
ENERGY AWARE TASK SCHEDULING ON HETEROGENEOUS SYSTEMS

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee. This

dissertation does not include proprietary or classified information.

Rabab Farouk Abdel-Kader

Certificate of Approval:

Cheryl Seals Sanjeev Baskiyar, Chair
Assistant Professor Associate Professor
Computer Science Computer Science
and Software Engineering and Software Engineering

Levent Yilmaz George T. Flowers
Assistant Professor Interim Dean
Computer Science Graduate School
and Software Engineering

ENERGY AWARE TASK SCHEDULING ON HETEROGENEOUS SYSTEMS

Rabab F. Abdel-Kader

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
December 17, 2007

ENERGY AWARE TASK SCHEDULING ON HETEROGENEOUS SYSTEMS

Rabab F. Abdel-Kader

Permission is granted to Auburn University to make copies of this dissertation and its
discretion, upon request of individuals or institutions and at their expense. The author

reserves all publication rights.

Signature of Author

Date of Graduation

iii

iv

DISSERTATION ABSTRACT

ENERGY AWARE TASK SCHEDULING ON HETEROGENEOUS SYSTEMS

Rabab F. Abdel-Kader

Doctor of Philosophy December 17, 2007
(M.S. Tuskegee University 2002)

(B.S. Suez Canal University, 1998)

128 Typed Pages

Directed by Sanjeev Baskiyar

We consider the problem of scheduling directed a-cyclic task graphs (DAG) on

heterogeneous distributed processor systems with the twin objectives of minimizing

finish time and energy consumption. Previous scheduling heuristics have assigned DAGs

to processors to minimize overall run-time of applications. But due to many new

applications on embedded systems such as high performance DSP in image processing,

multimedia, and wireless security, there is a strong need for scheduling algorithms which

lower energy consumption and yet attain good finish times.

In this research, we employ dynamic voltage scaling (DVS) within the scheduling

heuristics to achieve the twin objectives. The processors used can run on different

discrete operating voltages. Processors can scale down their voltages to slow down in

v

order to reduce energy consumption whenever they idle due to task dependencies.

Specifically, we combine Decisive Path Scheduling (DPS) and Heterogeneous N-

predecessor Duplication (HNPD) with DVS. Using simulations, we show average energy

consumption reductions of 40% over DPS and 28% over HNPD.

The simulations used large number of randomly generated DAGs with various

characteristics as well as DAGs of real world problems. Energy savings increased with

increasing number of nodes or increasing Communication to Computation Ratios (CCR)

whereas it decreased with increasing parallelism (out-degree) or increasing number of

available processors. Increasing nodes, increase tasks dependencies and thus idle times.

When CCR increases, processors are idle longer due to communication between tasks.

Our algorithms used such idle times to achieve energy savings. An increase in out-degree

resulted in smaller average energy savings. A larger out-degree allows more processors to

run in parallel, reducing idle times.

vi

Style manual: IEEE Standard

Software used: Microsoft Word 2007, Microsoft Excel 2007, Microsoft Visual Studio

2003,and C++

vii

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES ... xiii

1. INTRODUCTION ...1

 1.1 Contributions..3

2. RELATED WORKS ..5

 2.1 Power Estimation Techniques ..6

 2.2 Power Optimization Techniques ..8

 2.3 Software power optimization on system level ...9

 2.4 Scheduling to lower energy consumption ..10

3. DYNAMIC VOLTAGE SCALING ..15

 3.1 Power Management Implementation ...19

4. DIRECTED A-CYCLIC GRAPH ...21

 4.1 Performance ...24

5. SCHEDULING ALGORITHMS ...28

 5.1 EADAGS algorithm ...28

 5.2 EAGS-D algorithm ..37

 5.3 Voltage scaling strategies ..46

viii

6. RESULTS AND DISCUSSION ..51

 6.1 Results for random DAGs ..51

 6.1.1 Results for EADAGS ..52

 6.1.2 Results for EAGS-D ...60

 6.2 Results for real world problems ...68

 6.2.1 Gaussian elimination ...68

 6.2.2 Molecular dynamic code ...79

 6.2.3 Fast Fourier transforms ...88

 6.2.4 Sieve of Eratosthenes ..98

7. CONCLUSIONS..108

BIBLIOGRAPHY ..110

ix

LIST OF FIGURES

3.1. Different operating rates for the same task ...17

3.2. Voltage Scaling graph ...19

4.1. A sample DAG ..21

5.1. EADAGS algorithm ..36

5.2. Timeline for machine k ...36

5.3. EAGS-D algorithm ...45

5.4. Timeline for machine k (case 1) ...45

5.5. Timeline for machine k (case 2) ...46

5.6. Timeline for machine k (case 3) ...46

5.7. Different finish times with different execution rates ..49

6.1. Average power savings with respect to number of nodes...53

6.2. Average power savings with respect of CCR ...55

6.3. Average power savings with respect to PNR ..56

6.4. Average power savings with respect to shape parameter ...57

6.5. Average power savings with respect to out-degree ..59

6.6. Average power savings with respect to number of nodes...61

6.7. Average power savings with respect of CCR ...63

x

6.8. Average power savings with respect to PNR ..64

6.9. Average power savings with respect to shape parameter ...65

6.10. Average power savings with respect to out-degree ..67

6.11. Gaussian elimination task graph………………………………………71

6.12. Average power savings for Gaussian elimination algorithm with EADAGS with

different number of processors ..73

6.13. Average power savings for Gaussian elimination algorithm with EADAGS with

different CCR values ..73

6.14. Average power savings for Gaussian elimination algorithm with EAGS-D with

different number of processors ..76

6.15. Average power savings for Gaussian elimination algorithm with EAGS-D with

different CCR values ..77

6.16. Average power savings for Gaussian elimination algorithm with EADAGS and

EAGS-D with voltage scaling levels ...78

6.17. Directed Acyclic graph (DAG) for a molecular dynamics code .. 80

6.18. Average power savings for molecular dynamic code with EADAGS with different

number of processors ...82

6.19. Average power savings for molecular dynamic code with EADAGS with different

CCR values ..83

6.20. Average power savings for molecular dynamic code with EAGS-D with different

number of processors ...85

xi

6.21. Average power savings for molecular dynamic code with EAGS-D with different

CCR values ..86

6.22. Average power savings for molecular dynamic code algorithm with EADAGS and

EAGS-D with voltage scaling levels ...88

6.23. The generated DAG for FFT with four points ..90

6.24. Average power savings for FFT with EADAGS with different number of processors92

6.25. Average power savings for FFT with EADAGS with different CCR values93

6.26. Average power savings for FFT with EAGS-D with different number of processor ...

..95

6.27. Average power savings for FFT with EAGS-D with different CCR values96

6.28. Average power savings for FFT with EADAGS and EAGS-D with voltage scaling

levels ..97

6.29. Sieve of Eratosthenes task graph for N=32 ..99

6.30. Average power savings for different number of processors for Sieve of Eratosthenes

with EADAGS ...101

6.31. Average power savings for different CCR values for Sieve of Eratosthenes with

EADAGS ...102

6.32. Average power savings for Sieve of Eratosthenes with EAGS-D with different

number of processors ...104

6.33. Average power savings for Sieve of Eratosthenes with EAGS-D with different CCR

values ...105

xii

6.34. Average power savings for Sieve of Eratosthenes with EADAGS and EAGS-D with

voltage scaling levels ...107

xiii

LIST OF TABLES

3.1. The relationship between clock frequencies, supply voltage, and power dissipation of

Transmeta’s Crusoe TM5400 microprocessor ...18

5.1. EADAGS algorithm ..32

5.2. EAGS-D algorithm ...40

6.1 Makespan and average power savings with respect to number of nodes for EADAGS..

 ………………………………………………………………………………………..54

6.2. Makespan and average power savings for different CCR values for EADAGS55

6.3. Makespan and average power savings for different shape parameter for EADAGS .58

6.4. Makespan and average power savings with respect to out-degree for EADAGS59

6.5. Makespan and average power savings with respect to number of nodes for EAGS-D ..

……………………………………………………………………………………………61

6.6. Makespan and average power savings for different CCR values for EAGS-D63

6.7. Makespan and average power savings for different shape parameters for EAGS-D .66

6.8. Makespan and average power savings with respect the out-degree for EAGS-D67

6.9. Gaussian elimination algorithm ..69

6.10. Makespan and average power savings for different number of processors for

Gaussian elimination with EADAGS ..74

xiv

6.11. Makespan and average power savings with respect to CCR for Gaussian elimination

with EADAGS ...75

6.12. Makespan and average power savings for different number of processors for

Gaussian elimination with EAGS-D ..77

6.13. Makespan and average power savings with respect to CCR for Gaussian elimination

with EAGS-D ...78

6.14. Makespan and average power savings for different number of processors for

molecular dynamic code with EADAGS ...82

6.15. Makespan and average power savings with respect to CCR for molecular dynamic

code with EADAGS ...84

6.16. Makespan and average power savings for different number of processors for

molecular dynamic code with EAGS-D ..85

6.17. Makespan and average power savings with respect to CCR for molecular dynamic

code with EAGS-D ..87

6.18. Makespan and average power savings with respect to number of processors for FFT

with EADAGS ...92

6.19. Makespan and average power savings with respect to CCR for FFT with EADAGS .

..94

6.20. Makespan and average power savings for different number of processors for FFT

with EAGS-D ...96

6.21. Makespan and average power savings with respect to CCR for FFT with EAGS-D.

..97

xv

6.22. Makespan and average power savings for different number of processors for Sieve

of Eratosthenes with EADAGS ...101

6.23. Makespan and average power savings for different CCR values for Sieve of

Eratosthenes with EADAGS ..103

6.24. Makespan and average power savings for different number of processors for Sieve

of Eratosthenes with EAGS-D ...104

6.25. Makespan and average power savings for different CCR values for Sieve of

Eratosthenes with EAGS-D ...106

1

CHAPTER 1

INTRODUCTION

We consider scheduling on heterogeneous distributed computing systems

interconnected by high-speed networks. Such systems are promising for fast processing

of computationally intensive applications with diverse computation needs.

One of the challenges in heterogeneous computing is to develop scheduling

algorithms that assign the tasks of applications to processors [Reut97]. Therefore,

researchers have proposed many static, dynamic and even hybrid algorithms to minimize

execution time of applications running on a heterogeneous system [Iver98][Kwok99]

[Radu00][Seig97][Topc99][Wang97]. Another challenge facing distributed computing is

energy consumption [Dong01]

There are many applications which require both low finish time and low energy

consumption. Energy consumption is a major issue in many real-time distributed

embedded systems. Furthermore, most applications running on an energy limited system

inherently constrain the finish time. Low-cost, low-energy sensor networks composed of

Smart Dust Mote [Smar06] are examples of such systems. New wireless communication

systems are expected to evolve using this system. These networks are distributed

networks operating on energy constraints, also called energy-aware distributed systems

2

(PADS). Hence there is a need for scheduling algorithms which would effectively reduce

the overall energy consumed and yet attain the best possible finish time.

We consider the problem of scheduling a directed a-cyclic task graph (DAG) on a

heterogeneous distributed processor system with the twin objectives of minimizing finish

time and energy consumption. The DAG structure is important as it occurs in many

regular and irregular applications in forms of Cholesky factorization, LU decomposition,

Gaussian elimination, FFT, Laplace transforms, and instruction level parallelism. Such

low energy schedules can help run such applications in multi-hop sensor radio networks.

Traditionally, priority has been on performance, and consequently the supply

voltage has been set at the maximum allowable level based on device breakdown

potentials to enable fast operation. However, applications may not require the maximum

achievable speed at all times. The top energy consumers in a computer system [Kump94]

are display (68%), disk (20%), and CPU (12%). There seems little which can be done to

minimize screen energy-consumption, beyond employing a screen-saver and relying on

hardware improvements. Disk energy consumption is minimized by spinning down the

disk when it has been inactive.

However, in the future, we may well see ubiquitous computing devices with

neither disks nor conventional displays. For such devices, minimizing the energy

consumed by the CPU will be critical if the replacements of disks and displays consume

relatively smaller fractions of total energy.

A study by Argonne National Laboratory has indicated that a 2.5 petaflop

supercomputer, made of over a hundred thousand CPUs, will be available by 2010. The

3

study predicts that such a system will cost $16 million and would require 8 mega watts of

energy to operate at a cost of about $8 million per year. Hence, high energy prices and

rising concerns about the environmental impact of electronics systems highlight the

importance of incorporating low energy design schemes at all levels of such systems.

Current microprocessors from AMD, Intel and Transmeta allow the speed of the

microprocessor to be set dynamically.

Another study by NASA in 1998 predicted energy need of 25 megawatts for

Japan’s NEC earth simulator, which is capable of executing 40 Tflops. That amount

increased to 100 megawatts in a more recent study that much energy is enough to light

1.6 million 60-watts light bulbs, the lighting requirements of a small city.

Reducing systems components energy and energy consumption decrease systems

expenses. Assuming a rate of $100 per megawatt a Pflops machine consuming 100

megawatts of energy would cost $10,000 per hour approximate $85 million dollar a year.

These estimates do not include air cooling expenses which are commonly 40% of

systems operating cost. For such systems even small reduction in overall energy

consumption would significantly impact Pflops systems’ operational costs.

1.1 Contributions

In this dissertation we presented two scheduling algorithms for scheduling

Directed Acyclic Graphs on a distributed computing system for low energy.

The first proposed algorithm combines Decisive Path Scheduling (DPS) with

dynamic voltage scaling for the twin objectives of low energy consumption and minimum

4

execution time. We call it Energy Aware DAG Scheduling (EADAGS). The second

algorism proposed combines Heterogeneous N-predecessor Duplication (HNPD) with

dynamic voltage scaling to minimize both finish time and consumed energy, we identify

that algorithm as Energy Aware Graph Scheduling with Duplication (EAGS-D).

 In both cases first the initial algorithm is completed using either DPS or HNPD

for minimum finish time, then the amount of consumed energy is estimated and the

voltage scaling algorithm is simulated to minimize the consumed energy without

affecting the finish time.

The remainder of this dissertation is organized as follows. In the next Chapter, we

describe different types of scheduling on both homogenous and heterogeneous systems,

energy estimation and energy optimization techniques, and prior work on scheduling for

low energy are discussed. Chapter 3 explains the concept of dynamic voltage scaling and

how it can be used to reduce the consumed energy in computing systems. Chapter 4

defines DAG and explains some of the definitions and terminology used by the

scheduling algorithms. Chapter 5 introduces both scheduling algorithms presented in this

work EADAGS and EAGS-D. Chapter 6 is for the simulation and analysis of results.

Finally the conclusion and suggestions for future work are presented in Chapter 7.

5

CHAPTER 2

RELATED WORK

Traditional scheduling algorithms did not consider the amount of energy

consumption. Instead, they focus on performance or fairness. Recently, low energy

system design has gained significant attention largely due to demands from the portable

electronics industry. System design for low energy is also very important for other

industries such as automotive, telecommunications, information technology, etc. This is

due to the fact that low energy designs can offer significant reduction in system

packaging costs and improvement in reliability.

 Two main design aspects of scheduling are how to build the scheduling queue and

how to choose the optimal processor. List and cluster scheduling are primary techniques

to schedule tasks on heterogeneous systems.

 In list scheduling, tasks are ordered in a scheduling queue based on the priority

assigned to free tasks. List scheduling algorithms have been shown to have good cost-

performance trade-offs.

 Cluster scheduling involves merging nodes/paths to form clusters that can be

scheduled on the same processor so as to get closer to the objectives of schedule length,

number of processors, etc.

6

 Several algorithms for static scheduling on heterogeneous multiprocessors

systems are available: Dynamic Level Scheduling (DLS), Generalized Dynamic Level

Scheduling (GDLS), Best Imaginary Level (BIL), Mapping Heuristics (MH),

Heterogonous Earliest Finish Time (HEFT), Task Duplication Scheduling (TDS), Static

Task Duplication Scheduling (STDS), Fast Critical Path (FCP), and Fast Load Balancing

(FLB). Among the above TDS and STDS employ task duplication to suppress

communication whereas others do not. A brief description of these algorithms is available

in [Topc02].

Heterogeneous N-predecessors Decisive Path (HNPD) is based on DPS but with

Task duplication. The performance of HNPD was proven to outperform two of the best

existing heuristics, Heterogeneous Earliest Finish Time (HEFT) and Static Task

Duplication Scheduling (STDS), in terms of finish time and the number of processors

employed over a wide range of parameters.

