10% smaller than the 

reported experimental value of 1.54109. The good agreement between our LDA result and 
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experimental measurement indicates that the LDA theory is capable to quantitatively 

describe lattice anharmonicity.  Our theoretical results are not sensitive to the numerical 

approximations that we adopted to calculate mode ig  parameters. 

 

7.4 Lattice Anharmonicity 

Omitting all the 4th and higher order of lattice anharmonicity, we further derived 

the full 3rd order anharmonicity tensors at various chosen volumes/pressures. Because of 

the lattice symmetry of MgO, all the single-atom anharmonicity terms, i.e. the ( , , )i j k   

indices of the tensor element ijkA are all from one single atom, are zeros. Two largest  ijkA  

terms, around 24 3eV Å at equilibrium volume, are found to be the bonding-stretching 

anharmonicity between two neighboring Mg-O atoms along the bonding direction. We 

refer the absolute values of these two largest anharmonicity terms as  2O Mg
A   and 2OMg

A  

respectively. Although it is well known that the charge distribution around the O2- ions 

are much more sensitive to the surrounding ion configuration than that around the Mg2+ 

ions, our results show that 2 2

1 ( )
2 O Mg OMg

A A AΔ = −  is only about  0.2 3eV Å , i.e., less 

than 1% of the averaged value. Therefore, we define 2 2

1 ( )
2stretching O Mg OMg

A A A≡ +  to 

represent the dominant term in the 3rd order anharmonicity tensor. As shown in Figure 7.4,  

stretchingA  in MgO increases almost linearly with pressure (P), and at zero pressure 

log( )stretchd A
dP

is estimated from linear fitting as 0.0153 GPa-1. We find that AΔ  decreases 
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with increasing pressure and turns negative above 30 GPa. The | | / stretchingA AΔ  ratio 

remains relatively small for all the pressures studied in this paper. 

 

Figure 7.4 The pressure dependence of the average and difference (inset) of the two 

largest anharmonic tensor elements.  

 

Other anharmonic ijkA  elements of MgO are at least one order of magnitude 

smaller than stretchingA , and all the terms involving the atoms and their 3rd and beyond 

nearest neighbors are negligible compared to the major terms. As a simplification, we 

only keep all the terms coming from the atoms and their 1st and 2nd neighbors in the 

calculated A tensors. To test the accuracy of the anharmonicity tensors calculated with 

our new algorithm, we calculated the phonon mode Grüneisen parameters from both 

finite difference approach (Equ. (3.9)) and anharmonicity approach (Equ. (3.10)), and 

their comparison is shown in Figure 7.5. Even though the match is not as good as d-Si 
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and Si136, but this is based on the F-H force calculated from first-principles, thus we 

consider it quite satisfactory.  

 

Figure 7.5 Comparison of Phonon mode Grüneisen parameters calculated with both finite 

difference method and the 3rd order lattice anharmonicity method. 

 

7.5 Isotope Effect 

 Phonon-scattering processes in general can be divided into intrinsic processes and 

extrinsic processes. Lattice anharmonicity induced phonon scattering is the dominant 

intrinsic process in insulators and most semiconducting materials. The extrinsic processes 

include the phonon scattering at all sorts of crystal defects and crystal surfaces. In this 

dissertation, lattice anharmonicity for MgO has been presented and discussed in section 

7.4, and as far as the extrinsic processes are concerned, only isotope effects will be 

considered. Many studies have shown that there is a significant contribution to the 

scattering from the variation in isotope mass, which can modify the thermal conductivity 
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by an appreciable degree. The first experiment studying the isotope effect was carried by 

Geballe and Hull in 1958, who observed an increase in thermal conductivity by 15% at 

room temperature when the concentration of the 74Ge isotope was increased from 36.5% 

(natural) to 95.8%.110 Isotope effect on the thermal conductivity in silicon was then 

studied by Capinski et al. in 1997.111 They suggested an increase of thermal conductivity 

in isotope pure silicon by 60%, as compared to silicon of natural isotopic abundance. In 

this dissertation, we will also discuss the isotope effect of MgO on its thermal 

conductivity at both low temperature and high temperature. 

