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THESIS ABSTRACT 
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(B.S.M.E., Kumaraguru College of Technology, Bharathiyar University, 2004) 

 

138 Typed Pages 

 

Directed by Jeffrey S. Smith 

 

 A variety of analytical models have been proposed to model and analyze serial 

manufacturing systems. Most analytical models, however, make simplifying assumptions 

in order to remain mathematically tractable. These analytical formulations do not, 

however, model the underlying real-world system accurately. Discrete event simulation is 

one of the primary tools, which provides decision support by capturing the working of 

complex systems at level of detail and accuracy needed. This thesis analyzes the working 

of serial production lines characterized by capacitated buffers, stochastic processing 

times, unreliable machines, rework loops, maintenance and operator issues with the help 

of discrete event simulation to ascertain its throughput. However, in the past researchers 

have not been excited about the time it takes to build a complete simulation model. In an 
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effort to fast track the process of model development, a VBA project is undertaken which 

will dynamically generate a simulation model in Arena 7.01 from an Excel template. We 

also propose an algorithm which will automatically detect the bottleneck of a serial 

manufacturing system and provide recommendations to the analyst. These include 

reallocation of operators, addition of buffers or parallel resources with an objective of 

increasing the throughput of the system with due economic consideration. Simulation 

studies are undertaken on different serial manufacturing lines to illustrate the 

effectiveness of the techniques developed.
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CHAPTER 1 

INTRODUCTION 

 

Process improvement programs and reengineering have taken a front seat due to a 

significant increase in competition amongst the giants in manufacturing industry 

(Snodgrass, 1994). These programs require an accurate estimate of performance metrics 

such as throughput capacity of a given layout to justify projects and make valid 

comparisons between various restructuring options which would cost millions of dollars 

to implement. The focus of this thesis is on the analysis of serial production lines which 

are characterized by capacitated buffers, stochastic processing times, unreliable 

machines, rework loops, maintenance and operator issues. This constitutes a complex 

manufacturing system for which we have adopted discrete event simulation as a tool to 

predict the performance metrics. As a part of this thesis, a VBA project was undertaken 

in an effort to automate the process of building a simulation model in Arena 7.01 from an 

Excel template. This will enable line managers with the working knowledge of 

simulation develop and modify models with minimal efforts and cut down on repetitive 

model building and modification time to a great extent. We have also developed an 

algorithm which will automatically detect the bottleneck in a serial production system 

and suggest appropriate changes to the analyst with an objective of increasing the 
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throughput of the system. These techniques are embedded in a ten step methodology 

presented in this thesis.  

1.1 Serial Manufacturing Lines 

Serial production lines are sequential arrangements of machines designed for a 

specific product. Products enter the system through the first station, get processed in a 

sequential order and leave the system as finished products (Cochran and Erol, 2001). The 

stations are independent of each other (for instance station x failing will have no bearing 

on when station x+1 is going to fail next) and have varying processing times. Buffers 

might be located at specific points and when a buffer in front of the bottleneck machine is 

full, the upstream stations are blocked and the downstream stations are starved 

(Blumenfeld, 1990). 

Dallery and Greshwin (1992) classify features and properties of serial 

manufacturing lines. They are detailed as follows:  

a) Synchronous / asynchronous: In synchronous systems all machines start and 

stop at the same instant and their operating times are assumed to be deterministic. The 

system automatically indexes at constant intervals. Events like repair and replenishment 

occur at discretized time intervals. Asynchronous systems have buffers between stations 

which make them independent of one another as long as the buffers are neither full nor 

empty. The station begins to work on a new unit as soon as the previous unit is 

completed.  

b) Saturated / non-saturated: Models built on the assumption that the first machine 

is never starved and the last machine is never blocked are called saturated models. 
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Saturated models are used to predict the production rate of a system. The concept of 

having uncertain arrival and departure of parts constitute non-saturated models.  

c) Blocking, Starving and decoupling: When a machine ceases to operate, the 

upstream machines can still pass on parts until the buffers upstream are full and the 

downstream machines will receive parts until buffers downstream are empty. When the 

upstream buffers are full, those machines are said to be blocked and when the 

downstream buffers are empty those machines are said to be starved. When there is no or 

very small buffering it causes the greatest coupling between machines and there exists 

least coupling when the buffer sizes are large.  

d) Failures: Failures can be classified into time dependent and operation 

dependent failures. Failures in stations that follow a chronological frequency are 

classified under time dependent failures. When the failures occurring depend on the 

number of units processed by a station it is called an operation dependent failure.  

e) Operating times and policy: Efforts are made to design the production lines 

such that the machines in the system have more or less the same production capacity. The 

reason being the throughput of a line depends on the production rate of the bottleneck 

machine and the investments made on other expensive machines in the line cannot be 

economically justified if its production rate is significantly higher. But in the real world 

scenarios due to the practical constraints this is not always achieved. 

Serial production systems in this thesis are depicted as a sequential arrangement 

of identical/non identical stations which are capable of processing one part at a time or 

parts in batches. The stations might have inbuilt conveyors, multiple head processing 

systems and other complex configurations. The processing time of a product might vary 
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from one machine to the other and can be stochastic. Each station is subjected to failures 

and exhausts. When a station is in a state of failure/exhaust a technician is seized for 

repair/replenish operations and the priority with which technicians are seized can also be 

specified. The stations are connected to one another by means of a conveyor which can 

be either accumulating or non-accumulating. Capacitated buffers might be placed at 

various points in the line between stations and the buffer discipline can be FIFO/LIFO. 

The lines might include parallel “legs” to increase production. In this configuration, the 

main line is split into parallel lines and these parallel lines merge into the main line after 

some operations. Some stations might be dedicated to inspect the quality of products at 

various points in the production line. The production line might also have rework loops 

where components which don’t meet the quality criteria are being worked on and some 

parts might be scraped (Li, 2005). 

In this thesis the effects of capacitated buffers are studied from the perspective of 

only increasing the production rate and it doesn’t take inventory costs into account. Also 

the products in the buffers are thought of as nonperishable items. 

 

1.2 Discrete Event Simulation 

“Discrete-event simulation consists of a collection of techniques that, when 

applied to the study of a discrete-event dynamical system, generates sequences called 

sample paths that characterize its behavior” (Fishman, 2001). The term simulation in this 

thesis refers to discrete-event simulation. Simulation has evolved into a powerful decision 

support tool for manufacturing industries which is dominated by dynamic and stochastic 
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variables. A serial production line can be viewed as a system that has resources 

(machines and operators) arranged in some predetermined order, which processes entities 

(units). Simulation helps the decision makers to gain insights into such systems to make 

improvements. By doing so, simulation increases the utilization and productivity of a 

system and the organization ends up making quality decisions.  

Simulation helps answer the ‘what if’ questions posted by the management to decision 

makers. Some of the common questions posted are:  

• Can target production be met? 

• Is a layout change necessary? 

• Should the material handling system be changed? 

• What should be the size of buffers at various points in the line? 

• Which is the bottleneck machine and what’s its effect on the production rate? 

• Should additional resources be added to the line? 

• What is the effect of product mix on the line? 

Simulation can provide answers to all of the above questions. With increased 

computational power, the cost of a simulation study is estimated to be less than 1% of the 

total amount spent in implementing a design or redesign (McLean, 2001). The general 

consensus is that simulation is not adopted by most of the manufacturing industries in 

spite of these advantages (McLean, 2001). This thesis highlights the importance of 

simulation in the field of manufacturing systems and provides a methodology which will 

enable managers with basic knowledge of simulation to make effective use of this tool. 
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1.3 Motivation and Overview of Thesis 

This research is an extension of Mukkamala et al. (2003), Mukkamala (2003), 

Jadhav and Smith (2005) and Jadhav (2005) work. Mukkamala et al. (2003) and 

Mukkamala (2003) developed a domain specific template for the automated assembly of 

PCB. Their research focused in building PCM assembly template to analyze serial 

production PCB assembly lines where a typical machine has an input area, a processing 

area and an output area. The input area comprises of an input conveyor and an optional 

capacitated input buffer. Similarly an output buffer comprises of an output conveyor and 

an optional capacitated output buffer. Jadhav and Smith (2005) and Jadhav (2005) used 

the templates to build simulation models and predict the throughput of serial production 

systems. The simulation studies conducted were time consuming and the bottleneck 

resource detection was done by eyeballing the resource state graph.  

In this thesis we have undertaken a VBA project to dynamically generate the 

simulation model of the underlying system using an Excel template. We have also 

developed an algorithm which will automatically detect the bottleneck resource and 

suggest appropriate changes to the analyst in an effort to mitigate the bottleneck resource, 

thereby improving the throughput of the system. These techniques which fast track the 

process of a simulation study, have been embedded in a ten step methodology. 

 The next chapter will review literature relevant to this thesis. Chapter 3 presents 

the problem statement and the methodology developed. Chapter 4 comprises of case 

studies which verify the proposed techniques. Chapter 5 contains the conclusion and 

discusses future research.
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter reviews the complexities and assumptions involved in developing 

analytical models to estimate the throughput of serial production systems present in the 

literature. This discussion is followed by contrasting the bottleneck detection methods 

present in the literature to ours. Buffer allocation which plays an important part in 

enhancing the performance of serial production systems is also discussed in this chapter. 

Finally, the ideas in literature to develop a simulation interface to expedite the process of 

model building are presented. 

 

2.1 Analytical Modeling and Evaluation of Serial Production Systems 

Cochran and Erol (2001) developed an analytical model for serial production lines 

to estimate throughput rates, scrap rates and outgoing quality levels by incorporating 

traffic rate equations. The serial production lines in this analysis are modeled as directed 

flow networks. The model explicitly differentiates between operation stations and 

inspection/repair stations. This model can be used for inspection configuration designs 

and formulation of optimal cost models. 
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Li (2005) evaluates the throughput of complex serial production system with 

parallel, rework and scrap operations using the overlapping decomposition technique. 