 Low energy scheduling research can be classified in two major categories

1. Energy estimation techniques (energy model)

2. Energy optimization techniques.

2.1 Power Estimation Techniques

 Existing energy estimation methodologies can be classified based on their level of

abstraction, namely instruction level, architecture level, and gate level.

• Instruction level: application for this can be for embedded processing systems

as presented by Nikoladis in [Niko02]. He uses an assembly or machine level

7

program as input and gives an estimate of the energy consumed for that

specific program on a specific processing system. This provided an accurate

estimation of energy consumption even in the presence of instantaneous

energy supply variation.

• Architecture level: it provides cycle-by-cycle energy consumption data of the

architecture on the basis of the instruction/data flow stream. At the

architecture level a technique presented by Landman uses the black box

energy model for the architecture level components to estimate the energy

consumed while preserving the accuracy of the gate or circuit level estimation

[Land94].

• Gate level: Ishehara summarized and compared different techniques for

energy estimation and proved that gate level estimation of energy

consumption is the most accurate measurement [Ishe96]. The techniques for

energy estimation at the gate level and low levels of abstraction can be

classified into

o Simulation based techniques: the earliest techniques proposed

suggested monitoring both the supply voltage and current

waveforms. These techniques were to slow to handle very large

circuits so other techniques were introduced assuming that the

supply and ground voltages are constant and estimate only the

supply current waveform.

o Probabilistic techniques: most of the probabilistic techniques are

8

applicable to combinational circuits only. In these techniques user

supplied input signal probabilities are propagated into the circuit.

To achieve this, special models for the components have to be

developed and stored in a module library.

o Statistical techniques: they do not require any specialized model

for the components. The idea is to simulate the circuit with

randomly generated input vectors until energy converges to the

average energy. The convergence is tested by statistical mean

estimation techniques.

2.2 Power Optimization Techniques

Competition is driving the requirement for energy optimization. Systems are

designed with low energy consumption as one of the important criteria. Energy

optimization can be achieved through both hardware and software.

• Hardware Optimization:

o Behavior level: transformations, scheduling, resource allocation, etc.

o Architecture level: low energy flip-flops, low energy adder, etc.

o Circuit level: low energy circuits.

• Software Optimization

o Instruction level: low energy compiling, low energy instruction

scheduling.

9

o System level: Dynamic energy management, low energy memory

management, etc.

2.3 Software energy optimization on system level

 There are two techniques that can reduce energy consumption on system level

scheduling: Dynamic Energy Management (DPM) and Dynamic Voltage Scaling (DVS).

 The DPM technique dynamically reconfigures an electronic system by reducing

number of active components and/or load on such components while providing services.

DPM is used in various forms usually in portable devices. However, the complexity of

interfacing heterogeneous components has limited designers to simple solutions in DPM.

An example of a simple policy, mostly applied to laptops and PDA, is a timeout policy,

which turns off a component after a fixed inactivity period, under the assumption that it is

highly likely that a component remains idle if it has been idle for the timeout period.

 The fundamental premise for the applicability of DPM is that systems (and their

components) experience non-uniform workloads during operation time. Such an

assumption is valid for most systems, both when considered in isolation and when

systems are connected via internet. A second assumption of DPM is that it is possible to

predict, with a certain degree of confidence, the fluctuations of workload. The analytical

process of prediction should not consume significant energy. Typically, a energy

manager (PM) implements a control procedure based on some observations and/or

assumptions on the workload.

 In DVS technique, computation and communication tasks are run at reduced

voltages and clock frequencies which fill idle periods but reduce energy dissipation

10

while providing required performance. The key idea of DVS is to dynamically scale the

supply voltage of CPU while meeting total computation time and/or throughput. It is a

trade-off between processor speed and energy consumption which is especially useful in

real-time systems. The energy consumption of a processor running at high speed and high

voltage is much larger than running at low speed and low voltage. For example, reducing

the supply voltage from 5 V to 3.3 V in some cases has reduced energy by 56%

[Pouw01].

 DVS essentially fills the slack times by elongated computation or communication

times. There are two types of slack times: Worst Slack Time (WST) and Workload-

Variation Slack time (WVST). WST results from low processor utilization. WVST

occurs due to execution time variations caused by data-dependent computation. WST can

be roughly estimated from the scheduling results before task execution whereas WVST

can be known only after execution.

2.4 Scheduling to lower energy consumption

 For uniprocessor real-time systems, many schemes have been proposed to manage

energy consumption. Mosse et. al. [Moss00] proposed and analyzed several schemes to

dynamically adjust processor speed for slack reclamation. They used a compiler to assist

the operating system in changing the CPU operating levels to reduce energy

consumption.

 Weiser [Weis94] discussed several methods for varying the clock speed

dynamically under control of the operating system. He proved that by adjusting the clock

11

speed at a fine grain, substantial CPU energy can be saved with a limited impact on

performance.

 Chandrakasan [Chan96] has shown that for periodic tasks, a few

voltage/frequency levels are sufficient to achieve almost the same energy savings as

infinite voltage/speed levels.

 Yang [Yang01] proposed a two-phase scheduling scheme which contains a design

time scheduler and a runtime scheduler that minimizes energy consumption while

meeting timing constraints. By choosing different scheduling options at compile time

they achieved 20-40% average energy savings.

 Zhang and Chen [Zhan02] proposed a priority based task mapping and scheduling

for a fixed task graph applying the earliest deadline first scheduling and formulating the

voltage scaling problem as an integer programming problem. They proved that their

framework can slow 8% of cycles in very short time.

 The main concern in DVS is to increase slack time utilization as much as possible

and to make resultant energy consumption as low as possible. Two types of slack time are

defined as worst slack time (WST) and workload-variation slack time (VST). WST

results from processors utilization that is less than 100%. Low processor utilization is

always the case even if all tasks exhibit their worst-case execution time. VST occurs due

to execution time variations caused by data-dependent computation. WST can be

estimated from the scheduling results before task execution whereas VST can be known

only after actual task execution.

 Shin et. al. [Shin01] proposed a low-energy, priority-based scheduling which

12

consists of two parts: an off-line component which determines minimum processor speed

while guaranteeing deadlines of all tasks and an online component which dynamically

varies processor speed to utilize both WST and WVST.

Shang et. al. [Shan03] proposed a history-based DVS for interconnected

networks. Their technique leverages network history to predict future network needs,

judiciously controlling the frequency (and voltage) of links to track actual network

utilization. Such mechanisms resulted in 46% average energy savings at the cost of

15.2% increase in network latency and 2.5% decrease in network throughput.

 Theoretical investigations of speed scaling algorithms were initiated by Yao,

Demers, and Shankar [Yao 95]. Yao et al. propose formulating speed scaling problems as

scheduling problems. They assumed that each task has a release time when it arrives into

the system, an amount of work that must be performed to complete the task and also a

deadline that specifies the time by which the task should be completed. A schedule

specifies which task to run at each time, and at what speed that task should be run. In

some settings, for example, the playing of a video or other multimedia presentation, there

may be natural deadlines for the various tasks imposed by the application. In other

settings, the system may impose deadlines to better manage tasks or ensure a certain

quality of service to each task. They studied the problem of minimizing the total energy

used subject to the deadline feasibility constraints

 Few other literatures have considered energy saving in addition to the

performance. Lu, Benini and Micheli [Lu00] presented a greedy on-line scheduling

algorithm to facilitate energy management for multiple devices. They ordered the

13

execution of tasks so that devices can have continuous long idle periods during which

they can be shut down. They achieved an average energy savings of 33%.

 Mishra et. al. [Mish03] proposed two novel techniques for energy management in

distributed systems. The first is a static technique which uses a greedy algorithm to

manage energy in presence of parallelism. The second technique uses task reallocation

that enhances the first algorithm by allowing out-of-order execution where preemption is

allowed. Their technique saved an average of 10-20% more savings than a simple static

energy management technique.

 Shiue and Chakrabarti in [Shiu00] presented polynomial time algorithms for (i)

resource-constrained scheduling and (ii) latency-constrained scheduling for the case

when the resources operate at multiple voltages. Both scheduling schemes try to reduce

the overall energy consumption. The resource-constrained scheduling scheme tries to

balance the conflicting requirements of reducing the latency and maximally utilizing

resources operating at reduced voltages. The latency-constrained scheduling scheme

assigns as many nodes as possible to the resources operating at low voltages without

violating the timing constraint.

 Kirovski and M. Potkonjak [Kiro97] developed a system-level approach for

energy minimization of cost-constrained hard real-time designs. The approach

simultaneously optimizes all three degrees of freedom for energy minimization, namely

switching activity, effective capacity and supply voltage.

 Srivastava in [Sriv96] described three broad architectural approaches for energy

efficient programmable computation: predictive shutdown, concurrency driven supply

14

voltage reduction, and switching activity reduction. A significant reduction in energy

consumption can be obtained by employing these architectural techniques. They have

shown that an aggressive shut down strategy based on a predictive technique can reduce

the energy consumption by a large factor compared to the straightforward conventional

schemes where the energy decision is based solely on a predetermined idle time

threshold.

 An example where the idea embodied in their techniques can be applied is the

combination of parallelism-driven voltage reduction with switching activity reduction to

increase the energy efficient of memory operations when the access pattern is sequential

in nature. Such sequential access patterns occur, for example, when fetching video data

from a frame buffer memory or when writing a page of virtual memory back to disk.

Instead of accessing data from memory in a serial fashion, several words can be read

from memory and the memory can be clocked at a lower rate for the same throughput. If

the serial implementation runs at a supply of 3V to meet a given throughput, then the

parallel version can run at a supply voltage of 1.3 V while meeting throughput

requirements.

Chaeseok and Ha. [ImHa04] proposed an energy efficient real-time multi-task

scheduling by the use of buffers with DVS. They saved an average energy of 44% with

reasonable machine specifications. The buffers increase CPU utilization by averaging the

workload. Their technique was designed for multimedia applications where a slight

buffering delay is tolerable.

CHAPTER 3

DYNAMIC VOLTAGE SCALING

For most energy-conscious designs, a major source of energy savings is voltage

scaling, which scales operating voltages of processors and corresponding maximum clock

speeds. The dominant source of energy consumption in digital CMOS circuits is the

dynamic energy dissipation P, characterized by

 fCVP 2∝

where C is the effective switching capacitance, V is the supply voltage, and f is the clock

speed [Burd96].

Since energy varies linearly with the clock speed and the square of the voltage,

adjusting the voltage can result in significant energy reductions, at least in theory.

However, reducing the supply voltage requires a corresponding decrease in clock speed

and increase in task execution latency.

The settling time for a gate is proportional to the voltage; the lower the voltage

drop across the gate, the longer the gate takes to stabilize. To lower the voltage and still

operate correctly, the cycle time must be lowered first. When raising the clock rate, the

voltage must be increased first. Given that the voltage and the cycle time of a chip could

be adjusted together, it should be clear now that the lower-voltage, slower-clock chip will

15

16

dissipate less energy per cycle. If the voltage level can be reduced linearly as the clock

rate is reduced, then the energy savings per instruction will be proportional to the square

of the voltage reduction. Of course, for a real chip it may not be possible to reduce the

voltage linear with the clock reduction. However, if it is possible to reduce the voltage at

all by running slower, then there will be a net energy savings per cycle.

Currently manufacturers do not test and rate their chips across a smooth range of

voltages. However, some data is available for chips at a set of voltage levels. For

example, a Motorola CMOS 6805 microcontroller is rated at 6 MHz at 5.0 Volts, 4.5

MHz at 3.3 Volts, and 3 MHz at 2.2 Volts. This is a close to linear relationship between

voltage and clock rate. Thus there is seemingly no technical objection to designing a

variable-voltage system provided that the input reference voltage to the processor’s

voltage regulator may be a digital word writable by the processor.

The other important factor is the time it takes to change the voltage. The main

time-cost would be for the converter or regulator to ramp the supply voltage up or down.

The ramping time is determined by the time constants of the converter. The frequency

for voltage regulators is on the order of 200 KHz [Weis94], so we speculate that it will

take a few tens of microseconds to boost the voltage on the chip. Moreover the CPU

should be able to continue working during a voltage ramp and ramping should not have

any substantial energy cost.

Finally, why run slower? Suppose a task has a deadline in 100 milliseconds, but it

will only take 50 milliseconds of CPU time when running at full speed to complete. A

normal system would run at full speed for 50 milliseconds and then idle for 50

17

milliseconds (assuming there were no other ready tasks) as in Figure 3.1. During the idle

time the CPU can be stopped altogether by putting it into a mode that wakes up upon an

interrupt, such as from a periodic clock or from an I/O completion.

Figure 3.1. Different operating rates for the same task

Now, compare this to a system that runs the task at half speed so that it completes

just before its deadline. If it can also reduce the voltage by half, then the task will

consume 1/4 the energy of the normal system, even taking into account stopping the CPU

during the idle time. This is because the same number of cycles is executed in both

systems, but the modified system reduces energy use by reducing the operating voltage.

Another way to view this is that idle time represents wasted energy, even if the CPU is

stopped.

The relation between clock speed, supply voltage, and energy dissipation for

Transmeta’s Crusoe TM5400 microprocessor as reported in its data sheet [Tiwa96] are

shown in Table 3.1. For a program running for time duration of T, its total energy

10050 50 100
ms ms

Operating voltage Operating voltage

consumption E is approximately equal to E = Pavg × T , Where Pavg is the average energy

consumed. Researchers have proposed many ways of determining “appropriate”

operating clock rate. The basic idea behind these energy saving approaches is to slow

down the tasks as much as possible without violating the deadline. This “just-in-time”

strategy can be illustrated through a voltage scheduling graph as in Figure 3.2 [Much97].

In a voltage scheduling graph, the X-axis represents time and the Y-axis

represents processor speed. The total amount of work for a task is defined by the area of

the task “box.” For example, task 1 in Figure 3.2 has a total workload of 8,000 cycles.

By “stretching” it out all the way to the deadline without change of the area, we are able

to decrease the CPU speed from 600MHz down to 400MHz. As a result, 23.4% of total

(CPU) energy may be saved on a Crusoe TM5400 processor.

Table 3.1. The relationship between clock frequencies, supply voltage, and energy
dissipation of Transmeta’s Crusoe TM5400 microprocessor.

18

 (a) Original schedule (b) Voltage scaled schedule

Figure 3.2. Voltage scheduling graph

3.1 Power management implementation

 There are several ways of achieving energy reduction. In this section, we study

the various approaches.

3.1.1 Simple shutdown

Energy shutdown to a component is a radical solution that eliminates all sources if

energy dissipation, including leakage.

Energy consumption of idle processors can be avoided by energying off the unit.

This radical solution requires controllable switches. An advantage of this approach is the

wide applicability to all kind of electronic components. A major disadvantage is the

wake-up time or the recovery time because the processor operation must be reinitialized.

3.1.2 Multiple and variable energy supplies

Dynamic energy management is also applicable to processors that are not idle, but

whose performance requirement varies with time. The implementation technology can

then be based on the slowdown. The slowdown is achieved by lowering the

19

20

voltage supply, such that the machine becomes performance critical.

Dynamically-varying supply voltages may be quantified [Chan96] and thus be

restricted to a finite number of values, or may take values in a continuous range. In the

former case it is possible to identify a finite number of energy states for the system.

3.1.3 OnNow approach

The OnNow approach uses energy-management hardware to put the PC into a

low-energy sleep state instead of shutting down completely, so that the system can

quickly resume working [Micr04]. While in the sleep state, the PC's processor is not

executing code and thus no work is being accomplished for the user. However, events

from both hardware devices (such as modem ring or network request) and the real-time

clock can be enabled to cause the system to wake up.

Each device in the system has its own energy states, and these are independently

managed by the device driver (or other policy owner) while the system is in the working

state. The device's policy integrates any particular application's needs with device

capabilities and other operating system information to conserve energy without adversely

affecting the work that the user is doing.

21

CHAPTER 4

DIRECTED A-CYCLIC GRAPH DAG

We define a DAG as an a-cyclic graph with nodes representing tasks and edges

representing execution precedence between tasks. A weight is associated to each node

and edge. The node weight represents the task execution time and the edge weight

represents the communication time between connected tasks. This communication time is

zero if the tasks are executed on the same processor. Each DAG has a root node which is

a node with no incoming edges and a sink node which is a node with no outgoing edges.