 The scattering rate or the reciprocal of the relaxation time isoτ  of the phonons due 

to single scattering by the isotopes is given by112: 

2
1 2 2

',

2 ( , )( , ) ( ( , ) ( ', )) | ( , ) | | ( ', ) |
2iso

q j

q iq i q i q j g e q i e q jα α α
α

π ωτ δ ω ω− ⎛ ⎞= − × ×⎜ ⎟
⎝ ⎠

∑ ∑
v

v
hv v v v v

h h
h

,(7.4) 

and                                 

                2( )[1 ( ) / ( )]k k
k

g f m mα α α α= −∑ ,                                (7.5) 

where h  is Planck constant, ( , )q iω v  and ( , )e q iα
v  are the eigen-frequency and eigen-

vector of phonon mode ( , )q iv , ( )kf α  is the fraction of thk  isotope of atom α that has 

mass ( )km α , and ( )m α  is the average mass of atom α . gα  for oxygen and magnesium 

have been calculated and listed in Table 7.2. 
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Table 7.2 Mass deviation of atom oxygen (gO) and magnesium (gMg). 

gO gMg 

0.336·10-4 7.398·10-4 

 

The overall phonon relaxation time is then given by: 

1 1 1
( , ) ( , ) ( , )anh isoq i q i q iτ τ τ

≈ +v v v .                                        (7.6) 

In order to estimate the isotope effects on the thermal conductivity of MgO, we 

approximate the phonon life time from anharmonicity induced phonon-phonon scattering 

to be effτ  such that  

1 1 1
( , ) ( , )eff isoq i q iτ τ τ

≈ +v v .                                        (7.7) 

effτ  was calculated via 
2

,

1 ( , ) ( , )
3

eff

V g
q iq

c q i V q i
N

κτ =
∑
vv

v v
, where  κ  was using experiment 

measured thermal conductivity for natural MgO8. Both Vc  and gV  were calculated at a 

20 20 20× × q-grids. effτ  at 500K and 2000K are reported in Table 7.3. 

 

Table 7.3 Effects of isotope on the lattice thermal conductivity at 500K and 2000K. 

T (K) κnatural 
(W/K/m) 

τeffective (ps) 
 

κisotope-pure 
(W/K/m) % increase 

500 35 3.015 39.4 12.6 

2000 7 0.495 7.15 2.1 
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 With ( , )iso q iτ v , which can be evaluated from Equ. (7.4), and effτ , we then 

calculated the overall phonon relaxation time, and further predicted the thermal 

conductivity of isotope-pure MgO ( isotope pureκ − ).  At 500K, isotope-pure MgO has 12.6% 

higher thermal conductivity than natural MgO, while at 2000K only 2.1% increase in the 

thermal conductivity (see Table 7.3). Our results indicate that the isotope effect on the 

thermal conductivity is more important at low temperature, while it is almost negligible at 

high temperature. 

 

7.6 Thermal Conductivity 

 Explicit calculations for both anhτ  and isoτ  at 4 4 4× ×  were carried out using first-

principles methods. By considering both intrinsic phonon-phonon scattering and extrinsic 

isotope induced phonon scattering, Thermal conductivity over a wide rang of temperature 

at ambient pressure has been calculated using kinetic transport theory. At room 

temperature, our calculated thermal conductivity is about 51 W/K/m, in good agreement 

with experimental measurement 54 W/K/m by Slack in 1962.113 Figure 7.6 shows the 

temperature dependence of our calculated thermal conductivity of MgO at ambient 

pressure as well as some available experimental work114,113,115. Overall, our theory results 

are comparable with experimental measurements. 
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Figure 7.6 Temperature dependence of lattice thermal conductivity κ  at 0 GPa; κ  was 

calculated using First-Principles method with a 4 4 4× ×  q-point sampling over the 

Brillouin zone. Experimental measurements are also cited for comparison.  

 

Figure 7.7 Estimated pressure dependence of lattice thermal conductivity in MgO at 

500K for model I and model II. 
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Figure 7.8 Estimated pressure dependence of lattice thermal conductivity in MgO at 

2000K for model I and model II. Recent experimental results are shown in symbol plus 

(+). 