The idea behind this methodology is to divide the complex system into a number of serial 

production systems wherein the last machine of a serial line overlaps with the first 

machine of the next serial line. They adapt aggregation techniques and the throughput of 

a system is estimated when the procedure converges. This method is developed under the 

assumption that the processing rates of all the machines in the system are the same. 

Choong and Greshwin (1986) develop a decomposition method to analyze 

capacitated transfer lines with capacitated buffers and random service times. It is based 

on a model developed by Greshwin (1983) that approximates a (K-1)-buffer system by 

K-1 single-buffer systems. Throughput and average buffer levels of the system are 

calculated by formulating an iterative search algorithm. This model has been verified 

with the help of several numerical examples and the authors conclude that this approach 

is viable only if the probability that a machine is starved and blocked at the same time is 

small. Machine k is said to be both blocked and starved, only when machine ki-1 is either 

under repair, starved or is processing a piece and machine ki+1 is either under repair, 

blocked or is processing a piece. The buffer in front of machine k is empty while the one 

in front of machine ki+1 is full. According to the author, this probability will be high if 

there is a huge variation in efficiencies (probability that a station is processing a work 

piece) and processing rates of the machines. Under such conditions the method may 

break down. 

Burman (1995) investigates flow lines with unreliable machines and develops an 

analytical decomposition-type approximation technique to estimate throughput of such 
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systems. “Accelerated Dallery-David-Xie” (ADDX) algorithm was developed as a part of 

his thesis for solving the decomposition equations developed for flow lines. This 

analytical technique accounts for non-homogeneous flow, operation dependent failures, 

unreliable machines and failing buffers. The application of this technique is however 

limited to flow lines that have deterministic processing times with no rework operations. 

Paik et al. (2002) used decomposition and aggregation principles to 

approximately estimate throughput for finite buffered closed loop production system with 

unreliable machines and exponentially distributed processing times. They also propose a 

simple algorithm that predicts the upper bounds of throughput for such systems. The 

effectiveness of the procedure is illustrated in their paper with the help of extensive 

computational experiments. 

Tempelmeier and Burger (2001) analyze unbalanced serial production systems 

with finite buffers to estimate throughput of the system by employing an analytical 

approximation technique. This technique accounts for machine breakdown and defective 

part production. The time to failure was assumed to be exponentially distributed. In this 

procedure, M-station-lines are decomposed into M-1 two-station-lines and are analyzed 

with the help of GI/G/1/ maxN queuing model. This model also accounts for simultaneous 

blocking and starving that Choong and Greshwin (1986) model lacked. 

Chen et al. (2003) estimate the value and variance of throughput for serial 

production systems with unreliable machines using a sample path method. Their method 

conducts a sensitivity analysis on the mean and variation of throughput with respect to 

mean up time or mean down time to determine the amount of improvement that can be 

achieved in the system. It is assumed that a failed machine is immediately taken for 
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repair. The model assumes that all machines in the system have the same production rate 

with no inter-stage buffers. The idea of having inspection stations at various points in the 

line is also not considered in this study and hence we cannot use this technique for our 

projects. 

 

2.2 Bottleneck Detection 

A resource which impedes the performance of a system in the strongest manner is 

defined as the bottleneck resource (Chiang et al., 2001). In other words, it has the largest 

impact on reducing the throughput of a system. This section presents techniques available 

in the literature to detect the bottleneck resource of a system. 

Utilization of a machine is defined as the ratio of arrival rate of parts to be 

processed to effective production rate (Hopp and Spearman, 2000). According to Hopp 

and Spearman (2000), the percentage of utilization is calculated for each machine in the 

system and the machine with the largest percentage of utilization is considered to be the 

bottleneck resource. The author does not discuss about the % of time spent by a machine 

in blocked state when they illustrate this technique with an example. We contrast this 

bottleneck detection technique with the one developed as a part of this thesis in Chapter 

4. 

Roser et al. (2001) categorize all possible states of a machine into two groups: 

active and inactive states. A machine is said to be in active state when the current state of 

the machine is aimed at improving the system throughput. Starving, blocking and waiting 

for services are classified under inactive states. In this technique, the duration of a 
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machine remaining in an active state without being interrupted by an inactive state is 

measured. The machine which has the longest active period is detected as the bottleneck. 

They illustrate this method by simulating a production line which has eight machines 

with three capacitated buffers between machines and contrast it with the conventional 

percentage utilization approach. They conclude that their method detected the bottleneck 

with a higher level of confidence than the conventional percentage utilization approach. 

This approach assumes that there is minimum or no operator interference in the system 

which may not be true for all systems. Another drawback of this approach is that by 

considering only the longest active period it implicitly assumes that the machines in the 

system are highly reliable. In this thesis a methodology for detecting the bottleneck is 

proposed which can do away without these assumptions. 

Law and Kelton (2000) considers bottleneck machine to be one with the longest 

waiting time in queue for systems with unlimited buffer sizes. The waiting time in queue 

for a machine increases as the length of the queue increases by Little’s law. But every 

machine in the real world will have a finite buffer size which sets an upper bound to the 

wait in queue. And also the machines might have different buffer sizes. These factors 

might compromise the accuracy of identifying the actual bottleneck machine (Roser et 

al., 2001). 

Chiang et al. (2001) use an aggregation procedure to analyze the performance of 

Markovian lines with different cycle times and develop a method for cycle time 

bottleneck identification. This procedure is illustrated with the help of a case study and it 

is concluded that the probabilities of machine blockages and starvation play a critical role 

in bottleneck identification. Similar results are observed in this thesis. 
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Downtime Bottlenecks (DT-BN) were developed by Chiang et al. (2000) to 

identify bottlenecks based on probabilities of a machine being blocked and starved. The 

input parameters for the algorithm are: average uptime, downtime, frequency of 

blockages and starvations. This analytical approach can be applied to only Markovian 

lines. 

Lawrence and Buss (1994) analyze the phenomenon of shifting production 

bottlenecks by identifying bottleneck machine as one which has the maximal queue 

length. They propose a bottleneck shiftiness method to tests policies like chasing short-

run bottlenecks, increasing capacity at long-run bottlenecks and increasing capacity at 

non-bottleneck work centers. They conduct simulation studies and conclude that the 

policy of adding capacity at non-bottleneck work centers will reduce the bottleneck 

shiftiness to a great extent but the degree of system performance improvement is smaller 

than those when the other two policies are adopted. The method they adopt for 

identifying the bottleneck might fail to identify the true bottleneck machine when 

capacitated buffers are used. Also, they have not considered the costs of adding extra 

capacity to non-bottleneck work centers to minimize the bottleneck shifting. 

Moss and Yu (1999) use Lawrence and Buss (1994) methods to access the factors 

which will have the greatest influence on bottleneck shiftiness by using multiple 

regression. Their study concludes that job arrival rate, processing time at bottleneck 

machine and size of shop, have the greatest impact on bottleneck shiftiness and that the 

managers could use these parameters to make better capacity decisions. The results are 

however limited to only FCFS queuing disciplines. 
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2.3 Buffer Allocation 

Enginarlar et al. (2002), present an analytical approach to find the smallest 

amount of buffering required in a serial production line with unreliable machines 

necessary to meet the target production rate. To simplify the analytical model 

development they assume that the machine up times follow exponential distributions. In 

their analysis they found that a large amount of buffering is required for those machines 

which have high coefficient of variation of downtime. Their findings also state that the 

level of buffering doesn’t explicitly depend on the average up time of a machine but its 

efficiency, which is the ratio of average up time to average up and down times of a 

machine. These findings are based on the assumption that all the machines in the system 

are identical. According to Enginarlar et al. (2002), these results can be extended to non-

identical machines only by making a critical assumption that the efficiency of all the 

machines in the system are roughly the same. This assumption might not hold true for 

systems with highly variable processing times. 

Yamashita and Altiok (1998) investigated the minimum total buffer allocation 

required to meet the throughput in production lines with phase-type processing times. 

They have developed a dynamic programming algorithm which allocates the minimum 

total buffer space and estimates the throughput of the system at every stage by employing 

decomposition technique. They illustrate their methodology with a numerical example 

and conclude that when variability of the processing times increases the throughput of the 

system decreases, provided the mean processing time and buffer configuration remain 

constant. 
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Shi and Men (2003) incorporate Tabu search heuristic into the Nested Partitions 

Framework and develop a hybrid algorithm in an effort to optimally allocate buffers in 

large production systems. The model accommodates for different processing rates 

between machines and failure of machines. The authors claim that their algorithm is 

robust and can reduce the search effort for buffer allocation problems to a great extent. 

An efficient algorithm to find the optimal allocation of a fixed stock of buffer capacity 

for serial production systems was developed by Harris and Powell (1999). A simplex 

search procedure is embedded in the algorithm to ascertain the search direction which is 

determined by the best and the worst of current candidate solutions. This algorithm also 

employs simulation to estimate the throughput for each candidate configuration. The 

drawback of this algorithm is that it assumes that there are no unreliable machines in the 

system. 

Powell and Pyke (1998) study the issue of optimally deploying limited buffer 

capacity in short unbalanced assembly lines. They develop simple heuristic rules for 

unbalanced assembly lines with random processing times. Their study shows that mean 

and standard deviation of processing time distributions play a vital role in the selection of 

optimal location of the first buffer. Their heuristic was tested for assembly lines with 2, 3 

and 4 stations and it was found to successfully select the optimal location of the first 

buffer more than 90% of the time. This heuristic doesn’t take machines failures into 

account and it has not been tested for large complex systems. 

Papadopoulos and Vidalis (2001) investigate the buffer allocation problem for 

unreliable, unbalanced short production lines consisting up to six machines. The model 

assumes that the service and repair times follow Erlang-K distribution and time to failure 
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follow exponential distribution. A good initial buffer vector is found by the algorithm 

developed by them which makes use of parameters like mean service, repair and failure 

rates. The algorithm employs a sectioning search method to search for optimal buffer 

allocations. Their algorithm was 97% successful in identifying the optimal buffer 

allocation for 373 experiments conducted. They provide no evidence in their paper to 

show that this algorithm is effective for production lines of any size. 

