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In this work we address the problem of acquisition of multispectral images in a sampled

form and the subsequent processing of the acquired signal. The problem is relevant in the

context of color imaging in digital cameras, and increasingly, in the field of hyperspectral

imaging as applied to remote-sensing and target recognition. The scope of this work encom-

passes a broad swath across image processing problems and includes: image acquisition, in

the problem of optimally selecting sampling rates and patterns of multiple channels; image

reconstruction, in the reconstruction of the sparsely sampled data; image restoration, in

obtaining an estimate of the true scene from noisy data; and finally, image enhancement

and representation, in the problem of presenting the reconstructed image in a color-space

that allows for transformations that achieve best perceived quality.

Acquisition of multispectral images in the simplest form entails either the use of multi-

ple sensor arrays to sample separate spectral bands in a scene, or the use of a single sensor

array with a mechanism that switches overlaying band-pass filters. Due to the nature of the

acquisition process, both these methods suffer from shortcomings in terms of weight, cost,

v



time of acquisition, etc. An alternative scheme widely in use only uses one sensor array to

sample multiple bands. An array of filters, referred to as a mosaic, is overlaid on the sensor

array such that only one color is sampled at a given pixel location. The full color image

is obtained during a subsequent reconstruction step commonly referred to as demosaick-

ing. This scheme offers advantages in terms of cost, weight, mechanical robustness and the

elimination of the related post-processing step since registration in this case is exact.

Three main issues need to be addressed in such a scheme, viz., the shape and arrange-

ment of the sampling pattern, selection of the sensitivities of the spectral filters, and the

design of the reconstruction algorithm. Each of the above problems is contingent on multi-

ple factors. Sensor sampling patterns are constrained by the limitations of electronic devices

and manufacturing processes, spectral sensitivities are affected by the material properties of

the colors painted on the array to form filters, and the reconstruction methods are limited

by computational resources.

In this research, we address the above problems from a signal processing perspective

and attempt to develop parametric algorithms that can accommodate external limitations

and constraints. We have developed methodologies for the selection of optimal sampling

patterns that will allow for ordered, repeated array blocks. In addition we have developed

an algorithm for demosaicking of CFA data based on Bayesian techniques. We have also

proposed a formulation for the selection of optimal spectral sensitivities for individual color

filters.
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Chapter 1

Introduction

1.1 Statement of the problem

In digital image acquisition, the optical sensor is either a charge coupled device (CCD)

or complementary metal oxide semiconductor (CMOS) device that is inherently monochro-

matic [1]. At a particular pixel location on a sensor-array, the photosensitive device inte-

grates the incident energy over its entire spectrum to generate a charge that is indicative

of intensity. The sensor array is thus capable of acquiring only a grayscale representation

of the imaged scene. In color or multispectral imaging where different bands along the

signal spectrum carry distinct information about the scene, the incident energy needs to be

sampled along the wavelength range of interest. In these applications, color filter overlays

(typically color pigment dyes) are used to cover the optical sensor-array such that the array

only captures energy in a particular range of wavelengths. In consumer applications such as

digital cameras, where the object is to produce a color image that may be displayed either

on a display device (a cathode ray tube (CRT) or liquid crystal display (LCD)) or printed

on paper, at least three color channels or bands must be sampled along the range of visible

wavelengths.

Typically, digital color cameras sample three (with wavelengths centered around the

red, green, and blue regions of the visible spectrum), or four (cyan, magenta, yellow, and

white) bands while document scanners with special applications sometimes sample up to six

bands. One way to achieve multi-band acquisition is to use multiple sensor-arrays overlaid
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Figure 1.1: Image acquisition with multiple sensor-arrays

with color filters such that energy in a distinct band is incident on a particular sensor-

array. In this case the number of sensor-arrays equals the number of bands to be sampled.

Figure 1.1 illustrates such a scheme where three distinct channels (red, green, and blue) are

sampled.

The optical sensor and its accompanying circuitry form a significant portion of the

total cost of a camera (up to 25% [2]), and multi-sensor arrays are limited only to the most

expensive digital cameras meant for professional use. Also, the beam-splitting arrangement,

which typically is a dichroic prism, adds weight to the imager. Finally, since the color bands

are acquired at different planes, an additional step of image registration is added to the

imaging pipeline.

An alternative arrangement uses sequential color sampling. A full color image is pro-

duced by taking multiple exposures while switching the color filter cascaded with the sensor-

array. The color filter in this case may be transmissive, dichroic, or a tunable liquid crystal

filter. The main disadvantage in this case is that the system is extremely sensitive to motion.

Only a few cameras targeted for studio use apply this technique.

2



Lens

Scene CCD

Figure 1.2: Image acquisition with a single sensor-array

Lately, manufacturers of consumer-level cameras (including Digital single lens reflex

(SLR) cameras) and video cameras have predominantly used another alternative scheme

that eliminates the limitations in the above schemes at the cost of added digital image

processing. In this scheme only one sensor-array (Fig. 1.1) is used to acquire the full-color

image. An array of filters, referred to as a mosaic, is overlaid on the sensor-array such that

only one color is sampled at a given pixel location. The full color image is obtained during

a subsequent reconstruction step commonly referred to as demosaicking. This scheme offers

multiple advantages in terms of cost, weight, mechanical robustness, and the elimination of

the image registration step since registration in this case is exact.

Such a mosaic-based sampling scheme for multispectral imaging presents a slew of

new challenges and has attracted much research interest. The main issues that need to be

addressed are:

• selection of the shape, arrangement, and sampling rates of mosaic filters to ensure

optimal reconstruction

• selection of spectral sensitivities of the mosaic filters to ensure optimal performance

(color reproduction in case of color cameras)

3



• the design of the reconstruction algorithm.

Each of the above problems is affected by multiple factors. The choice of a sampling

scheme for the mosaic or color filter array (CFA) depends not only on the suitability of a

particular pattern from the point of view of image reconstruction quality, but also on mate-

rial properties of the color filter pigments and the semiconductor photosensitive elements.

For example, it is desirable from an image quality perspective that the sampling pattern

be random. This ensures that there are no reconstruction artifacts due to fixed patterns in

the imaged scene. On the other hand, from a strict semiconductor devices perspective, it is

desirable to have fixed repeated sampling patterns to prevent color inconsistencies due to

cross-contamination among adjacent colors on the array. Demosaicking algorithms present

trade-offs in terms of reconstruction quality and computational time. The selection of spec-

tral sensitivities for the color filters is dependent on particular applications and viewing

conditions for the final image.

1.2 Scope of the thesis

The research problems listed in Section 1.1 have been addressed to a large extent as

independent problems in the literature. Recently, demosaicking algorithms have been a

subject of extensive research and various new approaches have been used to reconstruct

full-color images from sub-sampled data: projections on convex sets [3], wavelet domain

processing [4], decision-theory [5], neural networks [6] etc. Traditional image reconstruction

techniques have also been used to address the problem of demosaicking [7, 8, 9]. The

problem of selection of spectral sensitivities has been addressed only from the point of view

of color reproduction accuracy when areas of uniform colors are sampled [10, 11, 12, 13].
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The problem of selection of sampling patterns has seen surprisingly little interest in the

open literature while actual sampling schemes and algorithms used by camera manufacturers

remain closely guarded proprietary information. Sampling schemes that have been patented

or published in the literature are predominantly based on heuristics and on convenience of

sensor-array read-out [14, 15, 16, 17, 18].

The unique problem of simultaneous spectral and spatial sampling presented by mosaic-

based sampling schemes does not appear to be addressed in the open literature. In this

work, we will propose methods to solve the above problems using unified approaches based

on signal processing principles. In addition, the methods proposed are parametric and are

flexible to the addition of constraints due to external factors.

Chapter 2 provides an overview of the fundamentals of human color vision and color

image processing. The subject of colorimetry, the measurement of color, is introduced. The

chapter also describes perceptually uniform color spaces that are commonly used to form

measures for color reproduction accuracy. Also, generalized image formation models for

multispectral image acquisition are detailed.

In Chapter 3 we present an algorithm for the recovery of color images from sparsely

sampled, noisy data. The proposed algorithm is based on the Bayesian framework, which

allows for the effective use of prior information in finding estimates for full-color true images.

We present results for a number of test images and demonstrate the efficacy of the proposed

algorithm.

In Chapter 4 we propose a method for the selection of optimal spectral sensitivities

for the color filters used in the CFA mosaic. The proposed method is based on a unique

joint spatial-spectral treatment that accounts for the simultaneous sampling in the spectral

5



and spatial domains, which is a characteristic of CFA-based imaging. Optimal color filter

transmittance functions for a number of common CFA arrangements are derived and shown

to perform better than standard RGB and CMY color filters in terms of both spatial

reconstruction quality and color fidelity.

In Chapter 5 we propose two methods for the selection of sampling arrangements

for CFAs. Both methods are based on optimization of criteria formed using standard

image processing techniques and incorporate the effects of human color vision in their

mathematical modeling.

In Chapter 6 we discuss the results obtained in previous chapters and summarize the

problems yet to be solved.
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Chapter 2

Background

One of the primary features desirable in a color imaging system is an ability to faithfully

reproduce colors in a scene. The imaging system must also preserve the original colors during

the transfer and further processing of the acquired signal among different devices (e.g.,

camera to printer to scanner). To this end, it is critical that the imaging system account

for the mechanisms of color vision in the human visual system (HVS) and the limitations

of various devices in the imaging system regarding the processing of color signals.

2.1 Color fundamentals and human color vision

The foundations of color theory and the spectral nature of visible light originate with

the work of Isaac Newton. His experiments with prisms led to the understanding that the

visible part of electromagnetic radiation (the wavelength region between λmin=360 nm and

λmax=830 nm) can be decomposed into monochromatic components. It is important to

understand that although it is common to refer to radiation or objects possessing certain

colors, they only possesses the ability to trigger a sensation that is perceived as a particular

color by the HVS. The appearance of a color is also dependent on viewing conditions,

foreground and background color, spatial characteristics of the scene, and ambient light. In

addition, color appearance is very subjective and differs widely among observers.

A consistent method for the specification and measurement of color (colorimetry) is

not possible without an understanding of the HVS properties. Sharma and Trussel [19]

summarize a history of the development of the understanding of color vision:

7



The wider acceptance of the wave theory of light paved the way for a better

understanding of both light and color [20], [21]. Both Palmer [22] and Young

[20] hypothesized that the human eye has three receptors, and the difference

in their responses contributes to the sensation of color. However, Grassmann

[23] and Maxwell [24] were the first to clearly state that color can be math-

ematically specified in terms of three independent variables. Grassmann also

stated experimental laws of color matching that now bear his name [[25], p.

118]. Maxwell [26], [27] demonstrated that any additive color mixture could be

matched by proper amounts of three primary stimuli, a fact now referred to as

trichromatic generalization or trichromacy. Around the same time, Helmholtz

[28] explained the distinction between additive and subtractive color mixing and

explained trichromacy in terms of spectral sensitivity curves of the three ”color

sensing fibers” in the eye.

It has been determined that the the human retina has two kinds of receptors, viz., rods

and cones. The primary function of the rods is to provide monochromatic vision under low

illumination levels (scotopic vision). A photosensitive pigment called rhodopsin that is sen-

sitive primarily in the blue-green region of the spectrum is responsible for sensing radiation

in the rods. Under normal illumination, the rods are saturated and the cones contribute to

vision (photopic luminosity). There are three types of cones, each sensitive in a portion of

the visible spectrum and thus named L (long wavelengths), M (medium wavelengths), and S

(small wavelengths) types of cones. The spectral sensitivities of the cones have been deter-

mined through microspectrophotometric measurements [29], [30]. Figure 2.1(a) shows the

luminous response of rods and the aggregated response of the three cones and represents

8
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Figure 2.1: Sensitivities of human rods and cones.

luminosity under scotopic and photopic conditions respectively. Figure 2.1(b) shows the

sensitivities of the three cones as determined by Stockman et al. [30] and is a representation

of the color sensitivity of the HVS.

2.1.1 Trichromacy

The responses of the three cones to radiation emitted or reflected by a scene can be

modeled by a linear system under fixed ambient conditions. For an incident radiation with

a spectral distribution given by f(λ), where λ represents wavelength, the responses of the

three cones are given by the 3 × 1 vector

ci =

∫ λmax

λmin

si(λ)f(λ) dλ, i = 1, 2, 3, (2.1)
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where, si(λ) is the sensitivity of the ith type of cone and the visible range of the electro-

magnetic spectrum is between λmin = 360 nm and λmax = 830 nm. The cone responses are

a projection of the incident spectrum onto the three dimensional space spanned by the cone

sensitivity functions of. This space is called the human visual subspace (HVSS). Although

the actual colors perceived by the HVS are due to further non-linear processing by the hu-

man nervous system, under similar viewing conditions and ocular adaptation, a color may

be approximately specified by the responses obtained at the three types of cones.

Equation (2.1) may be written in the discrete form as

c = ST f (2.2)

where c is a 3 × 1 vector such that each element of c specifies the response obtained at

one type of cone, f is a n × 1 vector that contains samples of the incident spectrum along

the wavelength range, and S is a n × 3 matrix. The columns of S are the sampled cone

sensitivity functions. Typically, the visible range of wavelengths is sampled every 10 nm

such that n = 31. A higher sampling rate is used in applications involving fluorescent lamps

that have sharp spectral peaks [19].

Consider the vectors pi, i = 1, 2, 3, such that ST pi are linearly independent. The vectors

pi are said to constitute a set of color primaries. They are colorimetrically independent in

that no one color can be formed as a linear combination of the other two and the matrix

STP , where P = [p1 p2 p3], is non-singular. For any spectrum f , we define the vector

a(f) = (STP )−1ST f such that ST f = STPa(f). This implies that for any spectrum f ,

there exists a linear combination of the primaries that elicits the same response at the

cones and thus matches the spectrum in color. This result, referred to as the principle of
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trichromacy, is used in color matching experiments where the color of a particular spectrum

is matched to the color obtained by a linear combination of a set of primaries.

