

USER EXPERIENCE DESIGN AND EXPERIMENTAL EVALUATION OF

EXTENSIBLE AND DYNAMIC VIEWERS FOR DATA STRUCTURES

Except where reference is made to the work of others, the work described in this dissertation is
my own or was done in collaboration with my advisory committee. This dissertation does not

include proprietary or classified information.

Jhilmil Jain

Certificate of Approval:

Nedret Billor
Associate Professor
Mathematics and Statistics

James H. Cross II, Chair
Professor
Computer Science and Software
Engineering

Dean Hendrix
Associate Professor
Computer Science and Software
Engineering

David Umphress
Associate Professor
Computer Science and Software
Engineering

 Joe F. Pittman
 Interim Dean
 Graduate School

USER EXPERIENCE DESIGN AND EXPERIMENTAL EVALUATION OF

EXTENSIBLE AND DYNAMIC VIEWERS FOR DATA STRUCTURES

Jhilmil Jain

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
May 10, 2007

 iii

USER EXPERIENCE DESIGN AND EXPERIMENTAL EVALUATION OF

EXTENSIBLE AND DYNAMIC VIEWERS FOR DATA STRUCTURES

Jhilmil Jain

Permission is granted to Auburn University to make copies of this dissertation at its discretion,
upon request of individuals or institutions and at their expense. The author reserves all

publication rights.

 Signature of Author

 Date of Graduation

 iv

DISSERTATION ABSTRACT

USER EXPERIENCE DESIGN AND EXPERIMENTAL EVALUATION OF

EXTENSIBLE AND DYNAMIC VIEWERS FOR DATA STRUCTURES

Jhilmil Jain

Doctor of Philosophy, May 10, 2007
(M.S.W.E., Auburn University, 2002)

(B.E., Govt. College of Engineering, India, 2000)

207 Typed Pages

Directed by James H. Cross II

Many techniques for the visualization of data structures and algorithms have been proposed and

shown to be pedagogically effective. Yet, they are not widely adopted because they lack suitable

methods for automatically generating the visualizations, lack integration among visualizations,

and lack integration with basic integrated development environment (IDE) support. In this work,

additionally it was identified that the lack of adoption was because these tools do not focus on

one of the main problems students in an introductory level data structures and algorithms class

face; that is, the transition from abstract and static concepts to dynamic implementation.

To effectively use visualizations when developing code, it is useful to automatically

generate multiple synchronized views without leaving the IDE. The jGRASP IDE has been

extended to provide object viewers that automatically generate dynamic, state-based

visualizations of data structures in Java. Such seamless integration of a lightweight IDE with a

 v

set of pedagogically effective software visualizations is unique and is currently unavailable in any

other environment.

Formal and repeatable controlled experiments were conducted to investigate the effect of

these viewers on the performance of students. These studies indicated a statistically significant

improvement over traditional methods of visual debugging that use breakpoints. Six controlled

experiments were conducted to test various hypotheses. The goal of Experiments I and III was to

determine if students would be able to code more accurately and in less time using the jGRASP

data structure viewers for a relatively easy (singly linked list) and a relatively hard (linked binary

tree) to understand data structure. The goal of Experiments II and IV was to determine if students

would be able to find and correct more logical errors accurately and faster using jGRASP viewers

for a relatively easy (singly linked list) and a relatively hard (linked binary tree) to understand

data structure. Experiment V was conducted using min-max heap to test if students would be able

to transition from concept to implementation faster and more accurately using jGRASP viewers

for data structures that are covered only conceptually in lectures. Experiment VI was conducted

using linked priority queue to test if students would be able to apply concepts for data structures

that were not covered in lectures faster and more accurately using jGRASP viewers. In all six

experiments, the group using jGRASP viewers performed significantly better than the other

group.

Thus, this research has shown that automatic generation of visualizations for data

structures tightly integrated within an IDE helps students not only learn concepts but also aids in

transitioning from static concept to dynamic implementation for both relatively easy and hard to

learn data structures.

 vi

ACKNOWLEDGEMENTS

I have been very fortunate to have had Dr. James H. Cross II as my Ph.D. advisor. His clarity of

thought and methodogical approach of solving complicated issues was always an inspiration. I am

grateful to Dr. Cross not only for his technical advice, but also for the encouragement and support

he gave me when they were most needed.

I would like to thank rest of my faculty advisory committee: Nedret Billor, Dean Hendrix

and David Umphress for their helpful comments and suggestions. I would also like to thank Larry

Barowski for integrating the viewers in jGRASP. Additionally, I am thankful to all the students of

COMP2210 who participated in the experiments.

I would also like to thank my father, who passed away in 2005, for getting me interested

in science and technology at an early age, and my mother for believing her daughter could do

anything she chose to do and always encouraged me.

 vii

Style manual or journal used: ACM Computing Surveys.

Computer software used: Microsoft Word, Microsoft Excel, SAS, NCSS/PASS, and jGRASP

integrated development environment.

 viii

TABLE OF CONTENTS

LIST OF FIGURES ………………………………………………………………………… xii

LIST OF TABLES………………………………………………………………………….. xvi

1. INTRODUCTION ……………………………………………………………..………… 1

2. LITERATURE REVIEW ……………………………………………………...………… 6

2.1. Tools for learning data structures ……………………………………….…………… 6

2.1.1. Conceptual level ……………………………………………...…………… 6

2.1.2. Implementation level ……………………………………...………………. 11

2.1.2.1. Visual debugging ………………………….………………… 15

2.1.3. Summary of DSV tools …………………………………...………………. 18

2.2. Guidelines for design of DSV tools ………………………………………………….. 18

2.2.1. Methods for visualization generation ……………………….…………………. 22

2.3. Guidelines for pedagogical effectiveness of DSV tools ………………………..……. 23

2.3.1. Guidelines for improving learning for students …………….…………….…… 24

2.3.2. Guidelines for increasing adoptability by instructors ………..………………... 27

2.4. Conclusions: design and pedagogical requirements ………………………….….…... 27

3. SURVEY DESIGN AND ANALYSIS TO INVESTIGATE DATA STRUCTURE
 UNDERSTANDING …………………………..………………………………….…….

30

3.1. Survey design ……………………………………………………………...…………. 30

3.2. Participants and deployment ………………………………….………………...……. 32

 ix

3.3. Results and discussions ………………………………………………………………. 32

3.4. Conclusions ……………………………………………………………………..……. 42

4. jGRASP DATA STRUCTURE VIEWERS ……………………………………………... 43

4.1. Technology used to create viewers ……………………………………...…………… 44

4.2. Types of viewers ……………………………………………………….………..…… 45

4.2.1. Animated verifying viewers ………………………………….…………... 51

4.3. Types of viewer generation …………………………..…………………..………….. 53

4.3.1. API based ……………………………………………………………...….. 53

4.3.1.1. An example ……………………………………………………...…….. 53

4.3.2. Automatic identification ………………………………………………….. 57

 4.3.2.1. Data structure identifier …………………………………………….…... 58

4.3.2.2. An example ………………………………………………………….….. 60

5. EXPERIMENTAL EVALUATION ……………….………………………………...….. 64

5.1. Experimental design issues ……………………………………………………...….. 65

5.1.1. Subject selection ………………………………………………………….. 66

5.1.2. Grading and compensation ………………………………………………... 67

5.1.3. Data analysis ………………………...………………………………..…… 68

5.2. Experiment 1 – linked list ……………………………………………………….…… 69

5.2.1. Method …………………………………...……………………………….. 69

5.2.1.1. Participants ………………………..………………………….….. 69

5.2.1.2. Materials ………………………………..…………………….….. 69

5.2.1.3. Design and procedure …………………...……………………….. 70

5.2.2. Results ………………………………………………..……………………….. 72

5.3. Experiment 2 – linked list ………………………………….…………….…………... 74

5.3.1. Method ………………………………………………………………………… 74

5.3.1.1. Participants ………………………………..……………………… 74

5.3.1.2. Materials …………………………………..……………………… 74

 x

5.3.1.3. Design and procedure ……………………..……………………… 78

5.3.2. Results ……………………………………………………..…………………... 79

5.4. Experiment 3 – linked binary tree ….…………………………….……………..…... 82

5.4.1. Method ……………………………………………………………..……..…… 82

5.4.1.1. Participants ……………………………………………..………… 82

5.4.1.2. Materials ………………………………………………..…….….. 82

5.4.1.3. Design and procedure …………………………..…………….….. 83

5.4.2. Results ………………………………………………………..……………….. 84

5.5. Experiment 4 – linked binary tree ………………………………….……………….. 86

5.5.1. Method ………………………………………………………..…………...….. 86

5.5.1.1. Participants ………………………………………….………..….. 86

5.5.1.2. Materials ………………………………………………...……….. 86

5.5.1.3. Design and procedure ……………………………………...…….. 89

5.5.2. Results ……………………………………………………………………..….. 90

5.6. Experiment 5 – min-max heap……….…………………………………………...….. 92

5.6.1. Method …………………………………………………………………….…... 92

5.6.1.1. Participants …………………………………………………...….. 92

5.6.1.2. Materials ……………………………………………………..…… 93

5.6.1.3. Design and procedure ………………………………………..…… 93

5.6.2. Results …………………………………………………………………….…… 95

5.7. Experiment 6 – linked priority queue………………………………………………… 97

5.7.1. Method ………………………………………………………………………… 97

5.7.1.1. Participants …………………………………………………..…… 97

5.7.1.2. Materials ……………………………………………………..…… 97

5.7.1.3. Design and procedure ………………………………………..…… 100

5.7.2. Results …………………………………………………………………….…… 100

5.8. Sample size analysis ……………………………………………………………..…... 102

 5.9. Retention of concept………………………………………………………………….. 105

 xi

6. QUESTIONNAIRE TO EVALUATE THE USER INTERFACE ASPECTS OF
 jGRASP VIEWERS AND DEBUGGER…………..……………………………………

106

6.1. Debugger questionnaire ……………………………………………………………… 106

6.1.1. The debug buttons ……………………………………….…………………….. 107

6.1.2. Results and discussions ………………………………………………………... 109

6.1.3. Interface layout recommendations ………………………….…………………. 113

6.2. jGRASP viewer questionnaire ………………………………………………….……. 115

6.2.1. Results and discussions ………………………………………………………... 116

6.2.2. Interface layout recommendations ……………………………………….……. 120

7. SUMMARY AND CONCLUSIONS……………………………………………………. 122

BIBLIOGRAPHY…………………………………………………………………………... 127

APPENDICES………………………………………………………………………………. 137

 A – Survey for data structure understanding (Fall 2004/Spring 2005) …………………... 138

 B – Interview results for data structure understanding (Fall 2004/Spring 2005) ……….... 140

 C – Test 1: Questions to test error detection and correction……………………………… 141

 D – Test 2: Questions to test program understanding and tracing………………….…….. 151

 E – Activity to familiarize students with jGRASP debugger……………………………... 155

 F – Activity to familiarize students with jGRASP debugger and viewers………………... 162

 G – Program LinkedSet.java provided for Experiment II……………………………….... 170

 H – Program LinkedBinarySearchTree.java provided for Experiment IV…………….….. 173

 I – Program Heap.java provided for Experiment V………………………………………. 179

 J - Program PriorityQueueLinked.java provided for Experiment VI……………………... 184

 K - SAS code for Experiment I, III, V and VI: 2 response variables……………………... 185

 L - SAS code for Experiment II and IV: 4 response variables……………………………. 186

 M – Questionnaire on jGRASP debugger –Group 1………………………………………

187

 N – Questionnaire on jGRASP viewers –Group 2 ………………………………….……. 189

 xii

LIST OF FIGURES

Fig. 1.1: Dissertation research focus ………………………………………………………. 1

Fig. 3.1: Pie charts of year in the undergraduate degree…………………………………… 33

Fig. 3.2: Pie charts of COMP 2210 majors………………………………………………… 33

Fig. 3.3: Pie charts of Java level…………………………………………………………… 34

Fig. 3.4: Fall 2004 – Java Level grouped by major………………………………………... 35

Fig. 3.5: Spring 2005 – Java Level grouped by major……………………………………... 36

Fig. 3.6: Fall 2004 – Java level grouped by year…………………………………………... 37

Fig. 3.7: Spring 2005 – Java level grouped by year…………………………………….….. 38

Fig. 3.8: Bar chart comparing programming language experience………………………… 39

Fig. 3.9: SAS code used to determine association between each understanding level
 where usg was assigned a value “Concept”/ ”Impl” /”Appl”, and atd was
 assigned the numerical rating………………………….…………………………

40

Fig. 3.10: SAS code used to determine association between all the data structures where
 sname was assigned the name of the data structure “list-array”/ “stack-pointer”/
 “tree” etc, and atd was assigned the numerical rating………..………………….

41

Fig. 4.1: jGRASP virtual desktop ………………………………………………………… 44

Fig. 4.2: Interface-based viewer for Stack collection class……………………………. 46

Fig. 4.3: Structure-based viewer for Stack collection class………………………………... 46

Fig. 4.4: Structure-based viewer for ArrayList collection class…………………………. 47

Fig. 4.5: Structure-based viewer for LinkedList collection class…………………………... 47

Fig. 4.6: Structure-based viewer for PriorityQueue collection class……………………… 48

Fig. 4.7: Interface-based v viewer for TreeMap collection class………………………...… 49

Fig. 4.8: Structure-based viewer for TreeMap collection class……………………………. 49

Fig. 4.9: Interface-based viewer for HashMap collection class……………………………. 50

Fig. 4.10: Structure-based viewer for HashMap collection class…………………………... 50

 xiii

Fig. 4.11: Structure-based viewer for Vector collection class……………………………... 51

Fig. 4.12: Details of the controls of the viewer window………………..………………….. 54

Fig. 4.13: Code fragments of LinkedSet.java and LinearNode.java……..………………… 55

Fig. 4.14: LinkedSet.java – CSD window of jGRASP with the debugger stopped at
 break point………………………………………………………………………..

56

Fig. 4.15: View when the node with value 6 has been attached to the previous node before
 in the linked list………………………………………………………………..

56

Fig. 4.16: View after the next pointer of the new node is set to point to the rest of the list
 (pointed to by after). The remaining list slides up from the local space to the
 main structure……………………….…………………………………………..

56

Fig. 4.17: Code fragments of LinkedBinarySearchTree.java and BinaryTreeNode.java…..

60

Fig. 4.18: Configuration dialog box for automatic structure identification………………... 61

Fig. 4.19: Possible structural mappings identified for the given LinkedBinarySeachTree
 and BinaryTreeNode code fragments…………………………………………….

62

Fig. 4.20: LinkedBinarySearchTree – CSD window of jGRASP with the debugger
 stopped at a break point ……………………………………………………….

63

Fig. 4.21: View after local node has been created and is about to be added to the binary
 tree………………...……………………………………………………………..

63

Fig. 4.22: View after the node has “moved” from the local space into the binary tree and
 prior to size being updated…………...………………………………………...

63

Fig. 5.1: Methods used for Experiment I and Experiment II………………………………. 71

Fig. 5.2: Experiment I – comparison of mean time…………………………………….…... 72

Fig. 5.3: Experiment I – comparison of mean accuracy…………………………………… 73

Fig. 5.4: Experiment II – CSD window of jGRASP with debugger stopped at a breakpoint
 in the add() method……..…………………………………………………………

75

Fig. 5.5: View after two nodes have been added and the next pointer of the third node (to
 be added) is set to the head node…………………………………………………

75

Fig. 5.6: View after head of the list has been set to the third node being added. The node
 has “moved” from the local space into the linked list and prior to the count
 being incremented ……………………………………………………………...

75

Fig. 5.7: Experiment II – CSD window with the debugger stopped at a breakpoint in the
 insert() method …………………………………………………………………..

76

 xiv

Fig. 5.8: The next pointer of the node to be inserted is set to index 1 instead of index 0….. 76

Fig. 5.9: The next pointer of the node at index 0 is set to the new node tmpNode, and the
 node slides in from the local space into the linked list and prior to count being
 incremented………………………………………………………………………..

76

Fig. 5.10: Experiment II – Debugger breakpoint stopped in the delete() method…………. 77

Fig. 5.11: Node at index 1 was supposed to be deleted. current points at the node that will
 be deleted………………………………………………………………….……..

77

Fig. 5.12: View after the next pointer of previous is set to the node pointed by current.
 The node “c” slides down into the local space since it is no longer a part of the
 linked list. The count variable has not been decremented yet.……………….….

77

Fig. 5.13: Experiment II – comparison of mean time……………………………………… 80

Fig. 5.14: Experiment II – comparison of mean bugs (logical errors) located, corrected
 and introduced …………………………………………………………………...

80

Fig. 5.15: Methods used in Experiment III ………………………………………………... 83

Fig. 5.16: Experiment III – average time taken by the treatment group (with viewers) and
 the control group (without viewers) ……………………………………………..

85

Fig. 5.17: Experiment III – average accuracy of the treatment group (with viewers) and
 the control group (without viewers) ………………………….………………….

85

Fig. 5.18: Methods used in Experiment IV………………………………………………… 89

Fig. 5.19: Experiment IV: Debugger stopped at a breakpoint in the addElement() method.. 87

Fig. 5.20: View after local node with value 8 has been created but not yet added to the
 tree……………………………………………………………………………….

87

Fig. 5.21: View after newNode is added to the tree, and is incorrectly set as root…………. 87

Fig. 5.22: Experiment IV – average time taken by the treatment group (with viewers) and
 the control group (without viewers) ……………………………………………..

91

Fig. 5.23: Experiment IV – average accuracy of the treatment group (with viewers) and
 the control group (without viewers) ……………………………………………..

91

Fig. 5.24: Details of max heap used in Experiment V……………………………………... 95

Fig. 5.25: Experiment V – comparison of mean time……………………………………… 96

Fig. 5.26: Experiment V – comparison of mean accuracy…………………………………. 96

Fig. 5.27: Details of priority queue used in Experiment VI………………………………... 99

Fig. 5.28: Experiment VI – comparison of mean time……………………………………... 101

 xv

Fig. 5.29: Experiment VI - comparison of mean accuracy………………………………… 101

Fig. 6.1: The debug button panel in jGRASP……………………………………………… 107

Fig. 6.2: Usefulness of the Debug Tab features……………………………………………. 110

Fig. 6.3: Frequency of use of the Debug Tab features……………………………………... 110

Fig. 6.4: Frequency of use of Debug controls……………………………………………… 111

Fig. 6.5: Icon representation of Debug controls……………………………………………. 111

Fig. 6.6: Layout recommendation 1 for debug panel………………………………………. 114

Fig. 6.7: Layout recommendation 2 for debug panel………………………………………. 114

Fig. 6.8: Usefulness of viewer features…………………………………………………….. 117

Fig. 6.9: Frequency of use of viewer features……………………………………………… 117

Fig. 6.10: Icon representation of viewer features………………………………………….. 118

Fig. 6.11: Layout recommendation for the viewer controls based on usefulness and
 frequency of use………………………………………………………………….

120

 xvi

LIST OF TABLES

Table 2.1: Summary of eight common software visualization taxonomies………………...

19

Table 3.1: Excerpt from Question 6. Legend indicates ratings that are used to data
 structure understanding ...……………………………………………………….

32

Table 3.2: Average association among different levels of understanding for each data
 structure………………………………………………………………………….

41

Table 3.3: Association among the different data structures for each level of
 understanding………...………………………………………………………….

41

Table 3.4: Ratings of data structures covered in less time during lectures…………………

42

Table 5.1: Students that correctly implemented methods for Experiment 1 (Group 1)…….

73

Table 5.2: Students that correctly implemented methods for Experiment 1 (Group 2)…….

73

Table 5.3: Students that correctly completed methods for Experiment 2 (Group 1)……

81

Table 5.4: Students that correctly completed methods for Experiment 2 (Group 2)……

81

Table 5.5: Method implemented for Experiment VI………………………………………..

98

Table 5.6: Comparison of average scores of Group 1 and Group 2 in the COMP 2210
 course…………………….……………………………………………………..

105

Table 6.1: Results of jGRASP debugger questionnaire for Group 1……………………….

112

Table 6.2: Results of jGRASP viewers questionnaire for Group 2…………………………

118

Table 6.3: Results of open ended questions for jGRASP viewers for Group 2……………

121

 1

CHAPTER 1

INTRODUCTION

The research focus of this dissertation is a unique intersection of three prevailing areas of

computer science education: program visualization, data structure visualization and algorithm

animation (Figure 1.1). These three areas fall into a general category called software

visualization. Software visualization (SV) is a technique of using imagery to manage the

complexity of program artifacts to improve understanding and facilitate efficient learning.

Program visualization (PV) uses graphical elements to increase program comprehension and

illustrate the program’s run time behavior. Algorithm animation (AA) is the use of graphics to

show how the program works at a conceptual level. Data structure visualization (DSV) falls

between PV and AA – the goal here is to increase comprehensibility of the underlying algorithm

and the associated program behavior. The difference between visualization and animation is that

visualization is typically static and animation is a dynamic representation of the domain. Since

both types of images are implemented, the jGRASP visualizations will refer to these as views and

the components that provide them will be referred to as viewers.

Fig. 1.1: Dissertation research focus

program
visualization

algorithm
animation

data structure
visualization

 2

All computer science, software engineering, computer engineering, and wireless

engineering (software option) majors at Auburn University are required to take COMP 1210

Fundamentals of Computing I. COMP 1210 provides an introduction to the Java programming

language. This course is followed by COMP 2210 Fundamentals of Computing II, which is the

introductory level data structure course. It uses an object-oriented approach to introduce the basic

concepts, design, implementation and application of fundamental data structures.

Data structures and algorithms are abstract concepts, and the understanding of these

topics and the material covered in class can be divided into three levels: a) Conceptual – where

students learn concepts of operations such as create, add, delete, sort etc; b) Coding – where

students implement the data structure and its operations using any programming language (Java

in this case); and c) Application - where students choose the most appropriate data structure to

solve a programming exercise. Over the course of the past few years a consistent decline in

enrollment in the computer science department has been observed. This trend is most noticeable

during COMP 2210 when quite a few students decide to drop this required course. Paper-based

surveys and one-on-one interviews were conducted in Fall 2004 and Spring 2005 to understand

the aspects of the COMP 2210 course that students find most difficult. It was determined that

students did not find fundamental concepts difficult to understand but had the most trouble with

the implementation. About 75% of students indicated that they had an appropriate level of

expertise in Java to complete the requirements of COMP 2210. Hence, poor Java skills may not

be causing the problems with implementation. Most students faced a blank-screen syndrome

when they began implementation [Jain et al. 2005a]. The basic problem is that students have

difficulty transitioning from static textbook concepts to dynamic programming implementation.

Thus, there is a need to bridge the gap between concepts and implementation.

Felder and Silverman in their 1988 study report that between 75 - 80% of students are

visual learners. Most students will retain more information when it is presented with visual

 3

elements such as pictures, diagrams, flow charts, etc. In programming, visual learners can benefit

from creating diagrams of problem solutions (e.g., flow charts) before coding [Felder and

Silverman 1988]. Similarly, visual representations of data structure states should help in data

structure understanding. Thus, it would be beneficial to have a tool that enables students to

visualize both the conceptual and the implementation aspects of data structures.

Over 21 tools that are used for the purpose of data structure visualization were surveyed

[Jain et al. 2005b] and it was found that most tools (more than 14 in the survey) focused on

conceptual understanding. Only seven implementation level tools included in the survey were

intended to help students during program comprehension and debugging activities. But, none of

these implementation tools fulfilled all of the following research goals:

Pedagogical goals:

1. Actively engage students.

2. Reduce cognitive load of the short term memory so that efforts can be directed to

problem solving.

3. Easy transition from static textbook concepts to dynamic implementation.

4. Reduce number of tools required by using one tool that serves the dual purpose

of classroom demonstration and development environment.

Design goals:

1. Provide automatic generation of views.

2. Provide multiple and synchronized views.

3. Provide full control over the speed of the visualization.

The jGRASP lightweight IDE (http://jgrasp.org) has been extended to include dynamic

viewers specifically intended to generate traditional abstract views of data structures such as

linked lists and binary trees. These viewers are the most recent addition to the software

visualizations provided by jGRASP. The purpose of these viewers is to provide fine grained

 4

support for understanding instances of classes representing data structures. When a class has

more than one view associated with it, the user can have multiple viewers open on the same

object with a separate view in each viewer. These viewers are tightly integrated with the

jGRASP workbench and debugger and can be opened for any item in the Workbench or Debug

tabs from the Virtual Desktop.

Although many visualization techniques have been shown to be pedagogically effective,

they are still not widely adopted. The reasons include lack of suitable methods of automatic

generation of visualizations, lack of integration among visualizations, and lack of integration with

basic integrated development environment (IDE) support. To effectively use visualizations when

developing code, it is useful to automatically generate multiple synchronized views without

leaving the IDE. The jGRASP IDE provides object viewers that automatically generate dynamic,

state-based visualizations of objects and primitive variables in Java. Such seamless integration of

a lightweight IDE with a set of pedagogically effective software visualizations should have a

positive effect on the usefulness of software visualizations in a classroom environment. Multiple

instructors have reported positive anecdotal evidence of their usefulness. Formal and repeatable

experiments were conducted to investigate the effect of these viewers on student performance for

a relatively easy to understand data structure (linked list using pointers) [Jain et al. 2006], a

relatively hard to understand data structure (linked binary tree), data structures that are covered

only conceptually during lectures, and data structures that are not covered in lectures at all. A

statistically significant improvement over traditional methods of visual debugging that use break-

points was found in all cases.

In Chapter 2, various data structure and algorithm visualization systems developed in

academia, and guidelines provided for their design and pedagogical effectiveness are explored.

Based on these two aspects, goals and requirements for this research are outlined.

 5

In Chapter 3, design and analysis of surveys conducted to investigate data structure

understanding are discussed. Various factors affecting students in COMP 2210 are also explored.

In Chapter 4, user interface design of jGRASP viewers is discussed. The details of two

types of viewers interface-based and structure-based are given. This is followed by a discussion

of viewer generation in jGRASP using an API based approach and automatic generation using

detailed examples.

In Chapter 5, details of experimental evaluation conducted to test the various hypotheses

are given. Experiment I and II were conducted using singly linked lists, Experiment III and IV

were conducted using linked binary trees, Experiment V was conducted using min and max

heaps, and finally Experiment VI was conducted using linked priority queues.

In Chapter 6, the design and analysis of a questionnaire conducted to evaluate the user

interface aspects of jGRASP debugger and viewers are discussed. This is followed by

recommendations for reworking the user interface of both features.

In Chapter 7, the following are summarized: i) motivation for this research, ii) results

from the analysis of surveys for data structure understanding and literature review that were used

to define the goals of this research, iii) jGRASP viewer design, iv) empirical evaluation

conducted to test the effectiveness of the viewers, and v) questionnaire to evaluate the usability of

jGRASP debugger and viewers. This chapter concludes with a description of current research

activities and recommendations for follow-on experiments.

 6

CHAPTER 2

LITERATURE REVIEW

This chapter reviews the current literature on data structure and algorithm visualization (DSV).

First, the various academic data structure and algorithm visualization systems are reviewed.

Second, system design and pedagogical effectiveness guidelines are explored. Based on these

two aspects goals and requirements for this research are outlined.

2.1. TOOLS FOR LEARNING DATA STRUCTURES

There are two levels of data structure understanding: conceptual and implementation. At the

conceptual level of understanding, students are required to learn the algorithm of operations used

to construct a data structure such as add or delete nodes, search for a node, sort the data structure

etc. At the implementation level of understanding students are required to write a program that

correctly implements the data structure and the various related operations. In this section, a

number of data structure and algorithm visualization systems are reviewed and categorized as

either conceptual or implementation.

2.1.1. Conceptual Level

1. ANIMAL: A New Interactive Modeller for Animations in Lectures [Rößling and Freisleben

2000a, 2000b, 2002] is a system for creating algorithm and data structure visualizations using

a visual editor or scripting commands. Using the editor, novice users can generate or edit

 7

animations visually without using any programming code. Objects such as points, polygon,

polylines, text, list elements, and arcs can be added to the animation using drag and drop.

Advanced users can also use ANIMAL’s scripting language for creating animations. Using

this tool, animations can be displayed using video-player like features such as play, pause,

rewind, or jump to a given step. Source code or pseudo code and textual descriptions can be

embedded within the animation. The system’s flexibility does not restrict it to introductory

computer science courses, and also provides platform independence.

2. JAWAA: The Java And Web based Algorithm Animation [Akingbade 2003] [Pierson and

Rodger 1998] [Rodger 2002] is a scripting language that facilitates easy creation of web-

based animations. General-purpose animations as well as data structure animations can be

created in a matter of minutes. First, a .anim file containing JAWAA commands or scripts is

created by hand or by using the JAWAA editor. The JAWAA editor allows creation of

animations using a GUI by laying out objects. This .anim text file is then called as an applet

from an html web page to generate animations on the web. JAWAA is language independent

and no prior programming experience is required to use it.

3. JIVE: The Java Interactive software Visualization Environment [Cattaneo et al. 2002] [Jive

2002] is a highly interactive system for automatically creating visualizations of programs

using its library of pre-coded animated data structures such as graphs, hashtables, and search

trees. The graphs and binary search trees are based on the JDSL library. Users can also create

stand-alone Java applets with interactive GUIs. JIVE provides an excellent interface for

visualizing large data sets using an innovative zooming graphical framework. It also provides

a multi-user distributed learning environment such that teachers and students can interact

with the same animation or data structure synchronously.

 8

4. JVALL: Java Visual Automated Linked List [Dershem et al. 2002] provides animation of

linked list operations and it is fully compatible with the Java LinkedList class. The GUI

consists of three areas. The top part contains user controls such as colors, speed and

implementation model. The middle part displays the actual visualization of the linked list.

The bottom part consists of text reporting, animation status, and redo/undo buttons. The

JVALL system can be used in the data structures course as an interactive linked list client, for

laboratory activities, for classroom demonstration, for debugging programs and lastly for

visualization of classes implemented using the Java LinkedList class. The advantages of

JVALL include flexibility of animating any program using the LinkedList class, easy

integration of algorithm text and visualization, ease of modification of color and visual

display components (such as nodes, pointers, arrows and background color), ease of

controlling execution speed (such as redo, undo, and rewind), and support for animation of

algorithm given by the user.

5. JSAVE: The Java Simple Automated Visualization Environment [Jsave 2003] is an

interactive system for the visualization of Java Collection classes. Currently, only the List

interface is supported. It provides a library of classes that can be directly used in Java

programs or XML scripts can be written for visualization purposes. The specialty of JSAVE

is the flexibility of user interaction in terms of excellent user control of color, navigation, and

multiple representations of the data structure visualizations. Dynamic color customization of

components is possible while interacting with the visualizations. The user can play the

visualization as a movie, or step through it. JSAVE also allows rewinding the visualization or

stepping back through it. The user can dynamically switch between singly linked list, circular

list, array, and relative comparison representations as the visualization is running in order to

compare the data structures. The ultimate goal of JSAVE is to provide a complete

visualization of the functionality of the Java Collection classes.

 9

6. Jarc’s Web-based courseware (Ada 95 based course) - Jarc and Feldman [1998] developed

an interactive multimedia environment for data structure visualization and algorithm

animation. The courseware consists of eleven laboratory exercises to be used for a four-week

period. The course covers topics such as graphs, binary trees, and sorting. There are three

components for each exercise, a) page containing explanatory text; b) page containing Ada 95

code, and c) applet visualizing the data structure. The unique features of this system are the

two interactive modes: Show Me and I’ll Try. The Show Me mode allows the students to

explore the solutions of exercises. The I’ll Try mode gives the student the full interaction

capability to try to replicate the steps of the algorithm. Experimental studies performed on the

system reported the following: quick sort and graph search problems are most difficult, there

was no significant difference in learning between the students with active and reflective

learning styles, and there was no statistically significant difference in the performance

between the I’ll Try and Show Me modes.

7. JHAVE ́ - The Java Hosted Algorithm Visualization Environment [Nap et al. 2000] is not a

visualization system itself but serves as a client into which algorithm visualization engines

can be plugged in. JHAVÉ currently supports three such engines – (a) Samba animation-

scripting language designed by Stasko [1990, 1998]; (b) the GAIGS data structure

visualization language developed by Naps and Bressler [1998]; and (c) the ANIMAL

scripting language developed by Rößling [Rößling and Freisleben 2002]. The environment

provides four pedagogical tools – context-sensitive documentation in a browser window,

stop-and-think questions, input generators, and rewind capability. Any algorithm

visualization engine, which produces visualizations using a script file, can be plugged into

JHAVE ́. The server of JHAVE ́ manages available algorithms and generates script files that

the client can display. The user can access JHAVE ́ by using any web browser, which

launches an AVClient applet. The user can select any of the available algorithms and the

 10

request is sent to the server, which generates a script file for it. The client then uses the

appropriate engine to render this script file. If the user had requested inputs to the algorithm,

an input generator object is sent to the server. The server uses this object to run the algorithm.

It is not clear from the documentation how customized visualizations can be created.

