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 The first objective of this thesis is to determine a feeder carriage allocation policy 

for a turret head placement machine. The feeder allocation problem deals with 

determining which component types have to be allocated to the surplus slots of the feeder 

carriage of the placement machine, so as to minimize the number of replenishments. The 

feeder allocation problem has been formulated as a dynamic programming model which 

maximizes the number of boards that can be made by a single allocation of component 

reels to the feeder slots. It has also been shown that maximizing the number of boards 

that can be made by a single allocation of components, delays replenishment as much as 

possible, thereby decreasing the total number of replenishments required. 
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As a second objective, a methodology of solving optimization problems with 

spreadsheets is proposed. This technique is called spreadsheet based optimization. The 

methodology is illustrated by considering the component allocation problem for a turret 

head placement machine.  
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CHAPTER 1 

INTRODUCTION 

 

In the recent past the electronics manufacturing industry has seen remarkable 

innovations.  This can be attributed to the highly demanding and competitive market of 

the electronics industry. The use of Printed Circuit boards (PCB’s) in various applications 

has increased drastically. For example PCB’s are extensively used in computers, mobile 

phones, cars, and robots. In the last year alone PCB production rate has increased by 

around 30% leading to annual production amount of more than 35 billion dollars [21, 19]. 

Hence in order to survive in this highly competitive environment, companies must be 

able to produce products faster, cheaper, and of better quality. Companies using through 

hole technology (THT) to manufacture PCB’s found it difficult to keep up with the ever 

increasing demand. The advent of surface mount technology has greatly helped 

companies to manufacture products with complicated designs with high speed and 

quality.  

 

1.1 Surface Mount Technology 

 Previously PCB’s were manufactured by through hole technology (THT). In THT, 

components are mounted on the PCB’s by inserting the leads of the components into the  
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holes made on the PCB board and then soldering the leads on the bottom of the board. In 

SMT the components to be mounted on the PCB are placed directly on one side or both 

sides of the bare substrate by soldering. Thus in the SMT the solder paste serves a dual 

purpose of holding the components on the board and providing electrical connectivity. 

The advantages of SMT over THT are obvious; holes need not have to drilled, smaller 

components can be placed easily, higher board density, and components can be placed on 

either side of the board. All these lead to a better quality and reduced costs. 

The basic SMT manufacturing line consists of three steps [22]. In the first step the 

solder paste is screen printed on the bare substrate and inspection is carried out to check 

for defects. In the second step, the components to be mounted are placed on the board 

such that the leads of the components rest on the solder pads. In the third step, by means 

of the solder reflow process, electrical and mechanical contact of the leads with the board 

is established. 

  The components on the PCB board are usually placed by means of highly 

automated placement machines. 

 

1.2 Turret head placement machine 

The processes involved in SMT are highly automated. The placement of 

components on the board is usually done by placement machines. Basically there are two 

types of placement machines [18]; pick and place (PAP) machine and the turret head 

placement machine also known as the chip shooter machine. Each of these machines has 

its own characteristics. In the PAP machine, multiple stationary feeders are used to store 

the components. A moving placement head is used to pick up the components from the 



feeder slots one at a time and place it on the board which is also stationary. PAP 

machines operate at a lower speed than chip shooter machines, but have better accuracy 

and are usually used to place large components.  

This thesis is based on the turret head placement machine. The turret head 

placement machine it characterized by its high placement speed; it can place between 

40,000 and 53,000 components per hour [14]. A turret head placement machine is shown 

in Figure 1.1. 

   

 

                          Figure 1.1: Turret head placement machine 

  A turret head placement machine consists of a rotating turret, a moving feeder 

carriage and movable X-Y table on which the PCB is placed. A reel of each component 

type is placed in each slot of the feeder carriage. Sometimes two or more slots may be 

required to hold the reels of a component.  The rotating turret usually has around 10 to 12 

heads [18] and picks up components from the feeder carriage on one side while 

simultaneously placing the components on the PCB. The assembly heads each have 

several nozzles of different sizes. The moving X-Y table facilitates the positioning of the 
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PCB. Turret head placement machines are usually used to place small components on the 

board. 

 

1.3 Problem Overview 

In the assembly of PCB’s, the placement operations are usually the bottlenecks 

and are also the most time consuming task. Any reduction in the placement time would 

greatly reduce the cycle time and therefore improve productivity.  

There are three sub problems involved in the optimization of placement problems 

[5]. The first problem deals with determination of the component placement sequence. 

The second problem involves assigning component types to the feeder slots, and the third 

problem deals with the sequence in which each components are to be retrieved.  

This research deals with the second sub problem. In the turret head placement 

machine when any of the component reels in the feeder slots are exhausted, the machine 

stops and the exhausted reels have to be replenished manually by the operator. 

Replenishing the reels is time consuming and depends highly on the skill level and the 

availability of the operator. The time taken to replenish a reel depends upon two factors; 

time required by the feeder carriage to move back and forth from the setup position to the 

reload position and the time taken by the operator to load a new reel. In a high density 

and high volume production environment this results in an increased number of 

replenishments. This in turn forces the machine to stop often resulting in loss of valuable 

production time. Though in some cases the loss in production time due to feeder 

replenishment can be small when compared to the assembly time, the need for an 

available operator to replenish the reel may further increase the machine idle time. 
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Moreover, the feeder tray in the turret head type is constantly moving horizontally for 

component positioning and hence rules out the use of spliceable feeders and other 

mechanisms designed to keep the machine operating even while the reels are replenished. 

  Usually the number of different component types to be assigned to the feeder slots 

is less than the number of available slots; that is surplus or extra slots are available. The 

first objective of this research is to maximize the number of boards that can be made by a 

single allocation of components to the feeder slots and therefore reduce the idle time due 

to feeder replenishment. This in turn requires determining which component types are to 

be allocated to the surplus slots. This is called the feeder allocation problem. In this 

research a dynamic programming (DP) model is proposed to solve the model.  

  Most research conducted in this area has involved building optimization models 

which are usually linear programs or integer programs. These models require 

optimization software like Cplex, Lingo or Lindo. The biggest shortcoming of this 

approach is that these software products are expensive. Another disadvantage of this 

approach is that the managers or operators in the industry might find it difficult to operate 

the software and interpret the results. Therefore, the second objective of this research is to 

present a methodology to build user interfaces to solve such optimization problems using 

spreadsheets. This technique is called spreadsheet based optimization or spreadsheet 

modeling [2]. This is demonstrated by using the DP model.  

  This manuscript is organized as follows. In chapter 2, research in the area of 

placement machines is discussed in detail. Chapter 3 describes the problem considered 

for this master’s thesis along with assumptions made and develops the DP formulation. In 

order to illustrate the working of the model an example is also presented. Chapter 4 deals 
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with the methodology or the steps involved in constructing a spreadsheet based interface 

for implementing the model. In chapter 5 the experimental results are given and 

discussed. Chapter 6 gives the conclusion and directions for future work. 
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CHAPTER 2 

LITERATURE REVIEW 

 

  This chapter presents a literature review on problems in the optimization of 

placement machines. 

  Among all the steps involved in the SMT process, the placement machine is 

generally the bottleneck in the assembly line. Hence, any reduction in the placement 

times will result in considerable increase in productivity and therefore profit. According 

to Grunow et al [16] there are a number of reasons why placement machines do not reach 

their nominal placement rates. Some of these factors are the sequence of placement 

operations, the feeder slot assignment, the rotational speed of the turret, the varying width 

of the feeders, and the component retrieval. The authors also discuss the importance of 

sequencing of the placement operations. In a turret head placement machine the sequence 

and the setup are the main factors that determine the magazine movement. One way of 

reducing the feeder carriage movement is by multiple allocations of components to the 

feeder slots. In this paper, the authors have also presented a simulation based system that 

incorporates various types of assembly machines. According to the authors, this 

simulation system serves dual purposes; it can be used as a tactical production planning 

aid and also can be used for the kinematic analysis of the processes of the PCB assembly 

lines.
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 In the area of placement machines, several approaches have been discussed in 

order to improve the placement time through optimally sequencing the component 

placement and by proper component allocation. 

 In [11] Ellis et al have proposed a solution approach to determine the optimal 

placement sequence of components and feeder arrangement on the chip shooter machine.  

The authors’ state that the solution approach developed can be integrated into a process 

planning system to reduce assembly time and improve productivity. The solution 

approach proposed minimizes the placement time of a turret head placement machine. 

The solution approach involves constructing an initial solution based on some 

characteristics and set of rules of the placement machine and then using a two-opt 

improvement algorithm to improve the initial solution. In order to evaluate the proposed 

solution approach, the authors have developed an estimator function for the placement 

time of the turret head placement machine. This estimator function has been developed 

using the operational characteristics of the turret head placement machine, such as the 

PCB table speed, turret head speed, concurrent mechanisms, and the feeder carriage 

speed. This solution approach resulted in placement times that are lower than those 

obtained from commercial software.  

