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We consider the problem of scheduling directed a-cyclic task graphs (DAG) on 

heterogeneous distributed processor systems with the twin objectives of minimizing 

finish time and energy consumption. Previous scheduling heuristics have assigned DAGs 

to processors to minimize overall run-time of applications. But due to many new 

applications on embedded systems such as high performance DSP in image processing, 

multimedia, and wireless security, there is a strong need for scheduling algorithms which 

lower energy consumption and yet attain good finish times. 

In this research, we employ dynamic voltage scaling (DVS) within the scheduling 

heuristics to achieve the twin objectives. The processors used can run on different 

discrete operating voltages. Processors can scale down their voltages to slow down in 
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order to reduce energy consumption whenever they idle due to task dependencies.  

Specifically, we combine Decisive Path Scheduling (DPS) and Heterogeneous N-

predecessor Duplication (HNPD) with DVS. Using simulations, we show average energy 

consumption reductions of 40% over DPS and 28% over HNPD.  

The simulations used large number of randomly generated DAGs with various 

characteristics as well as DAGs of real world problems. Energy savings increased with 

increasing number of nodes or increasing Communication to Computation Ratios (CCR) 

whereas it decreased with increasing parallelism (out-degree) or increasing number of 

available processors.  Increasing nodes, increase tasks dependencies and thus idle times.  

When CCR increases, processors are idle longer due to communication between tasks.  

Our algorithms used such idle times to achieve energy savings. An increase in out-degree 

resulted in smaller average energy savings. A larger out-degree allows more processors to 

run in parallel, reducing idle times. 
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CHAPTER 1 

INTRODUCTION 

 

We consider scheduling on heterogeneous distributed computing systems 

interconnected by high-speed networks. Such systems are promising for fast processing 

of computationally intensive applications with diverse computation needs.  

One of the challenges in heterogeneous computing is to develop scheduling 

algorithms that assign the tasks of applications to processors [Reut97]. Therefore, 

researchers have proposed many static, dynamic and even hybrid algorithms to minimize 

execution time of applications running on a heterogeneous system [Iver98][Kwok99] 

[Radu00][Seig97][Topc99][Wang97]. Another challenge facing distributed computing is 

energy consumption [Dong01] 

There are many applications which require both low finish time and low energy 

consumption. Energy consumption is a major issue in many real-time distributed 

embedded systems. Furthermore, most applications running on an energy limited system 

inherently constrain the finish time. Low-cost, low-energy sensor networks composed of 

Smart Dust Mote [Smar06] are examples of such systems. New wireless communication 

systems are expected to evolve using this system. These networks are distributed 

networks operating on energy constraints, also called energy-aware distributed systems 
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(PADS).  Hence there is a need for scheduling algorithms which would effectively reduce 

the overall energy consumed and yet attain the best possible finish time.   

We consider the problem of scheduling a directed a-cyclic task graph (DAG) on a 

heterogeneous distributed processor system with the twin objectives of minimizing finish 

time and energy consumption. The DAG structure is important as it occurs in many 

regular and irregular applications in forms of Cholesky factorization, LU decomposition, 

Gaussian elimination, FFT, Laplace transforms, and instruction level parallelism. Such 

low energy schedules can help run such applications in multi-hop sensor radio networks. 

Traditionally, priority has been on performance, and consequently the supply 

voltage has been set at the maximum allowable level based on device breakdown 

potentials to enable fast operation. However, applications may not require the maximum 

achievable speed at all times. The top energy consumers in a computer system [Kump94] 

are display (68%), disk (20%), and CPU (12%).  There seems little which can be done to 

minimize screen energy-consumption, beyond employing a screen-saver and relying on 

hardware improvements. Disk energy consumption is minimized by spinning down the 

disk when it has been inactive. 

However, in the future, we may well see ubiquitous computing devices with 

neither disks nor conventional displays. For such devices, minimizing the energy 

consumed by the CPU will be critical if the replacements of disks and displays consume 

relatively smaller fractions of total energy. 

A study by Argonne National Laboratory has indicated that a 2.5 petaflop 

supercomputer, made of over a hundred thousand CPUs, will be available by 2010. The 
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study predicts that such a system will cost $16 million and would require 8 mega watts of 

energy to operate at a cost of about $8 million per year. Hence, high energy prices and 

rising concerns about the environmental impact of electronics systems highlight the 

importance of incorporating low energy design schemes at all levels of such systems. 

Current microprocessors from AMD, Intel and Transmeta allow the speed of the 

microprocessor to be set dynamically. 

Another study by NASA in 1998 predicted energy need of 25 megawatts for 

Japan’s NEC earth simulator, which is capable of executing 40 Tflops. That amount 

increased to 100 megawatts in a more recent study that much energy is enough to light 

1.6 million 60-watts light bulbs, the lighting requirements of a small city.  

Reducing systems components energy and energy consumption decrease systems 

expenses. Assuming a rate of $100 per megawatt a Pflops machine consuming 100 

megawatts of energy would cost $10,000 per hour approximate $85 million dollar a year.  

These estimates do not include air cooling expenses which are commonly 40% of 

systems operating cost. For such systems even small reduction in overall energy 

consumption would significantly impact Pflops systems’ operational costs. 

 

1.1 Contributions 

In this dissertation we presented two scheduling algorithms for scheduling 

Directed Acyclic Graphs on a distributed computing system for low energy.  

The first proposed algorithm combines Decisive Path Scheduling (DPS) with 

dynamic voltage scaling for the twin objectives of low energy consumption and minimum 
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execution time. We call it Energy Aware DAG Scheduling (EADAGS). The second 

algorism proposed combines Heterogeneous N-predecessor Duplication (HNPD) with 

dynamic voltage scaling to minimize both finish time and consumed energy, we identify 

that algorithm as Energy Aware Graph Scheduling with Duplication (EAGS-D).  

 In both cases first the initial algorithm is completed using either DPS or HNPD 

for minimum finish time, then the amount of consumed energy is estimated and the 

voltage scaling algorithm is simulated to minimize the consumed energy without 

affecting the finish time.  

The remainder of this dissertation is organized as follows. In the next Chapter, we 

describe different types of scheduling on both homogenous and heterogeneous systems, 

energy estimation and energy optimization techniques, and prior work on scheduling for 

low energy are discussed. Chapter 3 explains the concept of dynamic voltage scaling and 

how it can be used to reduce the consumed energy in computing systems. Chapter 4 

defines DAG and explains some of the definitions and terminology used by the 

scheduling algorithms. Chapter 5 introduces both scheduling algorithms presented in this 

work EADAGS and EAGS-D. Chapter 6 is for the simulation and analysis of results. 

Finally the conclusion and suggestions for future work are presented in Chapter 7.  
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CHAPTER 2 

RELATED WORK 

 

Traditional scheduling algorithms did not consider the amount of energy 

consumption. Instead, they focus on performance or fairness. Recently, low energy 

system design has gained significant attention largely due to demands from the portable 

electronics industry. System design for low energy is also very important for other 

industries such as automotive, telecommunications, information technology, etc.  This is 

due to the fact that low energy designs can offer significant reduction in system 

packaging costs and improvement in reliability.  

 Two main design aspects of scheduling are how to build the scheduling queue and 

how to choose the optimal processor. List and cluster scheduling are primary techniques 

to schedule tasks on heterogeneous systems.  

 In list scheduling, tasks are ordered in a scheduling queue based on the priority 

assigned to free tasks. List scheduling algorithms have been shown to have good cost-

performance trade-offs.  

 Cluster scheduling involves merging nodes/paths to form clusters that can be 

scheduled on the same processor so as to get closer to the objectives of schedule length, 

number of processors, etc.  
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 Several algorithms for static scheduling on heterogeneous multiprocessors 

systems are available: Dynamic Level Scheduling (DLS), Generalized Dynamic Level 

Scheduling (GDLS), Best Imaginary Level (BIL), Mapping Heuristics (MH), 

Heterogonous Earliest Finish Time (HEFT), Task Duplication Scheduling (TDS), Static 

Task Duplication Scheduling (STDS), Fast Critical Path (FCP), and Fast Load Balancing 

(FLB). Among the above TDS and STDS employ task duplication to suppress 

communication whereas others do not. A brief description of these algorithms is available 

in [Topc02].  

Heterogeneous N-predecessors Decisive Path (HNPD) is based on DPS but with 

Task duplication. The performance of HNPD was proven to outperform two of the best 

existing heuristics, Heterogeneous Earliest Finish Time (HEFT) and Static Task 

Duplication Scheduling (STDS), in terms of finish time and the number of processors 

employed over a wide range of parameters. 

 Low energy scheduling research can be classified in two major categories  

1. Energy estimation techniques (energy model) 

2. Energy optimization techniques. 

 

2.1 Power Estimation Techniques  

 Existing energy estimation methodologies can be classified based on their level of 

abstraction, namely instruction level, architecture level, and gate level. 

• Instruction level: application for this can be for embedded processing systems 

as presented by Nikoladis in [Niko02]. He uses an assembly or machine level 
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program as input and gives an estimate of the energy consumed for that 

specific program on a specific processing system. This provided an accurate 

estimation of energy consumption even in the presence of instantaneous 

energy supply variation.  

• Architecture level: it provides cycle-by-cycle energy consumption data of the 

architecture on the basis of the instruction/data flow stream. At the 

architecture level a technique presented by Landman uses the black box 

energy model for the architecture level components to estimate the energy 

consumed while preserving the accuracy of the gate or circuit level estimation 

[Land94]. 

• Gate level: Ishehara summarized and compared different techniques for 

energy estimation and proved that gate level estimation of energy 

consumption is the most accurate measurement [Ishe96]. The  techniques for 

energy estimation at the gate level and low levels of abstraction  can be 

classified into  

o Simulation based techniques: the earliest techniques proposed 

suggested monitoring both the supply voltage and current 

waveforms. These techniques were to slow to handle very large 

circuits so other techniques were introduced assuming that the 

supply and ground voltages are constant and estimate only the 

supply current waveform. 

o Probabilistic techniques: most of the probabilistic techniques are 
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applicable to combinational circuits only. In these techniques user 

supplied input signal probabilities are propagated into the circuit. 

To achieve this, special models for the components have to be 

developed and stored in a module library.  

o Statistical techniques: they do not require any specialized model 

for the components. The idea is to simulate the circuit with 

randomly generated input vectors until energy converges to the 

average energy. The convergence is tested by statistical mean 

estimation techniques.  

 

2.2 Power Optimization Techniques 

Competition is driving the requirement for energy optimization. Systems are 

designed with low energy consumption as one of the important criteria. Energy 

optimization can be achieved through both hardware and software. 

• Hardware Optimization: 

o Behavior level: transformations, scheduling, resource allocation, etc. 

o Architecture level: low energy flip-flops, low energy adder, etc. 

o Circuit level: low energy circuits. 

• Software  Optimization 

o Instruction level: low energy compiling, low energy instruction 

scheduling. 
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o System level: Dynamic energy management, low energy memory 

management, etc. 

 

2.3 Software energy optimization on system level  

 There are two techniques that can reduce energy consumption on system level 

scheduling: Dynamic Energy Management (DPM) and Dynamic Voltage Scaling (DVS).  

 The DPM technique dynamically reconfigures an electronic system by reducing 

number of active components and/or load on such components while providing services.  

DPM is used in various forms usually in portable devices. However, the complexity of 

interfacing heterogeneous components has limited designers to simple solutions in DPM.  

An example of a simple policy, mostly applied to laptops and PDA, is a timeout policy, 

which turns off a component after a fixed inactivity period, under the assumption that it is 

highly likely that a component remains idle if it has been idle for the timeout period. 

 The fundamental premise for the applicability of DPM is that systems (and their 

components) experience non-uniform workloads during operation time. Such an 

assumption is valid for most systems, both when considered in isolation and when 

systems are connected via internet. A second assumption of DPM is that it is possible to 

predict, with a certain degree of confidence, the fluctuations of workload. The analytical 

process of prediction should not consume significant energy. Typically, a energy 

manager (PM) implements a control procedure based on some observations and/or 

assumptions on the workload. 

 In DVS technique, computation and communication tasks are run at reduced 

voltages and clock frequencies which fill idle periods but reduce energy dissipation 
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while providing required performance. The key idea of DVS is to dynamically scale the 

supply voltage of CPU while meeting total computation time and/or throughput.  It is a 

trade-off between processor speed and energy consumption which is especially useful in 

real-time systems. The energy consumption of a processor running at high speed and high 

voltage is much larger than running at low speed and low voltage. For example, reducing 

the supply voltage from 5 V to 3.3 V in some cases has reduced energy by 56% 

[Pouw01].  

 DVS essentially fills the slack times by elongated computation or communication 

times.  There are two types of slack times: Worst Slack Time (WST) and Workload-

Variation Slack time (WVST). WST results from low processor utilization. WVST 

occurs due to execution time variations caused by data-dependent computation. WST can 

be roughly estimated from the scheduling results before task execution whereas WVST 

can be known only after execution. 

 

2.4 Scheduling to lower energy consumption 

 For uniprocessor real-time systems, many schemes have been proposed to manage 

energy consumption. Mosse et. al. [Moss00] proposed and analyzed several schemes to 

dynamically adjust processor speed for slack reclamation. They used a compiler to assist 

the operating system in changing the CPU operating levels to reduce energy 

consumption.  

 Weiser [Weis94] discussed several methods for varying the clock speed 

dynamically under control of the operating system. He proved that by adjusting the clock 
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speed at a fine grain, substantial CPU energy can be saved with a limited impact on 

performance.  

 Chandrakasan [Chan96] has shown that for periodic tasks, a few 

voltage/frequency levels are sufficient to achieve almost the same energy savings as 

infinite voltage/speed levels.  

 Yang [Yang01] proposed a two-phase scheduling scheme which contains a design 

time scheduler and a runtime scheduler that minimizes energy consumption while 

meeting timing constraints. By choosing different scheduling options at compile time 

they achieved 20-40% average energy savings. 

 Zhang and Chen [Zhan02] proposed a priority based task mapping and scheduling 

for a fixed task graph applying the earliest deadline first scheduling and formulating the 

voltage scaling problem as an integer programming problem. They proved that their 

framework can slow 8% of cycles in very short time. 