8. MRUDS - Multiple Representations for Understanding Data Structures [Hanciles et al. 1997]

is a system built using Microsoft Visual Basic 3.0 for the Windows platform. The two goals

of MURDS are the effective use of multiple representations for linear data structures such as

arrays, stacks, queues and linked lists and integration of learning strategies such as

elaboration and metacognition. MURDS consists of three modules: Domain, Presentation and

Interface. The domain module is subdivided into three parts: analogy, representation and

algorithm. The analogy part consists of every day metaphors used to describe concepts of

data structures. The representation part consists of diagrammatic illustrations of data

structures and the algorithm part contains algorithms for the respective data structures. The

presentation module determines how the concepts should be displayed to the student. It is

subdivided into four parts: analogy (animation of metaphors), representation (animation of

structural representation of concepts), algorithm (pseudo code added to representation), and

self-assessment (measuring students knowledge of the domain). The interface part allows the

user to interact with MURDS using mouse clicks and drag-and-drop actions. MURDS was

evaluated using formative and summative techniques. The authors reported that all multiple

representations (i.e., analogy, structural representation and algorithm) helped students learn

more efficiently than any other combination.

9. JDSL Visualizer Tool - Java Data Structures Library [Baker et al. 1999] consists of APIs,

which can be used to create visualizers for data structures using Java. The JDSL visualizer

GUI consists of several components. The top-left panel contains the visualization, the top-

 11

right panel contains the history, and the bottom panel consists of a number of buttons each of

which corresponds to a method of the data structure being displayed. Two separate windows

contain the exceptions thrown and the online help respectively. Six data structures are

currently supported: enumerations, sequences, binary trees, binary trees with rotations, heaps

and red-black trees. The unique feature of this tool is the history panel, which allows the user

to compare any two states of the data structure. Customized visualizers can be created but to

achieve this additional code must be inserted into the program implementing the data

structure.

10. MatrixPro: This system is based on the Matrix algorithm simulation application framework

[Karavirta et al. 2002, 2004a, 2004b][Korhonen et al. 2004]. The goal of the system is to

enable instructors to use on-the-fly direct manipulation to demonstrate data structures and

related algorithms. The tool also allows the instructor to ask “what-if” type of questions and

incorporate exercises. The main GUI consists of three components: menubar, toolbar, and

area of visualizations. The menubar allows the user to add and solve problems, although in a

typical scenario instructors will use the functionality to add problems and students will use

the functionality to solve problems. The toolbar contains functionality to manipulated

animations, such as controlling the speed, adding and removing breaks, and changing the

granularity of the animation. The area of visualization contain visual entities such as nodes,

keys, and hierarchies which can be dragged and dropped, flipped, rotated, resized and

customized.

2.1.2. Implementation Level

1. LIVE: The Language-Independent Visualization Environment [Campbell et al. 2003] is a

system that enables visualization and manipulation of programs and data structures for

 12

multiple languages such as subset of Java, C++, and ÜberLanguage (in-house Pascal like

language). The GUI of LIVE consists of two main components: a canvas (on the left hand

side) and a source code area (on the right hand side). The user can enter and edit code in the

source code panel. When the code “Runs”, LIVE parses the program, creates a syntax tree,

and generates the animation automatically. Since, animations are created by interpreting the

syntax tree the user can switch between various code modes, thus allowing the user to view

the same code in the syntax of multiple languages. The user can also directly and dynamically

manipulate data structures displayed on the canvas and generate source code statements for

the same. LIVE is especially useful in understanding the concepts of pointers, linked

structures, recursion and effects of the scope of nested variables.

2. JavaMy – The system developed by Chen et al. [2003] provides data structure visualization

for operations such as insertion and deletion for arrays, stacks, queues, trees, heaps and

graphs; and rudimentary animations of simple user defined algorithms using the JavaMy

programming language. A toolbar is provided at the bottom of the GUI, which allows the

student to pause or resume, step- through, or control the speed of the animation. The student

can interactively delete or add a random or a user-specified node to the data structure. The

system was successfully used for applications using data structures such as: balances symbol

checking, conversion of infix expressions to prefix expressions and vice versa, breadth first,

and depth first search and sorting.

3. SKA – The Support Kit for Animation [Hamilton-Taylor and Kraemer 2002] consists of a

visual data structure library, a visual data structure manipulation environment and an

algorithm animation system. The SKA canvas allows creation and manipulation of built in

data structures. The available operations include adding or deleting a node, highlighting parts

and deleting sub trees (if applicable). The user can run, pause and resume, and step through

 13

and add breakpoints to a pseudo code version of an algorithm. SKA supports parallel

execution of multiple algorithms. The ultimate goal of SKA is to significantly reduce time

required to create, manipulate and trace data structure diagrams. SKA can be used for one-on-

one tutorials, group discussions and self-study.

4. Swan - This system [Shaffer et al. 1996] allows users to visualize data structures and basic

execution process of C/C++ programs. In Swan a data structure is treated as a single or

collection of directed or undirected graphs. The program implementing a data structure has to

be physically annotated before the data structure can be visualized. The steps include adding

calls to the Swan Annotation Interface Library (SAIL), then compiling the program, and then

running the program, which results in the visualization. Swan can also be used as a graphical

debugging tool at the abstract level since a two-way communication is possible between the

annotations and views. Three execution controls are available to the user: run, step, and

pause. Textual descriptions for visualizations can be added manually during annotation. The

tool is easy to use, and the annotation system can be learnt quickly.

5. INCENSE - This system [Myers 1983] allows users to design and display pictorial

representations of data structures for programs written in a Pascal-like language called Mesa.

Incense contains built-in displays for all the basic data types of Mesa, two-dimensional

representation of arrays and records and pointers. The user can create very simple customized

Artists by using the Mesa language. Multiple displays, called Formats, can be created for a

single data structure. The user can specify the string name of the data type to be visualized

during debug time. The system however does not have an integrated and interactive

debugger, so it is not possible to set breakpoints and step through the code easily. Also, this

system requires the user to write low-level graphics code to implement the viewers.

 14

6. DRUIDS - Display Resource for Understanding Internal Data Structures [Whale 1994]

consists of two modules: an algorithm animator (that focuses on searching and sorting) and a

program animator (that focuses on displaying detailed structure and state of data structures).

The program can be written in C or Modula-2. The system runs only on UNIX and Mac

platforms. The student can create limited customized data structure visualizations, although

multiple representations of a particular data structure are not possible. The system can be

used in a classroom to replace static lecture slides or in a laboratory to animate student’s

code. In the program animator mode, DRUIDS enables the student to view the current

execution point in the code, and the current values of variables in active procedures. The

primary focus of the program animator however is to display basic linked structures such as

stacks, general linked lists, self-organizing lists and rings, and balanced and unbalanced

binary search trees. The algorithms can be viewed in a step-wise or continuous fashion

pausing only when input is required from the user. Thus, the user does not have the capability

to pause and resume.

7. LJV: Lightweight Java Visualizer [Hamer 2004a, 2004b] generates a textual description of

the connectivity of the data structure using Java reflection, and passes these to the graph

drawing software GraphViz. The user needs to write code in order to generate visualizations,

which are static in nature. The layout is generated automatically, but it does not contain

semantic meaning. This causes some confusion, as the representation can be different each

time it is generated and does not match the textbook description. Also, since currently there is

no mechanism to interact with the visualization, any changes made to the program are not

seen immediately.

8. Jeliot 3: This system [Lattu et al. 2000] [Ben-Ari et al. 2002] [Moreno and Niko 2003]

[Moreno et al. 2004] is very useful for basic memory-level visualization of programs written

 15

in Java. It generates automatic visualization of data, control structures and method calls. The

system uses the theater metaphor for displaying objects and variables. The user interface

consists of four panels: left panel contains the source code, right panel contains the

visualization, bottom left panel contains control buttons, and bottom right panel contains the

output area. The visualization or animation area is further subdivided into four areas: method

frame area, constants area, expression evaluation area and instance area. The only data

structures that can be visualized using Jeliot 3 are one, two and three dimensional arrays. The

system does not scale well as the number of dimensions and elements of an array are

increased.

2.1.2.1. Visual Debugging Systems

This is a subcategory of implementation level systems. These systems specifically help the

student in debugging activities using visual debugging techniques.

1. MVT – Matrix Visual Tester [Lönnberg et al. 2004] is a prototype-debugging tool based on

interactive graphical testing. It allows the user to visually control program execution and

provides visual manipulation of the program data structures. Data elision and abstraction can

be used to control execution details such that the user can find and understand the information

that is of interest. MVT has been used to visually manipulate Java programs without touching

the target source code. The visualization consists of four areas – the topmost part contains the

visualization manipulation controls, the second part is split into two areas the data view and

structure panel. The data view consists of data containers depicted as tables and program

variables that are grouped as table elements. Primitive values are shown as text and object

references as arrows from the referring variable to the object that is referred to. The structure

panel depicts the package tree, which contains the packages and classes used by the program

 16

being debugged. The bottom part contains code view, which depicts the execution position in

the program. The user can either step forward or backward in the current executing thread.

2. VIPS – Visualization and Interactive Programming Support [Shimomura and Isoda 1990,

1991] tool can be used to automatically display list data structures of programs written in C.

The visualization consists of seven windows – (1) monitor window: accepts debugging

commands and displays the responses; (2) program-text window: displays the execution line

in the program being debugged; (3) list window: displays list structure using rectangles and

arrows; (4) input-output window: displays data inputted to the program being debugged and

its output; (5) editor window: source code can be edited here; (6) variable display window:

variables used by the program; and (7) stack display window: call stack of the program being

debugged. The visualizations created cannot be customized and are available for the list

structures only. Preliminary evaluation shows that VIPS reduces debugging time and number

of commands used by 25-30%.

3. Lens – This tool [Mukherjea and Stasko 1993, 1994] provides a combination of program

visualization and algorithm animation for source code written in C. The user interface

comprises of three areas: the left section contains the source code, the right section is divided

into an upper, and lower area. The upper area contains the graphical editor, and the lower area

contains the debugger command window. The user can issue “attach event” animation

commands to debugger breakpoints. Using a combination of information provided by the

debugger and user control dynamic animation-style data structure views can be created.

These visualizations are not just static representations but also contain the rich semantics of

program behavior that is annotated by the user. The problem with this approach is that the

user must be able to correctly identify the code segments which need to be annotated. Since

the creation of the data structure may be spread out in the program, this approach will result

 17

in many related but separated annotations. Also, this approach cannot be used to debug a

program that is already running.

4. DDD – This system [Zeller and Lütkehaus 1996] [Zeller 2001] provides visualizations of

how a data structure is laid out in memory. Visualizations are created from the information

given by the debugger; therefore annotating the source code is not required. The user can

manipulate the visualization directly (using clicking) or by setting breakpoints in the source

code. The visualization is created and laid out automatically and cannot be customized,

although the user can use drag-and-drop to restructure the nodes. DDD is used for visualizing

any linked data structures.

5. TRAVIS – Traversal-based Visualization of Data Structures [Korn and Appel 1998] uses a

technique called traversal-based visualization to generate high-level and informative viewers

while debugging. Advanced algorithm animation systems depend on user augmented source

code to produce visualizations. Debuggers on the other hand use information obtained from

symbol tables of the target program. Therefore, visualizations produced by debuggers often

lack important semantic content, making them inferior to algorithm animation systems.

TRAVIS aims to fix this problem. The debugger traverses a data structure using a set of

patterns specified by the user to identify parts of the data structure to be drawn in a similar

way. A declarative language is used to specify the patterns and the actions to be taken when

the patterns are encountered. The user can also construct traversal specifications using a

graphical user interface that will be translated to the declarative language. The debugger also

supports modification of data. Thus changes made to the live visualization are reflected in the

underlying data. This technique can be used to create visualizations for programs written in

Java, C, and C++.

 18

2.1.3. Summary of DSV Tools

The reason why some students struggle with understanding code is because visualizing the

translation of the static description to a dynamic process is difficult. Numerous systems are

available to address needs of students and instructors at various levels. In the literature review it

was found that conceptual level systems that help in understanding the basics of data structures

were in abundance, but the disadvantages are that most systems handle very few or a specialized

set of data structures; they are typically stand-alone with no tracing abilities; and extensive

amount of effort and time is required to create visualizations. In comparison, fewer

implementation level tools that help the student in program comprehension activities and

debugging were found in the literature review. The disadvantages of these tools are that

programs had to be written in pseudo code or a subset of languages such as C++ or Java; only a

limited number of data structures have debug support; tremendous effort (in terms of scripting or

code annotations) is required to generate visualizations; Windows platform and Java language

support is not available in most tools; and finally most are simply not available for download or

are not supported anymore.

The focus of jGRASP viewers was to address all of the disadvantages mentioned above.

In addition, the viewers are focused on helping the student transition from concept to

implementation and are tightly integrated in an integrated development environment; both of

these features are unique and are currently unavailable in any other system.

2.2. GUIDELINES FOR DESIGN OF DSV TOOLS

Various taxonomies for SV can be found in the literature, with Myers [1986, 1990] publishing

one of the first in 1990. He suggested classifying systems based on a 2 x 3 grid of aspect vs.

 19

display style. Aspect consists of what is being visualized (code, data or algorithm) and display

style consists of static or dynamic illustrations. Shu described in her book [Shu 1988] a

classification of SV systems based on what they present (data presentation, program construction

and/or execution, software design), and their use as visual coaching systems (systems that bridge

the gap between the process of creating a mental model and a program while solving a problem).

Singh and Chignell [1992] published a taxonomy for SV systems very similar to Myers. They use

aspect and form for classification purposes. Stasko and Patterson [1992] used four measures –

aspect, abstraction, animation, and automation. Kraemar and Stasko [1993] classified systems

using two dimensions: visualization task (data collection, data analysis, storage, display) and

purpose (debugging, performance evaluation, program visualization). Brown [1988] used three

measures: content (direct, synthetic), persistence (current, history), and transformation

(incremental or discrete). Roman and Cox [1993] used five classification dimensions - scope,

abstraction, specification method, interface and presentation. In 1992, Price et al. [1992]

published a comprehensive taxonomy that was later extended in 1993 [Price et al. 1993]. This

seems to be the most complete taxonomy found in our research. They used six dimensions (scope,

content, form, method, interaction, and effectiveness) to categorize software visualization

systems. See Table 2.1 for a summary of the eight taxonomies.

Table 2.1: Summary of eight common software visualization taxonomies

Taxonomy Classification Measures
I. [Myers 1986,
1990]

1. Aspect
• code, data, algorithm

2. Display Style
• Static, dynamic

II. [Shu 1988] 1. Visualization of
• data presentation, program construction and/or execution, software
design

2. Visual coaching

III. [Singh and
Chignell 1992]

1. Aspect
• program, algorithm, data

 20

Taxonomy Classification Measures
2. Form

• Static, dynamic

IV. [Stasko and
Patterson 1992]

1. Aspect
2. Abstraction
3. Animation
4. Automation

V. [Kraemer
and Stasko
1993]

1. Task
• data collection, data analysis, storage, display

2. Purpose
• debugging, performance evaluation or optimization, program
visualization

VI. [Brown
1988]

1. Content
• direct, synthetic

2. Transformation
• discrete, incremental

3. Persistence
• current, history

VII. [Roman
and Cox 1993]

1. Scope
• code, data state, control state, behavior

2. Abstraction
• representation (direct, structural, synthesized)

3. Specification method
• predefinition, annotation, declaration, manipulation

4. Interface
• graphical vocabulary, interaction

5. Presentation
• interpretation of graphics, analytical, explanatory, orchestration

VII. [Price et
al. 1993]

1. Scope
• generality, scalability

2. Content
• program, algorithm, code, fidelity and completeness, data gathering time

3. Form
• medium, presentation style, granularity, multiple views, program
synchronization

4. Method
• visualization specification style, connection technique

5. Interaction
• style, navigation, scripting facilities

6. Effectiveness
• purpose, appropriateness and clarity, experimental evaluation,
production use

 21

In [Jain et al. 2004] a qualitative analysis of six systems (ANIMAL, JAWAA, LIVE,

JSAVE, LIVE, jGRASP viewers) was performed and it was concluded that the future

development of tools should consider the following design guidelines.

1. Minimize learning curve and time by having one tool for classroom demonstration and

development.

2. Enable visualization of concurrent programming features.

3. Provide multiple synchronized views of data structures.

4. Provide program synchronization.

5. Explore the benefits of features such as sound and multi-dimensional rendering.

6. Provide the ability to save the interactions with visualizations for future playback would

aid students in revisiting material covered in class.

7. Provide visualization of large data sets and trace program data flow.

8. Provide full control over the speed and direction of the visualization.

9. Perform empirical evaluations must be carried out to gauge the effectiveness.

In addition, other design guidelines summarized by [Khuri 2001] are as follows:

1. Use consistent graphical layout of buttons, menus etc.

2. Provide help files to explain the tools itself and the organization of the interface within

the tool.

3. Provide effective use of shape, size, color and texture. They can be used to call attention

to specific data or process step, identify elements, depict logical structure, and highlight

relationships. Use of more than four colors is not recommended since they will overload

the short-term memory of the user. Similar background colors can be used to

conceptually link two areas.

 22

[Rößling 2003] suggests that a feature supporting the import and export (in various

formats) of the visualizations should be available in the tool since content reuse is made possible.

2.2.1. Methods for Visualization Generation

1. Manual: The advantage of this approach is extreme flexibility of visualizations. The

disadvantages are that visualization creation is time-consuming, requires a lot of

expertise, and will not be used by most undergrad students to create customized views.

2. Declarative: Special logical commands are embedded into the source code (perhaps as

formal comments). The advantage of this approach is that it is clean, while the

disadvantage is that it requires expertise, and will not be used by most undergrad students

to create customized views. Examples include Leonardo, Swan.

3. API-based: The advantage of this approach is that it is clean. The disadvantage is that it

requires expertise, and will not be used by most undergrad students to create customized

views. Examples include XTANGO, JVALL, JSAVE, JDSL Visualizer Tool.

4. Scripting: Very simple commands are used to create animations, which are saved as a

“specialized” file. The advantage of this approach is that reuse of visualization is

possible. The disadvantage is that it is may be somewhat time consuming. Examples

include JAWAA, JSamba, ANIMAL.

5. Topic-specific: These visualizations focus of a particular area, e.g., graphs. The

advantage of this approach is that good support in area of expertise is provided. The

disadvantages of this approach are that the visualizations are “hard-wired”, not re-usable,

and not customizable. Examples include JIVE, Jarc’s Web-based courseware, MURDS,

JavaMy.

 23

6. Code interpretation: The system evaluates and visualizes code automatically. The

advantage of this approach is that no extra step to create visualization. The disadvantage

is that the user may have little or no control over the appearance. Examples include

Zstep, LIVE, JavaMy, INCENSE, DRUIDS, Jeliot, DDD.

7. GUI: A graphical user interface is used to interactively build visualizations. The

advantage of this approach is that visualizations are flexible. The disadvantage is that it

maybe difficult to learn how to use the interface. Examples: SKA (only circles,

lines,text), ANIMAL.

Design issues which will help accomplish the research goal of having one tool for

classroom demonstration and in-lab development are: (1) full control over the speed and direction

of the visualization, (2) ease of visualization of large data sets, and (3) ease of creating custom

viewers with minimal effort on the part of the user by using an interactive and intelligent GUI

builder or automatic recognition of data structures.

2.3. GUIDELINES FOR PEDAGOGICAL EFFECTIVENESS OF DSV TOOLS

Before detailing the research conducted in the area of visualization effectiveness, it is important

to understand the term effectiveness in the context of algorithm animation. Hundhausen et al.

[2002] broadly describe software visualization artifact effectiveness as when any tool is shown to

satisfy both the usefulness and usability criteria. Usefulness means that the tool must provide

functionality that people actually would like to use and usability means that the tool must provide

easy access and interactivity with that functionality. In order for the tool to be useful, it is

important to identify: (1) the target users: their general background, the knowledge they have and

what can they learn, (2) the goals and tasks the users want to accomplish, (3) the context in which

 24

the user is working, and (4) determine how much automation is sufficient i.e., what has to be left

to the machine and what to the user. Section 2 of this chapter and chapter 3 cover the steps taken

to identify the goals and context of the target users (i.e., undergraduate students enrolled in CS2

level courses) for this research project. Usability of a system includes measuring well-known

heuristics such as learnability (e.g., intuitive navigation), efficiency of use, memorability, good

error recoverability, and subjective satisfaction. Chapter 5 and 6 detail the steps taken to measure

usability of jGRASP viewers.

2.3.1. Guidelines for Improving Learning for Students

Listed below are pedagogical suggestions for improving data structure visualization tools for

students.

1) Provide resources that help learners interpret the graphical representations [Khuri 2001].

2) Adapt to the knowledge level of the user.

3) Provide multiple views (of data, program and algorithm) [Khuri 2001].

4) Provide simultaneously identical views of different algorithms manipulating the same data

[Bergin et al. 1996].

5) Include performance information.

6) Include execution history. However, Saraiya et al. [2004] demonstrate that this does not help.

7) Support flexible execution control (direction, speed). Bergin et al. [1996] demonstrate that

providing support for high degree and flexible interaction control helps. Saraiya et al. [2004]

report that control of pace/speed of visualization helps but control of direction does not.

Rößling [2003] suggests that functionality similar to a video player (like forward and reverse)

will help during lectures and office hours.

8) Support learner-built visualizations. Stasko [1997] demonstrated that actively engaging

students in building their own visualizations helps. Hundhausen and Douglas [2000] report

 25

otherwise, although they suggest the reason could be that the students were given limited time

for the task. In addition, Hundhausen [1998] suggested that when students create customized

visualizations, conversations with an expert enables students understand more about the

correctness and efficiency of algorithms.

9) Support custom input data sets. Naps et al. [2003a], Lawrence [1993, 1994] report that this

feature is helpful, although Saraiya et al. [2004] report otherwise.

10) Provide an example data set that covers the important cases in an algorithm. Saraiya et al.

[2004] report that it is helpful, but Hansen et al. [2000] and Lawrence [1994] report

otherwise. Intuitively, the latter makes sense, since the student does not get the opportunity to

think about all the various test cases.

11) Support dynamic questions. Saraiya et al. [2004] report that a question guide used by students

to answers questions requiring exploration such that students are engaged intellectually

actually does not help students learn. Jarc et al. [2000] also reported that predictive questions

not effective. But the reason for the failure cited was that academically poor students using

interactive visualizations tend to guess the questions rather than trying to understand. On the

other hand, Hundhausen et al. [2002] and Byrne et al. [1996, 1999] report that questions used

to predict future behavior of algorithm helps. [Grissom et al. 2003] [Khuri 2001] reported that

responding to questions integrated into the visualization tool during their exploration of a

DSV showed a significant improvement between pre- and post-test. Answering strategic

questions about the visualization was shown to be effective [Hansen et al. 2000] [Naps et al.

2000].

12) Support dynamic feedback.

13) Complement visualizations with explanations [Naps et al. 2003a]. For example, use a text

window to make sure the user understands the visualization [Bergin et al. 1996] [Khuri

2001]. Stasko et al. [1993] reported that visualization may be ineffective because instructor

 26

creating the visualization already understands the algorithm, the students on the other hand

have no background or foundation on which to understand the algorithm. To construct this

mapping, the instructor must explain it in words. Also, Colaso et al. [2002] demonstrated that

text and visualization help in retention, which is the ultimate goal of education.

14) Visualizations should be consistent with the ones used in textbook.

15) Provide user with standard GUI to interact with components within the visualization system.

Bergin et al. [1996] and Khuri [2001] report that this improves usability, which is consistent

with the basic rules or heuristics of user interface design.

16) Substantial screen real estate will be needed for the most effective visualizations. Bergin et al.

[1996] demonstrated that using innovative techniques to use real estate (like graphs, zooming

etc) instead of multiple windows might be more effective. Rößling [2003] also suggested that

the visualization canvas should be resizable.

17) Strive to draw the user’s attention to the critical area of the visualization. Bergin et al. [1996]

report that this can be achieved by putting emphasis on node being modified. Douglas et al.

[1996] demonstrated that perceptual features such as motion, color, sound, and size against an

unchanging background, and perceptual economy (demonstrated by using simple geometric

and stick figures) can be used to provide focus of attention.

18) Provide pseudocode display. Saraiya et al. [2004] demonstrate that this is not useful.

19) Have students present visualizations to the audience for feedback and discussion

(visualization may be custom built by students or not). Grissom et al. [2003] suggested this,

although it has not been tested yet.

20) Engage the student actively. Byrne et al. [1996] demonstrated that animations aid learning of

“procedural” knowledge by encouraging learners to predict algorithm behavior and Kann et

al. [1997] reported that programming the respective algorithm can be used to engage the

student.

 27

22) Use analogies to explain the concepts. Khuri [2001] and Hanciles et al. [1997] demonstrated

that this helps students learn better. Douglas et al. [1996] reported that in addition to using

metaphors, the system should be flexible enough so that customized visualization reflecting

cultural expectations can be created.

2.3.2. Guidelines for Increasing Adoptability by Instructors

Naps et al. [2003b] and Khuri [2001] suggest that DSV tools for instructors use can be improved

by reducing the time to download, install, learn, and maintain/upgrade the tool. They also suggest

that the DSV tools will be used more frequently if instructors are able to quickly and easily

develop (customized) visualizations, adapt and integrate the visualizations into course materials,

and teach students how to use visualizations. To help with the issue of course integration, tools

must be platform independent and the visualizations produced by the tool should be consistent

with the ones used in the textbooks.

2.4. CONCLUSIONS: DESIGN AND PEDAGOGICAL REQUIREMENTS

Based on the literature review, the following design and pedagogical requirements were

determined.

Design requirements:

1) Minimal effort should be required to create custom viewers [Stasko 1997] [Hundhausen and

Douglas 1998, 2000]. The viewers must be generated automatically. Yet, full control over

customization should also be available using API-based approach.

 28

2) Visualization speed should be controllable (ability to pause, play, step over) [Bergin et. al.

1996] [Rößling 2003].

3) Viewers should be scalable such that they are able to recognize all data structure in Java and

should be available for all platforms.

4) Multiple and synchronized views should be made available to show different conceptual views

of the same data structure since this has been shown to improve learning Khuri [2001] and

Narayanan [2003, 2004].

5) Viewers should be consistent and tightly incorporated with an integrated development

environment.

Pedagogical requirements:

1) Viewers should actively engage students [Stasko et al. 1993, 1997][Lawrence et al. 1994]

[Byrne et al. 1996] [Kann et al. 1997]

2) Cognitive load of the short term memory should be reduced so that efforts can be directed to

problem solving [Bergin et al. 1996] [Khuri 2001]. The correct visualization state should always

visible, and structural changes should be highlighted, and the visualization must be a similar

representation of the textbook figures.

3) Number of tools required should be reduced by providing a single tool that serves the dual

purpose of classroom demonstration and development environment (i.e., can be used for lab

exercises and assignments).

4) Materials should be provided to seamlessly integrate viewers with existing course material.

 29

5) Learning to use and interacting with viewers must taken only a few minutes such that

instructors and quickly teach students how to use these viewers.

6) Transition from static textbook concepts to dynamic implementation should be effortless and

effective [Shaffer et. al. 1996]. Animation of variables interacting with the data structure is

shown to be useful to accomplish this goal. For example: when debugging a linked list, it will be

useful to see a node being created and how it is inserted into a particular position in the list.

With respect to pedagogical issues, this research project will explore how the viewers can

help students code faster (i.e., finish assignments faster), with greater accuracy, find and correct

logical bugs. The ease of creating viewers together with ease of integration with course materials

which make the jGRASP viewers easy to use by instructors and students is also illustrated.

 30

CHAPTER 3

SURVEY DESIGN AND ANALYSIS TO INVESTIGATE

DATA STRUCTURE UNDERSTANDING

In this chapter, the design and analysis of a survey that was conducted to identify data structures

that are most difficult to understand conceptually and most difficult to implement using Java will

be discussed. Students rated each data structure at three levels of understanding (abstract,

implementation, and application) using a 5-point Likert scale. The Cochran-Mantel-Haenszel

method was used to analyze associations among the different understanding levels for each data

structure and to analyze the association among the different data structures for each

understanding level.

3.1. SURVEY DESIGN

Two surveys and multiple interviews were conducted to understand the typical difficulties

students have with introductory level data structures and algorithms course. The first survey was

conducted in Fall 2004, and then it was slightly modified (questions regarding programming

languages were added) and conducted again in Spring 2005 [Appendix A]. Both surveys were

conducted using a paper-based questionnaire. These were distributed at beginning of the lab

session for each section of COMP 2210 Fundamentals of Computing II.

The first two questions of the survey were about students’ background – major, degree

and year in the program. Question three asked if they felt their Java experience was appropriate

for the class. Questions four and five asked students to choose the programming languages that

 31

they can use unassisted. Question six asked them to rate data structures at three levels using the 5-

point Likert response scale shown in Table 3.1. A Likert scale [Likert 1932] is a bipolar

psychometric scale that is often used in questionnaires to measure attitudes, by either positive or

negative responses statements. Respondents are asked to specify their level of agreement to each

of a list of statements. For this survey, the respondents rated each data structure for three levels of

understanding. The levels were: (a) conceptual: how easy is it to understand the basic working

and concepts of the data structure? (b) implementation: how easy is it to write a program

implementing the operations of the data structure? (c) application: how easy is it to use the data

structure in an application?

Survey design primarily consists of two types of questions: (1) close-ended questions

with a finite set of answers from which to choose, and (2) open-ended questions which do not

have one definite answer [Davis 1971, Rea 1997]. The advantage of close-ended questions is that

they are easy to standardize and lend themselves to statistical analysis, while the disadvantage is

that they are difficult to write since the designer must consider all possible choices. All questions

other than two and four were closed-ended. Question two was designed to be open-ended since

there were varied majors of students in this course. Question four was also designed to be open-

ended since the programming language backgrounds of students was not known.

 32

Table 3.1: Excerpt from Question 6. Legend indicates ratings that are used to data

structure understanding table

3.2. PARTICIPANTS AND DEPLOYMENT

The survey was not compulsory, there was no time limit to complete it, and it was administered

anonymously. In Fall 2004, 92 students were registered in COMP 2210, 86 surveys were

distributed and a total of 77 were returned for a completion rate of 89.5%. In Spring 2005, 60

students were registered in COMP 2210, 60 surveys were distributed, and a total of 50 were

returned for a completion rate of 83.3%. In both semesters, data used for analysis were randomly

selected from completed surveys.

3.3. RESULTS AND DISCUSSIONS

All students in both semesters were pursuing an undergraduate degree. Figure 3.1 shows the pie

chart of their year in the degree program. Ideally COMP 2210 should be taken in the sophomore

Understanding Level
Data Structures

 Conceptual Implementation Application
 List

 Stack

 Queue

 Hash Table

 Graph

 Tree

…..

Legend
0 1 2 3 4 5

not covered
in class

very hard to
understand

hard to
understand

not too hard yet
not easy to
understand

easy to
understand

very easy to
understand

 33

year [CS curriculum 2005], but it was seen that approximately 25.64% of the students in Fall

2004 and 28% of students in Spring 2005 were in their senior year. The high percentage of

seniors was most likely a result of transfer students from community colleges as well as students

who change majors sometime after their freshman year.

 Fig. 3.1: Pie charts of year in the undergraduate degree

COMP 2210 is required to be taken by all Computer Science, Software Engineering and

Wireless Engineering majors and as expected Figure 3.2 depicts an approximately equal

proportion of each major in both semesters.

Fig. 3.2: Pie charts of COMP 2210 majors

 34

COMP 1210 is an introduction to Java and is a pre-requisite for COMP 2210, thus as

expected, Figure 3.3 shows that approximately 75% of students over both semesters felt that their

level of Java proficiency was sufficient for COMP 2210.

Fall 2004 - Java Level Percentages

71%

28%

1%

Yes No Not Answ ered

Fig. 3.3: Pie charts of Java level

Figures 3.4 and 3.5 show a stacked bar chart of the Java level appropriateness grouped by

majors. It was observed, that the wireless engineering majors consistently felt that they lacked

enough Java experience. Similarly, Figures 3.6 and 3.7 show a stacked bar chart of the Java level

appropriateness grouped by years. It was observed that most juniors felt that their Java level was

not appropriate for COMP 2210. Both of these issues need further investigation.

Spring 2005 - Java Level Percentages

82%

18%

Yes No

 35

Fig. 3.4: Fall 2004 - Java Level grouped by major

 36

Fig. 3.5: Spring 2005 - Java Level grouped by major

 37

Fig. 3.6: Fall 2004 - Java level grouped by year

 38

Fig. 3.7: Spring 2005 - Java level grouped by year

In questions four and five, students were asked to choose the number of languages that

they can program in (except Java) without the assistant of a teaching assistant. Figure 3.8 shows

the results in percentages, and HTML [48%] and C [36%] were the top two languages. Since

neither one of these is object oriented, it could be a factor for students poor implementation

ability.

 39

Known Programming Languages

2

6

36

2

26

0

4

48

4

18

0

6

0

16

8

0 10 20 30 40 50 60

Ada

Assembly

C

C#

C++

COBOL

FORTRAN

HTML

Perl

PHP

Ruby

SQL

Tcl/tk

Visual Basic

VHDL

La
ng

ua
ge

s

Percentage Known

Fig. 3.8: Bar chart comparing programming language experience

 Cochran-Mantel-Haenszel (CMH) statistical method was used to test associations in

Question 6 in which students were asked to rate multiple data structures are three levels of

understanding: conceptual, implementation, and application. CMH is a non-model-based test of

the null hypothesis. The stratified analysis strategy was used for examining the association

between two variables while adjusting the effects of explanatory variables. Since this approach

requires minimal assumptions, it allows researchers to perform hypothesis tests on data that do

not conform to the strict random sampling assumption, thus the conclusions of these analyses are

generally restricted to the sample population at hand. Hence this is an ideal statistic for

retrospective and observational studies [Agresti 1996, Lawal 2003, Stokes 2001, Upton 1978].

