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Certificate of Approval:

Jack B. Brown
Professor
Department of Mathematics

Krystyna Kuperberg, Chair
Professor
Department of Mathematics

Michel Smith
Professor
Department of Mathematics

Stewart Baldwin
Professor
Department of Mathematics

Stephen L. McFarland
Acting Dean
Graduate School



An example on movable approximations of a

minimal set in a continuous flow

Petra Šindelářová
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In the present dissertation the study of flows on n-manifolds in particular in

dimension three, e.g., R3, is motivated by the following question. Let A be a compact

invariant set in a flow on X. Does every neighbourhood of A contain a movable

invariant set M containing A? Here, a dynamical system (a flow) is the pair (X, π),

where X, in general, is a manifold, π : X × R → X is continuous, π(x, 0) = x and

π(π(x, t1), t2) = π(x, t1 + t2), for each x ∈ X and each t1, t2 ∈ R. A nonempty set

A ⊂ X is invariant if π(A, t) = A for each t ∈ R. A compact invariant set A ⊂ X is

stable if for every neighbourhood U of A there exists a neighbourhood V of A with

V ⊂ U , such that π(V, t) ⊂ U for all t ≥ 0. The topological notion of movability

(also called the UV-property) is in the sense of K. Borsuk and is closely related to

the notion of stability in dynamics. A continuum M in X is said to be movable if for

every neighbourhood U of M there exists a neighbourhood U0 ⊂ U of M such that
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for every neighbourhood W of M there is a continuous map ϕ : U0×I → U satisfying

the conditions ϕ(x, 0) = x and ϕ(x, 1) ∈ W for every point x ∈ U0. It is known that

a stable solenoid (an intersection of a nested sequence of solid tori positioned one

inside another in some regular way) in a flow on a 3-manifold has approximating

periodic orbits in each of its neighbourhoods. The solenoid with the approximating

orbits form a movable set, although the solenoid is not movable. Not many such

examples are known. The main part of the dissertation consists of constructing

an example in R3 which uses Denjoy–like invariant approximating sets instead of

periodic orbits. This gives a partial answer to the above question. The construction

involves both, the adding machines and Denjoy maps, and the suspension of specially

defined Cantor set homeomorphisms.
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Chapter 1

Introduction

The main subject of this dissertation is the study of continuous dynamical sys-

tems. The work is inspired by an open problem stated for invariant sets: Let A

be a compact invariant set in a flow on an n–dimensional manifold. Does every

neighbourhood of A contain a movable compact invariant set containing A?

It is known that the answer is positive for a stable set called a solenoid in

dimension three. Such an example appeared in a paper by H. Bell and K. R. Meyer

[1]. In their constructions the resulting stable solenoid has periodic orbits in every of

its neighbourhoods. By a modification of this example they also proved that analogue

result for a stable solenoid in higher dimension does not hold. Later M. Kulczycki

showed in his dissertation [10], that it is possible to drop the stability assumption but

only under some extra requirements on the flow. Another result by E. S. Thomas,

Jr. in [18] guarantees that a minimal solenoid in dimension three is never an isolated

invariant set, i.e., in every neighbourhood of the solenoid there are other invariant

sets.

The author of this dissertation gives a partial answer to the above question by

constructing an example in dimension three and by considering a set that is not

stable and is not a solenoid. To the knowledge of the author, such a case has not

been published yet.
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In Chapter 2, first the definition of a dynamical system or what is also called a

continuous flow is introduced. Definitions of a minimal set and almost periodicity are

reviewed next. Later we recall the key notions of our study, in particular definitions

of special minimal sets, solenoids, and Denjoy continua, and we summarize their

basic properties. For the construction of these sets, we first need to discuss a map of

a Cantor set that is known as the adding machine, and describe a process of blowing

up orbits, that was first published in a paper by A. Denjoy in [7]. Then the notion

of suspension is established. It is a continuous dynamical system obtained from a

discrete dynamical system. All these objects and maps constitute a significant part

of the example constructed in the last chapter of this dissertation. They have been

a popular field of study of many authors.

Chapter 3 starts with introducing a dynamical system (a suspension) on a set Ω.

The set Ω is minimal under the considered flow. The main original results provided

in this chapter are the following.

The first two theorems describe the set Ω.

Theorem 1.1 The set Ω is not a solenoid.

Theorem 1.2 The curve Ω is not movable.

The next two theorems show that the set Ω is an invariant set in a flow in

dimension three. Moreover, in every neighbourhood of Ω there is a compact invariant

set that we call Denjoy–like. These Denjoy–like sets are proved to be movable. The

set Ω cannot have approximating periodic orbits in each of its neighbourhoods as in

the case of a stable solenoid in [1]. This is due to the fact that the flow defined on

Ω is not almost periodic.

2



Theorem 1.3 There exists an embedding of Ω in a mapping torus in R3 with the

property that Ω is approximated by invariant Denjoy–like sets Dn, n ∈ N.

Theorem 1.4 Every Denjoy–like set Dn, n ∈ N, is movable.

Finally we prove that Ω together with any sequence of its approximating movable

sets is a movable set.