 The main concern in DVS is to increase slack time utilization as much as possible 

and to make resultant energy consumption as low as possible. Two types of slack time are 

defined as worst slack time (WST) and workload-variation slack time (VST). WST 

results from processors utilization that is less than 100%. Low processor utilization is 

always the case even if all tasks exhibit their worst-case execution time. VST occurs due 

to execution time variations caused by data-dependent computation. WST can be 

estimated from the scheduling results before task execution whereas VST can be known 

only after actual task execution.  

 Shin et. al. [Shin01] proposed a low-energy, priority-based scheduling which 
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consists of two parts: an off-line component which determines minimum processor speed 

while guaranteeing deadlines of all tasks and an online component which dynamically 

varies processor speed to utilize both WST and WVST. 

Shang et. al. [Shan03] proposed a history-based DVS for interconnected 

networks. Their technique leverages network history to predict future network needs, 

judiciously controlling the frequency (and voltage) of links to track actual network 

utilization. Such mechanisms resulted in 46% average energy savings at the cost of 

15.2% increase in network latency and 2.5% decrease in network throughput.  

 Theoretical investigations of speed scaling algorithms were initiated by Yao, 

Demers, and Shankar [Yao 95]. Yao et al. propose formulating speed scaling problems as 

scheduling problems. They assumed that each task has a release time when it arrives into 

the system, an amount of work that must be performed to complete the task and also a 

deadline that specifies the time by which the task should be completed. A schedule 

specifies which task to run at each time, and at what speed that task should be run. In 

some settings, for example, the playing of a video or other multimedia presentation, there 

may be natural deadlines for the various tasks imposed by the application. In other 

settings, the system may impose deadlines to better manage tasks or ensure a certain 

quality of service to each task. They studied the problem of minimizing the total energy 

used subject to the deadline feasibility constraints 

 Few other literatures have considered energy saving in addition to the 

performance.  Lu, Benini and Micheli [Lu00] presented a greedy on-line scheduling 

algorithm to facilitate energy management for multiple devices.  They ordered the 
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execution of tasks so that devices can have continuous long idle periods during which 

they can be shut down. They achieved an average energy savings of 33%. 

 Mishra et. al. [Mish03] proposed two novel techniques for energy management in 

distributed systems. The first is a static technique which uses a greedy algorithm to 

manage energy in presence of parallelism.  The second technique uses task reallocation 

that enhances the first algorithm by allowing out-of-order execution where preemption is 

allowed. Their technique saved an average of 10-20% more savings than a simple static 

energy management technique. 

 Shiue and Chakrabarti in [Shiu00] presented polynomial time algorithms for (i) 

resource-constrained scheduling and (ii) latency-constrained scheduling for the case 

when the resources operate at multiple voltages. Both scheduling schemes try to reduce 

the overall energy consumption. The resource-constrained scheduling scheme tries to 

balance the conflicting requirements of reducing the latency and maximally utilizing 

resources operating at reduced voltages. The latency-constrained scheduling scheme 

assigns as many nodes as possible to the resources operating at low voltages without 

violating the timing constraint.  

 Kirovski and M. Potkonjak [Kiro97] developed a system-level approach for 

energy minimization of cost-constrained hard real-time designs. The approach 

simultaneously optimizes all three degrees of freedom for energy minimization, namely 

switching activity, effective capacity and supply voltage.  

 Srivastava in [Sriv96] described three broad architectural approaches for energy 

efficient programmable computation: predictive shutdown, concurrency driven supply 
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voltage reduction, and switching activity reduction. A significant reduction in energy 

consumption can be obtained by employing these architectural techniques. They have 

shown that an aggressive shut down strategy based on a predictive technique can reduce 

the energy consumption by a large factor compared to the straightforward conventional 

schemes where the energy decision is based solely on a predetermined idle time 

threshold.  

 An example where the idea embodied in their techniques can be applied is the 

combination of parallelism-driven voltage reduction with switching activity reduction to 

increase the energy efficient of memory operations when the access pattern is sequential 

in nature. Such sequential access patterns occur, for example, when fetching video data 

from a frame buffer memory or when writing a page of virtual memory back to disk. 

Instead of accessing data from memory in a serial fashion, several words can be read 

from memory and the memory can be clocked at a lower rate for the same throughput. If 

the serial implementation runs at a supply of 3V to meet a given throughput, then the 

parallel version can run at a supply voltage of 1.3 V while meeting throughput 

requirements. 

Chaeseok and Ha. [ImHa04] proposed an energy efficient real-time multi-task 

scheduling by the use of buffers with DVS.  They saved an average energy of 44% with 

reasonable machine specifications. The buffers increase CPU utilization by averaging the 

workload. Their technique was designed for multimedia applications where a slight 

buffering delay is tolerable.  

 



 

 

 

CHAPTER 3 

DYNAMIC VOLTAGE SCALING 

 

For most energy-conscious designs, a major source of energy savings is voltage 

scaling, which scales operating voltages of processors and corresponding maximum clock 

speeds. The dominant source of energy consumption in digital CMOS circuits is the 

dynamic energy dissipation P, characterized by 

  fCVP 2∝

where C is the effective switching capacitance, V is the supply voltage, and f is the clock 

speed [Burd96].  

Since energy varies linearly with the clock speed and the square of the voltage, 

adjusting the voltage can result in significant energy reductions, at least in theory. 

However, reducing the supply voltage requires a corresponding decrease in clock speed 

and increase in task execution latency.  

The settling time for a gate is proportional to the voltage; the lower the voltage 

drop across the gate, the longer the gate takes to stabilize. To lower the voltage and still 

operate correctly, the cycle time must be lowered first. When raising the clock rate, the 

voltage must be increased first. Given that the voltage and the cycle time of a chip could 

be adjusted together, it should be clear now that the lower-voltage, slower-clock chip will 
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dissipate less energy per cycle. If the voltage level can be reduced linearly as the clock 

rate is reduced, then the energy savings per instruction will be proportional to the square 

of the voltage reduction. Of course, for a real chip it may not be possible to reduce the 

voltage linear with the clock reduction. However, if it is possible to reduce the voltage at 

all by running slower, then there will be a net energy savings per cycle. 

Currently manufacturers do not test and rate their chips across a smooth range of 

voltages. However, some data is available for chips at a set of voltage levels. For 

example, a Motorola CMOS 6805 microcontroller is rated at 6 MHz at 5.0 Volts, 4.5 

MHz at 3.3 Volts, and 3 MHz at 2.2 Volts. This is a close to linear relationship between 

voltage and clock rate. Thus there is seemingly no technical objection to designing a 

variable-voltage system provided that the input reference voltage to the processor’s 

voltage regulator may be a digital word writable by the processor.  

The other important factor is the time it takes to change the voltage. The main 

time-cost would be for the converter or regulator to ramp the supply voltage up or down. 

The ramping time is determined by the time constants of the converter.  The frequency 

for voltage regulators is on the order of 200 KHz [Weis94], so we speculate that it will 

take a few tens of microseconds to boost the voltage on the chip. Moreover the CPU 

should be able to continue working during a voltage ramp and ramping should not have 

any substantial energy cost. 

Finally, why run slower? Suppose a task has a deadline in 100 milliseconds, but it 

will only take 50 milliseconds of CPU time when running at full speed to complete. A 

normal system would run at full speed for 50 milliseconds and then idle for 50 
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milliseconds (assuming there were no other ready tasks) as in Figure 3.1. During the idle 

time the CPU can be stopped altogether by putting it into a mode that wakes up upon an 

interrupt, such as from a periodic clock or from an I/O completion.  

 

 

Figure 3.1. Different operating rates for the same task 

 

Now, compare this to a system that runs the task at half speed so that it completes 

just before its deadline. If it can also reduce the voltage by half, then the task will 

consume 1/4 the energy of the normal system, even taking into account stopping the CPU 

during the idle time. This is because the same number of cycles is executed in both 

systems, but the modified system reduces energy use by reducing the operating voltage. 

Another way to view this is that idle time represents wasted energy, even if the CPU is 

stopped. 

The relation between clock speed, supply voltage, and energy dissipation for 

Transmeta’s Crusoe TM5400 microprocessor as reported in its data sheet [Tiwa96] are 

shown in Table 3.1. For a program running for time duration of T, its total energy 

10050 50 100 
ms ms

Operating voltage Operating voltage 



consumption E is approximately equal to  E = Pavg ×  T , Where Pavg is the average energy 

consumed. Researchers have proposed many ways of determining “appropriate” 

operating clock rate. The basic idea behind these energy saving approaches is to slow 

down the tasks as much as possible without violating the deadline. This “just-in-time” 

strategy can be illustrated through a voltage scheduling graph as in Figure 3.2 [Much97].  

In a voltage scheduling graph, the X-axis represents time and the Y-axis 

represents processor speed. The total amount of work for a task is defined by the area of 

the task “box.”  For example, task 1 in Figure 3.2 has a total workload of 8,000 cycles. 

By “stretching” it out all the way to the deadline without change of the area, we are able 

to decrease the CPU speed from 600MHz down to 400MHz. As a result, 23.4% of total 

(CPU) energy may be saved on a Crusoe TM5400 processor. 

 

 

Table 3.1. The relationship between clock frequencies, supply voltage, and energy 
dissipation of Transmeta’s Crusoe TM5400 microprocessor. 
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               (a) Original schedule           (b) Voltage scaled schedule 

Figure 3.2. Voltage scheduling graph  

 

3.1 Power management implementation 

 There are several ways of achieving energy reduction. In this section, we study 

the various approaches. 

 

3.1.1 Simple shutdown 

Energy shutdown to a component is a radical solution that eliminates all sources if 

energy dissipation, including leakage.  

Energy consumption of idle processors can be avoided by energying off the unit. 

This radical solution requires controllable switches. An advantage of this approach is the 

wide applicability to all kind of electronic components. A major disadvantage is the 

wake-up time or the recovery time because the processor operation must be reinitialized.  

 

3.1.2 Multiple and variable energy supplies 

Dynamic energy management is also applicable to processors that are not idle, but 

whose performance requirement varies with time. The implementation technology can 

then be based on the slowdown. The slowdown is achieved by lowering the 
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voltage supply, such that the machine becomes performance critical. 

Dynamically-varying supply voltages may be quantified [Chan96] and thus be 

restricted to a finite number of values, or may take values in a continuous range. In the 

former case it is possible to identify a finite number of energy states for the system. 

 

3.1.3 OnNow approach 

The OnNow approach uses energy-management hardware to put the PC into a 

low-energy sleep state instead of shutting down completely, so that the system can 

quickly resume working [Micr04]. While in the sleep state, the PC's processor is not 

executing code and thus no work is being accomplished for the user. However, events 

from both hardware devices (such as modem ring or network request) and the real-time 

clock can be enabled to cause the system to wake up. 

Each device in the system has its own energy states, and these are independently 

managed by the device driver (or other policy owner) while the system is in the working 

state. The device's policy integrates any particular application's needs with device 

capabilities and other operating system information to conserve energy without adversely 

affecting the work that the user is doing. 
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CHAPTER 4 

DIRECTED A-CYCLIC GRAPH DAG 

 

We define a DAG as an a-cyclic graph with nodes representing tasks and edges 

representing execution precedence between tasks. A weight is associated to each node 

and edge. The node weight represents the task execution time and the edge weight 

represents the communication time between connected tasks. This communication time is 

zero if the tasks are executed on the same processor. Each DAG has a root node which is 

a node with no incoming edges and a sink node which is a node with no outgoing edges. 

 

Figure 4.1. A sample DAG 
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The DAG structure occurs in many regular and irregular applications such as 

Cholesky factorization, LU decomposition, Gaussian elimination, FFT, Laplace 

transforms, and instruction level parallelism.  

Along the lines of [Bask03] a DAG is represented by the tuple G=(V, E, M, T, C, 

P) where:  

• V is the set of n nodes. 

• E is the set of e edges between the nodes. 

• M is a set of m machines or processors.  

• E(n, c) is an edge between nodes n and c.  

• T is the set of costs T(n,k), represents the computational time of task n on 

machine k.  

• C is the set of costs C(n,c), which represents the communication cost 

associated with the edges E(n,c). Since intra-processor communication is 

insignificant compared to inter-processor communication, C(n,c) is considered 

to be zero if n and c are executed on the same processor.  

• P is the set of costs P(n,k), which presents the consumed power when task n is 

executed on processor k.  

The length of a path is defined as the sum of node and edge weights in that path.  

Node n is a predecessor of node c if there is a directed edge originating from n 

and ending at c. In figure 4.1, node 1 is a predecessor of nodes 2, 3, 4 and 7.  

Likewise, node s is a successor of node n if there is a directed edge originating 

from n and ending at s. From figure 4.1, node 6 is a successor of nodes 1, 2, and 3. We 



can further define pred(n) as the set of all predecessors of n and succ(n) as the set of all 

successors of n as an example pred(6)={1,2,3} and succ(6)={8}. 

 An ancestor of node n is any node c that is contained in pred(n ), or any node a, 

that is also an ancestor of any node c contained in pred(n ).  

The earliest execution start time of node n on processor k is represented as 

EST(n,k). Likewise, the earliest execution finish time of node n on processor k is 

represented as EFT(n,k). EST(n) and EFT(n) represent the earliest start time upon any 

processor and the earliest finish time upon any processor, respectively. Rnk is defined as 

the earliest time that processor k will be ready to begin executing task n. We can 

mathematically define these terms as follows: 

EST(n, k ) = max{ Rnk , EFT(c, m)+C(c, n )},Where, c∈pred(n) 

EFT(c, m) = EFT(c) and C(c, n ) = 0   when k = m, 

EFT(n, k ) = T (n, k )+EST(n, k ),  

EST(n ) = min (EST(n, k ), k∈M), 

EFT(n ) = min (EFT(n, k ), k∈M). 

 

The maximum clause finds the latest time that a predecessor’s data will arrive at 

processor k. If the predecessor finishes earlier on a processor other than k, 

communication cost must also be included in this time. In other words, the earliest start 

time of any task n on processor k, EST(n,k) is the maximum of times at which processor k 

becomes available and the time at which the last message arrives from any of the 

predecessors of n. 
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The main goal for any scheduling technique is to minimize the makespan of the 

DAG. The makespan is defined as the time at which all nodes finish executing. In our 

case, the makespan will be equal to EFT(y), where y is the exit node in the graph. From 

Figure 4.1 the makespan is EFT(8). 