 

We further provide a preliminary estimation on the pressure dependence of lattice 

thermal conductivity in MgO based on a simple kinetic transport model within single 

relaxation time approximation (SRTA) (See Equ. (6.1), which characterizes the effect of 

anharmonicity-induced phonon scattering with just one single parameter: the effective 

phonon life-time (or relaxation time) effτ . Two models are proposed here for ( )
( 0)

P
P
κ

κ =
. 

Model I assumes that effτ  is pressure independent, i.e., 
( )

1
( 0)
eff

eff

P
P

τ
τ

=
=

 the pressure 

dependence of the thermal conductivity comes from the harmonic terms and the isotope 
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effects. Model II suggests effτ  is inversely proportional to 2( / )stretchingA B , i.e., 

2

2

( ) ( ( 0) / ( 0))
( 0) ( ( ) / ( ))
eff stretching

eff stretching

P A P B P
P A P B P

τ
τ

= =
=

=
, where B is the Bulk Modulus. Pressure 

dependence of thermal conductivity in MgO proposed from these two models at 500K 

and 2000K are plotted in Figure 7.7 and 7.8. effτ  at zero pressure were taken from Table 

7.3. Results of recent experiment at 2000K15 are better fitted to Model II.  Both models 

provide a rather linear relationship for ( )
( 0)

P
P
κ

κ =
, ie., ( ) 1

( 0)
P P

P
κ α

κ
= +

=
. Slope α  of 

these two models at 500K and 2000K are listed in Table 7.4.  

 

Table 7.4 List of α  in ( ) / ( 0) 1P P Pκ κ α= = +  estimated from two models at 500K and 

2000K respectively.  

T(K) Model α  T(K) Model α  

I 0.0059 I 0.0071 
500K 

II 0.0244 
2000 

II 0.0296 

 

7.7 Conclusion 

 Using an efficient and accurate super-cell finite-displacement algorithm, we 

studied the harmonic and anharmonic lattice dynamics in MgO at high-pressure. The 

explicitly calculated 3rd anharmonic interaction terms were reported, and the calculated 

ijkA  can well reproduce the mode Grüneisen parameters. The estimated pressure 

coefficient of the dominant stretchA  term is about 0.0153 GPa-1. In addition to the intrinsic 
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anharmonicity induced phonon-phonon scattering, variation in the mass of isotopes also 

scatters phonons, which is also a factor causing the reduction of thermal conductivity. 

Such isotope effect on the lattice thermal conductivity has been studied, isotope-pure 

MgO will have 12.6% higher thermal conductivity than natural MgO at 500K. Our results 

also indicate that isotope effect is important at low temperature and becomes negligible at 

high temperature. With both anharmonicity and isotope effects considered, we presented 

the preliminary results of temperature dependence of lattice thermal conductivity in MgO 

at ambient pressure, which shows good agreement with previous experimental 

measurements. Two models were then proposed for the estimation of the pressure 

dependence of lattice thermal conductivity. Explicit calculation of lattice thermal 

conductivity at high pressure shall be carried out, and a finer q-grid sampling over the BZ 

is desired to more accurately integrate the BZ. 
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CHAPTER 8 

 

 

SUMMARY AND FUTURE WORK 

 

 In this dissertation I have presented the details of our recent methodology 

development on first-principles materials simulation and modeling and the simulation 

results on two interesting materials systems. The methodology development consists two 

categories. First, we have extended the standard first-principle total energy and force 

calculations to the calculations of harmonic (2nd order) force constant matrices and 3rd 

order lattice anharmonicity tensors using an efficient super-cell finite-displacement 

algorithm. We have carried a series of detailed comparison between our calculated 

(harmonic) phonon spectra and the results reported by other groups using linear response 

density perturbation functional theory (DPFT) method, as well as available experimental 

measurements. We find that our results are in excellent agreement with experiments and 

results calculated with the DPFT method. Our SC-FD algorithm is currently implemented 

with the VASP code, but it can also be easily implemented with any other first-principle 

codes with any forms of pseudo-potentials and electron wave basis sets. This algorithm is 

ideal for parallel computation using low-cost Beowulf computer clusters. We have 

further proposed a paired displacement approach to calculate 3rd order lattice 
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anharmonicity. The new algorithm has been implemented with both simple empirical 

Tersoff potentials and the first-principles DFT method. We also proposed a robust testing 

scheme and investigated the sumrule to ensure the numerical accuracy of the calculated 

3rd order anharmonicity tensor. 

