STRESS MAPPING OF TEXTILE COMPOSITE MATERIALS AND ITS 
APPLICATION IN INTERFACIAL SHEAR BEHAVIOR 
 
 
Except where reference is made to the work of others, the work described in this dissertation 
is my own or was done in collaboration with my advisory committee. This dissertation does 
not include proprietary or classified information. 
 
 
 
Ebraheem Hassan E. H. Shady 
 
 
Certificate of Approval: 
 
 
Peter Schwartz 
Professor 
Department of Textile Engineering 
 
 
 
 
 Yasser Gowayed, Chair 
Professor 
Department of Textile Engineering 
B. Lewis Slaten 
Professor 
Department of Consumer Affairs 
 Stephen L. McFarland 
Dean 
Graduate School 
 
STRESS MAPPING OF TEXTILE COMPOSITE MATERIALS AND ITS 
APPLICATION IN INTERFACIAL SHEAR BEHAVIOR 
 
Ebraheem Hassan E. H. Shady 
 
 
 
A Dissertation 
Submitted to 
the Graduate Faculty of 
Auburn University 
in Partial Fulfillment of the 
Requirements for the 
Degree of 
Doctor of Philosophy 
 
 
 
 
Auburn, Alabama 
December 16, 2005 
  iii
STRESS MAPPING OF TEXTILE COMPOSITE MATERIALS AND ITS 
APPLICATION IN INTERFACIAL SHEAR BEHAVIOR 
 
 
Permission is granted to Auburn University to make copies of this dissertation at its discretion, 
upon request of individuals or institutions and at their expense. The author reserves all 
publication rights. 
 
 
 
Ebraheem Hassan E. H. Shady 
 
 
 
 
  Signature of Author 
 
 
  Date of Graduation 
  iv
 DISSERTATION ABSTRACT 
STRESS MAPPING OF TEXTILE COMPOSITE MATERIALS AND ITS 
APPLICATION IN INTERFACIAL SHEAR BEHAVIOR 
 
Ebraheem Hassan E. H. Shady 
 
Doctor of Philosophy, December 16, 2005 
(M. S. Mansoura University, Egypt, 1998) 
(B. S. Mansoura University, Egypt, 1993) 
 
168 Typed Pages 
Directed by Yasser A. Gowayed 
 
Mapping of the stress distribution in composite materials, both at the fiber/matrix 
interface and at the composite constituents themselves, is important to understand the 
material mechanical response. Stress mapping can help predict composite behavior under 
certain stresses especially failure or delamination. In this work, two analytical models 
were proposed to map the stress distribution at fiber, matrix and fiber/matrix interface. 
The first model dealt with the fiber in the longitudinal direction considering axisymmetric 
conditions. The second model addressed the fiber stress distribution in the transverse 
direction. Both models were verified using finite element models. 
  v
 As an application for the stress mapping models, interfacial shear behavior was chosen 
for its importance in modeling and design of composite materials. Two fabric structures 
were used to manufacture five different panels for each fabric. The number of fabric 
layers for each plate ranged from 5 to 9 layers systematically altering the volume fraction 
and nesting characteristics of each plate. Four-point flexural tests were used to obtain a 
pure bending state between load noses. The maximum tensile stress and crack initiation 
stress at the bottom layer were experimentally evaluated.  
 
Experimental data was processed using the Graphical Integrated Numerical Analysis 
software (pcGINA) to obtain the maximum stress in the target laminate and this value 
was used as the input for the two analytical models. The value for the maximum 
interfacial shear stress which is responsible for crack initiation in the laminate was 
calculated using the models and results were compared to pull-out fiber test values 
obtained from literature. Good agreement was observed between the model results and 
the literature data. 
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I. INTRODUCTION 
 
1.1 Background 
 
In the last two decades, textile composites showed a potential for enhancing the 
drawbacks of the conventional unidirectional composites due to their integrated yarn 
architecture. One of the main classes of textile composite is woven-fabric composite, 
which consists of two groups of yarns, known as warp and weft, interlaced at right angles 
giving woven-fabric composites several advantages over unidirectional fibrous 
composites: 
 
? Low production costs can be achieved. 
? The handling of woven fabrics is relatively easy. 
? The weaving and interlacing of the yarns creates a self supporting system 
that can be controlled to form complex shapes. 
? Mechanically, the geometry of a fabric provides bi-directional stiffness in 
the plane of loading, superior impact tolerance and good interlaminar 
stiffness in the out of plane direction. 
 
However, these advantages are at the cost of reduced overall in-plane stiffness properties 
due to the undulation (crimp) of the yarns. 
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Currently, most woven-fabric structures used are plain, twill and satin weaves for their 
simplicity in design and manufacturing. However, changing fabric architecture can 
achieve the best possible combination of cost, weight, thickness, in-plane and out-of-
plane stiffness and strength properties. This can be accomplished by changing the weave 
structure, fiber type, yarn count, etc. There are unlimited number of possible 
architectures.  
 
The combined requirements of lightweight and high strength in many civil and military 
applications under high strain rate loading conditions open the field of woven fabric 
composites to be used as structural materials. Furthermore, textile composites show 
significant tolerance to damage before failure which may include different interacting 
modes, such as matrix cracking, interfacial sliding, and fiber damage in different 
positions occurring simultaneously and over small spatial and sequential scales. The local 
stress and strain fields accompanied with these phenomena are difficult, if not impossible, 
to be obtained experimentally. Hence, accurate, predictive analytical tools are required to 
give insights into the original physical mechanisms relating to damage. 
 
Analysis of failure in composite materials has traditionally followed two different levels: 
? Micro-mechanics. 
? Macro-mechanics. 
 
The micro-mechanics approach considers microscopic inhomogeneities and direct 
interaction of composite constituents at the micro-structure level. The advantage of the 
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micro-mechanics approach is that detailed information can be directly obtained about the 
local interaction between composite constituents. However, the numerical modeling 
combined with complicated fiber geometries often requires exceedingly fine grids and 
hence results in excessive computing cost. 
 
Many models attempted to address micro-mechanical analysis at a manageable level. 
However, this is done by oversimplifying the mechanical behavior of the constituents, 
which leads to inaccurate results. Conducting stress analysis in practical composite 
laminates with the presence of million of fibers using micro-mechanical approach is a 
daunting task beyond the computational capacity of even the most-advanced 
supercomputers. Hence, current micro-mechanical models are mainly restricted to the 
strength prediction at the lamina level or unidirectional composites. 
 
In the macro-mechanics approaches, the overall constitutive descriptions are developed 
from composite micro-structure in terms of the volume fraction, weave structure, and the 
interface conditions of the constituents. The mechanical properties of woven-fabric 
composites have high dependence upon the reinforcing yarn geometry and weave 
structure. It is necessary to create a geometric model for describing the fiber architecture 
and weave structure. The woven fabric can be treated as an assembly of unit cells which 
represents the smallest repeating pattern in the fabric structure. The unit cell includes 
sufficient details to represent the fabric geometry. 
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It is important to highlight the hierarchal nature of structural analysis, unit-cell models 
and micro-level models. Such relationship is similar to that of local-to-global finite 
element analysis but with an additional layer of analysis. At the composite part level, 
structural analysis, such as Finite Element Analysis, can define stress and strain 
distributions around holes, attachments, etc. These stress and strain values do not include 
the local effect of fiber/fabric geometries at the unit cell level. Utilizing information 
provided by structural analysis, unit-cell models are able to implement the effect of 
geometries and define average stress and strain distributions within a repeat unit cell. 
Micro-level models use the information provided by unit-cell models to map stress and 
strain distributions for fibers, matrix, fiber/matrix interface, etc. For example, for a 
composite plate with a hole, structural analysis will define stress and strain distribution 
around the hole treating the composite as an orthotropic material. Unit cell models utilize 
this information to map the stress and strain distributions to yarns and resin-pocket. 
Stresses and strains at the fiber level and fiber/matrix interfaces are further evaluated 
using micro-level models.  
 
1.2 Objectives 
 
The objective of this study, in summary, is to develop a novel closed-form micro-level 
stress/strain mapping for composite materials and merge it with a unit-cell level 
numerical approach. The procedure to reach this target will be as follow: 
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i. Develop analytical models to map the stress distribution in the composite 
constituents, i.e. fiber, interface and matrix. 
ii. Verify analytical models with numerical tools such as FEM. 
iii. Connect these models to the unit-cell level numerical model 
iv. Implement the new combined model to understand interfacial shear stress 
distribution in woven laminates 
v. Manufacture composite samples and conduct four-point bending test to verify 
the analytical results with experiments. The four-point bending test is used to 
quantify the interlaminar shear strength of textile composite.  
 
1.3 Organization of the dissertation 
 
This study is presented in six chapters including this introduction chapter. The second 
chapter contains review of the literature focusing on numerical modeling and closed form 
solutions in fiber reinforced composites in general. The third chapter introduces the 
analytical models and their verifications. The fourth chapter covers the experimental 
work which includes manufacturing of composite samples and conducting the four-point 
bending test. The fifth chapter discusses the test results and compares the experimental 
data to analytical results. The sixth chapter concludes this work and presents 
recommendations and suggestions for future work. 
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II. REVIEW OF LITERATURE 
 
2.1 Introduction 
 
To improve composite reliability and damage tolerance for advanced structure 
applications reasonable through thickness and interlaminar strengths are required. Using 
woven-fabric composites can achieve such requirements. Also, the ability to precisely 
customize the composite micro-structure through efficient and accurate modeling can 
expand the material use rapidly.  
 
In the mechanics of heterogeneous materials there is an interest in computing micro-level 
stress and deformation fields to understand their local failure and damage. A major need 
in the design of woven fabric composites is to assess suitable stress levels under the 
conditions to be experienced during service. For this class of composite, the computation 
of the local distributions of stresses in the fiber and matrix is considerably more complex 
than for unidirectional ply laminates due to the interlacing of the fiber tows. Limited 
attempts have been carried out on woven composites modeling and analysis. For more 
complicated and advanced applications, especially those concerned with damage 
tolerance, information about local distributions of stresses in the fiber and matrix 
constituents are of main importance. 
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2.2 Review of existing models for stress-mapping 
 
In this section a quick review of research works dealing with mapping of stress mapping 
at a unit-cell level, as well as, fiber, matrix and fiber/matrix interface will be presented. 
As previously mentioned, the approaches that deal with stress mapping can be divided 
into two main categories, micro-mechanics and macro-mechanics approaches. Each of 
these approaches can use either closed form solution or numerical analysis. 
 
2.2.1 Micro-mechanics models 
 
Micro-mechanics approaches deal with composite constituents at a micro-structure level 
to obtain local interaction information such as elastic properties and stress and strain 
distributions. The main drawback to using these models with textile composites is their 
focus on fibers or inclusions surrounded by matrix without considering the effect of the 
preform architecture. In most approaches, the link between the micro-mechanical model 
and the geometry of the fabric preform does not exist. This may have a minor effect on 
prediction of the composite elastic constants, however, it may lead to unrealistic stress 
and/or strain mapping. 
 
2.2.1.1 Composites with inclusions 
 
The effect of inclusions on the stress distribution in homogeneous materials has been 
studied extensively due to its importance in deformation and failure analysis of advanced 
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heterogeneous composites. Eshelby?s work (1957, 1959) on the effect of elastic 
inclusions forms the foundation of several methods developed to analyze the response of 
composite materials. In his work, Eshelby solved the general problem of elastic field 
inside and at the interface of an ellipsoidal inclusion bounded by an infinite matrix 
domain. He concluded that the stress field inside the inclusion is uniform and the 
interfacial stress in the matrix may be readily evaluated in terms of equivalent 
transformation strains. 
 
Weng and Tandon (1984, 1986) adopted the analysis derived by Eshelby to derive an 
expression for the stress distribution in a matrix with inclusions. The idea of their 
approach is based on the concept that under a given applied external stress the average 
stress in the matrix is perturbed from the applied stress due to the presence of oriented 
inclusions with different aspect ratios and moduli, figure 2-1. The matrix and inclusions 
are assumed to be linearly elastic and homogeneous. The matrix is assumed isotropic 
while the inclusions can be treated as anisotropic and well separated. The volume average 
of the perturbed parts over the matrix and the inclusions has to vanish to satisfy the 
equilibrium conditions. The solution is derived by replacing the inclusion with a material 
similar to the matrix material subjected to the same boundary stresses. Stress is calculated 
as two parts; average and perturbed. The perturbed stress is the result of the 
transformation of inclusion material from the matrix material to the inclusion material. 
The effect of inclusions on each other as a form of stress concentration was not 
considered in this model. 
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Figure 2-1. Composite reinforced with aligned inclusions (Weng 1984) 
 
Hashin (1991) investigated the effect of imperfect interfaces on the mechanical properties 
of the composite by representing the interface imperfection as a thin compliant interphase 
with much lower elastic moduli. 
 