The critical path (CP) is the longest path from an entry node to an exit node. The 

critical path excluding communication cost (CPEC) is the longest path from an entry 

node to an exit node, not including the communication cost of any edge traversed. In our 

work we assume that each task’s mean execution cost across all processors is used to 

calculate CP while each task’s minimum execution cost from any processor is used to 

calculate the CPEC.  

The top distance for a given node is the longest distance from an entry node to the 

node, excluding the computation cost of the node itself. The bottom distance for a given 

node is the longest distance from the node to an exit node. Again we assume that each 

task’s mean execution cost is used to calculate the top distance and bottom distance. The 

bottom distance is also referred to as the upper rank or the blevel.  

The Decisive Path (DP) is defined as the top distance of a given node plus the 

bottom distance of the node. The DP is defined for every node in the DAG. The critical 

path, CP, then becomes the largest DP for an exit node. 

 

4.1 Performance 

Our algorithms are for scheduling directed acyclic weighted task graph running 

on a bounded number of heterogeneous processors with the twin objectives of 
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minimizing the amount of energy consumed and minimizing the finish time.  

In other words, tasks arrive with given execution time and need to meet certain 

execution deadlines as well as minimize the consumed energy. 

Using simulations, we evaluated the performance of EADAGS and EAGS-D. The 

first test suite consists of random directed a-cyclic graphs.  The input parameters used to 

generate the graphs were: 

• Number of nodes (tasks) in the graph, n. 

• Shape parameter of the graph, α. If α = 1.0, the graph is balanced. A DAG with 

high parallelism can be generated by selecting α >> 1. Whereas α << 1 will 

generate a long DAG with small degree of parallelism. 

• Out-degree of a node, out-degree, represents the average number of outgoing 

edges from each node. Each node’s out-degree is randomly generated from a 

uniform distribution with mean equal to out-degree. 

• Communication to Computation ratio, CCR. CCR is the ratio of the average 

communication to average computation cost. If a DAG’s CCR is less than 1, it is a 

computation-intensive application; if it’s CCR is much greater than 1, it is 

communication-intensive. 

• Computation Range, β, represents the range of computation costs on processors. 

A high β causes significant difference of node’s computation costs among 

processors, whereas a low β means that the expected execution times of a node on 

any processor are almost equal.  

• Processor to node ratio, PNR, represents the availability of processors with 
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respect to number of nodes. A PNR of 100% means the number of processors is 

equal to the number of nodes. 

In generating random DAGs, the parameters were varied as follows: 

       n= {10, 20, 40, 60, 80, 100, 500, 1000} 

CCR = {0.1, 0.5, 1, 5, 10} 

α = {0.5, 1, 2} 

Out-degree = {1, 2, 3, 4, 5, 100} 

β = {0.1, 0.25, 0.5, 0.75, 1.0} 

PNR = {25%, 50%, 100%} 

These values produced 10,800 DAGs, which were repeated for both presented 

algorithms, EADAGS and EAGS-D.  

The second test suite to evaluate the performance of EADAGS and EAGS-D used 

task graphs of real world problems, specifically Gaussian elimination [Wu90], Molecular 

dynamic code [Chun92], Sieve of Eratosthenes, and Fast Fourier Transform (FFT). For 

these problems, the shape of the DAG is fixed and the only parameters we changed were 

the number of available processors and CCR. 

Processors were assumed to have three different operating voltage levels and five 

operating strategies based on the Motorola CMOS 6805 microcontroller, which is rated at 

6 MHz at 5.0 Volts, 4.5 MHz at 3.3 Volts, and 3 MHz at 2.2 Volts. First operating 

voltage was 5V when using this voltage if the processor becomes idle, it shuts down. We 

will refer to this operating voltage as 5V/off.  This level is used for reference only since it 

has physical limitations. The other two operating voltages are 2V and 3.3V, which slow 
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the processor during task execution and during processor’s idle times.  
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CHAPTER 5 

SCHEDULING ALGORITHIMS 

 

Many scheduling algorithms for scheduling DAGs in a distributed computing 

environment have been proposed as has been mentioned in Chapter 2. However, the 

problem of discovering the schedule that gives the minimum finish time is NP-Complete. 

Among all these scheduling algorithms, some prove to perform better in term of finish 

time or makespan.  

In this work two new scheduling algorithms for scheduling DAGs on distributed 

computing systems were presented: Energy Aware DAG Scheduling (EADAGS) and 

Energy Aware Graph Scheduling with Duplication (EAGS-D). 

 

5.1 EADAGS algorithm 

A new algorithm for scheduling DAGs on distributed computing systems has 

been introduced. EADAGS combines Decisive Path Scheduling (DPS) with DVS to 

minimize both finish time and energy consumption.  DPS [Park97], since it is one of the 

most efficient algorithms, was chosen.  The new algorithm is called Energy Aware DAG 

Scheduling (EADAGS). It consists of two phases. In the first phase, after DPS is run on 

the DAG to provide a low finish time, the energy consumed is estimated for all 
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processors. In the second phase, voltage scaling is applied during slack times to reduce 

energy while maintaining the schedule length.  

EADAGS transforms a DAG to one with a single entry node and a single exit 

node, if not so already. This transformation is accomplished by adding a dummy entry 

node and/or exit node with zero costs. Next, the top and bottom distances from each node 

are calculated. The top and bottom distances are calculated using the mean computation 

value for each node.  After building the DP for each node, EADAGS begins creating the 

scheduling queue, ScheduleQ, in a top-down fashion starting with the DAGs entry node 

and traversing down the CP (which is the DP of the exit node). Nodes are prioritized 

based on the lengths of their DPs. The priorities are decided as follows: EADAGS puts 

the CP nodes into the ScheduleQ in the ascending order of their top-distances. A node is 

added to the queue only if all its predecessors have been added. If not, EADAGS 

attempts to schedule its predecessors first. The first predecessors added to the queue are 

those included in the nodes’ DP other are sorted and added to ScheduleQ in increasing 

top-distance.  

Next, EADAGS assign tasks in ScheduleQ to processors. At each step of the 

assignment, the selected processor provides the earliest finish time for the task under 

consideration, taking into account all the communications from the task’s parents. If EFT 

of the exit node is larger than the sum of all the computation costs of the nodes on the 

best processor, EADAGS assigns all nodes to that processor and exits. The time 

complexity of first phase of EADAGS is O(n2).  

 



Next, EADAGS computes the consumed energy. The total energy consumed 

when no voltage scaling is used, E1 is first calculated by the following equations:  

E1 = T  × ∑
∈Mk

1 )(P k  

2
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2
1

1
fVkP =  

where:   

• P1(k) is the amount of power consumed by processor k∈M, 

• f  is the operating frequency of machine k, 

• V1 is the operating voltage of machine k, 

• T is the makespan 

In the second phase of EADAGS, voltage scaling is applied to all processors 

during their idle times by reducing the execution rate to f2 by lowering the voltage to a 

predetermined level V2.  Such voltage scaling is applied to a task only if slowing its 

execution would not increase the makespan. We also reduce the voltage level of 

processors during all remaining slack times.  The total energy consumed after applying 

voltage scaling is E2 = Σ E2(k) where:  
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=  represents the energy consumed by processor k∈M 

when voltage scaling is used, 
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• T(i) is the computation time of task i on the chosen processor, 

• C(i, j) is the communication cost between tasks i  and j if i and j are not scheduled 

on the same processor,  

• T2 is the total time processor k operates at V2  (includes idle times during which 

the processor operates at V2). 

 

A non blocking send protocol has been assumed in which only the sending 

processor has to process the communication while the receiving processor has a buffer to 

receive all transmitted data without interrupting its job.  The difference between E1 and E2 

represents the energy that could be saved. The percentage average energy savings = 

100
1

21 ×
−
E

EE . A high level description of EADAGS appears in Table 5.1. 
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Table 5.1. EADAGS algorithm 
 

Let G represent a DAG 
Let M be the set of m processors in the system 
 
EADAGS 
 Transform G to a DAG with a single entry node and a single exit node 
 Compute DP of each node n∈G      
 //DP of the exit node is the critical path, CP 
 Fill ScheduleQ with nodes 

//Starting from the entry node traversing CP in increasing top-distance.   
 while ScheduleQ ≠ Φ do 
  i ← head (ScheduleQ)      
   Schedule i on processor p∈M that provides earliest finish time of i.  
                       Remove i from ScheduleQ 
 end while 

if scheduling all nodes on the fastest processor provides a shorter makespan,     
do so and discard prior schedule 
T← makespan 

            Total energy consumed before voltage scaling 
2

2
1

1
fTV

E =  

Total energy consumed when employing voltage scaling, E2 = ScaledEnergy( ) 
end EADAGS 
  
ScaledEnergy( )     
// Returns the total amount of energy consumption on all processors when voltage scaling 
has been applied 
              for each processor p∈ M do        

       for each node n∈G scheduled on p do //traverse first scheduled to last   
                         if (executing n on scaled voltage fits within the next slack) then 

               Scale down the operating voltage during execution of n  
 end if 

             end for  
            Energy consumed by processor p = sum of energy consumed by all nodes 
                        scheduled on p 
            end for 
 E = Sum of energy consumed by all processors 
return E 
end ScaledEnergy 
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Figure 5.1 lists the notations used by EADAGS and procedures of EADAGS (EADAGS, 

AddQ, StartTime, and ScaledEnergy). 

 

 
 Let  
   

• G represent a DAG 
• y∈G be the exit node of G 
• M  be the set of m processors in the system 
• Rk represent the ready time of machine k  
• rn represent the ready time of node n  
• f  be the frequency of operation 
• sik  represent the start time of node i on machine k  
• Succ(n) represent the list of all successor nodes of node n∈G 
• pred(n) is the list of all predecessors of node n∈G  
• ScheduleQ queue of tasks in order of execution  
• T(i, k) represent the execution time of node i∈G on machine k 
• C(n, c) represent the communication cost from node n to node c 
• EFT(i, k) represent the earliest finish time of node i∈G on machine k 
• EFT(i) represent the scheduled finish time of node i∈G 
• EFT2(i) represent the finish time for node i with the scaled down voltage 
• EST(i) represent the scheduled start time of node i∈G 
• T represent the makespan of G 
• V1 be the voltage of operation  
• V2 be the scaled down voltage of operation  
• T1(n) and T2(n) represent the execution time for any node n∈G before and after 

voltage scaling respectively 
• E(k, n) represent the energy consumed by processor k to execute node n  
• E1 represent the total energy consumption before voltage scaling 
• E2  is the total energy consumption after scaling down voltage 
• E1(k) and E2(k) represent energy consumed by processor k∈M before and after 

voltage scaling respectively 
 
 

Figure 5.1.a. Notations for EADAGS 
 
 
 
 
 

 
33

 



 
EADAGS 
 Transform G to a DAG with a single entry node and a single exit node 
 Compute DP for each node n∈G     // O(n2) 
 // DP of the exit node is the critical path, CP 
 // Fill ScheduleQ with nodes in CP in increasing top-distance. 
 ScheduleQ ← Φ 
 for each node n∈CP  do      // O(n2) 

            // Traverse in increasing top-distance.   
  ScheduleQ = addQ(n) 
 end for 
 //Schedule nodes in ScheduleQ to processors 

while ScheduleQ ≠ Φ do     // O(n)   
   Pick the head node i in ScheduleQ 
  for each processor  k∈M do    // O(m)   
      sik = StartTime (i, k) 
    EFT(i, k) = sik  + T(i, k) 
  end for 
  EFT(i) = mink∈M  EFT(i, k ) 
                        Schedule i on processor p∈M that gave minimum earliest finish time   
                       Remove i from ScheduleQ 
 end while 
 if EFT(y) ≥  ∑

∈
∈

Gi
Mk kiT ),(min

  Schedule all nodes on the processor p∈M, which provided the minimum 
 end if 
 T←EFT(y)          // makespan 

            
2

2
1

1
fTVE =   

 E2=ScaledEnergy( ) 
end EADAGS 
 
 
 

Figure 5.1.b. EADAGS procedure  
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addQ(n)   
// Adds parents of node n∈G and n to ScheduleQ 
// Returns ScheduleQ  
 for each parent b of n not visited // in decreasing DP 
                 addQ(b) 
 end for 
  Add to n to ScheduleQ and mark it visited 
 return ScheduleQ 
end addQ 
 
 

Figure 5.1.c. addQ procedure 
 
 
StartTime (node n, machine k)     
// Returns the earliest available start time of node n∈G on machine k M ∈
 snk ← Rk 
 for each parent b of n do   // O(n)   
    snk = max (snk, EFT(b)+C(b , n))  // if b is scheduled on k, C(b, n)=0 
  end for 
        return snk 
end StartTime 
 

 
Figure 5.1.d. StartTime procedure  
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ScaledEnergy( )      
// Returns the total amount of energy consumption after applying voltage scaling 
              for each processor k∈ M do     // O(m) 

       for each node n∈G scheduled on k  do   //O(n) from first to last scheduled  

                     T2(n) = )(12
2

2
1 nT

V
V

×  

                                EFT2(n) = snk+ T2(n)  
            if (EFT2(n)+C(n ,c) < min EST(c) for each c∈succ(n) then 

                // if c is scheduled on k, C(n, c) = 0 
  EFT(n) = EFT2(n)   //update EFT(n) 

                                               Let i be the node scheduled immediately after n on k 
                                // use scaled voltage, see Figure 5.2 
                              E(k, n)=T2(n)×V2

2+(EST(i)-EFT(n))×V2
2 

                             else 
                                    //original voltage for execution and scaled voltage during idle time,  
                                    // see Figure 5.2 
                                     E(k, n)=T1(n)×V1

2+(EST(i)-EFT(n))×V2
2 

 end if 
             end for  
              E2(k)=+E(k, n )              
             end for 
             E2 =  ∑