 Next, we have adopted statistical ensemble theory of phonons to calculate and 

simulate materials properties at finite temperature. The results derived from the first-

principles calculated force constant matrices are utilized within the quasi-harmonic 

approximation (QHA) to predict fundamental thermodynamic potentials as functions of 

temperature (T) and pressure (P). The consequently derived (T,P) phase diagrams and 

equilibrium thermal properties, such as lattice thermal expansion, and/or heat capacity, 

were compared directly with experiments. Meanwhile, we have also applied the quantum 

scattering theory to explicitly calculate the phonon life time, and further implemented a 

simple kinetic transport theory to predict non-equilibrium thermal transport properties. 

Investigation of contribution of harmonic and anharmonic components in kinetic 

transport equation to the lattice thermal conductivity has been decoupled under the single 

phonon relaxation time approximation. 

 Using the newly developed computational methods, we have studied the thermal 

properties of the novel guest-free clathrate polymorph of silicon (Si136) based on first-

principles calculations combined with experimental X-ray and Raman scattering 

measurements. The Si136 clathrate is metastable compared with the d-Si phase at ambient 

P and T. Theory indicates that it becomes thermodynamically stable within a negative 

pressure regime, at P = -2 to -4 GPa. The dPtr/dT Clapeyron slope is estimated as 7× 10-4 

GPa/K from ab initio calculations. Although it has been shown previously that some 
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properties, such as the electronic band gap, are critically dependent upon the lattice 

expansion between the diamond-structured and “expanded-volume” clathrate polymorphs, 

our current studies reveal that the thermal properties of the two phases involving long-

wavelength phonons are similar to each other. The vibrational properties of Si136 phonons 

are similar to those of d-Si, and they can be understood in terms of Brillouin zone 

reduction following the unit cell expansion between d-Si and Si136. The phonon modes in 

the two phases also have very similar characteristics. We find that the coefficients of 

thermal expansion in the two Si phases are comparable in our studies, which suggests that 

it is less likely that the significant reduction of lattice thermal conductivity in clathrate 

materials is mainly caused by any large increases of anharmonic lattice interactions in 

clathrate systems.  

 We also adopt the Green-Kubo formulism to calculate the thermal conductivity of 

d-Si and Si136 using classical molecular dynamics with empirical Tersoff potential. Our 

calculation reveals that the thermal conductivity of Si136 is about 10% of that of d-Si. 

According to the kinetic theory, this reduction can be attributed to lower heat capacity, or 

lower group velocity (flattering phonon spectra), or lower phonon life time (large lattice 

anharmonicity). To investigate the contribution of the low conductivity in Si136, third 

order lattice anharmonicity of both d-Si and Si136 was further studied using the same 

empirical potential. Our results shows that phonon life time of Si136 is about 70% of that 

of d-Si, and the reduced thermal conductivity in Si136 mainly comes from the phonon 

flattering or reduced group velocity (a reduction of 80%) as suggested from first-

principles thermal calculations. 
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Using the efficient and accurate super-cell finite-displacement algorithm, we then 

studied the harmonic and anharmonic lattice dynamics in MgO at high-pressure. The 

explicitly calculated 3rd anharmonic interaction terms are reported, and the calculated ijkA  

can well reproduce the mode Grüneisen parameters. The estimated pressure coefficient of 

the dominant stretchA  term is about 0.0153 GPa-1. Both intrinsic lattice anharmonicity and 

extrinsic isotope induced phonon scattering have been taken into consideration during the 

calculation of lattice thermal conductivity. Explicit calculation of phonon life time from 

two scattering mechanisms has been carried out. Kinetic transport equation was then 

adopted to evaluate the lattice thermal conductivity over a wide range of temperature at 

ambient pressure. Preliminary results of lattice thermal conductivity were based on 

4 4 4× ×  q-grids BZ integration. At room temperature, our calculated lattice thermal 

conductivity is 51 W/K/m, in a good agreement with experimental measurement 54 

W/K/m. The overall temperature trend is consistent with available experiments. Explicit 

calculation of thermal conductivity at high pressure is not yet done in this dissertation. 