Roser et al. (2003) develop a prediction model which uses a single simulation run 

to determine the effect of increased buffer capacity on the system performance. This 

method is applicable to both balanced (production rate of the machines are equal) and 

unbalanced production systems. It’s a two step methodology wherein the first step is to 

determine the causes for starving and blocking of all the machines thereby evaluating 

different buffer location options to reduce the idle time. The next step is to evaluate the 

improvement in performance metrics due to increases in buffer sizes by analyzing the 

data from the simulation report and the previous step. The prediction model has been 

fully automated for easier handling. The model cannot handle systems with machine 

breakdowns. 

 

2.4 Simulation Interface 

A simulation environment was developed to simplify the process of building a 

simulation model for high volume electronics manufacturing systems by Farrington et al. 

(1995). The environment can be decomposed into three basic elements, which provide 

increasing level of modeling capability and it reduces effort involved to build a 
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simulation model. The elements are interconnected through data transfer links and 

feedback loops. The problem definer element using a graphical interface develops the 

initial definition of a system. Static analysis is conducted on the system by the static 

analyzer element. The code generator element generates the simulation code for 

simulation packages. The Excel template developed as a part of this thesis performs a 

similar task described in this paper. 

Doss and Ulgen (2004) present the idea of building application specific models 

using various simulation software engines in an effort to reduce simulation modeling 

efforts and provide a continuous improvement tool for the companies. These ideas from 

the literature have taken the shape of the Excel template described in the next chapter and 

it is embedded in a ten step methodology proposed in this thesis in an effort to simplify 

repetitive model building and modification time. 

 

2.5 Conclusions 

 The review in this chapter focused on analytical modeling methods for estimating 

the throughput in serial production systems, bottleneck detection techniques, buffer 

allocation policies and the idea of creating a simulation interface to simplify the process 

of model building. From the literature it is clear that the analytical models require 

simplifying assumptions in order to remain mathematically tractable. These analytical 

models do not, however, model the underlying real-world system accurately. Some of the 

common assumptions made in analytical modeling techniques can be listed as follows: 

• Single part processing 
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• No inspection stations 

• Specific distributions for processing time, and TTF 

• No operator interference 

• Specific queuing disciplines 

• No product mix 

• Negligible transportation times between stations 

While, some analytical models address a part of these assumptions, it ignores the 

rest. The bottleneck detection techniques presented in this chapter also make assumptions 

like unlimited buffer sizes in front of stations, exponential processing time, minimum or 

no operator interference, and specific queuing disciplines. While these techniques might 

work for some lines, it might not correctly identify the bottleneck resource of any given 

serial production system. This thesis attempts to capture the behavior of serial production 

systems and there by detect the bottleneck resource and mitigate it, without making the 

assumptions stated above. We have also adapted the idea of creating a simulation 

interface proposed by Farrington et al. (1995) and Doss and Ulgen (2004) to reduce 

repetitive model building and modification time. So given a serial production system, the 

Excel template developed in this thesis will enable the analyst to generate the simulation 

model dynamically. The results from the model will be analyzed with the help of the 

algorithm proposed, which will detect the bottleneck and propose modifications to the 

system in an effort to curb the bottleneck. The next section discusses the problem 

statement followed by the techniques developed in this thesis.
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CHAPTER 3 

PROBLEM DEFINITION AND METHODOLOGY 

 

3.1 Problem Definition 

A technique to detect bottleneck resources in complex serial production systems 

with the help of discrete event simulation is proposed in this thesis. A procedure for 

mitigating the bottleneck of any given serial production line is also developed. This will 

provide decision support to the analyst in the form of addition of buffers, reallocation of 

operators, or addition of parallel bottleneck resources. The objectives of this thesis are to 

identify the line bottlenecks and to use an iterative procedure to maximize line 

throughput. Our bottleneck detection technique is then contrasted with a traditional 

bottleneck detection method with the help of case studies. The simulation model used for 

analyzing the serial production system is dynamically generated from a Microsoft Excel 

template in Arena 7.01 with the help of a VBA project. A static model for the system 

under consideration is also built using the Excel template. In the next section we define a 

typical station and its processing parameters. 

3.2 Formalization of a Typical Station 

A serial production line is characterized as K work stations arranged in series and 

each station is labeled as k where k = 1 to K. Let N be the number of products being 
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processed in the line and each product is marked as n where n = 1 to N. The product mix 

is denoted by Mn, where Mn is the proportion of production allocated to product n. Then, 

00.1
1

=∑
=

N

n

nM  

 The processing time per unit ( P ) for the n
th

 product at station k is denoted 

as ( )nPk . The attributes of a station are listed in Table 3.1. 

Table 3.1: Processing Parameters 

Attribute Expression Symbol 

Processing time 

per unit 
Stochastic Pk(n) 

Time to failure Stochastic Lk 

Cycles to exhaust Stochastic Ck 

Time to repair Stochastic Rk 

Time to replenish Stochastic Hk 

 

The static model built as a part of this thesis, uses mean values of these attributes. Some 

of the other notations used in this thesis are: 

T  is the total production time 

kF  is the expected time lost due to repair 

kG  is the expected time lost due to replenishment 

kB  is the % of time spent by station k in blocked state 

kI  is the Maximum units that can be produced in station k without considering failures 

and exhausts 

kU  =  kFT −  is the available processing time in station k after the expected total repair 

time has been removed 
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kV  =  kk GFT −−  is the available processing time in station k after the expected total 

repair and replenish times are removed 

kJ  is the maximum units that can be produced in station k by considering repair and 

replenishment 

 
 

Figure 3.1: Typical Station 

 

Figure 3.1 is a snap shot of a typical station in our serial production system. A 

station will exist in one of the seven states idle, busy, failed, repair, exhaust, replenish 

and blocked. A machine remains in the idle state when it is not processing a part and 

there are no parts available in the input area. As soon as it gets started to work on a unit, 

its state changes to busy. Production process can be interrupted due to machine failures 

and component part exhaustion. As soon as a machine fails, its state changes to failure 

and an operator is requested for service. The state of the machine changes from failure to 

repair when an operator arrives to repair the machine. Machine exhaustion occurs when 

the raw material in a machine is exhausted. The machine remains in the exhaust state 

until an operator arrives to replenish the exhausted parts, which will change the state of 

the machine to replenish. When a machine is finished processing a unit it passes the unit 
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on to the next machine. If it is unable to do so due to unavailable capacity in its output 

area then the machine is considered to be blocked. 

Figure 3.2 illustrates the busy and idle states of a machine. Here Station A is 

working on a part and the Station B has exhausted the parts in the buffer in front of it. 

Station B is ready to work but there are no parts available for it to work on and it is in 

idle state (starved). Stations A and C are in busy state. Figure 3.3 illustrates the blocked, 

failed and repair states of a machine. In this case, Station B has finished working on its 

part but is not able to work on the next part because the buffer downstream is full and 

cannot accept any more parts. Station B is thus said to be blocked. Stations A and C have 

failed and both will be fixed by ‘Operator X’. Here Station A is in the process of being 

fixed and is in repair state where as Station C is still waiting for ‘Operator X’ and is in 

failed state. Figure 3.4 portrays replenish and exhaust states. Its very similar to the 

previous case the only difference being the stations have exhausted their resource instead 

of failing and Station A, which is being served by ‘Operator X’ is in replenish state and 

Station C is in exhaust state waiting for service from ‘Operator X’.  

          

 

Figure 3.2: Busy and Idle States 
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Figure 3.3: Blocked, Failed and Repair States 

 

Figure 3.4: Replenish and Exhaust States 

 

3.3 Methodology 

 

3.3.1 Data Collection 

Simulation models are computer programs that process input data to predict the 

output of the system by statistical sampling. Even when the underlying system is modeled 

accurately, if the input values plugged in are incorrect then the results will be misleading. 

A simulation model which is highly complex and stochastic in nature is difficult to 

validate. This is one of the primary reasons why the analysts need to have data that is 

representative of the actual system. According to Jadhav and Smith (2005) and Jadhav 

(2005), data can be extracted from the system either from historical databases if the 

system exists or similar systems if the system is nonexistent. The techniques developed in 
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this thesis are embedded in a ten step methodology proposed by Law and Kelton (2000). 

The flowchart of the methodology is shown in Figure 3.5. 

The ten step methodology provides an iterative procedure to maximize the 

throughput of the line. If the desired throughput of the system is not met for a proposed 

scenario then the bottleneck of the system is detected and mitigated using the techniques 

suggested in Section 3.3.7. The configuration of the system is modified accordingly and 

the iterative procedure is carried out until the target production rate for the system is 

achieved. 

Build/Update

Static Model

Throughput

Met?

Build/Update

Simulation Model

Document &

Implement

Yes No

Data Collection
Data Update/

Collection

Output

Analysis

Modify

Configuration

Run

Experiment

Verify & Validate

Simulation Model

Desired

throughput met

Desired throughput not met

 

Figure 3.5: Methodology for Simulation Modeling and Analysis of Serial Production 

Systems 

Robertson and Perera (2001) conducted a study and found that data collection in 

most simulation studies is unstructured, not automated, time consuming and hence forth 

comes at a high cost. The data thus extracted from the system may or may not be 

simulation friendly data or in other words the data would have to be processed further to 
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be used in a simulation study. Hence we have standardized the set of data that will be 

used in the simulation study to quicken this process. 

The data required for a simulation study can be classified into i) Data for static 

model and ii) Data for simulation model. The simulation model will also make use of the 

data available for static model. 