Kimberly et al [12] have focused on obtaining the placement time required to 

populate a PCB using a particular model of the chip shooter machine, namely the Fuji 

CP4-3. In order to do this, the authors have developed a conceptual model of the 

placement time estimator function for a turret head placement machine. The placement 

time estimator function takes into account the operational characteristics of the chip 

shooter machine like the PCB table speed, concurrent mechanisms, the turret head speed 
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and the feeder carriage speed. The estimator function also takes into account the 

characteristics of the components to be mounted.  By means of experiments, the machine 

parameters that are relevant to the estimator function have also been determined. 

Experimental results indicate that there is no statistical difference between the estimated 

and the actual placement times. 

Gronalt et al [15] have proposed a heuristic solution to efficiently switch 

components in a multiple machine and multiple board environments. The authors have 

decomposed the component switching problem into component set up and component 

assignment problems. The proposed method uses a recursive heuristic – mixed-integer 

linear optimization model. The heuristic consists of two stages. The first stage of the 

recursive heuristic is used to determine the component set up for a sequence of board 

types to be assembled on a single placement machine. This has been achieved by using a 

modification of the ‘keep component needed soonest’ policy. In the second stage reels of 

the component types are assigned to the feeder slots of the carriage. Both the stages are 

solved iteratively, and the solutions to the set up problem provide the basis for solving the 

assignment problem. 

In [9] Depuy et al have developed a component allocation methodology which, 

for one component, allocates multiple feeder slots among multiple placement machines. 

The objective of their research was to minimize the work load and therefore reduce the 

cycle time for a printed circuit board assembly system. In order to do this, the problem 

has been formulated as a mixed 0-1 integer programming model that takes into account a 

number of operational characteristics.  By this approach the authors have shown that the 

cycle time can be greatly improved by assigning components among multiple machines. 
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Crama et al [6] have focused on minimizing the make span of a PCB assembly 

process. The authors deal with the component retrieval problem which arises when 

component reels are assigned to multiple feeder slots. The component retrieval problem 

deals with determining the feeder slot from which components have to be retrieved for 

each related component placement on the board. The component retrieval problem has 

been formulated as a longest path problem in PERT/CPM network; that is the component 

retrieval problem was been formulated as a shortest path problem with side constraints. 

The authors have proved that this problem can be solved in polynomial time. They have 

also proved that a straight forward dynamic programming approach to solve the 

component retrieval problem with not necessarily yield an optimal solution. Therefore the 

authors have proposed a two phase dynamic programming approach which can be solved 

in polynomial time. 

Crama et al [7] have focused on the planning problem of assembling different 

types of boards using a single line of placement machines. Three planning problems have 

been considered in this paper; a) finding a feeder rack assignment for each machine b) 

component placement sequence for each board type and each machine c) the component 

retrieval sequence for each machine board pair. A solution approach based on the 

hierarchical decomposition of the planning problem has been proposed. A heuristic has 

been used to solve the feeder rack assignment problem and the other sub problems have 

been solved using constructive heuristics and local search methods. In order to compute 

the feeder rack assignment without computing the placement sequence and the 

component retrieval plan, an estimate of the make span for each board and each machine 

for given feeder rack arrangement has been computed. Later these estimates have been 
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used as an indicator of the quality of the feeder rack assignment. The authors have also 

proved that, it is possible to obtain a feeder carriage assignment and a component 

placement sequence such that the subsequent components can be retrieved from 

consecutive feeder slots. 

Bard et al [5] have focused on three issues a) component placement sequence b) 

assigning component reels to the feeder slots and c) the sequence in which components 

must be retrieved in case a particular component type is assigned to more that one feeder 

slot. All of these problems have been formulated as non linear integer programs. The 

authors have developed a series of algorithms to solve each of the above problems 

iteratively using a two step approach. The component placement sequence has been 

obtained using a weighted nearest neighbor traveling salesman problem heuristic. The 

feeder slot assignment and the component retrieval problem have been formulated as a 

quadratic integer program. The authors state the quadratic integer program is difficult to 

solve and hence have decomposed the quadratic IP into two sub problems by using 

Lagrangian relaxation techniques. The results of the two sub problems are then combined 

to obtain good solutions. Finally the current feeder carriage assignments are used to 

update the component placement sequence. 

The other advantage of the multiple allocations of components to feeder slots is 

that it helps to balance the assembly line. In [3] Ammons et al have considered a 

component allocation problem in which there are more than one placement machines. 

These machines may or may not be identical. The objective of their research is to balance 

the assembly line. The line balancing problem has been formulated as a large scale 

integer programming model which takes into account multiple and non identical 
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machines. The model has been solved using two methods. The first method uses a 

heuristic based on list processing in order to solve a simplified version of the 

component/line balancing problem. The second method involves using a LP based branch 

and bound mathematical software called MINTO to solve the whole problem. 

In related research Depuy et al [10] have considered the component allocation 

problem for coupled automatic placement machines. Their objective is to determine 

which machines place which component types and therefore reduce/balance the printed 

circuit board assembly line. In order to do this a large scale 0-1 mixed integer program 

has been presented. To solve the large scale integer programming model, the authors 

have proposed two methods. The first method deals with model simplification and data 

aggregation in order to reduce the size of the problem. In the second method, an integer 

programming heuristic has been developed by modifying a LP based branch and bound 

mathematical programming software. 

Grunow et al [17] discuss the problem of assembly line balancing in modular 

placement machines in order to obtain the desired output rate. This paper focuses on three 

issues; a) determination of the number of feeders for each component type to be used b) 

assignment of component reels to modules and c) assignment of placement operations to 

modules. The third problem is referred to as the workload balancing problem. In order to 

solve these problems the authors have proposed an integer program and two heuristic 

solution procedures. In both the heuristics the first stage is used to generate a feasible 

solution satisfying the constraint of limited component magazine capacity at each module 

of the placement machine. The second stage deals with balancing the workload of each 

module in order to minimize the cycle time. In order to balance the work load the authors 
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have presented two alternatives. The first alternative uses priority rules in order to 

remove the bottlenecks in the workload. This is achieved by reassigning some of the 

assembly operations to other modules of the machine. The second alternative determines 

the optimal solution by solving an IP.  

  Zijm and Harten [23] discuss the design of a process planning system of a printed 

circuit assembly line, which is hierarchically structured.  The authors have considered an 

assembly line that has a pipette head as a placement machine. The objective of the 

authors is to balance the workload at different machines and thereby minimize cycle time. 

This is achieved by determining the number of reels of each component type to be used. 

The authors have also shown that the process planning problem can be decomposed into a 

series of hierarchically coupled sub problems and each of these problems are of 

combinatorial structure. Models and solution techniques for solving the sub problems are 

also discussed.  

  Neammanee and Randhawa [20] have focused on the problem of assigning boards 

to production lines with the objective of minimizing the assembly time. The authors state 

that the board assignment and component allocation have to  be performed concurrently 

as the set up  times are sequence dependent.  In order to solve this problem an integrated 

methodology having seven phases has been proposed. The seven phases are  

 a) Grouping the printed circuit boards. 

 b) Family decomposition.  

 c) Sequencing of sub families.  

 d) Keep tool needed soonest (KTNS) procedure.  

 e) Determination of component set up.  
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 f) Component allocation.  

 g) Board assignment.  

  The effect of two parameters, capacity of the feeders and threshold value 

(indicates the effectiveness of joining a component type to a component group), on the 

proposed solution procedure has also been studied. The outcome of the study indicates 

that the capacity of the feeders influences the total workload imbalance but does not have 

any effect on the total assembly time. The threshold value was found to have a significant 

effect on the total make span. The interactions of the threshold value, variations in 

requirements of PCB’s and component usage, also have a significant effect on the global 

make span. Moreover the authors have also shown that their proposed methodology can 

solve large scale problems quickly and efficiently. 

Francis and Horak [13] have proposed an integer program and a bisection 

algorithm for determining number of reels of each component type to be used. This 

model aims to maximize the number of boards that can be assembled before the first reel 

runs out. 

Ahmadhi et al [1] have considered a pick and place machine with two feeder 

carriers for the delivery of components to the placement head. The issues that arise in the 

optimization of pick and place machines with dual carriers are a) the number of reels of 

each component type to be allocated b) the assignment of each reel to the carrier c) the 

alternating pick and place sequence between each carrier and the PCB d) the position of 

each reel on the assigned carrier. In this paper the authors have focused on two issues; 

component allocation and partitioning. In component allocation, the objective is to 

determine the number of reels of each component type to be used. In order to do this the 
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authors have developed an integer program model that maximizes the number of boards 

that can be made by a single allocation of components to the carriers, without any 

replenishment. Once the number of reels of each component type to be used is 

determined, the objective of the partitioning problem is to determine on which two feeder 

carriers each component reel has to be assigned. The author states that the partitioning 

problem is very important as it greatly affects the throughput time. The partitioning 

problem has been formulated as an integer program that uses the output of the component 

allocation problem to minimize the dead time. Dead time is the down time incurred due 

to operation imbalance, excess rotation of each head and nozzle changes. Moreover for 

each problem three different scenarios have been considered which vary depending on 

the fixtures used for the delivery of components and the pick sequence.  