Consider the set of unit-intensity orthonormal spectra given by {ei}n
i=1, where ei is

an n × 1 vector having a 1 in the ith position and zeros elsewhere. This set forms an

orthonormal basis for all visible spectra. Let ai be the vector that denotes the weights

applied to a set of primaries to colorimetrically match the spectrum of ei (ST = STPai).

For A = [a1, a2, · · · , an]T , we can form the color matching matrix A such that

ST IN = STPAT . (2.3)

The columns of A are referred to as the color matching functions (CMFs) associated with

the primaries that are the columns of P . Any spectrum f may be represented as a weighted

sum of {ei}N
i=1 as

f =
n
∑

i=1

fiei, (2.4)

where fi are the elements of f . From (2.3), it follows that the spectrum of f is colorimet-

rically matched by weighting the primaries with the elements of

n
∑

i=1

fiei = AT f. (2.5)

AT f is a 3× 1 vector that represents the relative intensities of the primaries P that match

the color of f and is referred to as a tristimulus vector.
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2.2 Colorimetry

To offer a consistent means of measurement and comparison, tristimulus values ob-

tained from different experiments need to be defined with respect to a standard set of

color matching functions (CMFs). The International Commission on Illumination, CIE,

has defined a set of such CMFs that are used as standards in the industry. The CIE 1931

recommendations define a standard colorimetric observer by providing two equivalent sets

of CMFs.

The CIE RGB CMFs (r̄(λ), ḡ(λ), and b̄(λ)) are associated with monochromatic pri-

maries at wavelengths of 700.0, 546.1, and 435.8 nm respectively. The radiant intensities are

adjusted so that the tristimulus values for the constant spectral power distribution (SPD)

spectrum are equal. The CIE XYZ CMFs (x̄(λ), ȳ(λ), and z̄(λ)) are obtained by a linear

transformation of the CIE RGB CMFs, with the additional constraints that the XYZ CMFs

have no negative values, the choice of y(λ) is coincident with the luminous efficiency func-

tion (the relative sensitivity of the human eye at each wavelength [31]), and the tristimulus

values are equal for the equi-energy spectrum. The CIE XYZ tristimulus values are most

commonly used in color research and applications. The Y tristimulus value is referred to

as the luminance and closely represents the perceived brightness or intensity of a radiant

spectrum. The X and Z tristimulus values contain information about color or chrominance.

2.3 Perceptually uniform color spaces

A unit for color difference that is commonly used in color research is the just noticeable

difference (JND). It has been established through psychovisual experiments that the JND

is highly variable across the CIE XYZ space and the space is perceptually non-uniform [32].
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Figure 2.2: CIE XYZ and CIE RGB color matching functions

Equal distances in the XYZ space do not correspond to equal differences in perceived color

and thus Euclidian distance between two points in the XYZ space can not be used as a

reliable objective measure of the perceived difference between two colors.

A perceptually uniform color space is highly desirable in defining tolerances in color

reproduction systems and in objectively measuring the performance of various image pro-

cessing algorithms. There has been much research directed at defining suitable perceptually

uniform color spaces [31], [33]. The CIE has proposed two uniform color spaces for prac-

tical applications, viz., the CIE 1976 L∗U∗V ∗ (CIELUV) space and the CIE 1976 L∗a∗b∗

(CIELAB) space. The CIELAB space is most commonly used in the imaging and printing

industry as the preferred device independent color space.

13



2.3.1 The CIELAB space

The L∗, a∗, and b∗ components of the CIELAB space are defined in terms of the X,

Y , and Z components of the CIE XY Z space by the nonlinear transformation

L∗ = 116 f

(

Y

Yn

)

− 16,

a∗ = 500

[

f

(

X

Xn

)

− f

(

Y

Yn

)]

, (2.6)

b∗ = 200

[

f

(

Y

Yn

)

− f

(

Z

Zn

)]

,

where Xn, Yn, and Zn are the D65 white point values in the XY Z color space and

f(x) =



















7.787x + 16
116 , if 0 ≤ x ≤ 0.008856

x
1

3 , if 0.008856 < x ≤ 1.

(2.7)

The D65 white point values are the XYZ tristimulus values obtained for the D65 stan-

dard illumination specified by CIE to correspond to daylight at the temperature of 6500K.

The distance between two color stimuli in the CIELAB space is denoted by ∆E∗
ab and a

∆E∗
ab of 2.3 corresponds approximately to a JND. In the CIELAB space L∗ indicates light-

ness, chroma is indicated by the radial distance
√

(a∗)2 + (b∗)2 in the a∗b∗ plane, and hue

is indicated by
(

arctan a∗

b∗

)

.

2.4 The sCIELAB space

The CIELAB and CIELUV color spaces suffer from a critical limitation in terms of

their application to determining color reproduction errors. Both color spaces are not truly
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uniform and deviations from uniformity occur in different regions of these color spaces. They

are thus not suitable for applications that require color manipulations in these non-uniform

regions. Also, the transformation from device color spaces to the CIELAB space (which is

most commonly used to measure color reproduction errors) is highly non-uniform and does

not lend itself to easy manipulation in conjunction with commonly used computation mod-

els and techniques in image processing. In addition, the color difference measure ∆E∗
ab is

suitable only for measuring differences in large regions of uniform color. The CIELAB space

does not account for the spatial characteristics of human vision, and a point-wise compari-

son between two images using CIELAB measures is not relevant. The HVS has a low-pass

nature and attenuates high-frequency components of incident spectra. The frequency re-

sponse of the eye has been studied in much detail using experiments with luminance and

chrominance spatial patterns [34] and it has been determined that the bandwidth of the

luminance channel is significantly larger than the bandwidth of the chrominance channels.

This difference is exploited in the design of color processing algorithms and in numerous

other applications like the transmission of color signals. A complete model that incorporates

HVS spatial characteristics has not yet been developed although numerous models that in-

dependently explain different aspects of the psychophysics of human color vision have been

proposed [35], [36].

The sCIELAB model [37] is a spatial extension of the CIELAB model and provides a

measure that increases the accuracy in determining color errors. It’s use has been demon-

strated by the authors [38] on the visibility of textures in printed halftone patterns. The

sCIELAB space is derived by a spatial filtering operation that simulates blurring by the

HVS on color images. The color image is first transformed into three opponent color planes
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O1, O2, and O3, corresponding to black-white, red-green, and yellow-blue components re-

spectively. The three planes are defined as a linear transformation on the XYZ tristimulus

values as
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0.086 0.59 −0.501
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. (2.8)

Each opponent-color channel is filtered by two-dimensional separable kernels of the

form

f(x, y) = ki

∑

i

wiEi, (2.9)

where Ei = exp
(

−(x2 + y2)/σ2
i

)

, and wi are weights on the three opponent planes. Ei for

each opponent color plane is determined by considering the HVS response to the particular

color plane. The resulting three channels are transformed back to CIELAB space via the

CIEXYZ inverse transform. The ∆E∗
ab measure on this new image is referred to as ∆Es

. The sCIELAB difference measure reflects both spatial and color sensitivity, and equals

∆E∗
ab over uniform regions of the image where the low-pass nature of the HVS does not

cause appreciable degradation.

2.5 Image formation

The spectrum incident at the optical sensor of a recording device is a result of multiple

transformations on the spectrum emanating from a scene. The scene may contain only an
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illumination source, or as is more common, the scene may be a combination of light sources

and reflecting surfaces. Figure 2.5 shows the illumination spectra of common light sources.
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Figure 2.3: Relative spectral power distributions of common light sources

The generalized response obtained at a single location on a sensor-array can be de-

scribed by

ti =

∫ ∞

−∞
fi(λ)d(λ)r(λ)l(λ)dλ + ηi i = 1, 2, .., k

=

∫ ∞

−∞
mi(λ)r(λ)l(λ)dλ + ηi, i = 1, 2, .., k (2.10)
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where k distinct color channels are sampled at each location, and

fi(λ) = spectral transmittance of color filter,

g(λ) = sensitivity of sensor,

r(λ) = spectral reflectance of imaged surface,

l(λ) = spectral power density of illuminant,

ηi = measurement noise, and

m(λ) = fi(λ)g(λ).

The model may be expressed in the discrete form as

t = MTLr + η, (2.11)

where

t = k × 1 vector of measurements,

r = p× 1 vector of scene reflectance samples, p is the number of times the spectrum is

sampled (usually, p = 31),

L = p× p diagonal matrix with samples of radiant spectrum of illuminant along its

diagonal, and

M = p× k matrix that describes the combined filter-sensor response.

For a complete 2-dimensional image of dimension M × N and k color channels, the

image formation model incorporates the blur due to the taking lens and thermal effects in
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the optical sensor and is given by

y = Ax+ n (2.12)

Where x (kMN × 1) represents the channel intensities of the original scene. The vector x

is of the form x = [xT
1 , x

T
2 , · · · , xT

k ]T , and is a color-stacked form of the original column-

ordered scene. The vector y is the similarly arranged data, and n represents system noise.

The matrix A represents the blur and is of the form

A =























A1,1 A1,2 · · · A1,k

A2,1 A2,2 · · · A2,k

...
...

...
...

Ak,1 Ak,2 · · · Ak, k























, (2.13)

where Ai,j are MN×MN matrices that represent the blurring effect on the jth color channel

due to the ith color channel.

We will use the models in Eqs. (4.2), and (2.12) in the next few chapters to design

methods for CFA sample selection, demosaicking, and the selection of color filter spectral

sensitivities.
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Chapter 3

Demosaicking of Color Filter Array Data

3.1 Introduction

The multiple stages in the imaging pipeline of typical digital color imaging device are

illustrated in Fig. 3.1. Although the sequence of operations may differ in various devices,

the basic operations do remain the same. In the initial stage, the image is acquired via the

taking optics after due exposure and focus control. Pre-processing attempts to correct for

optical distortions and eliminate artifacts due to the electronics of the imager. The next

few stages involve digital image processing and various manufacturers implement these

operations in different configurations. Full-color images are formed from sparsely sampled

CFA data in the demosaicking step. Post-processing involves the operations of sharpening,

deblurring, color correction, etc., and in almost all implementations, these operations follow

the demosaicking operation. The demosaicking operation that occurs earlier is inherently

a nonlinear blurring operation, and operations like deblurring carried out at a late stage in

the imaging pipeline can not take advantage of linear models of image formation. In this

chapter, a generalized framework for the recovery of color images is proposed that addresses

this issue. The proposed framework may be used to simultaneously demosaic, deblur, and

denoise color images acquired as sparsely sampled CFA data.

The problem of reconstruction of full-color images from sparsely sampled CFA data

is illustrated in Fig. 3.2. The CFA image may be separated into distinct sub-sampled

color channels. At each pixel location, color channels that have not been sampled are
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Figure 3.1: Image processing pipeline in a digital camera

reconstructed using information from adjoining pixels that are sampled. Both inter- and

intra-channel intensity information may be used in the process.

If the color planes are considered as three separate images, the demosaicking problem

may be thought of as analogous to the image interpolation problem. This naive approach to

demosaicking using conventional interpolation strategies leads to artifacts (the zipper effect)

unique to the demosaicking process. Figure 3.3 illustrates the process of CFA acquisition and

demosaicking. The CFA acquires the intensity of incident energy at each spatial location.

The resultant CFA image is separated into three color channels (red, green, and blue) and

missing data is found by bilinear interpolation of color channels. The resulting full-color

image shows severe color artifacts.

The demosaicking problem is effectively addressed by considering it as a problem of

recovery of special multichannel signals. These special multichannel signals are color images

that have a well-understood image formation model (Section ??), and there is a clear set

of desirable features required in the final reconstructed image, viz., its closeness in color

appearance to the original scene. The properties of the human visual system and its response
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Figure 3.2: CFA sampling and demosaicking

to color signals should thus be an important component of demosaicking techniques. A

number of specialized algorithms for demosaicking have been presented in the literature

[39, 40, 41, 42, 43, 44, 3, 45, 46]. A majority of these algorithms can be classified into two

broad groups – algorithms that are based on heuristics (these algorithms may account for

cross-channel correlation and the presence of edges) and algorithms that are based on the

solution of a mathematical problem. The most notable feature (as seen in the survey by

Gunturk et al. [47]) of the most successful demosaicking algorithms is that they effectively

use inter-channel correlation in addition to the spatial correlations in images.

A common thread in all these algorithms, especially conspicuous in heuristic algorithms,

is that they are tailored for the Bayer array [14]. In light of the multitude of CFA patterns

present both in the open literature and in proprietary frameworks used by manufacturers of

DSCs [14, 18, 48, 49, 50, 51, 52, 17], it would be fruitful to design an algorithm that works

for a general CFA pattern. The framework for color image restoration introduced in this

chapter is not constrained by CFA arrangements and can be used for the joint deblurring

and demosaicking of data obtained from arbitrary CFAs.
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(a) Original image (b) CFA sampled image

(c) CFA image with colors (d) Bilinear reconstructed

Figure 3.3: (a) An image with information about three colors (red, green, and blue) at each
spatial location. (b) Representation of the image as it would be acquired with a CFA-based
imager. (c) CFA data shown with sampled colors at each location. (d) Result of bilinear
reconstruction of CFA data.

3.2 Bayesian restoration

The problem of restoration of images from sparse and noisy data is generally ill-posed,

and easy inversion is rarely possible. Effective solutions require accurate knowledge of

the degradation model and the characteristics of the imaging system. In deterministic

techniques, prior information about the true image is typically introduced to ensure a

solution to the inversion problem. For instance, the assumption of local smoothness in

images holds in the general case and is typically used for regularization of the least squares
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inversion problem. In non-deterministic techniques, prior information is in the form of a

distribution or a probability density function for the image that is to be estimated.

Bayesian methods have been used extensively in imaging applications like restoration,

segmentation, computed tomography, etc. The Bayesian approach is well suited to the

problem of image restoration since it allows for flexible and effective means to incorporate

prior information into the solution. Within the Bayesian paradigm, a common choice for

the estimator is the maximum a posteriori (MAP) solution, which provides an estimate for

the true image x from the noisy data y as the maximum of the posterior probability density

function p(x|y), which is in effect the most likely image given the occurrence of the data y.