Theorem 1.5 Let D′ =
⋃∞

n=k Dn. For any k ∈ N, the union of Ω and D′ is movable.

To complete the description of the properties of Ω and the approximating sets

Dn, n ∈ N, we show that none of those sets is stable. It is a corollary of a result by

J. Buescu and I. Stewart [6].

Theorem 1.6 The set Ω and the sets Dn, n ∈ N, are not stable.

Although the sets Ω and Dn, n ∈ N, are not stable as the sets in the example

by H. Bell and K. R. Meyer, and moreover Ω is not movable, the union of Ω and D′

is movable. Therefore, this case still yields a kind of “stability”.
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Chapter 2

Minimal sets

2.1 Preliminaries

In this section, we introduce the definition of a dynamical system that is some-

times also called a continuous flow, the definition of a minimal set, and we establish

the notation.

Throughout the paper we usually consider metric spaces unless stated otherwise.

The symbol R is the the real line, Z and N stand for all integer and all natural

numbers, respectively. We denote by I the compact unit interval [0, 1]. Let A

denotes the closure of a set A. By a neighbourhood of a set A we understand an

open set containing A.

A dynamical system on X is the triplet (X, R, π) where π is a continuous map

(also called a continuous flow) from the product space X × R into the space X

satisfying π(x, 0) = x and π(π(x, t1), t2) = π(x, t1+t2) for every x ∈ X and t1, t2 ∈ R.

The phase map π determines two other maps when one of the variables x or t

is fixed. For a fixed t ∈ R, the map πt : X → X is defined by πt(x) = π(x, t) and is

called a motion through x. For each t ∈ R, πt is a homeomorphism of X onto itself

(see [2]). For a fixed x ∈ X, the map πx : R → X is given by πx(t) = π(x, t).

A discrete dynamical system on X is the triplet (X, Z, f) where f is a continuous

map of X into itself. The dynamics is defined through iterations of f . The n–th
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iterate of f is the map fn = f ◦ fn−1, n ∈ N. The negative iterates are given by

f−n = (fn)−1, n ∈ N. We use the notation f 0 = f .

The following definitions concern dynamical systems (X, R, π). The reader can

easily reformulate all the notions for the discrete case. The orbit of a point x ∈ X is

the set {πt(x) | t ∈ R} and the positive half orbit is the set {πt(x) | t ≥ 0}. A point

x ∈ X is said to be a fixed point (or a critical point) if π(x, t) = x for all t ∈ R. A

point x ∈ X is periodic if there is a T 6= 0 such that π(x, t) = π(x, t+T ) for all t ∈ R.

In this case the smallest such number T ∈ R will be called a period of x. A nonempty

set A ⊂ X is called invariant whenever π(x, t) ∈ A for all x ∈ A and t ∈ R. A closed

invariant set is minimal if it contains no proper closed invariant subset. It is easy to

see that if A is compact, then A is minimal if and only if the positive half orbit of

every point in A is dense in A. The simplest example of minimal sets are the orbits

of fixed or periodic points.

Minimal sets can also arise in the following way. Suppose (X, d) is a metric space.

A point x ∈ X is said to be almost periodic (as defined in [15] on page 384) if, given

ε > 0, there is a set E ⊆ R which is relatively dense such that d(πt(x), πt+τ (x)) < ε

for all τ ∈ E and t ∈ R. A set E ⊆ R is relatively dense means that for some number

L > 0 every interval in R of length L contains a point of E. If x is almost periodic

and the closure Γ of the orbit of x is compact and metrizable, then Γ is a minimal

set (see [15], page 385). One–dimensional minimal sets of this type are described in

the next section.

A compact invariant set A ⊂ X is stable if for every neighbourhood U of A there

exists a neighbourhood V of A with V ⊂ U , such that π(V, t) ⊂ U for all t ≥ 0.
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2.2 Solenoidal and Denjoy minimal sets

The main construction of this paper involves solenoids and Denjoy continua.

They are defined in this section. We also introduce some other well known objects

and recount their basic properties. We use similar background as it can be found in

[1], [6] and [17].

2.2.1 Adding machines and solenoids

First we recall the abstract definition, via symbolic dynamics, of the class of

maps of the Cantor set called adding machines. Let k = {kn}n≥1 be a sequence of

integers with kn > 1 for all n ∈ N. Let Σk =
∏∞

n=1{0, 1, 2, . . . , kn−1} be the space of

all one–sided infinite sequences i = {in}n≥1 such that 0 ≤ in < kn with the product

topology. One can see that Σk is metrizable and the metric

d(i, j) =
∞∑

n=1

|in − jn|
kn

n

is compatible with this topology.

The adding machine with base k = (k1, k2, . . .) is the map

αk : Σk → Σk

defined by αk(. . . , iq, . . .) = (. . . , jq, . . .) in the following way

• if iq = kq − 1 for all q then jq = 0 for all q, i.e. αk(. . . , iq, . . .) = (0, 0, . . .);

or
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• if the first index q with iq < kq − 1 is r then jq = 0 for 1 ≤ q < r, jr = ir + 1,

and iq = jq for q > r, i.e. αk(. . . , iq, . . .) = (0, 0, . . . , ir + 1, ir+1, ir+2, . . .).