∈Mk

kE )(2

return E2 
end ScaledEnergy 
 

Figure 5.1.e. ScaledEnergy procedure 
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Figure 5.2. Timeline for machine k 
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5.2 EAGS-D Algorithm 

Energy Aware Graph Scheduling with Duplication (EAGS-D) combines HNPD 

and dynamic voltage scaling. The Heterogeneous N-Predecessor Duplication (HNPD) 

algorithm combines the techniques of insertion-based list scheduling with multiple task 

duplication to minimize schedule length. The performance of HNPD was proven to 

outperform two of the best existing heuristics, Heterogeneous Earliest Finish Time 

(HEFT) and Static Task Duplication Scheduling (STDS), in terms of finish time and the 

number of processors employed over a wide range of parameters [Bask03]. EAGS-D 

works as follows: EAGS-D assigns tasks to the best available processor according to the 

order of tasks in a scheduling queue called ScheduleQ. EAGS-D assigns highest priority 

to critical path nodes (CPN) and then to those predecessors of CPNs that include the CPN 

in their DP.  Among these predecessors it gives higher priority to nodes with higher DP 

values. This is because the nodes with the higher DP values are likely to be on longer 

paths. In the order of tasks in ScheduleQ, EAGS-D uses EFT(n) to select the processor 

for each task n. As it is an insertion-based algorithm, it calculates ready time of any 

machine k∈M, Rk to be the earliest idle time slot large enough to execute T(n, k). In other 

words, it looks for a possible insertion between two already scheduled tasks on the given 

processor without violating precedence relationships. Once tasks have been assigned to 

processors, it attempts to duplicate predecessors of the tasks. Predecessors are selected 

for duplication from most favorite to least and by descending top distance. The goal of 

duplicating predecessors is to decrease the length of time for which the node is awaiting 

data by making use of the processor’s slack time. Predecessors of node n are duplicated 



on processor k, on which node n is scheduled on.  If the duplication result in a lower 

finish time, duplication is retained; otherwise it is discarded. If there is idle time between 

the recently assigned task n and the preceding task on processor k, EAGS-D attempts to 

duplicate each predecessor j. If j is not already scheduled on processor k, it is duplicated 

if EFT(j,k) is less than EFT(j)+C(j, n). The duplication is retained if EFT(n,k) decreases. 

Otherwise, it is discarded. The same duplication procedure is repeated for each 

predecessor in order of most favorite to least. After EAGS-D attempts to duplicate each 

predecessor, it recursively attempts to duplicate the predecessors of any duplicated tasks. 

Duplication recursively continues until no further duplication is possible.  

Then, EAGS-D computes the consumed energy. The total energy consumed when 

no voltage scaling is used, E1 is first calculated by the following equations:  

E1 = T  × ∑
∈Mk

1 )(P k  

2
)(

2
1

1
fVkP =  

where:   

• P1(k) is the amount of power consumed by processor k∈M, 

• f  is the operating frequency of machine k, 

• V1 is the operating voltage of machine k, 

• T is the makespan 

 

In the second phase of EAGS-D, voltage scaling is applied to all processors 

during their idle times by reducing the execution rate to f2 by lowering the voltage to a 
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predetermined level V2.  Such voltage scaling is applied to a task only if slowing its 

execution would not increase the makespan. We also reduce the voltage level of 

processors during all remaining slack times.  The total energy consumed after applying 

voltage scaling is E2 = Σ E2(k) where:  

• 
2

)(
2

222
2

111
2

VfTVfTkE +
=  represents the energy consumed by processor k∈M 

when voltage scaling is used, 

•  is the total task and communication time when operating 

at V1, 

∑∑ +=
iji

jiCiTT ),()(1

• T(i) is the computation time of task i on the chosen processor, 

• C(i, j) is the communication cost between tasks i  and j if i and j are not scheduled 

on the same processor, 

• T2 is the total time processor k operates at V2  (includes idle times during which 

the processor operates at V2), 

 

A non blocking send protocol has been assumed in which only the sending 

processor has to process the communication while the receiving processor has a buffer to 

receive all transmitted data without interrupting its job.  The difference between E1 and E2 

represents the energy that could be saved. The percentage average energy savings = 

100
1

21 ×
−
E

EE . A high level description of EAGS-D appears in Table 5.2. 
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Table 5.2. EAGS-D algorithm 

 
Let  G represent a DAG 
Let M be the set of m processors in the system 
 
EAGS-D 
 Transform G to a DAG with a single entry node and a single exit node 
 Compute DP of each node n∈G      
 //DP of the exit node is the critical path, CP 
 Fill ScheduleQ with nodes 

//Starting from the entry node traversing CP in increasing top-distance.   
 while ScheduleQ ≠ Φ do 
  i ← head (ScheduleQ)      
   Schedule i on processor p∈M that provides earliest finish time of i.  
                       Remove i from ScheduleQ 
  Duplicate predecessors of i on p if doing so results in a shorter schedule 
  //duplicate executions performed within slacks of the schedule of p 
 end while 

if scheduling all nodes on the fastest processor provides a shorter makespan,     
do so and discard prior schedule 
T← makespan 

            Total energy consumed before voltage scaling 
2

2
1

1
fTVE =  

Total energy consumed when employing voltage scaling, E2 = ScaledEnergy( ) 
end EAGS-D 
  
ScaledEnergy( )     
// Returns the total amount of energy consumption on all processors when voltage scaling 
// has been applied 
              for each processor p∈ M do        

       for each node n∈G scheduled on p do //traverse first scheduled to last   
                         if (executing n on scaled voltage fits within the next slack) then 

               Scale down the operating voltage during execution of n  
 end if 

             end for  
                  Energy consumed by processor p = sum of energy consumed by all nodes 
                 scheduled on p 
            end for 
            E = Sum of energy consumed by all processors 
return E 
end ScaledEnergy 
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Figure 5.3.a lists the notations used by EAGS-D while Figures 5.3.b, 5.3.c, 5.3.d, 5.3.e, 

5.3.f and 5.3.g shows the detailed algorithm procedures: EAGS-D, AddQ, StartTime, 

DuplicatePred, Duplicate, and ScaledEnergy respectively. 

 

Let   
• G represent a DAG 
• y∈G be the exit node of G 
• M  be the set of m processors in the system 
• Rk represent the ready time of machine k  
• rn represent the ready time of node n  
• f  be the frequency of operation 
• sik  represent the start time of node i on machine k  
• Succ(n) represent the list of all successor nodes of node n∈G 
• pred(n) is the list of all predecessors of node n∈G  
• ScheduleQ queue of tasks in order of execution  
• T(i, k) represent the execution time of node i∈G on machine k 
• C(n, c) represent the communication cost from node n to node c 
• EFT(i, k) represent the earliest finish time of node i∈G on machine k 
• EFT(i) represent the scheduled finish time of node i∈G 
• EFT2(i) represent the finish time for node i with the scaled down voltage 
• EST(i) represent the scheduled start time of node i∈G 
• T represent the makespan of G 
• V1 be the voltage of operation  
• V2 be the scaled down voltage of operation  
• T1(n) and T2(n) represent the execution time for any node n∈G before and after 

voltage scaling respectively 
• E(k, n) represent the energy consumed by processor k to execute node n  
• E1 represent the total energy consumption before voltage scaling 
• E2  is the total energy consumption after scaling down voltage 
• E1(k) and E2(k) represent energy consumed by processor k∈M before and after 

voltage scaling respectively 
 

 
Figure 5.3.a. EAGS-D notations 
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EAGS-D 
 Transform G to a DAG with a single entry node and a single exit node 
 Compute DP for each node n∈G     // O(n2) 
 // DP of the exit node is the critical path, CP 
 // Fill ScheduleQ with nodes in CP in increasing top-distance. 
 ScheduleQ ← Φ 
 for each node n∈CP  do      // O(n2) 

            // Traverse in increasing top-distance.   
  ScheduleQ = addQ(n) 
 end for 
 //Schedule nodes in ScheduleQ to processors 
 while ScheduleQ ≠ Φ do     // O(n)   
   Pick the head node i in ScheduleQ 
  for each processor  k∈M do    // O(m)  
    sik = StartTime (i, k) 
    EFT(i, k) = sik  + T(i, k) 
  end for 
   EFT(i) = mink∈M  EFT(i, k ) 
                        Schedule i on processor p∈M that gave minimum earliest finish time   
                       Remove i from ScheduleQ 
  // Duplicate predecessors of i on p if it results in a shorter schedule 
  DuplicatePred (i, pred(i), p)  
 end while 
 if EFT(y) ≥  ∑

∈
∈

Gi
Mk kiT ),(min

  Schedule all nodes on the processor p∈M, which provided the minimum 
 end if 
 T←EFT(y)         // makespan 

            
2

2
1

1
fTVE =   

 E2=ScaledEnergy( ) 
 
end EAGS-D 
 

 
Figure 5.3.b. EAGS-D procedure 
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 addQ(n)   
// Adds parents of node n∈G and n to ScheduleQ 
// Returns ScheduleQ  
 for each parent b of n not visited // in decreasing DP 
                 addQ(b) 
 end for 
  Add to n to ScheduleQ and mark it visited 
 return ScheduleQ 
end addQ 
 

 
Figure 5.3.c. addQ procedure 

 
 
 
StartTime (node n, machine k)     
// Returns the earliest available start time of node n∈G on machine k M ∈
 snk ← Rk 
 for each parent b of n do   // O(n)   
    snk = max(snk, EFT(b) + C(b , n))  // if b is scheduled on k, C(b, n)=0 
  end for 
        return snk 
end StartTime 
 

 
Figure 5.3.d. StartTime procedure 

 
 
 
DuplicatePred (node n,  pred(n), machine k) 
 for each q∈pred (n)    // in order from most favorite to least 
     Duplicate (n, q, k) 
    if q was duplicated then 
     DuplicatePred (q, pred(q), k) 
   end if 
  end for 
end DuplicatePred 
 
 

Figure 5.3.e. DuplicatePred procedure 
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Duplicate (node n, node i, machine k) 
// Attempts to duplicate node n, a predecessor of node i, on machine k which executes node i 
  if n has not been scheduled on k then 
   rnk =StartTime (n, k) 
   // Attempt to insert node n in the first available slack in the schedule of  
                        Processor k∈M 
   for each node j  already scheduled on k∈M do  
               //scan from last to first scheduled  
     if j∉ pred(n) then 
      if j is the first node scheduled on  k then 
      if EST(j, k ) >= rnk +T(n, k) then  //see Figure 5.4 
       snk  = rnk      
                                                      end if 
            Let p be the node immediately scheduled prior to j on k  
     else if (EST(j, k)-EFT(p, k)>= T(n,k))and(EFT(p, k)>= rnk) then 
       snk  = EFT(p, k )  // see Figure 5.5 
      end if 
     EFT(n, k) = snk+ T(n, k) 
     end if 
   end for 
   //If EFT(i) did not decrease due to duplication, discard duplication 
   if EFT(n ,k) < minsucc(n)(EFT(n)+C(n,succ(n)))then 
     Insert and schedule n on k 
     Recalculate EFT(i, k) 
     if EFT(i ,k) improves then 
      Keep n scheduled on k 
     else 
      Discard the duplication of node n on k 
     end if  
   end if 
  end if 
end Duplicate 
 

  
Figure 5.3.f. Duplicate procedure 
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ScaledEnergy( )      
// Returns the total amount of energy consumption after applying voltage scaling 
              for each processor k∈ M do      // O(m) 

       for each node n∈G scheduled on k  do   //O(n) from first to last scheduled  

                     T2(n) = )(12
2

2
1 nT

V
V

×  

                                EFT2(n) = snk+ T2(n)  
            if (EFT2(n)+C(n ,c) < min EST(c) for each c∈succ(n) then 

                // if c is scheduled on k, C(n, c) = 0 
  EFT(n) = EFT2(n)   //update EFT(n) 

                                               Let i be the node scheduled immediately after n on k 
                                // use scaled voltage, see Figure 5.6 
                              E(k, n)=T2(n)×V2

2+(EST(i)-EFT(n))×V2
2 

                             else 
                                    //original voltage for execution and scaled voltage during idle time,  
                                    // see Figure 5.6 
                                     E(k, n)=T1(n)×V1

2+(EST(i)-EFT(n))×V2
2 

 end if 
             end for  
              E2(k)=+E(k, n )              
             end for 
             E2 =  ∑

∈Mk

kE )(2

return E2 
end ScaledEnergy 
 

Figure 5.3.g. ScaledEnergy procedure 
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Task execution time

Communication time 

Figure 5.4. Timeline for machine k (case 1) 
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Figure 5.5. Timeline for machine k (case 2) 
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Figure 5.6. Timeline for machine k  
 

5.3 Voltage scaling Strategies 

Executing any task with a slower rate will require longer time to finish. And since 

we are dealing with DAGs in which tasks are depending on other tasks. Changing the 

finish time of a task may affect the start time of its predecessors resulting in a change of 

the schedule makespan.   

In our algorithm we want to make use of processor’s slack time to save energy 

without changing the makespan of the original scheduling algorithms. Processors were 

assumed to have three different operating voltage levels based on the Motorola CMOS 

n i 
V1 

T1(n)

n i 

V2 

T2(n)

EFT(n) 
EST(i) 

EFT2(n) 

Task execution time

Communication time 

EST(i) 
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6805 microcontroller, which is rated at 6 MHz at 5.0 Volts, 4.5 MHz at 3.3 Volts, and 3 

MHz at 2.2 Volts. We tested for five different strategies: 

1. 5V/off: execute tasks with regular voltage level and turn off processors during 

their idle time. This technique is used for comparison reasons only since 

turning processors off each time they incur slack time has physical limitations. 

2. 2V during idle: involves executing tasks with regular execution rate and 

lowering the processor’s voltage level to 2V only during its idle time. 

3. 3.3V during idle: involves executing tasks with regular execution rate and 

lowering the processor’s voltage level to 3.3V during all its idle time. 

4. 2V scale: we check if the slack time is long enough to scale down the 

execution rate of tasks to 2V without altering the finish time. If so, execute the 

task with 2V rate and also lower the voltage during the remaining idle time. If 

not, execute task with regular voltage rate and lower the voltage rate during 

the idle time.  