Instead, two models have been proposed to estimate the pressure dependence. At 2000K, 

model II suggests the pressure coefficient to be 0.0296, while model I suggests a rate 

0.0071, and model II is better fitted with the experiment.  

 The immediate extension of the research work discussed in this dissertation is to 

calculate the thermal conductivity at high pressure explicitly. And the convergence of 

predicted lattice thermal conductivity on the size of q-point sampling deserves a much 

more careful investigation.  
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APPENDIX A 

 

3 

NOTATION FOR SPACE GROUP AND POINT GROUP 

 

Possible point operations are rotation, nC  in Schönflies notation (S notation) or n  in 

Hermann-Mauguin notation (H-M notation), representing a rotation of 360/n degree 

about an axis; n can only be 1,2,3,4 and 6 in crystal structure in order for the rotation to 

be compatible with the translational symmetry; reflection, denoted by , ,h v dσ σ σ  in S 

notation or m in H-M notation, representing a mirror operation about a plane. The 

subscript h  means the mirror plan which is perpendicular to the principle rotation axis, v  

the mirror plan includes principal rotation axis, and d  the mirror plane including the 

principal rotation axis and also bisects the angle between the other two 2-fold rotation 

axes; improper rotation, denoted by nS  in S notation or n  in H-M notation, representing 

a combination of rotation nC  by 360/n degree followed by reflection hσ  in a plan normal  

to the rotation axis. The other two operations are Identity and Inversion, which are special 

cases (n=1) of rotation and improper rotation respectively. The point, axis, and plane 

mentioned above are called symmetry elements. Each point group possesses different 

numbers of symmetry operation, it can has as many as 48 symmetry operations ( hO ), and 



 
 

144

as low as 1 symmetry operation ( 1C ). All the possible symmetry operations of each point 

group can be found in International Table of Crystallography. Two additional symmetry 

operations are the combination of rotation or reflection with a translation less than the 

unit cell size. A glide plane is a reflection in a plane followed by a translation parallel to 

the plane, denoted by , , ,a b c n  or d , where , ,a b c  represents the gliding direction along 

axis a, b, c by half of the cell length in that direction, n  represents the gliding along the 

half of the diagonal of a face, and d  represents the gliding along a quarter of the face or 

space diagonal of the unit cell. A screw axis is a rotation about an axis, followed by a 

translation along the direction of the axis. It is denoted by a number n  followed by a 

subscript m , n  represents the degree of right-hand rotation 360 / n  about the rotation axis, 

and m  represents a following translation of /m n  of cell length along that axis direction. 

Since the translation for screw axis is within the unit cell, m must be smaller than n . 

Usually we say space group #227 is 3Fd m , which belongs to point group 7
hO , we 

are talking about the notation of the space group. Space groups commonly use HM 

notation while point groups often use S notation. HM notation for space groups starts 

with a Bravais lattice descriptor indicating the centering of the lattice followed by up to 3 

set of notation for possible point operations, glide planes or screw axes. The centering of 

the lattice is expressed by P for primitive cell (R for rohmbohedra cell only) , C for base-

centered cell, F for face-centered cell and I for body-centered cell. The order of point 

symmetry operation in the HM notation is not random. The first symbol denotes the 

symmetry along the major axis, and the second along axis of secondary importance, and 

the third along the tertiary important direction (see Table A.I). For cubic system, the 
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primary direction is [100]/[010]/[001] since they are equivalent, the secondary direction 

is the diagonal direction [111] and the tertinary direction is [110]. 3Fd m  is the short HM 

notation of #227, the full notation is 14 23F
d m

, the symmetry operation along each 

direction can been easily seen from the full notation. 7
hO  is the S notation for its point 

group. One can also derive the HM notation of the point group from its space group by 

replacing the glide plane by mirror and screw axis by rotation. Here we have d glide in 

space group notation, after replace it by mirror; we have the HM notation 3m m for point 

group hO . 