The choice of p(x), the prior density function, greatly affects the quality of the solution.

Markov random field (MRF) image models effectively describe the smoothness and

local nature of features in the general natural scene and have been extensively used to

define image priors. MRFs are derived from potential functions that may be thought of as

representing a quantity akin to energy. The desirability of configurations of local intensities

depends on the value of the resulting potential function. Common potential functions of

note are functions of the type ψ(xi −xj), where xi and xj are intensity values at the ith and

jth pixel respectively. A common prior model is the Gauss-Markov random field (GMRF)

where ψ is a quadratic. A major issue with the GMRF model is its behavior across edges.

Cost functions based on GMRF models will penalize large intensity differences between

pixels and characteristically oversmooth across edges. Typically, local features and edges

are accommodated by augmenting GMRF models with line processes [53] that lend a degree

of adaptation to the estimation procedure. The line process l acts to inhibit smoothing

across edges and encourages smoothing across pixels that do not lie across edges. The
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MAP estimate in this case is found as

x̂, l̂ = arg max
x,l

p(x, l|y). (3.1)

Bayesian restoration of multichannel images has been addressed in the literature.

Molina et al. [54] use multiple line processes to define a potential function that has cross-

channel line-process terms. The cost function derived from the resulting GMRF prior

reduces the penalty on intensity differences in a particular channel if line processes in other

channels indicate the presence of an edge. This approach is useful since edge features in

scenes typically appear at boundaries of objects and are typically reflected across all color

channels. The Bayesian approach has also been used to address the specific problem of color

reconstruction from single-sensor data. Parmar et al. [55] use a GMRF prior that includes

only one line process that reflects the probability of the presence of an edge in all three

color channels of a color image.

Here, we propose a novel prior model for color images that incorporates cross-channel

edge information. The proposed model is the result of a GMRF model augmented with line

processes that attenuate the penalty on large intensity differences to prevent smoothing

across edges. In addition, the prior has cross channel terms that describe spatial smoothing

in the color-difference channels. Section 3.3 details the reasoning behind this approach.

The image model and restoration algorithm are developed in Section 3.4. In Section 3.5

the efficacy of the proposed algorithm is demonstrated on the problem of reconstruction of

color images acquired by single-sensor digital cameras.
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3.3 Color image model

Digital color images are obtained either by direct acquisition with digital cameras or by

scanning prints or slides obtained by film-based cameras. In both cases, the digital imaging

device typically acquires three color bands in the red, green, and blue (RGB) regions of the

spectrum. The forward model in the discrete form for the signal acquired at a pixel location

is given by

ci = F
(

N
∑

k=1

rksik + η

)

, i = R,G,B (3.2)

where ci is the intensity of the ith color, rk and sik are samples of scene irradiance and

sensitivity of the ith sensor at wavelength k nm respectively, η is noise, and F(.) is a non-

linear function that describes the characteristics of the imaging system.

Channel intensities in (3.2) are functions of the inner products of the scene spectral

content described by the irradiance and the respective sensor sensitivities. The irradiance

incident on a sensor due to the general natural scene is a consequence of the reflectance of the

scene and the radiance of the illuminant. Typically, the illuminant (sunlight, camera flash,

fluorescent light, etc.) has broad support across the spectrum. Also, sensor sensitivities

have considerable overlapping support, especially among adjoining bands (red and green,

green and blue). As a result, the channel intensities detected at a spatial location are well

correlated.

Color images can be decomposed into the luminance channel, which describes bright-

ness, and two chrominance channels, which convey information about color [56]. It is well
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Figure 3.4: Sample images from Eastman Kodak’s PhotoCD PCD0992.

known that most significant structures in color images manifest predominantly in the lu-

minance channel. Color image enhancement algorithms take advantage of this feature; for

instance, unsharp masking as applied to color images is performed only on the luminance

channel. Luminance is commonly defined as a linear combination of the color channels,

although the weights for each channel differ among various treatments. The appearance of

major features in the luminance channel suggests that feature edges in typical color images
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are very well correlated. This phenomenon was demonstrated by Gunturk et al. [3] by

decomposing each color channel of a set of images into 4 bands by filtering with directional

(0, π/4, π/2, and 3π/4) high-pass filters. It was shown that corresponding high frequency

components across the color channels are highly correlated. An equivalent assumption is

that the color-difference channels (R-G and G-B) are band limited. The smoothness of the

R-G and R-B color-difference channels in a natural scene is illustrated in the images in the

left column in Figs. 3.5(b) and 3.5(c) respectively.

(a) From left to right: The red channel shown in grayscale, ∇HR; and ∇V R

(b) From left to right: The R-G channel difference image; ∇H(R-G); and ∇V (R-G)

(c) From left to right: The R-B channel difference image; ∇H(R-B); and ∇V (R-B)

Figure 3.5: A representation of horizontal and vertical gradients obtained as the first dif-
ferences in the respective directions.

It follows from the high correlation among high-frequency components of the color

channels that the gradients of the color channels will be highly correlated. This is illus-

trated in Fig. 3.5. Figure 3.5(a) shows the red channel of an image from Kodak’s PhotoCD

PCD0992 [57] (Fig. 3.4) and the horizontal and vertical gradients found as the respective

first differences of the red channel image (denoted hereafter with the symbols ∇H and ∇V
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Table 3.1: Correlation coefficients found for the database of images in Eastman Kodak’s
PhotoCD PCD0992.

ρ i = R
j = G

i = G
j = B

i = B
j = R

i, j 0.8534 0.9230 0.7560

∇Hi,∇Hj 0.9777 0.9765 0.9561

∇V i,∇V j 0.9751 0.9776 0.9565

∇DLi,∇DLj 0.9760 0.9778 0.9546

∇DRi,∇DRj 0.9751 0.9774 0.9532

respectively). Figs. 3.5(b) and 3.5(c) show the color-difference (∇HR - ∇HG, and ∇V R -

∇V G) images and the corresponding images for the R-B channel respectively. The color-

difference images are characteristically smooth and the difference images of channel gradi-

ents illustrate their small magnitude. Table 3.1 shows the correlation coefficients among

color channels and color channel gradients for an image obtained by stitching together all

images in Eastman Kodak’s PhotoCD PCD0992 [57]. Correlation coefficients for chan-

nel gradients in each direction are very high in each case, and highest for adjacent bands

(∇θR∇θG and ∇θB∇θR).

3.3.1 Degradation Model

The degradation model is presented in the matrix-vector form as:

y = Ax+ w, (3.3)

where y ∈ R
3MN×1 is formed by stacking the three column-ordered color channels. The

degradation to the true image x ∈ R
3MN×1 is described by A, which is a block matrix that
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has expressions for intra-channel blur as its diagonal blocks and cross-channel blur as the off-

diagonal blocks. The additive noise w is zero-mean white Gaussian noise with variance σ2
w.

The color channels are ordered column-wise and stacked such that x = [xRT
, xGT

, xBT
]T (y

is similarly arranged).

3.3.2 Prior model

From the discussion in Section 3.3, it follows that a suitable prior model for color

images will be formed from potential functions of the type

ψ
((

xk
i − xk

j ) − (xk′

i − xk′

j

))

, (3.4)

where i, j are pixel locations, k, k′ are R,G,B, and k 6= k′. The cost functions derived

from such priors will penalize the difference between the first-difference of pixel intensities

between color channels.

For an M × N color image, the true image x is defined as a realization of a random

process defined on a 3-D rectangular lattice S with 3MN points. In addition we introduce

two sets of line processes lθ and cθ, θ = H,V,DL,DR, for the horizontal, vertical, and

left and right diagonal directions respectively. The line processes lθ model intra-channel

intensity transitions and cθ model the transitions in the color difference channels. Fig. 3.6

shows all line processes associated with the RGB intensities at a spatial location in the

image.

The prior joint density for x, lθ, and cθ is defined as a Gibbs density to ensure that the

resulting field is a MRF (Hammersley-Clifford theorem) [58]. A Gibbs field has a density
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Figure 3.6: Representation of a point in the 3-D lattice with associated line processes. Red,
green and blue pixels are shown surrounded by the respective line processes that denote
intra-channel edges (lkθ ). Line processes for the cross-channel terms (ckk′

θ ) are appropriately
labeled.

function of the form

p(x) =

exp

(

−∑
i∈C

ṽi(x)

)

Zx
, (3.5)

where Zx in the denominator normalizes the density function, ṽi(x) is the potential function

defined over the set of cliques C. A subset C of S is a clique if every pair of distinct sites in

C are neighbors. Figure 3.7 shows the set of cliques used to define the proposed prior model

p(x, lθ, cθ) =
1

Zx
exp

(

− 1

2σ2
x

∑

i

∑

k,k′

∑

θ

ζ(xk
i )

2 +
(

(xk
i − xk

i:+θ) − (xk′

i − xk′

i:+θ)
)2
c̃kk′

θi

+ (xk
i − xk

i:+θ)
2 l̃kθi

)

(3.6)
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Figure 3.7: The set of cliques associated with a red pixel at location i. Locations of i : +θ,
θ = H,V,DL,DR are labeled.

where 1 ≤ i ≤MN ; θ = H,V,DL,DR; l̃θi
= 1−lθi

, c̃θi
= 1−cθi

; k, k′ = R,G,B, k 6= k′

(xk are random processes with intensities of the three color channels); and the term ζx2
i j

keeps the density in (3.6) from being improper. ζ is set to a number that is small enough

for this term to have little effect on the solution. We used ζ = 10−3 for all reconstructions

in this paper. The index i : +θ refers to the pixel location adjacent to i in the direction of

θ (illustrated in Fig. 3.7), and i : −θ will refer to the spatial location i : +θ + π.

32



3.4 Algorithm Derivation

The maximum a posteriori (MAP) estimates of x and the line processes given the prior

described in (3.6) are obtained by maximizing

p(x, lθ, cθ|y) =
p(y | x) p(x, lθ, cθ)

p(y)
. (3.7)

As p(y) is constant with respect to x, lθ, and cθ, the optimal values of x, lθ, and cθ are the

solution to the following optimization problem

x̂, l̂θ, ĉθ = arg max
x,lθ,cθ

p(y | x) p(x, lθ, cθ), (3.8)

where p(y | x) is the likelihood function in the presence of additive, uncorrelated Gaussian

noise and is given by

p(y | x) =
1

(2π)3MNσ6MN
w

e

(

− 1

2σ2
w

[y−Ax]T [y−Ax]

)

. (3.9)

Optimizing the cost function in (4.18) simultaneously over x, lθ and cθ is non-convex

and computationally prohibitive. Instead, we iteratively update the estimate of x and then

update the estimate of the edge variables. Results derived in [59] based on the iterated con-

ditional modes (ICM) algorithm [60] and the iterated conditional average (ICA) technique

are used to update x, lθ and cθ.
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3.4.1 The ICM iterations for pixel update

The ICM is a greedy iterative algorithm that sequentially updates values of pixels by

maximizing their conditional posterior probability. Specifically, it finds the value of xk
i that

maximizes the conditional probability of xk
i given all the remaining pixels xk

j , x
k′

j , xk′

i , i 6= j,

and k 6= k′, and the associated edge variables. The required conditional probability is given

by

p(xk
i | lkθ , ckk′

θ , x\ik) = p(y | xk
i , x\ik) p(x

k
i | x\ik, lkθ , ckk′

θ ) (3.10)

= p(y | x) p(xk
i | xnb, l

k
θ , c

kk′

θ ) ,

where x\ik is the set of all pixels in the image except the ith pixel of color k, and xnb are

neighboring pixels of xk
i .

It can be shown [59] that the conditional posterior density of a pixel contingent on its

neighboring elements xnb is

p
(

xk
i | y, xnb, lθnb

, cθnb

)

=
1√

2π σi

e(−(xk
i −µi)

2/2 σ2
i ), (3.11)

where

µi =
aT

i (y −Ax−i) + (σ2
w/σ

2
x)ρk

i

aT
i ai + (σ2

w/σ
2
x)γk

i

, (3.12)
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and ai is the column of A corresponding to pixel xi, x−i is x with a zero in the ith pixel,

and

ρk
i =

∑

θ,k,k′

(

xk
i:+θ l̃

k
θi:+

+ (xk
i:+θ + xk′

i − xk′

i:+θ) c̃
kk′

θi:+
+ xk

i:−θ l̃
k
θi

+ (xk
i:−θ + xk′

i − xk′

i:−θ) c̃
kk′

θi

)

γk
i = ζ +

∑

θ,k,k′

(

l̃kθi:+
+ c̃kk′

θi+
+ l̃kθi

+ c̃kk′

θi

)

(3.13)

The conditional mean is also the conditional mode and maximizes the probability in

Equation (3.11). The ICM algorithm consists of iteratively replacing pixel xk
i with its

conditional mean µk
i , i.e.

xkp+1

i =
aT

i

(

y −Axp
−i

)

+ (σ2
w/σ

2
x)ρp

i

c+ (σ2
w/σ

2
x)γp

i

, (3.14)

where [.]p denotes the value of a variable after the pth iteration. The ICA algorithm [59]

is used to update the line processes by iteratively updating a single line variable with its

mean conditioned on x and all the other edge variables. The restoration algorithm iterates

alternately between the pixel updates and line variable updates until convergence. Updated

values are used in subsequent iterations. Convergence of this iteration for fixed lθ and cθ is

assured [60] because

p(x | y) = p(xk
i | y, x\ik) p(x\ik | y)

does not decrease at each iteration.
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(a) Original image (b) Bilinear (c) POCS (d) Proposed

(e) Cropped image (f) Bilinear (g) POCS (h) Proposed

Figure 3.8: Reconstruction results for image 19 in Kodak PhotoCD PCD0992

3.4.2 Edge Variable Update

The ICA algorithm [59] is used to update the inter and intra-channel line processes.