 Ho and Ji [18] have focused on two placement problems of a turret head 

placement machine; a) arrangement of component types to the slots in the feeder carriage 

b) sequence of the pick and place operations. The authors have proposed a hybrid genetic 

algorithm to determine the optimal placement sequence and the feeder arrangement 

simultaneously. The hybrid genetic algorithm uses different search heuristics such as, the 

nearest neighbor heuristic, the 2 opt heuristic and a new heuristic called iterated swap 

procedure. In the algorithm, the chromosome is represented by means of a two link 

structure; the first link represents the component placement sequence and the second link 

denotes the feeder arrangement. The initial population for the first link is generated by 

means of the nearest neighbor heuristic and randomly for the second link. Then an 

iterative swap procedure is applied to the first link and a 2 opt heuristic is applied to the 

second heuristic. This is then followed by selection, modified crossover and heuristic 
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mutation operations. The authors have also shown that the proposed hybrid genetic 

algorithm gives better results than a simple genetic algorithm.  

In [21] Ramasamy et al have developed a feeder carriage replenishment policy for 

a turret head placement machine. The objective of the authors is to reduce the idle time of 

the turret head placement machine due to frequent replenishments by using multiple 

allocations of components to the feeder carriage slots and effectively synchronizing the 

feeder exhausts. A mixed 0-1 integer program has been presented to do the same. The 

proposed model differs from other models in the sense, if a particular component is 

assigned to more than one slot, than the demand for that component type is split among 

all the slots. That is an additional problem of determining how many components of each 

component type has to be picked from each slot arises. Since the model is based on the 

fragile synchronization of the feeder exhaust any variation in reel sizes can disrupt the 

synchronization therefore increasing the number of replenishments. In order to counter 

the variation in reel sizes due to supplier allowances, a policy called the Fixed 

Replenishment (FR) policy has been proposed. 
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CHAPTER 3 

PROBLEM FORMULATION 

 

As described in chapter 1, each time the feeder slots of the turret head placement 

machine runs out of components, the machine stops and waits to be replenished. The 

downtime incurred due to frequent replenishments can be considerably high. This chapter 

deals with the first objective described in chapter 1; maximize the number of boards that 

can be made by a single allocation of components to the feeder slots and therefore reduce 

the idle time due to feeder replenishment. This in turn requires determining which 

component types are to be allocated to the surplus slots. In this chapter a dynamic 

programming (DP) model is presented along with the assumptions and notations. The 

model is also illustrated with a small example. 

 

3.1 Assumptions 

Some of the assumptions that have been made while formulating the DP model 

are 

1. Each component type reel can be accommodated in a single slot; that is 

the width of the reels are lesser than the width of the feeder slots 

2. All the surplus slots have to be used 

3. The reel sizes and demand are already known; they are deterministic 
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4. There are no variations in reel sizes 

5. Each slot has one mandatory reel 

  Notice that assumption 2 is made to reduce the number of computations since it is 

always better to use all the surplus slots. 

3.2 Notations 

T Number of different component types = Number of stages 

t Index for the component types ; t = 1 to T 

S Total number of surplus slots 

rt Reel size of component type t 

dt Demand of component type t in each board 

Xt Number of surplus slots available to assign to component type t, t+1, 

t+2, …T; Xt = 0 to S 

Yt Number of extra reels of component type t to assign to the surplus 

slots; decision variable 

Rt(Yt) Number of boards that can be made using Yt reels of component type 

t; Yt = 0 to Xt

Ft(Xt) Maximum number of boards that can be made stages t through T 

given that current state is Xt

 

3.3 Model formulation 

Dynamic programming (DP) is a method of decomposing problems that are hard 

to solve, into smaller problems that can be solved easily. In order for a problem to be 



formulated as a DP, it has to be a Markovian process, that is, the future must depend 

only on the present.  

  In order to formulate a problem as a DP, the stages of the system have to be 

identified. In our problem, the different component types, t = 1 to T is considered to 

be the different stages of the system. By this manner the sequential property is 

induced into the system. Next, the state of the system has to be defined in such a way 

that it completely describes the system. In our problem, the decision to be made is 

determining which components to assign to the surplus slots. The state of the system 

at each stage is defined as the number of surplus slots at that stage. The decision to be 

made in each stage t when the system is in the state Xt, is how many reels, Yt, of the 

component type t have to be assigned to the surplus slots. Once a decision (Yt) is 

made, a return Rt(Yt) is generated. The return is the number of boards that can be 

made by using Yt+1 reels of component type t. Based on the decision made, the 

system is transformed into a new state at the next stage. Because of the way the 

problem is set up, it can be clearly noted that the problem is Markovian.  

 The objective is to maximize the total return (number of boards) over all the stages.  

Hence the problem can be stated as  

)]}tYt(X1tF),t(Yt{Min[R
tX tY 0

Max)t(XtF −+≤≤
=        Tt ≠∀                               (1) 

                                                                                    and SX t  ,1... 0=  

)()( TTTT XRXF =                                                                              (2) SX T 0,1...=

Where 

td
1)t(Ytr)t(YtR

+∗
=                                                     

tX tY
T t

0,1...
1,2..
=∀

=∀
                    (3) 
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  The above formulation represents a backward recursive dynamic programming 

approach. Equation (1) determines the maximum number of boards that can be made over 

all the stages. Equation (2) determines the return for the stage t = T. We have Yt = Xt 

because of the assumption that all surplus slots available will have to be used.  Equation 

(3) determines the number of boards that can be made using Yt+1 reels of component 

type t. The number of boards that can me made can be determined by multiplying the reel 

size of a component and the number of reels used and then dividing this amount by the 

demand for that component type. In equation (3) Yt + 1 is used instead of Yt because Yt 

represents the number of extra reels to be used and due to the fact that one reel of each 

component type has already been assigned to the mandatory slots. 

  To begin with, the number of boards that can be made for the states in the last 

stage, t = T, is determined using equations (2) and (3). Then for the states in the stage T-

1, the number of boards that can be made is determined using equation (1). Equation (1) 

uses the information obtained from the previous stage and the return of the current stage 

to determine the maximum number of boards that can be made for all the states in that 

stage. That is the return for a particular state and a stage t represents the best result for 

that stage t and the previous stage t+1.  This kind of backward recursion is continued 

until stage 1 and the maximum number of boards obtained in stage t = 1 represents the 

optimal result over all the stages. In order to get the optimal allocation plan the results 

obtained in stage t = 1 would have to be back tracked. 

  A diagrammatic representation of the DP model with four different component 

types and three surplus slots is shown in Figure 3.1.  



t=1 t=2 t=3 t=4 
X2=3 

3 3 3 
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  In Figure 3.1, the numbers inside the circles represents the number of surplus slots 

(states) available. At the end of the stage t = 4 the number of surplus slots available is 

zero because of the assumption that in the last stage all the available slots have to be 

used. Xt represents the states and Yt represents the decisions taken in each state.  

 

3.4 Example 

  In order to further illustrate the working of the dynamic programming model an 

example is presented below. The example consists of four different component types and 

three surplus slots. The data for the example problem are given in Table 3.1. 

 

 

                        
 
 

0

Figure 3.1: DP representation 
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                           Table 3.1: Example data 
Component type (t) Reel size (rt) Demand (dt) 

1 3000 20 
2 2000 10 
3 1000 30 
4 2000 10 

 

  Since this is a backward recursion, the DP starts from stage t = 4. This 

information is given in Tables 3.2, 3.3, 3.4, and 3.5. 

                                              Table 3.2: Stage t = 4 
Xt Yt Rt(Yt) Ft(Yt) 
3 3 800 800 
2 2 600 600 
1 1 400 400 
0 0 200 200 

 

              Table 3.3: Stage t = 3 
Xt Yt Rt(Yt) 

(3) 
Ft+1(Xt-Yt) 

(4) 
Min (3),(4) Ft(Xt) 

0 33 800 33 
1 66 600 66 
2 100 400 100 3 

3 133 200 133 

133 

0 33 600 33 
1 66 400 66 2 
2 100 200 100 

100 

0 33 400 33 1 1 66 200 66 66 

0 0 33 200 33 33 
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              Table 3.4: Stage t = 2 
Xt Yt Rt(Yt) 

(3) 
Ft+1(Xt-Yt) 

(4) 
Min (3),(4) Ft(Xt) 

0 200 133 133 
1 400 100 100 
2 600 66 66 3 

3 800 33 33 

133 

0 200 100 100 
1 400 66 66 2 
2 600 33 33 

100 

0 200 66 66 1 1 400 33 33 66 

0 0 200 33 33 33 
 

                        Table 3.5: Stage t = 1 
Xt Yt Rt(Yt) 

(3) 
Ft+1(Xt-Yt) 

(4) 
Min (3),(4) Ft(Xt) 

0 150 133 133 133 
1 300 100 100 100 
2 450 66 66 66 3 

3 600 33 33 33 
 

  Now in order to get the optimal allocation plan the results from Table 3.5 have to 

be back tracked. From the Table 3.5 it can be seen that the best result (maximum number 

of boards that can be manufactured by a single allocation of component type reels) is 133, 

which corresponds to X1 = 3 and Y1 = 0. This  results in the system transforming to state 3 

in stage 2 for which best result is 133, for Y2 = 0. The system now transforms to state 3 in 

stage 3 for which the best result is 133 for Y3 = 3. Finally the system transforms to state 0 

in stage 4, corresponding to Y4 = 0. In order to further illustrate the above sequence of 

events Figure 3.2 is presented. 