 

Table A.I Primary, secondary, and ternary directions commonly used for 7 crystal 

systems. 

Symmetry direction 
Crystal system 

Primary Secondary Ternary 

Cubic [100]/[010]/[001] [111] [110] 

Hexagonal/Trigonal [001] [100]/[010] [120]/ [110]  

Tetragonal [001] [100]/[010] [110] 

Orthorhombic [100] [010] [001] 

Monoclinic [010]   

Triclinic None   
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Knowing the meaning of the space group symbolism, we have better idea about 

the International Tables for Crystallography, which contains full information about the 

230 space groups. The more important information listed in this table is the Wyckoff 

section for each space group. As an example, a complete list of Wyckoff sites for space 

group 227 has been cited here for reference (Table A.II), where the coordinates are 

partially listed. Note that conventional cubic unit cell is used. 

 

Table A.II Wyckoff sites for space group 227 (only partial coordinates are listed) 

Coordinates 
Multiplicity Wyckoff 

letter 
Site 
symmetry 

(0,0,0)+ (0,1/2,1/2)+ (1/2,0,1/2)+ (1/2,1/2,0)+ 

192 i 1 (x,y,z) …. 

96 h ..2 (1/2,y,-y+1/4), …. 

96 g ..m (x,x,z), …… 

48 f 2.mm (x,0,0), …… 

32 e .3m (x,x,x), …… 

16 d .-3m (5/8,5/8,5/8), …… 

16 c .-3m (1/8,1/8,1/8), …… 

8 b -43m (1/2,1/2,1/2) (1/4,1/4,1/4) 

8 a -43m (0,0,0) (3/4,1/4,3/4) 

 

As one can see from Table A.II, the Wyckoff site contains the information of 

multiplicity, Wyckoff letter, site symmetry and also coordinates. Multiplicity represents 
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the number of equivalent atoms per unit cell, Wyckoff letter is simply a letter, starting 

with a at the bottom position and continuing upwards alphabetically; the site symmetry 

gives all symmetry operations that map a point onto itself; it is the subgroup of the point 

group to which the space group under consideration belongs. Site symmetry symbol 

displays the same sequence of symmetry directions as the space group symbol. 

Coordinates of all the points that go back to themselves under this site symmetry 

operation are listed in the next column. For centered space groups, the centering 

transformations are listed above the coordinate triplets. 

There are 9 Wyckoff sites in space group 227. Any structure belonging to this 

space group will have one or more of these Wyckoff sites. For example, d-Si and its 

isotope phase silicon clathrate type II (Si136) both belongs to space 227, but they have 

different combination of Wyckoff sites. 

In d-Si system, there is one type of site (8a) occupied by Si, while Si in Si136, 

occupies 8a, 32e and 96g three different types of site, which lead to 136 as the total 

number of atoms in the unit cell. Let’s take 8a site as an example to illustrate the meaning 

of Wyckoff site symmetry. As showed in table, 8a site has site symmetry 43m− , 

representing an improper 4-fold rotational symmetry along primary direction (001), a 3 

fold rotational symmetry along secondary direction [111] and mirror symmetry in the 

ternary direction which is automatically satisfied. The complete Wyckoff position for this 

site can be obtained by adding four centering translations (0,0,0), (0,1/2,1/2), (1/2,0,1/2) 

and (1/2,1/2,0) listed on the top of the Table A.II to the two coordinate triplets (0,0,0) and 

(3/4,1/4,3/4) in the 8a row of the Table A.II. Thus we have positions for 8 atoms in the 

unit cell, any of which will go back to itself after the site symmetry operation 43m− . 
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Similarly, we can derive the positions for 32e and 96g sites. Note that these two sites 

have unknown parameter, which can be determined by X-ray diffraction experiments. 
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APPENDIX B 

 

 

NORMAL MODE SYMMETRY REPRESENTATION ANALYSIS 

 

Phonon calculation predicts the dispersion curve, as well as the phonon modes at 

Gamma point. However, not all the gamma phonon modes can be detected in 

experiments, such as Infrared spectroscopy and Raman Scattering, which both 

characterize the vibrations of chemical bonds. The mechanism of these experiments 

determines the vibrational selection rules for crystals. 