A familiar description of this operation is “add one and carry” because roughly

speaking we add one to the first term of the sequence, and if the result is zero we

add one to the next term, and so on. It is also well–known that αk is a minimal

homeomorphism of Σk (cf., e.g., [6], page 277, [1], page 411–2, or [12], pages 242–3).

Let us now construct a Cantor set by the following common algorithm. It is

especially known for the ternary (or so called middle–third) Cantor set which can be

seen as all members in the compact unit interval I = [0, 1] with ternary expansion

using only digits 0 and 2.

Take the interval I and let k = (k1, k2, . . .) be as previously. In the first step

remove from I a collection of k1 − 1 nonempty, open intervals with pairwise disjoint

closure and not containing 0 or 1 as an endpoint. Moreover, the intervals that are

removed and that remain must all have the same length. Inductively, at the n–th

step remove from each of the remaining intervals kn − 1 intervals in the same way

and denote the remaining collection of closed intervals by In. At each step we obtain

a compact set that is a subset of the compact set resulting from the previous step.

As a limit of this process we take the intersection of this nested sequence of compact

sets and denote it by C, i.e. C =
⋂∞

n=1 In. It is well known that C is a non–empty,

perfect, totally disconnected compact metric space called the Cantor set.

We can easily see that the space Σk is homeomorphic to such a Cantor set. In-

deed, any point c ∈ C is “coded” as follows to obtain a point i ∈ Σk. If c lies in
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the (i1 +1)–th interval from the left of the collection of intervals I1 (let’s denote this

interval by I i1
1 ) then the first coordinate of i is i1. Inductively, in the n–th step, if c

lies in the (in + 1)–th interval from the left of the collection of intervals I
in−1

n−1 (let’s

denote this interval by I in
n ) then the n–th coordinate of i is in.

Adding machines occur in a natural way in the study of solenoids. To see it, we

need to introduce some auxiliary definitions.

An inverse sequence {Xi, f
j
i } of topological groups is a sequence of topological

groups {Xi}i∈N together with a collection of continuous homomorphisms {f j
i : Xj →

Xi}i≤j satisfying

• f i
i : Xi → Xi is the identity for all i ∈ N; and

• fk
i = f j

i ◦ fk
j for all i ≤ j ≤ k, i, j, k ∈ N.

Notice, that it is sufficient to define f i+1
i (called bonding maps) for each i ∈ N

to determine all f j
i by the second part above.

The inverse limit of an inverse sequence {Xi, f
j
i } is the topological group

X = lim
←
{Xi, f

j
i } = {(x1, x2, . . .) ∈

∏
i∈N

Xi | xi = f i+1
i (xi+1) for all i ∈ N}

with the topology inherited from the product
∏

i∈N Xi with the product topology.

A solenoid can be defined in several ways. The presented definitions disclose

homeomorphic objects, we omit the technical proof.
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For example, by a solenoid we mean a space that is homeomorphic to the inverse

limit of a sequence of bonding maps f i+1
i : S1 → S1 given by f i+1

i (z) = zni , where

S1 is the unit circle in the complex plane and ni ∈ {2, 3, . . .}.

Geometrically, a solenoid is the intersection of a nested sequence of solid tori in

R3 such that each torus is positioned in a specific way inside the previous one as on

the picture below.

Before we discuss another way to construct a solenoid, we need the definition of

a suspension on a mapping torus.

Let A be a set and h : A → A a homeomorphism. The mapping torus TA of the

homeomorphism h is the set obtained by the following identification. Consider the

set A × I. For each x ∈ A we identify the point (x, 1) with the point (h(x), 0). We

9



define a dynamical system on TA by πTA
((x, 0), t) = (x, t) for each x ∈ A and each

t ∈ [0, 1] and extend πTA
in a unique way to a dynamical system on the whole of TA

by the equivalence relation ∼

(x, t) ∼ (y, s) if and only if

(x = y and t = s) or

(t = 1, s = 0 and h(x) = y) or

(t = 0, s = 1 and h(y) = x).

A dynamical system defined as above for any homeomorphism h of an arbitrary

set is called a suspension of h on the mapping torus TA (see also [17], Appendix).

Now we are ready to construct a solenoid Σ. Consider the space S× [0, 1], where

S is a Cantor set, and a homeomorphism hαk
: S → S that is the adding machine

as defined above. Denote by Σ the mapping torus of the homeomorphism involved

and by πΣ the dynamical system on Σ that is given by the suspension of h on the

mapping torus Σ.

Because the orbit of every point in any adding machine is dense, the whole Σ is

minimal under πΣ.

To define a dynamical system on R3 with a subspace homeomorphic to a solenoid

as a minimal set see Section 2 in [1].

10



2.2.2 Irrational rotation, blowing up orbits, and Denjoy continuum

This section is devoted to a construction of another useful minimal set. We start

with a rotation through the angle 2πθ of the unit circle rθ : S1 → S1, where θ is

an irrational number. We will change this map and obtain a new homeomorphism

hrθ
with a minimal set which is neither a single closed orbit, nor the whole space.