 



t=1 t=2 t=3 t=4 
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  The above diagram can be interpreted as follows. The maximum number of 

boards that can me made by a single allocation of component reels is 133. In order to 

manufacture 133 boards, 0 extra reels (Y1=0) of component type 1(t = 1) are used. This 

results in three surplus slots available for component type 2 (t =2). Now zero extra reels 

(Y2 = 0) of component type 2 (t = 2) are used. This results in three surplus slots available 

for component type 3 (t = 3). Now all the 3 extra reels (Y3 = 3) of component type 3 are 

assigned to all the three surplus slots resulting in no surplus slot available for component 

type 4 (t = 4). (That is 0 extra reels of component type 4 are used).  

  The example discussed above has 4 stages and 13 states. The number of stages for 

any problem is equal to the number of different component types. The total number of 

states for any problem can be obtained by using equation (4).  

                                  T1)(T S +−×=states ofnumber  Total                                         (4) 

   

0

Figure 3.2: Optimal solution 
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  For example, by using equation (4), the number of states for a problem with 10 

different component types (T = 10) and 5 surplus slots (S = 5), is 55. The complexity of 

the dynamic programming model proposed in this thesis can be evaluated by multiplying 

the number of cost calculations and the time for one cost calculation. Let n represent the 

number of cost calculations and z the time for one cost calculation. Then the number of 

cost calculations n can be obtained from equation (5).  

                           
2

2)(T2)(S1)(S1)(S2n −×+×+
++×=                                               (5) 

  For example, by using equation (5), the number of cost calculations for the 

example discussed is section 3.4 is 28. The time for one cost calculation, z, for the DP 

model proposed in this thesis can be obtained from equation (6).  

                                                     lez ×=                                                                         (6) 

where e is the number of elementary operations (addition, subtraction, multiplication, 

division and comparison) performed for one cost calculation and l is the time taken by the 

computer for performing one elementary calculation. For the DP model proposed in this 

thesis, 3 elementary operations are performed to obtain one cost calculation and hence e 

is equal to 3. l is a constant and depends upon the computer hardware. 

  The complexity of the proposed DP model can be evaluated by multiplying n and 

z. If r represents the maximum of S and T, it can be observed that since z is a constant, the 

complexity (worst case) of the model is O(r3).  
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3.5 Alternative solution approaches 

   In the following section two alternative solutions to solve the feeder allocation 

problem is presented. The first solution approach is the IP formulation proposed by 

Ahmadhi et al [1]. The second method is a sequential search method. 

 

3.5.1 IP formulation 

Let b represent the number of boards that can be made before the first reel runs 

out. Then the IP formulation for the feeder allocation problem is given as 

                                                                                                                    (7) b Max

S.T 

                                   
t

tt

d
Y×r

b
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≤                                              (8) T ..t 2 1, =∀
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                                               Yt and b are integer 

 

3.5.2 Sequential search approach 

 In this approach the number of boards that can be made without using any extra 

slot is computed for each of the component types. The minimum value of the number of 

boards indicates which component type would run out first. That particular component  

type is assigned to the first surplus slot. Next the number of boards that can be made 

using each of component types including the component type assigned to the surplus slot 
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is again computed. The minimum value of the boards would indicate which component 

type would run out next. That component type is assigned to the second surplus slot. This 

process is continued until all surplus slots are assigned. This procedure also gives the 

optimal solutions for the feeder allocation problem. The pseudo-code of this procedure is 

given below. 

 

For each surplus slot (S) Do 

        )
1)(

(Argmin ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈ t

tt

d
+Y×r

=q
Tt

 

        Yq = Yq + 1 

Endfor 
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CHAPTER 4 

IMPLEMENTATION METHODOLOGY 

 

 This chapter deals with the second objective of this thesis. In the following 

sections a methodology of solving optimization problems using spreadsheets (spreadsheet 

based optimization) is presented. This is illustrated by building a user interface for the 

feeder allocation problem described in the previous section. To illustrate the methodology 

of spreadsheet based optimization using VBA, the DP model and the sequential search 

approach have been coded. The code of the DP model is presented in Appendix A and the 

code of the sequential search solution method in Appendix B. Furthermore to explain the 

use of the Excel solver, the IP model is implemented. 

 

4.1 Need for spreadsheet based optimization 

 Optimization problems are generally formulated as linear programming models or 

integer programming models. These models are commonly implemented using 

optimization packages such as Cplex, Lingo, and Lindo. The biggest disadvantage of this 

approach is that these software packages are expensive. Hence it is imperative that 

optimization problems be implemented keeping the cost involved in mind. This has been 

the main motivation for using spreadsheets in this research. Spreadsheets like Excel are  



comparatively cheaper than mathematical optimization packages. Though an IP 

formulation for the reel allocation problem exists, a dynamic programming model for the 

same has been formulated. The advantage of using the DP model is that it can be easily 

implemented using any of the available programming languages. 

In this research a user interface for the reel allocation problem has been built 

using Microsoft Excel. In today’s world almost every organization uses spreadsheets.  

The main reason for using Excel as an interface is that it is very versatile, simple to use, 

and requires little or no training. Apart from the feeder allocation problem, Excel can be 

used to solve a number of decision making problems [2]. It has many integrated functions 

like the Solver add-in and Visual Basic for application (VBA). For example, an IP 

formulation for the reel allocation problem can be solved using the Solver add- in or the 

DP model can be coded using VBA. The spreadsheets can be used as user interfaces. 

Moreover, these spreadsheet based interfaces, make managing data and interpreting 

results easy for the operators and the managers. This versatility and simplicity of Excel 

that have been the main reasons for spreadsheet based optimization gaining a lot of 

popularity of late. The difference between spreadsheet based optimization and non 

spreadsheet based optimization is illustrated by the Figures 4.1, 4.2 and 4.3. 

 End User 
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Excel 
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Figure 4.1: Spread sheet based optimization 1 
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 Figure 4.2: Spread sheet based optimization 2 
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 Figure 4.3: Non spread sheet based optimization 

 

 

 

 



4.2 Steps involved in spreadsheet based optimization 

 In the following section, potential steps involved in spreadsheet based 

optimization are discussed. In the methodology proposed in this thesis, there are five 

basic steps in spreadsheet based optimization ; identifying end user requirements/defining 

the objectives, designing the worksheets, building the model, integrating the worksheets, 

and testing the model. A diagrammatic representation of the steps involved in Excel 

based optimization is shown in Figure 4.4. 

Identifying end user 
requirements/Defining 

the objectives 

Designing the 
worksheets 

Building the model 

Integrating  
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Figure 4.4: Steps involved in spreadsheet based optimization 

Testing 
End user 
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4.2.1 Identifying end user requirements/Defining the objectives 

 The first step is identifying the requirements of the end user. This is a very crucial 

step owing to the fact that any errors committed in this stage would reflect in one of the 

latter stages and the entire process would have to be started from the beginning. This step 

involves meeting with the end users and finding out what exactly they want. Once the 

user requirements are identified, the problem has to be clearly understood and defined. In 

the reel allocation problem considered in this thesis, the user would want to determine 

how many reels of each component type should be used. This would be the problem 

statement or definition. After defining the problem, the method by which the problem 

would have to be solved should be determined. Since the optimization problem would 

have to be solved using Excel there are two options of doing this as described by Figure 

4.1 and Figure 4.2. In this thesis, the decision was made to use DP to solve the model. 

Once the type of model to be used is decided upon, input data and output required for the 

model will have to be identified. While doing this it is imperative to keep the end user in 

mind and keep things simple. It is very important to identify only the relevant data. This 

is one of primary principles of spreadsheet based modeling [8]. Unnecessary information 

or data can be avoided. For example, the input data required for the reel allocation 

problem are the number of different component types, the number of surplus slots 

available, the demand per board of each component type and the number of components 

in each reel (reel size). The output generated by the model is the number of reels of each 

component type to be used. Finally the assumptions made will have to be specified. The 

steps described above are represented by means of Figure 4.5. 
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Figure 4.5: Identifying end user requirements 

   

4.2.2 Designing the worksheets 

 The second step in spreadsheet based optimization is the design of worksheets. 

This step requires a lot of planning and foresight as it determines the entire structure of 

the user interface. The importance of a good design cannot be overstated as it determines 

the ease with which end users can work with the interface.  

 The first step in designing the worksheets is grouping like data together. This will 

usually result in three categories, input, output and calculation worksheets. The idea 

State the assumptions 
made 

Clearly define the 
problem/ 

problem statement

Select appropriate 
model 

Meet with end users and  

Identify the required 
input data and output 

determine their needs  



behind doing this is to design separate worksheets for input, calculation and output so as 

to not to mix data and eliminate the possibility of any errors or confusion.  