5. 3.3V scale: we check if the idle time is long enough to lower the execution 

rate to 3.3V of tasks without affecting the makespan. If so, execute the task 

with 3.3V rate and also lower the voltage during the remaining idle time. If 

not, execute task with regular voltage rate and lower the voltage rate during 

the idle time.  
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6.3.1. Voltage scaling algorithm 

The task in Figure 5.7 has finish time of t1 when executed with V1 and a finish 

time of t2 when executed with V2.  This task can be executed with the lower voltage level 

only if t2 < min (start time of all its children).   

For the task in Figure 5.7(a), the execution rate can be slowed down to V2 and 

reduce the amount of energy consumed, while the task in Figure 5.7(b) cannot be scaled 

down to V2 since the new finish time is greater than the earliest children’s start time. So 

tasks need to be executed with the original voltage level. The voltage for the processors 

will be scaled down during idle time x only. 
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      V2  
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(a) 
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       V2  

T  
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Figure 5.7. Different finish times with different execution rates 

 

Although we choose to do the energy scaling as a second phase after the 

scheduling of all tasks, it could have been done in parallel with the scheduling phase 

resulting in the same schedule and the same amount of energy savings.  

This could be explained as follows: each task is scheduled on the processor that 

results in the earliest finish time. The finish time of each node on each processor is  
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determined by the first available start time of that node on that processor and the 

execution time of the node on that specific processor, taking into consideration the finish 

time of its predecessors and all communication cost between the task and any other node. 

Then its successors are scheduled based on the same criteria. So immediately after the 

scheduling of all the task children on the appropriate processors, the decision for scaling 

down this task can be made based on the finish time of the task and the start time of its 

successors. A task can be scaled down only if its finish time after executing with a lower 

voltage level is earlier than the start time of all its successors. Executing the task with the 

scaled down voltage level would not affect the scheduling decision for the next nodes 

since it only affect the finish time of the scaled down task.  

The advantage of doing it as a second phase is that we do not have to check if all 

the task’s successors have been scheduled before deciding whether to scale that task 

down or not resulting in a lower complexity algorithm. 
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CHAPTER 6 

RESULTS AND DISCUSSION  

 

 The experimental simulation estimates the energy gains of using voltage scaling 

techniques on scheduling DAG tasks on multiple processors on top of two of the best 

known high performing scheduling algorithms, DPS and HNPD.  

As been stated in Chapter 5, processors were assumed to have three different 

operating voltage levels based on the Motorola CMOS 6805 microcontroller, which is 

rated at 6 MHz at 5.0 Volts, 4.5 MHz at 3.3 Volts, and 3 MHz at 2.2 Volts [Weis94].  

First operating voltage was 5V; when using this voltage, if the processor becomes idle, it 

shuts down. We will refer to this operating voltage as 5V/off.  This level is used for 

reference only since it has physical limitations. The other two operating voltages are 2V 

and 3.3V, which slow the processor during task execution.   

 The algorithms were tested using random DAGs and DAG for real world 

problems; more specifically we tested on DAGs for   Molecular Dynamics code, 

Gaussian elimination, Sieve of Eratosthenes, and Fast Fourier Transform.  

 

6.1 Results for random DAGs 

 A set of random generated DAGs were generated to evaluate the voltage scaling 



 
52

technique. Those DAGs had different input parameters (number of nodes, communication 

to computation ratio, shape parameter, out-degree, and computation range) varied as 

follows: 

n = {10, 20, 40, 60, 80, 100, 500, 1000} 

CCR = {0.1, 0.5, 1, 5, 10} 

α = {0.5, 1, 2} 

out-degree = {1, 2, 3, 4, 5, 100} 

β = {0.1, 0.25, 0.5, 0.75, 1.0} 

PNR = {25%, 50%, 100%} 

The above values produce 10,800 DAGs, which were repeated for both presented 

scheduling algorithms, EADAGS and EAGS-D. 

 

6.1.1 Results for EADAGS 

The amount of energy consumed was measured for DPS and EADAGS for 

different test sets of random DAGs. Then, test sets were created by combining results 

from DAGs with similar properties, such as the number of nodes or the CCR.  

The amount of energy consumed were measured for five different strategies; 

5V/off, 2V during idle, 3.3V during idle, 2V scale and 3.3V scale (explained in Chapter 

5).  

The first test set was achieved by combining DAGs with respect to number of 

nodes. The energy saving was averaged over DAGs with varying CCR, α, β, out-degree, 

and PNR.  



Figure 6.1 shows the average energy saved by EADAGS over DPS with respect to 

number of nodes. The percentage of energy savings increased with increasing number of 

nodes. Average energy savings were 30% for a DAG of 10 nodes and the savings 

gradually increases to 46% for 1000 node DAGs. Larger numbers of nodes increase the 

chance of dependency between tasks, causing a slight increase in the processor wait time 

and accordingly increasing the energy savings.  

Table 6.1 lists the makespan and the average energy savings with respect to 

number of nodes. Average energy savings ranges between 30% and 46% for the 5V/off 

technique,  26% and 46% when 2V during idle is used, 24% and 46% when using 3.3V 

during idle, 29% and 46 % when 2V scale is used, and 28% and 46% when 3.3V scale is 

used. 
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Figure 6.1. Average energy savings with respect to number of nodes 
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Number 
of nodes  Makespan 

Percentage of energy savings 

5V/off  
2V  

during 
idle 

3.3V 
during 

idle 

2V  
Scale 

3.3V  
Scale 

10 174.7 30.28% 26.53% 24.09% 29.98% 28.84%

20 175.27 34.32% 32.6% 31.48% 33.63% 32.45%

40 321.67 40.2% 39.18% 38.51% 40.12% 39.57%

60 404.36 41.2% 40.54% 40.11% 40.93% 40.47%

80 525.5 43.14% 42.56% 42.19% 42.91% 42.51%

100 674.65 43.8% 43.39% 43.12% 43.64% 43.35%

500 835.29 45.94% 45.85% 45.8% 45.82% 45.28%

1000 1127 46.29% 46.25% 46.22% 46.88% 46.03%
 

Table 6.1. Makespan and average energy savings with respect to number of nodes 
 

The second test set combines DAGs with respect to CCR. The average energy 

savings were averaged over different DAGs with varying n, α, β, out-degree, and PNR. 

In Figure 6.2 the average energy savings has been plotted with respect to CCR.  

The average energy savings increased with increasing CCR. When CCR increases, 

processors incur longer idle times due to communication between tasks. Our algorithm 

was able to use such idle times to achieve energy savings.  

Table 6.2 shows the makespan and the average energy savings for five different 

CCR values. The average energy savings over DPS ranges from 35% for CCR=0.1 to 

51% when CCR = 10 for 5V/off technique. Savings are smaller for 2V during idle; they 

range between 25% and 38%. Savings are even smaller for the 3.3V during idle time; 

they are 19% for CCR = 0.1 and 30% for CCR = 10.  Average energy savings are 28% for 

CCR = 0.1 and 44.7% when CCR = 10 for 2V scale, while for 3.3V scale energy 



savings is 22.8% for CCR = 0.1 and 40% when CCR = 10.  
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Figure 6.2. Average energy savings with respect to CCR 

 

 

CCR  Makespan 
Percentage of energy savings 

5V/off  2V  
During idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

0.1 117 35.17% 25.53% 19.27% 28.33% 22.87%

0.5 124 36.93% 26.95% 20.45% 29.42% 24.77%

1 133.89 37.25% 27.2% 20.66% 29.69% 25.06%

5 209.89 45.84% 34.07% 26.42% 41.98% 38.05%

10 280 51.4% 38.52% 30.15% 44.73% 40.11%

 
Table 6.2. Makespan and average energy savings for different CCR values 
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  The third test set combines DAGs with respect to processor to node ratio, PNR. 

The average energy savings is averaged over randomly generated DAGs with varying n, 

CCR, α, β, and out-degree. Figure 6.3 shows the average energy saving with respect to 

PNR.  Figure 6.3 shows decrease in the average energy savings with increasing PNR. 

This is because increasing number of processors allows several parallel task executions, 

thus minimizing the wait times. The average energy savings measured was 47% for PNR 

= 25% in the 5V/off technique, 41% when processors operate at 2V during idle, 38% if 

they operate at 3.3V when idle, 42% when 2V scale is used, and 39% when 3.3V scale is 

used. But for PNR = 100% the average energy savings for all three operating levels are 

almost equal to 33% , which is due to the significant decrease in the processor’s wait 

time. 
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Figure 6.3. Average energy savings with respect to PNR 
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Another test set combined DAGs with respect to shape parameter α. The average 

energy savings were computed over 36,000 randomly generated DAGs with varying n, 

PNR, CCR, β, and out-degree. 

 In Figure 6.4 the average energy savings for the five operating strategies were 

plotted with respect to α. The results in this figure indicate that the overall energy savings 

marginally increased with increasing α. Increasing α increases parallelism in the DAG, 

resulting in more idle time for the processors due to the task dependency. This time can 

be used to reduce the consumed energy.  The average energy savings was measured as 

24% for α =  0.5, 25% for α = 1 and 25.5% when α  =  2.  
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Figure 6.4. Average energy savings with respect to α 
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Shape 
parameter 

Makespan 
 

Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
scale 3.3V Scale 

0.5 110.87 34.19% 24.75% 18.62% 28.47% 22.54%

1 189.87 34.38% 24.9% 18.74% 29.01% 23.71%

2 219.4 35.22% 25.58% 19.31% 29.33% 24.37%

   
Table 6.3. Makespan and average energy savings for different shape parameters 

 

 

The last test set was for out-degree. The average energy savings were averaged 

from 21,600 randomly generated DAGs with varying n, α, β, CCR, PNR.  

Figure 6.5 shows the average energy savings with respect to five values for out-

degree. The results in this figure indicate that increase in out-degree results in smaller 

average energy savings. A larger out-degree allows many processors to run in parallel.  

Table 6.4 lists the makespan and average energy savings with respect to out-

degree. The amount of energy that could be saved ranges between 44% and 13% for 

processors using 5V/off, 32% and 8.5% for 2V during idle, 25% and 5% for 3.3V during 

idle, 36% and 10% when 2V scale is used, and 29% and 6% for a 3.3V scale.  
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Figure 6.5. Average energy savings with respect to out-degree 

 

Out-degree Makespan 
Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
scale 3.3V Scale 

1 233.97 44.24% 32.79% 25.35% 36.29% 29.44%

2 321.67 42.67% 31.54% 24.3% 34.07% 26.36%

3 166.17 32.55% 23.44% 17.52% 26.18% 21.54%

4 194.29 29.53% 21.02% 15.5% 23.37% 19.28%

5 203.6 16.17% 10.33% 6.54% 14.71% 9.39%

100 157.13 13.83% 8.47% 4.98% 10.23% 6.41%

 
Table 6.4. Makespan and average energy savings with respect to out-degree 
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6.1.2 Results for EAGS-D 

The amount of energy consumed was measured for HNPD and EAGS-D for 

different test sets of random DAGs. Test sets were created by combining results from 

DAGs with similar properties, such as the number of nodes or CCR.  

The amount of energy consumed was measured for the five different strategies 

explained before, 5V/off, 2V during idle, 3.3V during idle, 2V scale, and 3.3V scale. 

The first test set was achieved by combining DAGs with respect to number of 

nodes. The energy saving was averaged over DAGs with varying CCR, α, β, out-degree, 

and PNR. Figure 6.6 shows the average energy saved by EAGS-D over HNPD with 

respect to number of nodes.  

The percentage of energy savings increased with increasing the number of nodes. 

Average energy savings is 15% for a DAG of 10 nodes and the savings gradually 

increases to 30% for 1000 node DAGs. Larger numbers of nodes increase the chance of 

dependency between tasks, causing a slight increase in the processor wait time and 

accordingly increasing energy savings.  

Average energy savings ranges between 15% and 30% for processor using 5V/off 

technique, 13% and 30% for 2V during idle, 12% and 30% when using 3.3V during idle, 

14% and 31% for 2V scale, and 12% and 30% for 3.3V scale. 
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Figure 6.6. Average energy savings with respect to number of nodes 

 

Number of 
Nodes makespan 

Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
scale 3.3V Scale 

10 164.3 15.24% 13.36% 12.13% 14.61% 12.75%

20 169.02 15.65% 14.79% 14.05% 15.31% 14.55%

40 318.07 26.02% 25.36% 24.85% 15.75% 15.57%

60 416.31 28.81% 28.33% 27.99% 28.61% 28.27%

80 537.6 30.43% 30% 29.41% 30.26% 31.07%

100 668.29 29.88% 29.6% 29.8% 29.77% 30.58%

500 799.83 30.67% 30.66% 30.3% 31.89% 30.78%

1000 1345.7 30.88% 30.78% 30.55% 31.09% 30.89%
 

Table 6.5. Makespan and average energy savings with respect to number of nodes 
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The second test set combines DAGs with respect to CCR. The average energy 

savings is averaged for DAGs with varying n, α, β, out-degree, and PNR values.  

In Figure 6.7 the average energy savings has been plotted with respect to CCR.  

The average energy savings increased with increasing CCR. When CCR increases, 

processors incur longer idle times due to communication between tasks. Our algorithm is 

able to use such idle times to achieve energy savings.  

The average energy savings over HNPD listed in Table 6.6 ranges from 8% for 

CCR = 0.1 to 43% when CCR = 10 for 5V/off technique. Savings are smaller for 2V 

during idle; they range between 4% and 39%. Savings are even smaller for the 3.3V 

during idle; they are 2% for CCR = 0.1 and 32% when CCR = 10. Savings are higher for 

2V scale than 2V during idle; they range from 6% when CCR = 0.1 to 50% for CCR = 10. 

And finally the savings are 4% for CCR = 0.1 and 48% when CCR = 10 for 3.3V scale.  
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Figure 6.7. Average energy savings with respect to CCR 

 

CCR Makespan 
Percentage of energy savings 

5V/off  2V  
during idle 

3.3V during 
idle 

2V  
Scale 3.3V Scale 

0.1 108.44 8.1% 4.25% 2.37% 6.92% 4.41%

0.5 119.11 13.11% 8.81% 5.62% 10.33% 9.38%

1 140.56 24.38% 21.03% 18.8% 21.67% 16.01%

5 206.78 40.58% 33.86% 30.74% 48.67% 47.03%

10 261.67 43.08% 38.98% 32.6% 50.71% 48.42%

 

Table 6.6. Makespan and average energy savings for different CCR values 
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  The third test set combines DAGs with respect to processor to node ratio, PNR. 