The ICA algorithm iteratively updates a single edge variable with its mean conditioned on

x and all the other edge variables. It can be shown that the density of an intra-channel edge

variable conditioned on x and all the other edge variables has the truncated exponential

density

p(lkθi
| xk

i , lθ\ik
, cθ) = C1 exp{αlk

θi

lkθi
} 0 ≤ lkθi

≤ 1 , (3.15)
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(a) Original image (b) Bilinear (c) POCS (d) Proposed

(e) Cropped image (f) Bilinear (g) POCS (h) Proposed

Figure 3.9: Reconstruction results for image 13 in Kodak PhotoCD PCD0992

where C1 is a constant, lθ\ik
represents all the edge variables except lkθi

variable, and

αlk
θi

=
1

2σ2
x

∑

k

(xk
i − xk

i:−θ)
2 . (3.16)

Similarly, the density of an inter-channel edge variable conditioned on x and all the

other edge variables has the truncated exponential density

p(ckk′

θi
| xk

i , cθ\ikk′
, lθ) = C1 exp{αckk′

θi

ckk′

θi
} 0 ≤ ckk′

θi
≤ 1 , (3.17)
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(a) Original image (b) Bilinear (c) POCS (d) Proposed

(e) Cropped image (f) Bilinear (g) POCS (h) Proposed

Figure 3.10: Reconstruction results for image 11 in Kodak PhotoCD PCD0992

where C1 is a constant, lθ\ik
represents all the edge variables except lkθi

variable, and

α
ckk′
θi

=
1

2σ2
x

∑

kk′

(

(xk
i − xk

i:+θ) − (xk′

i − xk′

i:+θ)
)2
. (3.18)

The conditional distributions in (3.15) and (3.17) have a mode of one, so an ICM

update of lkθ and ckk′

θ would result in turning all the edges variables on. For this reason, we

use the ICA algorithm, which uses the iteration

lk
p+1

θi
= l̄k

p

θi
, (3.19)
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(a) Original image (b) Bilinear (c) POCS (d) Proposed

(e) Cropped image (f) Bilinear (g) POCS (h) Proposed

Figure 3.11: Reconstruction results for image 22 in Kodak PhotoCD PCD0992

where l̄k
p

θi
is the mean of the truncated exponential random variable in (3.15) and is given

by

l̄kθi
=
αlk

θi

exp
(

αlk
θi

)

− exp
(

αlk
θi

)

+ 1

αlk
θi

[

exp
(

αlk
θi

)

− 1
] . (3.20)

If the αlk
θi

term in (3.20) gets large, exp
(

αlk
θi

)

can exceed the floating-point limits on

a typical computer, and this can cause numerical instability problems. To remedy this

situation, we multiply the top and bottom of (3.20) by exp
(

−αlk
θi

)

, which yields the more

stable expression:

l̄kθi
=
αlk

θi

− 1 + exp
(

−αlk
θi

)

αlk
θi

[

1 − exp(−αlk
θi

)
] . (3.21)

Similar expressions hold for ckk′

θi
.
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(a) Original image (b) Bilinear (c) POCS (d) Proposed

(e) Cropped image (f) Bilinear (g) POCS (h) Proposed

Figure 3.12: Reconstruction results for image 21 in Kodak PhotoCD PCD0992

3.4.3 Demosaicking Algorithm

The demosaicking algorithm consists of two steps that are performed alternately until

convergence. First, pixel values (x) are updated using Equation (3.14). In the second step,

the edge variables lkθi
, ckk′

θi
are updated with their conditional means using Equation (3.19).

The reconstruction algorithm is summarized as follows:

1. Initialize x, lθ, and cθ using the result of bilinear interpolation on CFA data.

2. Starting from the red pixel at i = 1, update the value of color intensity using (3.14)

using previously updated values for subsequent pixels.

3. Given xp+1, lpθ , and cpθ, obtain lp+1
θ , and cp+1

θ using the ICA iteration in (3.19).
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(a) Original image (b) Bilinear (c) POCS (d) Proposed

(e) Cropped image (f) Bilinear (g) POCS (h) Proposed

Figure 3.13: Reconstruction results for image 1 in Kodak PhotoCD PCD0992

4. Repeat until convergence.

3.5 Experiments

We demonstrate the proposed algorithm on the problem of reconstruction of full-color

images acquired with single-sensor digital cameras. The system model in this is case is

y = SHx+ w (3.22)

where S is a sampling matrix that and H represents blur. The proposed algorithm was

used to reconstruct test images from the Kodak PhotoCD PCD0992 collection (Fig. 3.4)

that have been sampled by the Bayer CFA. The blur matrix H for our experiments was set
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at the identity to facilitate comparison with demosaicking methods that do not include a

deblurring operation. The values for σx, and σw were set at 10−2 and 10−1 respectively.

Experimental results are shown in Figs. 3.8-3.13. Table 4.2 gives the RMSE values for the

color channels of the reconstructed images.

Table 3.2: Channel RMS errors for images listed in the first column

Bilinear POCS [3] Proposed

Image Red Green Blue Red Green Blue Red Green Blue

Fig. 3.8 17.5996 9.3686 16.8524 4.6703 2.5134 4.3881 4.1491 2.5991 3.9239

Fig. 3.9 17.8050 12.2653 18.4221 6.3757 3.9813 6.8792 4.4562 3.7071 4.7347

Fig. 3.10 14.7799 9.3768 14.7081 5.4179 2.7658 4.5654 5.1074 2.7888 3.9457

Fig. 3.11 11.1448 7.1655 11.6881 4.3177 2.7996 4.4672 4.1826 3.0986 3.4819

Fig. 3.12 15.1467 9.1876 14.7369 5.2312 2.7563 4.8997 4.8315 2.8907 3.8166

Fig. 3.13 14.7886 9.3236 14.7624 4.6903 2.5793 4.4692 3.6143 2.2998 2.9378

The results obtained with the proposed algorithm are compared with results obtained

with the algorithm in [3] based on projections on to convex sets. The proposed algorithm

provides reconstructed results that have lower RMSE when compared with the original

image for which intensities of all three colors are available at each location. Subjectively,

it is seen in Figs. 3.8-3.13 that the proposed algorithm leads to reconstructed images that

display fewer color artifacts. The improved results can be seen most clearly in textured

regions in images where the proposed prior that accounts for cross-channel correlations

allows for better reconstruction. For instance, in the cropped images in Fig. 3.9, false color

is clearly seen in the POCS reconstructed image in the white water, while the results of the

proposed algorithm have very few false color artifacts.
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3.6 Conclusions

In this chapter we have proposed a novel cross-channel GMRF prior model for color

images. The proposed prior model takes advantage of the high correlation between high-

frequency edge content across the color channels of an image. We also propose a Bayesian

algorithm that uses the new prior model to obtain MAP estimates for the restoration of

color images. The proposed algorithm can be used to jointly demosaic and deblur images

acquired with single-sensor digital cameras. The efficacy of the algorithm is demonstrated

in experiments in which we demosaic sparsely sampled color images to arrive at a good

estimate of the full-color image.
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Chapter 4

Selection of sensor spectral sensitivities

4.1 Background

Figures 4.1(a) and 4.1(b) show the responses of typical sensor-arrays that use RGB and

CMY color filters respectively. The responses shown are for sensor-arrays that are cascaded

with IR blocking filters and the camera lens. CMY sensors provide greater dynamic range

and SNR as compared to RGB sensors since the RGB primary pigments are created using

multiple layers of the subtractive primaries C, M, and Y. Each camera will have a different

spectral response due to tolerances in sensors and color filters. The response is compensated

for in the digital image processing steps to produce a standard color response. Typically,

the response of cameras is measured and this information is used in later color correction

steps [10].

The colorimetric accuracy of any acquisition device in terms of its ability to exactly

reproduce the colors in a scene, as well as the ability of the system to reproduce luminance

information (exceedingly important even in color images [61]), depends fundamentally on

the spectral sensitivity functions of the color filters. The design of spectral sensitivity

functions is thus an important design parameter. Much work has been directed at the

problem of selection of spectral sensitivity functions for improving the reproduction of color

when multiple colors are acquired at each spatial location [62, 63, 13, 64, 65, 11, 12, 66,

67]. The main issues in this problem are the accurate reproduction of color under varying

illuminants and in the presence of noise [13, 65]. Wolski et al. [66] propose a method for

the selection of optimal sensor sensitivities based on their ability to reproduce color under
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Figure 4.1: Spectral sensitivity functions. Ordinates represent transmittance, abscissae are
wavelength in nm. (a),(b) RGB and CMY transmittances respectively from ImagEval’s
vCamera toolbox.

varying illuminants using a regularization approach. Vora and Trussell [11], [12] perform a

mathematical analysis of sensor responses in terms of their color reproduction abilities and

propose a method for the design of spectral sensitivity functions.

The selection of spectral sensitivity selection is all the more critical for CFA-based

acquisition systems, but the problem has received very little attention in the research com-

munity. In addition to the obvious effect on color reproduction, the spatial-chromatic sam-

pling nature of CFA-based schemes enforces a dependence of spatial reconstruction quality

on the spectral sensitivity functions [68]. Sensitivity functions that project incident spectra

to a tristimulus space that is highly correlated will yield improved spatial reconstruction

results, since information about unsampled colors at specific locations can be well deduced

from the values of the sampled colors due to high inter-channel correlation. However, a

high inter-channel correlation has a detrimental effect on the discriminability of colors.
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Alleysson et al. [69] demonstrate this trade-off between color discrimination and spatial

reconstruction quality. Alleysson’s analysis follows from a unique model of the CFA image

considered as a single-band signal. This CFA image has a localized luminance-chrominance

response in the frequency domain. They arrive at optimal values of sensitivity bandwidths

and maximum values for Gaussian sensitivity functions based on PSNR values obtained

after a frequency-domain reconstruction of Bayer-sampled images.

A common theme in most research on the reconstruction of full-color images from CFA

data is the choice of a forward model that simulates CFA acquisition by subsampling a

three-color image. This is a major deficiency, as this approach bypasses the very significant

effect that color filter spectral sensitivity functions have on the appearance of reproduced

color. It is critical to accurate judgment of reconstruction quality vis-à-vis the acquired

scene that the forward model incorporate the transformation to the final tristimulus space

of image representation.

We are not aware of any work in the literature that addresses the problem of sam-

pling the color spectrum and sampling in the spatial domain in a unified framework. This

dual-sampling is a characteristic of mosaic-based sampling schemes, and in this chapter we

propose a method for the design of optimal spectral sensitivities that addresses this defi-

ciency. We demonstrate the great impact that the spectral transmittance functions have

on the quality of reconstruction and propose a method for the design of optimal spectral

sensitivities for the color filters used in CFAs. The sensitivities are optimal in the sense

that they minimize the color reproduction error between the tristimulus values obtained

for a scene and the tristimulus values obtained for the reconstructed image that represents

the same scene in the linearized CIELAB perceptually uniform color space. The optimality
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criterion is reduced to a form that is expressed in terms of inter- and intra-pixel wavelength

correlation matrices and does not depend on particular images.

The chapter is organized as follows: In Section 4.2 we present a forward model for image

formation in the case of CFA acquisition. In Section 4.3 we develop the optimality criterion

based on a multi-channel Wiener reconstruction from CFA data, and in Section 4.4 we

present a model for spatial-spectral correlation. Sections 4.5 and 4.6 present experimental

results and conclusions.

4.2 Image formation Model

Figure 4.2 depicts the image formation process for an image acquired at a spatial

location in a sensor array. Radiation from a light source is incident on a point in the scene

with reflectance x(λ). The reflected beam then travels through a color filter to an optical

detector (CCD or CMOS device) that has a sensitivity d(λ). The signal obtained at the

detector is given by

c =

∫ λmax

λmin

f(λ)d(λ)x(λ)l(λ)dλ + η, (4.1)

where l(λ) is the spectral power density of the illuminant, f(λ) is the spectral transmittance

of the color filter, and η is the measurement noise. The detector is sensitive in the wavelength

range (λmin, λmax).

As is customary in the field, the visible spectrum is assumed to be adequately sampled

when sampled every 10 nm in the range 400–700 nm to give a total of 31 samples. The
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Figure 4.2: Representation of the image formation process in color image acquisition with
color filters

image formation model may be expressed in the discrete form as

c = MTLx+ η, (4.2)

where x ∈ R
31×1 contains scene reflectance samples, L ∈ R

31×31 is a diagonal matrix with

samples of the radiant spectrum of the illuminant along its diagonal, and M ∈ R
31×1

describes the combined filter-sensor response.

We extend (4.2) to describe the image formation model for an m×n sensor array that

samples p color channels at each pixel location. Let fi ∈ R
31×1, i = 1, 2, · · · , p, describe the

sampled spectral sensitivity functions of the p colors and let F = [fT
1 , f

T
2 , · · · , fT

p ]T . The
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Figure 4.3: Sampled spectra of common illuminants in the range 400-700 nm

image acquired at the sensor is described by the vector

y = F̄ L̄x+ η. (4.3)

The scene is described by the vector of reflectance values x = [xT
1 , x

T
2 , · · · , xT

mn]T , where

xi ∈ R
31×1, 1 ≤ i ≤ mn are the sampled reflectance spectra acquired at the mn distinct

pixel locations in the sensor array. The p-color image, y ∈ R
pmn×1, is of the form y =

[yT
1 , y

T
2 , · · · , yT

p ]S , where yi ∈ R
mn×1 are the column-ordered color channels.

The spectrum incident at the ith location is obtained as Lixi, where Li ∈ R
31×31 is

diagonal with sampled values of the illuminant spectrum as its diagonal elements. Figure

4.3 shows the sampled values of common illuminant spectra. The matrix of illuminant

spectra L̄ in Eq. (4.3) is formed as L̄ = diag(L1, L2, · · · , Lmn).
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The matrix F̄ is of the form

F̄ =























Imn ⊗ fT
1

Imn ⊗ fT
2

...