After this is done, in the second step the introductory sheet can be designed, 

which gives the name of the model, briefly describes the purpose of the model, and gives 

the name(s) of the creators of the model. An introductory sheet designed for the reel 

allocation problem is shown below in Figure 4.6. 

 
                                      Figure 4.6: Example of an introductory sheet 

 The third step is designing the input sheet, calculation sheet and result sheet. It is 

imperative to note that a calculation sheet might not be needed if all the calculations are 
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performed using VBA. But if Excel solver is being used, a calculation sheet will be 

needed. 

In Excel when new sheets are created, default names for the sheets are 

automatically assigned. These sheets can be given a name, such that it conveys to the user 

what the sheets is being used for. For example input sheet, results sheet etc. The 

methodology followed for designing the input sheet is described below. If possible the 

input page should be used to take input from the end user and not for performing 

calculations. The beginning of the input page should list out the steps the end user would 

have to follow. This is done in order to help the user navigate through the input sheet 

with ease. An example of this is shown in Figure 4.7. 

 

 

 



 
Figure 4.7: Example (1) of input sheet  

 Once the procedure is specified, the steps outlined in the procedure can be laid out 

one below the other in a logical manner. An example of this is shown in Figure 4.8.  
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Figure 4.8: Example (2) of input sheet 

It can be seen from Figure 4.8 that, the number of component types and surplus 

slots is asked from the user before asking for the reel sizes and demand values.  

 Sometimes the data required from the user may be dynamic, that is it changes 

depending upon some parameter. For example, in the reel allocation problem, number of 

reel size values and demand values that has to obtained from the user depends upon the 

number of different component types. Hence the number of reel sizes and demand values 

are dynamic. Obtaining this kind of dynamic data can be made possible by use of 

“buttons”. Buttons are objects that are provided by Visual Basic. These buttons can be 

used on any Excel sheet. Each button can be programmed (that is a Visual Basic code can 
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be written) to execute some action. That is why they are called event triggered 

procedures. This is illustrated by Figures 4.9 and 4.10. 

Button that generates the input 
area for the reel sizes and demand 
based on value entered in Step 1 

Figure 4.9: Example (1) of use of buttons 
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On pressing the button “Reel size and 
demand”, input space for 4 reel size and 
demand values are generated 

Figure 4.10: Example (2) of use of buttons 

It can be seen from Figures 4.9 and 4.10 that once, the number of component 

types is entered in Step 1 and the button “Reel size and demand” is pressed, the required 

input area for entering the reel sizes and demand values is generated.  

The methodology described in the above sections can be used to design the results 

sheet and calculation sheet. Figure 4.11 shows the design of the results sheet. 

 

 

 

 



 
Figure 4.11: Example of results sheet 

It is imperative to note that, this research emphasizes on solving the reel 

allocation problem using DP. Hence a calculation sheet is not used. If the problem is 

solved using the solver, then a calculation sheet will have to be designed. When 

designing the calculation sheet, it would be better if separate modules are created for the 

decision variables, objective function and constraints [4] .An example of a calculation 

sheet is shown in Figure 4.12. 
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Figure 4.12: Example of calculation sheet 

 There are few other design aspects that relate to design of any sheet. In order to be 

systematic the sheets can be designed in a sequential manner; that is the user input sheet 

can be designed first, then the calculation sheet, and finally the result sheet. The 

reasoning behind this is that, while solving any problem the input is collected first, then 

calculations are performed and finally results are presented. Colors can be used to help 

the users navigate through the worksheet. For example all the input cells can be in one 

color and all cells in which output is displayed in another color. All the cells except those 

which take input from the user or displays results can be hidden. This again can be done 

by using colors. If the user commits any mistake while entering data or wants to resolve 

the problem with different data, an option of automatically resetting the data or clearing 
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the data can be provided. This can be done by the use of buttons. An example of this is 

shown in Figures 4.13 and 4.14. 

On pressing this button all data 
entered in Steps 1, 2 and 4 will 
be cleared 

 
Figure 4.13: Example (1) of resetting data 

As shown in Figure 4.13 let us assume the user initially wants to solve the 

problem for 3 component types, but then decides there are 4 different component types. 

On pressing the “Reset Data” button all the previously entered data will be lost as shown 

in Figure 4.14. 
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Previously entered 
data cleared 

Previously entered 
data cleared 

Figure 4.14: Example (2) of resetting data 

Another design related issue is that the end users should also be restricted from 

making any modifications to any of the worksheets. Most importantly the users should be 

prevented from adding or deleting rows or columns. This can be done by password 

protecting the worksheets.  

 

4.2.3 Building the model 

 As the choice of the model and the decisions pertaining to the model like the 

inputs and outputs have already been identified in Step 1 of the procedure, building the 

model is a relatively easy and a simple task.  

 The first step in building the model, is formulating the model. For the reel 

allocation problem, the model has been formulated as a dynamic programming model 

which has been explained in chapter 3. After formulation, the second step involves 
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coding the model. Coding the model can be done using VBA. This is one of the 

advantages of using Excel. Almost all of the functions that Excel provides are also 

available in the VBA. The cells in the Excel worksheet can be referenced in the Visual 

Basic program and assigned to any variable by using the following syntax. 

Variable name = Application.SheetName.Cells (a, b) 

                                                                        Or 

                               Variable name = Application.SheetName.Range (“Range Values”) 

where a and b are the cells coordinates. By referencing cells in the manner shown above, 

the integration of the worksheets and VBA is achieved. Excel also provides the flexibility 

of calling the Solver by using VBA so that the user would not have to do it manually. 

Moreover it also prevents the user from making changes to the Solver. The procedure of 

calling Solver from VBA is shown below. 

                                                        SolverOk 

                                                        SetCell:= Objective function cell 

                                                        MaxMinval:=  1,2 or 3 

                                                         By changing:= decision variable cells 

                                                         Solver Add cellRef:= constraint cells 

The SolverOk command is used to define the objective function and the decision 

variables. The SetCell command is used to define objective function and the By changing 

command is used to define the decision variables. MaxMinval is used to denote whether 

the objective function is maximized (1), minimized (2) or solved for a particular value 

(3). The Solver Add cellRef command is used to specify the constraints. The SolverReset 
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command is used each time before the Solver is called to reset all the previously entered 

objective function, decision variables and constraints. 

 While programming, it is advisable to use comments in appropriate places, in 

case some modification to the model would have to done by a different person in future.  

 

4.2.4 Integration 

 In the methodology proposed in this thesis, integration refers to two levels of 

integration. First the VBA must be integrated with the worksheets and then the different 

worksheets must be integrated together. This is done so that the entire interface works 

seamlessly.  

 To begin with input sheet should be integrated with the VBA and then the VBA 

module should be integrated with the calculation sheet (if a calculation sheet exists) and 

the result sheets. As described in the previous step a part of this integration can be 

achieved by means of cell referencing. For achieving full integration, buttons can be 

used. By full integration, it is meant that the once all the data have been input, by just one 

click of the button, the interface must accept the input (integrating input sheet with the 

VBA), process the input (integrating the VBA with the calculation sheet) and finally 

display the results in the results sheet (integrating the VBA with the results sheet). For 

example in the user interface considered in this thesis, the functions stated above are 

achieved by means of the button named “Solve”. Once the user enters all the required 

data and presses the “Solve” button, the results are automatically displayed in the results 

page. Usually when the “Solve” button is pressed the screen tends to flicker when 



processing the data. This can be avoided by using Excel’s screen updating command in 

the Visual Basic code, which is shown below. 

Application.ScreenUpdating = False 

 In order to make the application user friendly, messages should be displayed to 

the user at appropriate times. For example when the user forgets to enter data and tries to 

solve the problem or when a solution is found, messages must be displayed indicating 

that. This can be done by using message boxes in the Visual Basic code. An example of 

this is shown below in Figures 4.15 and 4.16.  

 
Figure 4.15: Example (1) of messages 

When the user clicks on the “Solve” button a message indicating the user to wait 

is displayed as shown in Figure 4.15. When the user clicks on “OK”, another message 

indicating that the optimal allocation plan is obtained is displayed as shown in Figure 

4.16. 
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Figure 4.16: Example (2) of messages 

 The second level of integration deals with the integration of the individual 

worksheets; the introductory sheet, the input sheet, calculation sheet and the results sheet. 

At any point in time, it is advisable to make only one worksheet be visible to the user. 

That is the user can navigate from one sheet to another by the use of buttons. Thus 

buttons serve to integrate one sheet with another. For example in the interface constructed 

in this thesis, when Excel is opened each time, only the introductory or the welcome 

sheet is visible. This is achieved by using the following set of code. 