The independent variable in the CMH test for associations is the type of data structure,

which is a nominal scale and the three levels of understanding are the dependent variables, each

of which is an ordinal scale. The null hypothesis for the CMH statistic is that the row and column

 40

variables are independent. The p-value was 0.0001 for all associations detailed below. There was

significant association in the following two cases since the null hypothesis is rejected (the p-value

is less than the alpha value of 0.05). In the first case association among the different levels of

understanding for each data structure was tested. For each data structure, the association between

each level was found by adjusting the effect of individual student.

Fig. 3.9: SAS code used to determine association between each understanding level where usg was assigned a value
“Concept”/ ”Impl” /”Appl”, and atd was assigned the numerical rating

In Figure 3.9, the CMH option in the TABLES statement gives a stratified statistical

analysis of the relationship between usg (it is a nominal scale consisting of one of the three labels

-“Concept”/ ”Impl” /”Appl”) and atd (it is an ordinal scale consisting of the rating) after

controlling for student. The stratified analysis provides a way to adjust for the possible

confounding effects of individual student without being forced to estimate parameters for them.

Table 3.2 lists the results of the SAS code for each level of understanding. Since rating 1

corresponded to most difficult to understand and 5 to easiest to understand, it can be seen from

Table 3.2 that Implementation level is the toughest to understand followed by Application level

followed by Conceptual level in both semesters. This result was supported by data from the

course grades. Yet, it was observed in the literature review that most tools target conceptual

understanding, and the tools that are available for implementation only provide very limited

support.

 proc freq;
 tables student*usg*atd/cmh;
 run;

 41

Table 3.2: Average association among different levels of understanding for each data structure

 Fall 2004 Spring 2005
 Conceptual 3.46 3.31
 Implementation 2.42 2.35
 Application 2.44 2.40

Next, association among the different data structures for each level of understanding was

tested. For each level, association between all the data structures was found by adjusting the

effect of individual students. Figure 3.10 shows the SAS code used and Table 3.3 shows the list

of data structures that were found to be relatively easy and hard to understand at each level for

both semesters.

Fig. 3.10: SAS code used to determine association between all the data structures where sname was assigned the name
of the data structure “list-array”/ “stack-pointer”/ “tree” etc, and atd was assigned the numerical ating

Table 3.3: Association among the different data structures for each level of understanding

 Fall 2004 Spring 2005

Easy: Array based (linked list,
stack)

Easy : Array based (linked list,
stack)

Conceptual

Hard: Linked adjacency list,
Minimum cost spanning tree

Hard: Minimum cost spanning
tree, Spanning tree, Linked
adjacency list

Easy: Linked list (array, pointer) Easy: Array based (linked list,
stack)

Implementation

Hard: Spanning tree, Linked
adjacency list

Hard: Minimum cost spanning
tree, Spanning tree, Linked
adjacency list

Easy: Linked list (array, pointer) Easy: Linked list (array, pointer) Application
 Hard: Linked adjacency list,

Minimum cost spanning tree
Hard: Linked adjacency list,
Minimum cost spanning tree

proc freq ;
 tables student*sname*atd/cmh;
run;

 42

It was also observed that data structures that were covered in less time during lectures

ranked as “hardest” consistently at all levels of understanding (conceptual, implementation and

application). Table 3.4 lists the data structures along with their scores. These data structures are

relatively easier to understand than spanning tree, yet students felt that they had trouble learning

them.

Table 3.4: Ratings of data structures covered in less time during
 lectures

Data Structure Average ratings of all three levels

Game Tree 1.062
Parse Tree 1.121
Expression Tree 1.452

3.4. CONCLUSIONS

Using the results of this survey, three relatively easy to understand data structures (array-based

linked list, array-based stack and pointer-based linked list) and three relatively hard to understand

data structures (minimum cost spanning tree, spanning tree and linked adjacency list) were

identified. It was found that students with a Wireless Engineering major and juniors felt that their

Java knowledge was not appropriate for COMP2210, and also object oriented experience seems

to be lacking. Both of these issues need further investigation to determine if there is a correlation

between these issues and students’ performance in COMP2210.

Based on the survey and interviews (interview results are listed in Appendix B) two

important issues were discovered: (1) students struggle more with implementation than with

conceptual understanding and (2) the gap between transitioning from static textbook concepts to

dynamic implementation needs to be addressed. In the following chapters it will be illustrated

how jGRASP viewers were designed and evaluated to solve both of the problems listed above.

 43

CHAPTER 4

jGRASP DATA STRUCTURE VIEWERS

Based on the survey and interviews, it was established that implementation part of the

introductory data structures and algorithms course is usually what the students find most difficult.

Since 75-80% of students are visual learners [Felder and Silverman 1988] visualization of data

structures while writing code might be useful. Although this visualization can be done mentally

for simple objects, most programmers can benefit from seeing more tangible representations of

complex objects while the program is running.

Starting with version 1.8, the jGRASP lightweight IDE has been extended to provide

dynamic viewers for data structures classes in Java. The goal of a viewer is to provide multiple

and synchronized views of a particular data structure. When a class has more than one view

associated with it, multiple viewers can be opened on the same object with a separate view in

each viewer. These viewers are tightly integrated with the jGRASP workbench and debugger and

can be opened for any item in the Workbench or from Debug tabs from the Virtual Desktop (see

Figure 4.1).

 44

Fig. 4.1: jGRASP virtual desktop

A program must run in the debugger or from the jGRASP workbench for its data

structures to be visualized since the jGRASP integrated debugger is used to collect the runtime

information necessary to render the visualizations. A separate viewer can be opened for any

object that is currently active on the workbench or in the debugger tab by simply dragging it from

the debugger or workbench and dropping it to the jGRASP desktop. Thus, these viewers are

effortless with respect to the amount of work required by the student to open and use them.

4.1. TECHNOLOGY USED TO CREATE VIEWERS

jGRASP viewers use a debugger interface called jgrdi (jGRASP Debugger Interface) that

provides access to fields and allows methods to be called in the target process. This is similar to

the Java reflection interface (“java.lang.reflect” package), but it is intended to be language-

neutral, so that the same interface may be used for languages other than Java. In the case of Java,

CSD and UML
windows

Message Tab
pane

Debug and
Workbench tabs

 45

jgrdi is a wrapper around the parts of the jdi (Java Debugger Interface available in the package

“com.sun.jdi”) that provide these functions. It is much easier to use than either reflection or the

jdi, and it allows the code to be much more compact and readable. However, mistakes are more

likely to cause runtime errors than compile time errors. Use of the interface in a particular viewer

will typically be quite minimal, and any errors will quickly be triggered when testing. Uncaught

exceptions in viewer code do not cause jGRASP to crash, but are caught by jGRASP and reported

in a dialog along with a call stack dump. At that point the user is given the option to disable the

viewer and continue debugging or using the workbench.

All viewer code can be reloaded at any time. This allows viewers to be developed and

debugged without shutting down the debugger or workbench. Previous versions of viewers that

are open continue to run, so each time viewers are reloaded, old and new versions can be

compared. This feature is quite useful in viewer development. For special-case viewers that need

more detailed and extensive communication with the debugger, the name of the underlying debug

interface i.e., “com.sun.jdi” in the case of Java and access to values in their “native” form (the

form they take in that underlying interface) are available.

4.2. TYPES OF VIEWERS

jGRASP data structure viewers fall into two main categories: interface-based and structure-based.

Interface-based viewers are not customizable, there is no animation available for these, and

currently they are available for only the Java collections framework. Structure-based viewers

show the internal structure of a data structure. They are customizable (i.e., the orientation, node

shape, width, scale etc. of the viewers can be changed by the user) and animation is also available

(which can be turned off if required). For example, an interface-based viewer might show a

HashMap as a set of keys and values (see Figure 4.9), while a structure-based viewer would show

the array of hash slots along with the linked list of key-value pairs at each slot, etc. (see Figure

 46

4.10). Figures 4.2 through 4.7 show viewers for various classes in Java Collection such as

ArrayList, LinkedList, TreeMap, HashMap, PriorityQueue and Vector. Clicking on any node of

the data structure opens up a sub-viewer for that node. For example in Figure 4.6, clicking on the

node at index 10 of the priority queue, open a sub-viewer to display the contents of the element.

The element (“monkey”) is an object of the String class, which is in turn displayed as a one-

dimensional array. The interface-based view is the same as shown in Figure 4.2 for the following

collections classes: Stack, Vector, ArrayList, and LinkedList.

Fig. 4.2: Interface-based viewer for Stack collection
class

Fig. 4.3: Structure-based viewer for Stack collection
class

 47

Fig. 4.4: Structure-based viewer for ArrayList collection class

Fig. 4.5: Structure-based viewer for LinkedList collection class

 48

Fig. 4.6: Structure -based viewer for PriorityQueue collection class

 49

Fig 4.7: Interface-based v viewer for TreeMap collection class

Fig. 4.8: Structure-based viewer for TreeMap collection class

 50

Fig. 4.9: Interface-based viewer for HashMap collection class

Fig.4.10: Structure-based viewer for HashMap collection class

 51

Fig. 4.11: Structure-based viewer for Vector collection class

The structure-based viewers fall into two sub-categories: non-verifying and verifying (all

interface-based viewers are non-verifying). Animation can be turned on or off for this category of

viewers. The non-verifying viewers assume that the structure of the object being viewed is

correct, and generally use method calls to elaborate the structure. When a structure gets beyond a

certain size, the non-verifying viewers will examine only the part of the structure that is on-

screen. This feature allows for the examination of large structures without excessively slowing

the debugging process. Non-verifying viewers would generally be used to examine the contents

of a structure in the context of an algorithm that uses it, whereas verifying viewers would be more

appropriate for examining the workings of the data structure itself.

4.2.1. Animated Verifying Viewers

The purpose of the verifying viewers is to aid in the understanding of the data structures

themselves, and to assist in finding errors while developing a data structure. To further this

 52

intended use, any local variables of the structure's node type are also displayed, along with the

links between these local variable nodes (or structure fragments) and the main structure. This

allows mechanisms of the data structure such as finding, adding, moving, and removing elements

to be examined in detail by stepping through the code.

As an additional aid to understanding the mechanisms of the data structure, the verifying

viewers animate structural changes. In order to do this, they store a representation of the entire

data structure at each update that occurs when the program is at a breakpoint or after a step in the

debugger. At each update, the value from the previous update (which may or may not be the same

as the current value) is examined for changes. If any nodes in the structure have moved, the

viewer enters into animation mode, and an “animation update” is presented at interpolated

intervals to provide a smooth transition. During animation, the previous structure value and

previous local variable nodes and structure fragments (which may or may not be present any

longer) are displayed. Node locations are interpolated so that they move smoothly from their old

locations to the new ones, within and between the main structure and local variable nodes and

structure fragments. At the end of animation, the new structure value and new local variable

nodes and structure fragments are displayed.

During animation, the size allotted to a structure or local variable must be the maximum

of its old and new sizes; otherwise, parts of the structure and local variable nodes and structure

fragments may overlap. For example, a binary tree may go from 4 to 5 levels deep when a node is

added. During animation, the tree would be given space for five levels. To allow the user to adjust

to this redistribution of space, the previous node locations are displayed statically for a short time

whenever the space has been increased.

 53

4.3. TYPES OF VIEWER GENERATION

4.3.1. API Based

Visualizations for data structures are created in two steps using an API based approach. First, an

external viewer class is implemented using the source code-based API provided with the jGRASP

framework. In the second step, the program that implements the data structure is executed using

the debugger or workbench. A user can simply drag and drop the object reference anywhere on

the screen to open the viewer (see Figure 4.12). The viewer will be automatically updated as the

user steps through the code.

4.3.1.1. An Example

To view the local variables created as a method is being executed, the user must step-into

the method. This will enable the user to see an animation that depicts object creation, pointer

manipulation, and the updates to variable values. Figure 4.12 shows the controls available on the

viewer window.

jGRASP provides a library of viewers for common data structures that allow a viewer to

be written using very little code. For example, a linked list viewer only needs to know how to find

the first node in the list, and, given a node, how to find the next node; alternately the viewer can

provide number of nodes and access to any node by index.

54

Fig. 4.12: Details of the controls of the viewer window

Button to toggle
animation on or off

Slider to adjust the
width of elements

Slider to adjust the
scale of the entire
view

Change the type of view
(Basic/Verifying)

Slider to adjust the
animation time delay

Name of the data
structure being
viewed

Button to toggle
between embedded
and non-embedded
view

Button to toggle
between normal and
simple view

Name of the reference
variable

 55

Consider the following code fragments of two Java programs: a) LinkedSet.java which

implements a singly linked list, and b) LinearNode.java which is the type of element contained by

the class LinkedSet.

Fig. 4.13: Code fragments of LinkedSet.java and LinearNode.java

In order to create a viewer for LinkedSet.java, only the instance variables in the following

methods need be updated in the template provided with the jGRASP distribution for singly linked

list. In effect, only five lines of code need to be modified to create a viewer for LinkedSet.java.

a) getDisplayFields() - indicates the fields of the data structure that are to be displayed in the

viewer. In the example provided, the variable count (displayed in Figure 4.16) has been passed to

the viewer.

b) getFirstNodeField() - indicates the pointer (if any) to be displayed at the head of the list. In the

example provided, the variable contents (displayed in Figure 4.16) has been passed to the viewer.

c) getNodeType() - indicates to the viewer the type of the nodes contained in the linked list. In

the example provided, the variable LinearNode has been passed to the viewer.

class LinkedSet
{

// the current number of elements in the set
private int count;

//points to the last element in the list
private LinearNode<T> contents;

}

class LinearNode
{

//pointer to the next node
private LinearNode<T> next;

//generic type of element contained
private T element;

}

 56

Fig. 4.15: View when the node with value 6 has been
attached to the previous node before in the linked list

Fig. 4.16: View after the next pointer of the new node is
set to point to the rest of the list (pointed to by after). The
remaining list slides up from the local space to the main
structure

Fig. 4.14: LinkedSet.java - CSD window of jGRASP with the debugger stopped at a break

 57

d) getNext() - indicates to the viewer a path to the next node in the linked list. In the example

provided, the variable next has been passed to the viewer.

e) getNodeValue() - provides the viewer with information about accessing the value of elements

in the linked list. In the example provided, the variable element (displayed in Figure 4.13) has

been passed to the viewer.

Once a viewer is created for a class and the viewer path has been set, a viewer can be

opened on any instance of the class during the execution of an arbitrary program. In Figures 4.14-

4.16, a node with value 6 will be inserted in the index position 3 of the linked list. Figure 4.14

shows the insert method and the breakpoint that has been set in the debugging process. Figure

4.15 depicts the state of the object viewer for singly linked list when the node at index 2 (with an

object reference before) points to the value to be inserted (with an object reference node). The

rest of the list is pointed to by a reference after. Figure 4.16 shows the state after the line is

executed and the next field of node is set to the rest of the list. The local variables before, after,

node created in the insert method –can be visualized in the local space of the viewer.

4.3.2. Automatic Identification

Source code for example viewers that use the API is included with the jGRASP distribution to

expedite the creation of new viewers by students and/or faculty. Although a new viewer can be

created by changing about 10 lines of source code in one of the examples, this approach proved

somewhat impractical for the general CS2 population. While this option needs to be available for

faculty, it was unrealistic to expect students who are in the process of learning about data

structures to be able to modify a separate viewer class in order to see an instance of their own

data structure. Thus, the research direction was focused on building a mechanism that could

 58

determine if an instance was a linked list or binary tree based on a set of heuristics, and then

automatically generate an appropriate view.

4.3.2.1. Data Structure Identifier

For automatic identification of the structure of a class implementing a data structure, the

"Data Structure Identifier" is invoked when a viewer on an object is opened. For pointer based

implementation of data structures, where the node (which contains a value or element) is an

object and a pointer to the next node is an object-reference, automatic identification is done using

a two-step process. In step 1, the class structure is examined and name-based heuristics are used

to identify the "type" of data structure. For example, consider a class BinaryTree, which has a

field (depicting the root of the tree) with a class type BinaryTreeNode. On examining the class

BinaryTreeNode, two same-class object references called left and right (pointing to the left and

the right sub-trees) are found along with an object called value (depicting the element stored in

the respective tree node). This method may lead to multiple possible structures and to multiple

possible mappings from a class to a particular structure. Thus, name-based heuristics are used to

assign a confidence level to each candidate. For example, the structure of the BinaryTreeNode

class is very similar to that of a doubly linked node, where left and right object references could

be next and previous pointers in a doubly linked list, but the class and field names make it very

unlikely that this was the intention. The downside of this technique is that it will only work if the

language used for class and field names is known. Currently, only English-language heuristics are

applied. Also, the use of unusual or meaningless class and field names will make correct

identification less likely. In cases where automatic identification fails, the viewer can be

configured manually.

In step 2, links in a potential binary tree or linked list will be examined to see if they do

form a binary tree or linked list structure, and the confidence level will be modified appropriately.

 59

Link-based heuristics affect the confidence level for non-empty structure instances. Since the

viewer may have been opened when the structure was in the process of being modified, a small

number of identification errors may occur. However, these will have little effect on the

confidence level. An effect of employing this method is that a more accurate identification may

be achieved for non-empty instances than for empty ones for some structures. For example, if

class A implements a node of the data structure which has two self-references, and for all (or

most) of the nodes A.next.prev = A, then it is highly likely that class A is a doubly-linked list. In

contrast, if all nodes are reachable from the root and there are no cycles, then it is likely that the

class is a tree.

If the confidence level of a structure mapping is significantly higher than the confidence

level for other potential mappings, then will be automatically used when a viewer is first opened

for a particular class. In most cases, only one mapping with a high confidence level will be

found, and thus the mechanism of finding the highest confidence level during automatic

identification will be transparent to the user. The result is that a suitable structural view will be

displayed without any input from the user. In cases where there are multiple mappings with

similar confidence levels or where no mapping is found, the user is given the option of manually

configuring the viewer (this can also be done while the viewer is in use). A configuration dialog

allows the Java expressions that will be used to traverse the structure to be entered or edited. For

example, for a singly linked list, expressions for the head node, next node (given a node), and

display value (given a node) are required. Any mappings that were found during the automatic

analysis are made available on a drop-down list. Once the structure mapping has been selected,

specified, or modified using this dialog, the new mapping will automatically be applied the next

time the user opens a viewer on an instance of the same class during the same jGRASP session.

The “nodes” used in the structure mappings need not be actual node objects in the

structure. Using synthetic node values allows structures where nodes are not individual objects

 60

(or links are not object references) to be displayed. For example, a binary heap is typically

implemented using an array of node values and a size value. The links are implicit. The integer

index of a node value can be used as the “node” in the mapping expressions. This allows the

implicit binary tree to be mapped and displayed as a binary tree. Automatic identification of such

structures is done using name-based heuristics and by examining instance characteristics for

consistency with the expected structure. The heuristics are necessarily more restrictive than for

node-and-link implementations, since the possible mappings are more common. Any class with

an array field and an int field, for example, might be a binary heap. Unless the class and field

names are suggestive of a binary heap, such a possible mapping will be ignored.

4.3.2.2. An Example

Consider the following code fragments (Figure 4.17) of two Java programs: a)

LinkedBinarySearchTree.java that implements a linked binary search tree, and b)

BinaryTreeNode.java, which is the type of node added to the tree.

Fig. 4.17: Code fragments of LinkedBinarySearchTree.java and BinaryTreeNode.java.

Figure 4.18, shows the configuration dialog box that can be accessed by clicking the

“configure” icon on the viewer window. The class structure is examined and the related

fields are populated automatically. Referring to Figure 4.17 and Figure 4.18, it can be observed

class LinkedBinarySearchTree {
 int numItems; //number of nodes in the tree
 BinaryTreeNode root;

}
class BinaryTreeNode {
 BinaryTreeNode left; //points to the left sub-tree
 BinaryTreeNode right; //points to the left sub-tree
 Object value; //element stored at the node
}

 61

that 1: is the variable name of the root of the tree, 2: is the class name of the node of the tree

(which is stored in a package jgraspvex), 3-5: are the field names of the BinaryTreeNode class

and clicking on 6 shows a drop down list of all the identified structural mappings (see Figure

4.19).

1

3

4

5

2

6

Fig. 4.18: Configuration
dialog box for automatic
structure identification

 62

Fig. 4.19: Possible structural mappings identified for the given LinkedBinarySeachTree and
BinaryTreeNode code fragments

During the process of opening the viewer, the Data Structure Identifier determines, in this

case, that the object is a binary tree structure and opens the appropriate viewer. As the user steps

through the program and into the insert() method, the node is added to the data structure and the

viewer is updated. Figure 4.20 shows the program while stepping into the insert() method.

Figure 4.21 shows the instance of LinkedBinarySearchTree containing three nodes and the node

with value “8” is about to be inserted. Local object reference branch indicates the position in the

tree where the new node with the value “8” will be added. When this node is added, the

animation provided by the viewer shows the node “sliding” up into the tree. Figure 4.22 depicts

the viewer after the node has been added but prior to size being incremented. Notice that size is

incremented just below the location of the debug step in Figure 4.20. Students have indicated that

seeing the links being set correctly (or incorrectly) as they step through their code is extremely

helpful with respect to their understanding of exactly how the implementation relates to the

abstraction of the data structure itself. In addition, seeing the entire data structure updated in the

viewer as individual statements are executed makes a direct connection between the

implementation and the abstraction, and therefore provides a greater opportunity for deeper

understanding.

 63

Fig. 4.20: LinkedBinarySearchTree - CSD window of jGRASP with the debugger stopped at a break point

Fig. 4.21: View after local node has been created and is
about to be added to the binary tree

Fig. 4.22: View after the node has “moved” from the local
space into the binary tree and prior to size being updated

 64

CHAPTER 5

EXPERIMENTAL EVALUATION

Numerous experiments conducted in the field of visualization of data structures and algorithms

were considered in the literature review [Jarc and Feldman 1998][Hundhausen et al. 2002]

[Kehoe et al. 1999] [Stasko et al. 1993a] [Stasko et al. 1993b]. All of these studies concentrate on

determining factors that affect the quality of pedagogical effectiveness using visualization

techniques or on determining whether learning is enhanced using a particular conceptual level

tool. There is yet a requirement for tools that will assist students in their transition from the

understanding of concepts to their implementation. jGRASP viewers are designed to address this

deficiency, and in this chapter experiments that test the effectiveness of jGRASP viewers are

described.

Four controlled experiments were conducted to test the following hypotheses for a

relatively easy to understand data structure (singly linked list using pointers in Experiments I and

II) and a relatively hard to understand data structure (linked binary search tree using pointers in

Experiments III and IV):

1. Hypothesis 1: Students will be able to code more accurately and in less time using the

jGRASP data structure viewers (Experiment I and III).

2. Hypothesis 2: Students will be able to identify and correct more logical errors accurately

and faster using jGRASP viewers (Experiment II and IV).

 65

Experiment V (min-max heap) was conducted to test if students will be able to transition

from concept to implementation faster and more accurately using jGRASP viewers for data

structures that are covered only conceptually in lectures.

Experiment VI (linked priority queue) was conducted to test if students will be able to

apply concepts faster and more accurately using jGRASP viewers for new data structures that

were not covered in lectures.

5.1. EXPERIMENTAL DESIGN ISSUES

Two criteria are important when choosing subjects for controlled experiments. First, the subjects

must be a close representation of the target population. jGRASP viewers are being developed

primarily for students enrolled in an introductory level data structure and algorithms course. Thus

students enrolled in Fundamentals of Computing II (COMP 2210) at Auburn University were

used as subjects since they closely resemble the target population. Second, the subjects in all

experimental test groups must be relatively uniform in regard to their programming abilities in

order to minimize the variance between groups (see section 5.1.1 for details). Additionally, the

following challenges were also considered while designing the repeatable experiments:

1. Integrating experiments seamlessly with the course material.

2. Organizing large subject population.

3. Scheduling experiments such that there are no conflicts with course activities.

4. Controlling hardware and software to ensure all subjects used similar apparatus.

5. Avoiding plagiarism.

Experiments were designed such that they were closely integrated with course

requirements and so that they complemented the lab assignments. For example, if the experiments

were conducted using singly linked lists, then project assignments were given on doubly linked

lists. In Spring 2006, the students completed eight in-lab activities as a part of the COMP 2210

 66

course. The breakdown of the activities was as follows: Activity 1 comprised of two tests which

were used to create balanced test groups, Activities 2 through 7 corresponded to Experiments 1 to

6, and Activity 8 was a questionnaire to evaluate the user interface elements of the jGRASP

debugger and viewers. All in-lab activities were conducted during the respective lab time of each

section in a particular computer lab on campus. This ensured control over the hardware and

software used by the subjects, and that the schedule of experiments did not conflict with the

subjects’ course-work or other course procedures.

5.1.1. Subject Selection

Internal validity implies the presence of evidence to indicate that the special conditions imposed

in an experiment caused the observed outcome. Selection-bias is said to exist if distinct groups

are not comparable before an experiment. Selection-bias is a major threat to internal validity for

multiple-group experiment design. In this research, a selection-bias would imply that factors other

than the viewers that were used in the experiments caused different outcomes for the two groups,

thus balancing both groups equally was critical for reliable results.

Experiments were designed based on the between-group approach to avoid the transfer of

concepts learned in early experiments to a later experiment. Typically, two aspects need to be

addressed when using the between-group design. First, groups should be comparable, and second,

exactly similar environment must be used to test both groups.

The groups were balanced based on two specific programming skills – the ability to

detect and correct logical errors [Test 1 - Appendix C] and the ability to comprehend and trace

programs [Test 2 - Appendix D]. For Test 1, common logical errors that are specific to the

implementation of data structures were identified [Eisenstadt 1997, Hristova et al. 2003, Metzger

2003, Rubey 1975, Youngs 1974], and problems designed to test for each of the common logical

errors (a total of 25) were created. In the second test, eight questions from the twelve in the multi-

 67

national study of reading and tracing skills in novice programmers were chosen [Lister et al.

2004]. Questions on sorting were purposely omitted, since these concepts were not covered in

lectures during this time. The following steps were taken to determine group assignments such

that the groups are balanced on the basis of programming expertise:

1. Students were sorted in a list in ascending order of their combined scores on Test 1

and Test 2.

2. The list was divided into pairs starting from the lowest score. Each student from a pair

was randomly assigned to Group 1 or 2.

3. Groups 1 and 2 were randomly assigned as the control group (no viewers) and the

treatment group (using viewers).

Using the steps described above, the programming expertise of all the students were

balanced thus having two comparable groups with an equal number of participants. The

environment was controlled as well, since both groups had the same course instructor; the

experiments were conducted in the same lab using identical machines, and all the experiments

were conducted by one person.

Students in Group 1 were familiarized with the jGRASP debugger [Appendix E] and

students in Group 2 were familiarized with both the debugger and jGRASP viewers [Appendix

F]. It was observed that students in Group 2 took from two to three minutes to learn to open and

interact with viewers.

5.1.2. Grading and Compensation

Collection of data was strictly contingent on student consent. In-lab activities were attendance

based and comprised of 5% of the course grade. Our scoring of the students' work constituted a

grade that was used to calculate up to three extra points on their final numeric average. For each

experiment, each group was divided into four quartiles. Quartile 1 (i.e., top 25% of the students)

 68

was awarded the bonus points, quartile 2 was awarded two bonus points, quartile 3 was awarded

one bonus point, and quartile 4 (i.e., lowest 25% of the students) was awarded zero points. Using

this scheme both groups were rewarded similarly regardless of the experimental treatment they

received. Students were eligible for the attendance based 5% of course grade and up to 3 extra

bonus points for the in-lab activities even if they decided to opt-out of data collection.

5.1.3. Data Analysis

Hotelling’s T2 statistic was used to analyze the data since the experiments were designed to have

two dependent matched groups and more than one response variable. Hotelling’s T2 is a

multivariate counterpart of Student's t-test which is typically performed for univariate data

[Johnson and Wichern 1998]. In a t-test, differences in the mean response between two

populations are studied. T2 is used when the number of response variables are two or more,

although it can be used when there is only one response variable. The null hypothesis is that the

group means for all response variables are equal.

The following formula is used to calculate T2 when it is generalized to p response

variables:

)()'(21
1

21
21

21
2, 21

yySyy
NN

NNT spNNp −−
+

=
−

−+

where y1 and y2 are the sample mean vectors of the two groups and Ssp is the pooled sample

variance-covariance matrix. The diagonal elements of Ssp are the variances and the off-diagonal

elements are the covariances for the p variables. N1 is the sample size of Group 1 and N2 is the

sample size of Group 2 for p response variables. For all six experiments, tests were conducted to

check the normality of the distribution, and the population was found to be normal in all cases.

 69

SAS code used to calculate the Hotelling’s T2 statistic with two response variables is given in

Appendix K and with four response variables is given in Appendix L.

5.2. EXPERIMENT I – LINKED LIST

The hypothesis for this experiment was that students will code faster and with greater accuracy

using the jGRASP data structure viewers while implementing a relatively easy to learn data

structure.

5.2.1. Method

 5.2.1.1. Participants

Sixty-eight students enrolled in COMP2210 participated in the experiment. Participants

were given extra credit in their course and were treated in accordance with the “Ethical Principles

of Psychologists and Code of Conduct” [American Psychological Association 2002]. See section

5.1.2 for grading details.

 5.2.1.2. Materials

The participants for this experiment were separated into two groups. Group 1 was the

control group and implemented the tasks without the jGRASP viewers, and Group 2 was the

treatment group and implemented the exact same tasks using the jGRASP viewers.

Students were asked to implement four basic operations for singly linked lists. The

program LinkedSet.java from the class textbook was used for this experiment [Lewis and Chase

2004]. The control group implemented all the four methods – entry(), delete(), insert(), and

contains() using the jGRASP visual debugger. Details of these methods are given in Figure 5.1.

 70

The driver program provided to Group 1 contained a toString() method so that they could print

out the contents of the list without writing additional code. The treatment group implemented the

same four methods using the jGRASP object viewers. The driver program given to Group 2 did

not contain the toString() method, so the subjects had to use the viewers in order to see the

contents of the list, also Group 2 was provided instructions on not to implement the toString()

method.

5.2.1.3. Design and Procedures

The 68 students were split into two matched groups: 34 in Group 1, the group that used

only the jGRASP debugger; and 34 in Group 2, the group that used both the jGRASP debugger

and the viewers. In order to minimize the variation between the two groups, the students were

matched on two programming skills – the ability to detect and correct logical errors, and the

ability to comprehend and trace programs. See section 5.1.1 for details.

Before using the system, students were provided a detailed description of the

programming assignment and the grading policy. Students were required to work independently

and were timed, although there was no time limit to complete the assignment. The machines in

the lab were set up with permissions such that only the treatment group had access to the viewers.

The independent variable was the visualization medium (coding using jGRASP viewers

vs. without viewers). The dependent variables were: time taken to complete the assignment, and

the accuracy of the assignment.

 71

Fig. 5.1: Methods used for Experiment I and Experiment II

Basic Operations for a Singly Linked List

1) void add (element) – this method adds a new node to the end of the linked list. (Note: The list can have
duplicates). For example, if the list contains the following elements in the given order: “a”, “b”, “b”, “c”, “d”.
After the method add(“e”) is called, node “e” should be added to the END of the list. So after the add(“e”) method
is executed, the contents of the list are: “a”, “b”, “b”, “c”, “d”, “e”

2) void insert (element, position) – should insert a given element at the given position (it is added
before the element which is currently in that position). (Note: The list can have duplicates). If the position is
greater than the size of the list, then the element is added to the end of the list.

Example 1) If the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After
the method insert (“f”, 0) is called, node “f” should be inserted before “a” (which is at index 0). So after
the insert(“f”, 0) method is executed, the contents of the list are: “f”, “a”, “b”, “c”, “d”, “e”

Example 2) If the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After
the method insert (“f”, 5) is called, node “f” should be inserted after “e” (which is at index 4). So after
the insert(“f”, 5) method is executed, the contents of the list are: “a”, “b”, “c”, “d”, “e”, “f”

Example 3) If the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After
the method insert (“f”, 1) is called, node “f” should be inserted between “a” (which is at index 0) and “b”
(which is at index 1). So after the insert(“f”, 1) method is executed, the contents of the list are: “a”, “f”,
“b”, “c”, “d”, “e”

3) boolean contains (element) – this method returns true is the list contains this element and false
otherwise.
For example, if the list contains the following elements in the given order: “a”, “b”, “c”, “d”. The method call
contain(“e”) will return false. The method call contain(“b”) will return true.

4) void delete (index) – this method deletes the node at a given index. If the index is greater than the
size of the list, then the method does not delete anything.