Imn ⊗ fT
p























, (4.4)

where ⊗ denotes the Kronecker matrix product and Imn is the mn ×mn identity matrix.

In CFA-based image acquisition, only one color is sampled at a particular location. The

image formation model in this case is

g = Sy. (4.5)

S is the subsampling matrix that reduces the pmn samples of y to the vector g of size mn×1

such that we are left with only one color sample at each pixel location. S is block-diagonal

and of the form

S =























E1 0 0 0

0 E2 0 0

0 0
. . . 0

0 0 0 Ep























, (4.6)

where Ei, i = 1, 2, · · · , p, are row-deficient identity matrices with rows corresponding to

missing color samples removed. The dimensions of Ei depend on the CFA sampling ar-

rangement. For instance, in the case of the Bayer-type pattern that samples three distinct

colors, p = 3, and E1, E3 ∈ R
mn/4×mn and E2 ∈ R

mn/2×mn.
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The CIEXYZ color space is the most commonly used device-independent color space

in colorimetry [56]. Let

z = ĀL̄x (4.7)

be the column ordered representation of the scene in the CIEXYZ color space when viewed

under the illuminant L. The matrix Ā is formed from the color matching functions x̄, ȳ,

and z̄ that describe the CIEXYZ space such that the product ĀL̄x is the projection of the

scene radiances to the CIEXYZ space.

We consider the noise-free case and assume wide-sense stationary signals. The multi-

channel Wiener filter estimate ẑ of z with respect to g is given by

ẑ = RzgR
−1
gg g, (4.8)

where Rzg = E
{

zgT
}

, Rgg = E
{

ggT
}

. Substituting explicit expressions for Rzg and Rgg

gives

ẑ =
(

ĀL̄RxxL̄
T F̄ TST

) (

SF̄ L̄RxxL̄
T F̄ TST

)−1
g, (4.9)

where Rxx = E
{

xxT
}

.
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4.3 Error Criterion

The XYZ tristimulus errors at each location of the array are arranged in a column-

ordered form to form the error vector

e = z − ẑ = (Ā− P )L̄x, (4.10)

where

P =
(

ĀL̄RxxL̄
T F̄ TST

) (

SF̄ L̄RxxL̄
T F̄ TST

)−1
SF̄ . (4.11)

The XYZ space is not perceptually uniform, i.e., errors in XYZ space do not reflect

perceived differences in color. A criterion based on (4.10) will not quantify perceived color

reproduction errors and is not suitable for the purpose of defining an accurate objective

criterion. A more suitable error criterion would be based on tristimulus differences in a

perceptually uniform color space like the CIELAB space. The transformation from XYZ to

CIELAB is nonlinear and is given by

L∗ = 116

(

Y

Yw

)1/3

− 16,

a∗ = 500

[

(

X

Xw

)1/3

−
(

Y

Yw

)1/3
]

, (4.12)

b∗ = 200

[

(

Y

Yw

)1/3

−
(

Z

Zw

)1/3
]

,

where Xw, Yw, and Zw are the XYZ tristimulus values of a reference white stimulus. Let

∆uXY Z and ∆uL∗a∗b∗ represent a small distance in the XYZ space and the corresponding
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distance in the CIE L∗a∗b∗ space respectively. For small differences in XYZ space, the

corresponding difference in the nonlinear CIE L∗a∗b∗ space may be approximated about a

point (X0, Y0, Z0) in XYZ space by the linear transformation

∆u
L∗a∗b∗

= J∆u
XY Z

, (4.13)

where

J =
1

3
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(4.14)

is the gradient of the XY Z → CIELAB transform. We linearize the transform from XYZ

to CIELAB space about the XYZ coordinates of the illuminant under which the image is

acquired.

An error criterion is formed as the expectation of the 2-norm of the aggregated CIELAB

errors at all spatial locations of the reconstructed p-color image as

∆E = E
{

‖J̄e‖2
2

}

= E
{

‖J̄(Ā− P )L̄x‖2
2

}

, (4.15)

where J̄ = J ⊗ Imn achieves the transformation in (4.14) for all mn tristimulus values.

Since the 2-norm of a vector is identical to its Frobenius norm, we can use the identity

tr(ABC) = tr(BCA) to reduce the error criterion to the form

∆E = tr
(

L̄RxxL̄
T (Ā− P )T J̄T J̄(Ā− P )

)

(4.16)
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Note that, due to the expression of P in the form in (4.11) the error criterion in (4.16)

is dependent only on the general statistics of scene reflectances as described by the block

matrix Rxx and not on particular scenes.

In order to be physically realizable, the filter sensitivities should be reasonably smooth.

To this end, we define a cost on the roughness of the individual filter sensitivities as

ε = ks

∑

k

‖Lfi‖2
2, (4.17)

where ks is a scaling factor that can be used to specify the relative importance of smoothness

with respect to data fidelity. L is the Laplacian matrix that yields a roughness estimate.

The criterion in (4.16) is amended to incorporate the weight on roughness in (4.17). To

account for image acquisition under different illuminants, the criterion is optimized over

a sum of the standard D65, D75, and uniform illuminants (radiance at each wavelength is

one). The revised criterion is given by

Φ = ∆ED65
+ ∆ED75

+ ∆Euniform + ε. (4.18)

Optimal values of filter sensitivities that minimize color reproduction errors in the

perceptually uniform linearized CIELAB space are obtained by minimizing (4.18) with

respect to the filter sensitivities in F .
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4.4 Correlation matrix model

For a fixed set of filter sensitivities F , the optimization criterion is a function of image

statistics represented by Rxx. The block matrix Rxx has the form

Rxx = E
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R(mn,1) R(mn,2) · · · R(mn,mn)























, (4.19)

and has spectral autocorrelation matrices for each pixel location as its diagonal blocks and

inter-pixel spectral crosscorrelation matrices as its off-diagonal blocks.

A correlation matrix of the form in (4.19) contains elements due to the spectral corre-

lation at a single spatial location and spatial correlations across the image. We will rely on

a numerical optimization of (4.18) using Matlab’s fmincon routine to arrive at an optimal

value for F . The routine carries out a gradient-based search for the minimum and requires

multiple computations of Φ and ∂Φ/∂fi. This requires multiple products of large-dimension

matrices of the type
(

SF̄ L̄RxxL̄
T F̄ TST

)

seen in (4.11). The challenge in modeling a gen-

eralized Rxx applicable for all acquired scenes lies in forming blocks of Rxx that give it a

regular structure that lends itself to optimized computation while not defying the statistical
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(a) Super-image (b) Proposed model

Figure 4.4: The spectral correlation matrix R(1,1) for (a) the super-image obtained by
accumulating spectral data from all 22 sample images together and (b) for the proposed
model

properties of any particular scene. In this section we propose such a model for Rxx and sug-

gest means to exploit the regular structures of the matrices involved to reduce computation

times.

It is not unreasonable to assume that for most images, natural or otherwise, spatial

correlations cease to be significant at a distance. This assumption follows from the local

smoothness seen in most acquired images. In this work, for computational tractability, we

assume that spatial correlation is insignificant at a distance greater than 16 pixel-widths.

We further assume that the spectral correlation at a particular location is separable from

the spatial correlation. This allows a representation of Rxx that contains blocks that are

all functions of R(1,1).

Here, we make the following assumptions in forming Rxx:

1. The spectral correlation at a particular spatial location is separable from the spatial

correlation in samples across the acquired image in a particular wavelength band.
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Figure 4.5: Sample multispectral images from Hordley et al. [70] rendered in sRGB space
for the D65 illuminant.

2. The correlation coefficients that form the elements of R(k,k) (4.19) are an exponential

function of wavelength separation.

3. The correlation matrices R(k,l), that incorporate spatial correlations in the image

bands are an exponential function of spatial distance.

4. The acquired image is spatially periodic. This yields an Rxx that is block-circulant

with block-circulant Toeplitz blocks.

Let r
(i,j)
(k,l), 1 ≤ i, j ≤ 31, be an element of R(k,l), 1 ≤ k, l ≤ mn in the correlation matrix

Rxx. Consider the diagonal blocks of Rxx (k = l). As E
{

xi
kx

j
k

}

= E
{

xj
kx

i
k

}

, r
(i,j)
(k,k) = r

(j,i)
k,k
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and due to the assumption of stationarity of the reflectance spectrum, R(k,k) are symmetric,

Toeplitz matrices.

We define the elements of Rxx as follows.

r
(i,j)
(1,1) = a1 + b1e

−α1/β1 (4.20)

R(k,l) =
(

a2 + b2e
−α2/β2

)

R(1,1), (4.21)

where the parameters a1, a2, b1, and b2 are set at 0.25, 0.25, 0.75, and 0.75 respectively.

Also, β1 = β2 = 10, and α1 = |i− j|, β1 = 10, α2 =

√

(|l − k| mod m)2 + floor (|l − k|/n)2

represent distances in one and two dimensions respectively.

Due to the nature of column-ordering of the scene reflectances and the periodicity of

the image, Rxx may be expressed as

Rxx = D ⊗R(1,1), (4.22)

where D ∈ Rmn×mn is block-circulant with circulant blocks.

Hordley et al. [70] have provided a database of multi-spectral images (Fig. 4.5) cap-

tured using a Spectracube c© camera. These spectral images were acquired under controlled

conditions under the D75 illuminant. A correction for the illuminant was applied to arrive

at reflectance values sampled every 10 nm in the range 400–700 nm. Figure 4.4 shows repre-

sentations of R(1,1) for the proposed model and for the super-image formed by accumulating

spectral data from all 22 images shown in Fig. 4.5.
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Computing Φ

The computation of P requires an inversion of the mn×mnmatrix
(

SF̄ L̄RxxL̄
T F̄ TST

)

and a computation of the similar matrix ĀL̄RxxL̄
T F̄ T . Note that Ā and F̄ are formed from

the x,y,z color matching functions and fi respectively as given in (4.4). The matrix product

F̄W F̄ T , where W = L̄RxxL̄
T , is given by

F̄W F̄ T =























F1WF T
1 F1WF T

2 · · · F1WF T
p

F2WF T
1 F2WF T

2 · · · F2WF T
p

...
...

. . .
...

FpWF T
1 FpWF T

2 · · · FpWF T
p























, (4.23)

where Fk = Imn ⊗ fT
k , 1 ≤ k ≤ p. Now,

F̄W =























F1W

F2W

...

FpW























, (4.24)

where FkW is obtained as in (4.25) and the blocks of F̄W F̄ T are formed as in (4.26), where

1 ≤ j, k ≤ p.
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FkW =
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(4.25)

FjWF T
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k · · · fT
j LR

(mn,mn)LT fT
k























(4.26)

Since LR(1,1)LT is symmetric, we let fT
j LR

(1,1)LT fT
k = fT

k LR
(1,1)LT fT

j = R(|j−k|). F̄W F̄ T

can be written as

F̄W F̄ T = R̄F ⊗D, (4.27)

where

R̄F =























R(0) R(1) · · · R(p−1)

R(1) R(0) · · · R(p−2)

...
...

. . .
...

R(p−1) R(1) · · · R(0)























(4.28)
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Consider now the product SF̄WF̄ TST . Pre and post-multiplication of a matrix by S and

ST is equivalent to eliminating rows and columns according to the structures of the Ei

that constitute S. For instance, in the Bayer case, the following rows and columns will be

eliminated due to E1: 2 : 2 : m,m + 1 : 2m, 2m + 2 : 2 : 3m, 3m + 1 : 4m, · · · mn.

SF̄WF̄ TST can be written as

SF̄WF̄ TST =
(

R̄F ⊗D
)

↓ , (4.29)

where {.}↓ is decimation by inspection of S. We can use (4.27) and (4.29) to reduce the

computation of P in (4.11) from a successive product of large matrices to the very much

simpler Kronecker products to get

P =
(

R̄A ⊗D
)

(

(

(

R̄F ⊗D
)

↓

)−1
)

↑
, (4.30)

where {.}↑ is the addition (by inspection) of rows and columns of zeros to a mn×mn matrix

to get a matrix of size 3mn×mn and R̄A is formed from the XY Z color matching functions

similarly to R̄F in (4.28).

4.5 Experiments and Discussion

The varied design parameters for CFA patterns have led to a wide variety of distinct

CFA arrangements. A number of CFA arrangements have appeared in the literature and

been used commercially [48, 52, 18]. Figure 4.6 shows the periodic CFA arrangements con-

sidered in our experiments. All but the Gindele CFA shown in Fig. 4.6 are 3-color (typically,
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(a) (b) (c)

(d) (e) (f) (g)

Figure 4.6: Common periodic CFAs. (a) Bayer [14], (b) Gindele [18], (c) Yamanaka [48],
(d) Lukac [49], (e) striped, (f) diagonal striped [49], (g) CFA based on the Holladay halftone
pattern [50].

RGB) CFAs. The Gindele CFA has a photo-site that samples luminance (represented by

white in Fig. 4.6 (b)) in addition to RGB. In our experiments we set the transmittance func-

tion of the luminance photosites to a perfectly transmissive filter (one at all wavelengths)

and optimize for only three colors.

The optimization framework detailed in Section 4.3 is used to obtain optimal color filter

transmittance functions for the CFA patterns shown in Fig. 4.6. In each case, the sampling

matrix in (4.6) is constructed according to the respective CFA arrangements in Fig. 4.6.

The fmincon routine in MATLABr is used to carry out a constrained minimization of the

criterion in (4.18) to arrive at optimal estimates for fi. The constraints on fi are that the
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elements of fi ∈ [0, 1]. Since a global minimum is not assured, we generate a number of

distinct initial conditions and choose the least value of the criterion to arrive at the filter

sensitivities fi. Initial values of fi are assumed to be Gaussian curves in the wavelength

domain and are given by

fi(λ) = e
− (λ−µi)

2

σ2
i . (4.31)

An initial condition is defined by the vectors µ = [µ1, µ2, · · · , µp]
T and σ = [σ1, σ2, · · · , σp]

T

that contain the means and standard deviations respectively of the p Gaussian curves that

represent the filter sensitivities. The elements of µ and σ are uniform random variables

defined over the visible spectrum with the following constraints: 400 ≤ µi ≤ 700 and

ρ ≤ σi ≤ 10ρ, where ρ = 30. Optimal filter sensitivities obtained for the CFA patterns in

Fig. 4.6 are shown in Fig. 4.7.