Molinari and El Mouden (1996) derived an analytical approximate model to account for 
the interaction between the inclusions at finite concentrations. The model determined the 
overall elastic properties and local stresses of a composite material. The material 
considered is composed of elastic ellipsoidal homogeneous inclusions, possibly of 
different phases, distributed in a homogeneous elastic matrix. This approach was based 
on the work of Zeller and Dederichs (1973), who formulated the problem of 
heterogeneous elasticity in terms of an integral equation. From that integral equation, and 
by taking the homogeneous matrix as a reference medium, the average stresses-strains in 
the inclusions was obtained as solutions of a linear system of equations. 
Matrix 
Inclusion 
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Wu et al. (1999) presented a micro-mechanical model to predict the stress fields and the 
elastic properties for three-phase materials with imperfect interfaces, based on the 
?average stress in matrix? concept derived by Mori and Tanaka (1973). This approach 
represented the local fields in a coated inclusion embedded in an unbounded matrix 
medium subjected to the average matrix stresses/strains at infinity. Equations to calculate 
the effective elastic moduli for this kind of composite were also derived. The resulting 
effective shear modulus for each material and the stress fields in the composite were 
presented for a transverse shear loading situation. 
 
Honein et al. (2000) used a derived solution (Honein et al., 1992a, b) of two circular 
elastic inclusions under anti-plane shear deformation to evaluate the material forces, the 
expanding and the rotating moments acting on inclusions, figure 2-2. The 
inclusion/matrix interface is assumed to be perfectly bonded. The J, L and M path-
independent integrals were used to perform the calculations. 
 
Figure 2-2. Two circular inclusion under arbitrary ant-plane deformation (Honein et al. 
2000) 
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2.2.1.2 Fiber reinforced composites 
 
Meguid and Zhu (1995) examined the elastic behavior of two dissimilar materials 
containing circular inhomogeneities near their interface finite element analysis, figure 2-
3. In this study a novel finite element approach using the complex potentials of 
Muskhelishvili was formulated and the stress field resulting from the presence of a single 
and two interacting inhomogeneities near the interface of two dissimilar materials was 
examined. The effect of the direction of the externally applied load upon the resulting 
stress concentration at the inhomogeneities was evaluated.  
 
Abdelrahman and Nayfeh (1998) extended their analysis (Nayfeh and Abdelrahman, 
1997) on the stress distribution in straight fiber reinforced composites to cases involving 
undulated fiber reinforcement, figure 2-4. The undulation is assumed to be restricted to a 
single plane. They identified and analytically described local tangents to the fiber for a 
given geometric undulation. The global coordinates were transformed and the loads were 
applied to the local coordinate systems including the tangent directions and their normal 
in the plane of undulation. Results obtained for straight fibers were used to straight 
segmented fiber segments along the tangents and supplemented by local stresses that 
inherently rise in oriented direction with respect to the loading direction. 
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Figure 2-3. Two dissimilar materials containing: (a) one single inhomogeneity near 
interface; and (b) two interacting inhomogeneities across interface,  (Meguid and Zhu 
1995) 
 
 
Figure 2-4. Representative unit cell (Abdelrahman and Nayfeh 1998) 
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Cheng et al. (1998) developed a method to determine the local elastic field and the 
overall elastic behavior of a heterogeneous medium based on the singular integral 
equation approach via a Green's function technique. This technique is used to solve a 
problem of a rectangular packed composite with square fibers. The Eshelby tensor and 
the contour integral are used to solve the problem. The singular integral was evaluated in 
closed form for assumed polynomial strain distributions. 
 
Cheng et al. (1999-a) proposed an approximate superposition technique to calculate the 
stress fields around individual fibers in composite materials. This method uses the closed 
form solution for an isolated fiber to construct the local stress and strain fields, figure 2-5. 
The problem is formulated in terms of eigenstrains and Green?s function solutions. The 
resulting local fields are validated by comparing the results to results from a method 
based on singular integral equations. The proposed method is general and can be used for 
periodic fiber arrangements. 
 
Figure 2-5. Reference fiber 0 and its eight nearby neighbor fibers, 1?8, embedded in the 
reference media  (Cheng et al. 1999-a) 
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Cheng et al. (1999-b) also used Green's function approach to express the stress field for 
an infinite isotropic matrix material with a rectangular inclusion under a quadratic 
polynomial eigenstrain as an integral formula. This integral is non-singular for exterior 
points of the inclusion and can be evaluated in a closed form, while the integral is 
singular for interior points of the inclusion. This singular integral yielded a closed form 
expression for the interior region. Therefore, the stresses at both interior and exterior 
points of the inclusion were determined analytically. 
 
Morais (2001) presented a model to predict the stress distribution along broken fibers in a 
unidirectional composite, figure 2-6. It was assumed that the matrix behaved in an 
elastic/perfectly-plastic manner and that the interfacial shear strength is not lower than 
the matrix shear yield stress. The model is based on a concentric cylinder approach where 
the composite is treated as a hollow cylinder surrounding the fiber.  Axisymmetric stress 
analysis was performed. Polar coordinates were used to set the equations of the stress 
equilibrium along the debonded length, and the formulated second order differential 
equation was solved. The integration constants were calculated from the assumed 
boundary conditions, equilibrium, continuity and the system boundary conditions. 
 
Benedikt et al. (2003) examined the visco-elastic stress distributions and elastic 
properties of unidirectional graphite/polyimide composites as a function of the volume 
fraction of fibers. They determined the stress distributions using two different methods - a 
finite element method (FEM) where the fiber arrangements were assumed to be either 
square or hexagonal and a Eshelby/Mori and Tanaka approach to account for the 
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presence of multiple fibers. The showed that the Eshelby/Mori-Tanaka approach can be 
used for the calculations of stresses inside and outside graphite fibers in case the volume 
fraction of the fibers does not significantly exceed 35% in the case of the square fiber 
array and 50% for the hexagonal fiber distribution. Also, it was shown that the elastic 
properties of unidirectional graphite/polyimide composites can be accurately determined 
using the analytical Eshelby/Mori-Tanaka method even for large volume fractions of 
fibers. 
 
 
Figure 2-6. Schematic of the model (Morais 2001) 
 
Akbarov and Koskar (2003) studied the stress distribution in an infinite elastic body 
containing two neighboring fibers. Both fibers are located along two parallel lines and 
each of them has a periodical curve with the same period. The curving of each fiber is out 
of phase with the other, figure 2-7. Uniformly distributed normal forces act in the 
direction of the fibers at infinity. The authors investigated a homogeneous body model 
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with the use of the three-dimensional linear theory of elasticity. They analyzed the 
normal and shear stresses arising as a result of fiber curving. The impact of the 
interaction between the fibers on the distribution of these stresses was also studied. 
 
Figure 2-7. The geometry of the material structure and chosen coordinates  (Akbarov and 
Koskar 2003) 
 
Jiang et al. (2004) developed an analytical model for three-dimensional elastic stress field 
distribution in short fiber composites subjected to an applied axial load and thermal 
residual stresses. Two sets of the matrix displacement solutions, the far-field solution and 
the transient solution, were derived based on the theory of elasticity. These two sets were 
superposed to obtain simplified analytical expressions for a matrix three-dimensional 
stress field and a fiber axial stress field in the entire composite system including the fiber 
end regions with the use of the technique of adding imaginary fiber. The components of 
matrix three-dimensional stress field satisfied the equilibrium and compatibility 
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conditions in the theory of elasticity. The components of the fiber axial stress field 
satisfied the equilibrium requirements within the fiber and the fiber/matrix interface. The 
stress field components also satisfied the overall boundary conditions including the 
surface conditions, the interface continuity conditions and the axial force equilibrium 
conditions. The analytical model validity was examined with finite element numerical 
calculations. 
 
Rossoll et al. (2005) presented analysis of longitudinal deformation of continuous fiber 
reinforced metals considering elastic and elastic-plastic matrix behavior. Analytical 
results were compared with finite element analyses (FEA) for varying fiber distributions, 
ranging from single fiber unit cells to complex cells. 
 
2.2.2 Macro-mechanics models 
 
Stress mapping and mechanical properties of woven-fabric composites depend on the 
reinforcing yarn geometry. It is important to generate a geometric concept describing the 
architecture. The idea is to discretize the composites into unit cells that include enough 
details of the geometry to predict the most important features of the composite behavior. 
The unit cell, in general, is defined as the smallest repeating pattern in the structure. In 
this section, macro-mechanics approaches based on unit-cell models will be reviewed. 
The unit-cell analysis used two analytical methods - closed form method and numerical 
method. 
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2.2.2.1 Closed form solutions 
 
Ishikawa and Chou (1982) developed three basic analytical models to predict the in-plane 
thermo-elastic behavior of various woven-fabric composites. All models are one-
dimensional (1D) models because they only consider the undulation of the yarns in the 
loading direction. First, the mosaic model considered the composite as an assembly of 
asymmetric cross-ply lamina. An upper bound for the stiffness is predicted by connecting 
the cross-ply lamina in parallel and a lower bound is predicted by connecting all pieces in 
series. In this model the yarn actual waviness was neglected. Second, the crimp model as 
an extension of the first model, considered the continuity and undulation of the yarns in 
the loading direction. However, the undulation of the yarns running perpendicular to the 
loading direction is neglected. Finally, the bridging model for satin composites was 
developed to simulate the load transfer amongst interlaced regions. Since the classic 
laminated plate theory is the basis of each of these models, only the in-plane properties 
are predicted. These models did not consider the actual yarn cross-sectional shape, the 
presence of a gap between adjacent yarns and the influence of crimp on fabric thickness. 
Therefore, no predictions are made for the fiber volume fraction or the fabric cover 
factor. 
 
Ko and Chou (1989) developed three-dimensional fabric geometry model to study the 
compressive behavior of braided metal-matrix composites. The model is based on two 
important assumptions. First, each yarn system in the composite unit cell is treated as a 
unidirectional lamina. Second, the stiffness matrix of the composite unit cell can be 
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calculated as the weighted sum of the stiffness matrices of the different yarn systems by 
connecting all yarn systems in parallel and assuming an iso-strain condition in all yarn 
systems. This model gave a good prediction of the tensile behavior for braided 
composites. 
 
Gowayed and Pastore (1992) reviewed different analytical methods for textile structural 
composites and used some experimental works to compare and evaluate these analytical 
methods. The introduced methods were divided into two main categories; an elastic 
techniques and a Finite Element Methods (FEM). The elastic technique included all 
stiffness average methods, modified matrix method and fiber inclination method. On the 
other hand, the FEM included the Finite Cell Model (FCM) and the discrete and 
continuum techniques. The results showed that stiffness predictions using the elastic 
techniques, except for the Modified Matrix Method, agreed well with the experiments. 
Although these techniques are easy to be implemented and tactless to geometric 
description, they need a failure criterion. In contrast, the Finite Element Methods were 
able to relate the external forces to the internal displacements but they are very sensitive 
to the geometric descriptions and hard to be implemented. 
 
Naik and Shembekar (1992) developed a two-dimensional model (2D) which considered 
the undulation of yarns in warp and weft directions. In this model the unit cell is divided 
into different blocks such as straight cross-ply, undulated cross-ply, and pure matrix 
blocks. Two schemes are used to combine the different blocks: the parallel-series and the 
series-parallel models. In the parallel-series model, the blocks are assembled in parallel 
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across the loading direction utilizing an iso-strain assumption. Then, these multi-blocks 
are assembled in series along the loading direction utilizing an iso-stress assumption. On 
the basis of experimental work, the parallel-series model is recommended for the 
prediction of in-plane elastic constants. 
 