Example 1) If the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After
the method delete (0) is called, the node “a” which is at index 0 should be deleted. So after the delete(0)
method is executed, the contents of the list are: “b”, “c”, “d”, “e”

Example 2) If the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After
the method delete (4) is called, the node “e” which is it index 4 should be deleted. So after the delete(4)
method is executed, the contents of the list are: “a”, “b”, “c”, “d”

Example 3) If the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After
the method delete (1) is called, the node “b” which is at index 1 should be deleted. So after the delete(1)
method is executed, the contents of the list are: “a”, “c”, “d”, “e”

5) LinearNode<T> entry (index) – this method returns the object reference of the node at given index
position. This method will be used by insert and delete methods

Example 1) If the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After
the method entry (0) is called, the object reference for node “a”, which is at index 0 should be returned.

Example 2) If the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After
the method entry (4) is called, the object reference for node “e”, which is at index 4 should be returned.

Example 3) If the list contains the following elements in the given order: “a”, “b”, “c”, “d”, “e”. After
the method entry (2) is called, the object reference for node “c”, which is at index 2 should be returned.

 72

5.2.2. Results

The normal P-P plots showed that the dependent variables were normally distributed. The null

hypothesis was that there is no difference in the accuracy and time taken for both groups. Out of

the 34 participants in each group, 31 completed the experiment. For 31 subjects in each group,

Hotelling’s T2 statistic was calculated to be 23.732. The critical value for α = 0.05, p=2 (two

response variables), and n=31 (sample size) was 4.171. P-value was calculated to be 0.000034.

Since the T2 value is much greater than the critical value, and p-value is much less than the α

value, the null hypothesis can be strongly rejected. Thus, there was a statistical significant

difference between the two groups.

Post-hoc MANOVA analysis indicated that visualization medium influenced only

accuracy, F(1, 60) = 12.02, p=0.0010. Figure 5.2 shows that the mean time taken by the group

with viewers is 109.34 minutes while the mean time taken by the group without viewers is 112.07

minutes.

Time Taken - Experiment 1

0

25

50

75

100

125

A
ve

ra
g

e
T

im
e

in
 M

in
s

112.0689655 109.3448276

Without View ers With View ers

Figure 5.3 shows that the mean accuracy of the treatment group with viewers is 6.34

points, while the mean accuracy of the control group without viewers is 4.48 points.

Fig. 5.2: Experiment I - comparison of mean time

 73

Raw Score - Experiment 1

0

2

4

6

8

A
ve

ra
ge

 R
aw

 S
co

re

4.482758621 6.344827586

Without View ers With View ers

Tables 5.1 and 5.2 show the breakdown of the number of students in each group that

correctly implemented each of the given methods. It was observed that students in the treatment

group consistently performed better than the control group for all cases. Thus, it can be concluded

Table 5.1: Students that correctly implemented methods for Experiment 1 (Group 1)

Group 1 (Without Viewers) – Control Group

 1. Entry 2. Insert 3. Delete 4. Contains
No. Correct 12 4 4 15
% Correct 38.71% 12.9% 12.9% 51.61%

Table 5.2: Students that correctly implemented methods for Experiment 1 (Group 2)

Group 2 (With Viewers) – Treatment Group

 1. Entry 2. Insert 3. Delete 4. Contains
No. Correct 15 8 7 18
% Correct 48.39% 25.81% 22.58% 58.06%

Fig. 5.3: Experiment I - comparison of mean accuracy

 74

that in 95% of all cases, the use of jGRASP object viewers to write programs to implement data

structures resulted in increased accuracy.

5.3. EXPERIMENT II – LINKED LIST

The hypothesis for this experiment was that students will be able to detect a greater number of

logical errors and correct them more accurately and in less time using jGRASP viewers while

implementing a relatively easy to understand data structure.

5.3.1. Method

 5.3.1.1. Participants

Sixty-eight students enrolled in COMP2210 participated in the experiment. All

participants were given extra credit in their course and were treated in accordance with the

“Ethical Principles of Psychologists and Code of Conduct” [American Psychological Association

2002]. See section 5.1.2 for grading details.

 5.3.1.2. Materials

The participants for this experiment were separated into two groups. Group 1 was the

control group and implemented the tasks without using the jGRASP viewers, and Group 2 was

the treatment group and implemented the exact same tasks using the jGRASP viewers.

A Java program implementing a singly linked list with 10 logical errors in four methods

add(), insert(), delete() and contains() was provided. Descriptions of these methods are given in

Figure 5.1. The main program implementing the linked list that was provided to each group can

be found in Appendix G. The details of the logical errors are as follows:

 75

(a) add(): This method contained one error. The method added the new nodes to the front

of the list rather than to the rear of the list as specified in the instructions (see Figure 5.1). Figures

5.4 through 5.6 depict the incorrect add() method. The view in Figure 5.5 shows the state of the

Fig. 5.4: Experiment II - CSD window of jGRASP with debugger stopped at a breakpoint in the add() method

Fig. 5.5: View after two nodes have been added
and the next pointer of the third node (to be added) is
set to the head node

Fig. 5.6: View after head of the list has been set to the
third node being added. The node has “moved” from the
local space into the linked list and prior to the count
being incremented

 76

linked list after methods add(“a”) and add (“b”) have been successfully completed, and

add(“c”) is in process. Figure 5.6 shows the state of the linked list after node with value “c” has

been added to the list but the count variable has not been incremented.

Fig. 5.7: Experiment II - CSD window with the debugger stopped at a breakpoint in the insert() method

Fig. 5.8: The next pointer of the node to be inserted is
set to index 1 instead of index 0.

Fig. 5.9: The next pointer of the node at index 0 is set to
the node tmpNode, and the node slides in from the local
space into the linked list prior to count being incremented.

 77

(b) insert(): This method contained two errors. When inserting a node at index “0”, the method

inserted the node after index “0” instead of before it.

Fig. 5.10: Experiment II - Debugger breakpoint stopped in the delete() method

Fig. 5.11: Node at index 1 was supposed to be deleted.
current points at the node that will be deleted

Fig. 5.12: View after the next pointer of previous is
set to the node pointed by current. The node “c”
slides down into the local space since it is no longer a
part of the linked list. The count variable has not been
decremented yet.

 78

Figures 5.7 through 5.9 illustrate the scenario when the method insert (“x”, 0) is invoked (i.e.,

insert node with value “x” at index 0). However, “x” is inserted at index 1 instead of index 0. If

an index number that is greater than the size of the list is passed, then the number of elements in

the list in incremented but the node is not added to the list.

(c) delete(): This method contained four errors. If the index to be deleted is “0” or the

middle of the list, the method incorrectly deleted the node at index+1. If the index to be deleted

is the end of the list or the index is much greater than the size of the list, then the method throws a

NullPointerException since the node being accessed is null. Figure 5.10 to 5.12 illustrate the case

where the method delete(1) is invoked (i.e., node at index 1 is to be deleted) . Instead of deleting

element “b” at index 1, the method incorrectly removes element “c” at index 2 from the linked

list.

(d) contains(): This method contained three errors. The method was caught in an infinite

loop if the element being searched was in the middle or at the end of the loop; or if the element

being searched did not exist in the list.

 5.3.1.3. Design and Procedures

The 68 students were split into two matched groups: 34 in Group 1, the group that used

only the jGRASP debugger; and 34 in Group 2, the group that used both the jGRASP debugger

and the viewers. In order to minimize the variation between the two groups, the students were

matched on two programming skills – the ability to detect and correct logical errors and the

ability to comprehend and trace programs. See section 5.1.1 for details.

Before using the system, students were provided a detailed description of the

programming assignment and the grading policy. Students were required to work independently

and were timed, although there was no time limit to complete the assignment. The machines in

the lab were set up with permissions such that only the treatment group had access to the viewers.

 79

The independent variable was the visualization medium (finding errors using jGRASP

viewers vs. without viewers). The four dependent variables were: i) number of logical errors

found, ii) number of logical errors accurately corrected, iii) number of new bugs introduced in the

program while performing the experiment and iv) time taken to complete the experiment.

Both the groups were first required to identify and document errors. In this step, they

were required to write the name of the method containing the error, and then describe how the

logical error incorrectly affects the state/structure of the data structure. No points were awarded

for only pointing out the statement that contained the error. Next, the control group corrected the

detected errors using the jGRASP visual debugger, and the treatment group corrected the errors

using the jGRASP object viewers.

5.3.2. Results

The normal P-P plots showed that the dependent variables were normally distributed. The null

hypothesis was that there is no difference in the number of bugs detected, corrected, introduced,

and the time taken for both groups. Out of the 34 participants in each group, 26 completed the

experiment. For 26 subjects in each group, Hotelling’s T2 statistic was calculated to be 12.834.

The critical value for α = 0.05, p=4 (four response variables), and n=26 (sample size) was 7.089.

P-value was calculated to be 0.007. Since the T2 value is much greater than the critical value, and

p-value is much less than the α value, the null hypothesis can be strongly rejected. Thus, there

was a statistical difference between the two groups.

Post-hoc MANOVA analysis indicated that visualization medium influenced number of

logical errors found, F(1, 50) = 16.44, p=0.0002; number of logical errors accurately corrected,

F(1, 50) = 7.76, p= 0.0075; and number of new bugs introduced accuracy, F(1, 50) = 6.41, p=

0.0146. Figure 5.13 shows that the mean time taken by the group using viewers is 88.23 minutes,

while the mean time taken by the group without viewers is 87.6 minutes. Figure 5.14 shows that

 80

the group with viewers is able to detect and correct more errors. In addition, this group introduced

fewer errors.

Time Taken - Experiment 2

0

50

100

150

200
A

ve
ra

g
e

T
im

e
T

ak
en

 in
 M

in
s

87.61538462 88.23076923

Without View ers With View ers

Bugs Information - Experiment 2

0

1

2

3

4
5

6

7

8

9

A
ve

ra
ge

 P
oi

nt
s

4.961538462 6.807692308 4.230769231 5.615384615 1.346153846 0.653846154

Grp1Located Grp2Located Grp1Corrected Grp2Corrected Grp1Introduced Grp2Introduced

Fig. 5.14: Experiment II - comparison of mean bugs (logical errors) located, corrected and introduced

Fig. 5.13: Experiment II - comparison of mean time

 81

Table 5.4: Students that correctly completed methods for Experiment 2

(Group 2)

Group 2 (With Viewers) – Treatment Group

 Add Insert Delete Contains

22 18 15 18 Located
 84.62% 69.23% 57.69% 69.23%

16 14 14 18 Corrected
 61.54% 53.85% 53.85% 69.23%

3 1 0 2 Introduced
 11.54% 3.85% 0.00% 7.69%

Tables 5.3 and 5.4 show the breakdown of the number of students in each group that

correctly implemented each of the given method. It was observed that students in the treatment

group consistently performed better than the control group for all cases. Thus, it can be concluded

that in 95% of all cases, the use of jGRASP object viewers to write programs to implement data

structures resulted in a greater number of logical errors detected and corrected accurately while

introducing fewer errors accuracy.

Table 5.3: Students that correctly completed methods for Experiment 2

(Group 1)

Group 1 (Without Viewers) – Control Group

 Add Insert Delete Contains

16 14 11 14 Located
 61.54% 53.85% 42.31% 53.85%

9 9 10 15 Corrected
 34.62% 34.62% 38.46% 57.69%

4 2 3 4 Introduced
 15.38% 7.69% 11.54% 15.38%

 82

 5.4. EXPERIMENT III – LINKED BINARY TREE

The hypothesis for this experiment was that students will code faster and with greater accuracy

using the jGRASP data structure viewers while implementing a relatively hard to learn data

structure.

5.4.1. Method

 5.4.1.1. Participants

Sixty-eight students enrolled in COMP2210 participated in the experiment. Participants

were given extra credit in their course and were treated in accordance with the “Ethical Principles

of Psychologists and Code of Conduct” [American Psychological Association 2002]. See section

5.1.2 for grading details.

 5.4.1.2. Materials

The participants for this experiment were separated into two groups. Group 1 was the

control group and implemented the tasks without using the jGRASP viewers, and Group 2 was

the treatment group and implemented the exact same tasks using the jGRASP viewers.

Students were asked to implement a basic traversal operation for linked binary search

trees. The program LinkedBinarySearchTree.java from the class textbook was used for this

experiment [Lewis and Chase 2004]. Details of this method are given in Figure 5.15. The

control group implemented the level order traversal using the jGRASP visual debugger. The

driver program provided to this group contained a toString() method so that they could print out

the contents of the list without writing additional code. The treatment group implemented the

same method using the jGRASP object viewers. Since the algorithm for levelOrder() traversal

required three different data structures, with three viewers (for LinkedBinaryTree, LinkedQueue

 83

and ArrayUnorderedList) were provided to the students. The driver program given to this group

did not contain the toString() method, so the subjects had to use the viewers in order to see the

contents of the list.

Fig. 5.15: Methods used in Experiment III

5.4.1.3. Design and Procedures

The 68 students were split into two matched groups: 34 in Group 1, the group that used

only the jGRASP debugger; and 34 in Group 2, the group that used both the jGRASP debugger

1) ArrayUnorderedList<T> levelorder (BinaryTreeNode<T> root) {}

 The following algorithm was provided:
 1. Create a queue called nodes (using class LinkedQueue)
 2. Create an unordered list called results (using class ArrayUnorderedList)
 3. Enqueue the "value" of root onto the nodes queue using method enqueue()
 4. While the nodes queue is not empty
 4a. Dequeue the first element from the queue using method dequeue()
 4b. If that element is not null
 4b1) Add that element to the rear of the results list
 4b2) Enqueue the children (if any) of the element on the nodes queue,
 - use the find() method to get the reference of the element
 - then use the left and right instance variables to get to the children
 4c. Else
 4c1) Add null on the result list
 5. Return the results unordered list

Level order should return the elements
in this order ->
Ï5 2 8 3 9 90 13

 84

and the viewers. In order to minimize the variation between the two groups, the students were

matched on two programming skills – the ability to detect and correct logical errors and the

ability to comprehend and trace programs. See section 5.1.1 for details.

Before using the system, students were provided a detailed description of the

programming assignment and the grading policy. Students were required to work independently

and were timed, although there was no time limit to complete the assignment. The machines in

the lab were set up with permissions such that only the treatment group had access to the viewers.

The independent variable was the visualization medium (coding using jGRASP viewers

vs. without viewers). The dependent variables were: time taken to complete the assignment, and

the accuracy of the assignment.

5.4.2. Results

The normal P-P plots showed that the dependent variables were normally distributed. The null

hypothesis was that there would be no difference in the accuracy and time taken for both groups.

The mean time taken by the group with viewers was 69 minutes while the mean time taken by the

group without viewers was 82 minutes (see Figure 5.16). The mean accuracy of the treatment

group with viewers was 6.93 points, while the mean accuracy of the control group without

viewers was 5.06 points (see Figure 5.16).

 85

Time Taken - Experiment 3

0

25

50

75

100

125

A
ve

ra
ge

 T
im

e
in

 M
in

s

82.13793103 69

Without View ers With View ers

Fig. 5.16: Experiment III - average time taken by the treatment group (with viewers) and the
control group (without viewers)

Raw Score - Experiment 3

0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 R
aw

 S
co

re

5.068965517 6.931034483

Without View ers With View ers

Fig. 5.17: Experiment III - average accuracy of the treatment group (with viewers)
and the control group (without viewers)

For the 34 samples in each group, Hotelling’s T2 statistic was calculated to be 20.565.

The critical value for α = 0.05, p=2 (two response variables), and n=34 (sample size) was 4.139.

P-value was calculated to be 0.0000721. Since the T2 value is much greater than the critical

 86

value, and p-value is much less than the α value, the null hypothesis can be strongly rejected, thus

there was a statistically significant difference between the two groups.

Post-hoc MANOVA analysis indicated that visualization medium influenced both time,

F(1, 60) = 4.71, p=0.0339 and accuracy F(1, 60) = 20.33, p= <.0001. It can be concluded that in

95% of all cases, the use of jGRASP object viewers to write programs to implement data

structures resulted in increased accuracy and reduction in time.

5.5. EXPERIMENT IV – LINKED BINARY TREE

The hypothesis for this experiment was that students are able to detect and correct logical bugs

more accurately and in less time when using jGRASP viewers while implementing a relatively

hard to understand data structure.

5.5.1. Method

5.5.1.1. Participants

Sixty-eight students enrolled in COMP2210 participated in the experiment. Participants

were given extra credit in their course and were treated in accordance with the “Ethical Principles

of Psychologists and Code of Conduct” [American Psychological Association 2002]. See section

5.1.2 for grading details.

 5.5.1.2. Materials

The participants for this experiment were separated into two groups. Group 1 was the

control group and implemented the tasks without using the jGRASP viewers, and Group 2 was

the treatment group and implemented the exact same tasks using the jGRASP viewers.

 87

A Java program implementing linked binary search tree with five logical errors, one in

each of the following methods addElement(), findAgain(), removeElement(), inOrder() and

postOrder() was provided. The descriptions of these methods are given in Figure 5.18. The main

program LinkedBinarySearchTree.java provided to each group can be found in Appendix H. The

details of the logical errors are as follows:

Fig. 5.19: Experiment IV: Debugger stopped at a breakpoint in the addElement() method

Fig. 5.20: View after local node with value 8 has been
created but not yet added to the tree

Fig. 5.21: View after newNode is added to the tree,
and is incorrectly set as root

 88

a) addElement(): The first node was added correctly, there on when a node was added, it

simply replaced the root node and all the previous nodes were lost, thus the left and the right sub-

trees of the root did not grow.

The problem was that the count variable remained zero and was not incremented

appropriately, thus the isEmpty() method always returned true. Figures 5.19 through 5.21

illustrate this error. In Figure 5.29, node with value “5” has already been added and is set as the

root of the tree. A temporary node with value “8” is created in the local space and is pointed to by

the reference newNode. Since the count variable is not being incremented, isEmpty() method

returned true, thus it is seen in Figure 5.19 that the if statement was executed as true. In Figure

5.21 the newNode is set as the root of the tree and the previous node reference is lost.

b) findAgain(): This method kept searching down the right sub-tree, so if the node to be

searched had an ancestor which belonged to the left sub-tree of if the target node itself was a left

child, then the method would not be able to find it. The method worked partially: if the node

belonged to the right sub-tree then the method would return a reference to it.

c) removeElement(): This method did not delete a node even if it existed in the tree. The

problem was that the algorithm for traversing the tree was incorrectly implemented if the target

node was lower than the second level of the tree.

d) inOrder(): The in order traversal should travel down the left sub-tree, visit the node,

and then travel down the right sun-tree. The method was implemented incorrectly since it was

traversing the right sub-tree, the node and then the left sub-tree.

e) postOrder(): The post order traversal should travel down the left sub-tree, then travel

down the right sub-tree, and then visit the node. The method was implemented incorrectly since it

was traversing the right sub-tree, the left sub-tree, and then the node.

 89

Fig. 5.18: Methods used in Experiment IV

5.5.1.3. Design and Procedures

The 68 students were split into two matched groups: 34 in Group 1, the group that used

only the jGRASP debugger; and 34 in Group 2, the group that used both the jGRASP debugger

and the viewers. In order to minimize the variation between the two groups, the students were

matched on two programming skills – the ability to detect and correct logical errors and the

ability to comprehend and trace programs. See section 5.1.1 for details.

Before using the system, students were provided a detailed description of the

programming assignment and the grading policy. Students were required to work independently

and were timed, although there was no time limit to complete the assignment. The machines in

the lab were set up with permissions such that only the treatment group had access to the viewers.

The independent variable was the visualization medium (finding errors using jGRASP

viewers vs. without viewers). The four dependent variables were: i) number of logical errors

1) T removeElement (T targetElement) {}
Removes the first element that matches the specified target element from the binary
search tree and returns a reference to it.

2) void addElement (T element) {}
Adds the specified object to the binary search tree in the appropriate position
according to its key value. Note that equal elements are added to the right.

3) BinaryTreeNode<T> find (T targetElement) {}
 Returns a reference to the specified target element if it is found in the binary tree.

4) void inOrder (BinaryTreeNode<T> node,
 ArrayUnorderedList<T> templist) {}
 Performs a recursive inorder traversal.

5) void postOrder (BinaryTreeNode<T> node,
 ArrayUnorderedList<T> templist) {}
 Performs a recursive postorder traversal.

 90

found, ii) number of logical errors accurately corrected, iii) number of new bugs introduced in the

program while performing the experiment and iv) time taken to complete the experiment.

Both the groups were first required to identify and document errors. In this step, they

were required to write the name of the method containing the error, and then describe how the

logical error incorrectly affects the state/structure of the data structure. No points were awarded

for only pointing out the statement that contained the logical error. Next, the control group

corrected the detected errors using the jGRASP visual debugger and the treatment group

corrected the errors using the jGRASP object viewers.

5.5.2. Results

The normal P-P plots showed that the dependent variables were normally distributed. The null

hypothesis was that there would be no difference in the number of bugs detected, corrected,

introduced, and the time taken for both groups. The mean time taken by the group with viewers

was 57.61 minutes, while the mean time taken by the group without viewers was 67.38 minutes

(Figure 5.22). On average, the group using viewers located 3.19 errors, corrected 2.96 errors and

introduced 1.66 errors, and the group without the viewers located 2.03 errors, corrected 1.69

errors and introduced 1.88 errors (Figure 5.23).

 91

Time Taken - Experiment 4

67.38461538
57.61538462

0

20

40

60

80

100

120

Without View ers With View ers

A
ve

ra
ge

 T
im

e
Ta

ke
n

in
 M

in
s

Fig. 5.22: Experiment IV - average time taken by the treatment group (with viewers) and the control group (without
viewers)

Bugs Information - Experiment 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
ve

ra
ge

 P
oi

nt
s

2.038461538 3.192307692 1.692307692 2.961538462 1.875 1.666666667

Grp1Located Grp2Located Grp1Corrected Grp2Corrected Grp1Introduced Grp2Introduced

Fig. 5.23: Experiment IV - average accuracy of the treatment group (with viewers) and the control group (without
viewers)

For the 34 samples in each group, Hotelling’s T2 statistic was calculated to be 22.121.

The critical value for α = 0.05, p=4 (four response variables), and n=34 (sample size) was 7.0891.

 92

P-value was calculated to be 0.0005. Since the T2 value is much greater than the critical value,

and p-value is much less than the alpha value, the null hypothesis can be strongly rejected, thus

there was a statistical difference between the two groups. It was observed that students in the

treatment group consistently performed better than the control group for all cases.

Post-hoc MANOVA analysis indicated that visualization medium influenced number of

logical errors found, F(1, 66) = 13.52 , p =0.0005; number of logical errors accurately corrected,

F(1, 66)= 8.91, p=0.0040; number of new bugs introduced accuracy, F(1, 66) = 5.08, p=0.0275

and time, F(1,66)= 4.56, p=0.0365. Thus, it can be concluded that in 95% of all cases, the use of

jGRASP object viewers to write programs to implement data structures resulted in a greater

number of logical errors detected and corrected accurately while introducing fewer errors

accuracy and in less time.

5.6. EXPERIMENT V – MIN-MAX HEAP

The hypothesis for this experiment was that students will be able to transition from concept to

implementation for data structures that are covered conceptually in lectures faster and more

accurately using jGRASP viewers.

5.6.1. Method

 5.6.1.1. Participants

Sixty-eight students enrolled in COMP2210 participated in the experiment. Participants

were given extra credit in their course and were treated in accordance with the “Ethical Principles

of Psychologists and Code of Conduct” [American Psychological Association 2002]. See section

5.1.2 for grading details. As required by the experiment, the participants had no experience with

the implementation of min-max heaps.

 93

5.6.1.2. Materials

The participants for this experiment were separated into two groups. Group 1 was the

control group and implemented the tasks without the jGRASP viewers, and Group 2 was the

treatment group and implemented the exact same tasks using the jGRASP viewers.

The min heap and max heap data structures were covered only conceptually during

lectures by the instructor; no programming code was discussed in class; and no lab assignments

were given on these either. For the experiment, students were provided with detailed conceptual

explanation for the various operations of the max heap data structure, and a Java code

implementation of the min heap data structure. The goal was to understand the code for min heap

and then convert the given data structure to a max heap, and also implement the addElement(),

removeMax(), findMax() methods for a max heap.

The program Heap.java from the class textbook was used in this experiment [Lewis and

Chase 2004]. The control group implemented the addElement(), removeMax(), findMax()

methods for a max heap using the jGRASP visual debugger. Details of the materials provided are

shown in Figure 5.24. The driver program provided to this group contained a toString() method

so that they could print out the contents of the list without writing additional code. The treatment

group implemented the same three methods using the jGRASP object viewers. The driver

program given to this group did not contain the toString() method, so the subjects had to use the

viewers in order to see the contents of the list. The main program (Heap.java) provided to each

group can be found in Appendix I.

5.6.1.3. Design and Procedures

The 68 students were split into two matched groups: 34 in Group 1, the group that used

only the jGRASP debugger; and 34 in Group 2, the group that used both the jGRASP debugger

and the viewers. In order to minimize the variation between the two groups, the students were

 94

matched on two programming skills – the ability to detect and correct logical errors and the

ability to comprehend and trace programs. See section 5.1.1 for details.

Before using the system, students were provided a detailed description of the

programming assignment and the grading policy. Students were required to work independently

and were timed, although there was no time limit to complete the assignment. The machines in

the lab were set up with permissions such that only the treatment group had access to the viewers.

The independent variable was the visualization medium (coding using jGRASP viewers

vs. without viewers). The dependent variables were: time taken to complete the assignment, and

the accuracy of the assignment.

5.6.2. Results

The normal P-P plots showed that the dependent variables were normally distributed. The null

hypothesis was that there is no difference in the accuracy and time taken for both groups. For 34

samples in each group, Hotelling’s T2 statistic was calculated to be 10.813. The critical value for

α = 0.05, p=2 (two response variables), and n=34 (sample size) was 4.139. P-value was

calculated to be 0.0024. Since the T2 value is much greater than the critical value, and p-value is

much less than the alpha value, the null hypothesis can be strongly rejected. Thus, there was a

statistical significant difference between the two groups.

Post-hoc MANOVA analysis indicated that visualization medium influenced both time,

F(1, 66) = 5.18, p = 0.0261; and accuracy F(1, 66) = 5.60, p = 0.0209. Figure 5.25 shows that the

mean time taken by the group with viewers is 41.48 minutes while the mean time taken by the

group without viewers is 51.24 minutes.

 95

Fig. 5.24: Details of max heap used in Experiment V

Max Heap

A heap is a specialized tree-based data structure. If A and B be nodes of a heap, such that B is
a child of A. The heap must then satisfy the following condition (heap property):

Value (A) ≥ Value (B)

In this form it implies that the greatest element is always in the root node, and such a heap is
called a max heap.

For example:
a) The first node to be added to the heap is a node with value “4”. The heap looks like this:

b) Next we add a node with a value “3” and then a node with a value “7”. Heap now looks
like this:

c) Next we add a node with a value “6” and then a node with a value “1”. Heap now looks
like this:

d) After we call removeMax(), the root should be removed since it contains the node with the
maximum value. The Heap looks like this after removeMax() is called. Node with value “7”
is removed.

 96

Time Taken - Experiment 5

0

20

40

60

80

A
ve

ra
ge

 T
im

e
in

 M
in

s

51.24137931 41.48275862

Without View ers With View ers

Figure 5.26 shows that the mean accuracy of the treatment group with viewers is 2.86

points, while the mean accuracy of the control group without viewers is 4.03 points.

Raw Score - Experiment 5

0

1

2

3

4

5

6

A
ve

ra
ge

 R
aw

 S
co

re

2.862068966 4.034482759

Without View ers With View ers

It was observed that students in the treatment group consistently performed better than

the control group for all cases. Thus, it can be concluded that in 95% of all cases, using jGRASP

Fig. 5.25: Experiment V - comparison of mean time

Fig. 5.26: Experiment V - comparison of mean accuracy

 97

object viewers, students will be able to transition from concept to implementation for data

structures that are covered conceptually in lectures more accurately and in less time.

5.7. EXPERIMENT VI – LINKED PRIORITY QUEUE

The hypothesis for this experiment was that students will be able to apply concepts for new data

structures faster and more accurately using jGRASP viewers.

5.7.1. Method

 5.7.1.1. Participants

Sixty-eight students enrolled in COMP2210 participated in the experiment. All

participants were given extra credit in their course and were treated in accordance with the

“Ethical Principles of Psychologists and Code of Conduct” [American Psychological Association

2002]. See section 5.1.2 for grading details. As required by the experiment, the participants had

no conceptual or implementation knowledge of priority queues.

5.7.1.2. Materials

The participants for this experiment were separated into two groups. Group 1 was the

control group and implemented the tasks without the jGRASP viewers, and Group 2 was the

treatment group and implemented the exact same tasks using the jGRASP viewers.

Students were provided with detailed conceptual explanation for the add() method of the

priority queue data structure (see table 5.5). All the students were seeing this data structure for the

first time (i.e., it was not covered in the lectures and they had not read about it). The goal for this

experiment was to understand the conceptual working of the basic add operation for linked

priority queues and then to implement it. The program PriorityQueueLinked.java from the class

 98

textbook was used in this experiment [Lewis and Chase 2004]. The control group implemented

the add() method using the jGRASP visual debugger. Details of the materials are shown in

Figure 5.27. The driver program provided to this group contained a toString() method so that they

could print out the contents of the list without writing additional code. The treatment group

implemented the same add() method using the jGRASP object viewers. The driver program

given to this group did not contain the toString() method, so the subjects had to use the viewers in

order to see the contents of the list. The main program (PriorityQueueLinked.java) provided to

each group can be found in Appendix J.

Table 5.5: Method implemented for Experiment VI

PROGRAM

TASKS

PriorityQueueLinked.java

public void add(E value, int priority)

Fully implement and test this method. Your method
should add nodes to the queue as shown in Step 1. As
usual there will be no time limit for this activity.

 99

Fig. 5.27: Details of priority queue used in Experiment VI

Priority Queue

Priority queues behave exactly like queues but only differ in the add operation. In a regular
queue nodes are always added towards the end/rear/tail of the queue, but in a priority queue
nodes are added based on their priority. Our convention is that lower the number higher the
priority of the node.

For example:

a) The first node to be added to the queue is a node with value “ABC” and priority 4. Priority
queue looks like this:

b) Next we add a node with “XYZ” and priority 2. Since this has a GREATER priority than
the previously added node, it is added to the front. Priority queue looks like this:

c) Next, let us add 3 more nodes given below.

1) a node with value “SRT” and priority 3 followed by
2) a node with value “AJG” and priority 6 followed by
3) a node with value “AJG” and priority 7

The priority queue looks like this:

d) The last node to be added has a value BCD with a priority 3. This should be inserted
between nodes at index 1 and 2. This is added after node (SRT, 3) since it arrived after this
node. So given two nodes with the same priority, the one which arrive before is given
HIGHER priority.

 100

5.7.1.3. Design and Procedures

The 68 students were split into two matched groups: 34 in Group 1, the group that used

only the jGRASP debugger; and 34 in Group 2, the group that used both the jGRASP debugger

and the viewers. In order to minimize the variation between the two groups, the students were

matched on two programming skills – the ability to detect and correct logical errors and the

ability to comprehend and trace programs. See section 5.1.1 for details.

Before using the system, students were provided a detailed description of the

programming assignment and the grading policy. Students were required to work independently

and were timed, although there was no time limit to complete the assignment. The machines in

the lab were set up with permissions such that only the treatment group had access to the viewers.

The independent variable was the visualization medium (coding using jGRASP viewers

vs. without viewers). The dependent variables were: time taken to complete the assignment, and

the accuracy of the assignment.

5.7.2. Results

The normal P-P plots showed that the dependent variables were normally distributed. The null

hypothesis was that there is no difference in the accuracy and time taken for both groups. For 34

samples in each group, Hotelling’s T2 statistic was calculated to be 19.756. The critical value for

α = 0.05, p=2 (two response variables), and n=34 (sample size) was 4.139. P-value was

calculated to be 0.00009. Since the T2 value is much greater than the critical value, and p-value is

much less than the alpha value, the null hypothesis can be strongly rejected. Thus, there was a

statistically significant difference between the two groups.

Post-hoc MANOVA analysis indicated that visualization medium influenced both time,

F(1, 66) = 7.13, p = 0.0095; and accuracy F(1, 66) = 6.44, p = 0.0135. Figure 5.28 shows that the

 101

mean time taken by the group with viewers is 50.79 minutes while the mean time taken by the

group without viewers is 58.93 minutes.

Time Taken - Experiment 6

0

25

50

75

100

125

A
ve

ra
ge

 T
im

e
in

 M
in

s

58.93103448 50.79310345

Without View ers With View ers

Figure 5.29 shows that the mean accuracy of the treatment group with viewers is 2.58

points, while the mean accuracy of the control group without viewers is 2.10 points.

Raw Score - Experiment 6

0

0.5

1

1.5

2

2.5

3

3.5

4

A
ve

ra
ge

 R
aw

 S
co

re

2.103448276 2.586206897

Without View ers With View ers

Fig. 5.29: Experiment VI - comparison of mean accuracy

Fig. 5.28: Experiment VI - comparison of mean time

 102

It was observed that students in the treatment group consistently performed better than

the control group for all cases. Thus, it can be concluded that in 95% of all cases, using jGRASP

object viewers, students will be able to apply concepts for new data structures (that are not

covered in the lectures) faster and more accurately.