The average energy savings were averaged over randomly generated DAGs with varying 

n, CCR, α, β, and out-degree. Figure 6.8 shows the average energy saving with respect to 

PNR. 

  Figure 6.8 shows a decrease in the average energy savings with increasing PNR. 

This is because increasing number of processors allows several parallel task executions, 

thus minimizing the wait times. The average energy savings measured were 28% for PNR 

= 25% for the 5V/off technique, 27% if processors operate at 2V during idle, 27% for 

3.3V during idle, and 27% if they operate at either 2V scale or 3.3V scale. But for PNR =  

100% the average energy savings for all five strategies were almost equal to 25%, which 

is due to the significant decrease in the processor’s wait time.  
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Figure 6.8 Average energy savings with respect to PNR 
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Another test set combined DAGs with respect to shape parameter α. The average 

energy savings was computed over 36,000 randomly generated DAGs with varying n, 

PNR, CCR, β, and out-degree.  

In Figure 6.9 the average energy savings for the five operating strategies were 

plotted with respect to α. The results in this figure indicate that the overall energy savings 

marginally increased with increasing α from 0.5 to 1 and significantly decreased when α 

= 2. Increasing α increases parallelism in the DAG, resulting in more idle time for the 

processors due to the task dependency, but when α = 2 all this idle time is being used by 

processors to duplicate tasks and so the average energy savings decreased, which was not 

the case with EADAGS. The average energy savings were measured as 18% when α = 

0.5, 22% when α = 1, and 3% when α = 2 as in Table 6.7.  
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Figure 6.9. Average energy savings with respect to α 
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Shape 
Parameter Makespan 

Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

0.5 97.73 19.75% 18.44% 17.59% 19.33% 18.01%

1 190.6 23.82% 22.62% 21.84% 22.89% 22.15%

2 218.73 3.38% 3.3% 3.25% 3.41% 3.33%

 

Table 6.7. Makespan and average energy savings for different shape parameters  

 

The last test set combines DAGs with respect to out-degree. The average energy 

savings were averaged over 21,600 randomly generated DAGs with varying n, α, β, CCR, 

PNR.  

Figure 6.10 shows the average energy savings with respect to five values for out-

degree. The results in this figure indicate that the increase in out-degree results in smaller 

average energy savings. A larger out-degree allows many processors to run in parallel.  

The amount of energy that could be saved ranged between 25% and 10% for 

processors using 5V/off technique, 23% and 7% for 2V during idle, 20% and 5% for 

3.3V during idle, 24% and 9% for 2V scale, and finally 21% to 6% when 3.3V scale is 

used as shown in Table 6.8. 
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Figure 6.10. Average energy savings with respect to out-degree 

 

Out-degree Makespan 
Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

1 158.9 25.44% 23.45% 20.74% 24.72% 21.64%

2 218.06 22.68% 21.04% 19.35% 22.19% 20.38%

3 144.93 21.09% 18.44% 16.84% 19.07% 17.33%

4 164.03 19.33% 16.17% 13.97% 17.41% 14.86%

5 138.27 12.16% 10.86% 9.46% 12.03% 10.82%

100 106.71 9.67% 7.36% 5.47% 9.11% 6.71%

 

Table  6.8. Makespan and average energy savings with respect to out-degree 
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Regardless of the changing parameters, the average energy savings for EADAGS 

is higher than the average energy savings measured for EAGS-D. That is due to the task 

duplication in EAGS-D. EAGS-D attempts to duplicate the predecessor of tasks to 

decrease the length of the time for which the node is awaiting data by making use of the 

processor’s idle time. So the same task may be executed on several processors to reduce 

the makespan. And since we use the processor’s idle time to save energy, reduction of 

that time reduces the average energy that could be saved. 

 

6.2 Results for real world problems 

To evaluate the performance of the proposed algorithms, we used task graphs of 

four real world problems: Gaussian elimination [Wu90], Molecular dynamics code 

[Chun92], fast Fourier Transform [Chun92], and Sieve of Eratosthenes [Bask00].  

 

6.2.1 Gaussian elimination 

In mathematics, Gaussian elimination or Gauss-Jordan elimination, named after 

Carl Friedrich Gauss and Wilhelm Jordan, is an algorithm in linear algebra for 

determining the solution of a system of linear equations, for determining the rank of a 

matrix, and for calculating the inverse of an invertible square matrix [Corm90]. Gaussian 

Elimination is a systematic application of elementary row operations to a system of linear 

equations in order to convert the system to upper triangular form. Once the coefficient 

matrix is in upper triangular form, we use back substitution to find a solution. The 

general procedure for Gaussian Elimination can be summarized in the steps in Table 6.9.  



 

Gaussian Elimination Steps 

1. Write the augmented matrix for the system of linear 

equations.  

2. Use elementary row operations on the augmented matrix 

[A|b] to transform A into upper triangular form. If a zero is 

located on the diagonal, switch the rows until a nonzero is 

in that place. If you are unable to do so, stop; the system 

has either infinite or no solutions.  

3. Use back substitution to find the solution of the problem. 

 Table 6.9. Gaussian elimination algorithm steps 

The computational complexity of Gaussian elimination is O(n3); that is, the 

number of operations required is (approximately) proportional to n3 for a matrix of size n 

x n. The DAG for the Gaussian elimination algorithm for n=3, n=4, and n=5 is shown in 

Figure 6.11 where n is the matrix size. Each Tk,k represents a pivot column operation and 

Tk,j is an update operation. The total number of tasks in a graph is 
2

22 −+ nn , where n is 

the size of the matrix. 

In the simulation, a matrix of size 8 x 8 has been used to evaluate EADAGS. 

Since the structure of the graph is fixed only the number of processors and the CCR 

values were varied. For a matrix of size 8 the total number of tasks in the graph is 35 and 

largest number of tasks at a single level is 7 so the number of processors is bounded to 
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7. CCR values were 0.1, 0.5, 1.0, 5.0, and 10. In this experiment since the same operation 

is executed at every processor and the same information is communicated from one 

processor to another, a uniform computation cost for all tasks and equal communication 

cost for all communication links were assumed.  
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Figure 6.11. Gaussian elimination task graph (a) matrix of size 3, (b) matrix of size 4,  

(c) matrix of size 5 

 

 

 
71



 
72

6.2.1.1 Results for EADAGS 

  Figure 6.12 and Figure 6.13 show the average energy savings using EADAGS 

over DPS with respect to number of processors and CCR values. Figure 6.12 shows an 

increase in the average energy savings with increasing number of processors. This is 

because at each level only a certain number of tasks can be executed at the same time so 

increasing the available processors number produces more idle time, thus increasing the 

energy savings.  The average energy savings measured were 32% for 2 processors using 

the 5V/off technique, 27% of energy savings if processors operate at 2V during idle, 18% 

energy savings if processors use 3.3V during idle, 29% energy savings for 2V scale, and 

19% for 3.3V scale. When three processors are used, the average energy were 52% for 

the 5V/off technique, 43% and 29% when processors scaled down during their idle time 

to 2V and 3.3V respectively, and 45% when processors use the 2V scale, and 30% for the 

3.3V scale.  For four processors the average energy savings were 63%, 53%, 36%, 54%, 

and 36% for the 5V/off, 2V during idle, 3.3V during idle, 2V scale, and 3.3V scale 

respectively.  The average energy savings were 69%, 57%, 38%, 58%, and 39% when 

processors use the 5V/off technique, 2V during idle, 3.3V during idle, 2V scale, and 3.3V 

scale respectively. For 6 processors the average energy savings were 74%, 62%, 42%, 

63%, and 42% for the 5V/off, 2V during idle, 3.3V during idle, 2V scale, and 3.3V scale 

respectively.  Finally, the average energy savings were 77%, 64%, 43%, 65%, and 44% 

when 7 processors are used for the 5V/off technique, 2V during idle, 3.3V during idle, 

2V scale, and 3.3V scale respectively.  
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Figure 6.12. Average energy savings for Gaussian elimination algorithm with EADAGS 

with different number of processors 
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Figure 6.13. Average energy savings for Gaussian elimination algorithm with EADAGS 

with different CCR values 
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Figure 6.13 plots the average energy savings with respect to different CCR values. 

The average savings increased with increasing CCR. The average energy savings over 

DPS ranges from 52% for CCR = 0.1 to 74% when CCR = 10 for 5V/off technique. 

Savings are smaller for 2V during idle; they range between 44% and 62%. Savings are 

even smaller for the 3.3V during idle; they are 29% for CCR = 0.1 and 41% for CCR = 

10, while for 2V scale and 3.3V scale the average energy savings over DPS ranges from 

45% for CCR = 0.1 to 62% when CCR = 10 and 30% for CCR = 0.1 and 42% for CCR = 

10 respectively.  Table 6.10 and Table 6.11 list the makespan and the average energy 

savings for different number of processors and different CCR values for the EADAGS 

algorithm. 

 

Number of 
processors 

 
Makespan 

Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

2 820 32.19 % 27.04 % 18.17 % 28.97% 19.46%

3 824.4 52.1 % 43.77 % 29.41 % 45.15% 30.34%

4 860 63.91 % 53.69 % 36.07 % 54.75% 36.79%

5 784.8 68.19 % 57.28 % 38.49 % 58.22% 39.12%

6 851.2 74.63 % 62.69 % 42.12 % 63.44% 42.63%

7 831.2 77.3 % 64.93 % 43.63 % 65.61% 44.08%

   

Table 6.10. Makespan and average energy savings for different number of processors for 

Gaussian elimination with EADAGS 
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CCR 
 Makespan 

Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

0.1 381.33 52.69 % 44.26 % 29.74 % 45.94% 30.87%

0.5 421.67 54.19 % 45.52 % 30.58 % 47.06% 31.62%

1 480 56.41 % 47.38 % 31.84 % 48.76% 32.76%

5 1063.33 69.55 % 58.42 % 39.25 % 59.06% 39.68%

10 1796.67 74.11 % 62.25 % 41.83 % 62.63% 42.08%

 

Table 6.11. Makespan and average energy savings with respect to CCR for Gaussian 

elimination with EADAGS 

 

6.2.1.2 Results for EAGS-D 

  The same number of processors and values for CCR were tested in the second part 

of this experiment to evaluate EAGS-D.  Figure 6.14 shows the average energy savings 

for EAGS-D with respect to number of processors.  The average energy savings 

measured were 21% for 2 processors in the 5V/off technique, 17% when processors 

operate at 2V during idle, 11% if they operate at 3.3V during idle, 20% for 2V scale, and 

13% for 3.3V scale. These values increase gradually with increasing the number of 

processors due to increasing idle time. The average energy savings were 69%, 58%, 38%, 

59%, and 39% when 7 processors are used for the 5V/off technique, 2V during idle, 3.3V 

during idle, 2V scale, and 3.3V scale respectively. 



0%

20%

40%

60%

80%

100%

2 3 4 5 6 7
Number of processors

A
ve

ra
ge

 e
ne

rg
y 

sa
vi

ng
s

5V/off
2V during idle
3.3V during idle
2V scale
3.3V scale

 

Figure 6.14. Average energy savings for Gaussian elimination algorithm with EAGS-D 

with different number of processors 

 

Figure 6.15 plots the average energy savings with respect to different CCR values. 

The average savings increase with increasing CCR. The average energy savings over 

HNPD ranges from 33% for CCR = 0.1 to 69% when CCR = 10 for 5V/off technique. 

Savings are smaller for 2V during idle operating voltage; they range between 27% and 

58%. Savings are even smaller for the 3.3V operating voltage; they are 18% for CCR = 

0.1 and 39% for CCR = 10, while for 2V scale and 3.3V scale the average energy savings 

over HNPD ranges from 30% for CCR = 0.1 to 59% when CCR = 10 and 20% for CCR = 

0.1 and 40% for CCR = 10 respectively.  Table 6.12 and Table 6.13 list the makespan and 

the average energy savings for different number of processors and different CCR values 

for the EAGS-D algorithm. 
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Figure 6.15. Average energy savings for Gaussian elimination algorithm with EAGS-D 

algorithm with different CCR values 
 
 

Number of 
processors 

 
Makespan 

Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

2 484 21.15 % 17.76 % 11.94 % 20.48% 13.76%

3 442.4 32.93 % 27.66 % 18.59 % 29.79% 20.02%

4 432 45.68 % 38.37 % 25.78 % 40.04% 26.91%

5 432 56.78 % 47.69 % 32.05 % 49.03% 32.95%

6 432 63.98 % 53.74 % 36.11 % 54.86% 36.86%

7 432 69.13 % 58.07 % 39.02 % 59.02% 39.66%

   
Table 6.12. Makespan and average energy savings for different number of processors for  

Gaussian elimination with EAGS-D 
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CCR 
 

Makespan 
Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

0.1 303.67 33.21 % 27.9 % 18.74 % 30.03% 20.17%

0.5 305 33.59 % 28.22 % 18.96 % 30.33% 20.38%

1 350 42.13 % 35.39 % 23.78 % 37.27% 25.04%

5 580 62.7 5 52.67 % 35.39 % 53.82% 36.16%

10 673.33 69.73 % 58.58 % 39.36 % 59.58% 40.03%

 
Table 6.13. Makespan and average energy savings with respect to CCR for Gaussian 

elimination with EAGS-D 
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Figure 6.16. Average energy savings for Gaussian elimination algorithm with 

EADAGS and EAGS-D with voltage scaling levels 
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Figure 6.16 shows the average energy savings for both EADAGS and EAGS-D 

with respect to the five voltage scaling levels tested for the Gaussian elimination 

algorithm for a matrix of size 8. The overall average energy savings for EAGS-D is lower 

than the average energy savings measured for EADAGS. That is due to the nature of the 

EAGS-D algorithm, which uses task duplication to minimize the makespan. That 

duplication uses a big portion of the processor’s idle time and that reduces energy 

savings.  