What is of our interest is how to characterize all the vibrational modes calculated 

by our first-principles method, and in the meantime, determine which modes are IR 

active and which modes are Raman active. For a vibration to be Raman active modes, the 

polarizability of the crystal will change with the vibration motion, for a vibration to be IR 

active, the dipole moment of the crystal will change with the vibration motion. By doing 

this analysis, we are not only able to compare our phonon frequency with existing 

experimental values, but also predict those without experiment results. 
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 In order to get the irreducible representation of the phonon modes, and further the 

optically active vibration modes, Ref. I  is a good source of help. Here is a simple 

illustration about how to derive them for crystals provided Site Symmetry Table 

(Appendix I in Ref. I), Character Table (Appendix II in Ref. I) and Correlation Table 

(Appendix III in Ref. I). In some situation, Table 14 in Ref. I could also be used.  System 

Si136 will be used as an example in the demonstration, hopefully it will serve as a no-

brain procedure in determination of irreducible representation and optically active modes 

without going through too much group theory. 

The first step is to gather the structure information for the system under 

consideration. Here we know that Si136 belongs to space group 227, and silicon atoms are 

located at three different Wyckoff sites, 8a, 32e, and 96g. Note this is the notation for 

conventional cubic cell. In primitive cell, they can be regarded as 2a, 8e, and 24g sites 

respectively. We shall consider each site separately. For system with multiple types of 

atoms, each site of every type of atoms should be considered separately. However the 

idea is the same for every one of them.  

Then we use the Site Symmetry Table to find the point symmetry operations of 

each Wyckoff site. The symmetry table lists the space group, point group, and also the 

point symmetry operations in S notation for all the Wyckoff positions the space group has 

and they are listed in the alphabetical order starting from a. Site symmetry table gives the 

following information for space group 227: 

 

                                                 
I W. G. Fateley, F. R. Dollish, N. T. McDevitt and F. F. Bentley, Infrared and Raman Selection Rules for Molecular 
and Lattice Vibrations: The correlation Method (John Wiley & Sons, Inc. 1972). 
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Table B.I Site symmetries of space group 227 

Space group Site symmetries 

227 Fd3m Oh
7    2Td(2); 2D3d(4); C3v(8); C2v(12); Cs (24); C2(24); C1(48) 

 

Td, D3d, C3v, C2v, Cs, C2 and C1 are subgroups of point group Oh. Since the sites 

symmetries are ordered alphabetically (see Table B.II), it is rather easy to find the site 

symmetry for any Wyckoff site we desire. The site symmetry of 8a, 32e and 96g are Td, 

C3v and Cs respectively. Let’s consider 8a (Td) site first.  

 

Table B.II Wyckoff letter representation of each site symmetry of space group 227 

Wyckoff Position 8a 8b 16c 16d 32e 48f 96g 96h 96i 

Site symmetry Td Td D3d D3d C3v C2v Cs C2 C1 

 

We then go to Character Table of site symmetry Td and identify all the symmetry 

representations of the translations Tx,Ty and Tz. From Ref. I appendix II, we can find the 

character table for site symmetry Td. Table B.III list all the symmetry operations (E, C3, 

C2, S4, σd) of the point group Td and also its subsets (A1, A2, E, T1, T2), which are often 

called symmetry representations and they are orthogonal to one another. Note that 

representations like A or B has single degeneracy, E has double degeneracy and T has 

triple degeneracy. The numbers in Table B.III are called character, indicating the effect of 

an operation in a given representation. The righteous two columns are function operators. 
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We can see that T2 contains translational operators, similarly, A1+E for C3v and 2A’+A’’ 

for Cs. 

Table B.III Character table for Td point group. 