Pastore et al. (1993) used Bezier patches to model the geometry of textile composites and 
discussed particular requirements to model textile composites. They also presented 
techniques to quantify the material inhomogeneities through 3D geometric modeling and 
methods to transform them into elastic properties. They chose the spline functions 
because of their natural flexibility to characterize the displacement functions. 
 
Pastore and Gowayed (1994) modified the fabric geometry model (FGM) to predict the 
elastic properties of textile reinforced composites. They discussed and presented solution 
for two of the major drawbacks of the FGM. These problems are the incompatibility of 
the basic transverse isotropy assumption with the theoretical mathematical derivation and 
the inconsistency of the transformation matrices associated with the stiffness calculations. 
The basic idea behind the FGM is to treat the fibers and matrix as a set of composite rods 
having various spatial orientations. The local stiffness tensor for each of these rods is 
calculated and rotated in space to fit the global composite axes. The global stiffness 
tensors of all the composite rods are then superimposed with respect to their relative fiber 
volume fraction to form the composite stiffness tensor. This technique is called a stiffness 
averaging method. 
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Hahn and Pandy (1994) developed a three-dimensional (3D) model for plain-fabric 
composites. This model is simple in concept and mathematical implementation. The yarn 
undulations are considered sinusoidal and described with shape functions. In the elastic 
analysis a uniform strain throughout the plain-weave composite unit cell is assumed. 
 
Naik and Ganesh (1995) developed closed-form expressions for in-plane thermo-elastic 
properties of plain-weave fabric lamina. Shape functions were used to define the yarn 
cross-section and undulation. The predicted constants corresponded well to the results 
obtained with the parallel-series model. 
 
Vaidyanathan and Gowayed (1996) presented logical methodology to predict the 
optimum fabric structure and fiber volume fraction to meet a set of target elastic 
properties for textile composite. The stiffness averaging technique was used in the design 
steps to predict the composite elastic properties. After identifying the solution for the 
optimization problem, two commercial software packages, DOT and GINO, were used to 
solve different case studies. The quality of results from the two software packages was 
evaluated. 
 
Gowayed et al. (1996) presented a modified technique to solve the problem of unit cell 
continuum model, presented by Foye (1992), based on finite element analysis using 
heterogeneous hexahedra brick elements to predict the elastic properties of textile 
composites. Due to the large differences in the fiber and matrix stiffness, the use of these 
elements initiated mathematical instabilities in the solution which affected the accuracy 
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of the results. The solution was based on a micro-level homogenization approach using a 
self-consistent fiber geometry model. In addition, the geometrical model was integrated 
with the modified mechanical analysis to guarantee accurate representation of complex 
fabric preforms.  The prediction results of the modified technique matched well with 
experimental results for in-plane property tests for five-harness satin weave carbon/epoxy 
composite and three-dimensional weave E-glass/poly (vinyl ester) composite. 
 
Vandeurzen et al. (1996) presented three-dimensional geometric and elastic modeling of 
a large range of two-dimensional woven fabric lamina. The model predicted the shear 
moduli for the fabric composite, the fiber volume fraction, the orientation of the yarn and 
the fractional volume of each micro-cell. In addition, the geometric model was able to 
evaluate some textile properties as cover factor and fabric thickness 
 
Barbero et al. (2005) developed an analytical model to predict a complete set of 
orthotropic effective material properties for woven fabric composites based only on the 
properties of the constituent materials. They used the existing periodic microstructure 
theory applied at the meso-level to model the undulating fiber/matrix tows as periodic 
inclusions, and predicted the overall material properties of a plain weave fabric 
reinforced composite material. The representative volume element (RVE) was discretized 
into fiber/matrix bundles, figure 2-8. The surfaces of the fiber/matrix bundles are fit with 
sinusoidal equations based on measurements taken from photomicrographs of composite 
specimens and an idealized representation of the plain weave structure was created. The 
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model results showed good agreement with compared experimental data from literatures, 
including interlaminar material properties. 
 
 
Figure 2-8. Meso-scale analysis of a plain weave fabric RVE (1/2 period shown in-plane 
(x-y)),  (Barbero et al. 2005) 
 
 
2.2.2.1.1 Advantage of closed form solutions: 
? Require simple input of geometric parameters and material properties. 
? The overall constitutive descriptions are developed from composite 
structure in terms of the volume fraction and the interface conditions of 
the constituents. 
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2.2.2.1.2 Disadvantage of closed form solutions: 
? Mainly restricted to the stiffness and strength prediction at the lamina 
level or unidirectional composites. 
? Focused on simple and/or idealized systems for fiber description. 
? Do not consider the effect of the neighboring fibers. 
? Are not able to provide quantitative predictions of composite failure 
mainly because interlaminar stresses have been neglected. 
 
2.2.2.2 Numerical models 
 
Numerical models in general use a finite element (FE) frame work to perform the 
constitutive stress/strain relations using stress or energy equations. Finite element models 
can be used to analyze the elastic behavior and the internal stress/strain state of woven-
fabric composites. Due to the complexity of yarn architecture, finite element modeling is 
most helpful and accurate to model each material group, fiber/matrix, discretely. 
 
Jara-Almonte and Knight (1988) developed a specified boundary stiffness/force (SBSF) 
method for finite element sub-region analysis. The boundary forces calculated from the 
global analysis at the global/local boundary were specified on the local model. The mesh 
refinement for the local model was done such that the number of nodes on the 
global/local boundary for the refined local model was the same as the number of nodes 
for the global model. 
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Guedes and Kikuchi (1990) studied the applicability of the homogenization theory for 
stress analysis of various linear elastic composite materials with periodic microstructures 
including woven fiber reinforced composites. They presented the effectiveness of using 
adaptive mesh refinement over uniform mesh refinement to predict the homogenized 
material constants. 
 
Luo and Sun (1991) proposed three global/local methods to determine the ply level 
stresses in thick fiber-wound composite cylinders assuming that the change in 
temperature was uniform and axial force, torque and normal tractions on inner and outer 
surfaces of the cylinder were constant. In the first method they used the continuity 
conditions of the macroscopic strains and stresses in a section of the cylinder to 
determine the ply level strains and stresses. In the second method they used the 
macroscopic axial strain, torsional strain and radial stress along with continuity 
conditions to solve an assumed displacement field for each ply. In the third method, an 
extension of the second method, they used the imbalance in axial force and torque as 
input to perform another round of global/local analysis. 
 
Woo and Whitcomb (1993) used single field macro elements to determine the 
global/local response of a plain weave composite subjected to a uniaxial stress in the 
warp direction. Displacements from a global model were imposed along the entire 
global/local boundary. This procedure predicted stress distribution away from the 
global/local boundary but with large errors near the boundary. 
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Whitcomb and Woo (1994) developed multi-field macro elements based on an efficient 
zooming technique wherein suitably refined local mesh was included in the global model 
without adding any additional degrees of freedom. Hirai used static condensation to 
reduce the internal degree of freedom of the refined local mesh to the boundary degrees 
of freedom (Hirai et al. 1984). Whicomb et al. used multi-point constraints to reduce the 
boundary degrees of freedom to that of the macro element used for the global analysis. 
They used global/local method to predict the stress distribution in a unit cell subjected to 
uniaxial stress in the warp direction. The prediction using multi-field macro elements 
were shown to be more accurate than that using the single-field macro elements but still 
large errors were predicted near the global/local boundary. 
 
Whitcomb et al. (1995) describe two global/local procedures which used homogenized 
engineering material properties to accelerate global stress analysis of textile composites 
and to determine the errors which are inherent in such analyses. The response of a local 
region was approximated by several fundamental strain or stress modes. The magnitudes 
of these modes were determined from the global solutions and used to scale and 
superpose solutions from refined analyses of the fundamental modes. 
 
2.2.2.2.1 Advantage of the numerical models 
? They are helpful and accurate to model each material group, fiber/matrix, 
discretely and can have extremely complicated geometric details of 
composite constituents. 
 27
? They are able to deal with the changing of geometric characteristics of the 
layers, such as thickness and relative layer shifts. 
 
2.2.2.2.2 Disadvantage of the numerical models 
? The constitutive relations are independent of the scale of the micro- 
structure. 
? FE approach requires large computer memory and calculation power. 
Therefore, most of the analyses were only performed for simple fabrics, 
like balanced plain-woven fabrics. 
? Most of the time spent is related to the creation and verification of a 
correct fabric geometry. 
? There are major problems in analyzing and interpreting the results in a 3D 
domain of a rather complex geometry. 
 
2.3 Review of delamination 
 
Delamination is considered to be the most common life limiting growth mode in 
composite structures, other than 3D textile composites. Thus it is a fundamental issue in 
the evaluation of laminated composite structures for durability and damage tolerance.  
 
Blackketter et al. (1993) presented a progressive failure analysis of a plain weave 
composites. The composite response was almost linear for in-plane extension and highly 
nonlinear for in-plane shear. The nonlinearity was mainly a result of progressive damage. 
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However, little information was provided on damage evolution and load redistribution 
within the composite during the loading process. They did not examine the sensitivity of 
the predictions to mesh refinement or any other approximations inherent in the analyses. 
 
Wisnom and Jones (1995) proposed a method to predict delamination using a failure 
envelope constructed between the measured interlaminar shear strength and the predicted 
bending strain for delamination under pure bending which was calculated from a simple 
equation for the strain energy release rate, and the fracture energy of the material. Two 
flexural tests, three-point and four-point bending, were performed for glass/epoxy 
prepreg laminated composite. Samples loaded in three-point bending were found to fail 
by unstable delamination from the ends of the plies. However, the four-point samples 
failed in flexure before delamination propagation. The results showed that a linear 
interaction between the interlaminar shear stress and surface bending strain at the location 
of the cut was found to fit the data well. 
 
Wisnom (1996) analyzed the short-beam shear test of carbon fiber/epoxy composite 
assuming that the deformation is concentrated at the resin layers between plies. He used a 
two-dimensional finite element model (FEM) with linear elastic continuum elements to 
represent the plies, and non-linear springs to model the interfaces assuming there is 
sufficiently large number of plies or there is a stress concentration causing the maximum 
stress to occur at certain interface. The analysis of the linear elastic strain energy release 
rate showed that there is not sufficient energy for the small cracks to propagate, however, 
the approach predicted that small cracks can have important effect on interlaminar shear 
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strength. He concluded that linear elastic fracture mechanics is not suitable for analyzing 
short-beam shear specimens. 
 
Whitcomb and Srirengan (1996) used three-dimensional (3D) finite element analysis to 
simulate progressive failure of a plain weave composite subjected to in-plane extension. 
They examined the effects of different characteristics of the finite element model on the 
predicted behavior. It was found that predicted behavior is sensitive to mesh refinement 
and the material degradation model. The results showed that the predicted strength 
decreased significantly with increasing the waviness. 
 
Srirengan et al. (1997) developed a global/local method based on modal analysis to 
facilitate the three-dimensional stress analysis of plain weave composite structures, figure 
2-9. The global response of studied region was decomposed into a few fundamental 
macroscopic modes which were either strain modes, calculated from the boundary 
displacements, or stress modes, calculated from the boundary forces. Failure initiation 
was found to match reasonably well with the conventional finite element prediction 
obtained using a detailed mesh for the entire plate. This method is considered 
computationally far less intensive and reasonably accurate when compared to the 
traditional finite element method. 
 
Hutapea et al. (2003) developed a theory to provide a connection between macro-
mechanics and micro-mechanics models in characterizing the micro-stress of composite 
laminates in regions of high macroscopic stress gradients. They present the micro-polar 
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homogenization method to determine the micro-polar anisotropic effective elastic moduli 
and investigated the effects of fiber volume fraction and cell size on the normal stress 
along the artificial interface resulting from ply homogenization of the composite 
laminate. They focused on the stress fields near the free edge where high macro-stresses 
gradient occur. 
 
Figure 2-9. Schematic of the modal technique for global/local stress analysis,  (Srirengan 
et al. 1997) 
 
Bahei-El-Din et al. (2004) presented a micro-mechanical model derived from actual 
microstructures for 3D-woven composites showing progressive damage. Local damage 
mechanisms that are typically found in woven systems under quasi-static and dynamic 
loads were modeled using a transformation field analysis (TFA) of a representative 
volume element (RVE) of the woven architecture. The damage mechanisms were typical 
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to those observed in quasi-static and impact tests of woven composite samples, and 
include matrix cracking, frictional sliding and debonding of the fiber bundles and fiber 
rupture. This model offered a consistent approach to estimate the effects of the material 
heterogeneity and damage on wave distribution and reduction in shockwave problems. 
The solution is acquired as the sum of the elastic, undamaged response and the 
contribution of an auxiliary transformation stress field for a selected subdivision of the 
RVE. The predicted overall response showed the progressive decay of the stiffness. 
 