Figure 4.1. A sample DAG

 1 3 4

 5

 8

 7 6

 1

 2

19

13

9

17 14 5

7

22

19

11

9

22

The DAG structure occurs in many regular and irregular applications such as

Cholesky factorization, LU decomposition, Gaussian elimination, FFT, Laplace

transforms, and instruction level parallelism.

Along the lines of [Bask03] a DAG is represented by the tuple G=(V, E, M, T, C,

P) where:

• V is the set of n nodes.

• E is the set of e edges between the nodes.

• M is a set of m machines or processors.

• E(n, c) is an edge between nodes n and c.

• T is the set of costs T(n,k), represents the computational time of task n on

machine k.

• C is the set of costs C(n,c), which represents the communication cost

associated with the edges E(n,c). Since intra-processor communication is

insignificant compared to inter-processor communication, C(n,c) is considered

to be zero if n and c are executed on the same processor.

• P is the set of costs P(n,k), which presents the consumed power when task n is

executed on processor k.

The length of a path is defined as the sum of node and edge weights in that path.

Node n is a predecessor of node c if there is a directed edge originating from n

and ending at c. In figure 4.1, node 1 is a predecessor of nodes 2, 3, 4 and 7.

Likewise, node s is a successor of node n if there is a directed edge originating

from n and ending at s. From figure 4.1, node 6 is a successor of nodes 1, 2, and 3. We

can further define pred(n) as the set of all predecessors of n and succ(n) as the set of all

successors of n as an example pred(6)={1,2,3} and succ(6)={8}.

 An ancestor of node n is any node c that is contained in pred(n), or any node a,

that is also an ancestor of any node c contained in pred(n).

The earliest execution start time of node n on processor k is represented as

EST(n,k). Likewise, the earliest execution finish time of node n on processor k is

represented as EFT(n,k). EST(n) and EFT(n) represent the earliest start time upon any

processor and the earliest finish time upon any processor, respectively. Rnk is defined as

the earliest time that processor k will be ready to begin executing task n. We can

mathematically define these terms as follows:

EST(n, k) = max{ Rnk , EFT(c, m)+C(c, n)},Where, c∈pred(n)

EFT(c, m) = EFT(c) and C(c, n) = 0 when k = m,

EFT(n, k) = T (n, k)+EST(n, k),

EST(n) = min (EST(n, k), k∈M),

EFT(n) = min (EFT(n, k), k∈M).

The maximum clause finds the latest time that a predecessor’s data will arrive at

processor k. If the predecessor finishes earlier on a processor other than k,

communication cost must also be included in this time. In other words, the earliest start

time of any task n on processor k, EST(n,k) is the maximum of times at which processor k

becomes available and the time at which the last message arrives from any of the

predecessors of n.

23

24

The main goal for any scheduling technique is to minimize the makespan of the

DAG. The makespan is defined as the time at which all nodes finish executing. In our

case, the makespan will be equal to EFT(y), where y is the exit node in the graph. From

Figure 4.1 the makespan is EFT(8).

The critical path (CP) is the longest path from an entry node to an exit node. The

critical path excluding communication cost (CPEC) is the longest path from an entry

node to an exit node, not including the communication cost of any edge traversed. In our

work we assume that each task’s mean execution cost across all processors is used to

calculate CP while each task’s minimum execution cost from any processor is used to

calculate the CPEC.

The top distance for a given node is the longest distance from an entry node to the

node, excluding the computation cost of the node itself. The bottom distance for a given

node is the longest distance from the node to an exit node. Again we assume that each

task’s mean execution cost is used to calculate the top distance and bottom distance. The

bottom distance is also referred to as the upper rank or the blevel.

The Decisive Path (DP) is defined as the top distance of a given node plus the

bottom distance of the node. The DP is defined for every node in the DAG. The critical

path, CP, then becomes the largest DP for an exit node.

4.1 Performance

Our algorithms are for scheduling directed acyclic weighted task graph running

on a bounded number of heterogeneous processors with the twin objectives of

25

minimizing the amount of energy consumed and minimizing the finish time.

In other words, tasks arrive with given execution time and need to meet certain

execution deadlines as well as minimize the consumed energy.

Using simulations, we evaluated the performance of EADAGS and EAGS-D. The

first test suite consists of random directed a-cyclic graphs. The input parameters used to

generate the graphs were:

• Number of nodes (tasks) in the graph, n.

• Shape parameter of the graph, α. If α = 1.0, the graph is balanced. A DAG with

high parallelism can be generated by selecting α >> 1. Whereas α << 1 will

generate a long DAG with small degree of parallelism.

• Out-degree of a node, out-degree, represents the average number of outgoing

edges from each node. Each node’s out-degree is randomly generated from a

uniform distribution with mean equal to out-degree.

• Communication to Computation ratio, CCR. CCR is the ratio of the average

communication to average computation cost. If a DAG’s CCR is less than 1, it is a

computation-intensive application; if it’s CCR is much greater than 1, it is

communication-intensive.

• Computation Range, β, represents the range of computation costs on processors.

A high β causes significant difference of node’s computation costs among

processors, whereas a low β means that the expected execution times of a node on

any processor are almost equal.

• Processor to node ratio, PNR, represents the availability of processors with

26

respect to number of nodes. A PNR of 100% means the number of processors is

equal to the number of nodes.

In generating random DAGs, the parameters were varied as follows:

 n= {10, 20, 40, 60, 80, 100, 500, 1000}

CCR = {0.1, 0.5, 1, 5, 10}

α = {0.5, 1, 2}

Out-degree = {1, 2, 3, 4, 5, 100}

β = {0.1, 0.25, 0.5, 0.75, 1.0}

PNR = {25%, 50%, 100%}

These values produced 10,800 DAGs, which were repeated for both presented

algorithms, EADAGS and EAGS-D.

The second test suite to evaluate the performance of EADAGS and EAGS-D used

task graphs of real world problems, specifically Gaussian elimination [Wu90], Molecular

dynamic code [Chun92], Sieve of Eratosthenes, and Fast Fourier Transform (FFT). For

these problems, the shape of the DAG is fixed and the only parameters we changed were

the number of available processors and CCR.

Processors were assumed to have three different operating voltage levels and five

operating strategies based on the Motorola CMOS 6805 microcontroller, which is rated at

6 MHz at 5.0 Volts, 4.5 MHz at 3.3 Volts, and 3 MHz at 2.2 Volts. First operating

voltage was 5V when using this voltage if the processor becomes idle, it shuts down. We

will refer to this operating voltage as 5V/off. This level is used for reference only since it

has physical limitations. The other two operating voltages are 2V and 3.3V, which slow

27

the processor during task execution and during processor’s idle times.

28

CHAPTER 5

SCHEDULING ALGORITHIMS

Many scheduling algorithms for scheduling DAGs in a distributed computing

environment have been proposed as has been mentioned in Chapter 2. However, the

problem of discovering the schedule that gives the minimum finish time is NP-Complete.

Among all these scheduling algorithms, some prove to perform better in term of finish

time or makespan.

In this work two new scheduling algorithms for scheduling DAGs on distributed

computing systems were presented: Energy Aware DAG Scheduling (EADAGS) and

Energy Aware Graph Scheduling with Duplication (EAGS-D).

5.1 EADAGS algorithm

A new algorithm for scheduling DAGs on distributed computing systems has

been introduced. EADAGS combines Decisive Path Scheduling (DPS) with DVS to

minimize both finish time and energy consumption. DPS [Park97], since it is one of the

most efficient algorithms, was chosen. The new algorithm is called Energy Aware DAG

Scheduling (EADAGS). It consists of two phases. In the first phase, after DPS is run on

the DAG to provide a low finish time, the energy consumed is estimated for all

29

processors. In the second phase, voltage scaling is applied during slack times to reduce

energy while maintaining the schedule length.

EADAGS transforms a DAG to one with a single entry node and a single exit

node, if not so already. This transformation is accomplished by adding a dummy entry

node and/or exit node with zero costs. Next, the top and bottom distances from each node

are calculated. The top and bottom distances are calculated using the mean computation

value for each node. After building the DP for each node, EADAGS begins creating the

scheduling queue, ScheduleQ, in a top-down fashion starting with the DAGs entry node

and traversing down the CP (which is the DP of the exit node). Nodes are prioritized

based on the lengths of their DPs. The priorities are decided as follows: EADAGS puts

the CP nodes into the ScheduleQ in the ascending order of their top-distances. A node is

added to the queue only if all its predecessors have been added. If not, EADAGS

attempts to schedule its predecessors first. The first predecessors added to the queue are

those included in the nodes’ DP other are sorted and added to ScheduleQ in increasing

top-distance.

Next, EADAGS assign tasks in ScheduleQ to processors. At each step of the

assignment, the selected processor provides the earliest finish time for the task under

consideration, taking into account all the communications from the task’s parents. If EFT

of the exit node is larger than the sum of all the computation costs of the nodes on the

best processor, EADAGS assigns all nodes to that processor and exits. The time

complexity of first phase of EADAGS is O(n2).

Next, EADAGS computes the consumed energy. The total energy consumed

when no voltage scaling is used, E1 is first calculated by the following equations:

E1 = T × ∑
∈Mk

1)(P k

2
)(

2
1

1
fVkP =

where:

• P1(k) is the amount of power consumed by processor k∈M,

• f is the operating frequency of machine k,

• V1 is the operating voltage of machine k,

• T is the makespan

In the second phase of EADAGS, voltage scaling is applied to all processors

during their idle times by reducing the execution rate to f2 by lowering the voltage to a

predetermined level V2. Such voltage scaling is applied to a task only if slowing its

execution would not increase the makespan. We also reduce the voltage level of

processors during all remaining slack times. The total energy consumed after applying

voltage scaling is E2 = Σ E2(k) where:

•
2

)(
2

222
2

111
2

VfTVfTkE +
= represents the energy consumed by processor k∈M

when voltage scaling is used,

• is the total task and communication time when operating

at V1,

∑∑ +=
iji

jiCiTT),()(1

30

• T(i) is the computation time of task i on the chosen processor,

• C(i, j) is the communication cost between tasks i and j if i and j are not scheduled

on the same processor,

• T2 is the total time processor k operates at V2 (includes idle times during which

the processor operates at V2).

A non blocking send protocol has been assumed in which only the sending

processor has to process the communication while the receiving processor has a buffer to

receive all transmitted data without interrupting its job. The difference between E1 and E2

represents the energy that could be saved. The percentage average energy savings =

100
1

21 ×
−
E

EE . A high level description of EADAGS appears in Table 5.1.

31

Table 5.1. EADAGS algorithm

Let G represent a DAG
Let M be the set of m processors in the system

EADAGS
 Transform G to a DAG with a single entry node and a single exit node
 Compute DP of each node n∈G
 //DP of the exit node is the critical path, CP
 Fill ScheduleQ with nodes

//Starting from the entry node traversing CP in increasing top-distance.
 while ScheduleQ ≠ Φ do
 i ← head (ScheduleQ)
 Schedule i on processor p∈M that provides earliest finish time of i.
 Remove i from ScheduleQ
 end while

if scheduling all nodes on the fastest processor provides a shorter makespan,
do so and discard prior schedule
T← makespan

 Total energy consumed before voltage scaling
2

2
1

1
fTV

E =

Total energy consumed when employing voltage scaling, E2 = ScaledEnergy()
end EADAGS

ScaledEnergy()
// Returns the total amount of energy consumption on all processors when voltage scaling
has been applied
 for each processor p∈ M do

 for each node n∈G scheduled on p do //traverse first scheduled to last
 if (executing n on scaled voltage fits within the next slack) then

 Scale down the operating voltage during execution of n
 end if

 end for
 Energy consumed by processor p = sum of energy consumed by all nodes
 scheduled on p
 end for
 E = Sum of energy consumed by all processors
return E
end ScaledEnergy

32

Figure 5.1 lists the notations used by EADAGS and procedures of EADAGS (EADAGS,

AddQ, StartTime, and ScaledEnergy).

 Let

• G represent a DAG
• y∈G be the exit node of G
• M be the set of m processors in the system
• Rk represent the ready time of machine k
• rn represent the ready time of node n
• f be the frequency of operation
• sik represent the start time of node i on machine k
• Succ(n) represent the list of all successor nodes of node n∈G
• pred(n) is the list of all predecessors of node n∈G
• ScheduleQ queue of tasks in order of execution
• T(i, k) represent the execution time of node i∈G on machine k
• C(n, c) represent the communication cost from node n to node c
• EFT(i, k) represent the earliest finish time of node i∈G on machine k
• EFT(i) represent the scheduled finish time of node i∈G
• EFT2(i) represent the finish time for node i with the scaled down voltage
• EST(i) represent the scheduled start time of node i∈G
• T represent the makespan of G
• V1 be the voltage of operation
• V2 be the scaled down voltage of operation
• T1(n) and T2(n) represent the execution time for any node n∈G before and after

voltage scaling respectively
• E(k, n) represent the energy consumed by processor k to execute node n
• E1 represent the total energy consumption before voltage scaling
• E2 is the total energy consumption after scaling down voltage
• E1(k) and E2(k) represent energy consumed by processor k∈M before and after

voltage scaling respectively

Figure 5.1.a. Notations for EADAGS

33

EADAGS
 Transform G to a DAG with a single entry node and a single exit node
 Compute DP for each node n∈G // O(n2)
 // DP of the exit node is the critical path, CP
 // Fill ScheduleQ with nodes in CP in increasing top-distance.
 ScheduleQ ← Φ
 for each node n∈CP do // O(n2)

 // Traverse in increasing top-distance.
 ScheduleQ = addQ(n)
 end for
 //Schedule nodes in ScheduleQ to processors

while ScheduleQ ≠ Φ do // O(n)
 Pick the head node i in ScheduleQ
 for each processor k∈M do // O(m)
 sik = StartTime (i, k)
 EFT(i, k) = sik + T(i, k)
 end for
 EFT(i) = mink∈M EFT(i, k)
 Schedule i on processor p∈M that gave minimum earliest finish time
 Remove i from ScheduleQ
 end while
 if EFT(y) ≥ ∑

∈
∈

Gi
Mk kiT),(min

 Schedule all nodes on the processor p∈M, which provided the minimum
 end if
 T←EFT(y) // makespan

2

2
1

1
fTVE =

 E2=ScaledEnergy()
end EADAGS

Figure 5.1.b. EADAGS procedure

34

addQ(n)
// Adds parents of node n∈G and n to ScheduleQ
// Returns ScheduleQ
 for each parent b of n not visited // in decreasing DP
 addQ(b)
 end for
 Add to n to ScheduleQ and mark it visited
 return ScheduleQ
end addQ

Figure 5.1.c. addQ procedure

StartTime (node n, machine k)
// Returns the earliest available start time of node n∈G on machine k M ∈
 snk ← Rk
 for each parent b of n do // O(n)
 snk = max (snk, EFT(b)+C(b , n)) // if b is scheduled on k, C(b, n)=0
 end for
 return snk
end StartTime

Figure 5.1.d. StartTime procedure

35

ScaledEnergy()
// Returns the total amount of energy consumption after applying voltage scaling
 for each processor k∈ M do // O(m)

 for each node n∈G scheduled on k do //O(n) from first to last scheduled

 T2(n) =)(12
2

2
1 nT

V
V

×

 EFT2(n) = snk+ T2(n)
 if (EFT2(n)+C(n ,c) < min EST(c) for each c∈succ(n) then

 // if c is scheduled on k, C(n, c) = 0
 EFT(n) = EFT2(n) //update EFT(n)

 Let i be the node scheduled immediately after n on k
 // use scaled voltage, see Figure 5.2
 E(k, n)=T2(n)×V2

2+(EST(i)-EFT(n))×V2
2

 else
 //original voltage for execution and scaled voltage during idle time,
 // see Figure 5.2
 E(k, n)=T1(n)×V1

2+(EST(i)-EFT(n))×V2
2

 end if
 end for
 E2(k)=+E(k, n)
 end for
 E2 = ∑

∈Mk

kE)(2

return E2
end ScaledEnergy

Figure 5.1.e. ScaledEnergy procedure

36

Figure 5.2. Timeline for machine k

n i
V1

T1(n)

n i

V2

T2(n)

EFT(n)
EST(i)

EFT2(n)

Task execution time

Communication time

EST(i)

37

5.2 EAGS-D Algorithm

Energy Aware Graph Scheduling with Duplication (EAGS-D) combines HNPD

and dynamic voltage scaling. The Heterogeneous N-Predecessor Duplication (HNPD)

algorithm combines the techniques of insertion-based list scheduling with multiple task

duplication to minimize schedule length. The performance of HNPD was proven to

outperform two of the best existing heuristics, Heterogeneous Earliest Finish Time

(HEFT) and Static Task Duplication Scheduling (STDS), in terms of finish time and the

number of processors employed over a wide range of parameters [Bask03]. EAGS-D

works as follows: EAGS-D assigns tasks to the best available processor according to the

order of tasks in a scheduling queue called ScheduleQ. EAGS-D assigns highest priority

to critical path nodes (CPN) and then to those predecessors of CPNs that include the CPN

in their DP. Among these predecessors it gives higher priority to nodes with higher DP

values. This is because the nodes with the higher DP values are likely to be on longer

paths. In the order of tasks in ScheduleQ, EAGS-D uses EFT(n) to select the processor

for each task n. As it is an insertion-based algorithm, it calculates ready time of any

machine k∈M, Rk to be the earliest idle time slot large enough to execute T(n, k). In other

words, it looks for a possible insertion between two already scheduled tasks on the given

processor without violating precedence relationships. Once tasks have been assigned to

processors, it attempts to duplicate predecessors of the tasks. Predecessors are selected

for duplication from most favorite to least and by descending top distance. The goal of

duplicating predecessors is to decrease the length of time for which the node is awaiting

data by making use of the processor’s slack time. Predecessors of node n are duplicated

on processor k, on which node n is scheduled on. If the duplication result in a lower

finish time, duplication is retained; otherwise it is discarded. If there is idle time between

the recently assigned task n and the preceding task on processor k, EAGS-D attempts to

duplicate each predecessor j. If j is not already scheduled on processor k, it is duplicated

if EFT(j,k) is less than EFT(j)+C(j, n). The duplication is retained if EFT(n,k) decreases.