Let us consider the circle S1 to be obtained from the interval [0, 1] by identifying its

endpoints. We choose a point x0 ∈ S1, and at each point xn = rn
θ (x0) of its orbit

we insert a small closed interval In into the circle. To fit again into a new circle

of circumference 1 + a denoted by S1
a, the intervals In have to satisfy the condition

a =
∑

n∈Z length(In) < ∞. There is a continuous onto map g : S1
a → S1 which

collapses each interval In ⊂ S1
a to the corresponding point xn ∈ S1 and is one–to–one

otherwise. We can now define the new map hrθ
: S1

a → S1
a, which is topologically

semi–conjugate to rθ under a topological semi–conjugacy g, i.e.

g ◦ hrθ
= rθ ◦ g (2.1)

and g is continuous and onto by definition. This semi–conjugacy determines hrθ
at

all points at which g is one–to–one. We can define g at the remaining points such

that hrθ
is a homeomorphism. Moreover, it is possible to obtain a C1 diffeomorphism

hrθ
, for details see [17]. It is an easy exercise to show that the orbits of rθ are mapped

onto orbits of hrθ
by means of a topological semi–conjugacy g, thus “the dynamics

is preserved”.

The irrationality of θ implies that rθ and, by 2.1, also hrθ
have no periodic points.

Hence, the compact invariant set S1
a \ Int

⋃
n∈ZIn contains a minimal set (under hrθ

)

11



D which is clearly a Cantor set and is neither a single closed orbit, nor the whole

space S1
a.

Remark 2.1 Note that to be a topological conjugacy the map g has to be a home-

omorphism.

Take again the suspension π∆ of hrθ
(restricted to D) on the mapping torus ∆

obtained from D. The whole ∆ is minimal under π∆. The set ∆ is referred to as a

Denjoy continuum. The process of inserting intervals is called “blowing up orbits”.

The construction of π∆ was first described by A. Denjoy in [7], page 352–5. For

details of this construction see [17], Appendix or [14].
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Chapter 3

An example of a suspension on a mapping torus Ω

We construct the following example of a suspension. Suppose hαk
: S → S,

hrθ
: D → D, πΣ and π∆ are as in the previous Section 2.2.

Take the product hαk
× hrθ

and denote it by F : S ×D → S ×D. Let Ω be the

mapping torus of F and consider the suspension πΩ of F on Ω.

In this chapter we will show that Ω is not a solenoid (and that F is not an

adding machine) and that Ω is not a movable set. Then we will embed Ω in R3 and

we will discuss the properties of this embedding. We will also state that Ω and its

approximating sets are not stable.

3.1 The set Ω is not a solenoid

Using the fact that π∆ is not almost periodic for any point we will show that Ω

is not a solenoid.

Lemma 3.1 Every point is almost periodic for πΣ.

Proof. The proof can be found in [15]. It also follows from [6], page 277. 2

The proof of the next lemma uses Theorem 1 by E. S. Thomas, Jr. [18].

13



Theorem 3.2 (Thomas) If Γ is a compact 1–dimensional metric space which is

minimal under some flow and if some point of Γ is almost periodic, then Γ is a

solenoid or a circle.

Lemma 3.3 There are no almost periodic points for π∆.

Proof. Suppose there exits an almost periodic of π∆. Then by Theorem 3.2 the set

∆ is a solenoid or a circle. But it is clearly not a circle and, by [6] Remark 7.9,

hrθ
: D → D is not an adding machine (and not topologically conjugate to one).

Contradiction. 2

Proposition 3.4 There are no almost periodic points for πΩ. Hence, F is not (topo-

logically conjugate to) an adding machine and Ω is not a solenoid.

Proof. Let ((x1, y1), t1), ((x2, y2), t2) ∈ Ω. We denote and define a metric on Ω by

dΩ(((x1, y1), t1), ((x2, y2), t2)) = dΣ((x1, t1), (x2, t2)) + d∆((y1, t1), (y2, t2)), (3.1)

where dΣ and d∆ is a metric on Σ, and on ∆, respectively.

An easy check verifies that dΩ is a well defined metric on Ω. Indeed, let

dΩ(((x1, y1), t1), ((x2, y2), t2)) = 0. Then by (3.1) and the fact that both dΣ and d∆ are

metrics, we have dΣ = d∆ = 0. It means that (x1, t1) = (x2, t2) and (y1, t1) = (y2, t2).

Consequently, x1 = x2, y1 = y2 and t1 = t2, i.e. ((x1, y1), t1) = ((x2, y2), t2). The

converse is trivial. This completes the proof of positivity of the metric dΩ. Symme-

try and triangular inequality are immediate using (3.1) and symmetry and triangular

inequality of dΣ and d∆.
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A more natural way to define a metric on Ω would be to establish a general

metric for any suspension. Roughly, such a metric would reflect naturally the length

of the orbit of a point in the direction of the flow. But since we want to avoid

technicalities, the presented metric is more convenient for our purpose.

We need to introduce projections p1 and p2 of Ω on Σ and on ∆, respectively.

These projections p1 : Ω → Σ and p2 : Ω → ∆ are defined by p1(ω) = σ and

p2(ω) = δ where ω = ((x, y), t), σ = (x, t) and δ = (y, t). The maps p1 and p2

are well defined continuous, surjective maps preserving the suspension. Indeed, let

((x1, y1), t1), ((x2, y2), t2) ∈ Ω and πΩ(((x1, y1), t1), t) = ((x2, y2), t2) for some t ∈ R.

By definition of suspension, it means that F (t1+t) div 1(x1, y1) = (x2, y2) and t2 = (t1+

t) mod 1, where t1 +t = (t1 +t) div 1+(t1 +t) mod 1. Recall that F = hαk
×hrθ

. To

prove that the projections are well defined we must prove that πΣ(p1((x1, y1), t1), t) =

p1((x2, y2), t2), and similarly for p2. We have πΣ(p1((x1, y1), t1), t) = πΣ((x1, t1), t) =

(x2, t2) = p1((x2, y2), t2), where again, by the defition of suspension, h
(t1+t) div 1
αk (x1) =

(x2) and t2 = (t1 + t) mod 1. The proof for p2 is analogous. Surjectivity and

continuity are obvious.

Suppose ω ∈ Ω is almost periodic with respect to πΩ. Let ε > 0. Then by

definition, there is a relatively dense set E ⊂ R such that dΩ(πt
Ω(ω), πt+τ

Ω (ω)) < ε for

every τ ∈ E and every t ∈ R. Since πΩ, πΣ and π∆ are suspensions and by (3.1) we

have

dΩ(πt
Ω(ω), πt+τ

Ω (ω)) = dΣ(πt
Σ(σ), πt+τ

Σ (σ)) + d∆(πt
∆(δ), πt+τ

∆ (δ)) < ε.
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Hence, d∆(πt
∆(δ), πt+τ

∆ (δ)) < ε. But it is not possible by Lemma 3.3. 2

The fact that the flow πΩ on Ω is not almost periodic implies that Ω cannot

have approximating orbits in each of its neighbourhoods as in the case of a stable

solenoid in [1].

Remark 3.5 Let f be a homeomorphism defined on a Cantor set that is minimal

under f . We have proved that if the product of an adding machine with the function f

is (topologically conjugate to) an adding machine, then f must also be (topologically

conjugate to) an adding machine. The reader can also convince himself, that a

product of two adding machines is (topologically conjugate to) an adding machine.

But we will not need it in this dissertation.

3.2 The set Ω is not movable

As a corollary of results by K. Borsuk, J. Krasinkiewicz and A. Trybulec, we

will state that Ω is not movable.

The notion of movability and n–movability was introduced by K. Borsuk (see

[4] and [5]) and is closely related to stability in dynamical systems.

Definition 3.6 A set which is both compact and connected is called a continuum.

Definition 3.7 A continuous map r : X → A is said to be a retraction of X to A if

A ⊂ X and r(A) = A. In this case, A is said to be a retract of X. A space Y is said

to be an absolute retract (abbreviated AR), provided that for each homeomorphism

h mapping Y onto a closed subset h(Y ) of a space X the set h(Y ) is a retract of
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X. A space Y is called an absolute neighbourhood retract (abbreviated ANR), if for

every homeomorphism h mapping Y onto a closed subset of a space X there is a

neighbourhood U of the set h(Y ) in the space X such that h(Y ) is a retract of U .

Definition 3.8 Let X be an ANR. A continuum M ⊂ X is said to be movable in X

if for every neighbourhood U of M there exists a neighbourhood U0 ⊂ U of M such

that for every neighbourhood W of M there is a continuous map ϕ : U0 × I → U

satisfying the condition ϕ(x, 0) = x and ϕ(x, 1) ∈ W for every point x ∈ U0.

In several places we will need a result by Borsuk (see [4], page 142) about

independence of movability on the embedding.

Theorem 3.9 (Borsuk) Movability is a topological property. Thus, a continuum is

movable if it is homeomorphic to a continuum movable in the previous sense.

Definition 3.10 By a curve we understand any 1–dimensional continuum.

The following theorem combines Theorem 4.1 in [9] (see also [11]) with a theorem

in [19].

Theorem 3.11 (Krasinkiewicz, Trybulec) If f is a continuous map from a mov-

able curve X onto a curve Y , then Y is movable.

The proof of the next theorem appears in [4].

Theorem 3.12 (Borsuk) If Γ is a solenoid then Γ is not movable.

Corollary 3.13 The curve Ω is not movable.
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Proof. Let Σ is a solenoid given by a mapping torus obtained from a Cantor set S as

presented in Section 2.2.1. Suppose that the Cantor set S here is the same one that

is used in construction of Ω. Notice that both, Σ and Ω, are curves. Let p1 : Ω → Σ

be a function defined by p1((x, y), t) = (x, t) (see the proof of Proposition 3.4). It is

a continuous well–defined map of Ω onto Σ, therefore Ω is not movable by Theorems

3.12 and 3.11. 2

3.3 Embedding of Ω in R3

In this section, we will first show that Ω can be embedded in a flow in R3 in such

a way that it is approximated by Denjoy–like sets that are movable. We construct

them as a mapping torus of the product of the Denjoy map hrθ
on D and a map that

constitutes just of one periodic orbit O of a point in a discrete dynamical system.

These Denjoy–like sets (orbits) are “stretched along” the orbits of the points from

Ω, i.e. for every point in Ω we can find a point of the same Denjoy–like set that is as

close to the selected point in Ω as we like if the Denjoy–like set is chosen sufficiently

long (in the sense that the periodic orbit O is sufficiently long) and sufficiently close

to Ω in the sense of Hausdorff metric.

Then we will prove that although Ω is not movable, its union with the approxi-

mating Denjoy–like sets is movable. We will complete the description by a corollary

giving that none of the sets Ω and its approximating Denjoy–like sets are stable.

For the formulation of the theorems of this section we need some auxiliary

definitions.
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Definition 3.14 Let O be a periodic orbit in a discrete dynamical system. Consider

the product D × O with the product of the corresponding maps. We say that D is

a Denjoy–like set if it is the mapping torus of this product.

Definition 3.15 Let M be a complete metric space with a metric d, and CM be the

collection of all compact subsets of M . The Hausdorff metric dH on CM is defined

as follows. For A, B ∈ CM ,

dH = sup{d(a, B), d(b, A) : a ∈ A, b ∈ B},

where

d(b, A) = inf{d(b, a) : a ∈ A}

and similarly for d(a, B).

Definition 3.16 We say that Ω is approximated by Denjoy–like sets Dn, n ∈ N,

if every for every ε > 0 there is a Denjoy–like set Dj, for some j ∈ N, such that

dH(Ω,Dj) < ε.

The sets S and D can be embedded in R and therefore Ω and the sets Dn, n ∈ N,

can be embedded in R3. Let the metric d needed in the previous definition be the

Euclidean metric of R3.

Before we state the main Theorem 3.18 of this section, we need the following

theorem that is proved, e.g., in [13] in Chapter 12 and in more general settings also

in Chapter 13.
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Theorem 3.17 Let C1 and C2 be Cantor sets in R2 and h : C1 → C2 a homeomor-

phism. Then there exists an orientation preserving homeomorphism H : R2 → R2

such that H|C1 = h.

Theorem 3.18 There exists an embedding of Ω in a mapping torus in R3 with the

property that Ω is approximated by invariant Denjoy–like sets Dn, n ∈ N.

Proof. We can consider the Cantor set S being embedded in R, such coding is

described in Section 2.2.1. We approximate S by periodic orbits On, n ∈ N, in R,

in the following way. Let On = {on
1 , o

n
2 , . . . , o

n
mn
}, where the last lower index mn =

(ki − 1) · ki−1 · ki−2 · . . . · k2 · k1 with the notation from the algorithm in Section 2.2.1.

The set On is a subset of the union of the intervals that are removed at i–th step

(there are exactly m intervals removed at this step), every point from On lying in a

different of these intervals. Hence, the sets On, n ∈ N are pairwise disjoint.

It means that there is a homeomorphism h′αk
: S ∪

⋃∞
n=1 On → S ∪

⋃∞
n=1 On

such that h′αk |S = hαk
, and h′αk |On

= On, for each n. Then (S ∪
⋃∞

n=1 On) × D is

a Cantor set that can be embedded in R2. By Lemma 3.17, h′αk
× hrθ

has an ex-

tension F ′ : R2 → R2 which is also a homeomorphism. We notice that F ′ is also

an extension of F . Therefore, Ω is a subset of the mapping torus Ω′ of F ′, and the

suspension πΩ′ of F ′ on Ω′ is an extension of πΩ. The verification of the fact that

Ω is approximated by pairwise disjoint invariant Denjoy–like sets Dn is immediate

from the construction. Finally, we remark that it is possible to extend the flow πΩ′

extended onto the whole R3 so that the properties of the embedding mentioned in

this theorem are preserved. 2
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The next result by J. Krasinkiewicz [9] and also R. D. McMillan [11] generalize a

theorem of K. Borsuk [4] on movability of plane continua. By a surface we understand

a compact two dimensional manifold.

Theorem 3.19 (Krasinkiewicz, McMillan) Every continuum that can be embed-

ded in a surface is movable.

In the following, the Denjoy–like sets Dn, n ∈ N, are the sets constructed in the

proof of Theorem 3.18.

Theorem 3.20 Every Denjoy–like set Dn, n ∈ N, is movable.

Proof. We construct an embedding of Dn in a surface. Let hrθ
: S1

a → S1
a be as in

Section 2.2.2. Consider n copies of S1
a, i.e. the product S1

a×On, where On is a periodic

orbit as in the proof of Theorem 3.18. We define a map g : S1
a × On → S1

a × On to

be the product of the corresponding maps on S1
a and On, respectively. The mapping

torus of the homeomorphism g is a surface homeomorphic to a surface of a torus

which is wrapped n–times. It is easy to see that this surface is homeomorphic to Dn.

By Theorem 3.19, Dn is movable. 2

The following definitions and Theorem 3.22 are necessary for the proof of The-

orem 3.24.

Definition 3.21 Let X and Y be topological spaces and let f0 and f1 be continuous

maps of X to Y . If there is a continuous map h : X×I → Y such that h(x, i) = fi(x)

for i = 0, 1, then we say that the maps f0 and f1 are homotopic. The map h is called

a homotopy between f0 and f1.
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Theorem 3.22 (Borsuk’s homotopy extension theorem) Let M be a closed

subspace of a metrizable space X and f0 and f1 two homotopic maps of M to an

ANR. Then if f0 is continuously extendable over X, then f1 is also continuously

extendable over X. Moreover, for every extension of f0 one can find an extension of

f1 homotopic to it.

The proof of Borsuk’s homotopy extension theorem can be found, e.g., in [3].

Definition 3.23 The map pn : Ω → Dn, n ∈ N, defined bellow is called the n–th

projection of Ω on Dn. For any ω = ((x, y), t) ∈ Ω ⊂ R3 with x ∈ S, y ∈ D and

t ∈ [0, 1], the n–th projection is defined by pn(ω) = ((on
l , y), t) . See the proof of

Theorem 3.18 for the construction of periodic points on
l . The index l ∈ {1, 2, . . . ,mn}

is such that the point x = (i1, i2, . . . , in, . . .) ∈ S is mapped by pn to the closest point

on
l ∈ I

in−1

n−1 on the right of x, or if there is no such point on the right then to the left.

The intervals I
in−1

n−1 are described in Section 2.2.1. By construction, pn is continuous.

Similarly are defined continuous projection of Dq on Dn, q > n. Let pq
n : Dq → Dn

be such that pq
n((oq

k, y), t) = ((on
l , y), t). For any index k ∈ {1, 2, . . . ,mq} the index

l ∈ {1, 2, . . . ,mn} is such that the point oq
k is mapped by pq

n to the closest point on
l

on the right of oq
k, or if there is no such point on the right then to the left. Therefore,

for any q > n,

pq
n ◦ pq = pn.

Theorem 3.24 Let D′ =
⋃∞

n=1Dn. The union of Ω and D′ is movable.

Proof. By definition of movability, we have to prove the following statement. For

every neighbourhood U of Ω ∪ D′ there is a neighbourhood U0 ⊂ U of Ω ∪ D′ such
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that for each neighbourhood W of Ω∪D′, there is a continuous map ϕ satisfying the

conditions

ϕ : U0 × I → U,ϕ(x, 0) = x and ϕ(x, 1) ∈ W for every point x ∈ U0. (3.2)

We say in this case that U0 can be deformed to W within U .

Actually, we will prove a stronger statement: For every neighbourhood U of

Ω ∪ D′ there is a number N ∈ N and a neighbourhood U0 ⊂ U of Ω ∪ D′ such that

for every neighbourhood W of
⋃N

j=1Dj, there is a continuous map ϕ satisfying the

conditions (3.2).

For a given neighbourhood U of Ω ∪ D′ we will construct the neighbourhood

U0 of Ω ∪ D′ as a finite union of pairwise disjoint neighbourhoods U1, U2, . . . , UN ,

where Uj is a neighbourhood of Dj, j < N , and UN is a neighbourhood of the set

Ω ∪
⋃∞

j=N Dj. Then we deform each set Uj, 1 ≤ j ≤ N , into W within U .

Let U be a neighbourhood of Ω ∪ D′. Then there is an ε > 0 such that every

open ball with radius at most ε centered at a point from Ω ∪ D′ is contained in U .

By Theorem 3.18, Ω is approximated, in the sense of Hausdorff metric, by pair-

wise disjoint Denjoy–like sets Dn, n ∈ N. Therefore, there exists a number N ′ ∈ N

such that dH(Ω,DN ′) < ε and d(pN ′(ω), ω) < ε, for each ω ∈ Ω. By definition, the

projection pN ′ : Ω → U satisfies pN ′(Ω) = DN ′ . Note that U is an open set in R3, and

therefore an ANR (see [8]). Hence, the identity on Ω is homotopic within U to pN ′ .

The corresponding homotopy h : Ω× I → U is given by h(ω, t) = (1− t)ω + tpN ′(ω),

where h(ω, t) ∈ U for each ω ∈ Ω and t ∈ I. By Borsuk’s homotopy extension
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theorem 3.22 there is an extension PN ′ : U → U of pN ′ homotopic to the identity on

U . Hence, we have an extension H : U × I → U of h.

Theorem 3.20 provides movability of all Denjoy–like sets Dn, n ∈ N. Therefore,

by definition of movability, for every neighbourhood U of Dn there is a neighbourhood

Vn ⊂ U of Dn such that for each neighbourhood W of Dn, there is a map ϕn satisfying

the conditions (3.2) with U0 replaced by Vn and ϕ replaced by ϕn. Because the sets

Ω and Di, i ∈ N, are pairwise disjoint, we can assume that Vn 6= Vm, for n 6= m, and

that Vn ∩ Ω = ∅, for every n ∈ N.

Now we will construct a neighbourhood UN , for some N ∈ N, of Ω ∪
⋃∞

j=N Dj

that is disjoint with every Vj, j < N .

For the rest of the proof, we use the following notation. If f : X × I → X is a

map, we denote by ḟ : X → X the map given by ḟ(x) = f(x, 1), for each x ∈ X.

Let U ′ = U ∩ Ḣ−1(VN ′), and further let UN = U ′ \
⋃

j<N Vj. Then UN is a

neighbourhood of Ω. The index N is given as follows. By Theorem 3.18, UN contains

all Dj, for j ≥ N . Let Uj = Vj, for j < N . Clearly, the open sets U1, U2, . . . , UN are

pairwise disjoint. We put U0 =
⋃N

j=1 Uj.

Let W be any neighbourhood of Ω∪D′. Finally, we define the map ϕ satisfying

(3.2). Let ϕ|Uj×I = ϕj, for each j < N . It remains to define the map ϕ|UN×I . Indeed,

let ϕ̇|UN
= ϕ̇N ′ ◦ Ḣ|UN

.

Since the sets U1, U2, . . . , UN are pairwise disjoint, ϕ is a well–defined continuous

map. 2
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Remark 3.25 The author of this dissertation is convinced that the following stron-

ger statement is not true. For every neighbourhood U of Ω ∪ D′ there is a neigh-

bourhood U0 ⊂ U of Ω ∪D′ such that there is an N ∈ N and a map ϕ : U0 × I → U

satisfying the condition ϕ(x, 0) = x and ϕ(x, 1) ∈
⋃N

n=1Dn for every point x ∈ U0.

Analogical statement is true for the union of a solenoid and its approximating orbits.

But our proof shows that we can at least deform U0 arbitrarily close, in the Hausdorff

metric, to
⋃N

n=1Dn, for some N ∈ N.

By Definition 3.23, it is easy to proof the following statement about the structure

of the set Ω .

Observation 3.26 The set Ω is the inverse limit of the inverse sequence {Dn, p
q
n},

i.e.,

Ω = lim
←
{Dn, p

q
n}.

Using this observation, the proof of Theorem 3.24 can be generalized in the sense

of the next corollary. In this form it is a generalization of the “star” construction by

R. Overton and J. Segal in [16]. Unlike their theorem, we are not requiring the sets

Xn, n ∈ N , to be absolute neighbourhood retracts.

Corollary 3.27 Let X = lim←{Xn, f
q
n}, where Xn movable for each n ∈ N . Let

X ′ =
⋃∞

n=1 Xn. Then the union of X and X ′ is movable.

We have already discussed in the Introduction that it is known that the answer

to our original questions is positive for a stable solenoid in dimension three. Such

an example appears in a paper by H. Bell and K. R. Meyer [1]. As a corollary of
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a theorem by J. Buescu and I. Stewart in [6], page 278, we obtain that Ω and its

approximating Denjoy–like sets Dn, n ∈ N, are not stable.

To understand the next theorem for discrete dynamical systems, we define tran-

sitivity and some necessary formalisms.

Definition 3.28 Let A be a compact set in a discrete dynamical system on a space

X. We say that A is transitive, if there exists a point in A with dense positive half

orbit.

Let X be a locally compact metric space, and let f : X → X is a continuous

map. Suppose that X has a compact subset A that is transitive under f . Let ∼ be

the equivalence relation on A determined by its connected components, i.e. x ∼ y

if and only if x and y lie in the same component of A. Let K = A/ ∼ with the

identification topology. Then i ◦ f = f̃ ◦ i, where i is the identification map and f̃ is

the map induced by f .

Theorem 3.29 (Buescu, Stewart) Suppose that X is a locally connected, locally

compact metric space, f : X → X is a continuous map, and A is a compact transitive

set. Assume A is stable and has infinitely many components. Then the map f̃ : K →

K is topologically conjugate to an adding machine.

Corollary 3.30 None of the sets Ω and its approximating Denjoy–like sets Dn, n ∈

N, is stable.

Proof. Let F : S ×D → S ×D be the map defined at the beginning of this chapter

and let the maps F ′ and πΩ′ are as in the proof of Theorem 3.18. Since the map

F is not topologically conjugate to an adding machine (see Proposition 3.4), the
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set S × D is not stable with respect to the map F ′. Thus, applying the definition

of stability for flows, Ω is not stable with respect to πΩ′ . The proof is similar for

each Denjoy–like sets Dn, n ∈ N. We use the fact, that F ′|Dn
, for each n ∈ N, is

not topologically conjugate to an adding machine. The proof of this statement is

analogue to the proof of Proposition 3.4. 2

27



Bibliography

[1] H. Bell, K. R. Meyer, Limit periodic functions, adding machines, and solenoids,
J. Dynam. Differential Equations 7 (1995), 409–422.
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