Td E 8C3 3C2 6S4 6σd Linear, Roations Quadratic 

A1 1 1 1 1 1  X2+y2+z2 

A1 1 1 1 -1 -1   

E 2 -1 2 0 0  (2z2-x2-y2,x2-y2) 

T1 3 0 -1 1 -1 (Rx,Ry,Rz)  

T2 3 0 -1 -1 1 (Tx,Ty, Tz) (xy,xz,yz) 

 

 

Table B.IV Correlation table for Oh point group (only Td, C3v and Cs are listed) 

Oh Td C3v Cs(σh) Cs(σd) 

A1g A1 A1 A’ A’ 

A2g A2 A2 A’ A’’ 

Eg E E 2A’ A’+A’’ 

T1g T1 A2+E A’+A’’ A’+2A’’ 

T2g T2 A1+E A’+2A’’ 2A’+A’’ 

A1u A2 A2 A’’ A’’ 

A2u A1 A1 A’’ A’ 

Eu E E 2A’’ A’+A’’ 

T1u T2 A1+E 2A’+A’’ 2A’+A’’ 

T2u T1 A2+E 2A’+A’’ A’+2A’’ 
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Character table only gives the irreducible representations for point group Td. 

However we want to have the irreducible representations for point group Oh which has 

higher symmetry, thus we need to transform them into those in Oh representations. Such 

transformation is listed in Correlation Table. Ref. I appendix III lists the correlation 

tables for all the point groups. Here we cited the correlation between Oh and its subgroups 

we needed for Si136 in Table B.IV: 

Notice that in the Table B.IV, we found two columns for Cs, one tagged with σh 

and the other with σd. Which one shall we use? Table 14 in Ref. I tells the answer. In 

Tables 14, we find the following for space group 227: 

Space group number C2’, σh C2, σd σd 

227 Oh
7 h f g 

 

Table 14 says that if the atom under consideration is in Wyckoff site h, the column with 

(C2’, σh) should be chosen; if it is f, then the column with (C2, σd) should be chosen; if it 

is g, the column with (σd) should be chosen. In current case, the Wyckoff site is g, thus 

we shall use the column tagged with σd. The correspondence between the representations 

of Oh and those of its subgroup Td, C3v and Cs is summarized in Table B.V. 

Therefore the irreducible representation for gamma phonon modes is: 

1 2 1 2 1 2 1 23 1 4 5 8 3 4 8 5g g g g g u u u u uA A E T T A A E T TΓ = + + + + + + + + +             (B.I) 

In crystal, there are 3N degrees of vibrational freedom, where N is the number of atoms 

in the Bravais cell. For Si136, we used the 34-atom primitive cell. We are expecting 
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3N=102 degrees of vibrational freedom. This can be checked at this point by adding all 

the contributions in the representation. 

3 1 1 1 4 2 5 3 8 3 1 1 3 1 4 2 8 3 5 3 102Γ = × + × + × + × + × + × + × + × + × + × =  

 

Table B.V Summary of symmetry representations for Si136 

Point 
group 

Symmetry 
representation Symmetry representation of point group Oh 

Td T2 T2g+T1u 

A1 A1g+T2g+A2u +T1u 
C3v 

E Eg+T1g+T2g+Eu+T1u+T2u 

2A’ 2(A1g+Eg+T1g+2T2g+A2u+Eu+2T1u+T2u) 
Cs 

A’’ A2g+Eg+2T1g+T2g+A1u+Eu+T1u+2T2u 

 

 Among 3N degrees of vibrational freedom, three are acoustical vibrations. And 

when we consider only vibrations at the Brillouin zone center, their frequencies are zero, 

and they are of no physical interest, these three acoustical vibrations should be subtracted 

from the irreducible representations. 

 The symmetry representations of acoustical vibrations are those correspond to 

translations Tx, Ty and Tz in point group character table, and they are also IR active 

modes. Raman active modes are those corresponding to rotation Rx, Ry, and Rz. Oh 

character table tells that acoustic modes are T1u mode, and it is also the IR active mode; 

Raman active modes are T1g mode. Subtract one T1u mode from Equ. (B.I), we then get 
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the optical irreducible representation for Si136 in Equ. (B.II). IR and Raman active modes 

are indicated by superscript. 

1 2 1 2 1 2 1 23 1 4 5 8 3 4 7 5optic Raman IR
g g g g g u u u u uA A E T T A A E T TΓ = + + + + + + + + +      (B.II) 