5.8. SAMPLE SIZE ANALYSIS

To calculate power the non-centrality parameter for this distribution is required. This non-

centrality parameter is defined as follows:

)()'(21
1

21
21

21 µµµµλ −Σ−
+

= −

NN
NN

2

21

21 ∆
+

=
NN

NN
λ

where)()'(21
1

21 µµµµ −Σ−=∆ − and Σ is the common variance covariance matrix. The

formula above is defined as effect size because it provides an expression for the magnitude of the

standardized difference between the null and alternative means. Using this non-centrality

parameter, the power of the Hotelling’s T2 may be calculated for any value of the means and

standard deviations. Since there is a simple relationship between the non-central T2 and the non-

central F, calculations are actually based on the non-central F using the formula

)''Pr(,, 21 λαβ dfdfFF <=

where

pdf =1

1212 −−+= pNNdf

 103

The power was calculated for each experiment as shown in the following output where:

• Power is the probability of rejecting a false null hypothesis. Note that Power = 1 - Beta.
• N1 and N2 are the sample sizes of the two groups.
• Alpha is the probability of rejecting a true null hypothesis (Was set to 0.05).
• Beta is the probability of accepting a false null hypothesis. Note that Beta = 1 – Power
• Effect Size is a standardized version of T2 under the alternative hypothesis.
• DF1 is the first degrees of freedom of T2. It is the number of response variables.
• DF2 is the second degrees of freedom of T2.

Experiment I

 Multiply Number
 Means Effect of Y's
Power N1 N2 By (K) Beta Size (DF1) DF2
0.7735 20 20 1.0000 0.2265 0.87 2 37
0.8584 25 25 1.0000 0.1416 0.87 2 47
0.9139 30 30 1.0000 0.0861 0.87 2 57
0.9488 35 35 1.0000 0.0512 0.87 2 67
0.9702 40 40 1.0000 0.0298 0.87 2 77

 Experiment II

 Multiply Number
 Means Effect of Y's
Power N1 N2 By (K) Beta Size (DF1) DF2
0.6172 20 20 1.0000 0.3828 0.78 3 36
0.7181 25 25 1.0000 0.2819 0.78 3 46
0.7970 30 30 1.0000 0.2030 0.78 3 56
0.8566 35 35 1.0000 0.1434 0.78 3 66
0.9004 40 40 1.0000 0.0996 0.78 3 76

Experiment III

 Multiply Number
 Means Effect of Y's
Power N1 N2 By (K) Beta Size (DF1) DF2
0.6797 20 20 1.0000 0.3203 0.78 2 37
0.7738 25 25 1.0000 0.2262 0.78 2 47
0.8436 30 30 1.0000 0.1564 0.78 2 57
0.8937 35 35 1.0000 0.1063 0.78 2 67
0.9289 40 40 1.0000 0.0711 0.78 2 77

 104

 Experiment IV

 Multiply Number
 Means Effect of Y's
Power N1 N2 By (K) Beta Size (DF1) DF2
0.7520 20 20 1.0000 0.2480 0.92 3 36
0.8451 25 25 1.0000 0.1549 0.92 3 46
0.9063 30 30 1.0000 0.0937 0.92 3 56
0.9449 35 35 1.0000 0.0551 0.92 3 66
0.9684 40 40 1.0000 0.0316 0.92 3 76

 Experiment V

 Multiply Number
 Means Effect of Y's
Power N1 N2 By (K) Beta Size (DF1) DF2
0.6395 20 20 1.0000 0.3605 0.74 2 37
0.7347 25 25 1.0000 0.2653 0.74 2 47
0.8082 30 30 1.0000 0.1918 0.74 2 57
0.8635 35 35 1.0000 0.1365 0.74 2 67
0.9042 40 40 1.0000 0.0958 0.74 2 77

 Experiment IV

 Multiply Number

 Means Effect of Y's
Power N1 N2 By (K) Beta Size (DF1) DF2
0.6635 20 20 1.0000 0.3365 0.76 2 37
0.7583 25 25 1.0000 0.2417 0.76 2 47
0.8297 30 30 1.0000 0.1703 0.76 2 57
0.8820 35 35 1.0000 0.1180 0.76 2 67
0.9195 40 40 1.0000 0.0805 0.76 2 77

For experiments 1 and 3, average sample sizes of 25 in each group results in a power of

80-85%, and for the other experiments average sample sizes of 30-35 will result in a power of

90%. The two-sample Hotelling's T2 test statistic was used with a significance level of 0.05.

 105

5.9 RETENTION OF CONCEPTS

 Early indicators suggest that jGRASP viewers help with retention of concepts as well. Table 5.6

shows the average scores of students in Group 1 and Group 2 for Quizzes, Exam 1, Exam 2, Final

Exam and Overall Grade for the course COMP 2210. In all fives cases the performance of Group

2 was much better than Group 1. Exam 1 tested the following topics: sets, linked structures,

stacks, queues, lists and recursions. Experiments conducted before Exam 1 covered linked

structures, stacks, queues. Exam 2 tested the following topics: trees, binary search trees, multi-

way search trees, heaps and hashing. Experiments conducted before Exam 2 covered binary

search trees, min-max heaps and priority queues. Final Exam was comprehensive covering all

topics, and the Overall Grade was an average of exam scores, in-lab paper-based quizzes, and in-

lab programming assignments.

Table 5.6: Comparison of average scores of Group 1 and Group 2
in the COMP 2210 course

Averages

Group 1 Group 2

Quizzes

76.09 % 80.12 %

Exam 1

69.15 % 73.06 %

Exam 2

56.52 % 61.67 %

Final Exam

70 % 77.38 %

Overall Grade

66.23 % 72.44 %

 106

CHAPTER 6

QUESTIONNARIE TO EVALUATE THE USER INTERFACE ASPECTS OF

jGRASP VIEWERS AND DEBUGGER

A questionnaire to evaluate the user interface aspects of the jGRASP debugger and the viewers

was conducted. Group 1 (control group) was given a set of questions to determine if they

understood the functionality of the debugger features and the icons used to represent the features.

Group 2 (treatment group) was given a set of questions to determine the same for the viewer

features.

6.1. DEBUGGER QUESTIONNARIE

Debug tab pane is divided into three sub panes or sections – Threads, Call Stack, Variables/Eval.

The Threads section lists all the active threads running in the program. The Call Stack section

shows the current call stack and allows the user to switch from one level to another in the call

stack. When this occurs, the CSD window that contains the source code associated with that

particular call is brought to the top of the desktop, and the associated variables are updated in the

Variables pane. The Variables/Eval section shows the details of the current state of the program

in the Variables tab, and provides an easy way to evaluate expressions involving these variables

in the Eval tab.

 107

6.1.1 The Debug Buttons

Fig. 6.1: The debug button panel in jGRASP

1 – Step: Clicking this button will single step to the next statement. E.g., If the statement contains

a method, the entire method is executed and the control is moved to the next statement in the

program file being debugged.

2 – Step in: Clicking this button for a statement with a method call (that is a part of the user’s

source code) will step into the method implementation in the file containing the method

definition. The top entry in the Call Stack indicates where the user is in the program.

3 – Step out: Clicking this button will return control to the statement from where the user

previously “stepped in”.

4 – Run to cursor: Clicking this button will execute the program until the statement with the

cursor (L) is reached. If the cursor is not on a statement along the control path, the program will

stop at the next breakpoint. The “Run to cursor” is convenient since placing the cursor on a

statement is like setting a “temporary” breakpoint.

5 – Pause: Clicking this button pauses the thread wherever it happens to be while using the “Auto

step” or “Auto resume” functionality. It also pauses execution of the thread which is in an infinite

loop or waiting for user input.

1 2 3 4 5 6 7 8 9 10

 108

6 – Resume: Clicking this button resumes the thread to the next breakpoint in the program. If the

breakpoint is set in another file, and this breakpoint is on the control path, then the other source

file will be given focus when the breakpoint is reached.

7 – Auto step: This button is used to toggle on and off a mode which allows the user to

automatically step repeatedly after the Step button (#1) is clicked once. The program can be

paused by clicking the Pause button (#5), and auto stepping can be restarted by clicking the Step

button (#1).

8 – Auto resume: This button is used to toggle on and off a mode which allows the user to

automatically resume repeatedly (stopping briefly at breakpoints) after the Resume button (#6) is

clicked once. The program can be paused by clicking the Pause button (#5), and auto resuming

can be restarted by clicking the Resume button (#6).

9 – Use byte code size steps: This button is used to toggle on and off a mode which allows the

user to step through the program in the smallest increments possible.

10 – Suspend new threads: This button is used to toggle on and off the mode that will

immediately suspend any new threads.

The questionnaire used for Group 1 is given in Appendix M. Question 1 asked the

participants to answer the question: “After you start the debugging procedure, how usefulness are

the following features?” The four features were Threads, Call Stack, Variables, and Eval tabs. A

four point Likert scale (1: Useful; 2: Somewhat Useful; 3: Somewhat Useless; 4: Useless) was

used to rate Question 1.

 109

Question 2 asked them “How often did you use the following features?” The features are

listed in Table 1. A four point Likert scale (1: For most of the activities; 2: For at least half of

the activities; 3: For 1 or 2 activities; 4: Never needed to use this feature) was used to rate

Question 2 as well.

Question 3 asked them “Is this icon a good representation or depiction of the following

features?” These features were the same as the ones used in Question 2. A five point Likert scale

(1: Yes – I was immediately able to recognize the feature; 2: Yes – I was able to recognize after I

read what it does; 3: No – I had to repeatedly look up what it does; 4: No – change the icon since

it is not a good representation of the feature; 0: N/A I never used this feature) was used to answer

Question 3.

6.1.2. Results and Discussions

The Variables section is the most useful and most frequently used feature, and the Eval section is

the least useful and least frequently used feature [see Figure 6.2 and 6.2, Table 6.1]. The Call

stack was rated as a “useful” to “somewhat useful” feature by approximately 85% of students, but

was frequently used by only 50% of the students. In this scenario, students switched between the

main/driver program stack and data structure call stack during the step-in process. The ability to

switch between threads was not relevant to the programs implementing data structures since these

were all single threads. Thus as expected, most students did not use this feature.

Based on Figure 6.4, it was observed that the three most used debug features were step-

over, step-in and step-out and the three least used features suspend new threads, use byte size

steps and auto resume. Based on this information multiple recommendations for the layout of the

 110

Usefulness

0

20

40

60

80

100

Features - Debug Tab

Pe
rc

en
ta

ge
s

1-Useful 19.23 26.92 92.31 7.69

2-Somew hat Useful 26.92 57.69 7.69 30.77

3-Somew hat Useless 46.15 7.69 0 42.31

4-Useless 7.69 7.69 0 19.23

Threads Call Stack Variables Eval

Fig. 6.2: Usefulness of the Debug Tab features

Frequency

0

20

40

60

80

100

120

Features - Debug tab

P
er

ca
nt

ag
es

1-For most of the activities 15.38 15.38 96.15 15.38

2-For at least half of the
activities

38.46 34.62 3.84 15.38

3-For 1 or 2 activities 26.92 30.77 0 42.3

4-Never needed to use this
feature

19.23 15.38 0 19.23

Threads Call Stack Variables Eval

Fig. 6.3: Frequency of use of the Debug Tab features

 111

Frequency of use

0
10
20
30
40
50
60
70
80
90

Step over Step in Step out Run to
cursor

Suspend
selected
thread

Resume
selected
thread

Auto step Auto
resume

Use byte
code size

steps

Suspend
new

threads

Debug Controls

P
er

ce
nt

ag
e

1-For most of the activities 2-For at least half of the activities
3-For 1 or 2 activities 4-Never needed to use this feature

Fig. 6.4: Frequency of use of Debug controls

Icon Representation

0

10

20

30

40

50

60

70

Step over Step in Step out Run to
cursor

Suspend
selected
thread

Resume
selected
thread

Auto step Auto
resume

Use byte
code size

steps

Suspend
new

threads

Debug Controls

Pe
rc

en
ta

ge
s

1 -Yes: I w as immediately able to recognize the feature
2- Yes: I w as able to recognize after I read w hat it does
3 - No: I had to repeatedly look up w hat it does
4 - No: change the icon since it is not a good representation of the feature
0 - I never used this feature

Fig. 6.5: Icon representation of Debug controls

 112

user interface of the debug panel will be presented in the next section. Overall the icons used to

represent debug features were relatively easily recognizable. The three icons that students had to

repeatedly look up were for suspend new threads, use byte size steps, and auto resume (see Figure

6.5).

Table 6.1: Results of jGRASP debugger questionnaire for Group 1

1. After you start the debugging procedure how useful are the
following features?

Median score (Mode) 1

n = 26
a. Threads 2 (2)
b. Call Stack 2 (2)
c. Variables 1 (1)
d. Eval tab (next to Variables) 3 (3)

2. How often did you use the following features:

Median score (Mode) 2

n = 26
a. Threads 3 (3)
b. Call Stack 2 (2)
c. Variables 1 (1)
d. Eval tab (next to Variables) 3 (3)

 Step over 1.5 (1)

 Step in 1 (1)

 Step out 2 (2)

Run to cursor 3 (4)

Suspend selected thread 4 (4)

 Resume selected thread 4 (4)

 Auto step 3 (bimodal 3 and 4)

Auto resume 4 (4)

 Use byte code size steps 4 (4)

Suspend new threads 4 (4)

3. Is this icon a good representation or depiction of the feature?

Median score (Mode) 3

n = 26

 Step over 2 (2)

 Step in
2 (2)

 113

3. Is this icon a good representation or depiction of the feature?

Median score (Mode) 3

n = 26

 Step out
2 (2)

Run to cursor
2 (2)

 Suspend selected thread
2 (2)

 Resume selected thread
2 (2)

 Auto step
2 (2)

Auto resume
2 (2)

 Use byte code size steps 3 (2)

Suspend new threads 3 (bimodal 2 and 4)

In Table 6.1, responses for the first question is based on a Likert scale ranging from 1 to 4

on which 1 = Useful, 2 = Somewhat Useful, 3 = Somewhat Useless, and 4 = Useless. The

responses for the second question is based on a Likert scale ranging from 1 to 4 on which 1 = For

most of the activities, 2 = For at least half of the activities, 3 = For 1 or 2 activities, and 4 = Never

needed to use this feature. The responses for the third question is based on a Likert scale ranging

from 0 to 4 on which 1 = Yes – I was immediately able to recognize the feature, 2 = Yes – I was

able to recognize after I read what it does, 3 = No – I had to repeatedly look up what it does, 4 =

No – change the icon since it is not a good representation of the feature, 0 = N/A I never used this

feature.

6.1.3. Interface Layout Recommendations

The “Thread” feature is useful for visualizing aspects of multithreaded applications. But since

multithreading is not taught in CS1 and CS2, features related to threading are not used. The

thread section on the “Debug” tab, and the “Suspend new thread” button related to multithreading

can be removed from the default view and shifted under “Settings” as an advanced feature which

 114

can be turned on/off (e..g., Settings-> Debugger ->Multithreading). This will simplify the debug

tab. Most students did not use this feature, and a majority did not think the icon used for this

button was a good representation of the feature. This feature can be moved to the advanced

settings, and the icon needs to be redone.

The new suggested layouts of the debug buttons are as follows:

Layout 1:

Fig. 6.6: Layout recommendation 1 for debug panel

a) The buttons related to stepping – one statement at a time; from one statement to a

temporary breakpoint; and from one statement to the next breakpoint should be grouped

together since they have similar functionality

b) The buttons related to step in and step out should be grouped together

c) The auto step/auto resume buttons should be grouped together separately, where the

pause button is visible only if the auto step and/or the auto resume buttons are toggled to

an ON position or when stepping is activated.

Layout 2:

 options

 >>

Fig. 6.7: Layout recommendation 2 for debug panel

 115

a) The buttons which are used frequently are displayed on the main toolbar, the other

features are optional and can be turned on by using the checkboxes

b) The toggle buttons must be grouped together, since their functionality differs from the

other regular buttons. Additionally, a descriptive heading (e.g., options) can be provided.

The look and feel of the toggle buttons must differ from regular buttons:

i. When a toggle button is selected, the button can be highlighted using a border, or

the button can be designed to look “pressed”.

ii. The toggle buttons must be placed next to each other with no space between

them, otherwise they might be mistaken for regular buttons.

6.2. jGRASP VIEWERS QUESTIONNARE

The questionnaire used for Group 2 is given in Appendix N. Question 1 asked the participants to

answer the question: “On the viewer window, how useful are the following features?” The eight

features used for this question are listed in Table 6.2. A four point Likert scale (1: Useful; 2:

Somewhat Useful; 3: Somewhat Useless; 4: Useless) was used to rate Question 1.

Question 2 asked them “How often did you use the following features?” The nine

features used for this question are listed in Table 6.2. A four point Likert scale (1: For most of the

activities; 2: For at least half of the activities; 3: For 1 or 2 activities; 4: Never needed to use this

feature) was used to rate Question 2 as well.

Question 3 asked them “Is this icon a good representation or depiction of the following

features?” A five point Likert scale (1: Yes – I was immediately able to recognize the feature; 2:

Yes – I was able to recognize after I read what it does; 3: No – I had to repeatedly look up what it

does; 4: No – change the icon since it is not a good representation of the feature; 0: N/A I never

used this feature) was used to answer Question 3.

 116

Group 2 then answered some open-ended questions where the goal was to understand

what other feature if other features could be added to improve that performance such as: 1) Will

the ability to customize the color of the nodes be useful? 2) Will stepping back during the

debugging process so that the before and after states of a data structure can be compared be

useful? 3) Will the ability to control the orientation of the data structure (switching between

vertical and horizontal) be useful? 4) Will the ability to add more variables to the viewer be

useful? For example: if the method is using some local variables (which are currently being

shown in the Debug tab) which are not a part of the main data structure, but do interact with the

data structure during the step-in process, then would it be useful to have a canvas view where the

user can drag and drop any global or local variable and the viewer would automatically show how

the variables interact with the main data structure.

6.2.1. Results and Discussions

The animation related features (on/off and time adjuster) and adjusting the scale and width of the

visualization where the top four most used features (see Figure 6.8 and 6.9 and table 6.2). The

other viewer features were rated as useful, but were not frequently used by the students (see

Figure 6.8 and 6.9). The reason is that once the viewer has been adjusted to match the mental or

the textbook model, no further adjustments are deemed necessary.

The only adjustments used by students during debugging are the ones that adjust the size

(width/scale) as the visualization grows, and the animation time adjuster.

The icon representation of almost all icons was rated well. The two icons that got the

lowest ratings are animation-on and animation-off (Figure 6.10).

 117

Usefulness

0

10

20

30

40

50

60

70

80

Features - Viewer

P
er

ce
nt

ag
es

1-Useful 42.86 35.71 53.57 17.86 35.71 67.86 71.43 64.29

2-Somew hat Useful 39.29 50 28.57 25 53.57 25 25 25

3-Somew hat Useless 17.86 14.29 17.86 46.43 7.14 7.14 3.57 3.57

4-Useless 0 0 0 7.14 3.57 0 0 7.14

embed / non-
embed

simple /
normal

compact /
normal

round /
rectangle

animation on
/ off w idth scale

animation
time adjuster

Fig. 6.8: Usefulness of viewer features

Frequency of Use

0

10

20

30

40

50

60

Features - Viewer

P
er

ce
nt

ag
es

1-For most of the activities 7.14 10.71 17.86 14.29 17.86 25 25 39.29

2-For at least half of the activities 39.29 21.43 10.71 7.14 21.43 32.14 32.14 28.57

3-For 1 or 2 activities 32.14 46.43 57.14 35.71 28.57 25 32.14 10.71

4-Never needed to use this feature 21.43 21.43 14.29 42.86 32.14 17.86 10.71 17.86

embed /
non-

embed

simple /
normal

compact
/ normal

round /
rectangle

animation
on / off w idth scale

animation
time

adjuster

Fig. 6.9: Frequency of use of viewer features

 118

Icon Representation

0

10

20

30

40

50

60

70

80

Embedded
view

Non-
embedded

view

Simple view Normal
view

Compact
layout

Normal
layout

Rectangular
nodes

Round
nodes

Animation
on

Animation
off

Features - Viewer

P
er

ce
nt

ag
es

1 -Yes: I w as immediately able to recognize the feature
2- Yes: I w as able to recognize after I read w hat it does
3 - No: I had to repeatedly look up w hat it does
4 - No: change the icon since it is not a good representation of the feature

Fig. 6.10: Icon representation of viewer features

Table 6.2: Results of jGRASP viewers questionnaire for Group 2

1: How useful are the following features (on the viewer
window)?

Median score (Mode) 1
n = 28

The feature to toggle between embedded to non-embedded

 view is: 2 (1)

The feature to toggle between simple and normal view
is: 2 (2)

The feature to toggle between compact and normal
layout is: 1 (1)

The feature to toggle between rectangular and round nodes

 is: (Tree viewer) 3 (3)

The feature to toggle between animation on and off is:
 2 (2)
The slide to adjust width of elements: 1 (1)
The slide to adjust scale of the entire view: 1 (1)
Increase or decrease animation time: 1 (1)

 119

2: How often did you use the following features: Median score (Mode) 2
N = 28

Toggle between embedded to non-embedded view is: 3 (2)

2: How often did you use the following features:

Median score (Mode) 2

N = 28

Toggle between simple and normal view 3 (3)

Toggle between compact and normal layout 3 (3)

Toggle between rectangular and round nodes (Tree
viewer) 3 (4)

Turn animation OFF 3 (4)

Turn animation ON 3 (bimodal 3 and 4)
The slide to adjust width of elements: 2 (2)
The slide to adjust scale of the entire view: 2 (bimodal 3 and 4)
Increase or decrease animation time: 2 (1)

3: Is this icon a good representation or depiction of the
feature?

Median score (Mode) 3

n = 28

Embedded view 1.5 (1)

Non-embedded view 2 (2)

Simple view
2 (2)

Normal view
2 (2)

Compact layout 2 (bimodal 1 and 2)

Normal layout 2 (2)

Rectangular nodes 1 (1)

Round nodes 1 (1)

Animation on 2 (2)

Animation off 2 (2)

In Table 6.2 the responses for the first question is based on a Likert scale ranging from 1

to 4 on which 1 = Useful, 2 = Somewhat Useful, 3 = Somewhat Useless, 4 = Useless. The

responses for the second question is based on a Likert scale ranging from 1 to 4 on which 1 = For

 120

most of the activities, 2 = For at least half of the activities, 3 = For 1 or 2 activities, 4 = Never

needed to use this feature. The responses for the third question is based on a Likert scale ranging

from 0 to 4 on which 1 = Yes – I was immediately able to recognize the feature, 2 = Yes – I was

able to recognize after I read what it does, 3 = No – I had to repeatedly look up what it does, 4 =

No – change the icon since it is not a good representation of the feature, 0 = N/A I never used this

feature.

6.2.2. Interface Layout Recommendations

 >> Width slider Scale slider Elements: #

Fig. 6.11: Layout recommendation for the viewer controls based on usefulness and frequency of use

Students were also asked to rate four other features as shown in Table 6.3. 90% of the

students rated the ability to step backwards as very useful. Approximately, 68% of the students

rated the ability to add other variables as useful. Other features to change the look and feel of the

 121

viewers, such as changing node colors and orientation were rated as useless by approximately

75% of the students.

Table 6.3: Results of open ended questions for jGRASP viewers for Group 2

Is there any other feature that you think would be useful to
the viewer?

Useful %
n = 28

Useless %
n = 28

1) Changing the color of the nodes in the viewer.

21.43 78.57

2) Stepping back during the debugging process so that you can
compare states

89.29 10.71

3) Changing the orientation of the data structure (switching
between vertical and horizontal)

28.57 71.43

4) Ability to add more variables to the viewer (For example: if
the method is using local integer and String variables, it would be
great if those would be shown on the viewer as well. Right now
you can see those in the Debug tab on the left hand side.)

67.86 32.14

 122

CHAPTER 7

SUMMARY AND CONCLUSIONS

Data structures and algorithms are abstract concepts, and the understanding of this topic and the

material covered in class can be divided into three levels: conceptual, implementation, and

application. Over the course of the past few years a consistent decline in enrollment in the

Computer Science department has been observed. This trend is most noticeable during the COMP

2210 course when a majority of students decide to drop this required course. Paper-based surveys

and multiple interviews were conducted in Fall 2004 and Spring 2005 to understand the aspects

of the COMP 2210 that students find most difficult. It was found that the main problem was

transitioning from static abstract concepts to dynamic program implementation of data structures.

The jGRASP IDE has been extended to include new dynamic viewers specifically

intended to generate traditional abstract views of data structures such as linked lists and binary

trees. The purpose of these viewers is to provide fine-grained support for understanding instances

of classes representing data structures. When a class has more than one view associated with it,

the user can have multiple viewers open on the same object with a separate view in each viewer.

These viewers are tightly integrated with the jGRASP workbench and debugger.

The purpose of the viewers is to aid in the understanding of the data structures

themselves and to assist in finding errors while developing a data structure. To further this

intended use, any local variables of the structure's node type are also displayed, along with the

links between these local variable nodes or structure fragments and the main data structure. This

allows mechanisms of the data structure such as finding, adding, moving, and removing elements

 123

to be examined in detail by stepping through the code. As an additional aid to understanding the

mechanisms of the data structure, structural changes are animated in the viewers.

Initially, jGRASP viewers could only be generated using an API based approach. Source

code for example viewers that use the API is included with the jGRASP distribution to expedite

the creation of new viewers by students and/or faculty. Although a new viewer can be created by

changing about 10 lines of source code in one of the examples, this approach proved somewhat

impractical for the general CS2 population. While this option needs to be available for faculty, it

was soon discovered that it was unrealistic to expect students who are in the process of learning

about data structures to be also able to modify a separate viewer class in order to see an instance

of their own data structure. Research efforts were thus directed towards building a mechanism

that could determine if an instance was a linked list or binary tree based on a class structures and

a set of heuristics, and then automatically generate an appropriate view.

Six controlled experiments were conducted to test various hypotheses. Experiments I and

II were conducted using singly linked lists, Experiments III and IV were conducted using linked

binary trees, Experiment V was conducted using min and max heaps, and finally Experiment VI

was conducted using linked priority queues. Since for each experiment more than one response

variable was measured, Hotelling’s T2 statistical method was used for data analysis.

The goal of Experiments I and III was to determine if students would be able to code

more accurately and in less time using the jGRASP data structure viewers for a relatively easy

(singly linked list) and a relatively hard (linked binary tree) to understand data structure. Students

were asked to implement basic operations for each data structure. The group that performed the

tasks using the jGRASP viewers performed significantly better than the other group which did not

use the viewers. This means that students should be able to transition from conceptual knowledge

to implementation easily for both relatively easy and hard to understand data structures that are

taught in details during lectures.

 124

The goal of Experiments II and IV was to determine if students would be able to find and

correct more logical errors accurately and faster using jGRASP viewers for a relatively easy

(singly linked list) and a relatively hard (linked binary tree) to understand data structure. Students

were provided code implementation with multiple logical errors. Their tasks consisted of locating

and documenting the errors on paper, and then correcting the errors using jGRASP. It was

observed that the group using viewers not only detected and corrected more errors in less time,

but they also introduced fewer logical errors in the process. It was noticed that for Experiments I

and II, there was not a statistically significant improved in the time taken to complete the tasks. In

later experiments there is a clear improvement in the time taken by the group that uses viewer. A

likely reason for the initial results is that students were inexperienced in pointer implementation.

The results of the on the paper-based surveys (described in chapter 3), indicated that

students rated data structures covered abstractly in class as “difficult to understand” even though

historically these are not that difficult. Experiment V was conducted using min-max heap to test if

students would be able to transition from concept to implementation faster and more accurately

using jGRASP viewers for data structures that are covered only conceptually in lectures. Students

were given a min heap implementation, which they were asked to understand the code and

convert into a max heap implementation and additionally implement other related operations. It

was found that the group using viewers was able to complete the tasks more accurately and in less

time. Thus viewers can be used outside of classroom to understand concepts and transition to

implementation.

Experiment VI was conducted using linked priority queue to test if students would be

able to apply concepts for data structures that were not covered in lectures faster and more

accurately using jGRASP viewers. Students were provided with detailed conceptual explanation

of the priority queue data structure. All the students were introduced to this data structure for the

 125

first time. It was found that the group using the jGRASP viewers was able to complete the tasks

more accurately and in less time.

Finally, a questionnaire was conducted to evaluate the user interface aspects of the

jGRASP debugger and the viewer window. It was found that students who knew how to use the

debugger, only needed approximately took two to three minutes to learn to use the viewers.

Minor interface redesign is currently in progress. Students also reported that stepping back during

the debugging process would be very useful as that would allow different states of the data

structure to be compared. Due to technical issues in Java 1.5, this feature will be considered after

Java version 1.6 is released.

Initial comparison of average scores in exams and quizzes of students in the two

experimental groups (i.e., the treatment group using viewers and control group that did not use

viewers) in COMP2210 shows that the treatment group out performed the control group. A set of

follow-on experiments to test if jGRASP viewers help with retention of concepts are

recommended. It would also be useful to measure the amount of time spent in different activities

while debugging (such as reading and editing source code and interacting with viewers) to

determine of these for which activities jGRASP viewers are most helpful.

Data structure implementations from widely adopted CS2 textbooks are being tested for

compatibility with the current jGRASP viewers, and the results so far are very positive. For the

five textbooks tested, approximately 70% of data structures were recognized correctly by the

structure identifier in jGRASP version 1.8.5 Beta 2. For the 30% that were not recognized the

structure identifier could be manually configured to recognize and render the viewers. The main

reason for lack of recognition was limited heuristics. As the heuristics become more

comprehensive in the successive beta versions of jGRASP 1.8.5, the viewers should be able to

automatically recognize over 95% of the textbook implementations for data structures in Java

where the class name and fields are commonly used English identifiers.

 126

Many software visualization tools have been developed that target low-level program

comprehension, development and debugging, and high-level algorithm animation. Although

many of these tools have been demonstrated to be pedagogically effective, no one single tool was

found that would satisfy all of the following requirements: (1) serves the dual purpose of

classroom demonstration and development environment, (2) provides automatic generation of

dynamic views, including multiple and synchronized views, and (3) supports a seamless transition

from concept to implementation of data structures. jGRASP viewers address all of these

deficiencies and the experimental results of this research clearly indicate the potential for data

structure viewers to significantly improve the teaching and learning for CS2 students.

 127

BIBLIOGRAPHY

[Agresti 1996] AGRESTI, A. 1996. An Introduction to Categorical Data Analysis, Wiley-
Interscience. ISBN: 0471113387.

[Akingbade
2003]

AKINGBADE, A., FINLEY T., JACKSON D., PATEL P., AND
RODGER S. H. 2003. JAWAA: easy web-based animation from CS 0 to
advanced CS courses. In Proceedings of the 34th technical symposium on
Computer science education (SIGCSE), February 19-23, 2003, Reno,
Nevada, USA, pp. 162 – 166.

[American
Psychological
Association
2002]

Ethical Principles of Psychologists and Code of Conduct. Available at
http://www.apa.org/ethics/code2002.html

[Baker et al.
1999]

BAKER, R.S., BOILEN, M., GOODRICH, M., TAMASSIA, R., AND
STIBEL, B.A. 1999. Testers and visualizers for teaching data structures. In
Proceedings of the thirtieth SIGCSE technical symposium on Computer
science education, New Orleans, Louisiana, United States, pp. 261-265.

[Ben-Ari et al.
2002]

BEN-ARI, M., MYLLER, N., SUTINEN, E., AND TARHIO, J. 2002.
Perspectives on program animation with Jeliot. In Software Visualization,
State-of-the-Art Survey, Lecture Notes in Computer Science 2269,
Springer, 2002, pp. 31-45.

[Bergin et al.
1996]

BERGIN, J., BRODLIE, K., GOLDWEBER, M., JIMÉNEZ-PERIS, R.,
KHURI, S., PATIÑO-MARTÍNEZ, M., MCNALLY, M., NAPS, T.,
RODGER, AND WILSON, J. 1996. An overview of visualization: its use
and design. In Proceedings of the ACM SIGCSE/SIGCUE Conference on
Integrating Technology into Computer Science Education, 1996, pp. 192-
200.

[Boies and
Gould 1974]

BOIES, S.F., AND GOULD, J.D. 1974. Syntactic errors in computer
programming. Human Factor, volume 16, pp. 253-257.

[Brown 1988] BROWN, M.H. 1988. Perspectives on algorithm animation. In Proceedings
of the ACM SIGCHI '88 Conference on Human Factors in Computing
Systems, Washington D.C., May 1988, pp. 33-38.

[Byrne et al.
1996]

BYRNE, M. D., CATRAMBONE, R., AND STASKO, J.T. 1996. Do
Algorithm Animations Aid Learning? Technical Report, Georgia Institute
of Technology, 1996.

 128

[Byrne et al.
1999]

BYRNE, M. D., CATRAMBONE, R., AND STASKO, J.T. 1999.
Evaluating animations as student aids in learning computer algorithms.
Comput. Educ., Elsevier Science Ltd., 1999, vol. 33, pp. 253-278.

[Campbell et
al. 2003]

CAMPBELL, A. E. R., CATTO, G.L., AND HANSEN, E. E. 2003.
Language-independent interactive data visualization. In Proceedings of the
34th technical symposium on Computer science education (SIGCSE),
February 19-23, 2003, Reno, Nevada, USA, pp. 215 – 219.