Otherwise, it is discarded. The same duplication procedure is repeated for each

predecessor in order of most favorite to least. After EAGS-D attempts to duplicate each

predecessor, it recursively attempts to duplicate the predecessors of any duplicated tasks.

Duplication recursively continues until no further duplication is possible.

Then, EAGS-D computes the consumed energy. The total energy consumed when

no voltage scaling is used, E1 is first calculated by the following equations:

E1 = T × ∑
∈Mk

1)(P k

2
)(

2
1

1
fVkP =

where:

• P1(k) is the amount of power consumed by processor k∈M,

• f is the operating frequency of machine k,

• V1 is the operating voltage of machine k,

• T is the makespan

In the second phase of EAGS-D, voltage scaling is applied to all processors

during their idle times by reducing the execution rate to f2 by lowering the voltage to a

38

predetermined level V2. Such voltage scaling is applied to a task only if slowing its

execution would not increase the makespan. We also reduce the voltage level of

processors during all remaining slack times. The total energy consumed after applying

voltage scaling is E2 = Σ E2(k) where:

•
2

)(
2

222
2

111
2

VfTVfTkE +
= represents the energy consumed by processor k∈M

when voltage scaling is used,

• is the total task and communication time when operating

at V1,

∑∑ +=
iji

jiCiTT),()(1

• T(i) is the computation time of task i on the chosen processor,

• C(i, j) is the communication cost between tasks i and j if i and j are not scheduled

on the same processor,

• T2 is the total time processor k operates at V2 (includes idle times during which

the processor operates at V2),

A non blocking send protocol has been assumed in which only the sending

processor has to process the communication while the receiving processor has a buffer to

receive all transmitted data without interrupting its job. The difference between E1 and E2

represents the energy that could be saved. The percentage average energy savings =

100
1

21 ×
−
E

EE . A high level description of EAGS-D appears in Table 5.2.

39

Table 5.2. EAGS-D algorithm

Let G represent a DAG
Let M be the set of m processors in the system

EAGS-D
 Transform G to a DAG with a single entry node and a single exit node
 Compute DP of each node n∈G
 //DP of the exit node is the critical path, CP
 Fill ScheduleQ with nodes

//Starting from the entry node traversing CP in increasing top-distance.
 while ScheduleQ ≠ Φ do
 i ← head (ScheduleQ)
 Schedule i on processor p∈M that provides earliest finish time of i.
 Remove i from ScheduleQ
 Duplicate predecessors of i on p if doing so results in a shorter schedule
 //duplicate executions performed within slacks of the schedule of p
 end while

if scheduling all nodes on the fastest processor provides a shorter makespan,
do so and discard prior schedule
T← makespan

 Total energy consumed before voltage scaling
2

2
1

1
fTVE =

Total energy consumed when employing voltage scaling, E2 = ScaledEnergy()
end EAGS-D

ScaledEnergy()
// Returns the total amount of energy consumption on all processors when voltage scaling
// has been applied
 for each processor p∈ M do

 for each node n∈G scheduled on p do //traverse first scheduled to last
 if (executing n on scaled voltage fits within the next slack) then

 Scale down the operating voltage during execution of n
 end if

 end for
 Energy consumed by processor p = sum of energy consumed by all nodes
 scheduled on p
 end for
 E = Sum of energy consumed by all processors
return E
end ScaledEnergy

40

Figure 5.3.a lists the notations used by EAGS-D while Figures 5.3.b, 5.3.c, 5.3.d, 5.3.e,

5.3.f and 5.3.g shows the detailed algorithm procedures: EAGS-D, AddQ, StartTime,

DuplicatePred, Duplicate, and ScaledEnergy respectively.

Let
• G represent a DAG
• y∈G be the exit node of G
• M be the set of m processors in the system
• Rk represent the ready time of machine k
• rn represent the ready time of node n
• f be the frequency of operation
• sik represent the start time of node i on machine k
• Succ(n) represent the list of all successor nodes of node n∈G
• pred(n) is the list of all predecessors of node n∈G
• ScheduleQ queue of tasks in order of execution
• T(i, k) represent the execution time of node i∈G on machine k
• C(n, c) represent the communication cost from node n to node c
• EFT(i, k) represent the earliest finish time of node i∈G on machine k
• EFT(i) represent the scheduled finish time of node i∈G
• EFT2(i) represent the finish time for node i with the scaled down voltage
• EST(i) represent the scheduled start time of node i∈G
• T represent the makespan of G
• V1 be the voltage of operation
• V2 be the scaled down voltage of operation
• T1(n) and T2(n) represent the execution time for any node n∈G before and after

voltage scaling respectively
• E(k, n) represent the energy consumed by processor k to execute node n
• E1 represent the total energy consumption before voltage scaling
• E2 is the total energy consumption after scaling down voltage
• E1(k) and E2(k) represent energy consumed by processor k∈M before and after

voltage scaling respectively

Figure 5.3.a. EAGS-D notations

41

EAGS-D
 Transform G to a DAG with a single entry node and a single exit node
 Compute DP for each node n∈G // O(n2)
 // DP of the exit node is the critical path, CP
 // Fill ScheduleQ with nodes in CP in increasing top-distance.
 ScheduleQ ← Φ
 for each node n∈CP do // O(n2)

 // Traverse in increasing top-distance.
 ScheduleQ = addQ(n)
 end for
 //Schedule nodes in ScheduleQ to processors
 while ScheduleQ ≠ Φ do // O(n)
 Pick the head node i in ScheduleQ
 for each processor k∈M do // O(m)
 sik = StartTime (i, k)
 EFT(i, k) = sik + T(i, k)
 end for
 EFT(i) = mink∈M EFT(i, k)
 Schedule i on processor p∈M that gave minimum earliest finish time
 Remove i from ScheduleQ
 // Duplicate predecessors of i on p if it results in a shorter schedule
 DuplicatePred (i, pred(i), p)
 end while
 if EFT(y) ≥ ∑

∈
∈

Gi
Mk kiT),(min

 Schedule all nodes on the processor p∈M, which provided the minimum
 end if
 T←EFT(y) // makespan

2

2
1

1
fTVE =

 E2=ScaledEnergy()

end EAGS-D

Figure 5.3.b. EAGS-D procedure

42

 addQ(n)
// Adds parents of node n∈G and n to ScheduleQ
// Returns ScheduleQ
 for each parent b of n not visited // in decreasing DP
 addQ(b)
 end for
 Add to n to ScheduleQ and mark it visited
 return ScheduleQ
end addQ

Figure 5.3.c. addQ procedure

StartTime (node n, machine k)
// Returns the earliest available start time of node n∈G on machine k M ∈
 snk ← Rk
 for each parent b of n do // O(n)
 snk = max(snk, EFT(b) + C(b , n)) // if b is scheduled on k, C(b, n)=0
 end for
 return snk
end StartTime

Figure 5.3.d. StartTime procedure

DuplicatePred (node n, pred(n), machine k)
 for each q∈pred (n) // in order from most favorite to least
 Duplicate (n, q, k)
 if q was duplicated then
 DuplicatePred (q, pred(q), k)
 end if
 end for
end DuplicatePred

Figure 5.3.e. DuplicatePred procedure

43

Duplicate (node n, node i, machine k)
// Attempts to duplicate node n, a predecessor of node i, on machine k which executes node i
 if n has not been scheduled on k then
 rnk =StartTime (n, k)
 // Attempt to insert node n in the first available slack in the schedule of
 Processor k∈M
 for each node j already scheduled on k∈M do
 //scan from last to first scheduled
 if j∉ pred(n) then
 if j is the first node scheduled on k then
 if EST(j, k) >= rnk +T(n, k) then //see Figure 5.4
 snk = rnk
 end if
 Let p be the node immediately scheduled prior to j on k
 else if (EST(j, k)-EFT(p, k)>= T(n,k))and(EFT(p, k)>= rnk) then
 snk = EFT(p, k) // see Figure 5.5
 end if
 EFT(n, k) = snk+ T(n, k)
 end if
 end for
 //If EFT(i) did not decrease due to duplication, discard duplication
 if EFT(n ,k) < minsucc(n)(EFT(n)+C(n,succ(n)))then
 Insert and schedule n on k
 Recalculate EFT(i, k)
 if EFT(i ,k) improves then
 Keep n scheduled on k
 else
 Discard the duplication of node n on k
 end if
 end if
 end if
end Duplicate

Figure 5.3.f. Duplicate procedure

44

ScaledEnergy()
// Returns the total amount of energy consumption after applying voltage scaling
 for each processor k∈ M do // O(m)

 for each node n∈G scheduled on k do //O(n) from first to last scheduled

 T2(n) =)(12
2

2
1 nT

V
V

×

 EFT2(n) = snk+ T2(n)
 if (EFT2(n)+C(n ,c) < min EST(c) for each c∈succ(n) then

 // if c is scheduled on k, C(n, c) = 0
 EFT(n) = EFT2(n) //update EFT(n)

 Let i be the node scheduled immediately after n on k
 // use scaled voltage, see Figure 5.6
 E(k, n)=T2(n)×V2

2+(EST(i)-EFT(n))×V2
2

 else
 //original voltage for execution and scaled voltage during idle time,
 // see Figure 5.6
 E(k, n)=T1(n)×V1

2+(EST(i)-EFT(n))×V2
2

 end if
 end for
 E2(k)=+E(k, n)
 end for
 E2 = ∑

∈Mk

kE)(2

return E2
end ScaledEnergy

Figure 5.3.g. ScaledEnergy procedure

45

Task execution time

Communication time

Figure 5.4. Timeline for machine k (case 1)

n j i

T(n,k)

…

rn EST(j,k)
Already scheduled

EST(i,k)
Already scheduled

EST(j,k)
Already scheduled

EFT(p,k)
Already scheduled

rn

n
j p

T(n,k)

Figure 5.5. Timeline for machine k (case 2)

46

Figure 5.6. Timeline for machine k

5.3 Voltage scaling Strategies

Executing any task with a slower rate will require longer time to finish. And since

we are dealing with DAGs in which tasks are depending on other tasks. Changing the

finish time of a task may affect the start time of its predecessors resulting in a change of

the schedule makespan.

In our algorithm we want to make use of processor’s slack time to save energy

without changing the makespan of the original scheduling algorithms. Processors were

assumed to have three different operating voltage levels based on the Motorola CMOS

n i
V1

T1(n)

n i

V2

T2(n)

EFT(n)
EST(i)

EFT2(n)

Task execution time

Communication time

EST(i)

47

6805 microcontroller, which is rated at 6 MHz at 5.0 Volts, 4.5 MHz at 3.3 Volts, and 3

MHz at 2.2 Volts. We tested for five different strategies:

1. 5V/off: execute tasks with regular voltage level and turn off processors during

their idle time. This technique is used for comparison reasons only since

turning processors off each time they incur slack time has physical limitations.

2. 2V during idle: involves executing tasks with regular execution rate and

lowering the processor’s voltage level to 2V only during its idle time.

3. 3.3V during idle: involves executing tasks with regular execution rate and

lowering the processor’s voltage level to 3.3V during all its idle time.

4. 2V scale: we check if the slack time is long enough to scale down the

execution rate of tasks to 2V without altering the finish time. If so, execute the

task with 2V rate and also lower the voltage during the remaining idle time. If

not, execute task with regular voltage rate and lower the voltage rate during

the idle time.

5. 3.3V scale: we check if the idle time is long enough to lower the execution

rate to 3.3V of tasks without affecting the makespan. If so, execute the task

with 3.3V rate and also lower the voltage during the remaining idle time. If

not, execute task with regular voltage rate and lower the voltage rate during

the idle time.

48

6.3.1. Voltage scaling algorithm

The task in Figure 5.7 has finish time of t1 when executed with V1 and a finish

time of t2 when executed with V2. This task can be executed with the lower voltage level

only if t2 < min (start time of all its children).

For the task in Figure 5.7(a), the execution rate can be slowed down to V2 and

reduce the amount of energy consumed, while the task in Figure 5.7(b) cannot be scaled

down to V2 since the new finish time is greater than the earliest children’s start time. So

tasks need to be executed with the original voltage level. The voltage for the processors

will be scaled down during idle time x only.

49

Children’s
earliest start

time

t1 original
finish time

t2 new finish
time with

scaled voltage

 V1

 V2

T

(a)

Children’s
earliest start time

t1 original finish
time

t2 new finish
time with scaled
voltage

 V1

 V2

T

x

(b)

Figure 5.7. Different finish times with different execution rates

Although we choose to do the energy scaling as a second phase after the

scheduling of all tasks, it could have been done in parallel with the scheduling phase

resulting in the same schedule and the same amount of energy savings.

This could be explained as follows: each task is scheduled on the processor that

results in the earliest finish time. The finish time of each node on each processor is

50

determined by the first available start time of that node on that processor and the

execution time of the node on that specific processor, taking into consideration the finish

time of its predecessors and all communication cost between the task and any other node.

Then its successors are scheduled based on the same criteria. So immediately after the

scheduling of all the task children on the appropriate processors, the decision for scaling

down this task can be made based on the finish time of the task and the start time of its

successors. A task can be scaled down only if its finish time after executing with a lower

voltage level is earlier than the start time of all its successors. Executing the task with the

scaled down voltage level would not affect the scheduling decision for the next nodes

since it only affect the finish time of the scaled down task.

The advantage of doing it as a second phase is that we do not have to check if all

the task’s successors have been scheduled before deciding whether to scale that task

down or not resulting in a lower complexity algorithm.

51

CHAPTER 6

RESULTS AND DISCUSSION

 The experimental simulation estimates the energy gains of using voltage scaling

techniques on scheduling DAG tasks on multiple processors on top of two of the best

known high performing scheduling algorithms, DPS and HNPD.

As been stated in Chapter 5, processors were assumed to have three different

operating voltage levels based on the Motorola CMOS 6805 microcontroller, which is

rated at 6 MHz at 5.0 Volts, 4.5 MHz at 3.3 Volts, and 3 MHz at 2.2 Volts [Weis94].

First operating voltage was 5V; when using this voltage, if the processor becomes idle, it

shuts down. We will refer to this operating voltage as 5V/off. This level is used for

reference only since it has physical limitations. The other two operating voltages are 2V

and 3.3V, which slow the processor during task execution.

 The algorithms were tested using random DAGs and DAG for real world

problems; more specifically we tested on DAGs for Molecular Dynamics code,

Gaussian elimination, Sieve of Eratosthenes, and Fast Fourier Transform.

6.1 Results for random DAGs

 A set of random generated DAGs were generated to evaluate the voltage scaling

52

technique. Those DAGs had different input parameters (number of nodes, communication

to computation ratio, shape parameter, out-degree, and computation range) varied as

follows:

n = {10, 20, 40, 60, 80, 100, 500, 1000}

CCR = {0.1, 0.5, 1, 5, 10}

α = {0.5, 1, 2}

out-degree = {1, 2, 3, 4, 5, 100}

β = {0.1, 0.25, 0.5, 0.75, 1.0}

PNR = {25%, 50%, 100%}

The above values produce 10,800 DAGs, which were repeated for both presented

scheduling algorithms, EADAGS and EAGS-D.