Le Page et al. (2004) developed a representative two-dimensional finite element model to 
analyze matrix cracking in woven fabric composites. The finite element model has 
enabled the effects of relative layer shift and laminate thickness to be examined in the 
framework of the stiffness and matrix cracking behavior of plain weave fabric laminate. 
It was found that the effects of layer shift and laminate thickness are minor; however 
there are much large differences in the energy release rates interrelated with matrix crack 
formation. Using a two-dimensional model made the effects of micro-structural variation 
in the through-width direction to be neglected. 
 
2.4 Problem Statement 
 
In the previous sections, micro-mechanics and macro-mechanics models that dealt with 
stress mapping in composite material were reviewed. It can be seen from this review that 
macro/structural models based on unit-cell analysis, using closed form solutions or 
numerical models, were not able to provide detailed stress distribution at the constituent 
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level. On the other hand, micro-mechanics models lacked the macro-geometric resolution 
necessary to predict important phenomena such as failure.  
 
Possible merging macro-structure models with micro-structure models will allow stress 
mapping that is sensitive to composite geometry and structure. In this work a closed form 
micro solution is presented to map stress/strain at the fiber and matrix levels. A macro-
mechanics model based on unit-cell analysis (e.g. pcGINA) developed by Gowayed 
(1996) will be used to evaluate stresses/strains at the macro-level then the newly 
developed micro-stress model will use these stresses/strains as input. By doing this, a 
more realistic stress distribution within the composite constituents will be accomplished. 
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III. ANALYTICAL MODELS 
 
3.1 Introduction 
 
In this chapter a micromechanics model is created to evaluate the 3D stress and strain 
distribution in for an n-phase material (e.g., fiber, matrix and at fiber matrix interface). 
The model is built at the micro-level with global stress and strain data obtained through 
structural analysis and a unit-cell model as described in the previous chapter. The 
proposed model is divided into two parts - a 3D longitudinal model and a 2D transverse 
model. Both models are verified singly using Finite Element Analysis and jointly via 
comparison to other research work. 
 
3.2 The 3D longitudinal model 
 
A cylinder model has been used to represent a fiber surrounded by two hollow cylinders, 
which represent the surrounding interface and matrix as an example for an n-phase 
material. A constant stress is applied to the whole composite in the z-direction (Figure 3-
1). Axisymmetric stress analysis is performed to predict the stress distribution in this 
model. 
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Figure 3-1: 3D model with axial stress 
 
The force equilibrium in the radial direction in each cylinder is: 
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Where, r and ? are the radial and circumferential directions, respectively. 
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If  u
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  is the radial displacement, the circumferential and radial strains can be represented 
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By inserting equation (3-2) in equation (3-4): 
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Differentiate 
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The axial stress 
z
? is constant within each region, which means that 0=
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By inserting equation (3-5) and equation (3-6) in equation (3-3): 
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But the radial strain has another form. 
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Again inserting equation (3-2) in equation (3-7) to get: 
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Now, equation (3-7) = equation (3-9) and also 
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(3-10) 
From the force equilibrium on the fiber (figure 3-2) 
 
 
Figure 3-2: Forces on a fiber element in the longitudinal direction 
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Differentiation by r will get:  
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The solution for this second order differential equation is: 
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Where: M, N are integration constants that can be determined from the boundary 
conditions.  
 
The cylinders representing the fiber, the surrounding matrix and the composite can be 
analyzed as follows: 
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a) Fiber: 
The radial stress (
r
? ) must remain finite at r = 0 which means that N should equal zero. 
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This reduced the number of constants to five in addition to the three axial stresses 
(
zczmzf
and??? ,
) and the following boundary conditions can be used to obtain the 
values of these constants. 
Boundary Conditions: 
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3.2.1 Model verification 
 
After determining the stress constants, the radial stress, the radial displacements and 
circumferential stress can be determined at any radius. To verify the model, a 3D finite 
element model (FEM) was built using the data shown in Table 3-1. All materials are 
considered isotropic. The radial stresses outside the hollow cylinders were assumed to be 
zero in this analysis; nevertheless, other values can be used. 
 
A Matlab
?
 code using symbolic math was developed for the 3D longitudinal model and is 
listed in Appendix A. The radial displacement, the radial stress and the hoop stress are 
calculated by the model in each region and extracted from the finite element model. The 
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results showed perfect agreement between the model and the FEM as shown in the figure 
3-3 for the radial displacement, figure 3-4 for the radial stress and figure 3-5 for the 
circumstantial or hoop stress. 
 
Table 3-1: Fiber, interface and matrix properties used to verify the model 
 Fiber Interface Matrix 
Radius (?m) 
6 6.5 9.5 
Modulus of Elasticity (E) (GPa) 370 15 330 
Poisson ratio 0.17 0.2 0.12 
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Figure 3-3: Radial displacement 
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Figure 3-4: Radial stress 
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Figure 3-5: Circumstantial or hoop stress 
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3.3 The 2D transverse model 
 
 
 
Figure 3-6: 2D model with transverse stress 
 
In this model, a general solution to a bi-harmonic equation ?Kolosov Mukhelishvili 
complex potential? was adopted to obtain a set of equations to represent the stresses and 
displacements for each region  for an n-phase material (e.g., fiber/interface/matrix). The 
original set of equations was originally derived by Savin (1961) for concentric rings 
surrounding a hole in an infinitely large plate. The equations were modified to introduce 
a material (e.g., fiber) in the place of the hole. In this section the derived equations and 
the equations for the fiber are presented. The detailed derivation and the equations 
modification is presented in Appendix C. 
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a) Fiber?s equations 
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b) Interface?s equations 
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c) Matrix?s equations 
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d) Composite?s equations 
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Where: 
�? R is r
m
 
�? P is the stress applied on the system 
�? ? is the shear modulus for each region 
�? ?? 43?=  for each region 
�? A, B, C ?etc. are constants to be determined by applying the stress equilibrium 
and displacements compatibility on the interfaces. 
 
3.3.1 Model verification 
 
To verify the 2D transverse model, at an elementary level, the model?s results are 
compared to the famous mechanics problem of estimating the stress concentration around 
circular cut-out in an infinite sheet subjected to tensile stress, figure 3-7. The results 
matches with the solution of this problem as shown in figure 3-8. At ? = 90, the stress 
concentration is equal to 3. At ? = 0 or 180, the stress concentration is equal to -1. The 
stress concentration around the cut-out is represented by a cosine curve, which is similar 
to the solution of this problem. 
 
 
 
 
 
  46
 
 
 
Figure 3-7: Circular cut-out in an infinite sheet subjected to tensile stress 
 
 
 
In addition, using the material data of the fiber, interface and matrix in Table 3-1, a 2D 
finite element model (FEM) was built and its results is compared to the 2D transverse 
model as shown in figure 3-9. It can be seen that the radial displacement results of the 
FEM is very close to the 2D model?s results. A Matlab
?
 code using symbolic math was 
developed for the 2D transverse model and is listed in Appendix B. 
 
?
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Figure 3-8: Stress concentration around a circular cut-out in an infinite sheet subjected to 
tensile stress 
 
 
 
Figure 3-9: Radial displacement in the fiber, interface and matrix at ? = 90 
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3.3.2 The effect of neighboring fibers 
 
3.3.2.1 Using the superposition technique 
To test the effect of the neighboring fibers, a superposition technique of Horii and 
Nemat-Nasser (1985) was adopted. The idea of the superposition technique is to divide 
the problem into a homogeneous problem and number of sub-problem depending on the 
number of fibers in the main problem. As shown in figure 3-10, the tested problem 
consists of five fibers each one is surrounded by a ring of matrix and all the fiber are in 
an infinitely large plate. The plate material properties are the same as the composite 
properties. The plate is subjected to a remote tensile stress. The target is to estimate the 
stress concentration on the central fiber considering the effect of the other four fibers. 
 
 
 
Figure 3-10: The main problem; central fiber surrounded by four fibers 
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This problem is divided into six sub-problems as shown in figure 3-11. The first sub-
problem, a homogeneous problem, represents only a plate without any fibers and 
subjected to a remote tensile stress. The rest of the five sub-problems represent each 
surrounding fiber. In each one, the fiber will be considered alone in the plate and 
subjected to fictitious traction around its boundary. In the cases of sub-problems without 
tensile stress acting on the plate, the set of equations representing the plate were modified 
from Savin?s work to satisfy the free stress condition at the far field. The stress equations 
were derived to be as follows: 
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No significant difference was found in the stress concentration around the central fiber 
after considering the effect of the surrounding fibers. This not a surprise since the 2D 
transverse model considered the effect of the surrounding fibers when equations for a 
composite plate were used. The plate material was considered as the composite materials 
which gives the effects of the neighbor fibers. 
 
 
Figure 3-11: Superposition scheme for the main problem 
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3.3.3 Comparison to other 2D models 
 
In this section the 2D transverse model?s results will be compared to the research work 
done by Weng in 1984. Weng presented a 2D model expressing stress distribution in a 
matrix with inclusions. The matrix and inclusions were assumed to be linearly elastic and 
homogeneous. The model estimated the stress concentration on the edge of the inclusion 
at ? = 90 as a function of fiber to matrix ratio of Young?s modulus 
m
f
E
E
 for various fiber 
volume fractions. The ratio of fiber to matrix Young?s moduli, 
m
f
E
E
, varies from zero, 
which presents a hole or void, to one, which represents pure matrix. The stress 
concentration was estimated for different volume fractions starting from zero, or single 
inclusion, to 75%. 
 
Figure 3-12 shows the results of the two models, the current model and Weng?s model. 
The dashed lines represent Weng?s results and the solid lines represent the 2D transverse 
model. As shown in the figure, all curves converge to one when the moduli ratio equals 
one (i.e., no stress concentration in pure matrix). Also it can be recognized that the stress 
concentration decreases with the decrease in 
m
f
E
E
. When 
m
f
E
E
 equals to zero, the case of a 
hole, the stress concentration should be 3 as reported by the current model and verified in 
section 3.3.1. On the other hand, Weng?s results are below 3 for both zero and 25% fiber 
volume fraction. The results of the current model are close to Weng?s results for fiber 
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volume fraction equal to 50% and slightly lower than his values at other volume 
fractions. 
 
 
 
Figure 3-12: Stress concentration at the edge of inclusion as a function of fiber to matrix 
Young?s modulus ratio for different fiber volume fraction 
2D model 
Weng?s model 
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IV. EXPERIMENTAL WORK 
 
4.1 Background 
 
In this chapter the interfacial shear behavior of woven composite materials will be 
investigated as an application for the stress mapping models that were presented in the 
previous chapter. Although woven fabric composites exhibit better interlaminar shear 
behavior than unidirectional composites because of yarn waviness which resists 
delamination, shear delamination is often considered a weak mode of failure since cracks 
can still rapidly progress along the un-reinforced region between fabric layers.  
 
In general, textile composites are being considered for higher intra- and interlaminar 
strength and damage resistance. Interlaminar shear is the stress with which the plies 
adhere to each other only in the region between the plies. This shear strength is usually 
not very high in laminated composites because only the relatively weak matrix resin is 
present to carry the shear stresses in this region. Interlaminar shear stresses are typically 
induced by an out-of-plane load such as bending stresses. 
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4.1.1 Modes of interlaminar shear stress 
 
There are types of interlaminar stress that can act to separate one ply from another, figure 
4-1: 
? Mode I (peeling), 
? Mode II (pure shear) and 
? Mode III (tearing). 
 
 
Figure 4-1: Modes of interlaminar shear stress [Nettles 1995] 
 
For laminated composite materials, mode II (pure shear) is of the interest in the current 
study and bending stresses will be used to give rise to Mode II shear stresses to induce 
delaminations. 
 
