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Mapping of the stress distribution in composite materials, both at the fiber/matrix 

interface and at the composite constituents themselves, is important to understand the 

material mechanical response. Stress mapping can help predict composite behavior under 

certain stresses especially failure or delamination. In this work, two analytical models 

were proposed to map the stress distribution at fiber, matrix and fiber/matrix interface. 

The first model dealt with the fiber in the longitudinal direction considering axisymmetric 

conditions. The second model addressed the fiber stress distribution in the transverse 

direction. Both models were verified using finite element models. 
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 As an application for the stress mapping models, interfacial shear behavior was chosen 

for its importance in modeling and design of composite materials. Two fabric structures 

were used to manufacture five different panels for each fabric. The number of fabric 

layers for each plate ranged from 5 to 9 layers systematically altering the volume fraction 

and nesting characteristics of each plate. Four-point flexural tests were used to obtain a 

pure bending state between load noses. The maximum tensile stress and crack initiation 

stress at the bottom layer were experimentally evaluated.  

 

Experimental data was processed using the Graphical Integrated Numerical Analysis 

software (pcGINA) to obtain the maximum stress in the target laminate and this value 

was used as the input for the two analytical models. The value for the maximum 

interfacial shear stress which is responsible for crack initiation in the laminate was 

calculated using the models and results were compared to pull-out fiber test values 

obtained from literature. Good agreement was observed between the model results and 

the literature data. 
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I. INTRODUCTION 

 
1.1 Background 

 

In the last two decades, textile composites showed a potential for enhancing the 

drawbacks of the conventional unidirectional composites due to their integrated yarn 

architecture. One of the main classes of textile composite is woven-fabric composite, 

which consists of two groups of yarns, known as warp and weft, interlaced at right angles 

giving woven-fabric composites several advantages over unidirectional fibrous 

composites: 

 

• Low production costs can be achieved. 

• The handling of woven fabrics is relatively easy. 

• The weaving and interlacing of the yarns creates a self supporting system 

that can be controlled to form complex shapes. 

• Mechanically, the geometry of a fabric provides bi-directional stiffness in 

the plane of loading, superior impact tolerance and good interlaminar 

stiffness in the out of plane direction. 

 

However, these advantages are at the cost of reduced overall in-plane stiffness properties 

due to the undulation (crimp) of the yarns. 
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Currently, most woven-fabric structures used are plain, twill and satin weaves for their 

simplicity in design and manufacturing. However, changing fabric architecture can 

achieve the best possible combination of cost, weight, thickness, in-plane and out-of-

plane stiffness and strength properties. This can be accomplished by changing the weave 

structure, fiber type, yarn count, etc. There are unlimited number of possible 

architectures.  

 

The combined requirements of lightweight and high strength in many civil and military 

applications under high strain rate loading conditions open the field of woven fabric 

composites to be used as structural materials. Furthermore, textile composites show 

significant tolerance to damage before failure which may include different interacting 

modes, such as matrix cracking, interfacial sliding, and fiber damage in different 

positions occurring simultaneously and over small spatial and sequential scales. The local 

stress and strain fields accompanied with these phenomena are difficult, if not impossible, 

to be obtained experimentally. Hence, accurate, predictive analytical tools are required to 

give insights into the original physical mechanisms relating to damage. 

 

Analysis of failure in composite materials has traditionally followed two different levels: 

• Micro-mechanics. 

• Macro-mechanics. 

 

The micro-mechanics approach considers microscopic inhomogeneities and direct 

interaction of composite constituents at the micro-structure level. The advantage of the 
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micro-mechanics approach is that detailed information can be directly obtained about the 

local interaction between composite constituents. However, the numerical modeling 

combined with complicated fiber geometries often requires exceedingly fine grids and 

hence results in excessive computing cost. 

 

Many models attempted to address micro-mechanical analysis at a manageable level. 

However, this is done by oversimplifying the mechanical behavior of the constituents, 

which leads to inaccurate results. Conducting stress analysis in practical composite 

laminates with the presence of million of fibers using micro-mechanical approach is a 

daunting task beyond the computational capacity of even the most-advanced 

supercomputers. Hence, current micro-mechanical models are mainly restricted to the 

strength prediction at the lamina level or unidirectional composites. 

 

In the macro-mechanics approaches, the overall constitutive descriptions are developed 

from composite micro-structure in terms of the volume fraction, weave structure, and the 

interface conditions of the constituents. The mechanical properties of woven-fabric 

composites have high dependence upon the reinforcing yarn geometry and weave 

structure. It is necessary to create a geometric model for describing the fiber architecture 

and weave structure. The woven fabric can be treated as an assembly of unit cells which 

represents the smallest repeating pattern in the fabric structure. The unit cell includes 

sufficient details to represent the fabric geometry. 

 



 4

It is important to highlight the hierarchal nature of structural analysis, unit-cell models 

and micro-level models. Such relationship is similar to that of local-to-global finite 

element analysis but with an additional layer of analysis. At the composite part level, 

structural analysis, such as Finite Element Analysis, can define stress and strain 

distributions around holes, attachments, etc. These stress and strain values do not include 

the local effect of fiber/fabric geometries at the unit cell level. Utilizing information 

provided by structural analysis, unit-cell models are able to implement the effect of 

geometries and define average stress and strain distributions within a repeat unit cell. 

Micro-level models use the information provided by unit-cell models to map stress and 

strain distributions for fibers, matrix, fiber/matrix interface, etc. For example, for a 

composite plate with a hole, structural analysis will define stress and strain distribution 

around the hole treating the composite as an orthotropic material. Unit cell models utilize 

this information to map the stress and strain distributions to yarns and resin-pocket. 

Stresses and strains at the fiber level and fiber/matrix interfaces are further evaluated 

using micro-level models.  

 

1.2 Objectives 

 

The objective of this study, in summary, is to develop a novel closed-form micro-level 

stress/strain mapping for composite materials and merge it with a unit-cell level 

numerical approach. The procedure to reach this target will be as follow: 

 



 5

i. Develop analytical models to map the stress distribution in the composite 

constituents, i.e. fiber, interface and matrix. 

ii. Verify analytical models with numerical tools such as FEM. 

iii. Connect these models to the unit-cell level numerical model 

iv. Implement the new combined model to understand interfacial shear stress 

distribution in woven laminates 

v. Manufacture composite samples and conduct four-point bending test to verify 

the analytical results with experiments. The four-point bending test is used to 

quantify the interlaminar shear strength of textile composite.  

 

1.3 Organization of the dissertation 

 

This study is presented in six chapters including this introduction chapter. The second 

chapter contains review of the literature focusing on numerical modeling and closed form 

solutions in fiber reinforced composites in general. The third chapter introduces the 

analytical models and their verifications. The fourth chapter covers the experimental 

work which includes manufacturing of composite samples and conducting the four-point 

bending test. The fifth chapter discusses the test results and compares the experimental 

data to analytical results. The sixth chapter concludes this work and presents 

recommendations and suggestions for future work. 
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II. REVIEW OF LITERATURE 

 

2.1 Introduction 

 

To improve composite reliability and damage tolerance for advanced structure 

applications reasonable through thickness and interlaminar strengths are required. Using 

woven-fabric composites can achieve such requirements. Also, the ability to precisely 

customize the composite micro-structure through efficient and accurate modeling can 

expand the material use rapidly.  

 

In the mechanics of heterogeneous materials there is an interest in computing micro-level 

stress and deformation fields to understand their local failure and damage. A major need 

in the design of woven fabric composites is to assess suitable stress levels under the 

conditions to be experienced during service. For this class of composite, the computation 

of the local distributions of stresses in the fiber and matrix is considerably more complex 

than for unidirectional ply laminates due to the interlacing of the fiber tows. Limited 

attempts have been carried out on woven composites modeling and analysis. For more 

complicated and advanced applications, especially those concerned with damage 

tolerance, information about local distributions of stresses in the fiber and matrix 

constituents are of main importance. 
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2.2 Review of existing models for stress-mapping 

 

In this section a quick review of research works dealing with mapping of stress mapping 

at a unit-cell level, as well as, fiber, matrix and fiber/matrix interface will be presented. 

As previously mentioned, the approaches that deal with stress mapping can be divided 

into two main categories, micro-mechanics and macro-mechanics approaches. Each of 

these approaches can use either closed form solution or numerical analysis. 

 

2.2.1 Micro-mechanics models 

 

Micro-mechanics approaches deal with composite constituents at a micro-structure level 

to obtain local interaction information such as elastic properties and stress and strain 

distributions. The main drawback to using these models with textile composites is their 

focus on fibers or inclusions surrounded by matrix without considering the effect of the 

preform architecture. In most approaches, the link between the micro-mechanical model 

and the geometry of the fabric preform does not exist. This may have a minor effect on 

prediction of the composite elastic constants, however, it may lead to unrealistic stress 

and/or strain mapping. 

 

2.2.1.1 Composites with inclusions 

 

The effect of inclusions on the stress distribution in homogeneous materials has been 

studied extensively due to its importance in deformation and failure analysis of advanced 
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heterogeneous composites. Eshelby’s work (1957, 1959) on the effect of elastic 

inclusions forms the foundation of several methods developed to analyze the response of 

composite materials. In his work, Eshelby solved the general problem of elastic field 

inside and at the interface of an ellipsoidal inclusion bounded by an infinite matrix 

domain. He concluded that the stress field inside the inclusion is uniform and the 

interfacial stress in the matrix may be readily evaluated in terms of equivalent 

transformation strains. 

 

Weng and Tandon (1984, 1986) adopted the analysis derived by Eshelby to derive an 

expression for the stress distribution in a matrix with inclusions. The idea of their 

approach is based on the concept that under a given applied external stress the average 

stress in the matrix is perturbed from the applied stress due to the presence of oriented 

inclusions with different aspect ratios and moduli, figure 2-1. The matrix and inclusions 

are assumed to be linearly elastic and homogeneous. The matrix is assumed isotropic 

while the inclusions can be treated as anisotropic and well separated. The volume average 

of the perturbed parts over the matrix and the inclusions has to vanish to satisfy the 

equilibrium conditions. The solution is derived by replacing the inclusion with a material 

similar to the matrix material subjected to the same boundary stresses. Stress is calculated 

as two parts; average and perturbed. The perturbed stress is the result of the 

transformation of inclusion material from the matrix material to the inclusion material. 

The effect of inclusions on each other as a form of stress concentration was not 

considered in this model. 
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Figure 2-1. Composite reinforced with aligned inclusions (Weng 1984) 

 

Hashin (1991) investigated the effect of imperfect interfaces on the mechanical properties 

of the composite by representing the interface imperfection as a thin compliant interphase 

with much lower elastic moduli. 

 

Molinari and El Mouden (1996) derived an analytical approximate model to account for 

the interaction between the inclusions at finite concentrations. The model determined the 

overall elastic properties and local stresses of a composite material. The material 

considered is composed of elastic ellipsoidal homogeneous inclusions, possibly of 

different phases, distributed in a homogeneous elastic matrix. This approach was based 

on the work of Zeller and Dederichs (1973), who formulated the problem of 

heterogeneous elasticity in terms of an integral equation. From that integral equation, and 

by taking the homogeneous matrix as a reference medium, the average stresses-strains in 

the inclusions was obtained as solutions of a linear system of equations. 

Matrix 

Inclusion 
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Wu et al. (1999) presented a micro-mechanical model to predict the stress fields and the 

elastic properties for three-phase materials with imperfect interfaces, based on the 

“average stress in matrix” concept derived by Mori and Tanaka (1973). This approach 

represented the local fields in a coated inclusion embedded in an unbounded matrix 

medium subjected to the average matrix stresses/strains at infinity. Equations to calculate 

the effective elastic moduli for this kind of composite were also derived. The resulting 

effective shear modulus for each material and the stress fields in the composite were 

presented for a transverse shear loading situation. 

 

Honein et al. (2000) used a derived solution (Honein et al., 1992a, b) of two circular 

elastic inclusions under anti-plane shear deformation to evaluate the material forces, the 

expanding and the rotating moments acting on inclusions, figure 2-2. The 

inclusion/matrix interface is assumed to be perfectly bonded. The J, L and M path-

independent integrals were used to perform the calculations. 

 

Figure 2-2. Two circular inclusion under arbitrary ant-plane deformation (Honein et al. 

2000) 
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2.2.1.2 Fiber reinforced composites 

 

Meguid and Zhu (1995) examined the elastic behavior of two dissimilar materials 

containing circular inhomogeneities near their interface finite element analysis, figure 2-

3. In this study a novel finite element approach using the complex potentials of 

Muskhelishvili was formulated and the stress field resulting from the presence of a single 

and two interacting inhomogeneities near the interface of two dissimilar materials was 

examined. The effect of the direction of the externally applied load upon the resulting 

stress concentration at the inhomogeneities was evaluated.  