6.1.1 Results for EADAGS

The amount of energy consumed was measured for DPS and EADAGS for

different test sets of random DAGs. Then, test sets were created by combining results

from DAGs with similar properties, such as the number of nodes or the CCR.

The amount of energy consumed were measured for five different strategies;

5V/off, 2V during idle, 3.3V during idle, 2V scale and 3.3V scale (explained in Chapter

5).

The first test set was achieved by combining DAGs with respect to number of

nodes. The energy saving was averaged over DAGs with varying CCR, α, β, out-degree,

and PNR.

Figure 6.1 shows the average energy saved by EADAGS over DPS with respect to

number of nodes. The percentage of energy savings increased with increasing number of

nodes. Average energy savings were 30% for a DAG of 10 nodes and the savings

gradually increases to 46% for 1000 node DAGs. Larger numbers of nodes increase the

chance of dependency between tasks, causing a slight increase in the processor wait time

and accordingly increasing the energy savings.

Table 6.1 lists the makespan and the average energy savings with respect to

number of nodes. Average energy savings ranges between 30% and 46% for the 5V/off

technique, 26% and 46% when 2V during idle is used, 24% and 46% when using 3.3V

during idle, 29% and 46 % when 2V scale is used, and 28% and 46% when 3.3V scale is

used.

0%

10%

20%

30%

40%

50%

60%

10 20 40 60 80 100 500 1000

Number of Nodes

A
ve

ra
ge

 E
ne

rg
y

Sa
vi

ng
s

5V/off
2V During idle
3.3V During idle
2V Scale
3.3V Scale

Figure 6.1. Average energy savings with respect to number of nodes

53

54

Number
of nodes Makespan

Percentage of energy savings

5V/off
2V

during
idle

3.3V
during

idle

2V
Scale

3.3V
Scale

10 174.7 30.28% 26.53% 24.09% 29.98% 28.84%

20 175.27 34.32% 32.6% 31.48% 33.63% 32.45%

40 321.67 40.2% 39.18% 38.51% 40.12% 39.57%

60 404.36 41.2% 40.54% 40.11% 40.93% 40.47%

80 525.5 43.14% 42.56% 42.19% 42.91% 42.51%

100 674.65 43.8% 43.39% 43.12% 43.64% 43.35%

500 835.29 45.94% 45.85% 45.8% 45.82% 45.28%

1000 1127 46.29% 46.25% 46.22% 46.88% 46.03%

Table 6.1. Makespan and average energy savings with respect to number of nodes

The second test set combines DAGs with respect to CCR. The average energy

savings were averaged over different DAGs with varying n, α, β, out-degree, and PNR.

In Figure 6.2 the average energy savings has been plotted with respect to CCR.

The average energy savings increased with increasing CCR. When CCR increases,

processors incur longer idle times due to communication between tasks. Our algorithm

was able to use such idle times to achieve energy savings.

Table 6.2 shows the makespan and the average energy savings for five different

CCR values. The average energy savings over DPS ranges from 35% for CCR=0.1 to

51% when CCR = 10 for 5V/off technique. Savings are smaller for 2V during idle; they

range between 25% and 38%. Savings are even smaller for the 3.3V during idle time;

they are 19% for CCR = 0.1 and 30% for CCR = 10. Average energy savings are 28% for

CCR = 0.1 and 44.7% when CCR = 10 for 2V scale, while for 3.3V scale energy

savings is 22.8% for CCR = 0.1 and 40% when CCR = 10.

0%

10%

20%

30%

40%

50%

60%

0.1 0.5 1 5 10
CCR

A
ve

ra
ge

 E
ne

rg
y

Sa
vi

ng
s

5V/off
2V During idle
3.3V During idle
2V Scale
3.3V Scale

Figure 6.2. Average energy savings with respect to CCR

CCR Makespan
Percentage of energy savings

5V/off 2V
During idle

3.3V
during idle

2V
Scale 3.3V Scale

0.1 117 35.17% 25.53% 19.27% 28.33% 22.87%

0.5 124 36.93% 26.95% 20.45% 29.42% 24.77%

1 133.89 37.25% 27.2% 20.66% 29.69% 25.06%

5 209.89 45.84% 34.07% 26.42% 41.98% 38.05%

10 280 51.4% 38.52% 30.15% 44.73% 40.11%

Table 6.2. Makespan and average energy savings for different CCR values

55

 The third test set combines DAGs with respect to processor to node ratio, PNR.

The average energy savings is averaged over randomly generated DAGs with varying n,

CCR, α, β, and out-degree. Figure 6.3 shows the average energy saving with respect to

PNR. Figure 6.3 shows decrease in the average energy savings with increasing PNR.

This is because increasing number of processors allows several parallel task executions,

thus minimizing the wait times. The average energy savings measured was 47% for PNR

= 25% in the 5V/off technique, 41% when processors operate at 2V during idle, 38% if

they operate at 3.3V when idle, 42% when 2V scale is used, and 39% when 3.3V scale is

used. But for PNR = 100% the average energy savings for all three operating levels are

almost equal to 33% , which is due to the significant decrease in the processor’s wait

time.

.

0%

10%

20%

30%

40%

50%

60%

0.25 0.5 1
Processor Node Ratio

A
ve

ra
ge

 E
ne

rg
y

Sa
vi

ng
s

5V/off
2V During Idle
3.3V During idle
2V Scale
3.3V Scale

Figure 6.3. Average energy savings with respect to PNR

56

Another test set combined DAGs with respect to shape parameter α. The average

energy savings were computed over 36,000 randomly generated DAGs with varying n,

PNR, CCR, β, and out-degree.

 In Figure 6.4 the average energy savings for the five operating strategies were

plotted with respect to α. The results in this figure indicate that the overall energy savings

marginally increased with increasing α. Increasing α increases parallelism in the DAG,

resulting in more idle time for the processors due to the task dependency. This time can

be used to reduce the consumed energy. The average energy savings was measured as

24% for α = 0.5, 25% for α = 1 and 25.5% when α = 2.

0%

10%

20%

30%

40%

50%

60%

0.5 1 2
shape Parameter

A
ve

ra
ge

 E
ne

rg
y

Sa
vi

ng
s

5V/off
2V During idle
3.3V During idle
2V Scale
3.3V Scale

Figure 6.4. Average energy savings with respect to α

57

58

Shape
parameter

Makespan

Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
scale 3.3V Scale

0.5 110.87 34.19% 24.75% 18.62% 28.47% 22.54%

1 189.87 34.38% 24.9% 18.74% 29.01% 23.71%

2 219.4 35.22% 25.58% 19.31% 29.33% 24.37%

Table 6.3. Makespan and average energy savings for different shape parameters

The last test set was for out-degree. The average energy savings were averaged

from 21,600 randomly generated DAGs with varying n, α, β, CCR, PNR.

Figure 6.5 shows the average energy savings with respect to five values for out-

degree. The results in this figure indicate that increase in out-degree results in smaller

average energy savings. A larger out-degree allows many processors to run in parallel.

Table 6.4 lists the makespan and average energy savings with respect to out-

degree. The amount of energy that could be saved ranges between 44% and 13% for

processors using 5V/off, 32% and 8.5% for 2V during idle, 25% and 5% for 3.3V during

idle, 36% and 10% when 2V scale is used, and 29% and 6% for a 3.3V scale.

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 100
Out Degree

A
ve

ra
ge

 E
ne

rg
y

sa
vi

ng
s

5V/off
2V During idle
3.3V During idle
2V Scale
3.3V Scale

Figure 6.5. Average energy savings with respect to out-degree

Out-degree Makespan
Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
scale 3.3V Scale

1 233.97 44.24% 32.79% 25.35% 36.29% 29.44%

2 321.67 42.67% 31.54% 24.3% 34.07% 26.36%

3 166.17 32.55% 23.44% 17.52% 26.18% 21.54%

4 194.29 29.53% 21.02% 15.5% 23.37% 19.28%

5 203.6 16.17% 10.33% 6.54% 14.71% 9.39%

100 157.13 13.83% 8.47% 4.98% 10.23% 6.41%

Table 6.4. Makespan and average energy savings with respect to out-degree

59

60

6.1.2 Results for EAGS-D

The amount of energy consumed was measured for HNPD and EAGS-D for

different test sets of random DAGs. Test sets were created by combining results from

DAGs with similar properties, such as the number of nodes or CCR.

The amount of energy consumed was measured for the five different strategies

explained before, 5V/off, 2V during idle, 3.3V during idle, 2V scale, and 3.3V scale.

The first test set was achieved by combining DAGs with respect to number of

nodes. The energy saving was averaged over DAGs with varying CCR, α, β, out-degree,

and PNR. Figure 6.6 shows the average energy saved by EAGS-D over HNPD with

respect to number of nodes.

The percentage of energy savings increased with increasing the number of nodes.

Average energy savings is 15% for a DAG of 10 nodes and the savings gradually

increases to 30% for 1000 node DAGs. Larger numbers of nodes increase the chance of

dependency between tasks, causing a slight increase in the processor wait time and

accordingly increasing energy savings.

Average energy savings ranges between 15% and 30% for processor using 5V/off

technique, 13% and 30% for 2V during idle, 12% and 30% when using 3.3V during idle,

14% and 31% for 2V scale, and 12% and 30% for 3.3V scale.

0%

10%

20%

30%

40%

50%

10 20 40 60 80 100 500 1000

Number of Nodes

A
ve

ra
ge

 E
ne

rg
y

Sa
vi

ng
s

5V/off
2V during idle
3.3 V during idle
2V Scale
3.3V Scale

Figure 6.6. Average energy savings with respect to number of nodes

Number of
Nodes makespan

Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
scale 3.3V Scale

10 164.3 15.24% 13.36% 12.13% 14.61% 12.75%

20 169.02 15.65% 14.79% 14.05% 15.31% 14.55%

40 318.07 26.02% 25.36% 24.85% 15.75% 15.57%

60 416.31 28.81% 28.33% 27.99% 28.61% 28.27%

80 537.6 30.43% 30% 29.41% 30.26% 31.07%

100 668.29 29.88% 29.6% 29.8% 29.77% 30.58%

500 799.83 30.67% 30.66% 30.3% 31.89% 30.78%

1000 1345.7 30.88% 30.78% 30.55% 31.09% 30.89%

Table 6.5. Makespan and average energy savings with respect to number of nodes

61

62

The second test set combines DAGs with respect to CCR. The average energy

savings is averaged for DAGs with varying n, α, β, out-degree, and PNR values.

In Figure 6.7 the average energy savings has been plotted with respect to CCR.

The average energy savings increased with increasing CCR. When CCR increases,

processors incur longer idle times due to communication between tasks. Our algorithm is

able to use such idle times to achieve energy savings.

The average energy savings over HNPD listed in Table 6.6 ranges from 8% for

CCR = 0.1 to 43% when CCR = 10 for 5V/off technique. Savings are smaller for 2V

during idle; they range between 4% and 39%. Savings are even smaller for the 3.3V

during idle; they are 2% for CCR = 0.1 and 32% when CCR = 10. Savings are higher for

2V scale than 2V during idle; they range from 6% when CCR = 0.1 to 50% for CCR = 10.

And finally the savings are 4% for CCR = 0.1 and 48% when CCR = 10 for 3.3V scale.

0%

10%

20%

30%

40%

50%

60%

0.1 0.5 1 5 10
CCR

A
ve

ra
ge

 E
ne

rg
y

Sa
vi

ng
s

5V/off
2V During idle
3.3V During idle
2V Scale
3.3 Scale

Figure 6.7. Average energy savings with respect to CCR

CCR Makespan
Percentage of energy savings

5V/off 2V
during idle

3.3V during
idle

2V
Scale 3.3V Scale

0.1 108.44 8.1% 4.25% 2.37% 6.92% 4.41%

0.5 119.11 13.11% 8.81% 5.62% 10.33% 9.38%

1 140.56 24.38% 21.03% 18.8% 21.67% 16.01%

5 206.78 40.58% 33.86% 30.74% 48.67% 47.03%

10 261.67 43.08% 38.98% 32.6% 50.71% 48.42%

Table 6.6. Makespan and average energy savings for different CCR values

63

 The third test set combines DAGs with respect to processor to node ratio, PNR.

The average energy savings were averaged over randomly generated DAGs with varying

n, CCR, α, β, and out-degree. Figure 6.8 shows the average energy saving with respect to

PNR.

 Figure 6.8 shows a decrease in the average energy savings with increasing PNR.

This is because increasing number of processors allows several parallel task executions,

thus minimizing the wait times. The average energy savings measured were 28% for PNR

= 25% for the 5V/off technique, 27% if processors operate at 2V during idle, 27% for

3.3V during idle, and 27% if they operate at either 2V scale or 3.3V scale. But for PNR =

100% the average energy savings for all five strategies were almost equal to 25%, which

is due to the significant decrease in the processor’s wait time.

0%

10%

20%

30%

40%

0.25 0.5 1
Processor Node Ratio

A
ve

ra
ge

 E
ne

rg
y

Sa
vi

ng
s

5V/off
2V During Idle
3.3V During idle
2V Scale
3.3V Scale

Figure 6.8 Average energy savings with respect to PNR

64

Another test set combined DAGs with respect to shape parameter α. The average

energy savings was computed over 36,000 randomly generated DAGs with varying n,

PNR, CCR, β, and out-degree.

In Figure 6.9 the average energy savings for the five operating strategies were

plotted with respect to α. The results in this figure indicate that the overall energy savings

marginally increased with increasing α from 0.5 to 1 and significantly decreased when α

= 2. Increasing α increases parallelism in the DAG, resulting in more idle time for the

processors due to the task dependency, but when α = 2 all this idle time is being used by

processors to duplicate tasks and so the average energy savings decreased, which was not

the case with EADAGS. The average energy savings were measured as 18% when α =

0.5, 22% when α = 1, and 3% when α = 2 as in Table 6.7.

0%

10%

20%

30%

40%

0.5 1 2

Shape Parameter

A
ve

ra
ge

 E
ne

rg
y

Sa
vi

ng
s

5V/off
2V During idle
3.3V During idle
2V Scale
3.3V Scale

Figure 6.9. Average energy savings with respect to α

65

66

Shape
Parameter Makespan

Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

0.5 97.73 19.75% 18.44% 17.59% 19.33% 18.01%

1 190.6 23.82% 22.62% 21.84% 22.89% 22.15%

2 218.73 3.38% 3.3% 3.25% 3.41% 3.33%

Table 6.7. Makespan and average energy savings for different shape parameters

The last test set combines DAGs with respect to out-degree. The average energy

savings were averaged over 21,600 randomly generated DAGs with varying n, α, β, CCR,

PNR.

Figure 6.10 shows the average energy savings with respect to five values for out-

degree. The results in this figure indicate that the increase in out-degree results in smaller

average energy savings. A larger out-degree allows many processors to run in parallel.

The amount of energy that could be saved ranged between 25% and 10% for

processors using 5V/off technique, 23% and 7% for 2V during idle, 20% and 5% for

3.3V during idle, 24% and 9% for 2V scale, and finally 21% to 6% when 3.3V scale is

used as shown in Table 6.8.

0%

10%

20%

30%

40%

1 2 3 4 5 100
Out Degree

A
ve

ra
ge

 E
ne

rg
y

Sa
vi

ng
s

5V/off
2V During idle
3.3V During idle
2V Scale
3.3V Scale

Figure 6.10. Average energy savings with respect to out-degree

Out-degree Makespan
Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

1 158.9 25.44% 23.45% 20.74% 24.72% 21.64%

2 218.06 22.68% 21.04% 19.35% 22.19% 20.38%

3 144.93 21.09% 18.44% 16.84% 19.07% 17.33%

4 164.03 19.33% 16.17% 13.97% 17.41% 14.86%

5 138.27 12.16% 10.86% 9.46% 12.03% 10.82%

100 106.71 9.67% 7.36% 5.47% 9.11% 6.71%

Table 6.8. Makespan and average energy savings with respect to out-degree

67

68

Regardless of the changing parameters, the average energy savings for EADAGS

is higher than the average energy savings measured for EAGS-D. That is due to the task

duplication in EAGS-D. EAGS-D attempts to duplicate the predecessor of tasks to

decrease the length of the time for which the node is awaiting data by making use of the

processor’s idle time. So the same task may be executed on several processors to reduce

the makespan. And since we use the processor’s idle time to save energy, reduction of

that time reduces the average energy that could be saved.