4.1.2 Measuring the interlaminar shear strength 
 
It is important to select the proper method to measure the interlaminar shear strength. 
Several testing methods are available among which the following three test techniques 
are favored [Li et al. 1999]: 
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a) The short-beam shear test and 3-point bend of short beam, 
b) Four-point flexural test, 
c) Double-notch shear test (double-notched compression DNC) 
In the past, engineers have relied on the short beam shear test, as described in ASTM 
D2344, to examine interlaminar shear failure characteristics, and to provide an estimate 
of the interlaminar shear strength of composites [Kedward 1972 and Li et al. 1999]. As 
shown in figure 4-2, this test involves the use of a three point flexure specimen, with span 
to depth ratio chosen to induce interlaminar shear failure. Due to its simplicity, the test 
method is often used for quality control. However, the test provides only an estimate of 
the apparent interlaminar shear strength [Short 1995 and Whitney 1989]. 
 
Based on observed failure modes, stress analysis and fracture surfaces obtained in 
conjunction the short-beam shear specimens, considerable difficulty is encountered in 
interpreting experimental data. In particular, there is evidence that compression stresses 
in regions where high shear stress components exist tend to induce initial damage in the 
form of vertical cracks. Such initial damage appears to be necessary in order to induce 
horizontal interlaminar failures. For specimens without vertical cracks, the failure mode 
appears to be compressive buckling or yielding in the upper portion of the beam under 
combined compression and shear [Whitney 1989]. 
 
Closer inspection of short beam shear test specimen failure indicates the presence of 
micro-buckling and micro-cracking in the region near the load nose. It has also been 
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noticed that initial damage in the form of vertical cracks may be necessary to induce the 
horizontal interlaminar failures observed. Thus, despite its simplicity and popularity, the 
short beam shear test method is not appropriate for a general study of interlaminar shear 
failures of composite materials, for generating design information, or even for a material 
screening tool [Short 1995 and Whitney 1989]. 
 
 
 
Figure 4-2: Short beam shear test (ASTM D2344) 
 
The four-point flexural test, as shown in figure 4-3, is similar to the three-point bending 
test, but with use of two loading noses instead of one. This will give larger value for the 
span-to-depth ratio. This larger value will lead to longer sample which is preferable to 
give more control on the tested samples. Also, the span-to-depth is an essential factor in 
any flexural test, so a suitable number of layers should be chosen to get reasonable 
thickness. Furthermore, it is important to note that the span between the two loading 
noses is under pure bending.  
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Figure 4-3: Four-point flexural test (ASTM D6272) 
 
Double-notched compression (DNC) test, as shown in figure 4-4, is prescribed by ASTM 
D3846 as a standard test method for interlaminar shear strength. The ASTM recommends 
loading a double-notched shear specimen edgewise in compression with supporting 
fixtures to prevent buckling. Consequently, a shear failure occurs along the longitudinal 
shear plane between the notches. The measured shear strength may be affected by the 
supporting fixture/specimen contact friction during the test. The major advantage of DNC 
over the other techniques is that the interlaminar shear failure occurs consistently. In 
addition, DNC tests lead to lower shear strength than that of other test methods. The 
major drawback of DNC tests is the non-uniformity of the stress field in the gage section 
due in-part to the existence of highly concentrated stresses around notches of the DNC 
specimen. 
h 
P P 
S
S/4 S/4
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Figure 4-4: Double-notched compression shear test  
 
After careful consideration, the four-point flexural test was chosen in this study because 
of: 
? The existence of a pure bending region between load noses without 
complex stress-state. 
? Test simplicity and straightforwardness of data analysis. 
? It is economic in terms material, machining and time. 
 
4.2 Materials 
 
Two types of material were used to fabricate two-dimensional laminated plates: plain 
weave with E-glass fibers and twill weave with IM7 carbon fibers. Nominal factors 
provided by the suppliers are given in Tables 4-1. Figure 4-5 shows a plan view of the 
P 
P 
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fabrics. Shell resin EPON 828 provided by Miller-Stephenson Chemical Co., was used. 
Resin was mixed with hardener EPIKURE Curing Agent 9553 (formerly known as EPI-
CURE 9553 Curing Agent) by weight ratio of 100:15.4. 
 
 
  
a) Plain weave (E-glass fiber) b) Broken twill weave (IM7 carbon fiber) 
Figure 4-5: Plan view of the fabrics used in the study 
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Table 4-1: Specifications of fabrics used in the current study 
 IM7 Carbon Fiber Glass Fiber 
Fabric structure Broken twill weave Plain weave. 
Warp tow size (no. of filaments) 6K 3K 
Weft tow size (no. of filaments) 6K 3K 
Fabric weight (g/m
2
) 209 607 
Density (g/cm
3
) 1.78 2.54 
Warp counts /cm 4.5 2 
Warp counts /cm 4.5 2 
Filament diameter (?m) 
6 16 
Filament shape Round Round 
 
4.3 Molding 
 
There are many methods available to assemble or produce a composite plate such as; 
compression molding, resin transfer molding (RTM), resin film infusion (RFI), etc. In the 
current study, compression molding was chosen as a method to assemble composites for 
its simplicity. As shown in figure 4-6, a hydraulic compressor, Genesis Series 15 (G30 H 
15B, Wabash MPI), was used for compression molding. 
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a) Compressor b) The control panel 
Figure 4-6: Hydraulic compressor, Genesis Series 15 (G30 H 15B, Wabash MPI) 
 
4.4 Fabrication procedures: 
 
1) The surfaces of the bottom and top mold and frame were cleaned using an orbit 
sander. 
2) Fabrics were cut parallel to the yarn direction into designated sizes. 
3) Fabric layers used to make composite plate were weighted (
f
W ). 
4) Release agent was applied onto the mold and frame surfaces. 
5) The fabric layers were placed in the cavity of molds layer by layer and the resin 
mixture was loaded between layers. Te resin mixture was evenly distributed on 
each layer. 
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6) After loading all layers, release agent was applied onto the surface of the top mold 
before placing it on the bottom part which contained fabric layers and resin. 
7) The mold was placed in the hydraulic press at adjusted heat 120
o
 C and 114 kPa 
pressure for two hours. 
8) After the hot-pressing process, the mold was cooled at room temperature for 24 
hours. 
9) The composite plate was removed carefully from the mold and weighted (
c
W ). 
The composite and fabrics weights are used to calculate the fiber volume fraction 
using equation 4-1. 
m
fc
f
f
f
f
f
WWW
W
V
??
?
?
+
=  
(4-1) 
 
Where: 
f
?  and 
m
? are respectively the fiber and matrix densities in (g/cm
3
). 
10) 2.5 cm from each edge was cut off and discarded to ensure working with an even 
plate. 
11) The plate was cut into sample stripes, all strips lengths were cut parallel to the 
warp yarns and they were about 1.27 cm width. 
12) Strips? edges in length direction were polished with fine sandpaper. 
13) Thickness and width were measured for each sample at three different points and 
averaged. 
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Four-point flexural test was conducted on a computerized INSTRON 4500, as shown on 
figure 4-7. the flexural test fixture was designed and manufactured for the purpose of this 
test. Figure 4-8 shows a schematic for the test fixture. The loading noses and supports 
have diameters of 5 mm and the test speed was 1 mm/min. The span length (L) varied 
with the specimen thickness to keep the span-to-depth ratio at 16:1. From the load and 
specimen dimensions, the apparent mid-plane interlaminar shear stress (?) was calculated 
following the ASTM D6272. 
 
Figure 4-7: Computerized INSTRON 4500 
 
Figure 4-9 shows the four-point fixture used to conduct the test. The fixture was designed 
and manufactured to give much flexibility for changing the span of the upper and lower 
noses. 
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Support noses 
Load noses 
Wheels to control 
the span between 
Screws guide the 
noses? supports 
 
 
Figure 4-8: Schematic for the flexural test fixture 
 
 
Figure 4-9: Typical pictures for the four-point fixture 
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V. RESULTS AND DISCUSSION 
 
In this chapter, the following issues will be addressed: i) results of four-point flexural 
tests will be analyzed and discussed, ii) experimental data will be related to analytical 
models proposed in chapter three, and iii) model results will be compared to fiber pull-
out test from literature. 
 
5.1 Experimental results 
 
5.1.1 Fiber volume fraction 
 
Two woven structures were used in this study - plain weave E-glass fabric and broken 
twill IM7 carbon fabric. Five panels from each weave structure were manufactured 
varying the number of layers in each panel (5-9 layers for each structure). The fiber 
volume fraction of each panel was calculated using equation 4-1 and the results are listed 
in table 5-1. As shown in table 5-1, the fiber volume fraction increases proportionally by 
increasing the number of layers due to the constant thickness and the increasing number 
of layers of panels. The average thickness for the broken twill/carbon weave panels is 
2.512 mm and for the plain/glass weave panels is 3 mm. All the individual data points 
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are within the 95% statistical confidence interval. Five samples were cut out from each 
panel to the dimensions mentioned in the previous chapter. 
 
Table 5-1: Fiber volume fraction for the manufactured panels 
 Fiber volume fraction (%) 
No. of layers Twill weave (IM7 Carbon fiber) Plain weave (E-glass fiber) 
5 26 50 
6 28 52 
7 32 55 
8 36 58 
9 40 60 
 
5.1.2 Load-displacement diagrams 
 
Typical load versus crosshead displacement curves (load-displacement curves) of four-
point flexural tests showed nonlinearity in the initial stage of the loading, as shown in 
Figure 5-1. This nonlinearity mainly stems from the self-aligning processes between the 
test fixture and the specimen which occur during initial loading. The nonlinear part was 
removed from the curve for further analysis and the linear part extended to meet the x-
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axis. The intersection point of the linear part and the x-axis was assumed as the origin of 
the curve. Appendix D load displacement curves for all tested specimens.  
 
Stress and strain were calculated following the ASTM standards to obtain stress-strain 
curves for each sample. Figure 5-2 shows typical stress-strain curves for five samples 
from the seven layers panel of broken twill/carbon weave. All other stress-strain curves 
are shown in Appendix D. 
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Figure 5-1: Typical load versus crosshead displacement curve 
 
5.1.3 Shear modulus 
 
The shear moduli were calculated using pcGINA (Gowayed 1996) for each panel for 
different layers and results are reported in table 5-2. As shown in table 5-2 and figures 5-
3, the shear modulus increases linearly with increasing the volume fraction. Also, the 
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shear modulus of the plain/glass weave is greater than the twill/carbon weave and this is 
mainly due to the isotropy of the glass fibers. It should be noted, that the slope of the 
glass is greater than the slope of the carbon. 
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Figure 5-2: Tensile stress in the bottom layer versus strain curves for 7 layers twill/carbon 
weave 
 
It is expected to find this increase not only due to the increase in the fiber volume fraction 
but also because of the increase in nesting between layers. As mentioned earlier, the 
number of layers was increased within each fabric type while maintaining a constant 
thickness for the panels and by doing this the nesting between layers increased as well as 
the fiber volume fraction. 
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Table 5-2: Shear moduli (GPa) calculate using pcGINA for the manufactured samples. 
No. of layers Twill weave (IM7 Carbon fiber) Plain weave (E-glass fiber) 
5 2.54 4.61 
6 2.61 4.85 
7 2.77 5.26 
8 2.91 5.70 
9 3.06 6.05 
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Figure 5-3: Shear moduli (pcGINA) versus fiber volume fraction 
 70
5.1.4 Nesting between layers 
 
Nesting is an important phenomenon that affects mechanical performance of textile 
composites in general and its interlaminar shear strength in particular. It is defined as: In 
reinforced composites, a laminate where the plies are placed and the yarns of one ply lie 
in the valleys between the yarns of the adjacent ply [Morena 1997]. There were many 
attempts to measure the nesting in textile composites and obtain a quantified value to 
represent the nesting. The crimp angle, which is defined as: The maximum angular 
deviation between the local yarn direction and the plane of the cloth layer, was used as a 
measure for nesting [Jortner 1989]. The average crimp angle shows how much flattening 
the layers have. Since the nesting is not represented only by compaction but also by the 
shift between layers, Ito and Chou [1997, 1998] used two parameters to estimate the 
nesting; the shift between layers represented by phase angle and the layer compaction 
represented by waviness ratio which is a ratio of the yarn height to its wavelength. As an 
indicator for nesting the average thickness of the layers can be used because the layers 
are compressed during nesting. As an example, micrographic images of broken 
twill/carbon weave along the warp direction were captured; samples of the images are 
shown in figure 5-4. It can be seen that the thickness of layers got smaller as the number 
of layers increased within an almost constant thickness. The thickness for each layer was 
measured and averaged then compared to the panel?s thickness. 
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Figure 5-4: Cross-sectional view of selected samples with dif 
ferent number of layers for broken twill/carbon weave 
 
In figure 5-5 the relationship between the fiber volume fraction and layer thickness as a 
fraction of the panel thickness is shown. A power law curve fit is used to represent the 
data. 
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Figure 5-5: Relationship between fiber volume fraction and layer?s thickness as a fraction 
of the panel thickness for the broken twill/carbon weave 
 
5.1.5 Crack initiation and maximum shear stress 
 
There are two points in the stress-strain curves of the most importance in this study - the 
first point is located at the initiation of non-linearity in the curve and the second point is 
located at the maximum tensile stress at the bottom layer, figure 5-6. An audible sound 
can be heard during the test, this sound is accompanied with the departure from linearity 
in the stress-strain curve. This sound was assumed to result from energy release from 
crack initiation. The first audible sound was heard at the point of departure from linearity 
in the stress-strain curve. This was followed by more audible crack sounds in the non-
linear region with a frequency that increased with the increase in the strain value. After 
crack initiation, the tensile stress at the bottom layer continued to increase until failure. 
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Figure 5-6: Stress-strain curve for a 9 layers sample of broken twill/carbon weave 
 
5.1.6 Time interval between crack initiation and maximum tensile stress 
The time interval between the crack initiation and the maximum tensile stress at the 
bottom layer, representing the time needed for crack saturation and failure, is affected by 
two major parameters - nesting between layers and the amount of resin between layers. It 
seems that nesting resists the crack propagation between layers, low resin content 
between layers may induce ?dry? fibers that will increase the probability of crack 
propagation. As shown in figures 5-7 and 5-9, this time interval increased for the first two 
volume fractions of the broken twill/carbon weave and the first three volume fractions for 
the plain/glass weave and then decreased after that. Increasing nesting between layers 
will increase the length of the crack path and enhance delamination resistance. As nesting 
increases the volume of resin will decrease. This may cause some of the fibers to have 
little or no resin layer surrounding them creating new possible crack paths. In figure 5-8, 
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the relationship between layer?s thickness, as a nesting indicator, and the time interval 
has the same trend as the fiber volume fraction.  
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Figure 5-7: Time consumed in the interval between crack initiation and maximum tensile 
stress versus fiber volume fraction for the broken twill/carbon weave 
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Figure 5-8: Time consumed in the interval between crack initiation and maximum tensile 
stress versus layer?s thickness/panel?s thickness for the broken twill/carbon weave 
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Figure 5-9: Time consumed in the interval between crack initiation and maximum tensile 
stress versus fiber volume fraction for the plain/glass weave 
 
Tables 5-3 and 5-4 report stresses and strains at the crack initiation and at maximum 
tensile stress extracted from the curves. As shown in figure 5-10, the tensile stress at 
crack initiation and the maximum tensile stress increased with increasing the fiber 
volume fractions in the twill/carbon samples. This increase was not as evident for 
plain/glass samples, figure 5-12.  
 
Figure 5-11 shows the effect of the nesting indicator on the tensile stress at crack 
initiation and maximum tensile stress. It shows that with decreasing the layer thickness as 
a fraction of panel thickness, which means increasing the nesting between layers, the 
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tensile stress at the bottom layer increases. A power law curve fit was used to represent 
the relationship. This should be expected because increasing nesting between layers 
makes the crack path in the resin between the layers longer raising the tensile strength.  
 
Table 5-3: Tensile stresses and strains in the bottom layer of laminate at crack initiation 
and at maximum tensile stress for the broken twill/carbon weave 
 
At first crack sound Max. tensile stress Fiber volume 
fraction (%) 
Strain (mm/mm) Stress (GPa) Strain (mm/mm) Stress (GPa) 
26 0.0083 0.325 0.0142 0.415 
28 0.0084 0.288 0.0158 0.391 
32 0.0090 0.373 0.0155 0.464 
36 0.0081 0.367 0.0142 0.485 
40 0.0081 0.420 0.0134 0.535 
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Figure 5-10: Stress at crack initiation and max stress versus fiber volume fraction for the 
broken twill/carbon weave 
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Figure 5-11: Stress at crack initiation and max stress versus layer thickness for the broken 
twill/carbon weave 
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Table 5-4: Tensile stresses and strains in the bottom layer of laminate at maximum tensile 
stress for the plain/glass weave 
At first crack sound Max. tensile stress Fiber volume 
fraction (%) 
Strain (mm/mm) Stress (GPa) Strain (mm/mm) Stress (GPa) 
50 0.0160 0.365 0.0186 0.402 
52 0.0133 0.326 0.0171 0.379 
55 0.0124 0.324 0.0185 0.388 
58 0.0119 0.361 0.0139 0.394 
60 0.0119 0.3661 0.0132 0.379 
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Figure 5-12: Stress at crack initiation and max. stress for the plain/glass weave 
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In figures 5-13 and 5-14, show groups of stress-strain curves representing each panel 
(five curves per panel). The nearest curve to the average was chosen to represent the 
panel. As shown, these two figures are summarizing the results for the moduli and the 
maximum tensile stress. It can be seen that increasing the number of layers, as well as 
fiber volume fraction, caused an increase in the slope of straight segment of each curve 
(i.e., an increase in the moduli). 
 
 
0
0.1
0.2
0.3
0.4
0.5
0.6
0 0.005 0.01 0.015 0.02 0.025 0.03
Strain (mm/mm)
Shear stress (GPa)
5 Layers
6
7
8
9
 
Figure 5-13: Tensile stress in the bottom layer versus strain of the broken twill/carbon 
fabric for different number of layers 
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Figure 5-14: Tensile stress in the bottom layer versus strain of the plain/glass fabric for 
different number of layers 
 
 
5.2 Utilization of experimental data in analytical model  
 
In this section, models proposed in chapter three will be used to analyze experimental 
results. A two step modeling approach will be adopted to utilize the experimental data 
and be able to use the micro-level models. At the first level a numerical model (pcGINA) 
available in literature will be used to obtain mid-plane stresses and strains from 
experimental data. These stress and strain values are used in the proposed micro-level 
models. 
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5.2.1 Overview on pcGINA (Graphical Integrated Numerical Analysis) 
 
The Graphical Integrated Numerical Analysis (pcGINA) has been developed at Auburn 
University to model the mechanical and thermal behavior of textile composites. This is a 
two-part model. First a geometrical model is used to construct the textile preform and 
characterize the relative volume fractions and spatial orientation of each yarn in the 
composite space. Data acquired from the geometrical analysis is used by a hybrid finite 
element approach to model the composite mechanical and thermal behavior.  
 
The geometrical model used in pcGINA starts by modeling the preform forming process 
? weaving or braiding, figure 5-15. An ideal fabric geometrical representation is 
constructed by calculating the location of a set of spatial points ??knots?? that can identify 
the yarn center-line path within the preform space. A B-spline function is utilized to 
approximate a smooth yarn centerline path relative to the identified knots. The B-spline 
function is chosen as the approximation function due to its ability to minimize the radius 
of curvature along its path and its C
2
 continuity. The final step in this model is carried out 
by constructing a 3-D object (i.e. yarn) by sweeping a cross section along the smooth 
centerline forming the yarn surface.  
 
A repeat unit cell of the modeled preform is identified from the geometric model and 
used to represent a complete yarn or tow pattern. A hybrid finite element approach is 
used to divide the unit cell into smaller subcells. Each subcell is a hexahedral brick 
element with fibers and matrix around each integration point. A virtual work technique is 
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applied in the FE solution to calculate the properties of the repeat unit cell. The unit cell 
properties are considered to be representative of the composite properties.  
 
Currently, pcGINA can predict, with a good level of accuracy, the elastic properties, 
thermal conductivities, thermal expansion coefficients for textile composite materials for 
2D fabrics (e.g., plain weaves and n-HS), biaxial and triaxial braids, angle and layers 
interlock weaves, and orthogonal 3D weaves. 
 
 
 
              
 
Figure 5-15: Orthogonal fabric (left) and compressed plain weave fabric (right) as 
modeled by pcGINA. 
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5.2.2 Using pcGINA  
 
Tensile stresses at the crack initiation were used as an input tensile stress for pcGINA. 
Each panel was modeled using the fabric structure, fiber volume fraction and fiber 
properties. As outputs, pcGINA calculated the composite properties, tensile moduli, shear 
moduli and Poisson ratios as shown in figures 5-16 and 5-17. In addition, pcGINA 
calculated the stress and strains distributions in the unit cell. Figures 5-18 to 5-21, show 
examples of the stress and strain distribution for carbon and glass fabrics. 
 
 
 
Figure 5-16: Results of IM7 carbon fiber, 40% fiber volume fraction 
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Figure 5-17: Results of E-glass fiber, 60% fiber volume fraction 
 
Figure 5-18: Stress distribution for IM7 carbon, 40% fiber volume fraction 
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Figure 5-19: Strain distribution for IM7 carbon, 40% fiber volume fraction 
 
Figure 5-20: Stress distribution for E-glass, 60% fiber volume fraction 
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Figure 5-21: Strain distribution for E-glass, 60% fiber volume fraction 
 
The maximum stress for each panel, located at yarn crossover point, which represents the 
maximum laminate stress was extracted and listed in table 5-5 along with the 
experimental stress value at crack initiation. As expected, stress concentration in the 
composite laminate was evident and decreased with the increase in fiber volume fraction. 
These maximum stresses were used as an input for the models proposed in third chapter 
assuming that interfacial shear failure between the fiber and matrix occurred at this stress 
value. Using the two models, the stress distribution was calculated in all the composite 
constituents, fiber, matrix and surrounding composite. Examples for stress distribution 
are shown for broken twill/carbon fabric with 40% fiber volume fraction, figures 5-22, 
and plain/glass fabric with 60% fiber volume fraction, figures 5-23. 
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Table 5-5: Laminate failure stresses; experimental and calculated using pcGINA for the 
manufactured samples. 
Broken twill/carbon weave Plain/glass weave No. of layers 
Experimental 
Stress(GPa) 
Laminate 
stress (GPa) 
Experimental 
Stress(GPa) 
Laminate 
stress (GPa) 
5 0.325 0.762 0.365 0.489 
6 0.288 0.645 0.326 0.426 
7 0.372 0.766 0.324 0.410 
8 0.367 0.688 0.361 0.441 
9 0.420 0.724 0.366 0.447 
 
As shown in figures 5-22 and 5-23, the maximum variation in the stress distribution 
happened at the fiber/matrix interface in the longitudinal fibers. This stress variation was 
assumed to be the stress responsible for crack initiation.  
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Figure 5-22: Tensile stress distribution in x-direction for longitudinal and transverse 
models, for broken twill/carbon fabric with 40% volume fraction 
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Figure 5-23: Tensile stress distribution in x-direction for longitudinal and transverse 
models, for plain/glass fabric with 60% volume fraction 
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5.3 Comparison of model results to pull-out tests 
 
The difference in the tensile stress at the fiber/matrix interface in the longitudinal fibers, 
listed in table 5-6, can be used to calculate the interface shear stress between the fiber and 
matrix using this equation: 
c
tensile
l
r
?
?
=
2
?
?
 
Where: 
?
is the interface shear stress (MPa) at crack initiation point. 
tensile
?
 is the drop of the tensile stress at fiber/matrix interface on the 
longitudinal fiber (MPa) 
r  is fiber radius (?m) 
c
l
 is fiber critical length or the fiber length needed for stress build-up at the fiber 
matrix interface (?m) 
The fiber critical length range was taken 150 ? 300 (?m) as an accepted length for 
carbon/epoxy composite [Narin 2001]. All the results are listed in table 5-6 for broken 
twill/carbon weaves and table 5-7 for the plain/glass weaves. The results for pull-out test 
were found in literature (DiFrancia 1996) to be between 21 to 39 MPa for the 
carbon/epoxy composites and 16 to 26 MPa for the glass/epoxy composites. It can be 
seen from these tables that the interface shear strengths calculated from the model and 
reported in literature are very close in value. 
 
 91
Table 5-6: Interface shear strength between fiber and matrix for broken twill/carbon 
weaves 
?
 Fiber volume 
Fraction (%) 
Tensile stress difference (MPa) 
l
c
 = 150 ?m l
c
 = 300 ?m 
26 4900.7 49.01 24.50 
28 3879.5 38.79 19.40 
32 4121.9 41.22 20.61 
36 3360.4 33.60 16.80 
40 3216.6 32.17 16.08 
 
 
Table 5-7: Interface shear strength between fiber and matrix for plain/glass weaves 
?
 Fiber volume 
Fraction (%) 
Tensile stress difference (MPa) 
150 300 
50 1253.9 33.44 16.72 
52 1061.4 28.30 14.15 
55 971.46 25.91 12.95 
58 984.26 26.25 13.12 
60 962.48 25.67 12.83 
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5.4 Stress distribution in the composite 
 
After verifying the proposed models using finite element method, existing analytical 
models (Weng 1984) and experimental data, these two models can be used with 
confidence to map the stress within the composite constituents as well as fiber/matrix 
interface. Radial and hoop stress distribution in the longitudinal model for twill/carbon 
weave are shown in figures 5-24 and 5-25 and plain/glass weave in figures 5-26 and 5-27, 
respectively. 
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Figure 5-24: Radial stress in fiber, matrix and composite for carbon fabric with 40% fiber 
volume fraction 
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Figure 5-25: Hoop stress in fiber, matrix and composite for carbon fabric with 40% fiber 
volume fraction 
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Figure 5-26: Radial stress in fiber, matrix and composite for glass fabric with 60% fiber 
volume fraction 
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Figure 5-27: Hoop stress in fiber, matrix and composite for glass fabric with 60% fiber 
volume fraction 
 
In addition, the stress distribution in the transverse model can be mapped for any angle. 
Figures 5-28 to 5-30 show the radial, hoop and shear stress distributions for the carbon 
weave with 40% fiber volume fraction at three different angles, 0, 45 and 90
o
. Also, in 
figures 5-31 to 5-33, the stress distributions are shown for glass weave with 60% volume 
fraction at three different angles. 
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Figure 5-28: Radial stress for twill/carbon weave with 40% fiber volume fraction 
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Figure 5-29: Hoop stress for twill/carbon weave with 40% fiber volume fraction 
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Figure 5-30: Shear stress for twill/carbon weave with 40% fiber volume fraction 
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Figure 5-31: Radial stress for plain/glass weave with 60% fiber volume fraction 
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Figure 5-32: Hoop stress for plain/glass weave with 60% fiber volume fraction 
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Figure 5-33: Shear stress for plain/glass weave with 60% fiber volume fraction 
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VI. CONCLUSIONS 
 
6.1 Models 
 
Two analytical models were proposed in this study to map the stress distribution in fiber, 
matrix and fiber/matrix interface. The first model represented the fiber, matrix and 
surrounding composite as longitudinal axisymmetric bodies. The second model addressed 
the fiber in the transverse direction. Polar coordinates were used to set the equations for 
the stress equilibrium in both models and stress equilibrium and displacement 
compatibility were used in both models at as the interface boundary conditions. Both 
models were verified using finite element models (FEMs). In addition, the second model 
results for stress concentrations were compared to a model from literature and showed 
good comparison.  The effect of neighboring fibers was verified using a superposition 
technique. 
 
6.2 Experimental work 
 
Experimental work was conducted to verify the two proposed models. An E-glass plain 
weave and an IM7 carbon broken twill were used to manufacture composite plates.  Five 
panels were produced for each fabric based on the number of fabric layers in each panel. 
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Five different numbers of fabric layers were used for each panel ranging from 5 to 9 
layers. The four-point flexural test was used to test the specimens? shear behavior and 
stress-strain curves were plotted.  A departure from linearity in the stress-strain curves 
was observed prior to reaching the maximum stress which was accompanied by an 
audible crack sound. This stress value was considered as the stress causing the initiation 
of cracks in the specimen. 
 
The tensile stress value at the bottom fabric layer was calculated from the test results. The 
Graphical Integrated Numerical Analysis model was used to evaluate the average stress 
distribution at the unit cell level and the maximum stress was used as an input for the 
proposed micro-models. The stress distributions in the fiber, matrix and fiber/matrix 
interface were mapped and it was found that the maximum variation in the stresses in the 
fiber/matrix interface is in the longitudinal direction. The difference in the stresses at the 
interface was extracted and used to calculate the interfacial shear strength between the 
fiber and the matrix. The results were compared to literature data and showed good 
agreement.  
 
6.3 Future work 
 
The only proof for crack initiation is the in the change in linearity in stress-strain curve 
and the audible sound. So, it is important to monitor the crack initiation using high speed 
cameras or sensitive sound tools such as ?Acoustic Emission?. It is believed that 
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monitoring the crack initiation and progress will clarify many issues and give another 
dimension for study of textile composites shear behavior. 
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APPENDIX A: MATLAB
?
 CODE FOR THE LONGITUDINAL MODEL 
 
clear; 
P=0.4469e3; 
Vf=0.60;  
     
% Fiber Properties 
rf=8e-3; 
Ef=72.4e3; 
Gf=28.96e3; 
nuf=0.25;  
 
% Matrix Properties 
rm=sqrt(rf^2 /Vf); 
Em=5e3; 
num=0.35; 
Gm=Em/(2*(1+num)); 
 
% Composite Properties 
 
rfm=5*rm; 
Efm=4.443177*6.895e3; 
nufm=0.370096; 
Gfm=0.910532*6.895e3; 
 
%%%%%%%%%%%%%%%%%%  Symbolic   %%%%%%%%%%%%%%% 
syms K Mm Nm Mfm Nfm Szf Szm Szfm r 
 
% Fiber Equations 
Srf=K; 
Scf=K; 
ecf=(Scf-(nuf*Srf)-(nuf*Szf))/Ef; 
ezf=(Szf-(nuf*Scf)-(nuf*Srf))/Ef; 
%Sz1=Szf-(nuf*Scf)-(nuf*Srf)-(Ef*epz); 
urf=r*ecf; 
 
% Matrix Equations 
Srm=Mm+(Nm/r^2); 
Scm=Mm-(Nm/r^2);
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ecm=(Scm-(num*Srm)-(num*Szm))/Em; 
ezm=(Szm-(num*Scm)-(num*Srm))/Em; 
%Sz2=Szc-(nuc*Scc)-(nuc*Src)-(Ec*epz); 
urm=r*ecm; 
 
% Composite Equations 
Srfm=Mfm+(Nfm/r^2); 
Scfm=Mfm-(Nfm/r^2); 
ecfm=(Scfm-(nufm*Srfm)-(nufm*Szfm))/Efm; 
ezfm=(Szfm-(nufm*Scfm)-(nufm*Srfm))/Efm; 
%Sz3=Szm-(num*Scm)-(num*Srm)-(Em*epz); 
urfm=r*ecfm; 
Sz4=(Szf*(rf^2))+(Szm*((rm^2)-(rf^2)))+(Szfm*((rfm^2)-(rm^2)))-(P*(rfm^2)); 
% At r = rf ----> Srf = Src  && Urf = Urc 
r=rf; 
Sr1=subs(Srf-Srm); 
Ur1=subs(ecf-ecm); 
Szfmm=subs(ezm-ezf); 
 
% At r = rm ----> Srm = Srfm  && Urm = Urfm 
r=rm; 
Sr2=subs(Srm-Srfm); 
Ur2=subs(ecm-ecfm); 
Szme=subs(ezfm-ezm); 
 
% At r = rfm ----> Srfm = 0 
r=rfm; 
Sr3=subs(Srfm); 
Sz4=subs(Sz4); 
 
GG=solve(Sr1,Ur1,Sr2,Ur2,Sr3,Szfmm,Szme,Sz4); 
K=subs(GG.K); 
Mm=subs(GG.Mm); 
Nm=subs(GG.Nm); 
Mfm=subs(GG.Mfm); 
Nfm=subs(GG.Nfm); 
Szf=subs(GG.Szf); 
Szm=subs(GG.Szm); 
Szfm=subs(GG.Szfm); 
 
jj=0; 
for r=0:rf/10:rf 
    jj=jj+1; 
    rr(jj)=r; 
    Ur(jj)=subs(urf); 
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    Sr(jj)=subs(Srf); 
    Sc(jj)=subs(Scf); 
    Sz(jj)=subs(Szf); 
         
end 
 
for r=rf:(rm-rf)/10:rm 
    jj=jj+1; 
    rr(jj)=r; 
    Ur(jj)=subs(urm); 
    Sr(jj)=subs(Srm); 
    Sc(jj)=subs(Scm); 
    Sz(jj)=subs(Szm); 
        
end 
 
 
for r=rm:(rfm-rm)/10:rfm 
    jj=jj+1; 
    rr(jj)=r; 
    Ur(jj)=subs(urfm); 
    Sr(jj)=subs(Srfm); 
    Sc(jj)=subs(Scfm); 
    Sz(jj)=subs(Szfm); 
        
end 
 
 
 
figure, plot(Sz/1e3,rr); 
ylabel('Radius R (mm)'); 
xlabel('Axial Stress (GPa)'); 
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APPENDIX B: MATLAB
?
 CODE FOR THE TRANSVERSE MODEL 
 
% Stresses as out boundary conditions 
clear; 
P=0.4469e3; 
Vf=0.60; 
 
     
% Fiber Properties 
rf=8e-3; 
Ef=72.4e3; 
Gf=28.96e3; 
nuf=0.25; 
zf=3-(4*nuf); 
 
% Matrix Properties 
rm=sqrt(rf^2 /Vf); 
Em=5e3; 
num=0.35; 
Gm=Em/(2*(1+num)); 
zm=3-(4*num); 
 
 
Efm=4.443177*6.895e3; 
nufm=0.370096; 
Gfm=0.910532*6.895e3; 
zfm=3-(4*nufm); 
     
% ( 1 )  At r = rf Sr = Sr for the constant part 
S(1,1)=0.5; 
S(1,2)=0; 
S(1,3)=0; 
 
S(1,4)=-0.5; 
S(1,5)=0.25*(rm/rf)^2; 
S(1,6)=0; 
S(1,7)=0; 
S(1,8)=0; 
S(1,9)=0;
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S(1,10)=0; 
S(1,11)=0; 
S(1,12)=0; 
 
 
% ( 2 )  At r = rf Sr = Sr  
S(2,1)=0; 
S(2,2)=0.25; 
S(2,3)=0; 
 
S(2,4)=0; 
S(2,5)=0; 
S(2,6)=-0.25; 
S(2,7)=(rm/rf)^2; 
S(2,8)=0.75*(rm/rf)^4; 
S(2,9)=0; 
 
S(2,10)=0; 
S(2,11)=0; 
S(2,12)=0; 
 
 
% ( 3 )  At r = rf Trcf = Trcm 
S(3,1)=0; 
S(3,2)=-0.25; 
S(3,3)=1.5*(rf/rm)^2; 
 
S(3,4)=0; 
S(3,5)=0; 
S(3,6)=0.25; 
S(3,7)=0.5*(rm/rf)^2; 
S(3,8)=0.75*(rm/rf)^4; 
S(3,9)=-1.5*(rf/rm)^2; 
 
S(3,10)=0; 
S(3,11)=0; 
S(3,12)=0; 
 
 
% ( 4 )  At r = rf Urf = Urm for the constant part 1 
S(4,1)=(zf-1)*(rf/rm); 
S(4,2)=0; 
S(4,3)=0; 
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S(4,4)=-(Gf/Gm)*(zm-1)*(rf/rm); 
S(4,5)=-(Gf/Gm)*(rm/rf); 
S(4,6)=0; 
S(4,7)=0; 
S(4,8)=0; 
S(4,9)=0; 
 
S(4,10)=0; 
S(4,11)=0; 
S(4,12)=0; 
 
% ( 5 )  At r = rf Urf = Urm for part 2 
S(5,1)=0; 
S(5,2)=(rf/rm); 
S(5,3)=(zf-3)*(rf/rm)^3; 
 
S(5,4)=0; 
S(5,5)=0; 
S(5,6)=-(Gf/Gm)*(rf/rm); 
S(5,7)=-(Gf/Gm)*(zm+1)*(rm/rf); 
S(5,8)=-(Gf/Gm)*(rm/rf)^3; 
S(5,9)=-(Gf/Gm)*(zm-3)*(rf/rm)^3; 
 
S(5,10)=0; 
S(5,11)=0; 
S(5,12)=0; 
 
 
% ( 6 )  At r = rf Ucf = Ucm  
S(6,1)=0; 
S(6,2)=-(rf/rm); 
S(6,3)=(zf+3)*(rf/rm)^3; 
 
S(6,4)=0; 
S(6,5)=0; 
S(6,6)=(Gf/Gm)*(rf/rm); 
S(6,7)=(Gf/Gm)*(zm-1)*(rm/rf); 
S(6,8)=-(Gf/Gm)*(rm/rf)^3; 
S(6,9)=-(Gf/Gm)*(zm+3)*(rf/rm)^3; 
 
S(6,10)=0; 
S(6,11)=0; 
S(6,12)=0; 
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% ( 7 )  At r = rm Sr = Sr for PART 1 
S(7,1)=0; 
S(7,2)=0; 
S(7,3)=0; 
 
S(7,4)=0.5; 
S(7,5)=-0.25; 
S(7,6)=0; 
S(7,7)=0; 
S(7,8)=0; 
S(7,9)=0; 
 
S(7,10)=0.25; 
S(7,11)=0; 
S(7,12)=0; 
 
 
% ( 8 )  At r = rm Sr = Sr for PART 2 
S(8,1)=0; 
S(8,2)=0; 
S(8,3)=0; 
 
S(8,4)=0; 
S(8,5)=0; 
S(8,6)=0.25; 
S(8,7)=-1; 
S(8,8)=-0.75; 
S(8,9)=0; 
 
S(8,10)=0; 
S(8,11)=1; 
S(8,12)=0.75; 
 
 
% ( 9 )  At r = rm Trm = Tre  
S(9,1)=0; 
S(9,2)=0; 
S(9,3)=0; 
 
S(9,4)=0; 
S(9,5)=0; 
S(9,6)=-0.25; 
S(9,7)=-0.5; 
S(9,8)=-0.75; 
S(9,9)=1.5; 
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S(9,10)=0; 
S(9,11)=0.5; 
S(9,12)=0.75; 
 
 
% ( 10 )  At r = rm Urm = Ure for PART 1 
S(10,1)=0; 
S(10,2)=0; 
S(10,3)=0; 
 
S(10,4)=(zm-1); 
S(10,5)=1; 
S(10,6)=0; 
S(10,7)=0; 
S(10,8)=0; 
S(10,9)=0; 
 
S(10,10)=-(Gm/Gfm); 
S(10,11)=0; 
S(10,12)=0; 
 
% ( 11 )  At r = rm Urm = Ure for PART 2 
S(11,1)=0; 
S(11,2)=0; 
S(11,3)=0; 
 
S(11,4)=0; 
S(11,5)=0; 
S(11,6)=1; 
S(11,7)=(zm+1); 
S(11,8)=1; 
S(11,9)=(zm-3); 
 
S(11,10)=0; 
S(11,11)=-(Gm/Gfm)*(zfm+1); 
S(11,12)=-(Gm/Gfm); 
 
% ( 12 )  At r = rm Ucm = Uce  
S(12,1)=0; 
S(12,2)=0; 
S(12,3)=0; 
 
S(12,4)=0; 
S(12,5)=0; 
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S(12,6)=-1; 
S(12,7)=-(zm-1); 
S(12,8)=1; 
S(12,9)=(zm+3); 
 
S(12,10)=0; 
S(12,11)=(Gm/Gfm)*(zfm-1); 
S(12,12)=-(Gm/Gfm); 
 
 
 
 
C(1)=0; 
C(2)=0; 
C(3)=0; 
C(4)=0; 
C(5)=0; 
C(6)=0; 
C(7)=0.5; 
C(8)=0.5; 
C(9)=-0.5; 
C(10)=(Gm/Gfm)*(zfm-1); 
C(11)=2*(Gm/Gfm); 
C(12)=-2*(Gm/Gfm); 
 
Co=inv(S)*C'; 
Af=Co(1); 
Bf=Co(2); 
Cf=Co(3); 
AA=Co(4); 
BB=Co(5); 
CC=Co(6); 
DD=Co(7); 
EE=Co(8); 
FF=Co(9); 
Ae=Co(10); 
Be=Co(11); 
Ce=Co(12); 
 
%Co' 
 
r=rf; 
j=0; 
for theta = -90:1:90 
    j=j+1; 
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    c=theta*pi/180; 
    Q=cos(2*c); 
     
    Scm(j)=0.5*((AA+((BB/2)*(rm/r)^2)) - (((CC/2)-(1.5*EE*(rm/r)^4)-
(6*FF*(r/rm)^2))*cos(2*c))); 
         
    Srf(j)=0.5*(Af + ((Bf/2)*cos(2*c))); 
    Scf(j)=0.5*(Af - (((Bf/2)-(6*Cf*(r/rm)^2))*cos(2*c))); 
    Trc(j)=0.5*((-Bf/2)+(3*Cf*(r/rm)^2))*sin(2*c); 
    Ur(j)=((Af*(zf-1)*(r/rm))+ (((Bf*(r/rm))+(Cf*(zf-
3)*(r/rm)^3))*cos(2*c)))*rm/(8*Gf); 
    Uc(j)=((-Bf*(r/rm))+(Cf*(zf+3)*(r/rm)^3))*(rm/(8*Gf))*sin(2*c); 
     
    Sxf(j)=P*1e-3*((Srf(j)*(cos(c))^2)+(Scf(j)*(sin(c))^2)-(2*Trc(j)*(sin(c)*cos(c)))); 
    Sxc(j)=P*1e-3*((Srf(j)*(cos(c))^2)+(Scm(j)*(sin(c))^2)-(2*Trc(j)*(sin(c)*cos(c)))); 
     
    cc(j)=theta; 
 
end 
hold on 
plot(Sxf,cc,'r'); 
plot(Sxc,cc,'m'); 
xlabel('Stress in x-direction around the fiber(GPa)'); 
ylabel('Angle (deg)'); 
 
%plot(Sxc-Sxf,cc,'k'); 
 
grid on 
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APPENDIX C: GENERAL SOLUTION TO A BI-HARMONIC EQUATION 
?KOLOSOV MUKHELISHVILI COMPLEX POTENTIAL? 
 
The stress function U(x,y) can be expressed in terms of two separate analytical functions. 
A function f(z) is said to be analytic at appoint z = z
o
 if it is defined at that point and has 
derivatives in the neighborhood of z = z
o
 . So, f(z) is said to be analytic over a region R if 
it is analytic at all points in R. Also, f(z) can be expressed as a power series centered 
around z = z
o
 . 
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Let f(z)=P(x,y) + iQ(x,y) = P + iQ 
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Airy?s stress function (NO BODY FORCE) 
For 2-D it is possible to find a function U(x,y) such that: 
i) It satisfies stress equilibrium equations. 
ii) It satisfies compatibility condition. 
iii) It satisfies boundary conditions. 
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Let U(x,y) be chosen such that. 
yx
U
and
x
U
y
U
??
?
?=?
?
?
=?
?
?
=?
2
12
2
2
22
2
2
11
,  
In polar: 
)(
11
)(
)(
11
2
2
2
2
2
2
2
Shear
r
U
r
U
r
Hoop
r
U
Radial
U
r
r
U
r
r
rr
???
?
??
??
?
?=?
?
?
=?
??
?
?+
?
?
?=?
?
??
 
Strain compatibility equation in 2-D: 
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We can get: 
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Using C.R. equation: 
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If b denotes the imaginary part of a function ( )z? where ( ) ibaz +=?  
The function U can be expressed as: 
()()( )[]ibaiqpiyxU +++??= Re  
Note that: ()iqp +  is related to ( )z?  and ( )iba +  is related to ()z?  the two analytical 
functions of the complex variable z. 
() () ()[ ]zzzzU ?+??= Re         ( C-1 ) 
Consequently, the solution of the 2-D problem is reduced to the determination of the two 
analytical functions () ()
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=??  from the boundary conditions. 
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From Equ. ( C-1 ) 
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Add equ. (B) and (C) to get: 
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Subtract (C-2) and (C-3) to get: 
[ ]
[][])(')("2)(')("22
)(')("22
121122
121122
zzzzzzi
zzzi
?+??=?+??=??+????
?+??=??????
 
[ ])(')("22
121122
zzzi ?+??=??+????                    (C-5) 
Equations (C-4) and (C-5) refer to stress potential (Goursal function) 
To express displacement components in terms of ( ) ( )zandz ?? : 
From Hook?s law: 
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Similarly, 
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Using these in Eq. (C-6) and (C-7) to get: 
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Note: f(x) and f(y) are integration constants can be shown to be constants and represent 
rigid body motion. Drop them from the analysis. 
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In polar: 
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Stress state around a circular hole in which a ring, consisting of several concentrically 
welded rings of differing materials, is inserted 
 
It is assumed that infinitely large elastic, isotropic plane containing a circular hole of 
radius ?R? is subjected to a given system of external forces (tension, compression, pure 
bending, etc.) and that composite ring is welded into the hole, the ring being made of 
concentric elastic rings (K
1
, K
2
, K
3
, ? K
s
) of various materials. The stress state due to the 
external forces is to be determined in the composite ring and also in the elastic plane. It is 
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assumed that in the hole-free plate subject to the same external stresses as the same plate 
with a hole, the stress function ?U? is a polynomial of the (m+1)-th degree. 
 
 
Error!
 
Figure C-1: Infinitely large elastic, isotropic plane contains circular hole surrounded by 
concentric elastic rings subjected to a given system of external forces  
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For the elastic plate: 
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Boundary Conditions: 
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For each layer: 
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Uni-axial tension applied to a plate containing a circular hole into which an elastic ring is 
inserted. Consider a composite ring welded into a circular hole in an infinitely large 
isotropic plate which is stressed by a uniform tensile stress P. The stress and 
displacement components in the plate and in the ring are to be determined. 
The stress functions for the continuous hole-free plate are of the type: 
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Considering the stress function ?U? is a polynomial of the second degree (i.e m=1), the 
following stress function are obtained. 
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For each ring: 
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Stresses and displacements in the plate: 
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Stresses and displacements in each ring: 
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In case of fiber presence instead of hole 
 
Figure C-2: Infinitely large homogeneous plate contains circular fiber surrounded by 
concentric elastic rings subjected to a given system of external forces  
 
In this case, the equations of the layers can be used for the interphase and the matrix. 
For the fiber, the radial stress should be finite value at the fiber center; i.e. 
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bab  and the equations will be in the following form: 
 
Fiber 
Interphase 
Matrix 
Homogeneous 
Plate 
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APPENDIX D: LOAD-DISPLACEMENT AND STRESS-STRAIN CURVES 
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Figure D-1. Load-displacement curves for 5 layers broken twill/carbon fabric 
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Figure D-2. Stress-strain curves for 5 layers broken twill/carbon fabric
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Figure D-3. Load-displacement curves for 6 layers broken twill/carbon fabric 
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Figure D-4. Stress-strain curves for 6 layers broken twill/carbon fabric 
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Figure D-5. Load-displacement curves for 7 layers broken twill/carbon fabric 
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Figure D-6. Stress-strain curves for 7 layers broken twill/carbon fabric 
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Figure D-7. Load-displacement curves for 8 layers broken twill/carbon fabric 
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Figure D-8. Stress-strain curves for 8 layers broken twill/carbon fabric 
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Figure D-9. Load-displacement curves for 9 layers broken twill/carbon fabric 
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Figure D-10. Stress-strain curves for 9 layers broken twill/carbon fabric 
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Figure D-11. Load-displacement curves for 5 layers plain/glass fabric 
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 Figure D-12. Stress-strain curves for 5 layers plain/glass fabric 
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Figure D-13. Load-displacement curves for 6 layers plain/glass fabric 
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Figure D-14. Stress-strain curves for 6 layers plain/glass fabric 
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Figure D-15. Load-displacement curves for 7 layers plain/glass fabric 
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Figure D-16. Stress-strain curves for 7 layers plain/glass fabric 
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Figure D-17. Load-displacement curves for 8 layers plain/glass fabric 
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Figure D-18. Stress-strain curves for 8 layers plain/glass fabric 
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Figure D-19. Load-displacement curves for 9 layers plain/glass fabric 
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Figure D-20. Stress-strain curves for 9 layers plain/glass fabric 