4.5.1 Evaluation

The simulation pipeline shown in Fig. 4.8 was used to evaluate the performance of the

optimized color filter transmittance functions obtained in Section 4.5 with respect to typical

RGB and CMY filter transmittances obtained from ImagEval’s vCamera toolbox [71] (Fig.

4.1). Figure 4.8 illustrates the methods used for objective and subjective comparisons.

The s-CIELab ∆E error metric [37] is a measure of perceptual difference between color

images that takes into account the lowpass nature of the human visual system and its

specific response to luminance and chrominance components of images. The s-CIELab ∆E

is thus a more accurate measure of perceptual errors between color images than MSE values

in sRGB space. The s-CIELab error metric was used as an objective measure to quantify
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Figure 4.7: (a)-(g) Optimal spectral sensitivity functions obtained for the CFA patterns
shown in Figs. 1(a)-1(g) respectively. Ordinates represent normalized transmittances. The
colors of transmittance curves are sRGB values for the respective spectra. Bolder lines
correspond to the optimal sensitivities obtained at the location of the green filter in the
respective CFA patterns.

the error between the original image as obtained from the CIEXYZ tristimulus values of

the multispectral images and the CIEXYZ values of corresponding demosaicked images.

Table 4.1 gives average s-CIELab ∆E values for all images from the multispectral image

database for each of the CFA patterns in Fig. 4.6 as acquired with the RGB, CMY, and the

optimized sensitivities. These results demonstrate that the optimized color filters perform

significantly better than the standard RGB and CMY filters for all CFA arrangements.

Table 4.2 gives the average s-CIELab ∆E values for the images in Fig. 4.5 when acquired

using the Bayer CFA with the RGB, CMY, and optimized transmittances respectively under

the standard D65 and D75 illuminants. Table 4.2 shows that the optimal transmittances

perform significantly better than the typical RGB and CMY color filters across the range

of images represented in the multispectral database.
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||.||2

Figure 4.8: The simulation pipeline. All variables are as described in preceding sections.

Subjective evaluation involves visual inspection of the original multispectral images

from the database in [70] rendered in the standard sRGB color space [72] against the

corresponding demosaicked images obtained after subsampling with the CFA patterns being

considered. Note that since the objective here is to compare the performance of color filter

sensitivity functions, we used the linear MMSE estimator in (4.9) for demosaicking even

though many sophisticated demosaicking algorithms are known.
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Table 4.1: Average s-CIELab ∆E values. All images in [70] are sampled according to the
patterns in Fig. 4.6 and the demosaicked results are compared with the original multispectral
scene as shown in Fig. 4.8. The smallest error values are shown in bold font.

Pattern ∆Es RGB ∆Es CMY ∆Es optimal

(a) Bayer 6.0911 5.9310 3.2724

(b) Gindele 6.5438 5.8246 3.9508

(c) Yamanaka 6.5051 6.6076 3.9725

(d) Lukac 6.2251 6.3891 3.3761

(e) Striped 7.3646 8.4028 5.1840

(f) Diagonal 6.3924 6.3206 3.2203

(g) Utah-dot 6.6039 6.7034 3.6788

Figures 4.9 and 4.10 show results of a subjective comparison for two images cropped

from images 3 and 4 in Fig. 4.5 respectively. The top row in each figure shows the original

image. Subsequent rows show results of demosaicking of images sampled with the CFA

patterns in Fig. 4.6. On each row, for a particular CFA pattern, demosaicking results of

images sampled with RGB, CMY, and optimized filter sensitivities appear from left to right.

In addition, the s-CIELab ∆E error images corresponding to each reconstructed image is

shown to its right. Note that reconstruction errors appear both as chrominance errors (hue-

shifts most apparent in smooth areas of the image) and luminance errors (spatial artifacts

most apparent at edges). The images obtained by sampling with optimized sensitivity

functions show fewer luminance and chrominance artifacts. The reduced s-CIELAB ∆E is

apparent from the error images in both figures. The improvement is most striking for the

striped CFA pattern (Figs. 4.9(e) and 4.10(e)),
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(o)

(a) Bayer

(b) Gindele

(c) Yamanaka

(d) Lukac

(e) Striped

(f) Diagonal striped

(g) Holladay halftone based CFA

Figure 4.9: sRGB representations (for the D65 illuminant) of an image cropped from image
3 from the database of multispectral images [70]. (o) Original image. (a)-(g) From left
to right — Images reconstructed from the CFA sampled images obtained from the RGB,
CMY, and optimized color filters respectively. s-CIELab ∆E error images appear to the
right of each reconstructed image. 67



(o)

(a) Bayer

(b) Gindele

(c) Yamanaka

(d) Lukac

(e) Striped

(f) Diagonal striped

(g) Holladay halftone based CFA

Figure 4.10: sRGB representations (for the D65 illuminant) of an image cropped from image
4 from the database of multispectral images [70]. (o) Original image. (a)-(g) From left to
right — Images reconstructed from the CFA sampled images obtained from the RGB, CMY,
and optimized color filters respectively. s-CIELab ∆E error images appear to the right of
each reconstructed image.
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Table 4.2: Average s-CIELab ∆E values for images obtained from images in [70] (Fig. 4.5)
for the Bayer CFA. The smallest error values are shown in bold font.

Image D65 D75

∆Es RGB ∆Es CYM ∆Es 3-color ∆Es RGB ∆Es CYM ∆Es 3-color

1 4.0427 3.7018 2.6672 3.6251 3.9869 2.5705

2 1.6187 2.5591 1.7399 1.6010 2.6234 1.7249

3 5.2446 5.1769 2.1377 5.2770 4.8766 2.0960

4 5.3974 4.0390 2.3506 5.4185 3.9630 2.3482

5 7.4964 6.1835 3.0427 7.5834 5.8516 3.0135

6 17.5901 15.5977 4.8360 16.8534 14.9227 4.3995

7 5.2221 3.7120 3.1922 5.2917 3.8785 3.2260

8 4.3750 5.3385 2.8245 4.2959 5.7677 2.8491

9 1.4525 1.8873 1.2786 1.4795 1.8842 1.2937

10 6.4883 12.2503 5.8876 6.4916 12.1880 5.6871

11 1.9786 2.1576 1.7307 2.0047 2.1994 1.7530

12 2.3159 3.8119 3.0739 2.4500 3.9217 3.1051

13 5.9047 5.8125 2.8353 6.0141 5.7663 2.8907

14 5.3764 4.8572 2.6532 5.4475 4.8765 2.6403

15 5.3252 8.4890 6.8539 5.5803 8.6885 6.9568

16 1.8925 2.7593 2.2233 1.9273 2.9487 2.1937

17 6.8992 6.1207 4.1638 6.8540 5.6755 3.9818

18 2.3528 2.7197 3.7209 2.2742 2.9810 3.6197

19 18.7389 12.4805 2.8845 18.6495 12.4153 2.8835

20 7.7903 3.4098 2.7930 7.9236 3.2726 2.6811

21 7.8062 5.7991 1.3551 7.8522 6.3095 1.3747

22 8.6948 11.6179 7.7472 8.6027 11.5274 7.7411

Average 6.0911 5.9310 3.2724 6.3638 6.2054 3.4178
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where the RGB and CMY transmittance functions lead to very visible artifacts at edges,

while the optimized transmittance functions greatly reduce these artifacts.

4.6 Conclusions

In this chapter we have demonstrated the significant effect that the color filter spec-

tral sensitivity functions have on the quality of reconstruction of CFA images. A unified

spatial-chromatic sampling framework is proposed for the optimization of the color filter

sensitivity functions. The proposed method optimizes an error criterion that is dependent

not on particular images but on the general statistics of multispectral images. Optimal color

filter sensitivity functions for several periodic CFAs are obtained, and optimized color filter

transmittances are shown to perform significantly better than CFAs with standard RGB

and CMY color filters in terms of the s-CIELab ∆E metric and subjective comparisons.
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Chapter 5

Sample selection in color filter arrays

5.1 Introduction

To be able to display a color image in print or on a display device, we need full informa-

tion about at least three color primaries at each pixel location. As described in Chapter 2,

although multiple image sensors that capture distinct spectral channels would provide best

results, only a few professional digital cameras employ multiple sensors. To avoid high costs,

optical complexity, and problems with image registration that occur due to acquisition at

different planes, most color cameras rely on a single sensor-array to acquire a color image.

A mosaic of color filters is overlaid on the imaging sensor to achieve sparse sampling. At

each location the color filter reflects all wavelengths of light except the wavelengths in the

range that describe the desired color. The missing color samples at each location are recon-

structed in a post-processing step commonly referred to as demosaicking. In this chapter,

we propose two methodologies for the selection of sample locations in a color filter array

(CFA). Both methods allow for the effects of the HVS and use sequential selections methods

in conjunction with image restoration techniques to arrive at optimal sampling patterns.

The two methods differ in the choice of restoration techniques and color spaces used for

restoration. The first method uses regularization for restoration in the RGB space while the

second method uses Wiener filtering in a perceptually uniform color space for restoration.
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5.2 Background

A variety of sampling patterns have been proposed by researchers in the field. One of

the earliest and most popular array patterns was developed by Bayer [14] in 1975. Most

reconstruction algorithms proposed in the literature are tailored for the Bayer array. The

Bayer array (Fig. 5.2) differentiates between luminance sensitive and chrominance sensitive

elements and is configured such that each element type appears in a repeated pattern. Since

the HVS is more sensitive to degradation in luminance and detects intensity variations more

readily than color variations, the Bayer pattern uses an excess of luminance elements. The

HVS luminance response (Fig. 2.1(a)) correponds very closely with the spectrum of the

color green and thus green is sampled at every other pixel location along a row and is

staggered by one pixel in adjacent rows. The blue and red channels are used in alternate

rows to complete the mosaic.

G R

B G

G R

B G

G R

B G

G R

B G

Figure 5.1: The Bayer Array

Various improvements to the Bayer array have been suggested in recent years. Yam-

agami et al. [15] describe an array pattern that addresses the problem of saturation in the

green channel of the Bayer array. The Yamagami array has alternating green and luminance

samples in a row adjacent to alternating red, luminance, and blue samples. The improve-

ment in color reproduction is achieved at the cost of spatial resolution. Hamilton et al. [16]

propose a CFA that uses the subtractive primaries cyan, magenta, and yellow in addition to
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green filters to address the issue of photon acquisition in low-light conditions. Zhu et al. [17]

address the issue of aliasing artifacts that arise due to high-frequency periodic patterns in

an image. They propose a CFA pattern based on random arrays derived from a blue noise

pattern and also present a demosaicking scheme for their array. Gindele and Gallagher [18]

address saturation issues and propose an array that contains luminance samples in addition

to the color primaries red, green, and blue.

A CFA that uses the subtractive primaries cyan, magenta, and yellow in its mosaic

offers advantages in terms of the signal to noise ratio and dynamic range. But, after

demosaicking, the color values must be converted to red, blue, and green for display. This

conversion is achieved via a matrix multiplication that amplifies noise and also leads to

color distortion [73]. In the following sections we only consider CFAs that consist of red,

green, and blue photosites. In Chapter 4 we propose a method for the selection of optimal

sensitivity functions for individual color channels.

5.3 Sample selection based on regularization

The appearance of the reconstructed image depends fundamentally on the characteris-

tics of the HVS. The perceived image is the result of processing of color and spatial variances

in the image by the HVS. This motivates the use of an HVS model to evaluate the perfor-

mance of color image reconstruction. The sample selection method described in this section

uses a simple model of the human visual system to characterize the perceptual error in

an image reconstructed from a sub-sampled CFA. A sequential algorithm is used to select

samples that minimize an error criterion that incorporates the effect of the HVS.
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5.3.1 Human color vision model

The image processing flow for an image captured with a digital camera and viewed by

an observer has multiple steps (Fig. 5.2). To get an accurate description of the perceived

image, the PSFs of the demosaicking process and the HVS must be known precisely. In this

treatment, we use a rudimentary model for the PSFs of the three color channels based on a

functional model of the low-contrast photopic modulation transfer function (MTF) of the

HVS described by Sullivan et al. [74]. We assume that the MTF of the entire work-flow of

the digital camera retains the dominating characteristics of the HVS in that:

1. it is more sensitive to spatial frequencies in the vertical and horizontal directions, and

2. the response of chrominance channels falls faster than the response of the luminance

channel.

We also also assume that the green channel corresponds closely to the luminance response.

Output
Image

White Balance,
Color Correction,

Tonescale  Rendering,
Sharpening/Noise Reduction

Output Device
Model

Exposure/Focus
Determination

CFA  Image
Capture Demosaicking

Step 1 Step 2 Step 3

Step 4Step 5Step 6

Figure 5.2: A typical image processing pipeline in a color digital camera
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The MTF of the green channel is obtained from the MTF as described by Sullivan as

VGij
=



















a(b+ cf̄ij) exp
(

−
(

cf̄ij

)d
)

, if f̄ij > fmax

1.0, otherwise,

(5.1)

where the constants a, b, c, and d are calculated from empirical data to be 2.2, 0.192, 0.114

and 1.1 respectively; f̄ij is the radial spatial frequency in cycles/degree as subtended by

the image on the human eye scaled for the viewing distance, and fmax is the frequency

corresponding to the peak of Vij . Since we need the MTF in terms of discrete linear

frequencies along the vertical and horizontal directions (fi, fj), we must express (fi, fj) in

terms of the radial frequency f̄ij. The discrete frequencies along the horizontal and vertical

directions depend on the pixel pitch ∆ of the output device (print or display device) and

the total number of frequencies M . A location (i, j) in the frequency domain corresponds

to the following fi and fj in cycles/mm:

fi =
i− 1

∆M
,

fj =
j − 1

∆M
. (5.2)

The linear frequencies are scaled for the viewing distance s and converted to radial frequency

as

fij =
π

180 arcsin
(

1√
1+s2

)

√

f2
i + f2

j . (5.3)
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The MTF is not uniform along all directions. The HVS is most sensitive to spatial variation

along the horizontal and vertical directions. To account for this variation, the MTF is

normalized by an angle dependent function s(θij) such that

f̄ij =
fij

s(θij)
, (5.4)

where

s(θij) =
1 − w

2
cos(4θij) +

1 + w

2
, (5.5)

with w being a symmetry parameter and

θij = arctan

(

fj

fi

)

. (5.6)

The response obtained for the green channel for w = 0.7, and a viewing distance of 45

cm and a pixel pitch of 0.27 mm is shown in Fig. 5.3.