 

6.2.2 Molecular dynamic code  

Figure 6.17 represents the DAG of a molecular dynamics code as given in 

[Chun92]. We used this graph to evaluate the performance of EADAGS and EAGS-D, 

since the graph has a fixed structure and fixed number of nodes, the only parameters that 

could be varied was the number of processors and CCR values. Since there are at most 

seven tasks at any level in Figure 6.17, the number of processors were bounded to seven. 

The amount of energy consumed is measured for the five different voltage scaling levels 

explained earlier. We assumed that the computation costs of all nodes are not equal and 

the communication costs were also not equal for all links since the task computed at each 

node and the data communicated from one node to another is different. Five values for 

CCR were used in our experiments: 0.25, 0.5, 1, 5, and 10. 
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Figure 6.17.   Directed a-cyclic graph (DAG) for a molecular dynamics code 
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6.2.2.1 Results for EADAGS 

Figure 6.18 and Figure 6.19 show the average energy savings for EADAGS with 

respect to number of processors and CCR values respectively. Figure 6.18 shows an 

increase in the average energy savings with increasing number of processors. The 

average energy savings measured was 22% for 2 processors in the 5V/off technique, 18% 

when processors operate at 2V during idle, 12% if they operate at 3.3V during idle, 19% 

for the 2V scale, and 13% for the 3.3Vscale. When three processors are used, the average 

energy savings were 50% for the 5V/off technique, 40% when processors scaled down to 

2V during idle, 29% for 3.3V during idle, 44% for 2V scale, and 30% for 3.3V scale.  For 

four processors, the average energy savings were 52%, 43%, 29%, 44%, and 30% for the 

5V/off, 2V during idle, 3.3V during idle, 2V scale, and 3.3V scale respectively.  The 

average energy savings were 59%, 49%, 33%, 50%, and 33% when 5 processors are used 

for the 5V/off technique, 2V during idle, 3.3V during idle, 2V scale, and 3.3V scale 

respectively. For 6 processors the average energy savings were 63%, 52%, 35%, 53%, 

and 36% for the 5V/off, 2V during idle, 3.3V during idle, 2V scale, and 3.3V scale 

respectively.  Finally, the average energy savings were 67%, 57%, 38%, 57%, and 38% 

when 7 processors are used for the 5V/off technique, 2V during idle, 3.3V during idle, 

2V scale, and 3.3V scale respectively.  

  The makespan and the average energy savings for different number of processors 

are listed in Table 6.14. 
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Figure 6.18, Average energy savings for molecular dynamics code with EADAGS with 

different number of processors 

 
 

Number of 
processors 

 
Makespan 

Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

2 740.8 22.08 % 18.55 % 12.46 % 19.79% 13.30%

3 859.2 52.42 % 44.04 % 29.59 % 44.82% 30.11%

4 67.2 52.19 % 43.84 % 29.46 % 44.64% 30.00%

5 663.2 59.19 % 49.72 % 33.41 % 50.41% 33.87%

6 634 63.07 % 52.98 % 35.6 % 53.61% 36.02%

7 631.2 67.09 % 57.09 % 38.36 % 57.64% 38.73%

    
Table 6.14. Makespan and average energy savings for different number of processors for 

molecular dynamics code with EADAGS 
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Figure 6.19 plots the average energy savings with respect to different CCR values. 

The average savings increased with increasing CCR. The average energy savings over 

DPS ranges from 45% for CCR = 0.1 to 64% when CCR = 10 for the 5V/off technique. 

Savings are smaller for 2V during idle; they range between 38% and 54%. Savings are 

even smaller for the 3.3V during idle; they are 25% for CCR =  0.1 and 36% for CCR = 

10, while for 2V scale and 3.3V scale the average energy savings over DPS ranges from 

39% for CCR = 0.1 to 54% when CCR = 10 and 26% for CCR = 0.1 and 36% for CCR = 

10 respectively. The makespan and the average energy savings for different CCR values 

are listed in Table 6.15. 
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Figure 6.19. Average energy savings for molecular dynamics code with EADAGS with 

different CCR values 
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CCR 
 Makespan 

Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

0.1 391.33 45.99 % 38.63 % 25.96 % 39.72% 26.69%

0.5 411.67 46.21 % 38.81 % 26.08 % 39.85% 26.78%

1 453.33 48.29 % 40.56 % 27.25 %  41.50% 27.89%

5 853.33 59.11 % 49.65 % 33.36 % 50.17% 33.71%

10 1396.67 64.5 % 54.18 % 36.41 % 54.51% 36.63%

 
Table 6.15. Makespan and average energy savings with respect to CCR for molecular 

dynamics code with EADAGS 

 

6.2.2.2 Results for EAGS-D 

  Figure 6.20 and Figure 6.21 show the average energy savings for EAGS-D with 

respect to number of processors and CCR values respectively.  

  Figure 6.20 shows an increase in the average energy savings with increasing 

number of processors. The average energy savings measured were 18% for 2 processors 

using the 5V/off technique, 15% when processors operate at 2V during idle, 10% if they 

operate at 3.3V during idle, 17% for 2V scale, and 11% for 3.3V scale. The average 

energy savings increases to 61%, 51%, 34%, 52%, and 35% when 7 processors are used 

for the 5V/off technique, 2V during idle, 3.3V during idle, 2V scale, and 3.3V scale 

respectively. The makespan and the average energy savings for different number of 

processors are listed in Table 6.16. 
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Figure 6.20. Average energy savings for molecular dynamics code with EAGS-D with 

different number of processors 

 
 

Number of 
processors 

 
Makespan 

Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

2 566.4 18.87 % 15.85 % 10.65 % 17.44% 11.71%

3 488.8 27.58 % 23.17 % 15.57 % 24.48% 16.45%

4 467.2 41.6 % 34.95 % 23.48 % 36.02% 24.20%

5 459.2 52.96 % 44.49 % 29.89 % 45.38% 30.49%

6 445.2 58.15 % 48.85 % 32.82 % 49.64% 33.35%

7 438.4 61.72 % 51.85 % 34.84 % 52.56% 35.31%

    
Table 6.16. Makespan and average energy savings for different number of processors for 

molecular dynamics code with EAGS-D 
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  Figure 6.21 plots the average energy savings with respect to different CCR values. 

The average savings increased with increasing CCR. The average energy savings over 

HNPD ranges from 24% for CCR = 0.1 to 74% when CCR = 10 for the 5V/off technique. 

Savings are smaller for 2V during idle; they range between 20% and 62%. Savings are 

even smaller for the 3.3V during idle; they are 13% for CCR = 0.1 and 41% for CCR = 

10, while for 2V scale and 3.3V scale the average energy savings over HNPD ranges 

from 220% for CCR = 0.1 to 62% when CCR = 10 and 15% for CCR = 0.1 and 42% for 

CCR = 10 respectively. The makespan and the average energy savings for different CCR 

values are listed in Table 6.17. 
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Figure 6.21. Average energy savings for molecular dynamics code with EAGS-D with 

different CCR values 
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CCR 
 Makespan 

Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

0.1 299.33 25.37 % 21.31 % 14.32 % 22.73% 15.27%

0.5 321.67  30.13 % 25.31 % 17.01 % 26.64% 17.90%

1 360 38.28 % 32.16 % 21.61 % 33.35% 22.41%

5 506.67 49.51 % 41.59 % 27.94 % 42.46% 28.53%

10 900 74.12 % 62.26 % 41.83 % 62.75% 42.16%

 
Table 6.17. Makespan and average energy savings with respect to CCR for molecular 

dynamics code with EAGS-D 

 
 

Figure 6.22 shows the average energy savings for both EADAGS and EAGS-D 

with respect to the five voltage scaling strategies tested for the molecular dynamic code 

algorithm. The overall average energy savings for EAGS-D is lower than the average 

energy savings measured for EADAGS. That is due to the nature of the EAGS-D 

algorithm which uses task duplication to minimize the makespan. That duplication uses a 

big portion of the processor’s idle time and that reduces energy savings.  
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Figure 6.22. Average energy savings for molecular dynamics code algorithm with 

EADAGS and EAGS-D with voltage scaling levels 

 

 

6.2.3 Fast Fourier Transform FFT 

FFT is an efficient algorithm to compute the discrete Fourier transform (DFT) and 

its inverse. FFTs are of great importance to a wide variety of applications, from digital 

signal processing to solving partial differential equations to algorithms for multiplying 

large integers. DFT and FFT are used to generate frequency analysis of a discrete non-

periodic signal. The computation of DFT is complicated; it involves many additions and 

multiplications involving complex numbers. Even a simple eight sample signal would 

require 49 complex multiplications and 56 complex additions to work out the DFT. At 

this level it is still manageable; however a realistic signal could have 1024 samples 
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which requires over 20,000,000 complex multiplications and additions. FFT is a simpler 

method of laying out the computation and much faster for larger number of samples. 

The idea behind the FFT is the divide and conquer approach, by breaking up the 

original N point sample into two (N/2) sequences. This is because a series of smaller 

problems is easier to solve than one large one. The DFT requires (N-1)2 complex 

multiplications and N(N-1) complex additions as opposed to the FFT's approach, which 

only requires 1 multiplication and 2 additions and the recombination of the points which 

is minimal [Corm90].  

The recursive, one-dimensional FFT task graph for 4 data points is shown in 

Figure 6.23 [Chun92]. The FFT algorithm consists of two parts: recursive calls and the 

butterfly operations. The task graph in Figure 6.23 can be divided into two parts; the 

tasks above the dashed line are the recursive call tasks while the tasks below the dashed 

line are the butterfly operation tasks.  



T1 

T2 T3 

T4 T5 T6 T7 

T8 T9 T10 

T12 T13 T14 

T11 

T15 

 

Figure 6.23. The generated DAG for FFT with four points 

We used this task graph to evaluate the performance of EADAGS and EAGS-D. 

Since the graph has a fixed structure and fixed number of nodes, the only parameters we 

changed were the number of processors and CCR values. Since there are at most four 

tasks at any level in Figure 6.23, the number of processors were bounded to four 

processors starting with only 2 processors in the system and up to 4 processors 

incrementing by 1. Each path from the entry node to an exit node is a critical path since 

the computation cost of tasks in any level are equal and the communication costs of all 

edges between two consecutive levels are equal. The amount of energy consumed was 

measured for the five different strategies listed before.  
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6.2.3.1 Results for EADAGS 

  Figure 6.24 shows the average energy savings for EADAGS with respect to 

number of processors. Figure 6.24 shows a decrease in the average energy savings with 

increasing number of processors. 

  This is because increasing number of processors allows several parallel 

task executions, thus minimizing the wait times which were used by our algorithm to 

save energy. The average energy savings measured were 34% for 2 processors using the 

5V/off technique, 29% when processors operate at 2V during idle, 19% if they operate at 

3.3V during idle, 30% for 2V scale, and 20% for 3.3V scale. When three processors are 

used, the average energy were 51% for the 5V/off technique, 42% for 2V during idle, 

27% for 3.3V during idle, 44% for 2V scale, and 29% savings for 3.3V scale.  For four 

processors, the average energy savings are 53%, 45%, 31%, 47%, and 33% for the 

5V/off, 2V during idle, 3.3V during idle, 2V scale, and 3.3V scale respectively.  Table 

6.18 lists the average energy savings and the makespan for EADAGS over DPS for 

different number of processors.  
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Figure 6.24. Average energy savings for FFT with EADAGS with different number of 

processors 

 

Number of 
processors Makespan 

Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

2 233 34.97% 29.37% 19.74% 30.08% 20.43%

3 296 55.89% 46.95% 31.54% 44.02% 29.11%

4 232.8 51.32% 43.11% 28.96% 47.66% 33.59%

    
 

Table 6.18. Makespan and average energy savings with respect to number of processors 

for FFT with EADAGS 
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Figure 6.25 plots the average energy savings with respect to different CCR values. 

The average savings increased with increasing CCR. When CCR increases, processors 

incur longer idle times due to communication between tasks. Our algorithm was able to 

use such idle times to achieve energy savings.  

The average energy savings over DPS ranges from 23% for CCR = 0.1 to 77% 

when CCR = 10 for 5V/off technique. Savings are smaller for 2V during idle; they range 

between 19% and 64%. Savings are even smaller for the 3.3V during idle; they are 12% 

for CCR = 0.1 and 43% for CCR = 10, while for 2V scale and 3.3V scale the average 

energy savings over DPS ranges from 23% for CCR = 0.1 to 64% when CCR = 10 and 

16% for CCR = 0.1 and 43% for CCR = 10 respectively. 
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Figure 6.25. Average energy savings for FFT with EADAGS with different CCR 

values 
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Table 6.19 lists the average energy savings and the makespan for EADAGS over 

DPS for different CCR values.  

 
 

CCR 
 

Makespan 
Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

0.1 155.33 25.30 % 21.25 % 14.28 % 23.13% 16.23%

0.5 163.33 29.95 % 25.16 % 16.9 % 25.32% 16.67%

1 180 36.5 % 30.67 % 20.61 % 34.67% 23.89%

5 340 66.42 % 55.79 % 37.48 % 55.58% 38.81%

10 540 78.79 % 66.19 % 44.47 % 64.22% 43.32%

    

Table 6.19. Makespan and average energy savings with respect to CCR for FFT with 

EADAGS 

 

6.2.3.2 Results for EAGS-D 

  Figure 6.26 and Figure 6.27 show the average energy savings for EAGS-D with 

respect to number of processors and CCR values respectively.  

  Figure 6.26 shows an increase in the average energy savings with increasing 

number of processors. The average energy savings measured were 18% for 2 processors 

for the 5V/off technique, 14% for 2V during idle, 9% for 3.3V during idle time, 15% for 

2V scale, and 10% for 3.3V scale. When three processors are used, the average energy 

were 39% for the 5V/off technique, 33% for 2V during idle, 21% for 3.3V during idle, 

34% for 2V scale, and 22% for 3.3V scale.  For four processors, the average energy 

savings were 49%, 41%, 27%, 42%, and 29% for the 5V/off, 2V during idle, 3.3V during 

idle, 2V scale, and 3.3V scale respectively.   
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Figure 6.26. Average energy savings for FFT with EAGS-D with different number of 

processors 

 

Figure 6.27 plots the average energy savings with respect to different CCR values. 