 

Data for static model are listed as follows: 

i) Shift Details: 

a. Available time per year 

b. Changeover Time 

c. Changeover Frequency 

ii) Process Details: 

a. Operator Issues 

i. Failure distribution 

ii. Time to Repair 

b. Maintenance Issues 

i. Cycles to Exhaust 

ii. Time to Replenish 

iii) Product Mix Details 

Data for simulation model are listed as follows: 

i) Machine Details: 

a. Processing type: single or batch 

b. Indexing time (if required) 
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c. Length of conveyor (if required) 

ii) Operator Details: 

a. Allocated set of stations 

b. Priorities 

iii) Inspection Details: 

a. Percentage passing 

b. Rework details 

i. Rework resource 

ii. Rework time 

iii. Percentage scrapped 

iv) Buffer Details: 

a. Location and capacity of buffer 

b. Queuing policy followed 

v) Conveyor Details: 

a. Length 

b. Accumulating/non-accumulating 

c. Speed 

vi) Process flow of the system 

Data pertaining to failures can be represented/collected in three ways namely, i) 

% of failures per shift, ii) Time To Failure, and iii) # of failures per shift. The static 

model developed in our study uses the # of failures per shift data. 
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3.3.2 Build/Update Static Model 

Static model which is an analytical modeling technique is a formalization of Mean 

Value Analysis (Reiser and Lavenberg, 1980) where mean values for processing times, 

failure/exhaust, repair and replenish times are used to estimate production rates. Using 

the data collected, a static model is generated dynamically with the help of the Excel 

template which would predict the throughput of the system under consideration. In this 

section we will describe the processing steps involved in static model generation. 

The processing steps involved in generation of static model are: 

Step 0:  Calculate mean processing time per unit kP = ( )[ ][ ]∑
=

×
N

n

nk MnPE
1

 

Step 1:  Throughput without considering failures and exhausts kI  =  
kP

T
 

Step 2:  Time lost due to repair kF  =  
[ ]{ }

[ ] [ ]{ }kk

k

RELE

TRE

+

×
 

Step 3: Calculate kU  =  kFT −  

Step 4: Time lost due to replenishment kG =
[ ]{ }

[ ] [ ] )({ }kkk

kk

PCEHE

UHE

×+

×
 

Step 5:  Calculate kV  =  kk GU −  

Step 6: Throughput considering failures and exhausts kJ  =  
k

k

P

V
 

This procedure is carried out for every station in the system. The throughput is 

essentially determined by the processing rate of the slowest machine (Jadhav and Smith, 

2005 and Jadhav, 2005). The static model also dynamically generates the resource state 

graph which is a graphical representation of the % of time spent by each resource in the 
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seven states discussed earlier. For more information on resource state graph the reader is 

directed to refer Jadhav and Smith (2005) and Jadhav (2005). The expressions used for 

calculation of % of time spent by a resource in each of the states are listed below. 

For resource k, 

a. % of time spent in the Busy state =  

( )

T

JP
Kk
kk 







×

=∀ ,....,1

min

        

b. % of time spent in the Replenishment state =  
T

Gk  

c. % of time spent in the Repair state =  
T

Fk  

d. % of time spent in the Failure/Exhaust state =  0 (Time in exhaust and failure 

states model complex operator interference issues; assumed zero in the static 

model) 

e. % of time spent in the Blocked state =  0 (Time in blocked state indicates 

complex inter-process interactions; assumed zero in the static model) 

f. % of time spent in the Idle state =  100 – (Σ Other States) 

 

The static model doesn’t consider i) complex operator interference issues, ii) 

influence of capacitated buffers, iii) inter-process interactions, and iv) effects of rework 

and hence the values obtained are just estimates. Calculating the % of time spent by a 

resource in the blocked state in the static model is not straightforward and is beyond the 

scope of this thesis. It is assumed to be zero in our static model. The static model predicts 

the throughput for two standardized scenarios: 
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a. Scenario 1: Without Failures and Exhausts 

b. Scenario 2: With Failures and Exhausts 

 

3.3.3 Expected Throughput Met? 

Once the static model is developed it is compared with existing systems or similar 

systems to check for correctness of the input data. Since static model doesn’t consider 

complex operator interference issues and inter-process interactions, the expected 

throughput from the static model for the scenario 2 is considered to be overestimated. In 

other words, a simulation model built with this input data cannot be expected to have 

higher values for throughput. So if the domain experts feel that the throughput is below 

their requirement or expectation then the configuration of the system is modified by 

adopting procedures to detect and mitigate the bottleneck described in this thesis. The 

data is updated /collected and static model is rebuilt accordingly. This feedback loop 

which is made available by the static model reduces time by giving the user a heads-up 

(by providing a rough estimate of the throughput). This is particularly useful for systems 

which are non-existent. 

 

3.3.4 Build/Update Simulation Model 

The simulation model built will be an exact representation of the system under 

study. It will account for operator interference issues, effect of capacitated buffers in 

between stations, inter-process interactions like blocking and starving, and the effects of 

rework and scrapping of parts. The simulation model will be dynamically generated from 
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the Excel template. The processing steps involved in dynamically generating the Arena 

model are listed as follows: 

Step 0: Shortlist the modules that will be used in the simulation study 

Step 1: Identify the operands whose values are to be obtained from the Excel template 

Step 2: Select the appropriate module for each station in the system from a pull down 

menu provided in the Excel template. Each module in the pull down menu has a unique 

feature. 

For instance, if a station is meant to have a built-in conveyor and multiple head 

processing, then the module which provides this feature is selected. On the other hand if 

the model developer wants to add inspection stations at different points in the line, then a 

module which reroutes the parts based on a fixed probability is chosen. 

Step 3: Enter the details required to build the simulation model in the Excel template 

Step 4: Execute the VBA code which will generate the simulation model in Arena 7.01 

Usually the first two steps are exercised only at the beginning of a simulation 

study (since the modules that will be used for a study will remain fairly constant). If a 

new module is to be used then the dataset is updated accordingly. Steps 2, 3 and 4 are to 

be executed each time a new model is built. 

Before the user executes the code to build the simulation model, it has to be made 

sure that the template used in a study is automatically attached to the project bar when 

Arena 7.01 opens. This is done by opening Arena 7.01 Tools/Options/Settings/Auto 

Attach Panels and specifying the path where the .tpo file being used in modeling is 

located. 
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Figure 3.6: Excel Template from which Arena Model is generated 

In this thesis, the simulation model which was dynamically generated makes use 

of the template developed by Mukkamala et al. (2003) and Mukkamala (2003). A 

conveyor is defaulted between each station. A snap shot the Excel template from which 

the Arena model is generated is shown in Figure 3.6. 

 

3.3.5 Verify and Validate Simulation Model 

The simulation model with base configuration (that is no failures and exhausts) is 

run and compared with scenario 1 of the static model. The simulation model is animated 

and process flow of the products is verified with the real system. The base simulation 

model will consider capacitated buffers and conveyors/transporters in between the 

resources. The static model assumes that there is no time lost when a product moves from 
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one resource to another. These factors will influence the results of the simulation model. 

But if the simulation model is an accurate representation of the real system, the 

throughput determined by the simulation model will not vary significantly from that of 

the static model. The managers are consulted for validation purposes. 

 

3.3.6 Run Experiment 

Stochastic variables like failure, repair, exhaust and replenishment rates, % of 

defective units, etc. are incorporated into the verified and validated simulation model at 

this point. These stochastic variables make the model dynamic. If the concerned firm has 

some predetermined strategies for the line then each of those ideas are incorporated in a 

separate simulation model. The number of replications is decided by making a trial run 

and the resulting 95% confidence interval of the half width of the throughput from the 

underlying production system (Jadhav and Smith, 2005 and Jadhav, 2005). Each model 

will usually have a different value for number of replications due to the randomness. The 

simulation model is run accordingly and the throughput of the line under study is 

determined. A resource state graph for the system is generated and the system is analyzed 

which is explained in the next section. 

 

3.3.7 Output Analysis of the System 

The simulation results thus obtained will reveal the performance level of each 

station with respect to the seven states we have defined. The results have to be analyzed 

and effective measures are to be undertaken to enhance the efficiency of the system. To 
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do this the analyst will have to identify the station which has the greatest impact on the 

performance of the whole system, which will be the bottleneck resource.  

 The busy state reflects upon the effective % of time a resource was engaged in 

production. Replenish and repair states reflect upon the inability of a station to 

manufacture products due to exhaustion and failure respectively. Exhaust and failure 

states quantify the operator interferences. Idle and blocked state of a station quantifies the 

interdependency (coupling) of the station on others. It can also be interpreted as the 

effective % of time that a resource can utilize for production if it were decoupled from 

other stations in the system. When a machine is in blocked or idle state it is ready to 

accept parts for processing but is unable to do so due to complex inter-process 

interactions. The machine which is least affected by the inter-process interactions will be 

the bottleneck resource. This transforms to the fact that the machine which has the least 

value for the % of time spent in idle and blocked states is the bottleneck resource. In this 

thesis we compare our bottleneck detection technique with the concept of ‘Machine with 

highest utilization’ being the bottleneck resource. In chapter 4 we present case studies 

where in our bottleneck detection technique works better. This value will be referred to as 

Bottleneck Index from here on. 

The states of a machine are represented in the resource state graph which is 

generated from Arena with the help of VBA (Jadhav and Smith, 2005 and Jadhav, 2005).  

Three possible changes can be made in the system to counter the bottleneck problem. 

They are listed as follows: 

a. Add buffers before or after the bottleneck process 

b. Re-allocate the workforce to reduce the time spent in failure/exhaust 
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c. Consider parallel processing option for the bottleneck resource 

The decision to select the options stated above is not straightforward and hence 

we have developed an algorithm which will be helpful for the analyst in this regard. The 

processing steps are as follows: 

Step 0: If Exhaust/failure state for any station is >= Z %, consider reallocating the 

operator for those stations 

Step 1: If Blocked state of the bottleneck is > 0 %, then add buffers right after the 

bottleneck resource 

Step 2: If Idle state of the bottleneck is >= Y %, then add buffers appropriately for 

machines upstream and stop 

Step 3: If Idle state of the bottleneck is > 0 %, add buffers right before the bottleneck 

resource 

Step 4: If (Idle + Blocked) states of bottleneck resource are =< X %, add parallel resource 

and stop 

The values that the parameters X, Y and Z will assume are decided by the analyst 

and the management, which is going to be subjective and it will depend on the objective 

of the analysis that is being conducted. Usually the values range from 1 to 40. The values 

of X, Y and Z parameters used in this thesis are assumed to be 5, 25 and 2 respectively. 

The interpretations of variables are: 

1. Higher values of ‘Z’: Operator interchangeability/sharing is not easy or very few 

cross trained operators available. Another interpretation is that, highly skilled 

operators are required for certain processes. 
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2. Lower values of ‘Y’: Management is ready to add buffers around non-bottleneck 

resources to reduce the % of time spent by a bottleneck resource in idle state. 

3. Higher values of ‘X’: Management is in favor of adding resources either due to 

the need for substantial increase in production or the cost of adding machines is 

relatively less expensive than adding buffers in the long run. 

As a part of this research, another algorithm was developed to help the analyst 

decide on the changes to be made. This algorithm is an approximation technique which 

uses the % of time spent by the machines in blocked state upstream to that of the 

bottleneck resource and the blocking of the bottleneck resource due to the machines 

downstream. An index (referred to as Blocked Index) is calculated based on these values 

and the analyst is advised to either add buffers or add a parallel processing resource based 

on the value of this index. If the th
n machine is the bottleneck resource then Blocked 

Index is calculate as follows: 

Blocked Index = [ ∑
−

=

1

1

(
n

i

iB - nB ) / (n-1)] 

Mathematical interpretation to the computation of the Blocked Index is that the 

effects of machines downstream to bottleneck resource can be approximately represented 

by the % of time spent by the bottleneck resource in the blocked state. The effect of the 

bottleneck resource on the machines upstream can similarly be approximated to the 

blocked state of those machines. Hence the average effect of the bottleneck machine on 

resources upstream is given by the Blocked Index. 

If the value of Blocked Index is higher than 40% (which is subjective), then the 

analyst will be directed to add a parallel resource to the bottleneck machine. 
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Pitfalls of this algorithm: 

1. It overestimates the effect of the bottleneck machine on the resources upstream 

as it fails to account for the blocking due to other non-bottleneck resources 

2. The starving of the bottleneck machine is not taken into account, which can be 

minimized by adding buffers, thereby increasing the throughput without adding 

a parallel resource 

3. The failure/exhaust states are not considered and hence the operator allocation 

issue is not addressed 

Due to the above stated inconveniences this algorithm was not used for decision 

making purposes. Modifying the configuration of the system accordingly is discussed in 

the next section. 

3.3.8 Modify Configuration 

After the analysis of the simulation models the proposed changes and the results 

are shared with the decision makers and their suggestions for improvements are also 

considered. If the decision makers want to conduct a cost analysis then factors like WIP, 

machine costs, Labor costs etc. are taken into account. After analyzing all the possible 

options a viable option is chosen and the data is updated /collected accordingly.  

 

3.3.9 Data Update/Collection 

The existing data is either updated or new data is collected to rebuild the static 

model. Data is usually updated in cases where the company makes the choice of adding a 

parallel resource to the line for which data is already available. New data is collected 

usually when a new resource is added to the system for which the processing time or 
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failure/exhaust rates are unknown or some process improvements on a resource is done 

where the cycle time or the failures/exhausts or both the parameters change. The static 

model and the simulation model are updated. 

 

3.3.10 Documentation and Implementation 

The process is terminated when the decision makers requirement/expectation are 

met. Static and simulation models for various configurations are documented for future 

reference and the proposed methodology is enforced.
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CHAPTER 4 

CASE STUDIES 

 

The case studies conducted on four sets of production lines are presented in this 

chapter. We analyze ten station lines and fifty station lines with low and high variability 

in processing parameters. The production lines listed here can be thus be categorized into: 

i) Long line with low variability in processing parameters , ii) Long line with high 

variability in  processing parameters, iii) Short line with low variability in processing 

parameters and iv) Short line with high variability in processing parameters. The 

methodology proposed in the previous chapter has been adapted in modeling and analysis 

of these lines. The processing parameters under considered are: 

• Processing time 

• Time to failure 

• Cycles to exhaust 

• Time to repair 

• Time to replenish 

4.1 Experimental Setup 

In this thesis, we have conducted ten sets of experiments for each category of 

production line mentioned above. An experiment is setup by arbitrarily assigning mean 
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values to the processing parameters. The length of the line and coefficient of variation 

(C.V.) of processing parameters are decided upon by the category in which it falls. For 

example, a fifty machine line with a C.V. of around 10% for the processing parameters 

would fall under the category of long lines with low variability in processing parameters. 

The labeling of the experiments is shown in Table 4.1. 

Table 4.1: Labeling of Experiments 

C.V. between Process Parameters 
Length of Production Line 

~ 0.10 ~ 0.30 

10 SL SH 

50 LL LH 

 

Data points are generated for each processing parameter and each machine in the 

system is assigned with a set of processing expression. Distribution for each processing 

expression is selected arbitrarily and the system is dynamically generated from the Excel 

template. The system thus modeled is simulated and tested against the algorithm 

proposed in this thesis. This procedure can be explained better with the help of an 

example. Let us consider a short line with low variability in processing parameters. The 

mean values and C.V. between processes which were arbitrarily assigned are listed below 

in Table 4.2. The range of all the mean values used in this thesis for processing 

parameters is obtained from Jadhav and Smith (2005) and Jadhav (2005). 

Table 4.2: SL-Configuration Example 

Attribute 
Mean 

Value 
Units C.V. between processes 

Processing Time Px 16 Sec 0.12 

Time to Failure Lx 64.5 Min 0.10 

Cycles to Exhaust Cx 30 Parts 0.13 

Time to Repair Rx 280 Sec 0.11 
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Time to Replenish Hx 90 Sec 0.09 

 

 Normal distribution is selected to generate the data points and each machine is 

assigned a data set as shown in Table 4.3. These data points in the table are used as mean 

values for stations in the static model and a distribution is selected for each attribute in 

the simulation model. 

Table 4.3: Data for the Stations 

Attribute 
Resource Processing 

Time 

Time to 

Failure 

Cycles to 

Exhaust 

Time to 

Repair 

Time to 

Replenish 

Machine A 16.72 84.75 25 313.01 97.07 

Machine B 17.86 82.07 25 326.76 81.98 

Machine C 16.62 65.12 31 270.59 87.65 

Machine D 19.54 72.54 23 302.26 98.05 

Machine E 17.13 68.58 33 287.75 83.23 

Machine F 17.06 88.33 34 307.07 87.24 

Machine G 16.25 74.72 28 282.19 98.58 

Machine H 18.87 84.68 40 288.56 74.11 

Machine I 18.63 65.3 27 298.04 94.51 

Machine J 16.61 72.73 37 292 80.45 
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Results: 

Table 4.4: SL Example Results 

Results 
Initial throughput: 479,984 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine D Machine D 

Mitigation 
Add 7 buffers in front of 

Machine D and 10 behind it 

Add 7 buffers in front of 

Machine D and 10 behind it 

Throughput 530,581 530,581 

 

The resource state graphs of the base case scenario and the one after adding buffers to the 

bottleneck resource are shown in Figure 4.1 and Figure 4.2 respectively. The case studies 

are presented in the next section.
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4.2 Analysis of LL-Configuration 

Case 1: 

Table 4.5: Case LL-1 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 20 Sec 0.12 

Time to Failure Lk 53.25 Min 0.13 

Cycles to Exhaust Ck 115 Parts 0.11 

Time to Repair Rk 155 Sec 0.08 

Time to Replenish Hk 155 Sec 0.09 

Results 
Initial throughput: 88,184 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine X Machine F 

Mitigation 
Add 10 buffers in front of 

Machine X and 15 behind it 

Add 10 buffers in front of 

Machine F and 20 behind it 

Throughput 104,335 100,734 

 

Case 2: 

Table 4.6: Case LL-2 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 12 Sec 0.10 

Time to Failure Lk 71 Min 0.10 

Cycles to Exhaust Ck 70 Parts 0.10 

Time to Repair Rk 120 Sec 0.10 

Time to Replenish Hk 140 Sec 0.10 

Results 
Initial throughput: 125,452 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine AV Machine AV 
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Mitigation 

Add 10 buffers in front of 

Machine AV and 7 behind it 

and 3 buffers in front of and 

behind Machine AT 

Add 10 buffers in front of 

Machine AV and 7 behind 

it and 3 buffers in front of 

and behind Machine AT 

Throughput 143,623 143,623 

 

Case 3: 

Table 4.7: Case LL-3 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 19 Sec 0.09 

Time to Failure Lk 71 Min 0.13 

Cycles to Exhaust Ck 135 Parts 0.11 

Time to Repair Rk 170 Sec 0.13 

Time to Replenish Hk 145 Sec 0.08 

Results 
Initial throughput: 85,106 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine AI Machine AI 

Mitigation 

Add 10 buffers in front of 

Machine AI and 10 behind it, 

and an operator 

Add 10 buffers in front of 

Machine AI and 10 behind 

it, and an operator 

Throughput 109,253 109,253 

 

Case 4: 

Table 4.8: Case LL-4 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 6 Sec 0.11 

Time to Failure Lk 56.8 Min 0.11 

Cycles to Exhaust Ck 100 Parts 0.09 

Time to Repair Rk 80 Sec 0.11 
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Time to Replenish Hk 60 Sec 0.09 

Results 
Initial throughput: 268,871 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine F Machine F 

Mitigation 
Add 8 buffers in front of 

Machine F and 20 behind it 

Add 8 buffers in front of 

Machine F and 20 behind it 

Throughput 319,006 319,006 

 

Case 5: 

Table 4.9: Case LL-5 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 10 Sec 0.13 

Time to Failure Lk 85.2 Min 0.12 

Cycles to Exhaust Ck 100 Parts 0.08 

Time to Repair Rk 100 Sec 0.09 

Time to Replenish Hk 90 Sec 0.11 

Results 
Initial throughput: 175,707 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine Z Machine R 

Mitigation 
Add 5 buffers in front of 

Machine Z and 12 behind it 

Add 10 buffers in front of 

Machine R and 8 behind it 

Throughput 200,748 192,407 

 

Case 6: 

Table 4.10: Case LL-6 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 14 Sec 0.11 

Time to Failure Lk 60.85 Min 0.09 
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Cycles to Exhaust Ck 120 Parts 0.13 

Time to Repair Rk 130 Sec 0.12 

Time to Replenish Hk 100 Sec 0.09 

Results 
Initial throughput: 133,799 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine X Machine AT 

Mitigation 
Add 10 buffers behind 

Machine X  

Add 5 buffers in front of 

Machine AT and 10 behind 

it 

Throughput 155,529 152,734 

 

Case 7: 

Table 4.11: Case LL-7 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 21.5 Sec 0.10 

Time to Failure Lk 56.8 Min 0.09 

Cycles to Exhaust Ck 105 Parts 0.13 

Time to Repair Rk 135 Sec 0.09 

Time to Replenish Hk 135 Sec 0.10 

Results 
Initial throughput: 95,876 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine AU Machine AU 

Mitigation 
Add 10 buffers in front of 

Machine AU and 5 behind it 

Add 10 buffers in front of 

Machine AU and 5 behind 

it 

Throughput 106,815 106,815 

 

Case 8: 

Table 4.12: Case LL-8 

Configuration 
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Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 18 Sec 0.08 

Time to Failure Lk 65.5 Min 0.11 

Cycles to Exhaust Ck 130 Parts 0.09 

Time to Repair Rk 120 Sec 0.13 

Time to Replenish Hk 140 Sec 0.12 

Results 
Initial throughput: 114,569 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine AQ Machine AQ 

Mitigation 
Add 10 buffers in front of 

Machine AQ and 5 behind it 

Add 10 buffers in front of 

Machine AQ and 5 behind it 

Throughput 127,498 127,498 

 

 

Case 9: 

Table 4.13: Case LL-9 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 8 Sec 0.13 

Time to Failure Lk 94.6 Min 0.08 

Cycles to Exhaust Ck 95 Parts 0.12 

Time to Repair Rk 90 Sec 0.12 

Time to Replenish Hk 80 Sec 0.11 

Results 
Initial throughput: 217,909 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine AC Machine AF 

Mitigation 
Add 12 buffers in front of 

Machine AC and 5 behind it 

Add 20 buffers in front of 

Machine AF and 3 behind 

it 

Throughput 244,860 231,759 
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Case 10: 

Table 4.14: Case LL-10 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 16 Sec 0.09 

Time to Failure Lk 77.45 Min 0.08 

Cycles to Exhaust Ck 105 Parts 0.12 

Time to Repair Rk 145 Sec 0.11 

Time to Replenish Hk 120 Sec 0.08 

Results 
Initial throughput: 118,892 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine V Machine V 

Mitigation 
Add 10 buffers in front of 

Machine V and 15 behind it 

Add 10 buffers in front of 

Machine V and 15 behind it 

Throughput 136,133 136,133 

 

Ten sets of lines with LL configuration were studied in this section. It was found 

that the Bottleneck Index Method identified the same bottleneck as that of the Highest 

Utilized Machine Method on six occasions. The Bottleneck Index Method yielded better 

results in terms of throughput of the line for the remaining four cases. The results are 

presented in Table 4.15. The scenarios where both methods found the same bottleneck 

are bolded. 

Table 4.15: Summary of LL-Configuration Results 

Throughput 
Experiment # 

Base Scenario Bottleneck Index Method 
Highest Utilized Machine 

Method 

Case 1 88,184 104,335 100,734 

Case 2 125,452 143,623 143,623 

Case 3 85,106 109,253 109,253 

Case 4 268,871 319,006 319,006 

Case 5 175,707 200,748 195,407 
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Case 6 133,799 155,529 152,734 

Case 7 95,876 106,815 106,815 

Case 8 114,569 127,498 127,498 

Case 9 217,909 244,860 231,759 

Case 10 118,892 136,133 136,133 

 

4.3 Analysis of LH-Configuration 

Case 1: 

Table 4.16: Case LH-1 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 12 Sec 0.30 

Time to Failure Lk 71 Min 0.30 

Cycles to Exhaust Ck 130 Parts 0.30 

Time to Repair Rk 120 Sec 0.30 

Time to Replenish Hk 140 Sec 0.30 

Results 
Initial throughput: 102,850 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine AV Machine AV 

Mitigation 
Add 15 buffers in front of 

Machine AV and 7 behind it 

Add 15 buffers in front of 

Machine AV and 7 behind 

it 

Throughput 111,725 111,725 

 

Case 2: 

Table 4.17: Case LH-2 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 10 Sec 0.33 

Time to Failure Lk 85.2 Min 0.32 

Cycles to Exhaust Ck 100 Parts 0.28 
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Time to Repair Rk 100 Sec 0.29 

Time to Replenish Hk 90 Sec 0.33 

Results 
Initial throughput: 143,240 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine R Machine R 

Mitigation 
Add 5 buffers in front of 

Machine R and 10 behind it 

Add 5 buffers in front of 

Machine R and 10 behind it 

Throughput 149,833 149,833 

 

Case 3: 

Table 4.18: Case LH-3 

Configuration 

Attribute Mean Value Units 

C.V. 

between 

processes 

Processing Time Pk 14 Sec 0.31 

Time to Failure Lk 60.85 Min 0.29 

Cycles to Exhaust Ck 120 Parts 0.33 

Time to Repair Rk 130 Sec 0.32 

Time to Replenish Hk 100 Sec 0.29 

Results 
Initial throughput: 92,533 

 Bottleneck Index Method 
Highest Utilization 

Method 

Bottleneck Machine X Machine AT 

Mitigation 
Add 15 buffers in front of 

Machine X and 20 behind it 

Add 25 buffers in front of 

Machine AT and 15 

behind it and 4 buffers in 

front of and behind 

Machine AR 

Throughput 111,221 107,092 

 

Case 4: 

Table 4.19: Case LH-4 
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Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 16 Sec 0.29 

Time to Failure Lk 77.45 Min 0.28 

Cycles to Exhaust Ck 105 Parts 0.32 

Time to Repair Rk 145 Sec 0.31 

Time to Replenish Hk 120 Sec 0.28 

Results 
Initial throughput: 75,131 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine V Machine V 

Mitigation 

Add 5 buffers in front of 

Machine V and 15 behind 

it 

Add 5 buffers in front of 

Machine V and 15 behind it 

Throughput 87,154 87,154 

 

Case 5: 

Table 4.20: Case LH-5 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 18 Sec 0.28 

Time to Failure Lk 65.5 Min 0.31 

Cycles to Exhaust Ck 130 Parts 0.29 

Time to Repair Rk 120 Sec 0.33 

Time to Replenish Hk 140 Sec 0.32 

Results 
Initial throughput: 83,335 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine AW Machine J 

Mitigation 

Add 20 buffers in front of 

Machine AW and 5 

behind it 

Add 10 buffers in front of 

Machine J and 20 behind it 

Throughput 94,947 91,045 
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Case 6: 

Table 4.21: Case LH-6 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 20 Sec 0.32 

Time to Failure Lk 53.25 Min 0.33 

Cycles to Exhaust Ck 115 Parts 0.31 

Time to Repair Rk 155 Sec 0.28 

Time to Replenish Hk 155 Sec 0.29 

Results 
Initial throughput: 63,416 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine G Machine G 

Mitigation 

Add 8 buffers in front of 

Machine G and 25 behind 

it, and an operator 

Add 8 buffers in front of 

Machine G and 25 behind it, 

and an operator 

Throughput 73,051 73,051 

 

Case 7: 

Table 4.22: Case LH-7 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 21.5 Sec 0.30 

Time to Failure Lk 56.8 Min 0.29 

Cycles to Exhaust Ck 105 Parts 0.33 

Time to Repair Rk 135 Sec 0.29 

Time to Replenish Hk 135 Sec 0.30 

Results 
Initial throughput: 57,588 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine V Machine V  

Mitigation 
Add 7 buffers in front of 

Machine V and 12 behind 

Add 7 buffers in front of 

Machine V and 12 behind 
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it, and an operator it, and an operator 

Throughput 64,561 64,561 

 

Case 8: 

Table 4.23: Case LH-8 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 8 Sec 0.33 

Time to Failure Lk 94.5 Min 0.28 

Cycles to Exhaust Ck 95 Parts 0.32 

Time to Repair Rk 90 Sec 0.32 

Time to Replenish Hk 80 Sec 0.31 

Results 
Initial throughput: 155,645 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine W Machine W 

Mitigation 

Add 10 buffers in front of 

Machine W and 20 

behind it 

Add 10 buffers in front of 

Machine W and 20 behind 

it 

Throughput 170,172 170,172 

 

Case 9: 

Table 4.24: Case LH-9 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 6 Sec 0.31 

Time to Failure Lk 56.8 Min 0.31 

Cycles to Exhaust Ck 200 Parts 0.29 

Time to Repair Rk 80 Sec 0.31 

Time to Replenish Hk 60 Sec 0.29 

Results 
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Initial throughput: 204,178 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine T Machine T 

Mitigation 

Add 5 buffers in front of 

Machine T and 20 behind 

it 

Add 5 buffers in front of 

Machine T and 20 behind it 

Throughput 230,787 230,787 

 

Case 10: 

Table 4.25: Case LH-10 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 19 Sec 0.29 

Time to Failure Lk 71 Min 0.33 

Cycles to Exhaust Ck 220 Parts 0.31 

Time to Repair Rk 170 Sec 0.33 

Time to Replenish Hk 145 Sec 0.28 

Results 
Initial throughput: 58,779 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine AO Machine AO 

Mitigation 

Add 20 buffers in front of 

Machine AO and 5 

behind it and 2 buffers in 

front of and behind 

Machine AK 

Add 20 buffers in front of 

Machine AO and 5 behind 

it and 2 buffers in front of 

and behind Machine AK 

Throughput 66,163 66,163 

 

Ten sets of lines with LH configuration were studied in this section. It was found 

that the Bottleneck Index Method identified the same bottleneck as that of the Highest 

Utilized Machine Method on eight occasions. The Bottleneck Index Method yielded 

better results in terms of throughput of the line for the remaining two cases. The results 
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are presented in Table 4.26. The scenarios where both methods found the same 

bottleneck are bolded. 

 

Table 4.26: Summary of LH-Configuration Results 

Throughput 
Experiment # 

Base Scenario Bottleneck Index Method 
Highest Utilized Machine 

Method 

Case 1 102,850 111,725 111,725 

Case 2 143,240 149,833 149,833 

Case 3 92,533 111,221 107,092 

Case 4 75,131 87,154 87,154 

Case 5 83,335 94,944 91,045 

Case 6 63,416 73,051 73,051 

Case 7 57,588 64,561 64,561 

Case 8 155,645 170,172 170,172 

Case 9 204,178 230,787 230,787 

Case 10 58,779 66,663 66,663 

 

4.4 Analysis of SL-Configuration 

Case 1: 

Table 4.27: Case SL-1 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 6 Sec 0.08 

Time to Failure Lk 53.25 Min 0.12 

Cycles to Exhaust Ck 60 Parts 0.11 

Time to Repair Rk 120 Sec 0.12 

Time to Replenish Hk 35 Sec 0.08 

Results 
Initial throughput: 1,650,761 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine E Machine D 

Mitigation 
Add 5 buffers in front of 

Machine E and 5 behind it 

Add 5 buffers in front of 

Machine D and 5 behind it 
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Throughput 1,834,244 1,736,535 

 

Case 2: 

Table 4.28: Case SL-2 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 20 Sec 0.11 

Time to Failure Lk 106.5 Min 0.09 

Cycles to Exhaust Ck 30 Parts 0.08 

Time to Repair Rk 300 Sec 0.09 

Time to Replenish Hk 90 Sec 0.11 

Results 
Initial throughput: 450,382 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine E Machine F 

Mitigation 

Add 5 buffers in front of 

Machine E and 10 behind it, 

and an operator 

Add 15 buffers in front of 

Machine F and 8 behind it, 

and an operator 

Throughput 523,395 500,963 

 

Case 3: 

Table 4.29: Case SL-3 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 15 Sec 0.10 

Time to Failure Lk 50 Min 0.10 

Cycles to Exhaust Ck 50 Parts 0.10 

Time to Repair Rk 20 Sec 0.10 

Time to Replenish Hk 120 Sec 0.10 

Results 
Initial throughput: 984,053 

 Bottleneck Index Method Highest Utilization Method 



57 

Bottleneck Machine E Machine E 

Mitigation Add Machine E Add Machine E 

Throughput 1,004,148 1,004,148 

 

Case 4: 

Table 4.30: Case SL-4 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 16 Sec 0.12 

Time to Failure Lk 64.50 Min 0.10 

Cycles to Exhaust Ck 30 Parts 0.13 

Time to Repair Rk 280 Sec 0.11 

Time to Replenish Hk 90 Sec 0.09 

Results 
Initial throughput: 479,984 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine D Machine D 

Mitigation 
Add 7 buffers in front of 

Machine D and 10 behind it 

Add 7 buffers in front of 

Machine D and 10 behind it 

Throughput 530,581 530,581 

 

Case 5: 

Table 4.31: Case SL-5 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 22 Sec 0.09 

Time to Failure Lk 85 Min 0.13 

Cycles to Exhaust Ck 70 Parts 0.11 

Time to Repair Rk 140 Sec 0.08 

Time to Replenish Hk 85 Sec 0.12 

Results 
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Initial throughput: 625,096 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine I Machine G 

Mitigation 
Add 5 buffers in front of 

Machine I and 3 behind it 

Add 5 buffers in front of 

Machine G and 8 behind it 

Throughput 665,599 633,404 

 

Case 6: 

Table 4.32: Case SL-6 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 25 Sec 0.08 

Time to Failure Lk 60.8 Min 0.11 

Cycles to Exhaust Ck 60 Parts 0.08 

Time to Repair Rk 100 Sec 0.09 

Time to Replenish Hk 60 Sec 0.11 

Results 
Initial throughput: 587,503 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine B Machine B 

Mitigation Add Machine B Add Machine B 

Throughput 588,447 588,447 

 

Case 7: 

Table 4.33: Case SL-7 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 18 Sec 0.13 

Time to Failure Lk 106.5 Min 0.08 

Cycles to Exhaust Ck 50 Parts 0.09 

Time to Repair Rk 150 Sec 0.11 
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Time to Replenish Hk 100 Sec 0.13 

Results 
Initial throughput: 539,741 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine H Machine E 

Mitigation 

Add 7 buffers in front of 

Machine H and 10 behind 

it, and an operator is 

added to the line 

Add 7 buffers in front of 

Machine E and 15 behind it, 

and an operator is added to the 

line 

Throughput 587,335 564,214 

 

Case 8: 

Table 4.34: Case SL-8 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 12 Sec 0.10 

Time to Failure Lk 60.85 Min 0.10 

Cycles to Exhaust Ck 25 Parts 0.10 

Time to Repair Rk 300 Sec 0.10 

Time to Replenish Hk 70 Sec 0.10 

Results 
Initial throughput: 584,591 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine D Machine D 

Mitigation 

Add 5 buffers in front of 

Machine D and 10 behind 

it 

Add 5 buffers in front of 

Machine D and 10 behind it 

Throughput 664,215 664,215 

 

Case 9: 

Table 4.35: Case SL-9 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 
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Processing Time Pk 10 Sec 0.09 

Time to Failure Lk 85.5 Min 0.13 

Cycles to Exhaust Ck 40 Parts 0.12 

Time to Repair Rk 220 Sec 0.11 

Time to Replenish Hk 45 Sec 0.12 

Results 
Initial throughput: 1,089,495 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine E Machine D 

Mitigation 
Add 3 buffers in front of 

Machine E and 5 behind it 

Add 20 buffers behind Machine 

D 

Throughput 1,180,721 1,140,280 

 

Case 10: 

Table 4.36: Case SL-10 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 8.5 Sec 0.13 

Time to Failure Lk 71 Min 0.12 

Cycles to Exhaust Ck 50 Parts 0.10 

Time to Repair Rk 170 Sec 0.10 

Time to Replenish Hk 50 Sec 0.11 

Results 
Initial throughput: 1,111,752 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine H Machine C 

Mitigation 

Add 10 buffers in front of 

Machine H and 10 behind 

it 

Add 15 buffers in front of 

Machine C and 15 behind it 

Throughput 1,219,555 1,141,881 

 

Ten sets of lines with SL configuration were studied in this section. It was found 

that the Bottleneck Index Method identified the same bottleneck as that of the Highest 
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Utilized Machine Method on four occasions. The Bottleneck Index Method yielded better 

results in terms of throughput of the line for the remaining six cases. The results are 

presented in Table 4.37. The scenarios where both methods found the same bottleneck 

are bolded. 

 

Table 4.37: Summary of SL-Configuration Results 

Throughput 
Experiment # 

Base Scenario Bottleneck Index Method 
Highest Utilized Machine 

Method 

Case 1 1,650,761 1,834,244 1,736,535 

Case 2 450,382 523,395 500,963 

Case 3 984,053 1,004,148 1,004,148 

Case 4 479,984 530,581 530,581 

Case 5 625,096 665,599 633,404 

Case 6 587,503 588,447 588,447 

Case 7 539,741 587,335 564,032 

Case 8 584,591 664,215 664,215 

Case 9 625,096 665,599 633,404 

Case 10 1,111,752 1,219,555 1,141,881 

 

4.5 Analysis of SH-Configuration 

Case 1: 

Table 4.38: Case SH-1 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 18 Sec 0.30 

Time to Failure Lk 7 Min 0.30 

Cycles to Exhaust Ck 150 Parts 0.30 

Time to Repair Rk 150 Sec 0.30 

Time to Replenish Hk 200 Sec 0.30 

Results 
Initial throughput: 477,761 
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 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine C Machine C 

Mitigation 
Add 10 buffers in front of 

Machine C and 15 behind it 

Add 10 buffers in front of 

Machine C and 15 behind it 

Throughput 553,850 553,850 

 

Case 2: 

Table 4.39: Case SH-2 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 16 Sec 0.33 

Time to Failure Lk 106.5 Min 0.32 

Cycles to Exhaust Ck 110 Parts 0.29 

Time to Repair Rk 240 Sec 0.28 

Time to Replenish Hk 180 Sec 0.33 

Results 
Initial throughput: 517,369 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine H Machine H 

Mitigation 
Add 7 buffers in front of 

Machine H and 3 behind it 

Add 7 buffers in front of 

Machine H and 3 behind it 

Throughput 566,800 566,800 

 

Case 3: 

Table 4.40: Case SH-3 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 10 Sec 0.31 

Time to Failure Lk 86.5 Min 0.29 

Cycles to Exhaust Ck 45 Parts 0.33 

Time to Repair Rk 180 Sec 0.32 

Time to Replenish Hk 100 Sec 0.29 
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Results 
Initial throughput: 763,443 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine H Machine E 

Mitigation 
Add 7 buffers in front of 

Machine H and 15 behind it 

Add 10 buffers in front of 

Machine E and 18 behind it 

Throughput 857,098 795,458 

 

Case 4: 

Table 4.41: Case SH-4 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 13.5 Sec 0.29 

Time to Failure Lk 106.5 Min 0.28 

Cycles to Exhaust Ck 70 Parts 0.32 

Time to Repair Rk 120 Sec 0.32 

Time to Replenish Hk 90 Sec 0.28 

Results 
Initial throughput: 878,667 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine H Machine H 

Mitigation 
Add 1 buffers in front of 

Machine H and 3 behind it 

Add 1 buffers in front of 

Machine H and 3 behind it 

Throughput 959,073 959,073 

 

Case 5: 

Table 4.42: Case SH-5 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 8 Sec 0.28 

Time to Failure Lk 213 Min 0.31 

Cycles to Exhaust Ck 30 Parts 0.29 
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Time to Repair Rk 46.5 Sec 0.33 

Time to Replenish Hk 23.5 Sec 0.32 

Results 
Initial throughput: 1,565,133 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine E Machine B 

Mitigation Add Machine E Add Machine B 

Throughput 1,619,663 1,565,133 

 

Case 6: 

Table 4.43: Case SH-6 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 25 Sec 0.32 

Time to Failure Lk 170 Min 0.33 

Cycles to Exhaust Ck 130 Parts 0.31 

Time to Repair Rk 80 Sec 0.28 

Time to Replenish Hk 70 Sec 0.27 

Results 
Initial throughput: 427,741 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine C Machine C 

Mitigation Add Machine C Add Machine C 

Throughput 523,610 523,610 

 

Case 7: 

Table 4.44: Case SH-7 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 20 Sec 0.30 

Time to Failure Lk 71 Min 0.29 
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Cycles to Exhaust Ck 90 Parts 0.33 

Time to Repair Rk 220 Sec 0.29 

Time to Replenish Hk 130 Sec 0.30 

Results 
Initial throughput: 564,081 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine E Machine E 

Mitigation 
Add 3 buffers in front of 

Machine E and 3 behind it 

Add 3 buffers in front of 

Machine E and 3 behind it 

Throughput 605,291 605,291 

 

Case 8: 

Table 4.45: Case SH-8 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 12 Sec 0.33 

Time to Failure Lk 142 Min 0.28 

Cycles to Exhaust Ck 100 Parts 0.32 

Time to Repair Rk 65 Sec 0.32 

Time to Replenish Hk 140 Sec 0.31 

Results 
Initial throughput: 856,211 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine C Machine F 

Mitigation 
Add 4 buffers in front of 

Machine C and 10 behind it 

Add 15 buffers in front of 

Machine F and 5 behind it 

Throughput 929,791 882,391 

 

Case 9: 

Table 4.46: Case SH-9 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 
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Processing Time Pk 15 Sec 0.31 

Time to Failure Lk 94 Min 0.31 

Cycles to Exhaust Ck 120 Parts 0.29 

Time to Repair Rk 130 Sec 0.31 

Time to Replenish Hk 100 Sec 0.29 

Results 
Initial throughput: 632,703 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine C Machine C 

Mitigation Add Machine C Add Machine C 

Throughput 705,078 705,078 

 

Case 10: 

Table 4.47: Case SH-10 

Configuration 

Attribute Mean Value Units 
C.V. between 

processes 

Processing Time Pk 22 Sec 0.29 

Time to Failure Lk 77.5 Min 0.33 

Cycles to Exhaust Ck 880 Parts 0.31 

Time to Repair Rk 160 Sec 0.33 

Time to Replenish Hk 170 Sec 0.28 

Results 
Initial throughput: 466,609 

 Bottleneck Index Method Highest Utilization Method 

Bottleneck Machine H Machine H 

Mitigation 
Add 3 buffers in front of 

Machine H and 6 behind it 

Add 3 buffers in front of 

Machine H and 6 behind it 

Throughput 501,315 501,315 

 

Ten sets of lines with SH configuration were studied in this section. It was found 

that the Bottleneck Index Method identified the same bottleneck as that of the Highest 

Utilized Machine Method on seven occasions. The Bottleneck Index Method yielded 
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better results in terms of throughput of the line for the remaining three cases. The results 

are presented in Table 4.48. The scenarios where both methods found the same 

bottleneck are bolded. The resource state graphs of all case studies have been presented 

in the appendix. 

Table 4.48: Summary of SH-Configuration Results 

Throughput 
Experiment # 

Base Scenario Bottleneck Index Method 
Highest Utilized Machine 

Method 

Case 1 477,761 553,850 553,850 

Case 2 517,369 566,800 566,800 

Case 3 763,443 857,098 795,458 

Case 4 878,667 959,073 959,073 

Case 5 1,565,133 1,619,663 1,565,133 

Case 6 427,741 523,610 523,610 

Case 7 564,081 605,291 605,291 

Case 8 856,211 929,791 882,391 

Case 9 632,703 705,078 705,078 

Case 10 466,609 501,315 501,315 

 

The simulation models for the case studies presented above were built with the 

help of the Excel template developed as a part of this thesis. This reduced the modeling 

efforts to a great extent; wherein the simulation model was built at a ‘click of a button’. 

The algorithm that was developed to detect the bottleneck in any serial production system 

and give the simulation analyst a direction in an effort to increase throughput with the 

consideration of economics was tested and verified under different conditions.  

It was found that out of the forty scenarios that were analyzed in this thesis, there 

were only twenty-five cases in which the highest utilized machine was actually the 

bottleneck resource (both Bottleneck Index and Highest Utilized Machine Methods 

detected the same bottleneck in these twenty-five cases). We use the mitigation procedure 

developed in this thesis for bottlenecks detected by Bottleneck Index and Highest 
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Utilized Machine Methods. For the fifteen cases in which the methods identified different 

bottlenecks, our technique of detecting the bottleneck and mitigating the same yielded 

better throughput. This difference in throughput between the lines after mitigation gives 

us evidence that our method of identifying the bottleneck of a serial production system is 

more accurate than the traditional method. We analyzed the resource state graphs of these 

fifteen cases to find out the conditions in which Bottleneck Index Method chose a 

different resource rather than choosing the one with the highest utilization. It is listed as 

follows: 

• It occurs only when there are some machines in the line with very similar 

processing times as that of the highest utilized machine and 

• In the absence of station breakdown (failure and exhaust) both the methods 

always pick the same bottleneck resource  

From the fifteen cases in which the methods identified different bottlenecks, it 

was found that on an average there were around 2.93 resources in those systems whose 

average percentage of utilization was 2.27% lesser than that of the highest utilized 

machine. A mathematical explanation to why both methods pick the same bottleneck 

resource in the absence of breakdowns is that our method detects the bottleneck based on 

the time a resource spends in idle and blocked states. A machine can exist only in three 

states namely, busy, idle and blocked in the absence of breakdowns. The % of time a 

resource spends in busy state is dictated by its processing time. So mathematically, a 

machine with highest utilization in the absence of station breakdowns will spend the least 

% of time in idle and blocked states. But in the presence of machine breakdowns, factors 

like operator interference affect the % of time spent by a resource in idle and blocked 
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states and our method might choose a different resource other than the highest utilized 

machine to be the bottleneck resource.
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

This thesis dealt with the problem of dynamic generation of simulation models 

and analysis of serial production systems which is characterized by capacitated buffers, 

stochastic processing times, unreliable machines, rework loops, maintenance and operator 

issues. This is a significant issue in the field of manufacturing where the decision makers 

are often faced with the task of accessing the throughput of a production line, thereby 

allocating resources and buffers accordingly to meet the annual requirement of the plant. 

This process has to be carried out in relatively short time with no compromises in 

accuracy of the estimates.  

In this thesis, a VBA project was undertaken in an effort to automate the process 

of simulation model building, which will enable decision makers with working 

knowledge of discrete event simulation to carryout case studies with minimal efforts. The 

result of this VBA project was an Excel template, where in the analyst could specify the 

processing parameters for each station and the simulation model of the line will be 

dynamically generated in Arena 7.01. This reduced the simulation modeling efforts to a 

great extent. 

We have developed a technique (Bottleneck Index Method) to detect the 

bottleneck resource in any serial production system by effectively using the resource state 

statistics, which records the % of time spent by a station in the seven different states 
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discussed in this thesis. This technique of ours is compared to that of the traditional 

bottleneck detection method, where in the resource with the highest utilization is 

considered to be the bottleneck. We analyze ten station lines and fifty station lines with 

low and high variability in processing parameters. The production lines analyzed in this 

thesis can be thus be categorized into: i) Long line with low variability in processing 

parameters , ii) Long line with high variability in  processing parameters, iii) Short line 

with low variability in processing parameters and iv) Short line with high variability in 

processing parameters. We have conducted ten sets of experiments for each category. As 

a part of this thesis, we have developed a procedure to curb the bottleneck of a system 

after the detection of the same. We use this mitigation procedure for bottlenecks detected 

by Bottleneck Index and Highest Machine Utilization Methods. Out of the forty cases 

that were analyzed, both Bottleneck Index and Highest Machine Utilization Methods 

detected the same bottleneck machine in twenty-five cases. For the rest of the cases 

(which is about 37.5%) it was shown that our technique of detecting the bottleneck and 

mitigating the same yielded better throughput. The ability to rightly identify the 

bottleneck is demonstrated in this thesis. It was also shown in the case studies that the 

throughput of a system could be improved appreciably by proper adaptation of the 

mitigation techniques suggested in this thesis. Any marginal increase in the throughput of 

a line could result in saving millions of dollars. Proper application of the proposed 

methodologies will help management achieve the desired production rate with minimal 

outlay. 

Buffer allocation is an area which needs further investigation. Currently, the 

algorithm proposed in this thesis analyses output from a simulation model and may 
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suggest changes like adding buffers to a resource. But there is no quantification of the 

size of the buffer that is to be added. The analyst has to guess estimate this value by 

looking at the % of time that resource has spent on different states. If the buffers added 

are surplus or deficit then there is a chance that the study will undergo an extra iteration. 

Another algorithm which will quantify the amount of buffers to be added can be 

developed and it can be integrated into the techniques proposed in this thesis. This way 

time taken for the complete study can be further reduced. 

Another potential extension to this research will be to make the simulation model 

accessible through the World Wide Web where in the user can build the model, run the 

same and analyze the system from a  remote server. This can be accomplished with the 

help of XML. Standards like B2MML can be used in developing the schemas for XML; 

thereby the sender and receiver will have the same expectations of the data that is being 

shared.
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APPENDIX I 

RESOURCE STATE GRAPHS FOR LL-CONFIGURATION
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APPENDIX II 

RESOURCE STATE GRAPHS FOR LH-CONFIGURATION
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APPENDIX III 

RESOURCE STATE GRAPHS FOR SL-CONFIGURATION
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APPENDIX IV 

RESOURCE STATE GRAPHS FOR SH-CONFIGURATION
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