The response of the HVS to chrominance, or the contrast sensitivity to spatial variations

in the chrominance channels, falls off faster than the response to the luminance channel.

A simple chrominance response model corresponding to a decaying exponential is chosen

as a basis for the HVS response to the blue and red channels. The red and blue channel

response is modelled as

VB,R(fij) = e(−0.15fij ), (5.7)

The response obtained for the red and blue channels is shown in Fig. 5.4.
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Figure 5.3: HVS green channel MTF

The HVS point spread functions hi for i = Red, green, blue are obtained as

hG = F−1 {VG(i, j)} ,

hR,B = F−1 {VR,B(i, j)} . (5.8)

The matrices Hi are constructed from hi such that multiplication of a column-ordered image

by Hi yields the 2-D convolution of the image by the point spread function hi.
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Figure 5.4: HVS red and blue channel MTFs

5.3.2 Mathematical model

We model the sub-sampled image as a linear transformation that maps the full-color

image to an image that contains only one color value at a particular pixel location. The

sub-sampled image is represented as

yi = Aixi + ui, i = red, green,blue, (5.9)

where xi, (mn × 1) and yi, (mn × 1) are the red, green and blue channels of the original

and the sub-sampled m× n images arranged in a column-ordered form, and ui, (mn × 1),
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are the similarly arranged noise terms. The matrices Ai are the sampling matrices. For the

fully-sampled case, Ai are identical to the mn×mn identity matrix. For the sub-sampled

case, the matrices Ai contain only the rows corresponding to a sampled pixel location. We

assume that the image and noise are uncorrelated.

We form a regularization functional for each channel that contains an energy bound

on the residual Aix− yi and a penalty on the roughness as:

Φi = ‖Aixi − yi‖2
2
+ µiLixi

2. (5.10)

The estimate of xi found on minimizing the constrained least squares problem in (5.10) is

x̂i = (AH
i Ai + µiL

H
i Li)

−1AH
i yi, (5.11)

where AH is the Hermitian transpose of A. To obtain the best estimate for the perceived

image, we minimize the discrepancy in the reconstructed image when viewed through the

HVS. Let the matrices Hi, i = Red, green, blue, represent the filtering effect correspond-

ing to the point spread functions (PSFs) of the red, green and blue channels of the HVS

respectively. We form a discrepancy function for one channel (dropping the subscript) as

d = E{‖Hx −Hx̂‖2
2
}, (5.12)
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where E{.} represents Expectation, and ‖.‖
F

denotes the matrix 2-norm.

d = E
{

‖Hx−H(AHA+ µLHL)−1AHAx‖2
2

}

+ E
{

‖H(AHA+ µLHL)−1AHn‖2
2

}

= E
{

‖H(AHA+ µLHL)−1µLHLx‖2
2

}

+ E
{

‖H(AHA+ µLHL)−1AHn‖2
2

}

. (5.13)

Let P = (AHA+ µLHL), such that

d = E
{

‖HP−1µLHLx‖2
2

}

+ E
{

‖HP−1AHn‖2
2

}

. (5.14)

Now,

E{‖HP−1AHn‖2
2
} =E

{

tr
(

nHAP−HHHHP−1AHn
)}

=tr
(

AP−HHHHP−1AHRn

)

, (5.15)

where Rn is the correlation matrix for n and is described by the relation Rn = E
{

nnH
}

.

We assume that the noise is independent, identically distributed such that Rn = µI. Also,

P is symmetric and PH = P . Thus, Eq. (5.15) reduces to

E
{

‖HP−1AHn‖2
2

}

= µ tr
(

AP−1HHHP−1AH
)

. (5.16)

Also,

E
{

‖HP−1µLHLx‖2
2

}

= E
{

tr
(

xHµLHLP−1HHHP−1µLHLx
)}

= µ2 tr
(

LHLP−1HHHP−1LHLRx

)

, (5.17)
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where Rx is the correlation matrix for x and is described by the relation Rx = E
{

xxH
}

.

From Eqs. (5.16) and (5.17), we have

d = µ tr
(

P−1HHHP−1
(

AHA+ µLHLRxL
HL
))

. (5.18)

For L = R
− 1

2
x , LHL = R−1

x , and Eq. (5.18) reduces to

d = µ tr
(

P−1HHH
)

. (5.19)

We define an error function as a weighted sum of the channel discrepancy functions as

e =
∑

i

κidi = κi

∑

µi tr
(

(AH
i Ai + µiR

−1
xi

)−1HH
i Hi

)

, (5.20)

where κi are scaling factors that reflect the perceptual importance of the fidelity in a par-

ticular channel.

5.3.3 Sampling Strategy

The goal is to sample only one color channel at each sample location. Thus, we have

to select mn samples from a set of 3mn samples. The error criterion defined in (5.20) may

be used to optimize the selection procedure. The criterion does not depend on the scene

being imaged and may be used for sub-sampling a general scene if the statistical properties

(Rx and Rn) of the fully sampled image are defined accurately.

Each row in the matrices Ai in (5.20) corresponds to a sample in the respective channel.

The error criterion defined in (5.20) may be used to obtain the row that when eliminated

would cause the least error in the reconstructed signal when viewed through the HVS.

81



An exhaustive optimization would require the computation of the error criterion for all

combinations of eliminated rows, and would require (3mn)!
(2mn)! (mn)! computations of the error

criterion. For a reasonably sized array, this computation would require immense resources.

The authors in [75] use a greedy algorithm for sequential backward selection (SBS)

of samples for signal reconstruction. The sequential backward selection algorithm can not

be guaranteed to provide optimal results, but the authors in [76] have shown that the

algorithm consistently provides good results with a relatively tight upper bound on the

error criterion. We devise an SBS scheme for optimizing the criterion as follows. We start

with a fully sampled image with all mn samples in each channel. The error criterion is

computed after eliminating one row from one of the matrices Ai, and the row that gives the

least value for the criterion is eliminated. In the next step, The matrix Ai from which the

row is eliminated is of dimension (m− 1) × n. The error criterion is computed again after

eliminating one row from Ai, and rows of Ai are successively eliminated with the constraint

that the three channels are sampled in a mutually exclusive manner.

Computation of the error criterion requires the computation of the inverse of the matrix

P for each eliminated row. For an m × n array, P is of dimension mn × mn, and the

inversion requires considerable computation even for small arrays. The error criterion may

be simplified using the Sherman-Morrison matrix inversion formula such that we need find

only an update term after each elimination. Also, the matrices Hi are circulant block-

circulant and the matrix products involving Hi may be computed using DFTs. In spite of

these simplifications, the computation of the criterion is cumbersome since in the form of

(5.35), it requires the storage of at least the three mn×mn initial matrices P−1
i .

82



5.3.4 Experiments

The power spectral density of a random process is given by the Wiener-Khinchine

relation, Sx(jω) = F{Rx}. We obtained an Rx representative of a general scene imaged

by a digital camera from the mean, Savg , of the power spectra of a large number of images

reflecting various image types as Rx = F−1{Savg}. The images used to obtain Savg span

a wide range of categories including natural scenes, landscapes, portraits, and a few color

test images obtained from the USC-SIPI [77] image database.

The sample selection procedure detailed in Section 5.3.3 was applied for fully-sampled

RGB arrays of different sizes. The error criterion values obtained for a Bayer array (e
Bayer

)

and an array obtained by the SBS scheme (e
SBS

) detailed in Sec. 5.3.3 are shown in Table

5.1. The weights on the individual channel errors are κ
Red

= 1, κgreen = 1.6, and κ
blue

= 1.

The values of κi reflect the relative importance of the green channel on image quality and

precise values may be obtained through psychovisual experiments. An 8× 8 array obtained

using SBS is shown in Fig. 5.5.

Table 5.1: Comparison of error criterion values with a Bayer array
Array size e

Bayer
e

SBS

8 × 8 28.8083 27.5952
12 × 12 46.0583 44.3362
16 × 16 74.9760 72.3530
32 × 32 218.4921 211.1279

5.4 Sample selection based on Wiener filtering

In the following sections we describe a design method for an RGB type CFA based

on the Wiener filtering of the sub-sampled CFA image. Since color differences in the RGB
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Figure 5.5: An 8 × 8 array

space do not correspond to perceptual differences, in this work, we consider a model of the

HVS based on a uniform color space to quantify perceptual effects.

5.4.1 The YyCxCz color space

Various models have been proposed in the literature that use perceptually uniform

color spaces like the CIE L∗a∗b∗to describe the modulation transfer functions (MTFs) of

the HVS. In this work, we use a model first described by Flohr et al. [78] to define the

MTFs of the HVS luminance and chrominance channels. This model served as a basis for

the HVS model used in Section 5.3.1. The Flohr model is channel-independent and is based

on a color space that is a linearization of the CIE L∗a∗b∗color space. The transformation

from CIE L∗a∗b∗to RGB is nonlinear and Flohr et al. propose a linearization about the D65
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white-point to form a color space characterized by the channels Yy, Cx, and Cz as

Yy = 116
Y

Yn
− 16,

Cx = 500

[

X

Xn
− Y

Yn

]

, (5.21)

Cz = 200

[

Y

Yn
− Z

Zn

]

.

The Yy component in this color space corresponds to luminance and Cx and Cz are similar

to R−G and B − Y opponent color chrominance components respectively.

In this work, we derive an MSE criterion in the YyCxCy space to obtain an RGB

array, and we will need to transform the error to the RGB space. From Eq. (5.21), the

transformation from YyCxCy to XY Z may be obtained as

X =
CxXn

500
+

1

116
(Yy + 16),

Y =
Yn

116
(Yy + 16), (5.22)

Z =
Zn

116
(Yy + 16) − Zn

200
Cz.

The transformation from XY Z to RGB about the D65 white point is performed as















R

G

B















=















3.240479 −1.537150 −0.498535

−0.969256 1.875992 0.041556

0.055648 −0.204043 1.057311





























X

Y

Z















. (5.23)
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The transformation from YyCxCz space to RGB space is achieved via the cascaded trans-

formation YyCxCz → XY Z → RGB as















R

G

B
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3.240479 −1.537150 −0.498535

−0.969256 1.875992 0.041556

0.055648 −0.204043 1.057311
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,

where the values Xn, Yn, and Zn for the D65 white point are 0.3127, 0.3290, and 0.3583

respectively such that
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0.0220356 −0.067728 0.000893

0.0138047 0.085737 −0.000074

0.0031668 −0.009224 −0.001894
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+ t (5.24)

5.4.2 The HVS MTFs

Flohr et al. propose a model that is a combination of the models detailed by Näsänen

[79] and Sullivan et al. [74]. The Luminance MTF is modelled by an exponential that is

similar to the MTF of the green channel in (5.1) as

VYy(f̄ij) = K(L)e−α(L)f̄ij , (5.25)
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where f̄ij is the radial spatial frequency in cycles/degree as subtended by the image on the

human eye, and is a weighted magnitude of the linear frequency vector [fi fj]
T . L is the

average luminance for the display, K(L) = aLb,

α(L) =
a

c ln(L) + d
, (5.26)

and a = 131.6, b = 0.3188, c = 0.525, d = 3.91.

An approximation to experimental results obtained by Mullen [80] is used to obtain

the chrominance MTFs as

VCx,Cz(fij) = Ae(−αfij ), (5.27)

where α = 0.419 and A = 400 as determined by Kolpatzik and Bouman [81]. As evident

from Eqs. (5.26)-(5.27) the HVS model has a lowpass nature for both the luminance and

the chrominance channels. The MTF of the chrominance channels decays at a greater rate

and the luminance channel MTF has lesser sensitivity at odd multiples of π/4.

The HVS point spread functions (PSFs) hi for i = Yy, Cx, Cz are obtained by taking

the two-dimensional inverse Fourier transforms of VYy(f̄ij) and VCx,Cz(fij) as follows:

hYy = F−1
{

VYy

}

,

hCx,Cz = F−1 {VCx,Cz} . (5.28)
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5.4.3 Sampling Strategy

Consider the image processing pipeline for a typical digital color camera depicted in

Fig. 5.2. We propose a variation in the pipeline for the purpose of determining an error

criterion (Fig. 5.6). During image acquisition, all three color channels are acquired at each

sample location and full information about Yy, Cx, and Cz channels is available. Intensity

values obtained from RGB sensors may be transformed into the YyCxCz space to obtain the

required values. The image is then sub-sampled so that we are left with only one channel

at a particular location and a demosaicking process is used to reconstruct the image. We

propose a reconstruction method based on the Wiener filter for this stage of the pipeline.

The HVS model detailed in Section 5.4.2 is used to characterize the perceptual error between

the original and the reconstructed image. Since we need to determine sample locations for

an RGB array, a color space transformation is applied to the output image obtained after

convolution with the HVS PSF to convert the values to RGB space.

An error criterion is defined as the MSE between the reconstructed and the original image

when passed through the HVS and after a color transformation into RGB space. We

start with the fully sampled image with all three color channels available at each pixel

location. The error criterion is then evaluated after eliminating all samples one at a time.