 

Abdelrahman and Nayfeh (1998) extended their analysis (Nayfeh and Abdelrahman, 

1997) on the stress distribution in straight fiber reinforced composites to cases involving 

undulated fiber reinforcement, figure 2-4. The undulation is assumed to be restricted to a 

single plane. They identified and analytically described local tangents to the fiber for a 

given geometric undulation. The global coordinates were transformed and the loads were 

applied to the local coordinate systems including the tangent directions and their normal 

in the plane of undulation. Results obtained for straight fibers were used to straight 

segmented fiber segments along the tangents and supplemented by local stresses that 

inherently rise in oriented direction with respect to the loading direction. 
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Figure 2-3. Two dissimilar materials containing: (a) one single inhomogeneity near 

interface; and (b) two interacting inhomogeneities across interface,  (Meguid and Zhu 

1995) 

 

 

Figure 2-4. Representative unit cell (Abdelrahman and Nayfeh 1998) 
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Cheng et al. (1998) developed a method to determine the local elastic field and the 

overall elastic behavior of a heterogeneous medium based on the singular integral 

equation approach via a Green's function technique. This technique is used to solve a 

problem of a rectangular packed composite with square fibers. The Eshelby tensor and 

the contour integral are used to solve the problem. The singular integral was evaluated in 

closed form for assumed polynomial strain distributions. 

 

Cheng et al. (1999-a) proposed an approximate superposition technique to calculate the 

stress fields around individual fibers in composite materials. This method uses the closed 

form solution for an isolated fiber to construct the local stress and strain fields, figure 2-5. 

The problem is formulated in terms of eigenstrains and Green’s function solutions. The 

resulting local fields are validated by comparing the results to results from a method 

based on singular integral equations. The proposed method is general and can be used for 

periodic fiber arrangements. 

 

Figure 2-5. Reference fiber 0 and its eight nearby neighbor fibers, 1–8, embedded in the 

reference media  (Cheng et al. 1999-a) 
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Cheng et al. (1999-b) also used Green's function approach to express the stress field for 

an infinite isotropic matrix material with a rectangular inclusion under a quadratic 

polynomial eigenstrain as an integral formula. This integral is non-singular for exterior 

points of the inclusion and can be evaluated in a closed form, while the integral is 

singular for interior points of the inclusion. This singular integral yielded a closed form 

expression for the interior region. Therefore, the stresses at both interior and exterior 

points of the inclusion were determined analytically. 

 

Morais (2001) presented a model to predict the stress distribution along broken fibers in a 

unidirectional composite, figure 2-6. It was assumed that the matrix behaved in an 

elastic/perfectly-plastic manner and that the interfacial shear strength is not lower than 

the matrix shear yield stress. The model is based on a concentric cylinder approach where 

the composite is treated as a hollow cylinder surrounding the fiber.  Axisymmetric stress 

analysis was performed. Polar coordinates were used to set the equations of the stress 

equilibrium along the debonded length, and the formulated second order differential 

equation was solved. The integration constants were calculated from the assumed 

boundary conditions, equilibrium, continuity and the system boundary conditions. 

 

Benedikt et al. (2003) examined the visco-elastic stress distributions and elastic 

properties of unidirectional graphite/polyimide composites as a function of the volume 

fraction of fibers. They determined the stress distributions using two different methods - a 

finite element method (FEM) where the fiber arrangements were assumed to be either 

square or hexagonal and a Eshelby/Mori and Tanaka approach to account for the 



 15

presence of multiple fibers. The showed that the Eshelby/Mori-Tanaka approach can be 

used for the calculations of stresses inside and outside graphite fibers in case the volume 

fraction of the fibers does not significantly exceed 35% in the case of the square fiber 

array and 50% for the hexagonal fiber distribution. Also, it was shown that the elastic 

properties of unidirectional graphite/polyimide composites can be accurately determined 

using the analytical Eshelby/Mori-Tanaka method even for large volume fractions of 

fibers. 

 

 

Figure 2-6. Schematic of the model (Morais 2001) 

 

Akbarov and Koskar (2003) studied the stress distribution in an infinite elastic body 

containing two neighboring fibers. Both fibers are located along two parallel lines and 

each of them has a periodical curve with the same period. The curving of each fiber is out 

of phase with the other, figure 2-7. Uniformly distributed normal forces act in the 

direction of the fibers at infinity. The authors investigated a homogeneous body model 
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with the use of the three-dimensional linear theory of elasticity. They analyzed the 

normal and shear stresses arising as a result of fiber curving. The impact of the 

interaction between the fibers on the distribution of these stresses was also studied. 

 

Figure 2-7. The geometry of the material structure and chosen coordinates  (Akbarov and 

Koskar 2003) 

 

Jiang et al. (2004) developed an analytical model for three-dimensional elastic stress field 

distribution in short fiber composites subjected to an applied axial load and thermal 

residual stresses. Two sets of the matrix displacement solutions, the far-field solution and 

the transient solution, were derived based on the theory of elasticity. These two sets were 

superposed to obtain simplified analytical expressions for a matrix three-dimensional 

stress field and a fiber axial stress field in the entire composite system including the fiber 

end regions with the use of the technique of adding imaginary fiber. The components of 

matrix three-dimensional stress field satisfied the equilibrium and compatibility 
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conditions in the theory of elasticity. The components of the fiber axial stress field 

satisfied the equilibrium requirements within the fiber and the fiber/matrix interface. The 

stress field components also satisfied the overall boundary conditions including the 

surface conditions, the interface continuity conditions and the axial force equilibrium 

conditions. The analytical model validity was examined with finite element numerical 

calculations. 

 

Rossoll et al. (2005) presented analysis of longitudinal deformation of continuous fiber 

reinforced metals considering elastic and elastic-plastic matrix behavior. Analytical 

results were compared with finite element analyses (FEA) for varying fiber distributions, 

ranging from single fiber unit cells to complex cells. 

 

2.2.2 Macro-mechanics models 

 

Stress mapping and mechanical properties of woven-fabric composites depend on the 

reinforcing yarn geometry. It is important to generate a geometric concept describing the 

architecture. The idea is to discretize the composites into unit cells that include enough 

details of the geometry to predict the most important features of the composite behavior. 

The unit cell, in general, is defined as the smallest repeating pattern in the structure. In 

this section, macro-mechanics approaches based on unit-cell models will be reviewed. 

The unit-cell analysis used two analytical methods - closed form method and numerical 

method. 
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2.2.2.1 Closed form solutions 

 

Ishikawa and Chou (1982) developed three basic analytical models to predict the in-plane 

thermo-elastic behavior of various woven-fabric composites. All models are one-

dimensional (1D) models because they only consider the undulation of the yarns in the 

loading direction. First, the mosaic model considered the composite as an assembly of 

asymmetric cross-ply lamina. An upper bound for the stiffness is predicted by connecting 

the cross-ply lamina in parallel and a lower bound is predicted by connecting all pieces in 

series. In this model the yarn actual waviness was neglected. Second, the crimp model as 

an extension of the first model, considered the continuity and undulation of the yarns in 

the loading direction. However, the undulation of the yarns running perpendicular to the 

loading direction is neglected. Finally, the bridging model for satin composites was 

developed to simulate the load transfer amongst interlaced regions. Since the classic 

laminated plate theory is the basis of each of these models, only the in-plane properties 

are predicted. These models did not consider the actual yarn cross-sectional shape, the 

presence of a gap between adjacent yarns and the influence of crimp on fabric thickness. 

Therefore, no predictions are made for the fiber volume fraction or the fabric cover 

factor. 

 

Ko and Chou (1989) developed three-dimensional fabric geometry model to study the 

compressive behavior of braided metal-matrix composites. The model is based on two 

important assumptions. First, each yarn system in the composite unit cell is treated as a 

unidirectional lamina. Second, the stiffness matrix of the composite unit cell can be 
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calculated as the weighted sum of the stiffness matrices of the different yarn systems by 

connecting all yarn systems in parallel and assuming an iso-strain condition in all yarn 

systems. This model gave a good prediction of the tensile behavior for braided 

composites. 

 

Gowayed and Pastore (1992) reviewed different analytical methods for textile structural 

composites and used some experimental works to compare and evaluate these analytical 

methods. The introduced methods were divided into two main categories; an elastic 

techniques and a Finite Element Methods (FEM). The elastic technique included all 

stiffness average methods, modified matrix method and fiber inclination method. On the 

other hand, the FEM included the Finite Cell Model (FCM) and the discrete and 

continuum techniques. The results showed that stiffness predictions using the elastic 

techniques, except for the Modified Matrix Method, agreed well with the experiments. 

Although these techniques are easy to be implemented and tactless to geometric 

description, they need a failure criterion. In contrast, the Finite Element Methods were 

able to relate the external forces to the internal displacements but they are very sensitive 

to the geometric descriptions and hard to be implemented. 

 

Naik and Shembekar (1992) developed a two-dimensional model (2D) which considered 

the undulation of yarns in warp and weft directions. In this model the unit cell is divided 

into different blocks such as straight cross-ply, undulated cross-ply, and pure matrix 

blocks. Two schemes are used to combine the different blocks: the parallel-series and the 

series-parallel models. In the parallel-series model, the blocks are assembled in parallel 



 20

across the loading direction utilizing an iso-strain assumption. Then, these multi-blocks 

are assembled in series along the loading direction utilizing an iso-stress assumption. On 

the basis of experimental work, the parallel-series model is recommended for the 

prediction of in-plane elastic constants. 

 

Pastore et al. (1993) used Bezier patches to model the geometry of textile composites and 

discussed particular requirements to model textile composites. They also presented 

techniques to quantify the material inhomogeneities through 3D geometric modeling and 

methods to transform them into elastic properties. They chose the spline functions 

because of their natural flexibility to characterize the displacement functions. 

 

Pastore and Gowayed (1994) modified the fabric geometry model (FGM) to predict the 

elastic properties of textile reinforced composites. They discussed and presented solution 

for two of the major drawbacks of the FGM. These problems are the incompatibility of 

the basic transverse isotropy assumption with the theoretical mathematical derivation and 

the inconsistency of the transformation matrices associated with the stiffness calculations. 

The basic idea behind the FGM is to treat the fibers and matrix as a set of composite rods 

having various spatial orientations. The local stiffness tensor for each of these rods is 

calculated and rotated in space to fit the global composite axes. The global stiffness 

tensors of all the composite rods are then superimposed with respect to their relative fiber 

volume fraction to form the composite stiffness tensor. This technique is called a stiffness 

averaging method. 
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Hahn and Pandy (1994) developed a three-dimensional (3D) model for plain-fabric 

composites. This model is simple in concept and mathematical implementation. The yarn 

undulations are considered sinusoidal and described with shape functions. In the elastic 

analysis a uniform strain throughout the plain-weave composite unit cell is assumed. 

 

Naik and Ganesh (1995) developed closed-form expressions for in-plane thermo-elastic 

properties of plain-weave fabric lamina. Shape functions were used to define the yarn 

cross-section and undulation. The predicted constants corresponded well to the results 

obtained with the parallel-series model. 

 

Vaidyanathan and Gowayed (1996) presented logical methodology to predict the 

optimum fabric structure and fiber volume fraction to meet a set of target elastic 

properties for textile composite. The stiffness averaging technique was used in the design 

steps to predict the composite elastic properties. After identifying the solution for the 

optimization problem, two commercial software packages, DOT and GINO, were used to 

solve different case studies. The quality of results from the two software packages was 

evaluated. 

 

Gowayed et al. (1996) presented a modified technique to solve the problem of unit cell 

continuum model, presented by Foye (1992), based on finite element analysis using 

heterogeneous hexahedra brick elements to predict the elastic properties of textile 

composites. Due to the large differences in the fiber and matrix stiffness, the use of these 

elements initiated mathematical instabilities in the solution which affected the accuracy 
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of the results. The solution was based on a micro-level homogenization approach using a 

self-consistent fiber geometry model. In addition, the geometrical model was integrated 

with the modified mechanical analysis to guarantee accurate representation of complex 

fabric preforms.  The prediction results of the modified technique matched well with 

experimental results for in-plane property tests for five-harness satin weave carbon/epoxy 

composite and three-dimensional weave E-glass/poly (vinyl ester) composite. 

 

Vandeurzen et al. (1996) presented three-dimensional geometric and elastic modeling of 

a large range of two-dimensional woven fabric lamina. The model predicted the shear 

moduli for the fabric composite, the fiber volume fraction, the orientation of the yarn and 

the fractional volume of each micro-cell. In addition, the geometric model was able to 

evaluate some textile properties as cover factor and fabric thickness 

 

Barbero et al. (2005) developed an analytical model to predict a complete set of 

orthotropic effective material properties for woven fabric composites based only on the 

properties of the constituent materials. They used the existing periodic microstructure 

theory applied at the meso-level to model the undulating fiber/matrix tows as periodic 

inclusions, and predicted the overall material properties of a plain weave fabric 

reinforced composite material. The representative volume element (RVE) was discretized 

into fiber/matrix bundles, figure 2-8. The surfaces of the fiber/matrix bundles are fit with 

sinusoidal equations based on measurements taken from photomicrographs of composite 

specimens and an idealized representation of the plain weave structure was created. The 
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model results showed good agreement with compared experimental data from literatures, 

including interlaminar material properties. 

 

 

Figure 2-8. Meso-scale analysis of a plain weave fabric RVE (1/2 period shown in-plane 

(x-y)),  (Barbero et al. 2005) 

 

 

2.2.2.1.1 Advantage of closed form solutions: 

• Require simple input of geometric parameters and material properties. 

• The overall constitutive descriptions are developed from composite 

structure in terms of the volume fraction and the interface conditions of 

the constituents. 
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2.2.2.1.2 Disadvantage of closed form solutions: 

• Mainly restricted to the stiffness and strength prediction at the lamina 

level or unidirectional composites. 

• Focused on simple and/or idealized systems for fiber description. 

• Do not consider the effect of the neighboring fibers. 

• Are not able to provide quantitative predictions of composite failure 

mainly because interlaminar stresses have been neglected. 

 

2.2.2.2 Numerical models 

 

Numerical models in general use a finite element (FE) frame work to perform the 

constitutive stress/strain relations using stress or energy equations. Finite element models 

can be used to analyze the elastic behavior and the internal stress/strain state of woven-

fabric composites. Due to the complexity of yarn architecture, finite element modeling is 

most helpful and accurate to model each material group, fiber/matrix, discretely. 

 

Jara-Almonte and Knight (1988) developed a specified boundary stiffness/force (SBSF) 

method for finite element sub-region analysis. The boundary forces calculated from the 

global analysis at the global/local boundary were specified on the local model. The mesh 

refinement for the local model was done such that the number of nodes on the 

global/local boundary for the refined local model was the same as the number of nodes 

for the global model. 
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Guedes and Kikuchi (1990) studied the applicability of the homogenization theory for 

stress analysis of various linear elastic composite materials with periodic microstructures 

including woven fiber reinforced composites. They presented the effectiveness of using 

adaptive mesh refinement over uniform mesh refinement to predict the homogenized 

material constants. 

 

Luo and Sun (1991) proposed three global/local methods to determine the ply level 

stresses in thick fiber-wound composite cylinders assuming that the change in 

temperature was uniform and axial force, torque and normal tractions on inner and outer 

surfaces of the cylinder were constant. In the first method they used the continuity 

conditions of the macroscopic strains and stresses in a section of the cylinder to 

determine the ply level strains and stresses. In the second method they used the 

macroscopic axial strain, torsional strain and radial stress along with continuity 

conditions to solve an assumed displacement field for each ply. In the third method, an 

extension of the second method, they used the imbalance in axial force and torque as 

input to perform another round of global/local analysis. 

 

Woo and Whitcomb (1993) used single field macro elements to determine the 

global/local response of a plain weave composite subjected to a uniaxial stress in the 

warp direction. Displacements from a global model were imposed along the entire 

global/local boundary. This procedure predicted stress distribution away from the 

global/local boundary but with large errors near the boundary. 
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Whitcomb and Woo (1994) developed multi-field macro elements based on an efficient 

zooming technique wherein suitably refined local mesh was included in the global model 

without adding any additional degrees of freedom. Hirai used static condensation to 

reduce the internal degree of freedom of the refined local mesh to the boundary degrees 

of freedom (Hirai et al. 1984). Whicomb et al. used multi-point constraints to reduce the 

boundary degrees of freedom to that of the macro element used for the global analysis. 

They used global/local method to predict the stress distribution in a unit cell subjected to 

uniaxial stress in the warp direction. The prediction using multi-field macro elements 

were shown to be more accurate than that using the single-field macro elements but still 

large errors were predicted near the global/local boundary. 

 

Whitcomb et al. (1995) describe two global/local procedures which used homogenized 

engineering material properties to accelerate global stress analysis of textile composites 

and to determine the errors which are inherent in such analyses. The response of a local 

region was approximated by several fundamental strain or stress modes. The magnitudes 

of these modes were determined from the global solutions and used to scale and 

superpose solutions from refined analyses of the fundamental modes. 

 

2.2.2.2.1 Advantage of the numerical models 

• They are helpful and accurate to model each material group, fiber/matrix, 

discretely and can have extremely complicated geometric details of 

composite constituents. 
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• They are able to deal with the changing of geometric characteristics of the 

layers, such as thickness and relative layer shifts. 

 

2.2.2.2.2 Disadvantage of the numerical models 

• The constitutive relations are independent of the scale of the micro- 

structure. 

• FE approach requires large computer memory and calculation power. 

Therefore, most of the analyses were only performed for simple fabrics, 

like balanced plain-woven fabrics. 

• Most of the time spent is related to the creation and verification of a 

correct fabric geometry. 

• There are major problems in analyzing and interpreting the results in a 3D 

domain of a rather complex geometry. 

 

2.3 Review of delamination 

 

Delamination is considered to be the most common life limiting growth mode in 

composite structures, other than 3D textile composites. Thus it is a fundamental issue in 

the evaluation of laminated composite structures for durability and damage tolerance.  

 

Blackketter et al. (1993) presented a progressive failure analysis of a plain weave 

composites. The composite response was almost linear for in-plane extension and highly 

nonlinear for in-plane shear. The nonlinearity was mainly a result of progressive damage. 
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However, little information was provided on damage evolution and load redistribution 

within the composite during the loading process. They did not examine the sensitivity of 

the predictions to mesh refinement or any other approximations inherent in the analyses. 

 

Wisnom and Jones (1995) proposed a method to predict delamination using a failure 

envelope constructed between the measured interlaminar shear strength and the predicted 

bending strain for delamination under pure bending which was calculated from a simple 

equation for the strain energy release rate, and the fracture energy of the material. Two 

flexural tests, three-point and four-point bending, were performed for glass/epoxy 

prepreg laminated composite. Samples loaded in three-point bending were found to fail 

by unstable delamination from the ends of the plies. However, the four-point samples 

failed in flexure before delamination propagation. The results showed that a linear 

interaction between the interlaminar shear stress and surface bending strain at the location 

of the cut was found to fit the data well. 

 

Wisnom (1996) analyzed the short-beam shear test of carbon fiber/epoxy composite 

assuming that the deformation is concentrated at the resin layers between plies. He used a 

two-dimensional finite element model (FEM) with linear elastic continuum elements to 

represent the plies, and non-linear springs to model the interfaces assuming there is 

sufficiently large number of plies or there is a stress concentration causing the maximum 

stress to occur at certain interface. The analysis of the linear elastic strain energy release 

rate showed that there is not sufficient energy for the small cracks to propagate, however, 

the approach predicted that small cracks can have important effect on interlaminar shear 
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strength. He concluded that linear elastic fracture mechanics is not suitable for analyzing 

short-beam shear specimens. 

 

Whitcomb and Srirengan (1996) used three-dimensional (3D) finite element analysis to 

simulate progressive failure of a plain weave composite subjected to in-plane extension. 

They examined the effects of different characteristics of the finite element model on the 

predicted behavior. It was found that predicted behavior is sensitive to mesh refinement 

and the material degradation model. The results showed that the predicted strength 

decreased significantly with increasing the waviness. 

 

Srirengan et al. (1997) developed a global/local method based on modal analysis to 

facilitate the three-dimensional stress analysis of plain weave composite structures, figure 

2-9. The global response of studied region was decomposed into a few fundamental 

macroscopic modes which were either strain modes, calculated from the boundary 

displacements, or stress modes, calculated from the boundary forces. Failure initiation 

was found to match reasonably well with the conventional finite element prediction 

obtained using a detailed mesh for the entire plate. This method is considered 

computationally far less intensive and reasonably accurate when compared to the 

traditional finite element method. 

 

Hutapea et al. (2003) developed a theory to provide a connection between macro-

mechanics and micro-mechanics models in characterizing the micro-stress of composite 

laminates in regions of high macroscopic stress gradients. They present the micro-polar 
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homogenization method to determine the micro-polar anisotropic effective elastic moduli 

and investigated the effects of fiber volume fraction and cell size on the normal stress 

along the artificial interface resulting from ply homogenization of the composite 

laminate. They focused on the stress fields near the free edge where high macro-stresses 

gradient occur. 

 

Figure 2-9. Schematic of the modal technique for global/local stress analysis,  (Srirengan 

et al. 1997) 

 

Bahei-El-Din et al. (2004) presented a micro-mechanical model derived from actual 

microstructures for 3D-woven composites showing progressive damage. Local damage 

mechanisms that are typically found in woven systems under quasi-static and dynamic 

loads were modeled using a transformation field analysis (TFA) of a representative 

volume element (RVE) of the woven architecture. The damage mechanisms were typical 
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to those observed in quasi-static and impact tests of woven composite samples, and 

include matrix cracking, frictional sliding and debonding of the fiber bundles and fiber 

rupture. This model offered a consistent approach to estimate the effects of the material 

heterogeneity and damage on wave distribution and reduction in shockwave problems. 

The solution is acquired as the sum of the elastic, undamaged response and the 

contribution of an auxiliary transformation stress field for a selected subdivision of the 

RVE. The predicted overall response showed the progressive decay of the stiffness. 

 

Le Page et al. (2004) developed a representative two-dimensional finite element model to 

analyze matrix cracking in woven fabric composites. The finite element model has 

enabled the effects of relative layer shift and laminate thickness to be examined in the 

framework of the stiffness and matrix cracking behavior of plain weave fabric laminate. 

It was found that the effects of layer shift and laminate thickness are minor; however 

there are much large differences in the energy release rates interrelated with matrix crack 

formation. Using a two-dimensional model made the effects of micro-structural variation 

in the through-width direction to be neglected. 

 

2.4 Problem Statement 

 

In the previous sections, micro-mechanics and macro-mechanics models that dealt with 

stress mapping in composite material were reviewed. It can be seen from this review that 

macro/structural models based on unit-cell analysis, using closed form solutions or 

numerical models, were not able to provide detailed stress distribution at the constituent 
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level. On the other hand, micro-mechanics models lacked the macro-geometric resolution 

necessary to predict important phenomena such as failure.  

 

Possible merging macro-structure models with micro-structure models will allow stress 

mapping that is sensitive to composite geometry and structure. In this work a closed form 

micro solution is presented to map stress/strain at the fiber and matrix levels. A macro-

mechanics model based on unit-cell analysis (e.g. pcGINA) developed by Gowayed 

(1996) will be used to evaluate stresses/strains at the macro-level then the newly 

developed micro-stress model will use these stresses/strains as input. By doing this, a 

more realistic stress distribution within the composite constituents will be accomplished. 
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III. ANALYTICAL MODELS 

 

3.1 Introduction 

 

In this chapter a micromechanics model is created to evaluate the 3D stress and strain 

distribution in for an n-phase material (e.g., fiber, matrix and at fiber matrix interface). 

The model is built at the micro-level with global stress and strain data obtained through 

structural analysis and a unit-cell model as described in the previous chapter. The 

proposed model is divided into two parts - a 3D longitudinal model and a 2D transverse 

model. Both models are verified singly using Finite Element Analysis and jointly via 

comparison to other research work. 

 

3.2 The 3D longitudinal model 

 

A cylinder model has been used to represent a fiber surrounded by two hollow cylinders, 

which represent the surrounding interface and matrix as an example for an n-phase 

material. A constant stress is applied to the whole composite in the z-direction (Figure 3-

1). Axisymmetric stress analysis is performed to predict the stress distribution in this 

model. 
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Figure 3-1: 3D model with axial stress 

 

The force equilibrium in the radial direction in each cylinder is: 
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If  ur  is the radial displacement, the circumferential and radial strains can be represented 

as: 
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By inserting equation (3-2) in equation (3-4): 
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Differentiate θε by r, 
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The axial stress zσ is constant within each region, which means that 0=
∂
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By inserting equation (3-5) and equation (3-6) in equation (3-3): 
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But the radial strain has another form. 
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Again inserting equation (3-2) in equation (3-7) to get: 
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Now, equation (3-7) = equation (3-9) and also θEEr =  

( )

0

2
2

2
2

2
2

=
∂

∂
⋅+

∂
∂

⋅+
∂

∂
+

∂
∂

+

∂
∂

−⋅+
∂

∂
+

∂∂
∂

+
∂

∂

z
r

r
r

z
r

r
r

r
r

z
r

rz
r

r
r

rz
r

r
r

rzr

r
r

rzrzr

τυσυτσ

συττσ

θθ

θ

 

 

( )[ ] ( ) 022
2

2
2

2
2 =

∂
∂

⋅++
∂∂

∂
+

∂
∂

⋅++−+
∂

∂
z

rr
rz

r
r

rrr
r

r rz
r

rzr
rr

r τυτσυυσ
θθθ  

 

( ) 023
2

2
2

2
2 =

∂
∂

++
∂∂

∂
+

∂
∂

+
∂

∂
z

r
rz

r
r

r
r

r rz
r

rzrr τυτσσ
θ  (3-10) 

From the force equilibrium on the fiber (figure 3-2) 

 

 

Figure 3-2: Forces on a fiber element in the longitudinal direction 
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The solution for this second order differential equation is: 

2r
NMr +=σ  (3-12-a) 

 

2r
NM −=θσ  (3-12-b) 

 
Where: M, N are integration constants that can be determined from the boundary 

conditions.  

 

The cylinders representing the fiber, the surrounding matrix and the composite can be 

analyzed as follows: 
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a) Fiber: 

The radial stress ( rσ ) must remain finite at r = 0 which means that N should equal zero. 

frf K=σ  

ff K=θσ  

b) Matrix 

2r
NM m

mrm +=σ  

2r
NM m

mm −=θσ  

c) Composite 

2r
NM c

crc +=σ  

2r
NM c

cc −=θσ  

 

This reduced the number of constants to five in addition to the three axial stresses 

( zczmzf and σσσ , ) and the following boundary conditions can be used to obtain the 

values of these constants. 

Boundary Conditions: 

At r =  rf  (rf  is the radius of the fiber) 

i) )()( frmfrf rr σσ =  

ii) )()( frmfrf ruru =  

iii) )()( fzmfzf rr εε =  
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At r =  rm  (rm  is the outer radius of the matrix) 

iv) )()( mremrm rr σσ =  

v) )()( mrcmrm ruru =  

vi) )()( fzefzm rr εε =  

At r =  rc  (rc  is the outer radius of the composite) 

vii) knownrcrc =)(σ  

The force balance in the axial direction gives 

viii) ∑ ⋅= 2
czz rF σ  

( ) ( ) 222222
czmczcfmzmfzf rrrrrr ⋅=−⋅+−⋅+⋅ σσσσ  

 

3.2.1 Model verification 

 

After determining the stress constants, the radial stress, the radial displacements and 

circumferential stress can be determined at any radius. To verify the model, a 3D finite 

element model (FEM) was built using the data shown in Table 3-1. All materials are 

considered isotropic. The radial stresses outside the hollow cylinders were assumed to be 

zero in this analysis; nevertheless, other values can be used. 

 

A Matlab® code using symbolic math was developed for the 3D longitudinal model and is 

listed in Appendix A. The radial displacement, the radial stress and the hoop stress are 

calculated by the model in each region and extracted from the finite element model. The 
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results showed perfect agreement between the model and the FEM as shown in the figure 

3-3 for the radial displacement, figure 3-4 for the radial stress and figure 3-5 for the 

circumstantial or hoop stress. 

 

Table 3-1: Fiber, interface and matrix properties used to verify the model 

 Fiber Interface Matrix 

Radius (µm) 6 6.5 9.5 

Modulus of Elasticity (E) (GPa) 370 15 330 

Poisson ratio 0.17 0.2 0.12 
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Figure 3-3: Radial displacement 
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Figure 3-4: Radial stress 
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Figure 3-5: Circumstantial or hoop stress 

 

 



  42

3.3 The 2D transverse model 

 

 
 

Figure 3-6: 2D model with transverse stress 

 

In this model, a general solution to a bi-harmonic equation “Kolosov Mukhelishvili 

complex potential“ was adopted to obtain a set of equations to represent the stresses and 

displacements for each region  for an n-phase material (e.g., fiber/interface/matrix). The 

original set of equations was originally derived by Savin (1961) for concentric rings 

surrounding a hole in an infinitely large plate. The equations were modified to introduce 

a material (e.g., fiber) in the place of the hole. In this section the derived equations and 

the equations for the fiber are presented. The detailed derivation and the equations 

modification is presented in Appendix C. 
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a) Fiber’s equations 
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b) Interface’s equations 

( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )θηη
µ

θηηη
µ

θτ

θσ

θσ

θ

θ

θ

⋅⋅







⋅+−⋅−−+

⋅
=









⋅⋅







⋅++⋅++−+



 ⋅+−

⋅
=

⋅⋅







⋅−⋅−−⋅=









⋅⋅








⋅−⋅−−








⋅+=









⋅⋅








⋅−⋅−+








⋅−=

2sin13
8

2cos131
8

2sin
2
3

2
3

2

2cos
2
36

22
1

2

2cos
2
32

22
1

2

3

3

3

3

3

3

3

3

4

4

2

2

2

2

4

4

2

2

2

2

4

4

2

2

2

2

r
RE

r
RD

R
rC

R
rFRPu

r
RE

r
RD

R
rC

R
rF

r
RB

R
rARPu

r
RE

r
RD

C
R
rFP

r
RE

R
rF

C
r
RBAP

r
RE

r
RD

C
r
RBAP

cccc

ccccccr

cc
c

cr

cc
c

cc

cc
c

ccr

 

 



  44

c) Matrix’s equations 
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d) Composite’s equations 
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Where: 

 R is rm 

 P is the stress applied on the system 

 µ is the shear modulus for each region 

 νη 43 −=  for each region 

 A, B, C …etc. are constants to be determined by applying the stress equilibrium 

and displacements compatibility on the interfaces. 

 

3.3.1 Model verification 

 

To verify the 2D transverse model, at an elementary level, the model’s results are 

compared to the famous mechanics problem of estimating the stress concentration around 

circular cut-out in an infinite sheet subjected to tensile stress, figure 3-7. The results 

matches with the solution of this problem as shown in figure 3-8. At θ = 90, the stress 

concentration is equal to 3. At θ = 0 or 180, the stress concentration is equal to -1. The 

stress concentration around the cut-out is represented by a cosine curve, which is similar 

to the solution of this problem. 
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Figure 3-7: Circular cut-out in an infinite sheet subjected to tensile stress 

 

 

 

In addition, using the material data of the fiber, interface and matrix in Table 3-1, a 2D 

finite element model (FEM) was built and its results is compared to the 2D transverse 

model as shown in figure 3-9. It can be seen that the radial displacement results of the 

FEM is very close to the 2D model’s results. A Matlab® code using symbolic math was 

developed for the 2D transverse model and is listed in Appendix B. 

 

σ11

θ 
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Figure 3-8: Stress concentration around a circular cut-out in an infinite sheet subjected to 

tensile stress 

 

 

 

Figure 3-9: Radial displacement in the fiber, interface and matrix at θ = 90 
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3.3.2 The effect of neighboring fibers 

 

3.3.2.1 Using the superposition technique 

To test the effect of the neighboring fibers, a superposition technique of Horii and 

Nemat-Nasser (1985) was adopted. The idea of the superposition technique is to divide 

the problem into a homogeneous problem and number of sub-problem depending on the 

number of fibers in the main problem. As shown in figure 3-10, the tested problem 

consists of five fibers each one is surrounded by a ring of matrix and all the fiber are in 

an infinitely large plate. The plate material properties are the same as the composite 

properties. The plate is subjected to a remote tensile stress. The target is to estimate the 

stress concentration on the central fiber considering the effect of the other four fibers. 

 

 

 

Figure 3-10: The main problem; central fiber surrounded by four fibers 

σ11

σ11

σo /σ11
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This problem is divided into six sub-problems as shown in figure 3-11. The first sub-

problem, a homogeneous problem, represents only a plate without any fibers and 

subjected to a remote tensile stress. The rest of the five sub-problems represent each 

surrounding fiber. In each one, the fiber will be considered alone in the plate and 

subjected to fictitious traction around its boundary. In the cases of sub-problems without 

tensile stress acting on the plate, the set of equations representing the plate were modified 

from Savin’s work to satisfy the free stress condition at the far field. The stress equations 

were derived to be as follows: 
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++

+

σ1

σ1

σo 

=

σ1

σ1

No significant difference was found in the stress concentration around the central fiber 

after considering the effect of the surrounding fibers. This not a surprise since the 2D 

transverse model considered the effect of the surrounding fibers when equations for a 

composite plate were used. The plate material was considered as the composite materials 

which gives the effects of the neighbor fibers. 

 

 

Figure 3-11: Superposition scheme for the main problem 
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3.3.3 Comparison to other 2D models 

 

In this section the 2D transverse model’s results will be compared to the research work 

done by Weng in 1984. Weng presented a 2D model expressing stress distribution in a 

matrix with inclusions. The matrix and inclusions were assumed to be linearly elastic and 

homogeneous. The model estimated the stress concentration on the edge of the inclusion 

at θ = 90 as a function of fiber to matrix ratio of Young’s modulus 
m

f

E
E

 for various fiber 

volume fractions. The ratio of fiber to matrix Young’s moduli, 
m

f

E
E

, varies from zero, 

which presents a hole or void, to one, which represents pure matrix. The stress 

concentration was estimated for different volume fractions starting from zero, or single 

inclusion, to 75%. 

 

Figure 3-12 shows the results of the two models, the current model and Weng’s model. 

The dashed lines represent Weng’s results and the solid lines represent the 2D transverse 

model. As shown in the figure, all curves converge to one when the moduli ratio equals 

one (i.e., no stress concentration in pure matrix). Also it can be recognized that the stress 

concentration decreases with the decrease in 
m

f

E
E

. When 
m

f

E
E

 equals to zero, the case of a 

hole, the stress concentration should be 3 as reported by the current model and verified in 

section 3.3.1. On the other hand, Weng’s results are below 3 for both zero and 25% fiber 

volume fraction. The results of the current model are close to Weng’s results for fiber 
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volume fraction equal to 50% and slightly lower than his values at other volume 

fractions. 

 

 

 

Figure 3-12: Stress concentration at the edge of inclusion as a function of fiber to matrix 

Young’s modulus ratio for different fiber volume fraction 

2D model 
Weng’s model 
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IV. EXPERIMENTAL WORK 

 

4.1 Background 

 

In this chapter the interfacial shear behavior of woven composite materials will be 

investigated as an application for the stress mapping models that were presented in the 

previous chapter. Although woven fabric composites exhibit better interlaminar shear 

behavior than unidirectional composites because of yarn waviness which resists 

delamination, shear delamination is often considered a weak mode of failure since cracks 

can still rapidly progress along the un-reinforced region between fabric layers.  

 

In general, textile composites are being considered for higher intra- and interlaminar 

strength and damage resistance. Interlaminar shear is the stress with which the plies 

adhere to each other only in the region between the plies. This shear strength is usually 

not very high in laminated composites because only the relatively weak matrix resin is 

present to carry the shear stresses in this region. Interlaminar shear stresses are typically 

induced by an out-of-plane load such as bending stresses. 
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4.1.1 Modes of interlaminar shear stress 

 

There are types of interlaminar stress that can act to separate one ply from another, figure 

4-1: 

• Mode I (peeling), 

• Mode II (pure shear) and 

• Mode III (tearing). 

 

 

Figure 4-1: Modes of interlaminar shear stress [Nettles 1995] 

 

For laminated composite materials, mode II (pure shear) is of the interest in the current 

study and bending stresses will be used to give rise to Mode II shear stresses to induce 

delaminations. 

 

4.1.2 Measuring the interlaminar shear strength 

 

It is important to select the proper method to measure the interlaminar shear strength. 

Several testing methods are available among which the following three test techniques 

are favored [Li et al. 1999]: 
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a) The short-beam shear test and 3-point bend of short beam, 

b) Four-point flexural test, 

c) Double-notch shear test (double-notched compression DNC) 

In the past, engineers have relied on the short beam shear test, as described in ASTM 

D2344, to examine interlaminar shear failure characteristics, and to provide an estimate 

of the interlaminar shear strength of composites [Kedward 1972 and Li et al. 1999]. As 

shown in figure 4-2, this test involves the use of a three point flexure specimen, with span 

to depth ratio chosen to induce interlaminar shear failure. Due to its simplicity, the test 

method is often used for quality control. However, the test provides only an estimate of 

the apparent interlaminar shear strength [Short 1995 and Whitney 1989]. 

 

Based on observed failure modes, stress analysis and fracture surfaces obtained in 

conjunction the short-beam shear specimens, considerable difficulty is encountered in 

interpreting experimental data. In particular, there is evidence that compression stresses 

in regions where high shear stress components exist tend to induce initial damage in the 

form of vertical cracks. Such initial damage appears to be necessary in order to induce 

horizontal interlaminar failures. For specimens without vertical cracks, the failure mode 

appears to be compressive buckling or yielding in the upper portion of the beam under 

combined compression and shear [Whitney 1989]. 

 

Closer inspection of short beam shear test specimen failure indicates the presence of 

micro-buckling and micro-cracking in the region near the load nose. It has also been 



  56

h

P P
S

S/2

2P

 

noticed that initial damage in the form of vertical cracks may be necessary to induce the 

horizontal interlaminar failures observed. Thus, despite its simplicity and popularity, the 

short beam shear test method is not appropriate for a general study of interlaminar shear 

failures of composite materials, for generating design information, or even for a material 

screening tool [Short 1995 and Whitney 1989]. 

 

 

 

Figure 4-2: Short beam shear test (ASTM D2344) 

 

The four-point flexural test, as shown in figure 4-3, is similar to the three-point bending 

test, but with use of two loading noses instead of one. This will give larger value for the 

span-to-depth ratio. This larger value will lead to longer sample which is preferable to 

give more control on the tested samples. Also, the span-to-depth is an essential factor in 

any flexural test, so a suitable number of layers should be chosen to get reasonable 

thickness. Furthermore, it is important to note that the span between the two loading 

noses is under pure bending.  
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Figure 4-3: Four-point flexural test (ASTM D6272) 

 

Double-notched compression (DNC) test, as shown in figure 4-4, is prescribed by ASTM 

D3846 as a standard test method for interlaminar shear strength. The ASTM recommends 

loading a double-notched shear specimen edgewise in compression with supporting 

fixtures to prevent buckling. Consequently, a shear failure occurs along the longitudinal 

shear plane between the notches. The measured shear strength may be affected by the 

supporting fixture/specimen contact friction during the test. The major advantage of DNC 

over the other techniques is that the interlaminar shear failure occurs consistently. In 

addition, DNC tests lead to lower shear strength than that of other test methods. The 

major drawback of DNC tests is the non-uniformity of the stress field in the gage section 

due in-part to the existence of highly concentrated stresses around notches of the DNC 

specimen. 

h 
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Figure 4-4: Double-notched compression shear test  

 

After careful consideration, the four-point flexural test was chosen in this study because 

of: 

• The existence of a pure bending region between load noses without 

complex stress-state. 

• Test simplicity and straightforwardness of data analysis. 

• It is economic in terms material, machining and time. 

 

4.2 Materials 

 
Two types of material were used to fabricate two-dimensional laminated plates: plain 

weave with E-glass fibers and twill weave with IM7 carbon fibers. Nominal factors 

provided by the suppliers are given in Tables 4-1. Figure 4-5 shows a plan view of the 

P 

P 
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fabrics. Shell resin EPON 828 provided by Miller-Stephenson Chemical Co., was used. 

Resin was mixed with hardener EPIKURE Curing Agent 9553 (formerly known as EPI-

CURE 9553 Curing Agent) by weight ratio of 100:15.4. 

 

 

  

a) Plain weave (E-glass fiber) b) Broken twill weave (IM7 carbon fiber) 

Figure 4-5: Plan view of the fabrics used in the study 
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Table 4-1: Specifications of fabrics used in the current study 

 IM7 Carbon Fiber Glass Fiber 

Fabric structure Broken twill weave Plain weave. 

Warp tow size (no. of filaments) 6K 3K 

Weft tow size (no. of filaments) 6K 3K 

Fabric weight (g/m2) 209 607 

Density (g/cm3) 1.78 2.54 

Warp counts /cm 4.5 2 

Warp counts /cm 4.5 2 

Filament diameter (µm) 6 16 

Filament shape Round Round 

 

4.3 Molding 

 

There are many methods available to assemble or produce a composite plate such as; 

compression molding, resin transfer molding (RTM), resin film infusion (RFI), etc. In the 

current study, compression molding was chosen as a method to assemble composites for 

its simplicity. As shown in figure 4-6, a hydraulic compressor, Genesis Series 15 (G30 H 

15B, Wabash MPI), was used for compression molding. 
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a) Compressor b) The control panel 

Figure 4-6: Hydraulic compressor, Genesis Series 15 (G30 H 15B, Wabash MPI) 

 

4.4 Fabrication procedures: 

 

1) The surfaces of the bottom and top mold and frame were cleaned using an orbit 

sander. 

2) Fabrics were cut parallel to the yarn direction into designated sizes. 

3) Fabric layers used to make composite plate were weighted ( fW ). 

4) Release agent was applied onto the mold and frame surfaces. 

5) The fabric layers were placed in the cavity of molds layer by layer and the resin 

mixture was loaded between layers. Te resin mixture was evenly distributed on 

each layer. 



  62

6) After loading all layers, release agent was applied onto the surface of the top mold 

before placing it on the bottom part which contained fabric layers and resin. 

7) The mold was placed in the hydraulic press at adjusted heat 120o C and 114 kPa 

pressure for two hours. 

8) After the hot-pressing process, the mold was cooled at room temperature for 24 

hours. 

9) The composite plate was removed carefully from the mold and weighted ( cW ). 

The composite and fabrics weights are used to calculate the fiber volume fraction 

using equation 4-1. 

m

fc

f

f

f

f

f WWW

W

V

ρρ

ρ
−

+
=  

(4-1) 

 

Where: fρ  and mρ are respectively the fiber and matrix densities in (g/cm3). 

10) 2.5 cm from each edge was cut off and discarded to ensure working with an even 

plate. 

11) The plate was cut into sample stripes, all strips lengths were cut parallel to the 

warp yarns and they were about 1.27 cm width. 

12) Strips’ edges in length direction were polished with fine sandpaper. 

13) Thickness and width were measured for each sample at three different points and 

averaged. 
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Four-point flexural test was conducted on a computerized INSTRON 4500, as shown on 

figure 4-7. the flexural test fixture was designed and manufactured for the purpose of this 

test. Figure 4-8 shows a schematic for the test fixture. The loading noses and supports 

have diameters of 5 mm and the test speed was 1 mm/min. The span length (L) varied 

with the specimen thickness to keep the span-to-depth ratio at 16:1. From the load and 

specimen dimensions, the apparent mid-plane interlaminar shear stress (τ) was calculated 

following the ASTM D6272. 

 

Figure 4-7: Computerized INSTRON 4500 

 

Figure 4-9 shows the four-point fixture used to conduct the test. The fixture was designed 

and manufactured to give much flexibility for changing the span of the upper and lower 

noses. 
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Figure 4-8: Schematic for the flexural test fixture 

 

 

Figure 4-9: Typical pictures for the four-point fixture 
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V. RESULTS AND DISCUSSION 

 

In this chapter, the following issues will be addressed: i) results of four-point flexural 

tests will be analyzed and discussed, ii) experimental data will be related to analytical 

models proposed in chapter three, and iii) model results will be compared to fiber pull-

out test from literature. 

 

5.1 Experimental results 

 

5.1.1 Fiber volume fraction 

 

Two woven structures were used in this study - plain weave E-glass fabric and broken 

twill IM7 carbon fabric. Five panels from each weave structure were manufactured 

varying the number of layers in each panel (5-9 layers for each structure). The fiber 

volume fraction of each panel was calculated using equation 4-1 and the results are listed 

in table 5-1. As shown in table 5-1, the fiber volume fraction increases proportionally by 

increasing the number of layers due to the constant thickness and the increasing number 

of layers of panels. The average thickness for the broken twill/carbon weave panels is 

2.512 mm and for the plain/glass weave panels is 3 mm. All the individual data points 
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are within the 95% statistical confidence interval. Five samples were cut out from each 

panel to the dimensions mentioned in the previous chapter. 

 

Table 5-1: Fiber volume fraction for the manufactured panels 

 Fiber volume fraction (%) 

No. of layers Twill weave (IM7 Carbon fiber) Plain weave (E-glass fiber) 

5 26 50 

6 28 52 

7 32 55 

8 36 58 

9 40 60 

 

5.1.2 Load-displacement diagrams 

 

Typical load versus crosshead displacement curves (load-displacement curves) of four-

point flexural tests showed nonlinearity in the initial stage of the loading, as shown in 

Figure 5-1. This nonlinearity mainly stems from the self-aligning processes between the 

test fixture and the specimen which occur during initial loading. The nonlinear part was 

removed from the curve for further analysis and the linear part extended to meet the x-
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axis. The intersection point of the linear part and the x-axis was assumed as the origin of 

the curve. Appendix D load displacement curves for all tested specimens.  

 

Stress and strain were calculated following the ASTM standards to obtain stress-strain 

curves for each sample. Figure 5-2 shows typical stress-strain curves for five samples 

from the seven layers panel of broken twill/carbon weave. All other stress-strain curves 

are shown in Appendix D. 
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Figure 5-1: Typical load versus crosshead displacement curve 

 

5.1.3 Shear modulus 

 

The shear moduli were calculated using pcGINA (Gowayed 1996) for each panel for 

different layers and results are reported in table 5-2. As shown in table 5-2 and figures 5-

3, the shear modulus increases linearly with increasing the volume fraction. Also, the 
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shear modulus of the plain/glass weave is greater than the twill/carbon weave and this is 

mainly due to the isotropy of the glass fibers. It should be noted, that the slope of the 

glass is greater than the slope of the carbon. 
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Figure 5-2: Tensile stress in the bottom layer versus strain curves for 7 layers twill/carbon 

weave 

 

It is expected to find this increase not only due to the increase in the fiber volume fraction 

but also because of the increase in nesting between layers. As mentioned earlier, the 

number of layers was increased within each fabric type while maintaining a constant 

thickness for the panels and by doing this the nesting between layers increased as well as 

the fiber volume fraction. 
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Table 5-2: Shear moduli (GPa) calculate using pcGINA for the manufactured samples. 

No. of layers Twill weave (IM7 Carbon fiber) Plain weave (E-glass fiber) 

5 2.54 4.61 

6 2.61 4.85 

7 2.77 5.26 

8 2.91 5.70 

9 3.06 6.05 
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Figure 5-3: Shear moduli (pcGINA) versus fiber volume fraction 
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5.1.4 Nesting between layers 

 

Nesting is an important phenomenon that affects mechanical performance of textile 

composites in general and its interlaminar shear strength in particular. It is defined as: In 

reinforced composites, a laminate where the plies are placed and the yarns of one ply lie 

in the valleys between the yarns of the adjacent ply [Morena 1997]. There were many 

attempts to measure the nesting in textile composites and obtain a quantified value to 

represent the nesting. The crimp angle, which is defined as: The maximum angular 

deviation between the local yarn direction and the plane of the cloth layer, was used as a 

measure for nesting [Jortner 1989]. The average crimp angle shows how much flattening 

the layers have. Since the nesting is not represented only by compaction but also by the 

shift between layers, Ito and Chou [1997, 1998] used two parameters to estimate the 

nesting; the shift between layers represented by phase angle and the layer compaction 

represented by waviness ratio which is a ratio of the yarn height to its wavelength. As an 

indicator for nesting the average thickness of the layers can be used because the layers 

are compressed during nesting. As an example, micrographic images of broken 

twill/carbon weave along the warp direction were captured; samples of the images are 

shown in figure 5-4. It can be seen that the thickness of layers got smaller as the number 

of layers increased within an almost constant thickness. The thickness for each layer was 

measured and averaged then compared to the panel’s thickness. 
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Figure 5-4: Cross-sectional view of selected samples with dif 

ferent number of layers for broken twill/carbon weave 

 

In figure 5-5 the relationship between the fiber volume fraction and layer thickness as a 

fraction of the panel thickness is shown. A power law curve fit is used to represent the 

data. 
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Figure 5-5: Relationship between fiber volume fraction and layer’s thickness as a fraction 

of the panel thickness for the broken twill/carbon weave 

 

5.1.5 Crack initiation and maximum shear stress 

 

There are two points in the stress-strain curves of the most importance in this study - the 

first point is located at the initiation of non-linearity in the curve and the second point is 

located at the maximum tensile stress at the bottom layer, figure 5-6. An audible sound 

can be heard during the test, this sound is accompanied with the departure from linearity 

in the stress-strain curve. This sound was assumed to result from energy release from 

crack initiation. The first audible sound was heard at the point of departure from linearity 

in the stress-strain curve. This was followed by more audible crack sounds in the non-

linear region with a frequency that increased with the increase in the strain value. After 

crack initiation, the tensile stress at the bottom layer continued to increase until failure. 
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Figure 5-6: Stress-strain curve for a 9 layers sample of broken twill/carbon weave 

 

5.1.6 Time interval between crack initiation and maximum tensile stress 

The time interval between the crack initiation and the maximum tensile stress at the 

bottom layer, representing the time needed for crack saturation and failure, is affected by 

two major parameters - nesting between layers and the amount of resin between layers. It 

seems that nesting resists the crack propagation between layers, low resin content 

between layers may induce “dry” fibers that will increase the probability of crack 

propagation. As shown in figures 5-7 and 5-9, this time interval increased for the first two 

volume fractions of the broken twill/carbon weave and the first three volume fractions for 

the plain/glass weave and then decreased after that. Increasing nesting between layers 

will increase the length of the crack path and enhance delamination resistance. As nesting 

increases the volume of resin will decrease. This may cause some of the fibers to have 

little or no resin layer surrounding them creating new possible crack paths. In figure 5-8, 
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the relationship between layer’s thickness, as a nesting indicator, and the time interval 

has the same trend as the fiber volume fraction.  
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Figure 5-7: Time consumed in the interval between crack initiation and maximum tensile 

stress versus fiber volume fraction for the broken twill/carbon weave 

y = -16839x2 + 5023.1x - 310.12
R2 = 0.9923

0
10
20
30
40
50
60
70

0.1 0.12 0.14 0.16 0.18 0.2

Layer's thickness / panel's thickness

Ti
m

e 
co

ns
um

ed
 b

et
w

ee
n 

cr
ac

k 
in

iti
at

io
n 

an
d 

m
ax

. s
tre

ss
 (s

)

 

Figure 5-8: Time consumed in the interval between crack initiation and maximum tensile 

stress versus layer’s thickness/panel’s thickness for the broken twill/carbon weave 
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Figure 5-9: Time consumed in the interval between crack initiation and maximum tensile 

stress versus fiber volume fraction for the plain/glass weave 

 

Tables 5-3 and 5-4 report stresses and strains at the crack initiation and at maximum 

tensile stress extracted from the curves. As shown in figure 5-10, the tensile stress at 

crack initiation and the maximum tensile stress increased with increasing the fiber 

volume fractions in the twill/carbon samples. This increase was not as evident for 

plain/glass samples, figure 5-12.  

 

Figure 5-11 shows the effect of the nesting indicator on the tensile stress at crack 

initiation and maximum tensile stress. It shows that with decreasing the layer thickness as 

a fraction of panel thickness, which means increasing the nesting between layers, the 
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tensile stress at the bottom layer increases. A power law curve fit was used to represent 

the relationship. This should be expected because increasing nesting between layers 

makes the crack path in the resin between the layers longer raising the tensile strength.  

 

Table 5-3: Tensile stresses and strains in the bottom layer of laminate at crack initiation 

and at maximum tensile stress for the broken twill/carbon weave 

 

At first crack sound Max. tensile stress Fiber volume 

fraction (%) 
Strain (mm/mm) Stress (GPa) Strain (mm/mm) Stress (GPa) 

26 0.0083 0.325 0.0142 0.415 

28 0.0084 0.288 0.0158 0.391 

32 0.0090 0.373 0.0155 0.464 

36 0.0081 0.367 0.0142 0.485 

40 0.0081 0.420 0.0134 0.535 
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Figure 5-10: Stress at crack initiation and max stress versus fiber volume fraction for the 

broken twill/carbon weave 
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Figure 5-11: Stress at crack initiation and max stress versus layer thickness for the broken 

twill/carbon weave 
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Table 5-4: Tensile stresses and strains in the bottom layer of laminate at maximum tensile 

stress for the plain/glass weave 

At first crack sound Max. tensile stress Fiber volume 

fraction (%) 
Strain (mm/mm) Stress (GPa) Strain (mm/mm) Stress (GPa) 

50 0.0160 0.365 0.0186 0.402 

52 0.0133 0.326 0.0171 0.379 

55 0.0124 0.324 0.0185 0.388 

58 0.0119 0.361 0.0139 0.394 

60 0.0119 0.3661 0.0132 0.379 
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Figure 5-12: Stress at crack initiation and max. stress for the plain/glass weave 
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In figures 5-13 and 5-14, show groups of stress-strain curves representing each panel 

(five curves per panel). The nearest curve to the average was chosen to represent the 

panel. As shown, these two figures are summarizing the results for the moduli and the 

maximum tensile stress. It can be seen that increasing the number of layers, as well as 

fiber volume fraction, caused an increase in the slope of straight segment of each curve 

(i.e., an increase in the moduli). 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.005 0.01 0.015 0.02 0.025 0.03
Strain (mm/mm)

Sh
ea

r s
tre

ss
 (G

Pa
)

5 Layers
6
7
8
9

 

Figure 5-13: Tensile stress in the bottom layer versus strain of the broken twill/carbon 

fabric for different number of layers 
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Figure 5-14: Tensile stress in the bottom layer versus strain of the plain/glass fabric for 

different number of layers 

 

 

5.2 Utilization of experimental data in analytical model  

 

In this section, models proposed in chapter three will be used to analyze experimental 

results. A two step modeling approach will be adopted to utilize the experimental data 

and be able to use the micro-level models. At the first level a numerical model (pcGINA) 

available in literature will be used to obtain mid-plane stresses and strains from 

experimental data. These stress and strain values are used in the proposed micro-level 

models. 
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5.2.1 Overview on pcGINA (Graphical Integrated Numerical Analysis) 

 

The Graphical Integrated Numerical Analysis (pcGINA) has been developed at Auburn 

University to model the mechanical and thermal behavior of textile composites. This is a 

two-part model. First a geometrical model is used to construct the textile preform and 

characterize the relative volume fractions and spatial orientation of each yarn in the 

composite space. Data acquired from the geometrical analysis is used by a hybrid finite 

element approach to model the composite mechanical and thermal behavior.  

 

The geometrical model used in pcGINA starts by modeling the preform forming process 

– weaving or braiding, figure 5-15. An ideal fabric geometrical representation is 

constructed by calculating the location of a set of spatial points ‘‘knots’’ that can identify 

the yarn center-line path within the preform space. A B-spline function is utilized to 

approximate a smooth yarn centerline path relative to the identified knots. The B-spline 

function is chosen as the approximation function due to its ability to minimize the radius 

of curvature along its path and its C2 continuity. The final step in this model is carried out 

by constructing a 3-D object (i.e. yarn) by sweeping a cross section along the smooth 

centerline forming the yarn surface.  

 

A repeat unit cell of the modeled preform is identified from the geometric model and 

used to represent a complete yarn or tow pattern. A hybrid finite element approach is 

used to divide the unit cell into smaller subcells. Each subcell is a hexahedral brick 

element with fibers and matrix around each integration point. A virtual work technique is 
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applied in the FE solution to calculate the properties of the repeat unit cell. The unit cell 

properties are considered to be representative of the composite properties.  

 

Currently, pcGINA can predict, with a good level of accuracy, the elastic properties, 

thermal conductivities, thermal expansion coefficients for textile composite materials for 

2D fabrics (e.g., plain weaves and n-HS), biaxial and triaxial braids, angle and layers 

interlock weaves, and orthogonal 3D weaves. 

 

 

 

              

 

Figure 5-15: Orthogonal fabric (left) and compressed plain weave fabric (right) as 

modeled by pcGINA. 
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5.2.2 Using pcGINA  

 

Tensile stresses at the crack initiation were used as an input tensile stress for pcGINA. 

Each panel was modeled using the fabric structure, fiber volume fraction and fiber 

properties. As outputs, pcGINA calculated the composite properties, tensile moduli, shear 

moduli and Poisson ratios as shown in figures 5-16 and 5-17. In addition, pcGINA 

calculated the stress and strains distributions in the unit cell. Figures 5-18 to 5-21, show 

examples of the stress and strain distribution for carbon and glass fabrics. 

 

 

 

Figure 5-16: Results of IM7 carbon fiber, 40% fiber volume fraction 
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Figure 5-17: Results of E-glass fiber, 60% fiber volume fraction 

 

Figure 5-18: Stress distribution for IM7 carbon, 40% fiber volume fraction 
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Figure 5-19: Strain distribution for IM7 carbon, 40% fiber volume fraction 

 

Figure 5-20: Stress distribution for E-glass, 60% fiber volume fraction 
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Figure 5-21: Strain distribution for E-glass, 60% fiber volume fraction 

 

The maximum stress for each panel, located at yarn crossover point, which represents the 

maximum laminate stress was extracted and listed in table 5-5 along with the 

experimental stress value at crack initiation. As expected, stress concentration in the 

composite laminate was evident and decreased with the increase in fiber volume fraction. 

These maximum stresses were used as an input for the models proposed in third chapter 

assuming that interfacial shear failure between the fiber and matrix occurred at this stress 

value. Using the two models, the stress distribution was calculated in all the composite 

constituents, fiber, matrix and surrounding composite. Examples for stress distribution 

are shown for broken twill/carbon fabric with 40% fiber volume fraction, figures 5-22, 

and plain/glass fabric with 60% fiber volume fraction, figures 5-23. 



 87

 

Table 5-5: Laminate failure stresses; experimental and calculated using pcGINA for the 

manufactured samples. 

Broken twill/carbon weave Plain/glass weave No. of layers 

Experimental 

Stress(GPa) 

Laminate 

stress (GPa) 

Experimental 

Stress(GPa) 

Laminate 

stress (GPa) 

5 0.325 0.762 0.365 0.489 

6 0.288 0.645 0.326 0.426 

7 0.372 0.766 0.324 0.410 

8 0.367 0.688 0.361 0.441 

9 0.420 0.724 0.366 0.447 

 

As shown in figures 5-22 and 5-23, the maximum variation in the stress distribution 

happened at the fiber/matrix interface in the longitudinal fibers. This stress variation was 

assumed to be the stress responsible for crack initiation.  
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Figure 5-22: Tensile stress distribution in x-direction for longitudinal and transverse 

models, for broken twill/carbon fabric with 40% volume fraction 
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Figure 5-23: Tensile stress distribution in x-direction for longitudinal and transverse 

models, for plain/glass fabric with 60% volume fraction 
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5.3 Comparison of model results to pull-out tests 

 

The difference in the tensile stress at the fiber/matrix interface in the longitudinal fibers, 

listed in table 5-6, can be used to calculate the interface shear stress between the fiber and 

matrix using this equation: 

c

tensile

l
r

⋅
⋅

=
2

σ
τ  

Where: τ is the interface shear stress (MPa) at crack initiation point. 

tensileσ  is the drop of the tensile stress at fiber/matrix interface on the 

longitudinal fiber (MPa) 

r  is fiber radius (µm) 

cl  is fiber critical length or the fiber length needed for stress build-up at the fiber 

matrix interface (µm) 

The fiber critical length range was taken 150 – 300 (µm) as an accepted length for 

carbon/epoxy composite [Narin 2001]. All the results are listed in table 5-6 for broken 

twill/carbon weaves and table 5-7 for the plain/glass weaves. The results for pull-out test 

were found in literature (DiFrancia 1996) to be between 21 to 39 MPa for the 

carbon/epoxy composites and 16 to 26 MPa for the glass/epoxy composites. It can be 

seen from these tables that the interface shear strengths calculated from the model and 

reported in literature are very close in value. 
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Table 5-6: Interface shear strength between fiber and matrix for broken twill/carbon 

weaves 

τ  Fiber volume 

Fraction (%) 
Tensile stress difference (MPa) 

lc = 150 µm lc = 300 µm 

26 4900.7 49.01 24.50 

28 3879.5 38.79 19.40 

32 4121.9 41.22 20.61 

36 3360.4 33.60 16.80 

40 3216.6 32.17 16.08 

 

 

Table 5-7: Interface shear strength between fiber and matrix for plain/glass weaves 

τ  Fiber volume 

Fraction (%) 
Tensile stress difference (MPa) 

150 300 

50 1253.9 33.44 16.72 

52 1061.4 28.30 14.15 

55 971.46 25.91 12.95 

58 984.26 26.25 13.12 

60 962.48 25.67 12.83 
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5.4 Stress distribution in the composite 

 

After verifying the proposed models using finite element method, existing analytical 

models (Weng 1984) and experimental data, these two models can be used with 

confidence to map the stress within the composite constituents as well as fiber/matrix 

interface. Radial and hoop stress distribution in the longitudinal model for twill/carbon 

weave are shown in figures 5-24 and 5-25 and plain/glass weave in figures 5-26 and 5-27, 

respectively. 
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Figure 5-24: Radial stress in fiber, matrix and composite for carbon fabric with 40% fiber 

volume fraction 
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Figure 5-25: Hoop stress in fiber, matrix and composite for carbon fabric with 40% fiber 

volume fraction 
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Figure 5-26: Radial stress in fiber, matrix and composite for glass fabric with 60% fiber 

volume fraction 
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Figure 5-27: Hoop stress in fiber, matrix and composite for glass fabric with 60% fiber 

volume fraction 

 

In addition, the stress distribution in the transverse model can be mapped for any angle. 

Figures 5-28 to 5-30 show the radial, hoop and shear stress distributions for the carbon 

weave with 40% fiber volume fraction at three different angles, 0, 45 and 90o. Also, in 

figures 5-31 to 5-33, the stress distributions are shown for glass weave with 60% volume 

fraction at three different angles. 
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Figure 5-28: Radial stress for twill/carbon weave with 40% fiber volume fraction 
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Figure 5-29: Hoop stress for twill/carbon weave with 40% fiber volume fraction 



 96

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 1 2 3 4 5 6 7 8 9

Distance from fiber center (µm)

Sh
ea

r s
tre

ss
 (G

Pa
)

At 0 degree At 45 degree At 90 degree

Fiber Matrix Composite

 

Figure 5-30: Shear stress for twill/carbon weave with 40% fiber volume fraction 
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Figure 5-31: Radial stress for plain/glass weave with 60% fiber volume fraction 
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Figure 5-32: Hoop stress for plain/glass weave with 60% fiber volume fraction 
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Figure 5-33: Shear stress for plain/glass weave with 60% fiber volume fraction 
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VI. CONCLUSIONS 

 

6.1 Models 

 

Two analytical models were proposed in this study to map the stress distribution in fiber, 

matrix and fiber/matrix interface. The first model represented the fiber, matrix and 

surrounding composite as longitudinal axisymmetric bodies. The second model addressed 

the fiber in the transverse direction. Polar coordinates were used to set the equations for 

the stress equilibrium in both models and stress equilibrium and displacement 

compatibility were used in both models at as the interface boundary conditions. Both 

models were verified using finite element models (FEMs). In addition, the second model 

results for stress concentrations were compared to a model from literature and showed 

good comparison.  The effect of neighboring fibers was verified using a superposition 

technique. 

 

6.2 Experimental work 

 

Experimental work was conducted to verify the two proposed models. An E-glass plain 

weave and an IM7 carbon broken twill were used to manufacture composite plates.  Five 

panels were produced for each fabric based on the number of fabric layers in each panel. 
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Five different numbers of fabric layers were used for each panel ranging from 5 to 9 

layers. The four-point flexural test was used to test the specimens’ shear behavior and 

stress-strain curves were plotted.  A departure from linearity in the stress-strain curves 

was observed prior to reaching the maximum stress which was accompanied by an 

audible crack sound. This stress value was considered as the stress causing the initiation 

of cracks in the specimen. 

 

The tensile stress value at the bottom fabric layer was calculated from the test results. The 

Graphical Integrated Numerical Analysis model was used to evaluate the average stress 

distribution at the unit cell level and the maximum stress was used as an input for the 

proposed micro-models. The stress distributions in the fiber, matrix and fiber/matrix 

interface were mapped and it was found that the maximum variation in the stresses in the 

fiber/matrix interface is in the longitudinal direction. The difference in the stresses at the 

interface was extracted and used to calculate the interfacial shear strength between the 

fiber and the matrix. The results were compared to literature data and showed good 

agreement.  

 

6.3 Future work 

 

The only proof for crack initiation is the in the change in linearity in stress-strain curve 

and the audible sound. So, it is important to monitor the crack initiation using high speed 

cameras or sensitive sound tools such as “Acoustic Emission”. It is believed that 
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monitoring the crack initiation and progress will clarify many issues and give another 

dimension for study of textile composites shear behavior. 
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APPENDIX A: MATLAB® CODE FOR THE LONGITUDINAL MODEL 

 
clear; 
P=0.4469e3; 
Vf=0.60;  
     
% Fiber Properties 
rf=8e-3; 
Ef=72.4e3; 
Gf=28.96e3; 
nuf=0.25;  
 
% Matrix Properties 
rm=sqrt(rf^2 /Vf); 
Em=5e3; 
num=0.35; 
Gm=Em/(2*(1+num)); 
 
% Composite Properties 
 
rfm=5*rm; 
Efm=4.443177*6.895e3; 
nufm=0.370096; 
Gfm=0.910532*6.895e3; 
 
%%%%%%%%%%%%%%%%%%  Symbolic   %%%%%%%%%%%%%%% 
syms K Mm Nm Mfm Nfm Szf Szm Szfm r 
 
% Fiber Equations 
Srf=K; 
Scf=K; 
ecf=(Scf-(nuf*Srf)-(nuf*Szf))/Ef; 
ezf=(Szf-(nuf*Scf)-(nuf*Srf))/Ef; 
%Sz1=Szf-(nuf*Scf)-(nuf*Srf)-(Ef*epz); 
urf=r*ecf; 
 
% Matrix Equations 
Srm=Mm+(Nm/r^2); 
Scm=Mm-(Nm/r^2);
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ecm=(Scm-(num*Srm)-(num*Szm))/Em; 
ezm=(Szm-(num*Scm)-(num*Srm))/Em; 
%Sz2=Szc-(nuc*Scc)-(nuc*Src)-(Ec*epz); 
urm=r*ecm; 
 
% Composite Equations 
Srfm=Mfm+(Nfm/r^2); 
Scfm=Mfm-(Nfm/r^2); 
ecfm=(Scfm-(nufm*Srfm)-(nufm*Szfm))/Efm; 
ezfm=(Szfm-(nufm*Scfm)-(nufm*Srfm))/Efm; 
%Sz3=Szm-(num*Scm)-(num*Srm)-(Em*epz); 
urfm=r*ecfm; 
Sz4=(Szf*(rf^2))+(Szm*((rm^2)-(rf^2)))+(Szfm*((rfm^2)-(rm^2)))-(P*(rfm^2)); 
% At r = rf ----> Srf = Src  && Urf = Urc 
r=rf; 
Sr1=subs(Srf-Srm); 
Ur1=subs(ecf-ecm); 
Szfmm=subs(ezm-ezf); 
 
% At r = rm ----> Srm = Srfm  && Urm = Urfm 
r=rm; 
Sr2=subs(Srm-Srfm); 
Ur2=subs(ecm-ecfm); 
Szme=subs(ezfm-ezm); 
 
% At r = rfm ----> Srfm = 0 
r=rfm; 
Sr3=subs(Srfm); 
Sz4=subs(Sz4); 
 
GG=solve(Sr1,Ur1,Sr2,Ur2,Sr3,Szfmm,Szme,Sz4); 
K=subs(GG.K); 
Mm=subs(GG.Mm); 
Nm=subs(GG.Nm); 
Mfm=subs(GG.Mfm); 
Nfm=subs(GG.Nfm); 
Szf=subs(GG.Szf); 
Szm=subs(GG.Szm); 
Szfm=subs(GG.Szfm); 
 
jj=0; 
for r=0:rf/10:rf 
    jj=jj+1; 
    rr(jj)=r; 
    Ur(jj)=subs(urf); 
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    Sr(jj)=subs(Srf); 
    Sc(jj)=subs(Scf); 
    Sz(jj)=subs(Szf); 
         
end 
 
for r=rf:(rm-rf)/10:rm 
    jj=jj+1; 
    rr(jj)=r; 
    Ur(jj)=subs(urm); 
    Sr(jj)=subs(Srm); 
    Sc(jj)=subs(Scm); 
    Sz(jj)=subs(Szm); 
        
end 
 
 
for r=rm:(rfm-rm)/10:rfm 
    jj=jj+1; 
    rr(jj)=r; 
    Ur(jj)=subs(urfm); 
    Sr(jj)=subs(Srfm); 
    Sc(jj)=subs(Scfm); 
    Sz(jj)=subs(Szfm); 
        
end 
 
 
 
figure, plot(Sz/1e3,rr); 
ylabel('Radius R (mm)'); 
xlabel('Axial Stress (GPa)'); 
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APPENDIX B: MATLAB® CODE FOR THE TRANSVERSE MODEL 

 
% Stresses as out boundary conditions 
clear; 
P=0.4469e3; 
Vf=0.60; 
 
     
% Fiber Properties 
rf=8e-3; 
Ef=72.4e3; 
Gf=28.96e3; 
nuf=0.25; 
zf=3-(4*nuf); 
 
% Matrix Properties 
rm=sqrt(rf^2 /Vf); 
Em=5e3; 
num=0.35; 
Gm=Em/(2*(1+num)); 
zm=3-(4*num); 
 
 
Efm=4.443177*6.895e3; 
nufm=0.370096; 
Gfm=0.910532*6.895e3; 
zfm=3-(4*nufm); 
     
% ( 1 )  At r = rf Sr = Sr for the constant part 
S(1,1)=0.5; 
S(1,2)=0; 
S(1,3)=0; 
 
S(1,4)=-0.5; 
S(1,5)=0.25*(rm/rf)^2; 
S(1,6)=0; 
S(1,7)=0; 
S(1,8)=0; 
S(1,9)=0;
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S(1,10)=0; 
S(1,11)=0; 
S(1,12)=0; 
 
 
% ( 2 )  At r = rf Sr = Sr  
S(2,1)=0; 
S(2,2)=0.25; 
S(2,3)=0; 
 
S(2,4)=0; 
S(2,5)=0; 
S(2,6)=-0.25; 
S(2,7)=(rm/rf)^2; 
S(2,8)=0.75*(rm/rf)^4; 
S(2,9)=0; 
 
S(2,10)=0; 
S(2,11)=0; 
S(2,12)=0; 
 
 
% ( 3 )  At r = rf Trcf = Trcm 
S(3,1)=0; 
S(3,2)=-0.25; 
S(3,3)=1.5*(rf/rm)^2; 
 
S(3,4)=0; 
S(3,5)=0; 
S(3,6)=0.25; 
S(3,7)=0.5*(rm/rf)^2; 
S(3,8)=0.75*(rm/rf)^4; 
S(3,9)=-1.5*(rf/rm)^2; 
 
S(3,10)=0; 
S(3,11)=0; 
S(3,12)=0; 
 
 
% ( 4 )  At r = rf Urf = Urm for the constant part 1 
S(4,1)=(zf-1)*(rf/rm); 
S(4,2)=0; 
S(4,3)=0; 
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S(4,4)=-(Gf/Gm)*(zm-1)*(rf/rm); 
S(4,5)=-(Gf/Gm)*(rm/rf); 
S(4,6)=0; 
S(4,7)=0; 
S(4,8)=0; 
S(4,9)=0; 
 
S(4,10)=0; 
S(4,11)=0; 
S(4,12)=0; 
 
% ( 5 )  At r = rf Urf = Urm for part 2 
S(5,1)=0; 
S(5,2)=(rf/rm); 
S(5,3)=(zf-3)*(rf/rm)^3; 
 
S(5,4)=0; 
S(5,5)=0; 
S(5,6)=-(Gf/Gm)*(rf/rm); 
S(5,7)=-(Gf/Gm)*(zm+1)*(rm/rf); 
S(5,8)=-(Gf/Gm)*(rm/rf)^3; 
S(5,9)=-(Gf/Gm)*(zm-3)*(rf/rm)^3; 
 
S(5,10)=0; 
S(5,11)=0; 
S(5,12)=0; 
 
 
% ( 6 )  At r = rf Ucf = Ucm  
S(6,1)=0; 
S(6,2)=-(rf/rm); 
S(6,3)=(zf+3)*(rf/rm)^3; 
 
S(6,4)=0; 
S(6,5)=0; 
S(6,6)=(Gf/Gm)*(rf/rm); 
S(6,7)=(Gf/Gm)*(zm-1)*(rm/rf); 
S(6,8)=-(Gf/Gm)*(rm/rf)^3; 
S(6,9)=-(Gf/Gm)*(zm+3)*(rf/rm)^3; 
 
S(6,10)=0; 
S(6,11)=0; 
S(6,12)=0; 
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% ( 7 )  At r = rm Sr = Sr for PART 1 
S(7,1)=0; 
S(7,2)=0; 
S(7,3)=0; 
 
S(7,4)=0.5; 
S(7,5)=-0.25; 
S(7,6)=0; 
S(7,7)=0; 
S(7,8)=0; 
S(7,9)=0; 
 
S(7,10)=0.25; 
S(7,11)=0; 
S(7,12)=0; 
 
 
% ( 8 )  At r = rm Sr = Sr for PART 2 
S(8,1)=0; 
S(8,2)=0; 
S(8,3)=0; 
 
S(8,4)=0; 
S(8,5)=0; 
S(8,6)=0.25; 
S(8,7)=-1; 
S(8,8)=-0.75; 
S(8,9)=0; 
 
S(8,10)=0; 
S(8,11)=1; 
S(8,12)=0.75; 
 
 
% ( 9 )  At r = rm Trm = Tre  
S(9,1)=0; 
S(9,2)=0; 
S(9,3)=0; 
 
S(9,4)=0; 
S(9,5)=0; 
S(9,6)=-0.25; 
S(9,7)=-0.5; 
S(9,8)=-0.75; 
S(9,9)=1.5; 
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S(9,10)=0; 
S(9,11)=0.5; 
S(9,12)=0.75; 
 
 
% ( 10 )  At r = rm Urm = Ure for PART 1 
S(10,1)=0; 
S(10,2)=0; 
S(10,3)=0; 
 
S(10,4)=(zm-1); 
S(10,5)=1; 
S(10,6)=0; 
S(10,7)=0; 
S(10,8)=0; 
S(10,9)=0; 
 
S(10,10)=-(Gm/Gfm); 
S(10,11)=0; 
S(10,12)=0; 
 
% ( 11 )  At r = rm Urm = Ure for PART 2 
S(11,1)=0; 
S(11,2)=0; 
S(11,3)=0; 
 
S(11,4)=0; 
S(11,5)=0; 
S(11,6)=1; 
S(11,7)=(zm+1); 
S(11,8)=1; 
S(11,9)=(zm-3); 
 
S(11,10)=0; 
S(11,11)=-(Gm/Gfm)*(zfm+1); 
S(11,12)=-(Gm/Gfm); 
 
% ( 12 )  At r = rm Ucm = Uce  
S(12,1)=0; 
S(12,2)=0; 
S(12,3)=0; 
 
S(12,4)=0; 
S(12,5)=0; 
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S(12,6)=-1; 
S(12,7)=-(zm-1); 
S(12,8)=1; 
S(12,9)=(zm+3); 
 
S(12,10)=0; 
S(12,11)=(Gm/Gfm)*(zfm-1); 
S(12,12)=-(Gm/Gfm); 
 
 
 
 
C(1)=0; 
C(2)=0; 
C(3)=0; 
C(4)=0; 
C(5)=0; 
C(6)=0; 
C(7)=0.5; 
C(8)=0.5; 
C(9)=-0.5; 
C(10)=(Gm/Gfm)*(zfm-1); 
C(11)=2*(Gm/Gfm); 
C(12)=-2*(Gm/Gfm); 
 
Co=inv(S)*C'; 
Af=Co(1); 
Bf=Co(2); 
Cf=Co(3); 
AA=Co(4); 
BB=Co(5); 
CC=Co(6); 
DD=Co(7); 
EE=Co(8); 
FF=Co(9); 
Ae=Co(10); 
Be=Co(11); 
Ce=Co(12); 
 
%Co' 
 
r=rf; 
j=0; 
for theta = -90:1:90 
    j=j+1; 
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    c=theta*pi/180; 
    Q=cos(2*c); 
     
    Scm(j)=0.5*((AA+((BB/2)*(rm/r)^2)) - (((CC/2)-(1.5*EE*(rm/r)^4)-
(6*FF*(r/rm)^2))*cos(2*c))); 
         
    Srf(j)=0.5*(Af + ((Bf/2)*cos(2*c))); 
    Scf(j)=0.5*(Af - (((Bf/2)-(6*Cf*(r/rm)^2))*cos(2*c))); 
    Trc(j)=0.5*((-Bf/2)+(3*Cf*(r/rm)^2))*sin(2*c); 
    Ur(j)=((Af*(zf-1)*(r/rm))+ (((Bf*(r/rm))+(Cf*(zf-
3)*(r/rm)^3))*cos(2*c)))*rm/(8*Gf); 
    Uc(j)=((-Bf*(r/rm))+(Cf*(zf+3)*(r/rm)^3))*(rm/(8*Gf))*sin(2*c); 
     
    Sxf(j)=P*1e-3*((Srf(j)*(cos(c))^2)+(Scf(j)*(sin(c))^2)-(2*Trc(j)*(sin(c)*cos(c)))); 
    Sxc(j)=P*1e-3*((Srf(j)*(cos(c))^2)+(Scm(j)*(sin(c))^2)-(2*Trc(j)*(sin(c)*cos(c)))); 
     
    cc(j)=theta; 
 
end 
hold on 
plot(Sxf,cc,'r'); 
plot(Sxc,cc,'m'); 
xlabel('Stress in x-direction around the fiber(GPa)'); 
ylabel('Angle (deg)'); 
 
%plot(Sxc-Sxf,cc,'k'); 
 
grid on 
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APPENDIX C: GENERAL SOLUTION TO A BI-HARMONIC EQUATION 

“KOLOSOV MUKHELISHVILI COMPLEX POTENTIAL“ 

 

The stress function U(x,y) can be expressed in terms of two separate analytical functions. 

A function f(z) is said to be analytic at appoint z = zo if it is defined at that point and has 

derivatives in the neighborhood of z = zo . So, f(z) is said to be analytic over a region R if 

it is analytic at all points in R. Also, f(z) can be expressed as a power series centered 

around z = zo . 
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Let f(z)=P(x,y) + iQ(x,y) = P + iQ 
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Airy’s stress function (NO BODY FORCE) 

For 2-D it is possible to find a function U(x,y) such that: 

i) It satisfies stress equilibrium equations. 

ii) It satisfies compatibility condition. 

iii) It satisfies boundary conditions. 
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Let U(x,y) be chosen such that. 
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We can get: 
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Let 2211 σ+σ=P  

Let us introduce a function )(zφ  
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Using C.R. equation: 
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If b denotes the imaginary part of a function ( )zχ where ( ) ibaz +=χ  

The function U can be expressed as: 

( ) ( ) ( )[ ]ibaiqpiyxU +++⋅−= Re  

Note that: ( )iqp +  is related to ( )zφ  and ( )iba +  is related to ( )zχ  the two analytical 

functions of the complex variable z. 

( ) ( ) ( )[ ]zzzzU χ+φ⋅= Re         ( C-1 ) 

Consequently, the solution of the 2-D problem is reduced to the determination of the two 

analytical functions ( ) ( )
z

zandz
∂
χ∂

=ψφ  from the boundary conditions. 

To express the stresses in terms of ( ) ( )zandz ψφ : 

( )
x
z

z
U

x
z

z
U

x
z

z
U

x
zzU

x
U

∂
∂

+
∂
∂

=
∂
∂
⋅

∂
∂

+
∂
∂
⋅

∂
∂

=
∂

∂
=

∂
∂ ,

 



 126

Similarly 
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From Equ. ( C-1 ) 
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( ) [ ])(')(")(')('1211 zzzzzi ψ−φ⋅−φ+φ=τ⋅+σ           (C-2) 

Again, 

1222

2

2

2
τ⋅−σ=

∂∂
∂

+
∂

∂

















∂
∂

+
∂
∂

∂
∂

−







∂
∂

+
∂
∂

∂
∂

=







∂
∂

+
∂
∂

∂
∂

i
yx

Ui
x
U

y
Ui

x
U

zy
Ui

x
U

zy
Ui

x
U

x
 

[ ])(')(")(')('1222 zzzzzi ψ+φ⋅+φ+φ=τ⋅−σ                   (C-3) 
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Add equ. (B) and (C) to get: 

[ ][ ])('Re4)(')('22211 zzz φ⋅=φ+φ=σ+σ                         (C-4)  

Subtract (C-2) and (C-3) to get: 
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[ ])(')("22 121122 zzzi ψ+φ⋅=τ⋅+σ−σ∴                    (C-5) 

Equations (C-4) and (C-5) refer to stress potential (Goursal function) 

To express displacement components in terms of ( ) ( )zandz ψφ : 

From Hook’s law: 
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332211 ε+ε+ε=εkk  

Assuming plane strain condition: 03 =ε i  
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kk +=ε+ε=ε 2211  
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Adding the expressions of 11σ  and 22σ  
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Similarly, 
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Using these in Eq. (C-6) and (C-7) to get: 
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Note: f(x) and f(y) are integration constants can be shown to be constants and represent 

rigid body motion. Drop them from the analysis. 
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In polar: 
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Stress state around a circular hole in which a ring, consisting of several concentrically 

welded rings of differing materials, is inserted 

 

It is assumed that infinitely large elastic, isotropic plane containing a circular hole of 

radius “R” is subjected to a given system of external forces (tension, compression, pure 

bending, etc.) and that composite ring is welded into the hole, the ring being made of 

concentric elastic rings (K1, K2, K3, … Ks) of various materials. The stress state due to the 

external forces is to be determined in the composite ring and also in the elastic plane. It is 
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assumed that in the hole-free plate subject to the same external stresses as the same plate 

with a hole, the stress function “U” is a polynomial of the (m+1)-th degree. 

 

 

Error!

 

Figure C-1: Infinitely large elastic, isotropic plane contains circular hole surrounded by 

concentric elastic rings subjected to a given system of external forces  
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For the elastic plate: 
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Boundary Conditions: 
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Replace z  by θ⋅ ieR1  and z  by θ−⋅ ieR1  
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For the elastic plate: 
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Uni-axial tension applied to a plate containing a circular hole into which an elastic ring is 

inserted. Consider a composite ring welded into a circular hole in an infinitely large 

isotropic plate which is stressed by a uniform tensile stress P. The stress and 

displacement components in the plate and in the ring are to be determined. 

The stress functions for the continuous hole-free plate are of the type: 

zPzzPz oo
2

)(;
4

)( −=ψ=φ  

Considering the stress function “U” is a polynomial of the second degree (i.e m=1), the 

following stress function are obtained. 

 

For the plate: 












β+β+−=ψ





 α+=φ

−−

−

3

3

31

1

2
4

)(

4
)(

z
R

z
R

R
zPRz

z
R

R
zPRz

 

 

For each ring: 












++−=ψ












++=φ

−−

−

3

3

311

113

3

3

4
)(

4
)(

z
Rb

z
Rb

R
zbPRz

z
Ra

R
za

R
zaPRz

 



 136

 

Stresses and displacements in the plate: 
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Stresses and displacements in each ring: 
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In case of fiber presence instead of hole 

 

Figure C-2: Infinitely large homogeneous plate contains circular fiber surrounded by 

concentric elastic rings subjected to a given system of external forces  

 

In this case, the equations of the layers can be used for the interphase and the matrix. 

For the fiber, the radial stress should be finite value at the fiber center; i.e. 

0311 === −−− bab  and the equations will be in the following form: 

 

Fiber 

Interphase 

Matrix 

Homogeneous 
Plate 
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APPENDIX D: LOAD-DISPLACEMENT AND STRESS-STRAIN CURVES 
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Figure D-1. Load-displacement curves for 5 layers broken twill/carbon fabric 
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Figure D-2. Stress-strain curves for 5 layers broken twill/carbon fabric
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Figure D-3. Load-displacement curves for 6 layers broken twill/carbon fabric 
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Figure D-4. Stress-strain curves for 6 layers broken twill/carbon fabric 
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Figure D-5. Load-displacement curves for 7 layers broken twill/carbon fabric 
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Figure D-6. Stress-strain curves for 7 layers broken twill/carbon fabric 
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Figure D-7. Load-displacement curves for 8 layers broken twill/carbon fabric 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.005 0.01 0.015 0.02 0.025 0.03

Strain (mm/mm)

Te
ns

ile
 st

re
ss

 (G
Pa

)

 

 

Figure D-8. Stress-strain curves for 8 layers broken twill/carbon fabric 
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Figure D-9. Load-displacement curves for 9 layers broken twill/carbon fabric 
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Figure D-10. Stress-strain curves for 9 layers broken twill/carbon fabric 
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Figure D-11. Load-displacement curves for 5 layers plain/glass fabric 
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 Figure D-12. Stress-strain curves for 5 layers plain/glass fabric 
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Figure D-13. Load-displacement curves for 6 layers plain/glass fabric 
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Figure D-14. Stress-strain curves for 6 layers plain/glass fabric 
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Figure D-15. Load-displacement curves for 7 layers plain/glass fabric 
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Figure D-16. Stress-strain curves for 7 layers plain/glass fabric 
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Figure D-17. Load-displacement curves for 8 layers plain/glass fabric 
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Figure D-18. Stress-strain curves for 8 layers plain/glass fabric 
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Figure D-19. Load-displacement curves for 9 layers plain/glass fabric 
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Figure D-20. Stress-strain curves for 9 layers plain/glass fabric 