6.2 Results for real world problems

To evaluate the performance of the proposed algorithms, we used task graphs of

four real world problems: Gaussian elimination [Wu90], Molecular dynamics code

[Chun92], fast Fourier Transform [Chun92], and Sieve of Eratosthenes [Bask00].

6.2.1 Gaussian elimination

In mathematics, Gaussian elimination or Gauss-Jordan elimination, named after

Carl Friedrich Gauss and Wilhelm Jordan, is an algorithm in linear algebra for

determining the solution of a system of linear equations, for determining the rank of a

matrix, and for calculating the inverse of an invertible square matrix [Corm90]. Gaussian

Elimination is a systematic application of elementary row operations to a system of linear

equations in order to convert the system to upper triangular form. Once the coefficient

matrix is in upper triangular form, we use back substitution to find a solution. The

general procedure for Gaussian Elimination can be summarized in the steps in Table 6.9.

Gaussian Elimination Steps

1. Write the augmented matrix for the system of linear

equations.

2. Use elementary row operations on the augmented matrix

[A|b] to transform A into upper triangular form. If a zero is

located on the diagonal, switch the rows until a nonzero is

in that place. If you are unable to do so, stop; the system

has either infinite or no solutions.

3. Use back substitution to find the solution of the problem.

 Table 6.9. Gaussian elimination algorithm steps

The computational complexity of Gaussian elimination is O(n3); that is, the

number of operations required is (approximately) proportional to n3 for a matrix of size n

x n. The DAG for the Gaussian elimination algorithm for n=3, n=4, and n=5 is shown in

Figure 6.11 where n is the matrix size. Each Tk,k represents a pivot column operation and

Tk,j is an update operation. The total number of tasks in a graph is
2

22 −+ nn , where n is

the size of the matrix.

In the simulation, a matrix of size 8 x 8 has been used to evaluate EADAGS.

Since the structure of the graph is fixed only the number of processors and the CCR

values were varied. For a matrix of size 8 the total number of tasks in the graph is 35 and

largest number of tasks at a single level is 7 so the number of processors is bounded to

69

7. CCR values were 0.1, 0.5, 1.0, 5.0, and 10. In this experiment since the same operation

is executed at every processor and the same information is communicated from one

processor to another, a uniform computation cost for all tasks and equal communication

cost for all communication links were assumed.

T1, 1

T2, 2

T1, 3 T1, 2

T3, 4

T1, 1

T2, 2

T2, 4

T3, 3

T2, 3

T1, 4 T1, 3 T1, 2

T2, 3

(a) (b)

70

T1,5

T2,5

T1,4

T2,4 T2,3

T2,2

T1,3 T1,2

T1,1

T3,3

T3,4 T3,5

T4,4

T4,5

(C)

Figure 6.11. Gaussian elimination task graph (a) matrix of size 3, (b) matrix of size 4,

(c) matrix of size 5

71

72

6.2.1.1 Results for EADAGS

 Figure 6.12 and Figure 6.13 show the average energy savings using EADAGS

over DPS with respect to number of processors and CCR values. Figure 6.12 shows an

increase in the average energy savings with increasing number of processors. This is

because at each level only a certain number of tasks can be executed at the same time so

increasing the available processors number produces more idle time, thus increasing the

energy savings. The average energy savings measured were 32% for 2 processors using

the 5V/off technique, 27% of energy savings if processors operate at 2V during idle, 18%

energy savings if processors use 3.3V during idle, 29% energy savings for 2V scale, and

19% for 3.3V scale. When three processors are used, the average energy were 52% for

the 5V/off technique, 43% and 29% when processors scaled down during their idle time

to 2V and 3.3V respectively, and 45% when processors use the 2V scale, and 30% for the

3.3V scale. For four processors the average energy savings were 63%, 53%, 36%, 54%,

and 36% for the 5V/off, 2V during idle, 3.3V during idle, 2V scale, and 3.3V scale

respectively. The average energy savings were 69%, 57%, 38%, 58%, and 39% when

processors use the 5V/off technique, 2V during idle, 3.3V during idle, 2V scale, and 3.3V

scale respectively. For 6 processors the average energy savings were 74%, 62%, 42%,

63%, and 42% for the 5V/off, 2V during idle, 3.3V during idle, 2V scale, and 3.3V scale

respectively. Finally, the average energy savings were 77%, 64%, 43%, 65%, and 44%

when 7 processors are used for the 5V/off technique, 2V during idle, 3.3V during idle,

2V scale, and 3.3V scale respectively.

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7
Number of processors

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

5V/off
2V during idle
3.3V during idle
2V scale
3.3V scale

Figure 6.12. Average energy savings for Gaussian elimination algorithm with EADAGS

with different number of processors

0%

20%

40%

60%

80%

100%

0.1 0.5 1 5 10
CCR

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

5V/off
2V during idle
3.3V during idle
2V scale
3.3V scale

Figure 6.13. Average energy savings for Gaussian elimination algorithm with EADAGS

with different CCR values

73

74

Figure 6.13 plots the average energy savings with respect to different CCR values.

The average savings increased with increasing CCR. The average energy savings over

DPS ranges from 52% for CCR = 0.1 to 74% when CCR = 10 for 5V/off technique.

Savings are smaller for 2V during idle; they range between 44% and 62%. Savings are

even smaller for the 3.3V during idle; they are 29% for CCR = 0.1 and 41% for CCR =

10, while for 2V scale and 3.3V scale the average energy savings over DPS ranges from

45% for CCR = 0.1 to 62% when CCR = 10 and 30% for CCR = 0.1 and 42% for CCR =

10 respectively. Table 6.10 and Table 6.11 list the makespan and the average energy

savings for different number of processors and different CCR values for the EADAGS

algorithm.

Number of
processors

Makespan

Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

2 820 32.19 % 27.04 % 18.17 % 28.97% 19.46%

3 824.4 52.1 % 43.77 % 29.41 % 45.15% 30.34%

4 860 63.91 % 53.69 % 36.07 % 54.75% 36.79%

5 784.8 68.19 % 57.28 % 38.49 % 58.22% 39.12%

6 851.2 74.63 % 62.69 % 42.12 % 63.44% 42.63%

7 831.2 77.3 % 64.93 % 43.63 % 65.61% 44.08%

Table 6.10. Makespan and average energy savings for different number of processors for

Gaussian elimination with EADAGS

75

CCR
 Makespan

Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

0.1 381.33 52.69 % 44.26 % 29.74 % 45.94% 30.87%

0.5 421.67 54.19 % 45.52 % 30.58 % 47.06% 31.62%

1 480 56.41 % 47.38 % 31.84 % 48.76% 32.76%

5 1063.33 69.55 % 58.42 % 39.25 % 59.06% 39.68%

10 1796.67 74.11 % 62.25 % 41.83 % 62.63% 42.08%

Table 6.11. Makespan and average energy savings with respect to CCR for Gaussian

elimination with EADAGS

6.2.1.2 Results for EAGS-D

 The same number of processors and values for CCR were tested in the second part

of this experiment to evaluate EAGS-D. Figure 6.14 shows the average energy savings

for EAGS-D with respect to number of processors. The average energy savings

measured were 21% for 2 processors in the 5V/off technique, 17% when processors

operate at 2V during idle, 11% if they operate at 3.3V during idle, 20% for 2V scale, and

13% for 3.3V scale. These values increase gradually with increasing the number of

processors due to increasing idle time. The average energy savings were 69%, 58%, 38%,

59%, and 39% when 7 processors are used for the 5V/off technique, 2V during idle, 3.3V

during idle, 2V scale, and 3.3V scale respectively.

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7
Number of processors

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

5V/off
2V during idle
3.3V during idle
2V scale
3.3V scale

Figure 6.14. Average energy savings for Gaussian elimination algorithm with EAGS-D

with different number of processors

Figure 6.15 plots the average energy savings with respect to different CCR values.

The average savings increase with increasing CCR. The average energy savings over

HNPD ranges from 33% for CCR = 0.1 to 69% when CCR = 10 for 5V/off technique.

Savings are smaller for 2V during idle operating voltage; they range between 27% and

58%. Savings are even smaller for the 3.3V operating voltage; they are 18% for CCR =

0.1 and 39% for CCR = 10, while for 2V scale and 3.3V scale the average energy savings

over HNPD ranges from 30% for CCR = 0.1 to 59% when CCR = 10 and 20% for CCR =

0.1 and 40% for CCR = 10 respectively. Table 6.12 and Table 6.13 list the makespan and

the average energy savings for different number of processors and different CCR values

for the EAGS-D algorithm.

76

0%

20%

40%

60%

80%

100%

0.1 0.5 1 5 10
CCR

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

5V/off
2V during idle
3.3V during idle
2V scale
3.3V scale

Figure 6.15. Average energy savings for Gaussian elimination algorithm with EAGS-D

algorithm with different CCR values

Number of
processors

Makespan

Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

2 484 21.15 % 17.76 % 11.94 % 20.48% 13.76%

3 442.4 32.93 % 27.66 % 18.59 % 29.79% 20.02%

4 432 45.68 % 38.37 % 25.78 % 40.04% 26.91%

5 432 56.78 % 47.69 % 32.05 % 49.03% 32.95%

6 432 63.98 % 53.74 % 36.11 % 54.86% 36.86%

7 432 69.13 % 58.07 % 39.02 % 59.02% 39.66%

Table 6.12. Makespan and average energy savings for different number of processors for

Gaussian elimination with EAGS-D

77

CCR

Makespan
Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

0.1 303.67 33.21 % 27.9 % 18.74 % 30.03% 20.17%

0.5 305 33.59 % 28.22 % 18.96 % 30.33% 20.38%

1 350 42.13 % 35.39 % 23.78 % 37.27% 25.04%

5 580 62.7 5 52.67 % 35.39 % 53.82% 36.16%

10 673.33 69.73 % 58.58 % 39.36 % 59.58% 40.03%

Table 6.13. Makespan and average energy savings with respect to CCR for Gaussian

elimination with EAGS-D

0%

20%

40%

60%

80%

5V/off 2V during idle 3.3V during
idle

2V scale 3.3V scale

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

LPDPS

LPHNPD

Figure 6.16. Average energy savings for Gaussian elimination algorithm with

EADAGS and EAGS-D with voltage scaling levels

78

79

Figure 6.16 shows the average energy savings for both EADAGS and EAGS-D

with respect to the five voltage scaling levels tested for the Gaussian elimination

algorithm for a matrix of size 8. The overall average energy savings for EAGS-D is lower

than the average energy savings measured for EADAGS. That is due to the nature of the

EAGS-D algorithm, which uses task duplication to minimize the makespan. That

duplication uses a big portion of the processor’s idle time and that reduces energy

savings.

6.2.2 Molecular dynamic code

Figure 6.17 represents the DAG of a molecular dynamics code as given in

[Chun92]. We used this graph to evaluate the performance of EADAGS and EAGS-D,

since the graph has a fixed structure and fixed number of nodes, the only parameters that

could be varied was the number of processors and CCR values. Since there are at most

seven tasks at any level in Figure 6.17, the number of processors were bounded to seven.

The amount of energy consumed is measured for the five different voltage scaling levels

explained earlier. We assumed that the computation costs of all nodes are not equal and

the communication costs were also not equal for all links since the task computed at each

node and the data communicated from one node to another is different. Five values for

CCR were used in our experiments: 0.25, 0.5, 1, 5, and 10.

1

23 24 25 26 27 28 29

41

2 4

14

6

3

5 7 11

13 15

8

12

9 10

21 20 19 18 17 16 22

30 31 32 34 35 33

40 39

38 37 36

80

Figure 6.17. Directed a-cyclic graph (DAG) for a molecular dynamics code

81

6.2.2.1 Results for EADAGS

Figure 6.18 and Figure 6.19 show the average energy savings for EADAGS with

respect to number of processors and CCR values respectively. Figure 6.18 shows an

increase in the average energy savings with increasing number of processors. The

average energy savings measured was 22% for 2 processors in the 5V/off technique, 18%

when processors operate at 2V during idle, 12% if they operate at 3.3V during idle, 19%

for the 2V scale, and 13% for the 3.3Vscale. When three processors are used, the average

energy savings were 50% for the 5V/off technique, 40% when processors scaled down to

2V during idle, 29% for 3.3V during idle, 44% for 2V scale, and 30% for 3.3V scale. For

four processors, the average energy savings were 52%, 43%, 29%, 44%, and 30% for the

5V/off, 2V during idle, 3.3V during idle, 2V scale, and 3.3V scale respectively. The

average energy savings were 59%, 49%, 33%, 50%, and 33% when 5 processors are used

for the 5V/off technique, 2V during idle, 3.3V during idle, 2V scale, and 3.3V scale

respectively. For 6 processors the average energy savings were 63%, 52%, 35%, 53%,

and 36% for the 5V/off, 2V during idle, 3.3V during idle, 2V scale, and 3.3V scale

respectively. Finally, the average energy savings were 67%, 57%, 38%, 57%, and 38%

when 7 processors are used for the 5V/off technique, 2V during idle, 3.3V during idle,

2V scale, and 3.3V scale respectively.

 The makespan and the average energy savings for different number of processors

are listed in Table 6.14.

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7
Number of processors

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

5V/off
2V during idle
3.3V during idle
2V scale
3.3V scale

Figure 6.18, Average energy savings for molecular dynamics code with EADAGS with

different number of processors

Number of
processors

Makespan

Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

2 740.8 22.08 % 18.55 % 12.46 % 19.79% 13.30%

3 859.2 52.42 % 44.04 % 29.59 % 44.82% 30.11%

4 67.2 52.19 % 43.84 % 29.46 % 44.64% 30.00%

5 663.2 59.19 % 49.72 % 33.41 % 50.41% 33.87%

6 634 63.07 % 52.98 % 35.6 % 53.61% 36.02%

7 631.2 67.09 % 57.09 % 38.36 % 57.64% 38.73%

Table 6.14. Makespan and average energy savings for different number of processors for

molecular dynamics code with EADAGS

82

Figure 6.19 plots the average energy savings with respect to different CCR values.

The average savings increased with increasing CCR. The average energy savings over

DPS ranges from 45% for CCR = 0.1 to 64% when CCR = 10 for the 5V/off technique.

Savings are smaller for 2V during idle; they range between 38% and 54%. Savings are

even smaller for the 3.3V during idle; they are 25% for CCR = 0.1 and 36% for CCR =

10, while for 2V scale and 3.3V scale the average energy savings over DPS ranges from

39% for CCR = 0.1 to 54% when CCR = 10 and 26% for CCR = 0.1 and 36% for CCR =

10 respectively. The makespan and the average energy savings for different CCR values

are listed in Table 6.15.

0%

20%

40%

60%

80%

100%

0.1 0.5 1 5 10
CCR

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

5V/off
2V during idle
3.3V during idle
2V scale
3.3V scale

Figure 6.19. Average energy savings for molecular dynamics code with EADAGS with

different CCR values

83

84

CCR
 Makespan

Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

0.1 391.33 45.99 % 38.63 % 25.96 % 39.72% 26.69%

0.5 411.67 46.21 % 38.81 % 26.08 % 39.85% 26.78%

1 453.33 48.29 % 40.56 % 27.25 % 41.50% 27.89%

5 853.33 59.11 % 49.65 % 33.36 % 50.17% 33.71%

10 1396.67 64.5 % 54.18 % 36.41 % 54.51% 36.63%

Table 6.15. Makespan and average energy savings with respect to CCR for molecular

dynamics code with EADAGS

6.2.2.2 Results for EAGS-D

 Figure 6.20 and Figure 6.21 show the average energy savings for EAGS-D with

respect to number of processors and CCR values respectively.

 Figure 6.20 shows an increase in the average energy savings with increasing

number of processors. The average energy savings measured were 18% for 2 processors

using the 5V/off technique, 15% when processors operate at 2V during idle, 10% if they

operate at 3.3V during idle, 17% for 2V scale, and 11% for 3.3V scale. The average

energy savings increases to 61%, 51%, 34%, 52%, and 35% when 7 processors are used

for the 5V/off technique, 2V during idle, 3.3V during idle, 2V scale, and 3.3V scale

respectively. The makespan and the average energy savings for different number of

processors are listed in Table 6.16.