The sample value that leads to the least increase in the error criterion is eliminated and the

procedure is repeated with the remaining samples until only one channel is left at each pixel

location. The resulting sampling arrangement assures the least perceptual degradation in

the original fully-sampled image due to sparse sampling. The procedure neglects the effect

of color space transforms and quantization associated with the enhancement processes in
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Figure 5.6: Block diagram for calculating the error criterion

Step 4 (Fig. 5.2), and the display device model in Step 5. In effect, we assume that color

channel values obtained during acquisition are translated with reasonable fidelity to Step

4. Fig. 5.6 depicts the calculation of the error criterion in the form of a block diagram.

5.4.4 Mathematical Model

We assume that the effect of noise in the sub-sampling process may be neglected due

to its much lower magnitude when compared to pixel intensities. For an original image I

containing m× n pixels, the sub-sampled image is modelled as

y = Ax, (5.29)

where x ∈ C
(3mn×1) is the fully sampled image and consists of the luminance and opponent

chrominance channels (viz. the Yy, Cx, and Cz values) in column-ordered form and takes
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the form x = [xT
Yy

xT
Cx

xT
Cz

]T . Thus, the kth, 2kth, and 3kth elements of x (k < mn)

represent the three channel values for the same pixel location. The vector y ∈ C
(mn×1) is

the similarly arranged sub-sampled image, and contains only one channel at a particular

pixel location. The matrix A ∈ C
(mn×3mn) is a sampling matrix that represents a linear

transformation that maps the fully-sampled image to an image that is sub-sampled such

that only one color channel is sampled at a particular location.

The Wiener filter solution for the estimate x̂ of x in Eq. (5.29) is found as

x̂ = RxyR
−1
y y, (5.30)

where Rxy = E
{

xyT
}

and Ry = E
{

yyT
}

; E {.} represents expectation. Substituting

explicit expressions for Rxy and Ry gives

x̂ = E
{

xyT
} (

E
{

yyT
})−1

y

= E
{

x(Ax)T
} (

E
{

Ax(Ax)T
})−1

Ax

= E
{

xxTAT
} (

E
{

AxxTAT
})−1

Ax

= RxA
T
(

ARxA
T
)−1

Ax, (5.31)

90



whereRx = E
{

xxT
}

= E
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(5.32)

The elements on the diagonals of Rx are the autocorrelation matrices for the three channels

and the off-diagonal elements are the channel crosscorrelation matrices. An error functional

is formed as the mean square error of the original image and the reconstructed image when

viewed through the HVS and converted to RGB space as

e = E
{

‖THx− THx̂‖2
2

}

, (5.33)

where ‖.‖
2

denotes the Frobenius matrix norm. The matrix H is constructed such that

multiplication of a column-ordered image by H yields the 2-D convolution of the image by

the PSFs hi obtained in Eq. (5.28). The three channels of the HVS model are assumed to

be independent such that H is block diagonal and of the form

H =















HYy 0 0

0 HCx 0

0 0 HCz















, (5.34)
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where the matrices Hi represent convolution of the individual channels by their respective

PSFs and have a circulant block circulant structure. The matrix T is obtained from Eq.

(5.24) such that multiplication of a column ordered image by T achieves the color transfor-

mation from YyCxCz space to RGB space. T may be represented as a Kronecker matrix

product of the form T = T1 ⊗ Imn, where Imn is the mn×mn identity matrix.

The error criterion is thus

e = E
{

‖THx− THRxA
T
(

ARxA
H
)−1

Ax‖2
2

}

x

= E
{

‖TH
(

I −RxA
T
(

ARxA
T
)−1

A
)

x‖2
2

}

= E

{

tr

(

xT
(

I −RxA
T
(

ARxA
T
)−1

A
)T

HTT TTH
(

I −RxA
T
(

ARxA
T
)−1

A
)

x

)}

,

where tr(.) represents the trace of a matrix. Let P =
(

I −RxA
T
(

ARxA
T
)−1

A
)

, such that

e = E
{

tr
(

xHPHHHTHTHPx
)}

= tr
(

PHHHTHTHPRx

)

. (5.35)

Note that the criterion described by Eq. (5.35) does not depend on a particular scene being

imaged. We only need to know the statistical properties of the scene as described by the

elements of Rx to evaluate the criterion.

5.4.5 Sampling Procedure

Two different sampling procedures are detailed in this section. In the first case, we

start with a fully-sampled image x with information about all three color channels. The

goal is to eliminate samples such that we are left with only one color channel at each pixel

location. As described in Section 5.4.3, we begin by eliminating the samples one at a time.
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The error criterion is evaluated after each elimination and the sample that leads to the least

increase in the error criterion is eliminated. Initially, the matrix A is of size 3mn×3mn and

each row of A corresponds to a sample of the original image. Eliminating a sample from

the original image is equivalent to eliminating a row from A. The error criterion defined

in Eq. (5.35) may be used to obtain the row that when eliminated would cause the least

error. Since the optimization requires immense computational resources, we once again use

the SBS technique (Section 5.3.3) to elimintae samples one at a time.

In the second case, we once again start with the fully-sampled image but instead of

eliminating a single sample, we eliminate a sub-array of samples from the original image.

Figure 5.7(a) represents one channel of the image. The light dots represent pixel locations

and the heavy dots represent a sub-array of samples. At each iteration, a shifted version of

this sub-array is eliminated. This leads to a periodic replication of a non-periodic sampling

pattern (Fig. 5.7(b)). The arrangement depicted in Figs. 5.7(a) and 5.7(b) leads to a

4 × 4 block periodic pattern. Such a block sampling pattern offers advantages in terms of

computational simplicity and ease in the design of demosaicking algorithms.

In both cases, computation of the error criterion may be simplified using the Sherman-

Morrison matrix inversion formula [82]. Instead of computing the inverse terms at each

iteration we can find only an update term after each elimination. Also, the block circulant

structure of H may be exploited for performing matrix multiplication via DFTs. In spite

of these simplifications, the algorithm places a great demand on computational and storage

resources.
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(a) Sampling sub-array (b) Periodic pattern example

Figure 5.7: Rod and cone sensitivities

5.4.6 Experiments

We considered a 12×12 array. A variety of images that span a wide range of categories

including natural scenes, landscapes, portraits, and a few color test images were obtained

from the USC-SIPI [77] image database. The RGB channel values were converted to the

YyCxCz color space. Mean power spectra Smi
for the individual channels and the mean

crossspectra Smij
were found from the power spectra of the available images. Using the

Wiener-Khinchine relation for the power spectral density of a random process Sx(jω) =

F{Rx}, we obtained the elements of an Rx representative of a general scene imaged by

a digital camera from the mean spectra Smi
and Smij

as Ri = F−1{Smi
}, and Rij =

F−1{Smij
}.
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The sample selection procedures detailed in Section 5.4.5 were applied for a fully-

sampled 12 × 12 RGB array. Figure 5.8 shows the array obtained using the first method

where the samples are eliminated one at a time. Figures 5.9(a), 5.9(b), and 5.9(c) show

the array patterns obtained using the second method with 6 × 6, 4 × 4, and 3 × 3 blocks

respectively. Figure 5.9(d) shows the array obtained with a 2 × 2 repeating block. This

array is identical to the Bayer array. The error criterion values obtained for these cases are

shown in Table 5.2.
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Figure 5.8: Array obtained by eliminating samples one at a time

Table 5.2: Comparison of error criterion values for a 12x12 array
Block size d

12 × 12 610.0892
6 × 6 656.1477
4 × 4 673.0023
3 × 3 684.8360
2 × 2 692.3486
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Figure 5.9: Block based array patterns

5.5 Conclusions and discussion

In Sections 5.3 and 5.4 we proposed two design methodologies for selection of color

samples in CFAs. Both methods minimize error criteria obtained after reconstructing sub-

sampled images. The first method uses regularization for restoration and defines an error

criterion in the RGB space while the second method uses Wiener filtering for restoration and
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defines an error criterion in the perceptually uniform YyCxCz space. The SBS algorithm is

used to sequentially eliminate samples until we arrive at an optimal sampling arrangement.

The results of experiments are listed in Tables 5.1 and 5.2. Both algorithms give error

criterion values that are smaller than that obtained for the Bayer array. For the second

algorithm, the error is least when samples are eliminated one at a time rather than in blocks.

The error increases progressively as the block size is reduced and is maximum for the 2× 2

case (which is identical to the Bayer array). The error criterion has a value smaller than

the error criterion value for the Bayer array for all other cases.

The second algorithm is more interesting since:

1. It defines the error criterion in a perceptually uniform space where the magnitude of

the error corresponds to the error perceived by a human observer.

2. It provides an ability to select block-based sampling patterns. This is useful for

a number of reasons, primarily, since it results in symmetric array patterns, it is

simpler to design adaptive demosaicking algorithms for the resulting arrays. Also,

block-based patterns lend themselves to simplifiction in computation as the criterion

in this case may be reduced to a structured form (circulant or Toeplitz). Finally,

it is important that a particular color sample be surrounded by an identical set of

color samples everywhere in the array. This is due to the phenomenon of spectral

bleeding that occurs in closely spaced photosensitive elements in the sensor-array.

A particular element in the array that is covered by a color filter will also generate

some current due to the spill-over from neigboring elements. This contaminates the

expected spectral response of the element in question. A consistent arrangement

allows the image processor to account for the spectral bleeding.
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5.6 Future work

The algorithms proposed in this work are extremely computationally intesive. We have

shown that the resulting sampling arrangements perform better than the most commonly

used array pattern (the Bayer array), but to validate the efficacy of the resulting sampling

patterns, we need to design larger arrays. At this time, due to memory contraints, we can

only design array patterns for images of size upto 12× 12. The second method has a block

structure and we are exploring ways to simplify computations to enable the design of larger

arrays.

Conventionally, images are stored and displayed such that individual pixels are rect-

angular in shape. In this work we have considered rectangular sensor elements in CFAs.

It has been shown that hexagonal arrangements have many advantages [83], [84], [85]. In

particular, a hexagonal sampling grid allows two-dimensional sub-sampling at sub-nyquist

frequencies. Also, in hexagonal arrays, the distance between a particular element and it’s

immediate neighbors is the same and this property can be used effectively in demosaick-

ing algorithms. The selection of sampling patterns for hexagonally sampled arrays is an

interesting problem to be considered in the future.

98



Chapter 6

Summary

6.1 Summary of results

The acquisition of multispectral images in the mosaicked form presents many advan-

tages in terms of cost, simplicity of design, and the elimination of the registration step

required in multi-sensor cameras. At the same time, mosaicked imaging presents many new

challenges. The mosaicked image must be reconstructed to form full-color images, and a

suitable algorithm must be designed for the purpose. The sampling arrangement and the

sampling rate for the color samples must be chosen, and spectral sensitivity functions must

be chosen for the colors used in the mosaic. In this work we have developed methods that

address each of the above issues.

In Chapter 3 we proposed a general framework for the recovery of color images from

sparse data [55]. An algorithm based on the Bayesian paradigm that may be used for

simultaneous deblurring, denoising, and demosaicking of CFA data [86] was developed.

The proposed algorithm relies on a hierarchical Bayesian formulation for the image model

that accounts for the high correlation among color channels of a typical image. The ICM

algorithm was then used to locally arrive at optimal pixel values given their neighboring ele-

ments. The proposed algorithm does not assume any particular CFA sampling arrangement

and can be used for demosaicking of arbitrary CFA arrangements.

A novel joint spatial-chromatic sampling framework for the optimization of CFA based

imaging parameters was proposed in Chapter 4 [68]. We addressed the problem of optimiza-

tion of spectral sensitivity functions for the color filters in the sensor-array. An objective
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criterion was introduced incorporates the effects of both spatial and spectral sampling in one

unified framework. is introduced. Experimental results indicate that the optimized trans-

mittance functions found by minimizing the objective criterion greatly outperform standard

RGB and CMY color filters. Optimized color filter transmittances lead not only to reduced

chromatic errors, but they also lead to fewer spatial artifacts in the reconstructed images

[87]. Optimized transmittances were found for various common CFA arrangements and

shown to outperform standard color filters in each case [88].

Two design methods for the selection of CFA sampling patterns were proposed in

Chapter 5 [51, 52]. Both methods incorporate the effects of the human visual system in

determining reconstruction quality of CFA sampled images. The quality of reconstructed

images is used to derive objective criteria which may be minimized with respect to CFA sam-

pling arrangements to derive optimal arrangements. The second method provides an ability

to select block-based sampling patterns which leads to ease in the design of demosaicking

algorithms and color filters with consistent effective transmittances across sensor-arrays.

6.2 Future work

There are several unresolved issues in the problem of multispectral imaging using focal-

plane arrays. In light of the methods proposed in this work, future work is called for in the

following areas:

1. In Chapters 4 and 5, objective criteria are derived to describe the distance between

original images and images reconstructed from sub-sampled CFA data. The efficacy

of the criterion hinges on the ability of the multi-dimensional autocorrelation matrix

Rxx to describe faithfully the properties of a natural scene. In this work we based our
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correlation model on the key assumption that both spatial and spectral correlations

decay with distance in space and wavelength respectively. Spatial correlation does

indeed fall with distance in the general scene, but the nature of the relation between

elements of the autocorrelation function along the wavelength dimension is not easily

modeled. Research in this area will help refine the results obtained in this work.

2. Recently, researchers have started to explore the problem of CFA-based imaging for

multiple number of color bands (>4) [89, 90, 91, 92]. There is great potential of real-

izing the benefits of multispectral imaging with CFAs because of the steady increase

in sensor-array sizes. In Chapter 5 we have demonstrated that full-color images of

reasonable quality may be reconstructed from CFAs with sparse spatial sampling of a

particular color. For instance, blue is sampled at a much lower rate than green in the

5 × 5 optimal block-based array, without a great loss in the quality of reconstructed

images. This suggests that the sparse sampling of particular colors due to an increase

in the number of color bands is a reasonable trade-off and should be investigated in

the context of the joint spatial-chromatic sampling framework developed in this work.

3. The effect of noise has not been considered in the development of the spatial-chromatic

reconstruction method proposed in this work. Effective noise models will greatly

increase the usefulness of methods proposed here.
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