[Cattaneo et al.
2002]

CATTANEO, G., ITALIANO, G. F., AND FERRARO-PETRILLO, U.
2002. CATAI: Concurrent Algorithms and Data Types Animation over the
Internet. Journal of Visual Languages & Computing, vol. 13, no. 4, Aug
2002, pp. 391-419.

[Chen et al.
2003]

CHEN, T., SOBH, T., AND TIBREWAL, A. 2003. A tool for data
structure visualization and user-defined algorithm animation. Journal of
STEM Education Innovations and Research, vol. 4, July – December 2003.

[Colaso et al.
2002]

COLASO, V., KAMAL, A., SARAIYA, P., NORTH, C., MCCRICKARD,
S., AND SHAFFER, C.A. 2002. Learning and Retention in Data
Structures: A Comparison of Visualization, Text, and Combined Methods.
In Proceedings of ED-MEDIA 2002, Denver CO, June 2002.

[Costigan et al.
2002]

COSTIGAN, J., WILHITE, B. , AND NORTH, C. 2002. Data structure
visualization with visual debugger: A tool for automatic visualization of
run-time data structures. Online. Internet. September 2002. Available
WWW: http://infovis.cs.vt.edu/datastruct/.

[CS
curriculum
2005]

CS CURRICULUM. 2005. Bachelor of Science in Computer Science
Curriculum. Available At http://eng.auburn.edu//files/file320.pdf

[Davis 1971] DAVIS, JAMES ALLAN. 1971. Elementary Survey Analysis, Prentice-
Hall. ISBN: 0132605473.

[Dershem et
al. 2002]

DERSHEM, H.L., MCFALL, R.L., AND UTI, N. 2002. Animation of Java
linked lists. In Proceedings of the 33rd SIGCSE technical symposium on
Computer science education, February 27-March 03, 2002, Cincinnati,
Kentucky, pp. 53-57.

[Douglas et al.
1996]

DOUGLAS S.A., HUNDHAUSEN, C.D. & MCKEOWN, D. 1996.
Exploring Human Visualization of Computer Algorithms. Graphics
Interface Proceedings, Toronto, Canada: Canadian Human-Computer
Communications Society, pp. 9-16.

[Felder 1993] FELDER, R.M. 1993. Reaching the Second Tier: Learning and Teaching
Styles in College Science Education. Journal of College Science Teaching,
1993, vol. 23, pp. 286-290.

 129

[Felder and
Silverman
1988]

FELDER, R.M., AND SILVERMAN, L.K. 1988. Learning and Teaching
Styles in Engineering Education. Engr. Education, 1988, vol. 78, pp. 674-
681.

[Gloor 1998a] GLOOR, P. 1998. Animated Algorithms. In Software Visualization:
Programming as a Multimedia Experience, the MIT Press, 1998, pp. 409-
416.

[Gloor 1998b] GLOOR, P. 1998. User Interface Issues for Algorithm Animation. In
Software Visualization: Programming as a Multimedia Experience, the
MIT Press, 1998, pp. 145-152.

[Grissom et al.
2003]

GRISSOM, S., MCNALLY, M. F., AND NAPS, T. 2003. Algorithm
visualization in CS education: comparing levels of student engagement.
ACM Press, 2003, pp. 87-94.

[Gurka and
Citrin 1996]

GURKA, J. S., AND CITRIN, W. 1996. Testing effectiveness of algorithm
animation. In Proceedings of the IEEE Symposium on Visual Language,
Boulder, CO: IEEE, pp. 182-189.

[Hamer 2004a]

HAMER, J. 2004. Visualising Java data structures as graphs. In
Proceedings of the Sixth Conference on Australasian Computing
Education, volume 30 (Dunedin, New Zealand), pp. 125-129.

[Hamer
2004b]

HAMER, J. 2004. A Lightweight Visualizer for Java. In Third Program
Visualization Workshop, University of Warwick, July 1-2, 2004.

[Hamilton-
Taylor and
Kraemer 2002]

HAMILTON-TAYLOR, A. G., AND KRAEMER, E. 2002. SKA:
Supporting algorithm and data structure discussion. In Proceedings of the
33rd SIGCSE Technical Symposium on Computer Science Education, Feb
2002, volume 34, issue 1, pp 58-63.

[Hanciles et al.
1997]

HANCILES, B., SHANKARARAMAN, V., AND MUNOZ, J. 1997.
Multiple representation for understanding data structures. Computers and
Education, August 1997, vol. 29, issue 1, pp. 1-11.

[Hansen et al.
2000]

HANSEN, S. R., NARAYANAN, N. H., AND SCHRIMPSHER, D. 2000.
Helping learners visualize and comprehend algorithms. Interactive
Multimedia Electronic Journal of Computer-Enhanced Learning, vol. 2,
issue 1, May 2000, Association for the Advancement of Computing in
Education.

[Hansen et al.
2002]

HANSEN, S. R., NARAYANAN, N. H., AND HEGARTY, M. 2002.
Designing Educationally Effective Algorithm Visualizations: Embedding
Analogies and Animations in Hypermedia. Journal of Visual Languages
and Computing, 2002, vol. 13, pp. 291-317.

 130

[Hendrix et al.
2004]

HENDRIX, D.T., CROSS, J.H., AND BAROWSKI, L.A. 2004. An
extensible framework for providing dynamic data structure visualizations
in a lightweight IDE. In Proceedings of the 35th SIGCSE technical
symposium on Computer science education (SIGCSE) 2004, pp.387-391.

[Hundhausen
1998]

HUNDHAUSEN, C.D. 1998. Toward Effective Algorithm Visualization
Artifacts: Designing for Participation and Negotiation in an Undergraduate
Algorithms Course. In CHI 98 Summary, New York: ACM Press, pp. 54-
55.

[Hundhausen
2002]

HUNDHAUSEN, C.D. 2002. Integrating Algorithm Visualization
Technology into an Undergraduate Algorithms Course: Ethnographic
Studies of a Social Constructivist Approach. Computers & Education, vol.
39, issue3, pp. 237-260.

[Hundhausen
and Douglas
2000]

HUNDHAUSEN, C.D., AND DOUGLAS, S.A. 2000. Using
Visualizations to Learn Algorithms: Should Students Construct Their Own,
or View an Expert's? In 2000 IEEE Symposium on Visual Languages, Los
Alamitos, CA, IEEE Computer Society Press, pp. 21-28.

[Hundhausen
et al. 2002]

HUNDHAUSEN C., DOUGLAS S., STASKO J. T. 2002. A Meta-Study of
Algorithm Visualization Effectiveness. Journal of Visual Languages and
Computing, 2002, vol. 13, pp. 259-290.

[Jain et al.
2005a]

JAIN, J., CROSS, J., AND HENDRIX, D. 2005. Qualitative Comparison
of Systems Facilitating Data Structure Visualization. Proceedings of the
43rd Southeast ACM Conference. Kennesaw, GA.

[Jain et al.
2005b]

JAIN, J., BILLOR, N., HENDRIX, D., AND CROSS, J. H. 2005. Survey
to Investigate Data Structure Understanding. Submitted to the International
Conference on Statistics, Combinatorics, Mathematics and Applications,
Auburn, AL, December 2-4, 2005.

[Jain et al.
2006]

JAIN, J., CROSS, J., HENDRIX, D., AND BAROWSKI, L. (2006.
Experimental Evaluation of Animated-Verifying Object Viewers for Java.
ACM Symposium on Software Visualization (SoftVis), September 4-5,
Brighton, UK, 2006.

[Jarc and
Feldman 1998]

JARC, D. J., AND FELDMAN, M. B. 1998. An empirical study of web-
based algorithm animation courseware in an ada data structure course. In
Proceedings of the 1998 annual ACM SIGAda international conference on
Ada, Washington, D.C., pp-68-74.

[Jarc et al.
2000]

JARC, D. J., FELDMAN, M.B., AND HELLER, R. S. 2000. Assessing the
benefits of interactive prediction using Web-based algorithm animation
courseware. SIGCSE Bulletin, ACM Press, 2000, vol. 32, issue 1, pp. 377-
381.

[Jive 2002] JIVE. Available at http://jive.dia.unisa.it/

[Jsave 2003] JSAVE. Available at http://www.cs.hope.edu/jsave/

 131

[Kann et al.
1997]

KANN, C., LINDEMAN, R. W., AND HELLER, R. 1997. Integrating
algorithm animation into a learning environment. Computer Education,
Elsevier Science Ltd., 1997, vol. 28, pp. 223-228.

[Karavirta et
al. 2002]

KARAVIRTA, V., KORHONEN, A., NIKANDER, J., AND
TENHUNEN, P. 2002. Effortless Creation of Algorithm Visualization.
Proceedings of the Second Annual Finnish / Baltic Sea Conference on
Computer Science Education. pp. 52–56.

[Karavirta et
al. 2004a]

KARAVIRTA, V., KORHONEN, A., MALMI, L., AND STÅLNACKE,
K. 2004. MatrixPro - A Tool for Demonstrating Data Structures and
Algorithms Ex Tempore. Proceedings of the 4th IEEE International
Conference on Advanced Learning Technologies, Joensuu, Finland, pp.
892–893.

[Karavirta et
al. 2004b]

KARAVIRTA, V., KORHONEN, A., MALMI, L., AND STÅLNACKE,
K. 2004. MatrixPro - A Tool for On-The-Fly Demonstration of Data
Structures and Algorithms. Proceedings of the Third Program
Visualization Workshop, Department of Computer Science, University of
Warwick, UK, The University of Warwick, UK, pp. 26–33.

[Kehoe et al.
1999]

KEHOE, C., STASKO, J., AND TAYLOR, A. 1999. Rethinking the
evaluation of algorithm animations as learning aids: an observational study.
International Journal of Human-Computer Studies, vol. 54, no. 2, February
2001, pp. 265-284.

[Khuri 2001] KHURI, S.A. 2001. User-Centered Approach for Designing Algorithm
Visualizations. Informatik / Informatique, Special Issue on Visualization of
Software, Apr. 2001, pp. 12-16.

[Korhonen et
al. 2004]

KORHONEN, A., MALMI, L., SILVASTI, P., KARAVIRTA, V.,
LÖNNBERG, J., NIKANDER, J., STÅLNACKE, K. AND IHANTOLA,
P. 2004. Matrix - A Framework for Interactive Software Visualization.
Research Report, Laboratory of Information Processing Science,
Department of Computer Science and Engineering, Helsinki University of
Technology. TKO-B 154/04.

[Korn and
Appel 1998]

KORN, J., AND APPEL, A. 1998. Traversal-based Visualization of Data
Structures. IEEE Information Visualization 1998, October 1998, pp. 11-18.

[Kraemer and
Stasko 1993]

KRAEMER, E., AND STASKO, J. T. 1993. The visualization of parallel
systems: an overview. Journal of Parallel and Distributed Computing, vol.
18, no. 2, June 1993, pp. 105-117.

[Lattu et al.
2000]

LATTU, M., TARHIO, J., AND MEISALO, V. 2000. How a Visualization
Tool Can Be Used - Evaluating a Tool in a Research & Development
Project. 12th Workshop of the Psychology of Programming Interest Group,
pp. 19–32.

 132

[Lawal 2003] LAWAL, BAYO. 2003. Categorical Data Analysis with SAS and SPSS
Applications, Lawrence Erlbaum Associates. ISBN: 0805846050.

[Lawrence
1993]

LAWRENCE, A. W. 1993. Empirical studies of the value of algorithm
animation in algorithm understanding. Ph.D. Thesis, Georgia Institute of
Technology, 1993.

[Lawrence
1994]

LAWRENCE, A.W., BADRE, A.M., AND STASKO, J.T. 1994.
Empirically Evaluating the Use of Animations to Teach Algorithms. In
Proceedings of 1994 IEEE Symposium on Visual Languages, St. Louis,
Missouri, Oct. 1994, pp. 48-54.

[Levy et al.
2003]

LEVY, R. B., BEN-ARI, M., AND URONEN, P. A. 2003. The Jeliot 2000
program animation system. Comput. Educ., Elsevier Science Ltd., 2003,
vol. 40, pp. 1-15.

[Likert 1932] LIKERT, RENSIS. 1932. A Technique For The Measurement Of Attitudes,
Archives of Psychology, 140, 5-53.

[Lönnberg et
al. 2004]

LÖNNBERG, J., KORHONEN, A., AND MALMI, L. 2004. MVT - A
system for visual testing of software. In Proceedings of the Working
Conference on Advanced Visual Interfaces (AVI'04), May 25-28, Gallipoli,
Italy, ACM, 2004, pp. 385-388.

[Lucas et al.
2003]

LUCAS, J., NAPS, T. L. AND RÖßLING, G. 2003. VisualGraph - A
Graph Class Designed for Both Undergraduate Students and Educator. In
Proceedings of the 34th SIGCSE technical symposium on Computer
science education, Reno, Nevada, USA, pp. 167 – 171.

[Moreno and
Niko 2003]

MORENO, A. AND MYLLER, N. 2003. Producing an Educationally
Effective and Usable Tool for Learning, The Case of the Jeliot Family. In
Proceedings of International Conference on Networked e-learning for
European Universities (Granada, Spain).

[Moreno et al.
2004]

MORENO, A., MYLLER, N., SUTINEN, E., AND BEN-ARI, M. 2004.
Visualizing Programs with Jeliot 3. In Proceedings of the International
Working Conference on Advanced Visual Interfaces AVI 2004, Gallipoli
(Lecce), Italy, 25-28 May, 2004.

[Morrison et
al. 2000]

MORRISON, J. B., TVERSKY, B., AND BÉTRANCOURT, M. 2000.
Animation: Does it facilitate learning? In Proceedings of the AAAI 2000
Spring Symposium Smart Graphics, 20-22 March 2000, Stanford, CA,
USA, pp 53-60.

[Mukherjea
and Stasko
1993]

MUKHERJEA, S., AND STASKO, J.T. 1994. Applying Algorithm
Animation Techniques for Program Tracing, Debugging, and
Understanding. In Proceedings of the 15th International Conference on
Software Engineering, Baltimore, MD, May 1993, pp. 456-465.

 133

[Mukherjea
and Stasko
1994]

MUKHERJEA, S., AND STASKO, J.T. 1994. Toward Visual Debugging:
Integrating Algorithm Animation Capabilities within a Source Level
Debugger. ACM Transactions on Computer-Human Interaction, volume 1,
issue 3, September 1994, pp. 215-244.

[Murphy and
Myors 2004]

MURPHY, K.R. AND MYORS, B. 2004. Statistical Power Analysis: A
Simple and General Model for Traditional and Modern Hypothesis Tests,
2nd Edition. Lawrence Erlbaum Associates, Inc.

[Myers 1983] MYERS, B.A. 1983. INCENSE: A system for displaying data structures. In
Proceedings of the 10th annual conference on Computer graphics and
interactive techniques, July 25-29, 1983, Detroit, Michigan, United States,
pp. 115-125.

[Myers 1986] MYERS, B.A. 1986. Visual programming, programming by example, and
program visualization: a taxonomy. In Proceedings of the SIGCHI
conference on Human factors in computing systems, Boston,
Massachusetts, pp. 59 – 66.

[Myers 1990] MYERS, B.A. 1990. Taxonomies of Visual Programming and Program
Visualization. Journal of Visual Languages and Computing, vol. 1, no. 1,
1990, pp. 97-123.

[Naps and
Bressler 1998]

NAPS, T. L. AND BRESSLER, E. 1998. A multi-windowed environment
for simultaneous visualization of related algorithms on the World Wide
Web. In Proceedings of the SIGCSE Session, ACM Meetings, Atlanta,
Georgia, February, 1998.

[Naps et al.
2000]

NAPS, T.L., EAGAN, J.R., AND NORTON, L.L. 2000. JHAVÉ—an
environment to actively engage students in Web-based algorithm
visualizations. In Proceedings of the thirty-first SIGCSE technical
symposium on Computer science education, March 07-12, 2000, Austin,
Texas, United States, pp.109-113.

[Naps et al.
2003a]

NAPS, T.L., RÖßLING, G., ALMSTRUM, V., DANN, W., FLEISCHER,
R., HUNDHAUSEN, C., KORHONEN, A., MALMI, L., MCNALLY, M.,
RODGER, S.H., AND VELAZQUEZ-ITURBIDE, J.A. 2003. Exploring
the Role of Visualization and Engagement in Computer Science Education.
Inroads - Paving the Way Towards Excellence in Computing Education,
ACM Press, New York, 2003, pp. 131-152.

[Naps et al.
2003b]

NAPS, T., COOPER, S., KOLDEHOFE, B., LESKA, C., RÖßLING, G.,
DANN, W., KORHONEN, A., MALMI, L., RANTAKOKKO, J., ROSS,
R. J., ANDERSON, J., FLEISCHER, R., KUITTINEN, M., AND
MCNALLY, M. 2003. Evaluating the educational impact of visualization.
In Working group reports from ITiCSE on Innovation and technology in
computer science education, ACM Press, 2003, pp. 124-136.

 134

[Pierson and
Rodger 1998]

PIERSON, W. C., AND RODGER, S.H. 1998. Web-based animation of
data structures using JAWAA. ACM SIGCSE Bulletin, vol. 30, issue 1,
ACM Press, March 1998, pp. 267-271.

[Price et al.
1993]

PRICE, B.A., BAECKER, R.M., AND SMALL, I.S.1993. A principled
taxonomy of software visualization. Journal of Visual Languages and
Computing, vol. 4, no. 3, 1993, pp. 211-266.

[Rea 1997] REA, LOUIS M. 1997. Designing and Conducting Survey Research: A
Comprehensive Guide, Jossey-Bass. ISBN: 078790810x.

[Rodger 2002] RODGER, S.H. 2002. Introducing computer science through animation and
virtual worlds. ACM SIGCSE Bulletin, vol.34, no.1, March 2002.

[Roman and
Cox 1993]

ROMAN, G. C., AND COX, K. C. 1993. A taxonomy of program
visualization systems. IEEE Computer, vol. 26, no. 12, December 1993, pp.
11-24.

[Rößling
2003]

RÖßLING, G. 2003. Key Decisions in Adopting Algorithm Animations for
Teaching. In Informatics and the Digital Society, Kluwer Academic
Publishers, Boston / Dordrecht / London, 2003, pp. 149-156.

[Rößling and
Freisleben
2000a]

RÖßLING, G., AND FREISLEBEN, B. 2000. Approaches for Generating
Animations In Lectures. In Proceedings of the 11th International Society
for Information Technology and Teacher Education (SITE 2000)
Conference, Association for the Advancement of Computers in Education
(AACE), Charlottesville, VA, 2000, pp. 809-814.

[Rößling and
Freisleben
2000b]

RÖßLING, G., AND FREISLEBEN, B. 2000. Experiences in Using
Animations in Introductory Computer Science Lectures. In Proceedings of
the ACM 31st SIGCSE Technical Symposium on Computer Science
Education (SIGCSE 2000) Conference, ACM Press, New York, 2000, pp.
134-138.

[Rößling and
Freisleben
2002]

RÖßLING, G., AND FREISLEBEN, B. 2002. ANIMAL: A System for
Supporting Multiple Roles in Algorithm Animation. Journal of Visual
Languages and Computing, vol. 13, no. 3, Elsevier, Amsterdam, The
Netherlands, 2002, pp. 341-354.

[Rößling and
Naps 2002]

RÖßLING, G. AND NAPS, T.L. 2002. A Testbed for Pedagogical
Requirements in Algorithm Visualizations. In Proceedings of the 7th
Annual ACM SIGCSE/SIGCUE Conference on Innovation and Technology
in Computer Science Education (ITiCSE 2002), Aarhus, Denmark, ACM
Press, 2002, pp. 96-100.

[Rößling and
Naps 2002a]

RÖßLING, G. AND NAPS, T.L. 2002. Towards Improved Individual
Support in Algorithm Visualizations. In Proceedings of the Second
Program Visualization Workshop, Aarhus, Denmark, pp. 125-130.

 135

[Rößling and
Naps 2002b]

RÖßLING, G., AND NAPS, T.L. 2002. Towards Improved Individual
Support in Algorithm Visualizations. In Proceedings of the Second
Program Visualization Workshop, Aarhus, Denmark, Department of
Computer Science, University of Aarhus, Denmark, 2002, pp. 125-130.

[Saraiya et al.
2004]

SARAIYA, P., SHAFFER, C. A., MCCRICKARD, D. S., AND NORTH,
C. 2002. Effective features of algorithm visualizations. In Proceedings of
the 35th SIGCSE technical symposium on Computer Science Education,
March 2004, pp. 382 – 386.

[Scanlan 1987] SCANLAN, D. 1987. Data-structures students may prefer to learn
algorithms using graphical methods. In Proceedings of the eighteenth
SIGCSE technical symposium on Computer science education, St. Louis,
Missouri, United States, pp. 302 – 307.

[Shaffer et al.
1996]

SHAFFER, C., HEATH, L.S., AND YANG, J. 1996. Using the swan data
structure visualization system for computer science education. In
Proceedings of the SIGCSE, ACM Press, 1996, pp. 140-144.

[Shimomura
and Isoda
1990]

SHIMOMURA, T.; ISODA, S. 1990. VIPS: a visual debugger for list
structures. In Proceedings of the Fourteenth Annual International Computer
Software and Applications Conference (COMPSAC `90) 31 Oct.-2 Nov.
1990, pp. 530 – 537.

[Shimomura
and Isoda
1991]

SHIMOMURA, T.; ISODA, S. 1991. Linked-list visualization for
debugging. IEEE Software, volume 8, issue 3, May 1991, pp. 44 – 51.

[Shu 1988] SHU N. C. 1988. Visual programming. Van Nostrand Reinhold Co., New
York, NY, 1988.

[Singh and
Chignell 1992]

SINGH, G., AND CHIGNELL M.H. 1992. Components of the visual
computer: a review of relevant technologies. Visual Computer vol. 9, issue
3, November 1992, pp. 115-142.

[Stasko 1990] STASKO, J.T. 1990. Tango: A Framework and System for Algorithm
Animation. Computer, v.23 n.9, September 1990, pp. 27-39.

[Stasko 1997] STASKO, J. T. 1997. Using student-built algorithm animations as learning
aids. In Proceedings of the twenty-eighth SIGCSE technical symposium on
Computer science education, 1997, pp. 25-29.

[Stasko 1998] STASKO, J.T. 1998. JSamba, described online at
http://www.cc.gatech.edu/gvu/softviz/algoanim/jsamba/.

[Stasko and
Patterson
1992]

STASKO, J.T., AND PATTERSON, C. 1992. Understanding and
Characterizing Software Visualization Systems. In Proceedings of the 1992
IEEE International Workshop on Visual Languages, September 1992, pp.
3-10.

 136

[Stasko et al.
1993a]

STASKO, J. T., BADRE, A., AND LEWIS, C. 1993. Do Algorithm
Animations Assist Learning? An Empirical Study and Analysis. In
Proceedings of the INTERCHI '93 Conference on Human Factors in
Computing Systems, Amsterdam, Netherlands, April 1993.

[Stasko et al.
1993b]

STASKO, J.T., BADRE, A., AND LEWIS, C. 1993. Do algorithm
animations assist learning?: an empirical study and analysis. In
Proceedings of the SIGCHI conference on Human factors in computing
systems, ACM Press, 1993, pp. 61-66.

[Stasko et al.
1997]

STASKO, J.T., BROWN, M.H., AND PRICE, B.A. 1997. Software
Visualization. MIT Press, Cambridge, MA, 1997.

[Stokes 2001] STOKES, MAURA ELLEN. 2001. Categorical Data Analysis Using the
SAS System, Wiley-Sas. ISBN: 0471224243.

[Tudoreanu
2003]

TUDOREANU, M.E. 2003. Designing effective program visualization
tools for reducing user's cognitive effort. In Proceedings of the 2003 ACM
symposium on Software visualization, San Diego, California, pp. 105-114.

[Upton 1978] UPTON, G. J. G. 1978. The Analysis of Cross-Tabulated Data, John Wiley.
ISBN: 0471996599.

[Whale 1994] WHALE, G. 1994. DRUIDS: Tools for understanding data structures and
algorithms, In Proceedings if the First IEEE Int. Conf on Multi-Media
Engineering Education, Melbourne, pp. 403-407.

[Zeller 2001] ZELLER, A. 2001. Visual debugging with DDD. Dr. Dobb’s Journal,
March 2001.

[Zeller and
Lütkehaus
1996]

ZELLER, A., AND LÜTKEHAUS, D. 1996. DDD—a free graphical front-
end for UNIX debuggers. ACM SIGPLAN Notices, volume 31, issue 1,
January 1996, pp. 22 – 27.

 137

APPENDICES

 138

Appendix A - Survey for data structure understanding (Fall 2004/Spring 2005)

COMP 2210 Fundamentals of Computer Science II
DATA STRUCTURE UNDERSTANDING SURVEY

We are in the process of developing data structure viewers for jGRASP such that students can use
it in two ways:

1. For learning the basic concepts of how a data structure is built and modified (without
writing any code)

2. For synchronously visualizing data structures and the code being used to implement it.

What is the purpose of this survey?
In this survey we are trying to understand/gauge three things – which data structures are:

a) difficult to understand – at an abstract level?
b) difficult to code?
c) difficult to re-use in an application?

After we identify the data structures which are most difficult to understand, we will then conduct
another survey to identify exactly which operations are most problematic.

Contact Jhilmil Jain (jainjhi@auburn.edu) if you are interested in the results of this survey.

1) Please circle the degree and year that you are enrolled in.

1) Undergraduate degree
i. 1 year ii. 2 year iii. 3 year iv. 4 year v. 4+ year

2) Masters degree
i. 1 year ii. 2 year iii. 3 year iv. 4 year v. 4+ year

3) Doctoral degree
i. 1 year ii. 2 year iii. 3 year iv. 4 year v. 4+ year

4) Other: ___

2) What is your major? (please do not user abbreviations)

__

3) Was your level of Java experience appropriate for this class?
a) Yes
b) No
Comments: __

 139

4) Rate the ease of understanding of data structures on a 1 to 5 scale, where 1 means that the
data structure was very hard to understand and 5 means that it was very easy to understand.
0 means that the data structure was not covered in class.

Legend:

0 1 2 3 4 5
not covered
in class

very hard to
understand

hard to
understand

not too hard yet
not easy to
understand

easy to
understand

very easy to
understand

Data Structure Easy to

understand
conceptually

Easy to code
or write a
program

Ease to create
applications using

it
1) List – array implementation

2) List – pointer or linked
implementation

3) Stack - array implementation

4) Stack - pointer or linked
implementation

5) Queue - array implementation

6) Queue - pointer or linked
implementation

7) Dictionary

8) Hash Table

9) Tree

a) Binary Search Tree
b) Expression Tree
c) Decision Tree
d) Parse Tree
e) Game Tree
f) Balanced Search Tree

10) Heap

11) Graph

a) Adjacency Matrix
b) Linked Adjacency Lists
c) Array Adjacency Lists
d) Spanning Tree
e) Minimum Cost

Spanning Tree

5) Comments/Suggestions

 140

Appendix B - Interview results for data structure understanding (Fall 2004/Spring 2005)

Hardware issues

- Lab machines are too slow
- Learning how to use a new operating system (Solaris) was okay, but the browser

(Mozilla) takes 3-4 minutes to load
- Netscape does not support the engineering website or Webct

Software implementation issues

1. Transition from concept to implementation is hard; data structures are not difficult to
understand conceptually, but implementation is tough

2. Examples of code during lectures are helpful
3. Debugger’s user interface needs to be worked on:

a. The button on the debugger interface are not very not intuitive
b. Sometimes the debugger does not do what I want; or it is difficult for me to

reproduce what I had done in the past.
c. When I debug the basic view shows me so many variables that it is difficult to

find what I am looking for. For example, if I am developing a linked list, the
basic view throws out so many fields. All I care about is the data value that the
node holds and the pointer to the next node.

d. Viewers must match the ones that we see in the textbook
e. Adding breakpoints is hard
f. The Threads tab is confusing

4. Big jump from Java 1 to Java 2 – difficult to handle such large and complex programs
5. The feedback from all students was that being able to visualize data structures during

debugging would be a great plus. A lot of students also wanted to see the transition step
by step of how an operation is performed on a data structure. This would be helpful as
they are learning about a new data structure. Should be easy to turn the feature on and
off easily.

jGRASP usability issues

1. How to make the API more visible – add hot keys, useful to open up API in the default
browser

2. CSD should be more intelligent, instead of not being generated it should give some
indication of what the error might be

3. Matching braces should be highlighted – some suggested adding a closing brace for
every open brace typed.

 141

Appendix C - Test 1: Questions to test error detection and correction

Code Number: ___________________________

Section: 1 2 3 4

Note: Your answers to these questions WILL NOT affect you grade in any way. The goal of
this test is to help us survey your expertise in being able to detect a logical or syntax error

and being able to correct it. Your combined performance in Test 1 and Test 2 (will be given
out next week) will be used to assign you to a particular group that will be maintained

throughout the semester and will be used for in-lab activities.

1. Is there an error is this program? If yes, a) specify the type of error (compiler or run-time or logical), b)
locate the line number(s) where it occurs, and c) how would you correct the error?

1 public class Q1 {
2 public static void main(String[] args) {
3 double radius;
4 double area = radius * radius * Math.PI;
5 System.out.println("Area is " + area);
6 }
7 }

a.
b.
c.

2. Is there an error is this program? If yes, a) specify the type of error (compiler or run-time or logical), b)

locate the line number(s) where it occurs, and c) how would you correct the error?

 1 public class Q2 {
 2 int x;
 3
 4 public Q2(String t) {
 5 System.out.println("Test");
 6 }
 7
 8 public static void main(String[] args) {
 9 Q2 test = null;
10 System.out.println(test.x);
11 }
12 }

a.
b.
c.

3. Is there an error is this program? If yes, a) specify the type of error (compiler or run-time or logical), b)

locate the line number(s) where it occurs, and c) how would you correct the error?

 1 class Q3{
 2 void method (int a, int b, int c){}
 3 }
 4

 142

 5 class Driver{
 6 public static void main(String[] args) {
 7 Q3 a = new Q3();
 8 a.method (5, 10);
 9 }
10 }

a.
b.
c.

4. Is there an error is this program? If yes, a) specify the type of error (compiler or run-time or logical), b)

locate the line number(s) where it occurs, and c) how would you correct the error?

 1 class Q4{
 2 void method (int a, String b, double c){}
 3 }
 4
 5 class Driver{
 6 public static void main(String[] args) {
 7 Q4 a = new Q4();
 8 a.method ("cat", 10, 35.56);
 9 }
10 }

a.
b.
c.

5. Is there an error is this program? If yes, a) specify the type of error (compiler or run-time or logical), b)

locate the line number(s) where it occurs, and c) how would you correct the error?

 1 class Q5 {
 2 void method (int a){}
 3 }
 4
 5 class Driver{
 6 public static void main(String[] args) {
 7 Q5 a = new Q5();
 8 a.method (5, 10);
 9 }
10 }

a.
b.
c.

6. Is there an error is this program? If yes, a) specify the type of error (compiler or run-time or logical), b)

locate the line number(s) where it occurs, and c) how would you correct the error?

 1 class Q6 {
 2 int method (){
 3 }
 4 }

 143

 5
 6 class Driver{
 7 public static void main(String[] args) {
 8 Q6 a = new Q6();
 9 a.method ();
10 }
11 }

a.
b.
c.

7. Is there an error is this program? If yes, a) specify the type of error (compiler or run-time or logical), b)
locate the line number(s) where it occurs, and c) how would you correct the error?

 1 class Q7{
 2 int method (){
 3 return true;
 4 }
 5 }
 6
 7 class Driver{
 8 public static void main(String[] args) {
 9 Q7 a = new Q7();
10 a.method ();
11 }
12 }

a.
b.
c.

8. The following program determines the area and circumference of a circle. Is there an error is this
program? If yes, a) specify the type of error (compiler or run-time or logical), b) locate the line
number(s) where it occurs, and c) how would you correct the error?

 1 class Circle10{
 2 double radius;
 3
 4 Circle10(double r){
 5 radius = r;
 6 }
 7
 8 double area(){
 9 return (Math.PI * radius * radius);
10 }
11
12 double circumference (){
13 return (2 * Math.PI * radius);
14 }
15
16 public static void main(String[] args) {
17 Circle10 a = new Circle10 (5);
18 System.out.println ("Area = " + a.circumference ());
19 System.out.println ("Circumference = " + a.area());

 144

20 }
21 }

a.
b.
c.

9. The following program determines the area and circumference of a circle. Is there an error is this
program? If yes, a) specify the type of error (compiler or run-time or logical), b) locate the line
number(s) where it occurs, and c) how would you correct the error?

 1 class Circle11{
 2 private double radius, area, cir;
 3
 4 Circle11(double r){
 5 radius = r;
 6 }
 7
 8 void area(){
 9 cir = Math.PI * radius * radius;
10 }
11
12 void circumference (){
13 area = 2 * Math.PI * radius;
14 }
15
16 double getArea(){
17 return area;
18 }
19
20 double getCircumference (){
21 return cir;
22 }
23
24 public static void main(String[] args) {
25 Circle11 a = new Circle11 (5);
26 System.out.println ("Area = " + a.getArea());
27 System.out.println ("Circumference = " +
a.getCircumference());
28 }
29 }

a.
b.
c.