The average savings increased with increasing CCR. When CCR increases, processors 

incur longer idle times due to communication between tasks. Our algorithm was able to 

use such idle times to achieve energy savings. The average energy savings over HNPD 

ranges from 16% for CCR = 0.1 to 61% when CCR = 10 for 5V/off technique. Savings 

are smaller for 2V during idle; they range between 13% and 51%. Savings are even 

smaller for the 3.3V during idle; they are 9% for CCR = 0.1 and 34% for CCR = 10, 

while for 2V scale and 3.3V scale the average energy savings over HNPD ranges from 

15% for CCR = 0.1 to 51% when CCR = 10 and 11% for CCR = 0.1 and 35% for CCR = 

10 respectively. Tables 6.20 and 6.21 lists the average energy savings for EAGS-D over 
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HNPD for different processors number and for different CCR values respectively 
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Figure 6.27. Average energy savings for FFT with EAGS-D with different CCR values 

 

Number of 
processors Makespan 

Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

2 218.4 18.09 % 14.88 % 9.34% 15.82% 10.90%

3 208 39.96 % 33.25 % 21.68 % 34.18% 22.21%

4 199.2 49.93 % 41.62 % 27.31 % 42.15% 29.23%

    
Table 6.20. Makespan and average energy savings for different number of processors for 

FFT with EAGS-D 
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CCR 

 
Makespan 

Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

0.1 136 16.52 % 13.88 % 9.33 % 15.45% 11.74%

0.5 146.67 22.71 % 19.08 % 12.82 % 20.05% 13.46%

1 160 27.78 % 23.33 % 15.67 % 24.21% 16.56%

5 300 51.48 % 41.64 % 24.7 % 42.53% 26.09%

10 300 61.48 % 51.64 % 34.7 % 51.48% 35.91%

    
Table 6.21. Makespan and average energy savings with respect to CCR for FFT with 

EAGS-D 
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Figure 6.28. Average energy savings for FFT with EADAGS and EAGS-D with voltage 

scaling levels 
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Figure 6.28 shows the average energy savings for both EADAGS and EAGS-D 

with respect to the five voltage scaling strategies tested for a four point FFT DAG. The 

overall average energy savings for EAGS-D is lower than the average energy savings 

measured for EADAGS. That is due to the nature of the EAGS-D algorithm, which uses 

task duplication to minimize the makespan. That duplication uses a big portion of the 

processor’s idle time and that reduces the amount of energy savings.  

 

6.2.4. Sieve of Eratosthenes  

Sieve Eratosthenes is a method of identifying all prime numbers in a sequence of 

numbers up to a certain N. A prime number is a natural number greater than 1 that can be 

divided only by itself and by 1, while a composite number n is a natural number that can 

be divided by a number less than n and greater that 1. The Sieve of Eratosthenes 

identifies all prime numbers up to a given number N as follows [Corm90]: 

1. Write down all numbers 1, 2, 3,…, N.  We will eliminate composites by marking 

them. Initially all numbers are unmarked. 

2. Mark number 1 as special (it is neither prime nor composite). 

3. Set k = 1. While k is less than the square root of N, do this: 

a. Find the first number in the list greater than k that has not been identified 

as composite (the first number found is 2) and call it m.  Mark the numbers 

2m, 3m, 4m,…… as composites. (Thus in the first run we mark all even 

numbers greater than 2. In the second run we mark all multiples of 3 

greater than 3.) 



b. m is a prime number; put it on your list. 

c. Set k = m and repeat. 

4. Put the remaining unmarked numbers in the list of prime numbers. 

The Sieve of Eratosthenes algorithm can be presented by a task graph DAG. The 

DAG for the Sieve of Eratosthenes for N = 32 is shown in Figure 6.29.  [Bask00] 
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Figure 6.29. Sieve of Eratosthenes task graph for N = 32 
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In the simulation, we used the graph of Sieve of Eratosthenes for a sequence of 32 

numbers (N = 32) to test both EADAGS and EAGS-D. Since the structure of the graph is 

fixed, only the number of processors and the CCR values were changed. For a sequence 

of 32 numbers, the total number of tasks in the graph is 32 nodes and the largest number 

of tasks at a single level is 16 tasks, so the number of processors was bounded to 8 

processors. CCR had five different values: 0.1, 0.5, 1.0, 5.0, and 10. The amount of 

energy consumed was measured for the five different operating strategies explained 

earlier in Chapter 5.  

 

6.2.4.1 Results for EADAGS 

  Figure 6.30 shows a decrease in the average energy savings with increasing 

number of processors for Sieve of Eratosthenes with EADAGS over DPS. This is because 

increasing number of processor allows several parallel task executions, thus minimizing 

the wait times, which are used by our algorithm to save energy.  

  The average energy savings measured were 23% for 2 processors in the 5V/off 

technique, 19% for 2V during idle, 13% for 3.3V during idle, 21% for 2V scale, and 14% 

for 3.3V scale. When three processors are used, the average energy was 41% for the 

5V/off technique, 33% for 2V during idle, 33% for 3.3V during idle, 35% for 2V scale, 

and 25% for 3.3V scale.  For eight processors, the average energy savings are 65%, 54%, 

36%, 56%,a and 7% for the 5V/off, 2V during idle, 3.3V during idle, 2V scale, and 3.3V 

scale respectively. Table 6.22 lists the makespan and the average energy savings for each 

different number of processors tested. 
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Figure 6.30. Average energy savings for different number of processors for Sieve of 

Eratosthenes with EADAGS 

 
   

Number of 
processors Makespan 

Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

2 502.4 23.57 % 19.73 % 13.26 % 21.19% 14.89%

3 472 41.35 % 33.14 % 22.37 % 35.58% 25.82%

4 384.8 43.12 % 34.22 % 24.34 % 37.18% 27.62%

5 382.4 53.78 % 45.18 % 30.36 % 47.97% 32.20%

6 382.4 61.49 % 51.65 % 34.7 % 54.98% 35.91%

7 382 62.89 % 54.19 % 36.16 % 56.91% 38.22%

8 391.2 65.26 % 54.82 % 36.83 % 56.33% 37.83%
 

Table 6.22. Makespan and average energy savings for different number of processors for 

Sieve of Eratosthenes with EADAGS 
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Figure 6.31 plots the average energy savings with respect to CCR. The average 

energy savings increased with increasing CCR. When CCR increases, processors incur 

longer idle times due to communication between tasks. Our algorithm is able to use such 

idle times to achieve energy savings. The average energy savings over DPS ranges from 

29% for CCR = 0.1 to 77% when CCR = 10 for 5V/off technique. Savings are smaller for 

2V during idle; they range between 24% and 65%. Savings are even smaller for the 3.3V 

during idle; they are 16% for CCR = 0.1 and 43% for CCR = 10, while for 2V scale and 

3.3V scale the average energy savings over DPS ranges from 31% for CCR = 0.1 to 65% 

when CCR = 10 and 20% for CCR = 0.1 and 45% for CCR = 10 respectively. Table 6.23 

lists the average energy savings and the makespan for EADAGS over DPS for different 

CCR values.  
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Figure 6.31.  Average energy savings for different CCR values for Sieve of Eratosthenes 

with EADAGS 
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CCR Makespan 
Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

0.1 233.71 29.69 % 24.53 % 16.05 % 31.01% 20.84%

0.5 244.29 35.23 % 29.5 % 19.75 % 33.69% 21.29%

1 268.57 41.57 % 33.49 % 23.46 % 34.19% 23.97%

5 505.71 66.74 % 56.4 % 38.47 % 57.28% 39.77%

10 817.14 77.81 % 65.3 % 43.7 % 65.34% 45.84%

    
Table 6.23. Makespan and average energy savings for different CCR values for Sieve of 

Eratosthenes with EADAGS 

 

6.2.4.2 Results for EAGS-D 

  Figure 6.32 and Figure 6.33 show the average energy savings for EAGS-D with 

respect to the number of processors and CCR values respectively for the DAG for Sieve 

of Eratosthenes.  

  Figure 6.32 shows an increase in the average energy savings with increasing 

number of processors. The average energy savings measured were 12% for 2 processors 

using the 5V/off technique, 10% for 2V during idle, 6% for 3.3V during idle, 13% for the 

2V scale, and 8% for the 3.3V scale. The average energy savings increases to 63%, 53%, 

35%, 54%, and 37%  when 8 processors are used for the 5V/off technique, 2V during 

idle, 3.3V during idle, 2V scale, and 3.3V scale respectively. The makespan and the 

average energy savings for different numbers of processors are listed in Table 6.24. 
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Figure 6.32. Average energy savings for Sieve of Eratosthenes with EAGS-D with 

different numbers of processors 

 

Number of 
processors Makespan 

Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

2 416 12.27 % 10.75 % 6.71 % 13.16% 8.81%

3 354.4 26.93 % 22.56 % 16.72 % 24.63% 18.49%

4 314.4 38.49 % 31.78 % 20.84 % 33.84% 21.67%

5 304 45.34 % 37.39 % 26.35 % 39.45% 27.76%

6 288.8 51.67 % 43.03 % 28.59 % 44.10% 29.99%

7 284 60.37 5 50.71 % 34.07 % 52.74% 35.60%

8 276.8 63.65 % 53.47 % 35.92 % 54.30% 37.79%

    
Table 6.24. Makespan and average energy savings for different numbers of processors for 

Sieve of Eratosthenes with EAGS-D 

 

 
104



Figure 6.33 plots the average energy savings with respect to different CCR values. 

The average savings increased with increasing CCR. The average energy savings over 

HNPD ranges from 29% for CCR = 0.1 to 62% when CCR = 10 for 5V/off technique. 

Savings are smaller for 2V during idle; they range between 25% and 51%. Savings are 

even smaller for the 3.3V during idle; they are 16% for CCR = 0.1 and 35% for CCR = 

10, while for 2V scale and 3.3V scale the average energy savings over HNPD ranges 

from 30% for CCR = 0.1 to 51% when CCR = 10 and 21% for CCR = 0.1 and 35% for 

CCR = 10 respectively. The makespan and the average energy savings for different CCR 

values are listed in Table 6.25. 
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Figure 6.33. Average energy savings for Sieve of Eratosthenes with EAGS-D with 

different CCR values 
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CCR Makespan 
Percentage of energy savings 

5V/off  2V  
during idle 

3.3V 
during idle 

2V  
Scale 3.3V Scale 

0.1 236 29.94 5 25.23 % 16.59 % 30.15% 21.21%

0.5 242.86 34.05 % 28.02 % 18.98 % 31.77% 21.03%

1 257.14 38.66 % 32.5 % 21.8 % 32.32% 21.71%

5 342.86 48.32 % 40.72 % 27.77 % 41.28% 29.37%

10 520 62.38 % 51.87 % 35.74 % 51.71% 35.34%

  
Table 6.25. Makespan and average energy savings for different CCR values for Sieve of 

Eratosthenes with EAGS-D 

 
 

Figure 6.34 shows the average energy savings for both EADAGS and EAGS-D 

with respect to the five voltage scaling strategies tested for Sieve of Eratosthenes. The 

overall average energy savings for EAGS-D is lower than the average energy savings 

measured for EADAGS. That is due to the nature of the EAGS-D algorithm, which uses 

task duplication to minimize the makespan. That duplication uses a big portion of the 

processor’s idle time and that reduces the amount of energy savings.  
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Figure 6.34. Average energy savings for Sieve of Eratosthenes with EADAGS and 

EAGS-D with voltage scaling levels 
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CHAPTER 7 

CONCLUSIONS 

 

We have proposed two new scheduling algorithms, EADAGS and EAGS-D, which try to 

minimize finish time as well as energy consumption by the use of dynamic voltage scaling.  

The results were based on a two part software simulation study. The first part consists of 

a large set of randomly generated DAGs with various characteristics such as number of nodes, 

CCR, shape parameter, processor node ratio, and out degree. For each parameter the results were 

averaged across all other variables. The total number of random DAG generated for evaluating 

each algorithm were 10,800 graphs for each.  

The second part of the simulation contained DAGs for real world problems namely; 

Gaussian elimination, molecular dynamic code, Sieve of Eratosthenes, and Fast Fourier 

transform. These DAGs has a specific structure so numbers of nodes, shape parameter, and out 

degree are fixed. We tested both EADAGS and EAGS-D with different number of available 

processors and CCR. 

The results from the randomly generated DAGs showed that EADAGS algorithm 

resulted in an average energy saving of 40% over simple DPS, while EAGS-D algorithm 

estimated a reduction in energy by 28% which is less than that for EADAGS due to the nature of 

EAGS-D algorithm which involves task duplication.  
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For the second test set, first for Gaussian elimination an average of 44% of energy 

savings were achieved by EADAGS and an average of 37% by EAGS-D. For the molecular 

dynamic code problem the average energy savings with EADAGS and EAGS-D were 46% and 

38% respectively. For FFT the average energy savings measured were 42% and 33% for 

EADAGS and EAGS-D respectively. While for the Sieve of Eratosthenes average energy 

savings for EADAGS and EAGS-D were 40% and 36% respectively. 

The effect of different DAG characteristic on the amount of energy savings is discussed 

next. For both EADAGS and EAGS-D the amount of energy savings increased by increasing the 

number of nodes due to the increase in idle time due to task dependency. The rate of the increase 

is lower in EAGS-D than EADAGS due to task duplication. The increase of CCR resulted in an 

increase in the average energy savings for both EADAGS and EAGS-D. When CCR increases, 

processors incur longer idle times due to communication between tasks. Both algorithms were 

able to use such idle times to achieve energy savings. The results showed that the overall energy 

savings marginally increased with increasing the shape parameter. Increasing shape parameter 

increases parallelism in the DAG resulting in more idle time for the processors due to the task 

dependency. This time was used by both EADAGS and EAGS-D to reduce the consumed 

energy. The last parameter tested was out degree. An increase in out-degree resulted in smaller 

average energy savings. A larger out-degree allows many processors to run in parallel reducing 

the idle time for all processors and so less energy to save.  

The future work can involve applying the voltage scaling technique to other scheduling 

algorithm.  Aiming to find the optimal solution especially to the real world problem and then 

physically implementing them to save energy. 
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