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7
Number of processors

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

5V/off
2V during idle
3.3V during idle
2V Scale
3.3V Scale

Figure 6.20. Average energy savings for molecular dynamics code with EAGS-D with

different number of processors

Number of
processors

Makespan

Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

2 566.4 18.87 % 15.85 % 10.65 % 17.44% 11.71%

3 488.8 27.58 % 23.17 % 15.57 % 24.48% 16.45%

4 467.2 41.6 % 34.95 % 23.48 % 36.02% 24.20%

5 459.2 52.96 % 44.49 % 29.89 % 45.38% 30.49%

6 445.2 58.15 % 48.85 % 32.82 % 49.64% 33.35%

7 438.4 61.72 % 51.85 % 34.84 % 52.56% 35.31%

Table 6.16. Makespan and average energy savings for different number of processors for

molecular dynamics code with EAGS-D

85

 Figure 6.21 plots the average energy savings with respect to different CCR values.

The average savings increased with increasing CCR. The average energy savings over

HNPD ranges from 24% for CCR = 0.1 to 74% when CCR = 10 for the 5V/off technique.

Savings are smaller for 2V during idle; they range between 20% and 62%. Savings are

even smaller for the 3.3V during idle; they are 13% for CCR = 0.1 and 41% for CCR =

10, while for 2V scale and 3.3V scale the average energy savings over HNPD ranges

from 220% for CCR = 0.1 to 62% when CCR = 10 and 15% for CCR = 0.1 and 42% for

CCR = 10 respectively. The makespan and the average energy savings for different CCR

values are listed in Table 6.17.

0%

20%

40%

60%

80%

100%

0.1 0.5 1 5 10
CCR

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

5V/off
2V during idle
3.3V during idle
2V Scale
3.3V Scale

Figure 6.21. Average energy savings for molecular dynamics code with EAGS-D with

different CCR values

86

87

CCR
 Makespan

Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

0.1 299.33 25.37 % 21.31 % 14.32 % 22.73% 15.27%

0.5 321.67 30.13 % 25.31 % 17.01 % 26.64% 17.90%

1 360 38.28 % 32.16 % 21.61 % 33.35% 22.41%

5 506.67 49.51 % 41.59 % 27.94 % 42.46% 28.53%

10 900 74.12 % 62.26 % 41.83 % 62.75% 42.16%

Table 6.17. Makespan and average energy savings with respect to CCR for molecular

dynamics code with EAGS-D

Figure 6.22 shows the average energy savings for both EADAGS and EAGS-D

with respect to the five voltage scaling strategies tested for the molecular dynamic code

algorithm. The overall average energy savings for EAGS-D is lower than the average

energy savings measured for EADAGS. That is due to the nature of the EAGS-D

algorithm which uses task duplication to minimize the makespan. That duplication uses a

big portion of the processor’s idle time and that reduces energy savings.

0%

20%

40%

60%

5V/off 2V during
idle

3.3V during
idle

2V Scale 3.3V Scale

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

LPDPS
LPHNPD

Figure 6.22. Average energy savings for molecular dynamics code algorithm with

EADAGS and EAGS-D with voltage scaling levels

6.2.3 Fast Fourier Transform FFT

FFT is an efficient algorithm to compute the discrete Fourier transform (DFT) and

its inverse. FFTs are of great importance to a wide variety of applications, from digital

signal processing to solving partial differential equations to algorithms for multiplying

large integers. DFT and FFT are used to generate frequency analysis of a discrete non-

periodic signal. The computation of DFT is complicated; it involves many additions and

multiplications involving complex numbers. Even a simple eight sample signal would

require 49 complex multiplications and 56 complex additions to work out the DFT. At

this level it is still manageable; however a realistic signal could have 1024 samples

88

89

which requires over 20,000,000 complex multiplications and additions. FFT is a simpler

method of laying out the computation and much faster for larger number of samples.

The idea behind the FFT is the divide and conquer approach, by breaking up the

original N point sample into two (N/2) sequences. This is because a series of smaller

problems is easier to solve than one large one. The DFT requires (N-1)2 complex

multiplications and N(N-1) complex additions as opposed to the FFT's approach, which

only requires 1 multiplication and 2 additions and the recombination of the points which

is minimal [Corm90].

The recursive, one-dimensional FFT task graph for 4 data points is shown in

Figure 6.23 [Chun92]. The FFT algorithm consists of two parts: recursive calls and the

butterfly operations. The task graph in Figure 6.23 can be divided into two parts; the

tasks above the dashed line are the recursive call tasks while the tasks below the dashed

line are the butterfly operation tasks.

T1

T2 T3

T4 T5 T6 T7

T8 T9 T10

T12 T13 T14

T11

T15

Figure 6.23. The generated DAG for FFT with four points

We used this task graph to evaluate the performance of EADAGS and EAGS-D.

Since the graph has a fixed structure and fixed number of nodes, the only parameters we

changed were the number of processors and CCR values. Since there are at most four

tasks at any level in Figure 6.23, the number of processors were bounded to four

processors starting with only 2 processors in the system and up to 4 processors

incrementing by 1. Each path from the entry node to an exit node is a critical path since

the computation cost of tasks in any level are equal and the communication costs of all

edges between two consecutive levels are equal. The amount of energy consumed was

measured for the five different strategies listed before.

90

91

6.2.3.1 Results for EADAGS

 Figure 6.24 shows the average energy savings for EADAGS with respect to

number of processors. Figure 6.24 shows a decrease in the average energy savings with

increasing number of processors.

 This is because increasing number of processors allows several parallel

task executions, thus minimizing the wait times which were used by our algorithm to

save energy. The average energy savings measured were 34% for 2 processors using the

5V/off technique, 29% when processors operate at 2V during idle, 19% if they operate at

3.3V during idle, 30% for 2V scale, and 20% for 3.3V scale. When three processors are

used, the average energy were 51% for the 5V/off technique, 42% for 2V during idle,

27% for 3.3V during idle, 44% for 2V scale, and 29% savings for 3.3V scale. For four

processors, the average energy savings are 53%, 45%, 31%, 47%, and 33% for the

5V/off, 2V during idle, 3.3V during idle, 2V scale, and 3.3V scale respectively. Table

6.18 lists the average energy savings and the makespan for EADAGS over DPS for

different number of processors.

0%

20%

40%

60%

80%

100%

2 3 4
Number of processors

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

5V/off
2V during idle
3.3V during idle
2V scale
3.3V scale

Figure 6.24. Average energy savings for FFT with EADAGS with different number of

processors

Number of
processors Makespan

Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

2 233 34.97% 29.37% 19.74% 30.08% 20.43%

3 296 55.89% 46.95% 31.54% 44.02% 29.11%

4 232.8 51.32% 43.11% 28.96% 47.66% 33.59%

Table 6.18. Makespan and average energy savings with respect to number of processors

for FFT with EADAGS

92

Figure 6.25 plots the average energy savings with respect to different CCR values.

The average savings increased with increasing CCR. When CCR increases, processors

incur longer idle times due to communication between tasks. Our algorithm was able to

use such idle times to achieve energy savings.

The average energy savings over DPS ranges from 23% for CCR = 0.1 to 77%

when CCR = 10 for 5V/off technique. Savings are smaller for 2V during idle; they range

between 19% and 64%. Savings are even smaller for the 3.3V during idle; they are 12%

for CCR = 0.1 and 43% for CCR = 10, while for 2V scale and 3.3V scale the average

energy savings over DPS ranges from 23% for CCR = 0.1 to 64% when CCR = 10 and

16% for CCR = 0.1 and 43% for CCR = 10 respectively.

0%

20%

40%

60%

80%

100%

0.1 0.5 1 5 10

CCR

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

5V/off
2V during idle
3.3V during idle
2V scale
3.3V scale

Figure 6.25. Average energy savings for FFT with EADAGS with different CCR

values

93

94

Table 6.19 lists the average energy savings and the makespan for EADAGS over

DPS for different CCR values.

CCR

Makespan
Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

0.1 155.33 25.30 % 21.25 % 14.28 % 23.13% 16.23%

0.5 163.33 29.95 % 25.16 % 16.9 % 25.32% 16.67%

1 180 36.5 % 30.67 % 20.61 % 34.67% 23.89%

5 340 66.42 % 55.79 % 37.48 % 55.58% 38.81%

10 540 78.79 % 66.19 % 44.47 % 64.22% 43.32%

Table 6.19. Makespan and average energy savings with respect to CCR for FFT with

EADAGS

6.2.3.2 Results for EAGS-D

 Figure 6.26 and Figure 6.27 show the average energy savings for EAGS-D with

respect to number of processors and CCR values respectively.

 Figure 6.26 shows an increase in the average energy savings with increasing

number of processors. The average energy savings measured were 18% for 2 processors

for the 5V/off technique, 14% for 2V during idle, 9% for 3.3V during idle time, 15% for

2V scale, and 10% for 3.3V scale. When three processors are used, the average energy

were 39% for the 5V/off technique, 33% for 2V during idle, 21% for 3.3V during idle,

34% for 2V scale, and 22% for 3.3V scale. For four processors, the average energy

savings were 49%, 41%, 27%, 42%, and 29% for the 5V/off, 2V during idle, 3.3V during

idle, 2V scale, and 3.3V scale respectively.

0%

20%

40%

60%

80%

100%

2 3 4

Number of processors

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

5V/off
2V during idle
3.3V during idle
2V scale
3.3V scale

Figure 6.26. Average energy savings for FFT with EAGS-D with different number of

processors

Figure 6.27 plots the average energy savings with respect to different CCR values.

The average savings increased with increasing CCR. When CCR increases, processors

incur longer idle times due to communication between tasks. Our algorithm was able to

use such idle times to achieve energy savings. The average energy savings over HNPD

ranges from 16% for CCR = 0.1 to 61% when CCR = 10 for 5V/off technique. Savings

are smaller for 2V during idle; they range between 13% and 51%. Savings are even

smaller for the 3.3V during idle; they are 9% for CCR = 0.1 and 34% for CCR = 10,

while for 2V scale and 3.3V scale the average energy savings over HNPD ranges from

15% for CCR = 0.1 to 51% when CCR = 10 and 11% for CCR = 0.1 and 35% for CCR =

10 respectively. Tables 6.20 and 6.21 lists the average energy savings for EAGS-D over

95

HNPD for different processors number and for different CCR values respectively

0%

20%

40%

60%

80%

100%

0.1 0.5 1 5 10

CCR

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

5V/off
2V durin idle
3.3V during idle
2V scale
3.3V scale

Figure 6.27. Average energy savings for FFT with EAGS-D with different CCR values

Number of
processors Makespan

Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

2 218.4 18.09 % 14.88 % 9.34% 15.82% 10.90%

3 208 39.96 % 33.25 % 21.68 % 34.18% 22.21%

4 199.2 49.93 % 41.62 % 27.31 % 42.15% 29.23%

Table 6.20. Makespan and average energy savings for different number of processors for

FFT with EAGS-D

96

CCR

Makespan

Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

0.1 136 16.52 % 13.88 % 9.33 % 15.45% 11.74%

0.5 146.67 22.71 % 19.08 % 12.82 % 20.05% 13.46%

1 160 27.78 % 23.33 % 15.67 % 24.21% 16.56%

5 300 51.48 % 41.64 % 24.7 % 42.53% 26.09%

10 300 61.48 % 51.64 % 34.7 % 51.48% 35.91%

Table 6.21. Makespan and average energy savings with respect to CCR for FFT with

EAGS-D

0%

20%

40%

60%

5V/off 2V during
idle

3.3V during
idle

2V scale 3.3V scale

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

LPDPS
LPHNPD

Figure 6.28. Average energy savings for FFT with EADAGS and EAGS-D with voltage

scaling levels

97

98

Figure 6.28 shows the average energy savings for both EADAGS and EAGS-D

with respect to the five voltage scaling strategies tested for a four point FFT DAG. The

overall average energy savings for EAGS-D is lower than the average energy savings

measured for EADAGS. That is due to the nature of the EAGS-D algorithm, which uses

task duplication to minimize the makespan. That duplication uses a big portion of the

processor’s idle time and that reduces the amount of energy savings.

6.2.4. Sieve of Eratosthenes

Sieve Eratosthenes is a method of identifying all prime numbers in a sequence of

numbers up to a certain N. A prime number is a natural number greater than 1 that can be

divided only by itself and by 1, while a composite number n is a natural number that can

be divided by a number less than n and greater that 1. The Sieve of Eratosthenes

identifies all prime numbers up to a given number N as follows [Corm90]:

1. Write down all numbers 1, 2, 3,…, N. We will eliminate composites by marking

them. Initially all numbers are unmarked.

2. Mark number 1 as special (it is neither prime nor composite).

3. Set k = 1. While k is less than the square root of N, do this:

a. Find the first number in the list greater than k that has not been identified

as composite (the first number found is 2) and call it m. Mark the numbers

2m, 3m, 4m,…… as composites. (Thus in the first run we mark all even

numbers greater than 2. In the second run we mark all multiples of 3

greater than 3.)

b. m is a prime number; put it on your list.

c. Set k = m and repeat.

4. Put the remaining unmarked numbers in the list of prime numbers.

The Sieve of Eratosthenes algorithm can be presented by a task graph DAG. The

DAG for the Sieve of Eratosthenes for N = 32 is shown in Figure 6.29. [Bask00]

1

 13 12 11 10 9876542 16 15 3 14 17

 24 23 22 21 20 19 18 25

 29 28 27 26

 30

 32

 31

Figure 6.29. Sieve of Eratosthenes task graph for N = 32

99

100

In the simulation, we used the graph of Sieve of Eratosthenes for a sequence of 32

numbers (N = 32) to test both EADAGS and EAGS-D. Since the structure of the graph is

fixed, only the number of processors and the CCR values were changed. For a sequence

of 32 numbers, the total number of tasks in the graph is 32 nodes and the largest number

of tasks at a single level is 16 tasks, so the number of processors was bounded to 8

processors. CCR had five different values: 0.1, 0.5, 1.0, 5.0, and 10. The amount of

energy consumed was measured for the five different operating strategies explained

earlier in Chapter 5.

6.2.4.1 Results for EADAGS

 Figure 6.30 shows a decrease in the average energy savings with increasing

number of processors for Sieve of Eratosthenes with EADAGS over DPS. This is because

increasing number of processor allows several parallel task executions, thus minimizing

the wait times, which are used by our algorithm to save energy.

 The average energy savings measured were 23% for 2 processors in the 5V/off

technique, 19% for 2V during idle, 13% for 3.3V during idle, 21% for 2V scale, and 14%

for 3.3V scale. When three processors are used, the average energy was 41% for the

5V/off technique, 33% for 2V during idle, 33% for 3.3V during idle, 35% for 2V scale,

and 25% for 3.3V scale. For eight processors, the average energy savings are 65%, 54%,

36%, 56%,a and 7% for the 5V/off, 2V during idle, 3.3V during idle, 2V scale, and 3.3V

scale respectively. Table 6.22 lists the makespan and the average energy savings for each

different number of processors tested.

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8

Number of processors

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

5V/off
2V during idle
3.3V during idle
2V scale
3.3V scale

Figure 6.30. Average energy savings for different number of processors for Sieve of

Eratosthenes with EADAGS

Number of
processors Makespan

Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

2 502.4 23.57 % 19.73 % 13.26 % 21.19% 14.89%

3 472 41.35 % 33.14 % 22.37 % 35.58% 25.82%

4 384.8 43.12 % 34.22 % 24.34 % 37.18% 27.62%

5 382.4 53.78 % 45.18 % 30.36 % 47.97% 32.20%

6 382.4 61.49 % 51.65 % 34.7 % 54.98% 35.91%

7 382 62.89 % 54.19 % 36.16 % 56.91% 38.22%

8 391.2 65.26 % 54.82 % 36.83 % 56.33% 37.83%

Table 6.22. Makespan and average energy savings for different number of processors for

Sieve of Eratosthenes with EADAGS

101

Figure 6.31 plots the average energy savings with respect to CCR. The average

energy savings increased with increasing CCR. When CCR increases, processors incur

longer idle times due to communication between tasks. Our algorithm is able to use such

idle times to achieve energy savings. The average energy savings over DPS ranges from

29% for CCR = 0.1 to 77% when CCR = 10 for 5V/off technique. Savings are smaller for

2V during idle; they range between 24% and 65%. Savings are even smaller for the 3.3V

during idle; they are 16% for CCR = 0.1 and 43% for CCR = 10, while for 2V scale and

3.3V scale the average energy savings over DPS ranges from 31% for CCR = 0.1 to 65%

when CCR = 10 and 20% for CCR = 0.1 and 45% for CCR = 10 respectively. Table 6.23

lists the average energy savings and the makespan for EADAGS over DPS for different

CCR values.