 145

10. The following program determines the area and circumference of a circle. Is there an error is this

program? If yes, a) specify the type of error (compiler or run-time or logical), b) locate the line
number(s) where it occurs, and c) how would you correct the error?

 1 class Circle12{
 2 private double radius, area, cir;
 3
 4 Circle12(double r){
 5 radius = r;
 6 area();
 7 circumference();
 8 }
 9
10 void area(){
11 area = Math.PI * radius * radius;
12 }
13
14 void circumference (){
15 cir = 2 * Math.PI * radius;
16 }
17
18 double getArea(){
19 return cir;
20 }
21
22 double getCircumference (){
23 return area;
24 }
25
26 public static void main(String[] args) {
27 Circle12 a = new Circle12 (5);
28 System.out.println ("Area = " + a.getArea());
29 System.out.println ("Circumference = " +
a.getCircumference());
30 }
31 }

a.
b.
c.

 146

11. Is there an error is this program? If yes, a) specify the type of error (compiler or run-time), b) locate the

line number(s) where it occurs, and c) how would you correct the error?

 1 class Q11{
 2 public static void main (String args[]){
 3 int res = MyMath.add ("A", "B", "C");
 4 }
 5 }
 6
 7 class MyMath{
 8 static int add (int x, int y, int z){
 9 return (x+y+z);
10 }
11
12 static String add (String x, String y, String z){
13 return (x+y+z);
14 }
15 }

a.
b.
c.

12. Is there an error is this program? If yes, a) specify the type of error (compiler / run-time / logical), and

b) how would you correct the error?

 1 interface Q12 {
 2 int add (int a, int b);
 3
 4 int subtract (int a, int b);
 5 }
 6
 7 class Temp implements Q12{
 8
 9 public int add (int a, int b){
10 return (a + b);
11 }
12 }

a.
b.

 147

13. Does the following program print out this pattern? If not, a) specify the type of error (compiler or run-
time or logical), b) specify the line number(s) and c) how would you correct the error so that the
following pattern is printed?

* * * * *
* * * *
* * *

 1 class Q13{
 2 public static void main (String args[]){
 3
 4 int count = 5;
 5 for (int i=0; i<3; i++){
 6 for (int j = count; j>1; j--)
 7 System.out.print ("*");
 8 count--;
 9 System.out.println();
10 }
11 }
12 }

a.
b.
c.

14. Does the following program print out this pattern? If not, a) specify the type of error (compiler or run-
time or logical), b) specify the line number(s) and c) how would you correct the error so that the
following pattern is printed?

* * * * *
* * * *
* * *

 1 class Q14{
 2 public static void main (String args[]){
 3
 4 int count = 5;
 5 for (int i=1; i<3; i++){
 6 for (int j = count; j>0; j--)
 7 System.out.print ("*");
 8 count--;
 9 System.out.println();
10 }
11 }
12 }

a.
b.
c.

 148

15. Does the following program print out this pattern? If not, a) specify the type of error (compiler or run-
time or logical), b) specify the line number(s) and c) how would you correct the error so that the
following pattern is printed?

* * * * *
* * * *
* * *

 1 class Q15{
 2 public static void main (String args[]){
 3
 4 int count = 5;
 5 for (int i=0; i<=3; i++){
 6 for (int j = count; j>0; j--)
 7 System.out.print ("*");
 8 count--;
 9 System.out.println();
10 }
11 }
12 }

a.
b.
c.

16. Does the following program print out this pattern? If not, a) specify the type of error (compiler or run-

time or logical), b) specify the line number(s) and c) how would you correct the error so that the
following pattern is printed?

* * * * *
* * * *
* * *

 1 class Q16{
 2 public static void main (String args[]){
 3
 4 int count = 5;
 5 for (int i=0; i<3; i++){
 6 for (int j = count; j>0; j++)
 7 System.out.print ("*");
 8 count--;
 9 System.out.println();
10 }
11 }
12 }

a.
b.
c.

 149

17. The following program is supposed to count vowels. Does this program work as expected? If not, a)

specify the type of error (compiler or run-time or logical), b) specify the line number(s) and c) how
would you correct the error?
 1 import java.util.Scanner;
 2
 3 class Q17 {
 4 static int a,e,i,o,u;
 5
 6 public static void main (String args[]){
 7
 8 Scanner scan = new Scanner (System.in);
 9 System.out.println ("Enter String: ");
10 String line = scan.next();
11
12 for (int x=0; x<line.length(); x++){
13
14 switch (line.charAt(i)){
15 case 'a': case 'A': a++;
16 break;
17
18 case 'e': case 'E': e++;
19 break;
20
21 case 'i': case 'I': i++;
22 break;
23
24 case 'o': case 'O': o++;
25 break;
26
27 case 'u': case 'U': u++;
28 break;
29 }
30 }
31 }
32 }

a.
b.
c.

18. Is there an error is this program? If yes, a) specify the type of error (compiler or run-time or logical), b)

locate the line number(s) where it occurs, and c) how would you correct the error?

 1 class Q18{
 2 public static void main (String args[]){
 3
 4 int x = 5;
 5 double y = 4.0;
 6
 7 x = y/4;
 8
 9 }
10 }

a.

 150

b.
c.

19. The following program extracts the last digit of the number. Is there an error is this program? If yes, a)
specify the type of error (compiler or run-time or logical), b) locate the line number(s) where it occurs,
and c) how would you correct the error?

1 class Q19{
2 public static void main (String args[]){
3
4 int number = 1234;
5
6 int last = number/10;
7 System.out.println ("Last digit = "+ last);
8 }
9 }

a.
b.
c.

20. Is there an error is this program? If yes, a) specify the type of error (compiler / run-time / logical), b)

locate the line number(s) and c) how would you correct the error?

1 clas Q20{
2 public static void main (String args[]){
3
4 System.out.println ("Hello World")
5 }
6 }

a.
b.

 c.

 151

Appendix D - Test 2: Questions to test program understanding and tracing

Code Number: __________________________________

Section: 1 2 3 4

Note: Your answers to these questions WILL NOT affect you grade in any way. The goal of
this test is to help us survey your expertise in program tracing. Your combined

performance in Test 1 (was given last week) and Test 2 will be used to assign you to a
particular group that will be maintained throughout the semester and will be used for in-

lab activities.

Question 1: Consider the following code fragment:
int[] x = {2, 1, 4, 5, 7};
int limit = 3;
int i = 0;
int sum = 0;
while ((sum<limit) && (i<x.length)){

++i;
sum += x[i];

}

What value is in the variable “i” after this code is executed?
a) 0 b) 1 c) 2 d) 3

Question 2: Consider the following code fragment:
int[] x1 = {1, 2, 4, 7};
int[] x2 = {1, 2, 5, 7};
int i1 = x1.length-1;
int i2 = x2.length-1;
int count = 0;
while ((i1 > 0) && (i2 > 0))
{

if (x1[i1] == x2[i2])
{

++count;
--i1;
--i2;

}
else if (x1[i1] < x2[i2])
{

--i2;
}
else
{ // x1[i1] > x2[i2]

--i1;
}

}

After the above while loop finishes, “count” contains what value?
a) 3 b) 2 c) 1 d) 0
Question 3: Consider the following code fragment:
int [] x = {1, 2, 3, 3, 3};
boolean b[] = new boolean[x.length];

 152

for (int i = 0; i < b.length; ++i)
b[i] = false;

for (int i = 0; i < x.length; ++i)
b[x[i]] = true;

int count = 0;
for (int i = 0; i < b.length; ++i)
{

if (b[i] == true) ++count;
}
After this code is executed , “count” contains:
a) 1 b) 2 c) 3 d) 4 e) 5

Question 4: Consider the following code fragment:

int[] x1 = {0, 1, 2, 3};
int[] x2 = {1, 2, 2, 3};
int i1 = 0;
int i2 = 0;
int count = 0;
while ((i1 < x1.length) &&
(i2 < x2.length))
{

if (x1[i1] == x2[i2])
{

++count;
++i2;

}
else if (x1[i1] < x2[i2])
{

++i1;
}
else
{ // x1[i1] > x2[i2]
++i2;
}

}
After this code is executed, “count” contains:
a) 0 b) 1 c) 2 d) 3 e) 4

 153

Question 5: Consider the following code fragment:

int[] x = {0, 1, 2, 3};
int temp;
int i = 0;
int j = x.length-1;
while (i < j)
{

temp = x[i];
x[i] = x[j];
x[j] = 2*temp;
i++;
j--;

}
After this code is executed, array “x” contains the values:
a) {3, 2, 2, 0} b) {0, 1, 2, 3} c) {3, 2, 1, 0} d) {0, 2, 4, 6} e) {6, 4, 2, 0}

Question 6: Consider the following code fragment:

int[] x = {2, 1, 4, 5, 7};
int limit = 7;
int i = 0;
int sum = 0;
while ((sum<limit) && (i<x.length))
{

sum += x[i];
++i;

}
What value is in the variable “i” after this code is executed?
a) 0 b) 1 c) 2 d) 3 e) 4

Question 7: Consider the following code fragment:

int[] array1 = {2, 4, 1, 3};
int[] array2 = {0, 0, 0, 0};
int a2 = 0;
for (int a1=1; a1<array1.length; ++a1)
{

if (array1[a1] >= 2)
{

array2[a2] = array1[a1];
++a2;

}
}
After this code is executed, the array “array2” contains what values?
a) {4, 3, 0, 0} b) {4, 1, 3, 0} c) {2, 4, 3, 0} d) {2, 4, 1, 3}

 154

Question 8: The skeleton code below is intended to copy into an array of integers called “array2” any
numbers in another integer array “array1” that are even numbers. For example, if
“array1” contained the numbers:
array1: 4 5 6 2 1 3

then after the copying process, “array2” should contain in its first three places:
array2: 4 6 2

The following code assumes that “array2” is big enough to hold all the even numbers from “array1”:
int a2 = 0;
for (int a1=0 ; xxx1xxx ; ++a1)
{

// if array1[a1] is even
if (array1[a1] % 2 == 0)
{

// array1[a1] is even,
// so copy it
xxx2xxx;
xxx3xxx;

}
}

The missing pieces of code “xxx1xxx”, “xxx2xxx” and “xxx3xxx” in the above code should be replaced
respectively by:

a) a1<array1.length
++a2
array2[a2] = array1[a1]

b) a1<array1.length
array2[a2] = array1[a1]
++a2

c) a1<=array1.length
array2[a2] = array1[a1]
++a2

d) a1<=array1.length
++a2
array2[a2] = array1[a1]

Hint: in all four options above, the second and third parts are the same, just reversed.

 155

Appendix E - Activity to familiarize students with jGRASP debugger

Group 1 – Without Object Viewers

Today’s goal is to learn how to use the jGRASP visual debugger. This is required for future
Lab Activities.
Step 1: Right click anywhere on the desktop -> Right click on Shells -> Left click on Shell Tool.
A shelltool will open.

Step 2: Type the following command pwd and click the “Return” key to confirm that you
are in your home directory
>> pwd
This should return your home path -> /home/u2/yourusername

Step 3: Type the following command and click the “Return” key to create the directory
comp2210_activity in your home directory.
>> mkdir comp2210_activity

 156

Step 4: Type the following command (cd – change directory) and click the “Return” key
to enter the new directory
>> cd comp2210_activity

Step 5: Now type the following command and click the “Return” key to create a sub-
directory for today’s assignment.
>> mkdir activity4

Step 6: Type the following command and click the “Return” key to confirm that the
directory activity4 was created.
>> cd activity4

Confirm that the circled path is visible in your shelltool.

This is where you must save the programs for today. DO NOT CLOSE THIS SHELL
TOOL

 157

Step 7: If firefox is already open. Left click on File, and left click on “New Tab” to
create a new tab.

[If firefox is NOT open, right Click on desktop, right click on “Information”, and left
click on “Firefox” to start the Firefox browser.]

Go to the “Tools” menu and choose “Options”. The following window will open. Now
click on the drop down box, near “Desktop” and click on “Other…”.

 158

Step 8: The following window will open. Now search and double click on the directory
“comp2210_activity”

 159

Step 9: Next single click on the directory “activity4” (Please do not double click on this
directory). Now click the select button.

Step 10: You will notice that your path has been selected where you should download
today’s activity files. Now click on “Ok” button.

Step 11: Go to http://www.eng.auburn.edu/~jainjhi/comp2210/ and download the zipped
file Activity4.zip from here. The zipped file will be downloaded into the correct location.

 160

Step 12: Now switch to your shell tool and type in the following command to unzip the
files.
>> unzip Activity4.zip
Step 13: Congratulations! Now you are ready to run jGRASP☺☺ IF JGRASP IS
RUNNING AT THIS POINT MAKE SURE TO KILL IT BEFORE
PROCEDDING. Type in the following command in the shelltool and press the
enter/return key to run the latest version of jGRASP (please wait for a minute or so for
jGRASP to load)
>>jgrasp_test

Step 14: After jGRASP has started open the program Activity4.java. If you are not
familiar with the jGRASP debugger (setting breakpoints, stepping through the program,
viewing value of variables etc), then go through the jGRASP tutorial on Debugging.
This pdf file is available at
http://www.eng.auburn.edu/grasp/tutorials18/07_Debugger.pdf

Please don’t skip going through this tutorial because you must demo the steps below
in order to be marked “present” for the activity and future activities build on the
visual debugger concepts.

 161

Step 15: Turn on the line numbers for Activity4.java. Add breakpoints at line 6 and line
8 of Activity4.java. Now start the debugger and step through the program. Step in to the
methods “push” and “toString” in order to visualize how the methods are implemented.

1: Examine the value of reference variable top after the “for” loop is finished.
2: This button is used to “Step over” a method during debugging
3: This button is used to “Step in” a method during debugging
4: Debug tab 5: Variables section

Step 16: When you feel you are comfortable using the debugger please raise your hand to
demo the following:

1. Add breakpoints in methods push() and toString() [LinkedStack.java].
2. Start the debugger
3. Step through the driver program.
4. Point out the “variables section” in the debug window.
5. Point out the “call stack” in the debug window.
6. Demonstrate that you can differentiate between “Stepping In” and “Stepping

Over” the toString() method.
7. Remove breakpoints added in Step 1.

 3

 2

 1

 4

 5

 162

Appendix F - Activity to familiarize students with jGRASP debugger and viewers

Group 2 – With Object Viewers

Today’s goal is to learn how to use the jGRASP visual debugger and object viewers. This is
required for future Lab Activities.

Step 1: Right click anywhere on the desktop -> Right click on Shells -> Left click on Shell Tool.
A shelltool will open.

Step 2: Type the following command pwd and click the “Return” key to confirm that you are in
your home directory
>> pwd
This should return your home path -> /home/u2/yourusername

Step 3: Type the following command and click the “Return” key to create the directory
comp2210_activity in your home directory.
>> mkdir comp2210_activity

 163

Step 4: Type the following command (cd – change directory) and click the “Return” key
to enter the new directory
>> cd comp2210_activity

Step 5: Now type the following command and click the “Return” key to create a sub-
directory for today’s assignment.
>> mkdir activity4

Step 6: Type the following command to and click the “Return” key confirm that the
directory activity4 was created.
>> cd activity4

Confirm that the circled path is visible in your shelltool.

This is where you must save the programs for today. DO NOT CLOSE THIS SHELL
TOOL

 164

Step 7: If firefox is already open. Left click on File, and left click on “New Tab” to
create a new tab.

[If firefox is NOT open, right Click on desktop, right click on “Information”, and left
click on “Firefox” to start the Firefox browser.]

Go to the “Tools” menu and choose “Options”. The following window will open. Now
click on the drop down box, near “Desktop” and click on “Other…”.

 165

Step 8: The following window will open. Now search and double click on the directory
“comp2210_activity”

 166

Step 9: Next single click on the directory “activity4” (Please do not double click on this
directory). Now click the select button.

Step 10: You will notice that your path has been selected where you should download
today’s activity files. Now click on “Ok” button.

Step 11: Go to http://www.eng.auburn.edu/~jainjhi/comp2210/ and download the zipped
file Activity4.zip from here. The zipped file will be downloaded into the correct location.

 167

Step 12: Now switch to your shell tool and type in the following command to unzip the
files.
>> unzip Activity4.zip

Step 13: Congratulations! Now you are ready to run jGRASP☺ IF JGRASP IS
RUNNING AT THIS POINT MAKE SURE TO KILL IT BEFORE
PROCEDDING. Type in the following command in the shelltool and press the
enter/return key to run the latest version of jGRASP (please wait for a minute or so for
jGRASP to load)
>>jgrasp_test

Step 14: After jGRASP has started, open the program Activity4.java. If you are not
familiar with the jGRASP debugger (setting breakpoints, stepping through the program,
viewing value of variables etc), then go through the jGRASP tutorial on Debugging.
This pdf file is available at
http://www.eng.auburn.edu/grasp/tutorials18/07_Debugger.pdf Please don’t skip going
through this tutorial because you must demo the steps below in order to be marked
“present” for the activity and future activities build on the visual debugger
concepts.

Step 15: Turn on the line numbers for the program Activity4.java. Add breakpoints at
line 6 and line 8 of Activity4.java. Now start the debugger and step through the program.

 168

Step 16: All objects have a basic view as shown in the debug tab. We will open a
separate viewer window for the reference variable “stack” which is displayed in the
Variables section of the Debug tab. Left click on the “stack” variable in the debug tab
and drag it to open a verifying view of the LinkedStack data structure. Now when you
“step into” the methods “push” and “toString” you can visualize how the methods are
implemented.

 169

Step 17: Description of the viewer window features.

Slider to adjust the
width of elements

Slider to adjust the
scale of the entire
view

Change the type of
view (Basic/Simple)

Name of the reference
variable

Name of the
data structure

Button to toggle
between
embedded and
non-embedded
view

Button to toggle
between normal
and simple view

Step 18: When you feel you are comfortable using the debugger please raise your hand to
demo the following:

1. Add breakpoints in methods push() and toString() [LinkedStack.java], and start
the debugger.
2. At the first breakpoint, open a viewer for the reference variable “stack”.
3. Point out the “variables section” in the debug window.
4. Demonstrate that you can differentiate between “Stepping In” and “Stepping
Over” the toString() method using the object viewer.
5. Switch between Basic and SimpleView.
6. Switch from non-embedded to embedded view, and switch from normal to simple
view.
7. Scale the size of data structure to make it larger
8. Make the width of elements larger

 170

Appendix G - Program LinkedSet.java provided for Experiment II

 1 ÏÏÏimport java.util.*;
 2
 3 ÏÕÖ×public class LinkedSet<T> implements SetADT<T>
 4 ÏÏ§{
 5 ÏÏ§ÏíÏprivate int count;
 6 ÏÏ§
 7 ÏÏ§ÏíÏprivate LinearNode<T> contents;
 8 ÏÏ§
 9 ÏÏ§//--
 10 ÏÏ§// Creates an empty set.
 11 ÏÏ§//--
 12 ÏÏ§ÏÞßàpublic LinkedSet()
 13 ÏÏ§ÏÏ§{
 14 ÏÏ§ÏÏ¨¹¹Ïcount = 0;
 15 ÏÏ§ÏÏ¨¹¹Ïcontents = null;
 16 ÏÏ§ÏÏ©}
 17 ÏÏ§
 18 ÏÏ§//--
 19 ÏÏ§// Adds the specified element to the set if it's not already
 20 ÏÏ§// present.
 21 ÏÏ§//--
 22 ÏÏ§ÏÞßàpublic void add (T element)
 23 ÏÏ§ÏÏ§{ //*** Find error(s) in this method
 24 ÏÏ§ÏÏ¨¹íÏLinearNode<T> node = new LinearNode<T> (element);
 25 ÏÏ§ÏÏ¨¹¹Ïnode.setNext(contents);
 26 ÏÏ§ÏÏ¨¹¹Ïcontents = node;
 27 ÏÏ§ÏÏ¨¹¹Ïcount++;
 28 ÏÏ§ÏÏ©}
 29 ÏÏ§
 30 ÏÏ§ÏÞßàpublic void insert (T element, int index)
 31 ÏÏ§ÏÏ§{//*** Find error(s) in this method
 32 ÏÏ§ÏÏ¨¹íÏLinearNode n = contents;
 33 ÏÏ§ÏÏ§
 34 ÏÏ§ÏÏ¨¹¹±for (int i = 0; n != null && i < index - 1; i++)
 35 ÏÏ§ÏÏ§ÏÏÐ¹¹Ïn = n.getNext();
 36 ÏÏ§ÏÏ§
 37 ÏÏ§ÏÏ¨¹³´if (n != null)
 38 ÏÏ§ÏÏ§Ï6§{
 39 ÏÏ§ÏÏ§Ï6¨¹íÏLinearNode tmpNode = new LinearNode(element);
 40 ÏÏ§ÏÏ§Ï6¨¹¹ÏtmpNode.setNext(n.getNext());
 41 ÏÏ§ÏÏ§Ï6¾¹¹Ïn.setNext(tmpNode);
 42 ÏÏ§ÏÏ§Ï¶Ï}
 43 ÏÏ§ÏÏ§
 44 ÏÏ§ÏÏ¨¹¹Ïcount++;
 45 ÏÏ§ÏÏ©}

 171

 46 ÏÏ§
 47 ÏÏ§
 48 ÏÏ§//--
 49 ÏÏ§// Returns true if this set contains the specified target
 50 ÏÏ§// element.
 51 ÏÏ§//--
 52 ÏÏ§ÏÞßàpublic boolean contains (T target)
 53 ÏÏ§ÏÏ§{//*** Find error(s) in this method
 54 ÏÏ§ÏÏ¨¹íÏLinearNode<T> tempNode = contents;
 55 ÏÏ§ÏÏ¨¹¹±while ((tempNode != null) &&
(!tempNode.getElement().equals(target)))
 56 ÏÏ§ÏÏ§ÏÏ5{
 57 ÏÏ§ÏÏ§ÏÏ7¹¹ÏtempNode = contents.getNext();
 58 ÏÏ§ÏÏ§ÏÏ°}
 59 ÏÏ§ÏÏ¨¹³´if (tempNode == null)
 60 ÏÏ§Â¹ÄÏ¶¾¹¹Ïreturn false;
 61 ÏÏ§Â¹Ä¹¹Ïreturn true;
 62 ÏÏ§ÏÏ§
 63 ÏÏ§ÏÏ©}
 64 ÏÏ§
 65 ÏÏ§//--
 66 ÏÏ§// Returns a string representation of this set.
 67 ÏÏ§//---
 68 ÏÏ§ÏÞßàpublic String toString()
 69 ÏÏ§ÏÏ§{
 70 ÏÏ§ÏÏ¨¹íÏString result="";
 71 ÏÏ§ÏÏ¨¹íÏLinearNode<T> temp = contents;
 72 ÏÏ§ÏÏ§
 73 ÏÏ§ÏÏ¨¹¹±for (int i=0; i<count; i++){
 74 ÏÏ§ÏÏ§ÏÏ7¹¹Ïresult += temp.getElement() + " ";
 75 ÏÏ§ÏÏ§ÏÏ7¹¹Ïtemp = temp.getNext();
 76 ÏÏ§ÏÏ§ÏÏ°}
 77 ÏÏ§Â¹Ä¹¹Ïreturn result;
 78 ÏÏ§ÏÏ§
 79 ÏÏ§ÏÏ©}
 80 ÏÏ§
 81 ÏÏ§ÏÞßàpublic void delete (int index)
 82 ÏÏ§ÏÏ§{//*** Find error(s) in this method
 83 ÏÏ§ÏÏ¨¹íÏint choice = index;
 84 ÏÏ§ÏÏ¨¹íÏT result;
 85 ÏÏ§ÏÏ¨¹íÏLinearNode<T> previous, current;
 86 ÏÏ§ÏÏ§
 87 ÏÏ§ÏÏ¨¹¹Ïprevious = contents;
 88 ÏÏ§ÏÏ¨¹¹±for (int skip=0; skip < choice; skip++)
 89 ÏÏ§ÏÏ§ÏÏÐ¹¹Ïprevious = previous.getNext();
 90 ÏÏ§ÏÏ¨¹¹Ïcurrent = previous.getNext();
 91 ÏÏ§ÏÏ¨¹¹Ïresult = current.getElement();
 92 ÏÏ§ÏÏ¨¹¹Ïprevious.setNext(current.getNext());

 172

 93 ÏÏ§ÏÏ§
 94 ÏÏ§ÏÏ¨¹¹Ïcount--;
 95 ÏÏ§ÏÏ©}
 96 ÏÏ§
 97 ÏÏ§ // Returns the number of elements in this set
 98 ÏÏ§ÏÞßàpublic int size(){
 99 ÏÏ§Â¹Ä¹¹Ïreturn count;
100 ÏÏ§ÏÏ©}
101 ÏÏ©}

 173

Appendix H - Program LinkedBinarySearchTree.java provided for Experiment IV

 1 ÏÏÏimport java.util.Iterator;
 2
 3 ÏÕÖ×public class LinkedBinarySearchTree<T> {
 4 ÏÏ§ÏíÏint count;
 5 ÏÏ§ÏíÏBinaryTreeNode<T> root;
 6 ÏÏ§
 7 ÏÏ§ÏÞßàpublic LinkedBinarySearchTree() {
 8 ÏÏ§ÏÏ¨¹¹Ïcount = 0;
 9 ÏÏ§ÏÏ¨¹¹Ïroot = null;
 10 ÏÏ§ÏÏ©}
 11 ÏÏ§
 12 ÏÏ§ÏÞßàpublic LinkedBinarySearchTree (T element) {
 13 ÏÏ§ÏÏ¨¹¹Ïcount = 1;
 14 ÏÏ§ÏÏ¨¹¹Ïroot = new BinaryTreeNode<T> (element);
 15 ÏÏ§ÏÏ©}
 16 ÏÏ§
 17 ÏÏ§ÏÞßàpublic void addElement (T node) {
 18 ÏÏ§ÏÏ§ //****************Find error in this method (Task 1 of 5)
 19 ÏÏ§ÏÏ¨¹íÏBinaryTreeNode<T> t = new BinaryTreeNode<T> (node);
 20 ÏÏ§ÏÏ¨¹íÏComparable<T> compareIt = (Comparable<T>)node;
 21 ÏÏ§ÏÏ§
 22 ÏÏ§ÏÏ¨¹³´if (isEmpty())
 23 ÏÏ§ÏÏ§Ï6¾¹¹Ïroot = t;
 24 ÏÏ§ÏÏ§Ïö´else {
 25 ÏÏ§ÏÏ§Ï¸¨¹íÏBinaryTreeNode<T> tmp = root;
 26 ÏÏ§ÏÏ§Ï¸¨¹íÏboolean added = false;
 27 ÏÏ§ÏÏ§Ï¸§
 28 ÏÏ§ÏÏ§Ï¸¾¹¹±while (!added) {
 29 ÏÏ§ÏÏ§Ï¸ÏÏÏ7¹³´if (compareIt.compareTo(tmp.element) < 0)
 30 ÏÏ§ÏÏ§Ï¸ÏÏÏ5Ï6§
 31 ÏÏ§ÏÏ§Ï¸ÏÏÏ5Ï6¾¹³´if (tmp.left == null) {
 32 ÏÏ§ÏÏ§Ï¸ÏÏÏ5Ï6ÏÏ6¨¹¹Ïtmp.left = t;
 33 ÏÏ§ÏÏ§Ï¸ÏÏÏ5Ï6ÏÏ6¾¹¹Ïadded = true;
 34 ÏÏ§ÏÏ§Ï¸ÏÏÏ5Ï6ÏÏ6Ï}
 35 ÏÏ§ÏÏ§Ï¸ÏÏÏ5Ï6ÏÏö´else
 36 ÏÏ§ÏÏ§Ï¸ÏÏÏ5Ï6ÏÏÈ¾¹¹Ïtmp = tmp.left;
 37 ÏÏ§ÏÏ§Ï¸ÏÏÏ5Ïö´else
 38 ÏÏ§ÏÏ§Ï¸ÏÏÏ5Ï¸¾¹³´if (tmp.right == null) {
 39 ÏÏ§ÏÏ§Ï¸ÏÏÏ5Ï¸ÏÏ6¨¹¹Ïtmp.right = t;
 40 ÏÏ§ÏÏ§Ï¸ÏÏÏ5Ï¸ÏÏ6¾¹¹Ïadded = true;
 41 ÏÏ§ÏÏ§Ï¸ÏÏÏ5Ï¸ÏÏ6Ï}
 42 ÏÏ§ÏÏ§Ï¸ÏÏÏ5Ï¸ÏÏö´else
 43 ÏÏ§ÏÏ§Ï¸ÏÏÏ5ÏÈÏÏÈ¾¹¹Ïtmp = tmp.right;
 44 ÏÏ§ÏÏ§Ï¸ÏÏÏ°}
 45 ÏÏ§ÏÏ§ÏÈÏ}

 174

 46 ÏÏ§ÏÏ¨¹¹Ïcount ++;
 47 ÏÏ§ÏÏ©}
 48 ÏÏ§
 49 ÏÏ§ÏÞßàpublic boolean isEmpty() {
 50 ÏÏ§ÏÏ¨¹³´if (count == 0)
 51 ÏÏ§Â¹ÄÏ6¾¹¹Ïreturn true;
 52 ÏÏ§ÏÏ§Ïö´else
 53 ÏÏ§Â¹ÄÏÈ¾¹¹Ïreturn false;
 54 ÏÏ§ÏÏ©}
 55 ÏÏ§
 56 ÏÏ§ÏÞßàpublic BinaryTreeNode<T> find (T targetElement){
 57 ÏÏ§ÏÏ¨¹íÏBinaryTreeNode<T> current=findagain(targetElement, root);
 58 ÏÏ§ÏÏ¨¹³´if(current == null)
 59 ÏÏ§ÏÏ§Ï¶¾¹¹ÏSystem.out.println("element not found");
 60 ÏÏ§Â¹Ä¹¹Ïreturn (current);
 61 ÏÏ§ÏÏ§
 62 ÏÏ§ÏÏ©}
 63 ÏÏ§
 64 ÏÏ§//==
 65 ÏÏ§// Returns a reference to the specified target element if it is
 66 ÏÏ§// found in the binary tree.
 67 ÏÏ§//==
 68 ÏÏ§ÏÞßàpublic BinaryTreeNode<T> findagain (T elm,
 69 ÏÏ§ÏÏ§Ï BinaryTreeNode<T> root){
 70 ÏÏ§ÏÏ§
 71 ÏÏ§ÏÏ§//****************Find error in this method (Task 2 of 5)
 72 ÏÏ§ÏÏ¨¹³´if (root == null) {
 73 ÏÏ§Â¹ÄÏ6¾¹¹Ïreturn null;
 74 ÏÏ§ÏÏ§Ï¶Ï}
 75 ÏÏ§ÏÏ¨¹³´if (root.element.equals(elm)) {
 76 ÏÏ§Â¹ÄÏ6¾¹¹Ïreturn root;
 77 ÏÏ§ÏÏ§Ï¶Ï}
 78 ÏÏ§ÏÏ¨¹íÏBinaryTreeNode<T> x = findagain(elm, root.right);
 79 ÏÏ§ÏÏ¨¹³´if (x == null) {
 80 ÏÏ§ÏÏ§Ï6¾¹¹Ïx = findagain(elm, root.right);
 81 ÏÏ§ÏÏ§Ï¶Ï}
 82 ÏÏ§Â¹Ä¹¹Ïreturn x;
 83 ÏÏ§ÏÏ©}
 84 ÏÏ§
 85 ÏÏ§//==
 86 ÏÏ§// Removes the first element that matches the specified target
 87 ÏÏ§// element from the tree and returns a reference to
 88 ÏÏ§// it. Throws a ElementNotFoundException if the target
 89 ÏÏ§// element is not found in the binary search tree.
 90 ÏÏ§//===
 91 ÏÏ§ÏÞßàpublic T removeElement (T targetElement) throws
 92 ÏÏ§ÏÏ§ÏElementNotFoundException {
 93 ÏÏ§ÏÏ§ //**************Find error in this method (Task 3 of 5)