                                   Worksheets ("Welcome").Visible = True 

                                           For Each ws In ActiveWorkbook.Worksheets 

                                                            If ws.Name <> "Welcome" Then 

                                                                    ws.Visible = False 

                                                               End If 

                                    Next ws  
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The name of the introductory sheet is “Welcome”. Each time Excel is opened, the 

“Welcome” sheet is made visible and all other sheets are invisible. When the button 

“Allocation Model” is pressed, the “User Input” sheet is made visible and all other sheets 

are made invisible by the using same procedure described above, within the code of the 

button. Similarly when the “Results” button is pressed, the “Results” sheet becomes 

visible and all other sheets becomes invisible. To return back to the input sheet from the 

results sheet and back button is provided in the results sheet. By this way, just by using 

buttons all the sheets are integrated. But it is imperative to note that if a calculation sheet 

is used, it should always remain invisible to the user. 

 

4.2.5 Testing 

 After all the sheets have been integrated, it is always best to test the working of 

the model by running a few examples. This would help in identifying the bugs and 

correcting the problem. In order to check if the model is giving the correct results, a 

number of problems must be solved using the model constructed and another already 

established model (if one exists). For example, for the reel allocation problem considered 

in this thesis, the output of the dynamic programming model has been tested with the 

output of the IP formulation proposed by Ahmadhi et al [1]. 
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CHAPTER 5 

EXPERIMENTATION AND RESULTS 

 

 In this chapter the dynamic programming model for which an Excel based 

interface has been built is tested with a number of problems. The results of the model are 

tested with the integer programming model proposed by Ahmadhi et al [1]. The test 

problems have been divided into three categories based on the size of the problem; small, 

medium and large scale problems. The small problems deal with 10 to 20 slots for the 

feeder carriage, the medium size problems deal with 21 to 40 slots, and the large scale 

problems deal with 40 to 60 slots. 

 

5.1 Small scale problems 

 The input data for the small scale problems is presented below. Five different 

scenarios (different PCB types called S1, S2, S3, S4, S5) are presented which vary in the 

number of component types, number of surplus slots, the demand and the reel sizes. The 

data were generated from a uniform distribution. The parameters for demand values are 

between 1 and 30 and the parameters for the reel sizes are between 1000 and 6000. 

Tables 5.1, 5.2 and 5.3 give the details of each PCB type such as the number of 

components, number of surplus slots, demand and reel sizes. 
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              Table 5.1: Number of components and surplus slots for small scale problem 
       PCB type Number of components Number of surplus slots 

S1 10 10 
S2 12 8 
S3 15 5 
S4 18 2 
S5 19 1 

 
        Table 5.2: Demand for components of each PCB type for small scale problems 

Component type 
PCB 
Type  

1 2 3 4 5 6 7 8 9 10 

S1 10 3 15 22 22 24 1 10 21 4 
S2 14 2 15 16 17 19 3 12 15 9 
S3 16 4 23 12 12 15 10 16 14 15 
S4 2 12 16 16 9 7 13 2 8 3 
S5 11 9 7 4 2 13 2 14 12 7 

Component type 
PCB 
Type 

11 12 13 14 15 16 17 18 19  

S1 - - - - - - - - -  
S2 14 4 - - - - - - -  
S3 22 5 4 16 3 - - - -  
S4 20 1 21 21 3 17 8 18 -  
S5 10 14 11 13 1 13 7 1 10  

 

        Table 5.3: Reel sizes for components of each PCB type for small scale problems 
Component type 

PCB 
Type  

1 2 3 4 5 6 7 8 9 10 

S1 2011 4160 2640 3884 3764 4652 4565 2459 2327 2011
S2 1949 2081 5809 4377 5541 5584 4936 5677 2833 1949
S3 3557 2350 4230 5401 4189 5227 4496 3284 3422 3557
S4 4710 3233 2459 1384 4345 5111 4800 4467 2683 4710
S5 3536 3046 4593 3905 4053 2042 2219 3406 4753 3536

Component type 
PCB 
Type 

11 12 13 14 15 16 17 18 19  

S1 - - - - - - - - -  
S2 3419 2419 - - - - - - -  
S3 2140 5165 1312 1423 5284 - - - -  
S4 3636 4709 4968 5416 2927 3752 3942 4652 -  
S5 3324 5278 2394 1664 5853 3228 5974 1540 5682 
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 The problems were solved using the DP model implemented using VBA. In order 

to test the accuracy of the DP model, the IP proposed by Ahmadhi et al [1] model was 

solved using Cplex version 8. All the problems were solved using a Pentium IV, 2GHz, 

256 MB RAM computer. Table 5.4 shows the number of boards that can be made by a 

single allocation of components with and without using extra slots. Table 5.4 also 

presents the result obtained from the IP model proposed by Ahmadhi et al [1]. 

     Table 5.4: Solution for small scale problems 
Number of boards 

PCB type Without extra slots Using extra slots 
(DP model) 

Using extra slots 
(IP model-Cplex) 

S1 117 360 360 
S2 138 378 378 
S3 67 177 177 
S4 153 181 181 
S5 128 158 158 

 

From Table 5.4 it can be seen that the DP model gives the same results as the IP 

model. Table 5.5 shows the component types allocated to the extra slots for each of the 

PCB types. 

                          Table 5.5: Component types allocated to the extra slots  
                                           for small scale problems 

Component types  
PCB type DP model IP model 

S1 3,4,4,5,5,6,6,9,9,9 3,4,4,5,5,6,6,9,9,9 
S2 1,3,3,4,5,6,10,11 1,3,3,4,5,6,10,11 
S3 1,1,3,11,14 1,1,3,11,14 
S4 4,5 4,5 
S5 14 14 

 

5.2 Medium scale problems 

The input data for the medium scale problems is presented below. All the data 

were randomly generated from uniform distribution. The parameters for demand values 
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are between 1 and 30 and the parameters for the reel sizes are between 1000 and 6000. 

Five different scenarios (PCB types called M1, M2, M3, M4 and M5) are considered. 

Tables 5.6, 5.7 and 5.8 give the number of components, number of surplus slots, the reel 

sizes and demand values for each of the PCB types. 

              Table 5.6: Number of components and surplus slots for   
                               medium scale problem 

       PCB type Number of components Number of surplus slots 
M1 22 18 
M2 25 15 
M3 30 10 
M4 35 5 
M5 38 2 

 

   Table 5.7: Demand for components of each PCB type for medium problems 
Component type 

PCB type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M1 1 2 2 1 3 1 3 3 1 2 3 3 1 2 3 
M2 19 10 6 5 4 4 2 2 1 1 1 1 1 6 4 
M3 8 2 12 18 17 19 1 8 17 3 5 1 1 4 5 
M4 4 1 6 2 9 8 2 7 2 2 1 6 9 1 6 
M5 9 4 4 9 1 6 5 1 1 9 8 5 5 6 7 

Component type 
PCB type 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M1 2 3 1 1 2 5 11 - - - - - - - - 
M2 4 2 2 1 1 1 1 1 1 1 - - - - - 
M3 1 6 7 11 7 8 7 18 9 9 6 19 16 19 5 
M4 5 5 2 1 9 4 5 3 4 8 1 1 4 4 4 
M5 5 5 6 8 2 2 5 1 6 9 1 7 2 9 9 

Component type 
PCB type 31 32 33 34 35 36 37 38        

M1 - - - - - - - -        
M2 - - - - - - - -        
M3 - - - - - - - -        
M4 2 6 9 7 9 - - -        
M5 5 7 9 7 2 6 1 7        
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 Table 5.8: Reel sizes for components of each PCB type for medium scale problems 
Component type 

PCB type 1 2 3 4 5 6 7 8 9 10 
M1 3669 3565 2128 1228 1958 1251 1381 1956 3184 1247
M2 4200 3000 3200 3800 2600 4400 3000 3000 4400 4500
M3 3152 3285 3661 4415 1882 4180 1540 1622 4108 4805
M4 4127 1194 4770 2563 3055 3687 2314 2316 4306 1408
M5 2192 2425 3148 4163 3218 2814 2559 3272 4658 1824

Component type 
PCB type 11 12 13 14 15 16 17 18 19 20 

M1 3566 2615 1598 3365 1133 2028 1633 3737 1302 3182
M2 4800 3900 3200 4300 3900 3600 4900 4800 3800 4400
M3 3203 1695 1719 3466 1810 2885 4746 1694 3897 2231
M4 3702 1562 3126 2911 2407 4505 3039 3194 2713 4438
M5 4641 4387 1144 3132 1647 2898 4054 1958 1854 2164

Component type 
PCB type 21 22 23 24 25 26 27 28 29 30 

M1 3456 4523 - - - - - - - - 
M2 4100 4400 4200 4400 3300 - - - - - 
M3 2146 2401 1371 4057 2804 3375 1556 2351 2887 3706
M4 3722 2583 3586 2651 4759 1960 1473 2511 3906 2471
M5 4765 1802 3862 1090 4424 3645 1479 1997 2838 1760

Component type 
PCB type 31 32 33 34 35 36 37 38   

M1 - - - - - - - -   
M2 - - - - - - - -   
M3 - - - - - - - -   
M4 3684 3833 2488 3840 1964 - - -   
M5 4794 1900 1132 2249 1062 4333 2787 2431   

 

It should be noted that the data for PCB type M2 were obtained from a high 

volume electronics manufacturer in Griffin, GA. The data for the rest of the PCB types 

were generated randomly. Table 5.9 shows the number of boards that can be made by a 

single allocation of components with and without using extra slots. Table 5.9 also 

presents the result obtained from the IP model proposed by Ahmadhi et al [1]. 
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     Table 5.9: Solution for medium scale problems 
Number of boards 

PCB type Without extra slots Using extra slots 
(DP model) 

Using extra slots 
(IP model-Cplex) 

M1 377 1233 1233 
M2 221 1105 1105 
M3 76 228 228 
M4 218 347 347 
M5 125 195 195 

 

Table 5.10 shows the component types allocated to the extra slots for each of the 

PCB types. 

              Table 5.10: Component types allocated to the extra slots for  
                                 medium scale problems 

Component types  
PCB type DP model IP model 

M1 3,4,5,7,7,8,10,11,12,15,15,
15,16,17,17,21,22,22 

3,4,5,7,7,8,10,11,12,15,15, 
15,16,17,17,21,22,22 

M2 1,1,1,1,2,2,2,3,3, 
4,5,6,14,15,16 

1,1,1,1,2,2,2,3,3, 
4,5,6,14,15,16 

M3 5,5,6,8,23,23,27,27,28,29 5,5,6,8,23,23,27,27,28,29 
M4 5,8,12,33,35 5,8,12,33,35 
M5 24,33 24,33 

 

5.3 Large scale problems 

The input data for the large scale problems is presented below in Tables 5.11, 

5.12 and 5.13. All the data were randomly generated from a uniform distribution. The 

parameters for demand values are between 1 and 30 and the parameters for the reel sizes 

are between 1000 and 6000. Five different scenarios (PCB types called L1, L2, L3, L4 

and L5) are considered. 
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              Table 5.11: Number of components and surplus slots for  
                                 large scale problem 

       PCB type Number of components Number of surplus slots 
L1 40 20 
L2 45 15 
L3 50 5 
L4 55 5 
L5 58 2 

   
 
   Table 5.12: Demand for components of each PCB type for large scale problems 

Component type 
PCB type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L1 5 13 3 7 10 5 1 10 6 1 7 13 10 8 4
L2 16 1 4 9 4 1 16 11 8 13 6 3 16 11 14
L3 18 12 14 17 11 2 7 3 7 11 3 14 19 10 16
L4 5 1 15 8 8 3 2 11 6 15 4 9 5 16 12
L5 5 12 1 6 10 5 13 8 10 3 9 4 9 2 10

Component type 
PCB type 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

L1 1 9 13 14 7 3 8 10 2 13 11 7 2 2 13
L2 12 13 7 16 6 15 10 16 8 6 12 12 5 10 2
L3 17 13 1 7 9 6 4 2 19 11 16 15 11 3 5
L4 8 11 10 3 7 14 7 3 4 11 12 14 4 11 6
L5 9 9 1 6 10 2 12 5 2 11 14 3 2 5 12

Component type 
PCB type 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

L1 2 7 7 9 1 1 4 12 7 4 - - - - - 
L2 5 2 8 13 14 3 15 3 7 3 8 17 16 8 6
L3 19 18 19 15 4 15 12 4 8 2 7 17 14 1 17
L4 6 4 10 7 15 9 15 16 11 14 4 5 4 11 2
L5 8 9 7 6 13 2 9 9 9 8 13 9 4 2 2

Component type 
PCB type 46 47 48 49 50 51 52 53 54 55 56 57 58   

L1 - - - - - - - - - - - - -   
L2 - - - - - - - - - - - - -   
L3 1 14 12 9 16 - - - - - - - -   
L4 13 3 1 15 12 8 11 8 5 10 - - -   
L5 9 11 7 14 10 11 10 4 4 2 6 11 11   
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     Table 5.13: Reel sizes for components of each PCB type for large scale problems 
Component type 

PCB type 1 2 3 4 5 6 7 8 9 10 
L1 1493 2415 2310 1681 2785 5167 3398 2696 4948 3875
L2 4245 5474 1056 1056 4645 4133 4333 1950 4330 4360
L3 3943 5488 2316 4977 2454 1478 4046 2886 2840 2750
L4 1327 4758 4019 5009 5903 3583 1105 4410 1713 1153
L5 2317 2827 4499 1782 1327 3644 2426 1126 1146 2951

Component type 
PCB type 11 12 13 14 15 16 17 18 19 20 

L1 4189 2051 4297 5831 1608 5058 4100 1090 3392 2303
L2 1681 3210 3459 4773 2436 3765 1941 3078 3706 4108
L3 3617 1997 3099 1006 1329 2672 5854 4737 5138 3289
L4 2271 2649 1675 2555 3240 2125 2402 4014 4631 5578
L5 3245 1331 3891 2586 2896 4219 1190 2374 3767 3032

Component type 
PCB type 21 22 23 24 25 26 27 28 29 30 

L1 3726 5676 1603 4707 1578 3379 5346 1017 5745 4453
L2 5338 3954 4845 3503 1380 5148 2289 1103 4727 3821
L3 1756 2136 2512 2774 2507 5165 3878 3421 3026 1166
L4 4368 5529 4693 1031 2703 1601 2740 4594 4415 2710
L5 2066 2990 2601 1245 1009 4242 4145 2095 1865 3895

Component type 
PCB type 31 32 33 34 35 36 37 38 39 40 

L1 2820 2263 3752 1966 5376 5210 5337 4107 3740 4330
L2 3656 4273 5135 2657 2522 4883 1693 2792 2778 1867
L3 3402 1645 4806 5930 5418 1844 4975 4621 2265 5994
L4 5341 5035 5293 2707 4774 1522 2304 4764 1798 3451
L5 1187 2976 3180 4151 3605 2795 4604 2927 1043 4444

Component type 
PCB type 41 42 43 44 45 46 47 48 49 50 

L1 - - - - - - - - - - 
L2 3276 3071 3974 5818 2877 - - - - - 
L3 3113 4475 1827 4167 5329 5669 5545 3613 2658 4273
L4 4744 1049 2256 3758 4925 3776 4548 4617 1693 2788
L5 4000 1040 1847 4486 4861 2436 4885 4205 3687 2580

Component type 
PCB type 51 52 53 54 55 56 57 58   

L1 - - - - - - - -   
L2 - - - - - - - -   
L3 - - - - - - - -   
L4 2504 1950 2542 2331 5694 - - -   
L5 2871 2119 4922 2137 1830 2108 1087 1067   
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Table 5.14 shows the number of boards that can be made by a single allocation of 

components with and without using extra slots. Table 5.14 also presents the result 

obtained from the IP model proposed by Ahmadhi et al [1].      

      Table 5.14: Solution for large scale problems 
Number of boards 

PCB type Without extra slots Using extra slots 
(DP model) 

Using extra slots 
(IP model) 

L1 83 342 342 
L2 112 248 248 
L3 83 166 166 
L4 76 159 159 
L5 91 98 98 

 

Table 5.15 shows the component types allocated to the extra slots for each of the 

PCB types. 

          Table 5.15: Component types allocated to the extra slots for large scale problems 
Component types  

PCB type DP model IP model 
L1 1,2,4,5,8,12,12,18,18,18,18, 

19,20,23,23,25,25,26,32,34 
1,2,4,5,8,12,12,18,18,18,18, 
19,20,23,23,25,25,26,32,34 

L2 4,4,8,13,15,17,19,25,27,28, 
34,35,37,37,42 

4,4,8,13,15,17,19,25,27,28, 
34,35,37,37,42 

L3 3,12,13,14,15,16,24,32,36,43 3,12,13,14,15,16,24,32,36,43
L4 10,10,26,37,49 10,10,26,37,49 
L5 25,58 25,58 

 

5.4 Analysis of results 

 The results obtained from the dynamic programming model for all the problem 

scenarios are same as the results obtained from the IP model proposed by Ahmadhi et al 

[1]. That is the DP model gives optimal solutions for the feeder allocation problem. It can 

also be seen from the results obtained, that using the surplus slots and assigning the right 

component types to the surplus slots, increases the number of boards that can be made by 
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a single allocation of components to the feeder carriage and thus replenishment is delayed 

as much as possible. That is for a given batch size, using the allocation plan obtained 

from the DP model would result in lesser number of replenishments.  In order to illustrate 

the reduction in the number of replenishments, an experiment was conducted with the 

medium scale problem. Let us assume the following batch sizes shown in Table 5.16 for 

the different PCB types of the medium scale problems. 

                                              Table 5.16: Batch size for medium 
                                                                 scale PCB types 

       PCB type Batch Size 
M1 3000 
M2 5000 
M3 5000 
M4 6000 
M5 6000 

  

Table 5.16 indicates that 3000 boards of PCB type M1 have to be manufactured, 5000 

boards of PCB type M2 and so on. The allocation plan obtained from the DP model for 

each PCB type is used and the number of replenishments that occur during the 

manufacture of the given batch sizes is shown in Table 5.17. 

      Table 5.17: Number of replenishments for medium scale problems 
Number of replenishments 

PCB type Without using 
extra slots 

Using extra slots % Reduction in 
replenishments 

 
M1 59 27 54.2 
M2 70 31 55.7 
M3 499 338 32.6 
M4 307 257 16.2 
M5 511 473 7.4 
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It can be seen from Table 5.17 that maximizing the number of boards that can be 

made by a single allocation of components decreases the number of replenishments. The 

percentage reduction in number of replenishments is also shown in Table 5.17.  

 This reduction in number of replenishments basically translates into gain in 

production time.  

 In order to further test the model, PCB type M2 was tested by varying the number 

of surplus slots and the number of boards that can be made by a single allocation of 

components is noted. This data, along with the percentage reduction in replenishments is 

provided in Table 5.18. 

               Table 5.18: Number of surplus slots Vs Number of boards 
Number of surplus slots Number of boards % Reduction in  

replenishments 
0 221 0.00 
1 300 14.29 
2 442 17.14 
3 533 22.86 
4 600 27.14 
5 650 28.57 
6 663 32.86 
7 716 35.71 
8 760 40.00 
9 884 42.86 
10 900 44.29 
11 900 45.71 
12 975 48.57 
13 1066 50.00 
14 1100 54.29 
15 1105 55.71 
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Figure 5.1: Number of boards Vs Number of surplus slots  

 Figure 5.1 shows the relation between the number of surplus slots used and the 

number of boards that can be made before the first reel runs out. It can be observed from 

Figure 5.1 that as the number of surplus slots increases, the number of boards that can be 

made by a single allocation of components increases, but not at a linear rate. For example 

the number of boards that can be made by using 2 surplus slots is 442 and the number of 

boards that can be made by using 3 surplus slots is 533. If the increase in number of 

boards is linear, when a surplus slot is added each time the number of boards that can be 

made before the first reel runs out increases by 91. Therefore by using 15 surplus slots 

1625 boards can be made. It can be observed from Figure 5.1 that since the increase in 

number of boards is not linear, the actual number of boards that can be made using 15 

surplus slots is 1105.     
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Figure 5.2: Percentage reduction in replenishments Vs Number of boards  

 Figure 5.2 illustrates the relationship between number of boards that can be made 

by a single allocation of components and the percentage reduction in number of 

replenishments. It can be noted that as the number of boards increases, the number of 

replenishments decreases and the percentage reduction in replenishments increases.  

 

5.4.1 Gain in production time 

 To estimate the gain in total production time, two variables, TA and TB, are 

defined. The variable TA is the total time taken for the feeder carriage to move back and 

forth from the feeder position plus the average time taken for the operator to become 

available, and the variable TB is the time taken to replenish a reel. Let ηj represent the 

number of replenishments without using extra slots when j reels are replenished 

simultaneously and µj the number of replenishments using extra slots when j reels are 
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replenished simultaneously. Let τ  be the production cycle time of the assembly line, Po 

the total production time without using extra slots and Pe the total production time using 

the extra slots. Then P, the relative gain in production time is given by equation (11). 

                                                   P = 
o

eo

P
PP −

                                                                 (11) 

where 

                                    ∑∑ ×++×=
j

jB
j

jAo jTTbatchsizeP ηητ                              (12)      

                                   ∑∑ ×++×=
j

jB
j

jAe jTTbatchsizeP µµτ                              (13)            

Table 5.19 gives the relative gain in production time for the medium scale 

problems. For each of the PCB’s it is assumed that TA=3 minutes, TB=1 minute, and τ=30 

seconds. It should be noted that the relative gain in production time is dependent on the 

values chosen for the parametersτ, TA and TB.                         

                        Table 5.19: Relative gain in production time 
PCB type Po 

(secs) 
Pe 

(secs) 
Relative gain in 

production time (P) 
M1 104220 96480 7.4% 
M2 168240 158220 6% 
M3 270900 231660 14.5% 
M4 254160 241860 4.8% 
M5 303720 294420 3.1% 

   

5.5 Solution times 

 The solution times for all the problems, solved using the DP model and IP model 

(proposed by Ahmadhi et al [1]) which was implemented using Cplex, were less than a 

second.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 

  The optimization of turret head placement machines consists of three sub 

problems; determining component placement sequence, assigning component types to the 

feeder slots and determining component retrieval. In this thesis the second sub problem is 

considered. Another objective of this thesis is to develop a methodology of solving 

optimization problems using spreadsheets. Spreadsheet based optimization has been 

illustrated by considering the feeder allocation problem. 

 As stated earlier, the first objective deals with the feeder allocation problem of a 

turret head placement machine. The objective of the model is to determine the number of 

reels of each component type to be used so that replenishment is delayed as much as 

possible. The model was formulated as a dynamic programming model.  

The DP model was coded using VBA provided by Excel. For illustrating the 

usage of the Solver add-in provided by Excel, a user interface was also built for the 

integer programming model proposed by Ahmadhi et al [1]. It should be noted that this 

was done only for illustration purposes, and is not the objective of this thesis. The 

disadvantage of using the standard version of Excel solver is that it cannot solve 
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problems that have more that 200 decision variables. Therefore for the feeder allocation 

problem, it can solve problems up to 199 component types. 

In order to test the DP model, a number of experiments were carried out. The 

model was tested with three different scale of problems; small scale, medium scale and 

large scale. The results obtained from the DP model were compared to the solutions 

obtained from the IP model which was solved using Cplex. The solutions obtained from 

the dynamic programming model were same as those obtained from the integer 

programming model.  

 It was also shown that maximizing the number of boards that can be made by a 

single allocation of components to the feeder slots, delays replenishment as much as 

possible, leading to a reduction in the number of replenishments. This was illustrated by 

carrying out experiments on the medium scale problems. For example for the PCB type 

M2, the percentage reduction in number of replenishments was 55.71%. An important 

assumption made in this thesis is that there is no variation in reel sizes due to supplier 

allowances even though in reality reel size variations do occur. However the effect on the 

replenishments will be minimal since a replenishment might be advanced or delayed only 

be a couple of boards.  

 The reduction in number of replenishments translates into gains in production 

time. For example optimal usage of the surplus slots for PCB type M3 resulted in an 

14.5% gain in production time. The relationship between the number of surplus slots used 

and the number of boards that can me made was studied.  It was found that as the number 

of surplus slots used increases, the number of boards that can be made by a single 

allocation of components, increases. The relationship between number of boards and the 
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number of replenishments was also studied. As the number of boards increases, the 

number of replenishments decreases.   

The second objective of this thesis is to develop a methodology of solving 

optimization problems using spreadsheets. Optimization problems should be solved 

keeping the cost involved and the end users in mind. Spreadsheets are widely used in 

every industry and are comparatively cheaper than the commercially available 

optimization packages. Excel is easy to use and can be used to effectively solve 

optimization problems. 

 There are five basic steps in Excel based optimization; identifying end user 

requirements/defining the objectives, designing the worksheets, building the model, 

connecting the worksheets, and testing. Each of these steps has been discussed in detail. 

 

6.2 Future work. 

 The work described in the previous chapters can be extended by removing some 

of the assumptions that were made during the formulation of the dynamic programming 

model. For example, in this thesis it was assumed that each component type needs only 

one slot. A new model can be formulated by considering the possibility that component 

types may require more than one slot. Another assumption made in this thesis is that, 

there are no variations in the reel sizes due to supplier allowances. Future work can be 

done by considering the variation in reel sizes implicitly in the model.  
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APPENDIX A 

VBA CODE FOR THE DP MODEL 

 

Function Ft(t As Integer, Xt As Integer) As Integer 

    Dim Max As Integer 

    Dim Yt As Integer 

      If Fvalue(t, Xt) = -1 Then 

         If t = T Then 

            Fvalue(T, Xt) = Rt(T, Xt) 

         Else 

            Max = -1 

             For Yt = 0 To Xt 

                  Z = Minimum(Rt(t, Xt), Ft(t + 1, Xt - Yt)) 

                   If Z > Max Then 

                      Max = Z 

                      best(t, Xt) = Yt 

                   End If 

               Next Yt 

              Fvalue(t, Xt) = Max 

           End If 
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        Ft = Fvalue(t, Xt) 

      End If 

End Function 

Function Rt(t As Integer, Yt As Integer) As Integer 

   Rt = Int(r(t) * (Yt + 1) / d(t)) 

End Function 

 

The solution is obtained by calling the function Ft(1,S). 
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APPENDIX B 

VBA CODE FOR THE SEQUENTIAL SEARCH APPROACH 

 

Private Sub SequentialSearch( ) 

  For t = 1 To T 

     a(t) = Int(r(t) / d(t)) 

  Next t 

  For s = 1 To S 

      Sort(a, I)       ‘ Sort in ascending order where I is the array index 

      q = I(1) 

      Y(q) = Y(q) + 1 

      a(q) = Int(r(q) * (Y(q) + 1) / d(q)) 

  Next s 

End Sub 