0%

20%

40%

60%

80%

100%

0.1 0.5 1 5 10

CCR

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

5V/off
2V during idle
3.3V during idle
2V scale
3.3 V scale

Figure 6.31. Average energy savings for different CCR values for Sieve of Eratosthenes

with EADAGS

102

103

CCR Makespan
Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

0.1 233.71 29.69 % 24.53 % 16.05 % 31.01% 20.84%

0.5 244.29 35.23 % 29.5 % 19.75 % 33.69% 21.29%

1 268.57 41.57 % 33.49 % 23.46 % 34.19% 23.97%

5 505.71 66.74 % 56.4 % 38.47 % 57.28% 39.77%

10 817.14 77.81 % 65.3 % 43.7 % 65.34% 45.84%

Table 6.23. Makespan and average energy savings for different CCR values for Sieve of

Eratosthenes with EADAGS

6.2.4.2 Results for EAGS-D

 Figure 6.32 and Figure 6.33 show the average energy savings for EAGS-D with

respect to the number of processors and CCR values respectively for the DAG for Sieve

of Eratosthenes.

 Figure 6.32 shows an increase in the average energy savings with increasing

number of processors. The average energy savings measured were 12% for 2 processors

using the 5V/off technique, 10% for 2V during idle, 6% for 3.3V during idle, 13% for the

2V scale, and 8% for the 3.3V scale. The average energy savings increases to 63%, 53%,

35%, 54%, and 37% when 8 processors are used for the 5V/off technique, 2V during

idle, 3.3V during idle, 2V scale, and 3.3V scale respectively. The makespan and the

average energy savings for different numbers of processors are listed in Table 6.24.

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8

Number of processors

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

5V/off
2V during idle
3.3V during idle
2V scale
3.3V scale

Figure 6.32. Average energy savings for Sieve of Eratosthenes with EAGS-D with

different numbers of processors

Number of
processors Makespan

Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

2 416 12.27 % 10.75 % 6.71 % 13.16% 8.81%

3 354.4 26.93 % 22.56 % 16.72 % 24.63% 18.49%

4 314.4 38.49 % 31.78 % 20.84 % 33.84% 21.67%

5 304 45.34 % 37.39 % 26.35 % 39.45% 27.76%

6 288.8 51.67 % 43.03 % 28.59 % 44.10% 29.99%

7 284 60.37 5 50.71 % 34.07 % 52.74% 35.60%

8 276.8 63.65 % 53.47 % 35.92 % 54.30% 37.79%

Table 6.24. Makespan and average energy savings for different numbers of processors for

Sieve of Eratosthenes with EAGS-D

104

Figure 6.33 plots the average energy savings with respect to different CCR values.

The average savings increased with increasing CCR. The average energy savings over

HNPD ranges from 29% for CCR = 0.1 to 62% when CCR = 10 for 5V/off technique.

Savings are smaller for 2V during idle; they range between 25% and 51%. Savings are

even smaller for the 3.3V during idle; they are 16% for CCR = 0.1 and 35% for CCR =

10, while for 2V scale and 3.3V scale the average energy savings over HNPD ranges

from 30% for CCR = 0.1 to 51% when CCR = 10 and 21% for CCR = 0.1 and 35% for

CCR = 10 respectively. The makespan and the average energy savings for different CCR

values are listed in Table 6.25.

0%

20%

40%

60%

80%

100%

0.1 0.5 1 5 10
CCR

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

5V/off
2V during idle
3.3V during idle
2V scale
3.3V scale

Figure 6.33. Average energy savings for Sieve of Eratosthenes with EAGS-D with

different CCR values

105

106

CCR Makespan
Percentage of energy savings

5V/off 2V
during idle

3.3V
during idle

2V
Scale 3.3V Scale

0.1 236 29.94 5 25.23 % 16.59 % 30.15% 21.21%

0.5 242.86 34.05 % 28.02 % 18.98 % 31.77% 21.03%

1 257.14 38.66 % 32.5 % 21.8 % 32.32% 21.71%

5 342.86 48.32 % 40.72 % 27.77 % 41.28% 29.37%

10 520 62.38 % 51.87 % 35.74 % 51.71% 35.34%

Table 6.25. Makespan and average energy savings for different CCR values for Sieve of

Eratosthenes with EAGS-D

Figure 6.34 shows the average energy savings for both EADAGS and EAGS-D

with respect to the five voltage scaling strategies tested for Sieve of Eratosthenes. The

overall average energy savings for EAGS-D is lower than the average energy savings

measured for EADAGS. That is due to the nature of the EAGS-D algorithm, which uses

task duplication to minimize the makespan. That duplication uses a big portion of the

processor’s idle time and that reduces the amount of energy savings.

0%

20%

40%

60%

5V/off 2V during idle 3.3V during
idle

2V scale 3.3V scale

A
ve

ra
ge

 e
ne

rg
y

sa
vi

ng
s

LPDPS
LPHNPD

Figure 6.34. Average energy savings for Sieve of Eratosthenes with EADAGS and

EAGS-D with voltage scaling levels

107

108

CHAPTER 7

CONCLUSIONS

We have proposed two new scheduling algorithms, EADAGS and EAGS-D, which try to

minimize finish time as well as energy consumption by the use of dynamic voltage scaling.

The results were based on a two part software simulation study. The first part consists of

a large set of randomly generated DAGs with various characteristics such as number of nodes,

CCR, shape parameter, processor node ratio, and out degree. For each parameter the results were

averaged across all other variables. The total number of random DAG generated for evaluating

each algorithm were 10,800 graphs for each.

The second part of the simulation contained DAGs for real world problems namely;

Gaussian elimination, molecular dynamic code, Sieve of Eratosthenes, and Fast Fourier

transform. These DAGs has a specific structure so numbers of nodes, shape parameter, and out

degree are fixed. We tested both EADAGS and EAGS-D with different number of available

processors and CCR.

The results from the randomly generated DAGs showed that EADAGS algorithm

resulted in an average energy saving of 40% over simple DPS, while EAGS-D algorithm

estimated a reduction in energy by 28% which is less than that for EADAGS due to the nature of

EAGS-D algorithm which involves task duplication.

109

For the second test set, first for Gaussian elimination an average of 44% of energy

savings were achieved by EADAGS and an average of 37% by EAGS-D. For the molecular

dynamic code problem the average energy savings with EADAGS and EAGS-D were 46% and

38% respectively. For FFT the average energy savings measured were 42% and 33% for

EADAGS and EAGS-D respectively. While for the Sieve of Eratosthenes average energy

savings for EADAGS and EAGS-D were 40% and 36% respectively.

The effect of different DAG characteristic on the amount of energy savings is discussed

next. For both EADAGS and EAGS-D the amount of energy savings increased by increasing the

number of nodes due to the increase in idle time due to task dependency. The rate of the increase

is lower in EAGS-D than EADAGS due to task duplication. The increase of CCR resulted in an

increase in the average energy savings for both EADAGS and EAGS-D. When CCR increases,

processors incur longer idle times due to communication between tasks. Both algorithms were

able to use such idle times to achieve energy savings. The results showed that the overall energy

savings marginally increased with increasing the shape parameter. Increasing shape parameter

increases parallelism in the DAG resulting in more idle time for the processors due to the task

dependency. This time was used by both EADAGS and EAGS-D to reduce the consumed

energy. The last parameter tested was out degree. An increase in out-degree resulted in smaller

average energy savings. A larger out-degree allows many processors to run in parallel reducing

the idle time for all processors and so less energy to save.

The future work can involve applying the voltage scaling technique to other scheduling

algorithm. Aiming to find the optimal solution especially to the real world problem and then

physically implementing them to save energy.

110

BIBLIOGRAPHY

[Bask00] S. Baskiyar, “Scheduling DAGs on message passing m-processor systems,”

IEICE Transactions on Information and Systems, vol. E-38-D, July 2000.

[Bask03] S. Baskiyar, and C. Dickinson, “Scheduling Directed A-cyclic Graphs on a

Bounded Set of Heterogeneous Processors Using Task Duplication,” LNCS, vol.
2913, pp. 259-267, Springer-Verlag, 2003.

[Burd96] T. Burd and R. Brodersen, “Processor Design for Portable Systems,” Journal

of VLSI Signal Processing, 13(2-3), pp.203-222, 1996.

[Chae04] Chaeseok Im and Soonhoi Ha, “Dynamic Voltage Scaling for Real-time Multi-

task Scheduling using Buffers,” Proc. ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems, pp.88-94, 2004.

[Chan96] A. Chandrakasan, V. Gutnik and T. Xanthopoulos, “Data Driven Signal

Processing: An Approach for Energy Efficient Computing,” International
Symposium on Low Power Electronics and Design, pp. 347-352, Aug. 1996.

[Choi04] K. Choi, R. Soma, and M. Pedram, “Dynamic Voltage and Frequency Scaling

based on Workload Decomposition,” Proceedings of the 2004 International
Symposium on Low Power Electronics and Design, August 2004.

[Chun92] Y. Chung and S. Ranka, “Applications and Performance Analysis of a

Compile-Time Optimaization Approach for List Scheduling Algorithms on
Distributed Memory Multiprocessors,” Proc. Supercomputing, pp. 512-521,
Nov 1992.

[Corm01] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction to Algorithms,”

MIT Press, 2001.

[Dong01] J. J. Dongarra and D. W. Walker, “The Quest for Petascale Computing,” In

IEEE Transactions on Computing in Science and Engineering, pp. 32-39, May
2001.

[Gebo96] C. H. Gebotys and R. J. Gebotys, “Power-Minimization in Heterogeneous

Processing,” In Proceedings of 29th Hawaii International Conference on
System Sciences (HICSS’96), vol. 1, pp. 330-337, January 1996.

111

[ImHa04] C. Im and S. Ha, “Dynamic Voltage Scaling for Real-time Multi-task
Scheduling using Buffers,” Proc. ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems, pp.88-94, 2004.

[Iver98] M. A. Iverson and F. Ozguner, “Dynamic Competitive Scheduling of Multiple

DAGs in a Distributed Heterogeneous Environment,” In Proceedings of the
1998 Workshop on Heterogeneous Processing, pp. 70-78, March 1998.

[Khok93] A. Khokhar, V. K. Prasanna, M. E. Shaaban and C. Wang, “Heterogeneous

Computing: Challenges and Opportunities,” IEEE Transactions on Computers,
vol. 26, pp. 18- 27, June 1993.

[Kiro97] D. Kirovski and M. Potkonjak, “System-level Synthesis of Low-power Hard

Real-time Systems,” In Proceedings of the 34th Annual Conference on Design
Automation, 1997.

[Kump94] K. Li, R. Kumpf, P. Horton, and T. Anderson, “A Quantitative Analysis of

Disk Drive Power Management in Portable Computers,” PTUC. Winter 1994
USENIX Conference, pp. 279-292, Jan. 1994.

[Kwok99] Y. K. Kwok and A. Ishfaq, “Link Contention-Constrained Scheduling and

Mapping of Tasks and Messages to a Network of Heterogeneous Processors,” In
Proceedings of 1999 International Conference on Parallel Processing, pp. 551-
558, September 1999.

[Mart02] S. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined Dynamic

Voltage Scaling and Adaptive Body Biasing for Lower Power Microprocessors
under Dynamic Workloads,” Proceeding of the 2002IEEE/ACM International
Conference on Computer-aided Design, November 2002.

[Lu00] Y. H. Lu, L. Benini and G. Di Micheli, “Low-Power Task Scheduling for

Multiple Devices,” International Workshop on Hardware/Software Codesign,
pp. 39- 43, May 2000.

[Micr04] “OnNow Power Management Architecture for Applications” at

http://www.microsoft.com/hwdev/desinit/onnowapp.HTM

[Mish03] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, and R. Melhem, “Energy Aware

Scheduling for Distributed Real-Time Systems,” Proc. Int’l Parallel and
Distributed Processing Symposium, pp. 9-16, April 2003.

[Much97] S. Muchnick, “Advanced Compiler Design and Implementation,” Morgan

Kaufmann Publishers, Inc., 1997.

112

[Pouw01] J. Pouwelse, K. Langendoen, and H. Sips, “Dynamic Voltage Scaling on a
Low-Power Microprocessor,” Proc. of the 7th Annual International Conference
on Mobile Computing and Networking, pp. 251-259, July 2001.

 [Radu00] A. Radulescu and A. J. C. Van Gemund, “Fast and Effective Task Scheduling
in Heterogeneous Systems,” In 9th Heterogeneous Computing Workshop, pp.
229-239, May 2000.

[Reut97] C. Reuter, M. Schwiegershausen and P. Pirsch, “Heterogeneous Multiprocessor

Scheduling and Allocation using Evolutionary Algorithms,” In Proceedings of
the IEEE International Conference on Application-Specific Systems,
Architecture and Processors, pp. 294-303, July 1997.

[Seig97] M. Tin, H. J. Seigel, J. K. Antonio and Y. A. Li, “Minimizing the Application

Execution Time Through Scheduling of Subtasks and Communication Traffic in
a Heterogeneous Computing System,” In IEEE Transactions on Parallel and
Distributed Systems, vol. 8, no. 8, pp. 857-870, August 1997.

[Shan03] L. Shang, Li-Shiuan Peh, and N. K. Jha, “Dynamic Voltage Scaling with Links

for Power Optimization of Interconnection Networks,” Proc. of the 9th
International Symposium on High-Performance Computer Architecture, pp. 91-
102, February 2003.

[Shin01] D. Shin, S. Lee, and J. Kim, “Intra-Task Voltage Scheduling for Low-Energy

Hard Real-Time Applications,” IEEE Design and Test of Computers, vol. 18,
pp. 20-30, March 2001.

[Shiu00] W. T. Shiue and C. Chakrabarti. “Low-Power Scheduling with Resources

Operating at Multiple Voltages,” In IEEE Transactions on Circuits and
Systems-2: Analog and Digital Signal Processing, vol. 47, no. 6, pp. 536- 543,
June 2000.

[Smar06]http://www.bsac.eecs.berkeley.edu/archive/users/warneke-brett/SmartDust/,

accessed on February 2006.

[Sriv96] M. Srivastava, A. Chandrakasan, and R. Brodersen, “Predictive System

Shutdown and Other Architectural Techniques for Energy Efficient
Programmable Computation,” IEEE Transactions on VLSI Systems, vol. 4, pp.
42-55, March 1996.

[Tiwa94] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded Software: A

First Step toward Software Power Minimization,” Proceedings of the 1994
IEEE/ACM International Conference on Computer-aided Design, November
1994.

113

[Tiwa96] V. Tiwari, S. Malik, A. Wolfe, and M. Lee, “Instruction Level Power Analysis

and Optimization of Software,” Journal of VLSI Signal Processing, 13(2/3), pp.
1-18, 1996.

[Topc99] H. Topcuoglu, S. Hariri and M. Y. Wu, “Task Scheduling Algorithms for

Heterogeneous Processors,” In Proceedings of the 8th Heterogeneous
Computing Workshop, pp. 3-14, April 1999.

[Topc02] H. Topcuoglu, S. Hariri and M. Y. Wu, “Performance-effective and Low

Complexity Task Scheduling for Heterogonous Computing Parallel and
Distributed Systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 13, no. 3, March 2002.

[Wang97] L. Wang, H. J. Siegel, V. P. Rowchowdhury and A. A. Maciejewski, “Task

Matching and Scheduling in Heterogeneous Computing Environments Using a
Genetic- Algorithm-Based Approach,” Journal of Parallel and Distributed
Computing, vol. 47, pp. 8-22, November 1997.

[Weis94] M. Weiser, B. Demers, and Shenker, “Scheduling for reduced CPU energy,”

Proc 1st USENIX Symposium On operating Systems Design and
Implementation, pp. 13-23, Nov 1994.

[Yang01] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest, and R.

Lauwereins, “Energy-Aware Runtime Scheduling for Embedded-
Multiprocessor SOCs,” IEEE Design and Test of Computers, vol. 18, no. 5, pp.
46-58, Sept./Oct. 2001.

[Zhan02] Y. Zhang, D. Chen, “Task Scheduling and Voltage Selection for Energy

Minimization,” Design Automation Conference, pp.183-188, June 2002.

	1-approval page
	2-Titel Page
	3-permission page
	4-abstract
	5-Style manual
	6-TABLE OF CONTENTS
	7-LIST OF FIGURES
	8-LIST OF TABLES
	9-dissertation
	10-conclusios
	11-Refrences