 175

 94 ÏÏ§ÏÏ§
 95 ÏÏ§ÏÏ¨¹íÏT result = null;
 96 ÏÏ§ÏÏ§
 97 ÏÏ§ÏÏ¨¹³´if (!isEmpty())
 98 ÏÏ§ÏÏ§Ï6§
 99 ÏÏ§ÏÏ§Ï6¾¹³´if(((Comparable)targetElement).equals(root.element)) {
100 ÏÏ§ÏÏ§Ï6ÏÏ6¨¹¹Ïresult = root.element;
101 ÏÏ§ÏÏ§Ï6ÏÏ6¨¹¹Ïroot = replacement (root);
102 ÏÏ§ÏÏ§Ï6ÏÏ6¾¹¹Ïcount--;
103 ÏÏ§ÏÏ§Ï6ÏÏ6Ï} //if
104 ÏÏ§ÏÏ§Ï6ÏÏö´else {
105 ÏÏ§ÏÏ§Ï6ÏÏ¸¨¹íÏBinaryTreeNode<T> tmp, parent = root;
106 ÏÏ§ÏÏ§Ï6ÏÏ¸¨¹íÏboolean found = false;
107 ÏÏ§ÏÏ§Ï6ÏÏ¸§
108 ÏÏ§ÏÏ§Ï6ÏÏ¸¨¹³´if
(((Comparable)targetElement).compareTo(root.element)<0)
109 ÏÏ§ÏÏ§Ï6ÏÏ¸§Ï6¾¹¹Ïtmp = root.left;
110 ÏÏ§ÏÏ§Ï6ÏÏ¸§Ïö´else
111 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÈ¾¹¹Ïtmp = root.right;
112 ÏÏ§ÏÏ§Ï6ÏÏ¸§
113 ÏÏ§ÏÏ§Ï6ÏÏ¸¨¹¹±while (tmp != null && !found) {
114 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ7¹³´if (targetElement.equals(tmp.element)) {
115 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï6¨¹¹Ïfound = true;
116 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï6¨¹¹Ïcount--;
117 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï6¨¹¹Ïresult = tmp.element;
118 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï6§
119 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï6¾¹³´if (tmp == parent.left)
120 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï6ÏÏ6§{
121 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï6ÏÏ6¾¹¹Ïparent.left = replacement (tmp);
122 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï6ÏÏ6Ï}
123 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï6ÏÏö´else
124 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï6ÏÏ¸§{
125 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï6ÏÏ¸¾¹¹Ïparent.right = replacement (tmp);
126 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï6ÏÏÈÏ}
127 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï6Ï} //if
128 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ïö´else
129 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï¸§{
130 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï¸¨¹¹Ïparent = tmp;
131 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï¸§
132 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï¸¾¹³´if
(((Comparable)targetElement).compareTo(tmp.element) > 0)
133 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï¸ÏÏ6¾¹¹Ïtmp = tmp.left;
134 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï¸ÏÏö´else
135 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5Ï¸ÏÏÈ¾¹¹Ïtmp = tmp.right;
136 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ5ÏÈÏ} //else
137 ÏÏ§ÏÏ§Ï6ÏÏ¸§ÏÏ°} //while
138 ÏÏ§ÏÏ§Ï6ÏÏ¸¾¹³´if (!found)
139 ÏÏ§ÏÏ§Ï6ÏÏ¸ÏÏ6¾¹¹ÏSystem.out.println (targetElement +

 176

140 ÏÏ§ÏÏ§Ï6ÏÏ¸ÏÏ¶ÏÏÏÏÏÏÏ" was not found in binary tree");
141 ÏÏ§ÏÏ§Ï¶ÏÏÈÏ}
142 ÏÏ§ÏÏ§
143 ÏÏ§Â¹Ä¹¹Ïreturn result;
144 ÏÏ§ÏÏ§
145 ÏÏ§ÏÏ©}
146 ÏÏ§
147 ÏÏ§//==
148 ÏÏ§// Returns a reference to a node that will replace the one
149 ÏÏ§// specified for removal. In the case where the removed
150 ÏÏ§// node has two children, the inorder successor is used
151 ÏÏ§// as its replacement.
152 ÏÏ§//==
153 ÏÏ§ÏÞßàprotected BinaryTreeNode<T> replacement
154 ÏÏ§ÏÏ§Ï(BinaryTreeNode<T> node) {
155 ÏÏ§ÏÏ¨¹íÏBinaryTreeNode<T> result = null;
156 ÏÏ§ÏÏ§
157 ÏÏ§ÏÏ¨¹³´if ((node.left == null)&&(node.right==null))
158 ÏÏ§ÏÏ§Ï6¾¹¹Ïresult = null;
159 ÏÏ§ÏÏ§Ï÷´else if ((node.left != null)&&(node.right==null))
160 ÏÏ§ÏÏ§Ï6¾¹¹Ïresult = node.left;
161 ÏÏ§ÏÏ§Ï÷´else if ((node.left == null)&&(node.right != null))
162 ÏÏ§ÏÏ§Ï6¾¹¹Ïresult = node.right;
163 ÏÏ§ÏÏ§Ïö´else
164 ÏÏ§ÏÏ§Ï¸§{
165 ÏÏ§ÏÏ§Ï¸¨¹íÏBinaryTreeNode<T> current = node.right;
166 ÏÏ§ÏÏ§Ï¸¨¹íÏBinaryTreeNode<T> parent = node;
167 ÏÏ§ÏÏ§Ï¸§
168 ÏÏ§ÏÏ§Ï¸¨¹¹±while (current.left != null)
169 ÏÏ§ÏÏ§Ï¸§ÏÏ5{
170 ÏÏ§ÏÏ§Ï¸§ÏÏ7¹¹Ïparent = current;
171 ÏÏ§ÏÏ§Ï¸§ÏÏ7¹¹Ïcurrent = current.left;
172 ÏÏ§ÏÏ§Ï¸§ÏÏ°}//while
173 ÏÏ§ÏÏ§Ï¸§
174 ÏÏ§ÏÏ§Ï¸¨¹³´if (node.right == current)
175 ÏÏ§ÏÏ§Ï¸§Ï6¾¹¹Ïcurrent.left = node.left;
176 ÏÏ§ÏÏ§Ï¸§Ïö´else
177 ÏÏ§ÏÏ§Ï¸§Ï¸§{
178 ÏÏ§ÏÏ§Ï¸§Ï¸¨¹¹Ïparent.left = current.right;
179 ÏÏ§ÏÏ§Ï¸§Ï¸¨¹¹Ïcurrent.right = node.right;
180 ÏÏ§ÏÏ§Ï¸§Ï¸¾¹¹Ïcurrent.left = node.left;
181 ÏÏ§ÏÏ§Ï¸§ÏÈÏ}
182 ÏÏ§ÏÏ§Ï¸¾¹¹Ïresult = current;
183 ÏÏ§ÏÏ§ÏÈÏ}//else
184 ÏÏ§Â¹Ä¹¹Ïreturn result;
185 ÏÏ§ÏÏ§
186 ÏÏ§ÏÏ§
187 ÏÏ§ÏÏ©} // method replacement

 177

188 ÏÏ§
189 ÏÏ§
190 ÏÏ§ÏÞßàpublic String toString()
191 ÏÏ§ÏÏ§{
192 ÏÏ§ÏÏ¨¹íÏString result = "";
193 ÏÏ§ÏÏ§
194 ÏÏ§ÏÏ¨¹íÏIterator<T> it = iteratorPostOrder();
195 ÏÏ§ÏÏ¨¹¹±while(it.hasNext()){
196 ÏÏ§ÏÏ§ÏÏ7¹¹Ïresult += it.next().toString() +" ";
197 ÏÏ§ÏÏ§ÏÏ°}
198 ÏÏ§Â¹Ä¹¹Ïreturn result;
199 ÏÏ§ÏÏ©} // method toString
200 ÏÏ§
201 ÏÏ§ÏÞßàpublic Iterator<T> iteratorInOrder()
202 ÏÏ§ÏÏ§{
203 ÏÏ§ÏÏ¨¹íÏArrayUnorderedList<T> templist = new
ArrayUnorderedList<T>();
204 ÏÏ§ÏÏ¨¹¹Ïinorder (root, templist);
205 ÏÏ§Â¹Ä¹¹Ïreturn templist.iterator();
206 ÏÏ§ÏÏ©}
207 ÏÏ§
208 ÏÏ§//==
209 ÏÏ§// Performs a recursive inorder traversal.
210 ÏÏ§//===
211 ÏÏ§ÏÞßàprotected void inorder (BinaryTreeNode<T> x,
212 ÏÏ§ÏÏ§Ï ArrayUnorderedList<T> list)
213 ÏÏ§ÏÏ§{
214 ÏÏ§ÏÏ§
215 ÏÏ§ÏÏ§//********************Find error in this method (Task 4 of 5)
216 ÏÏ§ÏÏ¨¹³´if (x != null)
217 ÏÏ§ÏÏ§Ï6§{
218 ÏÏ§ÏÏ§Ï6¨¹¹Ïinorder (x.right, list);
219 ÏÏ§ÏÏ§Ï6¨¹¹Ïlist.addToRear(x.element);
220 ÏÏ§ÏÏ§Ï6¾¹¹Ïinorder (x.left, list);
221 ÏÏ§ÏÏ§Ï¶Ï}
222 ÏÏ§ÏÏ§
223 ÏÏ§ÏÏ©}
224 ÏÏ§
225 ÏÏ§//==
226 ÏÏ§// Performs an postorder traversal on the tree by calling
227 ÏÏ§// an overloaded, recursive postorder method that starts
228 ÏÏ§// with the root.
229 ÏÏ§//===
230 ÏÏ§ÏÞßàpublic Iterator<T> iteratorPostOrder()
231 ÏÏ§ÏÏ§{
232 ÏÏ§ÏÏ¨¹íÏArrayUnorderedList<T> templist = new
ArrayUnorderedList<T>();
233 ÏÏ§ÏÏ¨¹¹Ïpostorder (root, templist);

 178

234 ÏÏ§Â¹Ä¹¹Ïreturn templist.iterator();
235 ÏÏ§ÏÏ©}
236 ÏÏ§
237 ÏÏ§//===
238 ÏÏ§// Performs a recursive postorder traversal.
239 ÏÏ§//==
240 ÏÏ§ÏÞßàprotected void postorder (BinaryTreeNode<T> x,
241 ÏÏ§ÏÏ§ÏArrayUnorderedList<T> list)
242 ÏÏ§ÏÏ§{
243 ÏÏ§ÏÏ§
244 ÏÏ§ÏÏ§//***************Find error in this method (Task 5 of 5)
245 ÏÏ§ÏÏ§
246 ÏÏ§ÏÏ¨¹³´if (x != null)
247 ÏÏ§ÏÏ§Ï6§{
248 ÏÏ§ÏÏ§Ï6¨¹¹Ïpostorder (x.right, list);
249 ÏÏ§ÏÏ§Ï6¨¹¹Ïpostorder (x.left, list);
250 ÏÏ§ÏÏ§Ï6¾¹¹Ïlist.addToRear(x.element);
251 ÏÏ§ÏÏ§Ï¶Ï}
252 ÏÏ§ÏÏ©}
253 ÏÏ©} // class BinarySearchTree

 179

Appendix I - Program Heap.java provided for Experiment V

 1 ÏÕÖ×public class Heap<T> extends LinkedBinaryTree<T>
 2 ÏÏ§{
 3 ÏÏ§ÏíÏpublic HeapNode<T> lastNode;
 4 ÏÏ§
 5 ÏÏ§ÏÞßàpublic Heap() {
 6 ÏÏ§ÏÏ¨¹¹Ïsuper();
 7 ÏÏ§ÏÏ©} // constructor Heap
 8 ÏÏ§
 9 ÏÏ§//===
 10 ÏÏ§// Adds the specified element to the heap in the appropriate
 11 ÏÏ§// position according to its key value. Note that equal
 12 ÏÏ§// elements are added to the right.
 13 ÏÏ§//===
 14 ÏÏ§ÏÞßàpublic void addElement (T obj) {
 15 ÏÏ§ÏÏ§
 16 ÏÏ§ÏÏ§//modify do that it works as a MAX HEAP
 17 ÏÏ§ÏÏ¨¹íÏHeapNode<T> node = new HeapNode<T>(obj);
 18 ÏÏ§ÏÏ§
 19 ÏÏ§ÏÏ¨¹³´if (root == null)
 20 ÏÏ§ÏÏ§Ï6¾¹¹Ïroot=node;
 21 ÏÏ§ÏÏ§Ïö´else
 22 ÏÏ§ÏÏ§Ï¸§{
 23 ÏÏ§ÏÏ§Ï¸¨¹íÏHeapNode<T> next_parent = getNextParentAdd();
 24 ÏÏ§ÏÏ§Ï¸¨¹³´if (next_parent.left == null)
 25 ÏÏ§ÏÏ§Ï¸§Ï6¾¹¹Ïnext_parent.left = node;
 26 ÏÏ§ÏÏ§Ï¸§Ïö´else
 27 ÏÏ§ÏÏ§Ï¸§ÏÈ¾¹¹Ïnext_parent.right = node;
 28 ÏÏ§ÏÏ§Ï¸¾¹¹Ïnode.parent = next_parent;
 29 ÏÏ§ÏÏ§ÏÈÏ}
 30 ÏÏ§ÏÏ¨¹¹ÏlastNode = node;
 31 ÏÏ§ÏÏ¨¹¹Ïcount++;
 32 ÏÏ§ÏÏ¨¹³´if (count>1)
 33 ÏÏ§ÏÏ§Ï¶¾¹¹ÏheapifyAdd();
 34 ÏÏ§ÏÏ©} //method addElement
 35 ÏÏ§
 36 ÏÏ§//===
 37 ÏÏ§// Returns the node that will be the parent of the new node
 38 ÏÏ§//===
 39 ÏÏ§
 40 ÏÏ§ÏÞßàprivate HeapNode<T> getNextParentAdd(){
 41 ÏÏ§ÏÏ¨¹íÏHeapNode<T> result = lastNode;
 42 ÏÏ§ÏÏ¨¹¹±while ((result != root) && (result.parent.left != result))
 43 ÏÏ§ÏÏ§ÏÏÐ¹¹Ïresult = result.parent;
 44 ÏÏ§ÏÏ§
 45 ÏÏ§ÏÏ¨¹³´if (result != root)

 180

 46 ÏÏ§ÏÏ§Ï6¾¹³´if (result.parent.right == null)
 47 ÏÏ§ÏÏ§Ï6ÏÏ6¾¹¹Ïresult = result.parent;
 48 ÏÏ§ÏÏ§Ï6ÏÏö´else
 49 ÏÏ§ÏÏ§Ï6ÏÏ¸§{
 50 ÏÏ§ÏÏ§Ï6ÏÏ¸¨¹¹Ïresult = (HeapNode<T>)result.parent.right;
 51 ÏÏ§ÏÏ§Ï6ÏÏ¸¾¹¹±while (result.left != null)
 52 ÏÏ§ÏÏ§Ï6ÏÏ¸ÏÏÏÐ¹¹Ïresult = (HeapNode<T>)result.left;
 53 ÏÏ§ÏÏ§Ï6ÏÏÈÏ}
 54 ÏÏ§ÏÏ§Ïö´else
 55 ÏÏ§ÏÏ§Ï¸¾¹¹±while (result.left != null)
 56 ÏÏ§ÏÏ§ÏÈÏÏÏÐ¹¹Ïresult = (HeapNode<T>)result.left;
 57 ÏÏ§ÏÏ§
 58 ÏÏ§Â¹Ä¹¹Ïreturn result;
 59 ÏÏ§ÏÏ©} //method getNextParentAdd
 60 ÏÏ§
 61 ÏÏ§
 62 ÏÏ§//===
 63 ÏÏ§// Reorders the heap after adding a node
 64 ÏÏ§//===
 65 ÏÏ§ÏÞßàprivate void heapifyAdd(){
 66 ÏÏ§ÏÏ¨¹íÏT temp;
 67 ÏÏ§ÏÏ§
 68 ÏÏ§ÏÏ¨¹íÏHeapNode<T> next = lastNode;
 69 ÏÏ§ÏÏ¨¹¹±while ((next != root) &&
 70 ÏÏ§ÏÏ§ÏÏ5
(((Comparable)next.element).compareTo(next.parent.element) < 0))
 71 ÏÏ§ÏÏ§ÏÏ5{
 72 ÏÏ§ÏÏ§ÏÏ7¹¹Ïtemp = next.element;
 73 ÏÏ§ÏÏ§ÏÏ7¹¹Ïnext.element = next.parent.element;
 74 ÏÏ§ÏÏ§ÏÏ7¹¹Ïnext.parent.element = temp;
 75 ÏÏ§ÏÏ§ÏÏ7¹¹Ïnext = next.parent;
 76 ÏÏ§ÏÏ§ÏÏ°}
 77 ÏÏ§ÏÏ©} //method heapifyAdd
 78 ÏÏ§
 79 ÏÏ§//===
 80 ÏÏ§// Remove the element with the lowest value in the heap and
 81 ÏÏ§// returns a reference to it. Throws an
 82 ÏÏ§// EmptyCollectionException if the heap is empty.
 83 ÏÏ§//==
 84 ÏÏ§ÏÞßàpublic T removeMin() throws EmptyCollectionException {
 85 ÏÏ§ÏÏ§
 86 ÏÏ§ÏÏ¨¹³´if (isEmpty())
 87 ÏÏ§ÏÏ§Ï¶¾êîìthrow new EmptyCollectionException ("Empty Heap");
 88 ÏÏ§ÏÏ§
 89 ÏÏ§ÏÏ¨¹íÏT minElement = root.element;
 90 ÏÏ§ÏÏ§
 91 ÏÏ§ÏÏ¨¹³´if (count == 1){
 92 ÏÏ§ÏÏ§Ï6¨¹¹Ïroot = null;

 181

 93 ÏÏ§ÏÏ§Ï6¾¹¹ÏlastNode = null;
 94 ÏÏ§ÏÏ§Ï6Ï}
 95 ÏÏ§ÏÏ§Ïö´else{
 96 ÏÏ§ÏÏ§Ï¸¨¹íÏHeapNode<T> next_last = getNewLastNode();
 97 ÏÏ§ÏÏ§Ï¸¨¹³´if (lastNode.parent.left == lastNode)
 98 ÏÏ§ÏÏ§Ï¸§Ï6¾¹¹ÏlastNode.parent.left = null;
 99 ÏÏ§ÏÏ§Ï¸§Ïö´else
100 ÏÏ§ÏÏ§Ï¸§ÏÈ¾¹¹ÏlastNode.parent.right = null;
101 ÏÏ§ÏÏ§Ï¸§
102 ÏÏ§ÏÏ§Ï¸¨¹¹Ïroot.element = lastNode.element;
103 ÏÏ§ÏÏ§Ï¸¨¹¹ÏlastNode = next_last;
104 ÏÏ§ÏÏ§Ï¸¾¹¹ÏheapifyRemove();
105 ÏÏ§ÏÏ§ÏÈÏ}
106 ÏÏ§ÏÏ§
107 ÏÏ§ÏÏ¨¹¹Ïcount--;
108 ÏÏ§Â¹Ä¹¹Ïreturn minElement;
109 ÏÏ§ÏÏ§
110 ÏÏ§ÏÏ©} // method removeMin
111 ÏÏ§
112 ÏÏ§
113 ÏÏ§//==
114 ÏÏ§// Reorders the heap after removing the root element
115 ÏÏ§//==
116 ÏÏ§
117 ÏÏ§ÏÞßàprivate void heapifyRemove(){
118 ÏÏ§ÏÏ¨¹íÏT temp;
119 ÏÏ§ÏÏ¨¹íÏHeapNode<T> node = (HeapNode<T>)root;
120 ÏÏ§ÏÏ¨¹íÏHeapNode<T> left = (HeapNode<T>)node.left;
121 ÏÏ§ÏÏ¨¹íÏHeapNode<T> right = (HeapNode<T>)node.right;
122 ÏÏ§ÏÏ¨¹íÏHeapNode<T> next;
123 ÏÏ§ÏÏ§
124 ÏÏ§ÏÏ¨¹³´if ((left == null) && (right == null))
125 ÏÏ§ÏÏ§Ï6¾¹¹Ïnext = null;
126 ÏÏ§ÏÏ§Ï÷´else if (left == null)
127 ÏÏ§ÏÏ§Ï6¾¹¹Ïnext = right;
128 ÏÏ§ÏÏ§Ï÷´else if (right == null)
129 ÏÏ§ÏÏ§Ï6¾¹¹Ïnext = left;
130 ÏÏ§ÏÏ§Ï÷´else if
(((Comparable)left.element).compareTo(right.element) < 0)
131 ÏÏ§ÏÏ§Ï6¾¹¹Ïnext = left;
132 ÏÏ§ÏÏ§Ïö´else
133 ÏÏ§ÏÏ§ÏÈ¾¹¹Ïnext = right;
134 ÏÏ§ÏÏ§
135 ÏÏ§ÏÏ¨¹¹±while ((next != null) &&
136 ÏÏ§ÏÏ§ÏÏ5(((Comparable)next.element).compareTo(node.element) < 0))
137 ÏÏ§ÏÏ§ÏÏ5{
138 ÏÏ§ÏÏ§ÏÏ7¹¹Ïtemp = node.element;
139 ÏÏ§ÏÏ§ÏÏ7¹¹Ïnode.element = next.element;

 182

140 ÏÏ§ÏÏ§ÏÏ7¹¹Ïnext.element = temp;
141 ÏÏ§ÏÏ§ÏÏ7¹¹Ïnode = next;
142 ÏÏ§ÏÏ§ÏÏ7¹¹Ïleft = (HeapNode<T>)node.left;
143 ÏÏ§ÏÏ§ÏÏ7¹¹Ïright = (HeapNode<T>)node.right;
144 ÏÏ§ÏÏ§ÏÏ7¹³´if ((left == null) && (right == null))
145 ÏÏ§ÏÏ§ÏÏ5Ï6¾¹¹Ïnext = null;
146 ÏÏ§ÏÏ§ÏÏ5Ï÷´else if (left == null)
147 ÏÏ§ÏÏ§ÏÏ5Ï6¾¹¹Ïnext = right;
148 ÏÏ§ÏÏ§ÏÏ5Ï÷´else if (right == null)
149 ÏÏ§ÏÏ§ÏÏ5Ï6¾¹¹Ïnext = left;
150 ÏÏ§ÏÏ§ÏÏ5Ï÷´else if
(((Comparable)left.element).compareTo(right.element) < 0)
151 ÏÏ§ÏÏ§ÏÏ5Ï6¾¹¹Ïnext = left;
152 ÏÏ§ÏÏ§ÏÏ5Ïö´else
153 ÏÏ§ÏÏ§ÏÏ5ÏÈ¾¹¹Ïnext = right;
154 ÏÏ§ÏÏ§ÏÏ°}
155 ÏÏ§ÏÏ©} //method heapifyRemove
156 ÏÏ§
157 ÏÏ§//==
158 ÏÏ§// Returns the node that will be the new last node a remove
159 ÏÏ§//==
160 ÏÏ§
Ï Ï§ÏÞßàprivate HeapNode<T> getNewLastNode(){
162 ÏÏ§ÏÏ¨¹íÏHeapNode<T> result = lastNode;
163 ÏÏ§ÏÏ§
164 ÏÏ§ÏÏ¨¹¹±while ((result != root) && (result.parent.left == result))
165 ÏÏ§ÏÏ§ÏÏÐ¹¹Ïresult = result.parent;
166 ÏÏ§ÏÏ¨¹³´if (result != root)
167 ÏÏ§ÏÏ§Ï¶¾¹¹Ïresult = (HeapNode<T>)result.parent.left;
168 ÏÏ§ÏÏ§
169 ÏÏ§ÏÏ¨¹¹±while (result.right != null)
170 ÏÏ§ÏÏ§ÏÏÐ¹¹Ïresult = (HeapNode<T>)result.right;
171 ÏÏ§ÏÏ§
172 ÏÏ§Â¹Ä¹¹Ïreturn result;
173 ÏÏ§ÏÏ©} //method getNewLastNode
174 ÏÏ§
175 ÏÏ§
176 ÏÏ§//==
177 ÏÏ§// Returns the element with the highest value in the heap.
178 ÏÏ§// Throws an EmptyCollectionException if the heap is empty.
179 ÏÏ§//===
180 ÏÏ§
181 ÏÏ§ÏÞßàpublic T findMax () throws EmptyCollectionException {
182 ÏÏ§ÏÏ§ //fill this in
183 ÏÏ§Â¹Ä¹¹Ïreturn null;
184 ÏÏ§ÏÏ©}
185 ÏÏ§
186 ÏÏ§

 183

187 ÏÏ§//===
188 ÏÏ§// Remove the element with the highest value in the heap and
189 ÏÏ§// returns a reference to it. Throws an
190 ÏÏ§// EmptyCollectionException if the heap is empty.
191 ÏÏ§//==
192 ÏÏ§ÏÞßàpublic T removeMax() throws EmptyCollectionException
193 ÏÏ§ÏÏ§{
194 ÏÏ§ÏÏ§//fill this in
195 ÏÏ§Â¹Ä¹¹Ïreturn null;
196 ÏÏ§ÏÏ©}
197 ÏÏ©} // class Heap

 184

Appendix J - Program PriorityQueueLinked.java provided for Experiment VI

 1 ÏÕÖ×class PriorityQueueLinked<E> implements PriorityQueueADT<E>{
 2 ÏÏ§ÏíÏint count = 0;
 3 ÏÏ§ÏíÏNode<E> front;
 4 ÏÏ§
 5 ÏÏ§ÏÞßàpublic void add(E value, int priority){
 6 ÏÏ§ÏÏ§ // complete this method
 7 ÏÏ§ÏÏ©}
 8 ÏÏ§
 9 ÏÏ§ÏÞßàpublic E remove(){
10 ÏÏ§ÏÏ¨¹íÏNode<E> temp = front;
11 ÏÏ§ÏÏ¨¹¹Ïfront = front.getNext();
12 ÏÏ§ÏÏ¨¹¹Ïcount --;
13 ÏÏ§Â¹Ä¹¹Ïreturn temp.getElement();
14 ÏÏ§ÏÏ©}
15 ÏÏ§
16 ÏÏ§ÏÞßàpublic E peek(){
17 ÏÏ§Â¹Ä¹¹Ïreturn front.getElement();
18 ÏÏ§ÏÏ©}
19 ÏÏ§
20 ÏÏ§ÏÞßàpublic boolean isEmpty(){
21 ÏÏ§ÏÏ¨¹³´if (count == 0)
22 ÏÏ§Â¹ÄÏ6¾¹¹Ïreturn true;
23 ÏÏ§ÏÏ§Ïö´else
24 ÏÏ§Â¹ÄÏÈ¾¹¹Ïreturn false;
25 ÏÏ§ÏÏ©}
26 ÏÏ§
27 ÏÏ§ÏÞßàpublic int size(){
28 ÏÏ§Â¹Ä¹¹Ïreturn count;
29 ÏÏ§ÏÏ©}
30 ÏÏ§
31 ÏÏ§ÏÞßàpublic String toString(){
32 ÏÏ§ÏÏ¨¹íÏString res = "";
33 ÏÏ§ÏÏ¨¹íÏNode<E> tmp = front;
34 ÏÏ§ÏÏ¨¹¹±for (int i=0; i<count; i++){
35 ÏÏ§ÏÏ§ÏÏ7¹¹Ïres += tmp.getElement() + " ";
36 ÏÏ§ÏÏ§ÏÏ7¹¹Ïtmp = tmp.getNext();
37 ÏÏ§ÏÏ§ÏÏ°}
38 ÏÏ§Â¹Ä¹¹Ïreturn res;
39 ÏÏ§ÏÏ©}
40 ÏÏ©}

 185

Appendix K - SAS code for Experiment I, III, V and VI: 2 response variables

data TwoResponseVariables;
proc import datafile="C:\ExperimentDataA.xls" out=Exp1 replace;
run;

proc print data=Exp1;
run;
data diffs;
 set Exp1;
 Timediff = Grp2Time - Grp1Time;
 Rawdiff = Grp2Raw - Grp1Raw;
run;

proc corr data = diffs cov outp = corrout;
 var Timediff Rawdiff;
run;

proc iml;

use corrout;
read all var {Timediff Rawdiff} where (_type_='COV') into
S;
read all var {Timediff Rawdiff} where (_type_='MEAN') into
dbartran;

dbar = dbartran`;

n = 34; /*sample size was adjusted depending on the
experiment*/
p = 2; /*number of response variables */
q = p;
alpha = 0.05; /*always set to 0.05*/

 T2= n *dbar`*inv(S)*dbar;
 Fcrit=finv(1-alpha,q-1,n-q+1)*(n-1)*(q-1)/(n-q+1);
 scaledT2 = T2*(n-q+1)/((q-1)*(n-1));
 pval=1-probf(scaledT2,q-1,n-q+1);

 print T2 Fcrit pval;

run;

 186

Appendix L - SAS code for Experiment II and IV: 4 response variables

data FourResponseVariables;
proc import datafile="C:\ExperimentDataB.xls" out=Exp2 replace;
run;

proc print data=Exp2;
run;

data diffs;
 set Exp2;
 TimeDiff = Grp2Time - Grp1Time;
 LocatedDiff = Grp2BugsLocated - Grp1BugsLocated;
 CorrectedDiff = Grp2BugsCorrected - Grp1BugsCorrected;
 IntroducedDiff = Grp2BugsIntroduced - Grp1BugsIntroduced;
run;

proc corr data = diffs cov outp = corrout;
 var TimeDiff LocatedDiff CorrectedDiff;
run;

proc iml;
 use corrout;

read all var {TimeDiff LocatedDiff CorrectedDiff
IntroducedDiff} where (_type_='COV') into S;

read all var {TimeDiff LocatedDiff CorrectedDiff
IntroducedDiff} where (_type_='MEAN') into dbartran;

 print S;

n = 34; /*sample size was adjusted depending on the
experiment*/
p = 4; /*number of response variables */
q = p;
alpha = 0.05; /*always set to 0.05*/

 dbar=dbartran`;

 T2= n *dbar`*inv(S)*dbar;
 Fcrit=finv(1-alpha,q-1,n-q+1)*(n-1)*(q-1)/(n-q+1);

 scaledT2 = T2*(n-q+1)/((q-1)*(n-1));
 pval=1-probf(scaledT2,q-1,n-q+1);

 print T2 Fcrit pval;
run;

 187

Appendix M - Questionnaire: Group 1 that used only the jGRASP Debugger

This is an anonymous survey. After turning in this sheet please remember to sign the attendance
sheet. Your feedback is critical to this project. On a scale of 1-4 please rate the following. PUT
A CHECK MARK IN THE BOX THAT YOU WANT TO CHOOSE.

Task

Scale

After you start the debugging
procedure how usefulness are the
following features?

1

Useful

2
Somewhat

Useful

3
Somewhat

Useless

4

Useless

Threads

Call Stack

Variables

Eval tab (next to Variables)

How often did you use the following

features:

1
For most of the

activities

2
For at

least half
of the

activities

3
 For 1 or

2
activities

4
Never

needed to
use this
feature

Threads

Call Stack

Variables

Eval tab (next to Variables)

 Step over

 Step in

 Step out

Run to cursor

Suspend selected thread

 Resume selected thread

 188

 Auto step

Auto resume

 Use byte code size steps

Suspend new threads

Is this icon a
good

representation
or depiction of

the feature?

1

Yes – I was
immediately

able to
recognize the

feature

2

Yes – I
was able to
recognize

after I
read what

it does

3

No – I had
to

repeatedly
look up
what it

does

4

No – change
the icon since

it is not a good
representation
of the feature

0

N/A
I never used
this feature

 Step over

 Step in

 Step out

Run to
cursor

 Suspend
selected thread

 Resume
selected thread

 Auto step

Auto resume

 Use byte
code size steps

Suspend
new threads

Are there any other features that you think is missing from the debugger?

Other jGRASP related comments:

 189

Appendix N - Questionnaire: Group 2 that used the jGRASP viewers

This is an anonymous survey. After turning in this sheet please remember to sign the attendance
sheet. Your feedback is critical to this project. On a scale of 1-4 please rate the following. PUT
A CHECK MARK IN THE BOX THAT YOU WANT TO CHOOSE.

Task Scale

How useful are the following

features (on the viewer
window)?

1

Useful

2
Somewhat

Useful

3
Somewhat

Useless

4

Useless

The feature to toggle between

embedded to non-

embedded view is:

The feature to toggle between

simple and normal
view is:

The feature to toggle between

compact and normal
layout is:

The feature to toggle between

rectangular and round

nodes is: (Tree viewer)

The feature to toggle between

animation on and off
is:

The slide to adjust width of
elements:

The slide to adjust scale of the
entire view:

Increase or decrease animation
time:

How often did you use the
following features:

1

For most
of the

activities

2

For at least
half of the
activities

3

 For 1 or
2

activities

4

Never needed to
use this feature

 190

Toggle between embedded

to non-embedded view is:

Toggle between simple and

normal view

Toggle between compact

and normal layout

Toggle between rectangular

 and round nodes
(Tree viewer)

Turn animation OFF

Turn animation ON

The slide to adjust width of
elements:

The slide to adjust scale of the
entire view:

Increase or decrease animation
time:

Toggle between embedded

to non-embedded view is:

Is this icon a
good

representation
or depiction of

the feature?

1

Yes – I was
immediatel

y able to
recognize

the feature

2

Yes – I
was able

to
recognize

after I
read

what it
does

3

No – I had to
repeatedly

look up what
it does

4

No –
change
the icon

since it is
not a
good

represent
ation of

the
feature

0

N/A
I never used this

feature

Embedded view

Non-embedded

view

 191

Simple view

Normal view

Compact layout

Normal layout

Rectangular

nodes

Round nodes

Animation on

Animation off

Is there any other feature that you think would be useful to the viewer?

For example:

1) Changing the color of the nodes in the viewer

2) Stepping back during the debugging process so that you can compare the before and after state
of a data structure

3) Changing the orientation of the data structure (switching between vertical and horizontal)

4) Ability to add more variables to the viewer (For example: if the method is using local integer
and String variables, it would be great if those would be shown on the viewer as well. Right now
you can see those in the Debug tab on the left hand side.)

Other jGRASP and viewer related comments:

