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As devices with wireless access technology, greater memory and longer battery life,
proliferate, there is a need to be able to allow more than one hop communication amongst
them. Also, such a network, with wireless enabled devices, is easier to deploy in case
of a disaster. But, these devices that participate to form a multi-hop Mobile Ad Hoc
Network (MANET), need a unique identifler such as an Internet Protocol (IP) address to
be able to participate in networking. To deploy and access services in this network they
also need a service management infrastructure. In the wired and wireless local area network
such an identifler is provided either by static assignment or via auto-conflguration protocols
such as Dynamic Host Conflguration Protocol (DHCP). To support service discovery, the
Domain Name System (DNS) translates from the name of the service to the IP address
associated with it. Distributed Hash Table (DHT) based protocols such as Chord have
been used for service discovery and content management. This thesis exposes the problem
of conflguring networks that experience partitions and mergers due to disasters. Thus,
physical damages to networks may afiect service architectures. This thesis illustrates with
v
speciflc examples, how adaptation of existing solutions does not solve the problem. It
recommends the use of a protocol that allows concurrent joins and leaves.
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Chapter 1
Introduction
Communication in an Internet uses a layered approach as shown in Figure 1.1. Each
node consists of several layers of standard communication protocols commonly called the
network stack. The physical layer consists of protocols that allow bits to be transmitted and
received using the communication medium. The data link layer along with Medium Access
Control (MAC) mechanisms consist of protocols for point to point communication over
the physical layer. The network layer consists of protocols that allow multipoint routing
amongst nodes using the data link layer. The transport layer consists of protocols that allow
point to point connections over multiple links using the network layer. The application layer
consists of services such as DNS. In a device following such an approach, any upper layer
cannot communicate with another device if its lower layers cannot.
1.1 Description of a mobile ad hoc network
MANET is formed out of a cluster of nodes equipped with wireless communications
and networking capability that are deployed without a predeflned topology [1]. Each node
can communicate with any other node within its? interfaces? radio range. To communicate
with nodes beyond its radio range, it forwards packets to nodes within its radio range that
have a path to the destination node. Hence, each node in the network potentially works
as a router. Apart from physical layer connectivity, medium access control and multi-hop
routing protocols, nodes also participate in services that are accessed by others.
1
Figure 1.1: Layered model of communication
1.1.1 Modeled as a graph
In wireless Local Area Network (LAN)s, according to the standard, IEEE 802.11 [2]
interfaces associated with the same Basic Service Set Identifler (BSSID) are part of the
same network. In a MANET, the network can be represented as a graph G = (V,E), where
physical interfaces are represented as vertices in V and existing links are represented as edges
E [1]. According to the transmission range of each interface, the topology emerges. The
graph is assumed to be connected and simple. This graphical representation of a MANET
holds for a time instant. In this instant, the topology can be represented as a graph where
the edges depend on a distance relation, i.e., if the distance between the vertices v1 and
v2 is less than the range of each interface there exists a possible edge. An example graph
is shown in Figure 1.2. Furthermore, due to the use of directional antennas, these links
may also be asymmetric and modeled as directed edges. To note, for interfaces in the
network that connect to a wired network, the edge between the wired interfaces need not
be representative of physical distance between them.
2
Figure 1.2: MANET
Devices participating in a MANET need not consist of interfaces of the same type
[3]. If the devices participating in the MANET have more than one type of wireless access
technology, the possible edges form an overlay graph where the vertices are partitioned with
respect to their access technology. Vertices in V1 have interfaces with range D1, in V2 with
D2, in V3 with D3, where V1,V2,V3  V, V1 S V2 S V3=V. The edge set is the union of all
edges from each access technology type with the assumption that there are some nodes that
have more than one interface with difierent access technologies that bridge between them.
3
Figure 1.3: Wired Wireless Scenario
1.2 Gateways to wired networks
A MANET may also have nodes that connect it to the wired Internet [4].In the wired
Internet, parts of the network are predetermined topologies, deployed and maintained by
network administrators.
The above Figure 1.3 depicts a typical o?ce environment deployment of wired and
wireless LAN, where the conflguration DHCP [5] server is part of the wired network.
1.3 Description of domain name system
1.3.1 How names are essential in the Internet
Most useful services such as web services, distributed databases, email, instant mes-
saging, and gaming are not hosted or served from a flxed topological location(s). Change in
entities? location results in its network address and routing path to change. In the Internet,
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instead of discovering the topological location of a service every time it is required, an in-
frastructure is maintained for scalable access to translations of a service name to topological
location, making service management an important framework of a network. It allows the
logical name of an entity such as a service or a user to remain constant irrespective of its
location in the network. The aim of such a system is if nodes are topologically reachable, as
in the transport layer can establish a data connection, then it should be logically reachable,
i.e., all services on nodes within this connected network, should be accessible to all others,
using the service infrastructure. Any such scheme needs to adapt to failure of nodes and
changes in underlying network conditions.
In such a service, functions should be able to lookup the current translation, update
to change the translation, assign responsibility of the translation, allow new name servers
to join, delete failed name servers, and maintain association amongst name servers, (also
known as the naming scheme). Considering a few difierent ways in which the servers
may be logically related to one another, such as Peer to Peer (p2p), multicast, replicated
database, tree, each of these solutions may be categorized based on whether they make use
of a hierarchical structure in the naming scheme/topological placement/search (routing)
scheme. One structure is where all the clients and servers form a multicast topology, where
each server consists of translations that are registered with it. This result in worst case
O(N) lookups, i.e., time to search for a translation, where N is the number of servers. It
may utilize topological hierarchy but not naming or search hierarchy. Another topology is a
DHT. Here each server has a unique identifler and is responsible for entries that map to it.
Query may take O(logN) * Diameter of the network. A DHT thus usually utilizes hierarchy
for search only. Another topology is a centralized scheme where all the translations are
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kept with one server. Querying in this setting is of O(1) * Diameter of the network since
the server is well-known. Updating, i.e., re ecting changes is also of O(1). DNS in its own
form utilizes hierarchy in naming as well as search.
Example of such a service that is essential to a large number of applications in the
World Wide Web (WWW) is the DNS [6], [7], [8].It is used to lookup the translation of
a name to an IP address. DNS is a distributed database that maintains the current name
to IP address translations of nodes in the Internet. In the Internet every machine that
can host services has a hostname. This hostname?s translation to IP address needs to be
updated in its authoritative DNS server.
1.3.2 How the DNS works
DNS servers are arranged hierarchically as a multi-way tree with the root of the tree
responsible for all records. An authoritative name server for a domain is responsible for all
translations whose names end in this domain name. In order to manage unique names in a
scalable manner, the names as well as the responsibility of resolving them are arranged in
a hierarchical tree structure. A tree structure, for a given number of nodes maintains the
minimum number of links. For n nodes, a tree has only (n-1) links. The root of the tree
is responsible for resolving any query. Any leaf node can obtain the resolution of any node
by traversing up the tree. In case it cannot reach some intermediate node, it can always
start with the root node. This makes the root server a hotspot, if it collapses, the tree is
invalidated.
This is not a problem in the mostly wired Internet since the root server is physically
replicated on the Internet backbone and every machine is manually conflgured with the root
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server?s IP addresses. So, any temporary failure of an intermediate node would only make
its sub tree unreachable. The rest of the tree would still be reachable from the root. Thus,
in the wired Internet, there has not been a strong requirement for auto-conflguration of
the root servers themselves. Currently authoritative DNS servers themselves are statically
conflgured. Update is done statically at each authoritative server. Each name server needs
to maintain one link, i.e., to its root. The naming scheme and lookup mechanism are
hierarchical. There is no automated assignment of responsibility of translation within the
scheme. In order to be resilient to intermittent failures, it relies on replication of the
database physically. DNS currently does not support any manner in which their name-
IP address translations can be setup ad hoc. The root nodes, which are a constant, are
responsible for all translations in the Internet. Searching, that is a very frequent operation,
is highly e?cient in this structure.
1.4 About peer to peer service protocols
Newer examples of scalable service management are peer to peer networks [9]. Both un-
structured ones such as Gnutella, KaZaa, etc and structured models such as CAN, CHORD,
Kademlia, Bamboo, SkipNets. The most notable application where this has been used is in
flle sharing. It is an efiective manner to index current location of flles or flle parts and then
access. It difiers signiflcantly from the DNS structure in that responsibility of the current
translation is assigned dynamically depending upon the current membership in the struc-
ture. Further, joining and leaving from such structures need no manual conflguration. The
cost of such  exibility is in the maintenance of redundant linkages, and regular maintenance
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messages. In structured peer to peer networks [9], current location of content is at a desig-
nated member of the ring that is searchable from any other member. For unstructured peer
to peer networks [9], frequent network wide broadcasts may occur that may cause severe
tra?c congestion. Location of content is disseminated as the request for it increases. A two
level hierarchy as in KaZaa allows unstructured peer to peer networks to reduce the amount
of messages. Both structured as well as unstructured peer to peer networks have been suc-
cessfully used in various applications. Most applications such as publish-subscribe systems,
content distribution systems assume the underlying physical network to be connected.
Here, the DHT is a data structure used in structured peer to peer protocols. As against
the use of  ooding in unstructured peer to peer protocols, DHT?s attempt to balance the
load and require asymptotically less number of messages for search and maintenance. As
described in [10], it is an important data structure for an architecture that manages services.
The basic structure consists of a distributed circular linked list. For consistency, only the
successor pointers need to be maintained correctly. But, for performance, extra linkages,
i.e., flngers are maintained. These are maintained using a passive stabilization routine and
are useful to reduce the search time to O(log(n)). Current DNS relies on hierarchy in the
naming and search scheme, maintaining very few links. Multicast based solutions would
rely on hierarchy in the topological sense. DHT or p2p solutions rely on a hierarchical
search scheme. Similarly other variations of solutions may be classifled.
1.4.1 Description of DHT based DNS
Chord [10] is a structured, DHT based peer to peer protocol. In this scheme of
DNS servers, the names would hash into the server identiflers, allowing the name-resolution
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responsibility of a node to change dynamically. Each node is analogous to an array slot in
a hash table. Its index in the hash table is generated using a consistent hashing technique
such as Secure Hash Algorithm (SHA)-1 [11]. DHTs are typically designed to scale to a
large numbers of nodes and to handle continual node arrivals and failures. The invariant
in Chord is as long as the successor pointer of each node is correct, the ring is stable.
The join operation proceeds by requesting a current member of the ring to search for its
correct successor in the ring. The passive stabilization routine updates pointers to repair
incorrect pointers to predecessor nodes. The join, stabilize and flnger update algorithm is
described in [10]. In Chord, as long as each node points to its correct successor, all the
nodes will eventually form a stable structure where all its members are reachable. The
successor is then the node whose identifler is circularly greater than its own and is part of
the logical network. Each node in addition to its correct successor also maintains links to
O(log(n)) other nodes in a predetermined manner that allows O(log(n)) searching. Thus, in
Chord, a node n?s neighbor is successor(n) and it also forms linkages with successor(n+21),
successor(n+22), ..., successor(n+2k), where k = log(N),N= maximum number of nodes
possible in the network. A node that attempts to join an existing Chord network need just
flnd its successor and conflgure its logical link to it. As part of a passive stabilization routine,
this node, sends a stabilize message to its successor, on receiving which, the successor sends
a notify message to its current predecessor informing of its new successor, after which the
node changes its predecessor to the new one. Periodically, a node that is part of the logical
network, sends a stabilize message to its successor, the successor adjusts its predecessor
pointer and sends back a notify message to its earlier predecessor if there is a change. This
allows the predecessor to update its successor link as well.
9
Node Entry at bit 4 Entry at bit 3 Entry at bit 2 Successor
0000 0001 0010 0100 1000
0001 0010 0011 0101 1001
0010 0011 0100 0110 1010
0011 0100 0101 0111 1011
0100 0101 0110 1000 1100
0101 0110 0111 1001 1101
0110 0111 1000 1010 1110
0111 1000 1001 1011 1111
1000 1001 1010 1100 0000
1001 1010 1011 1101 0001
1010 1011 1100 1110 0010
1011 1100 1101 1111 0011
1100 1101 1110 0000 0100
1101 1110 1111 0001 0101
1110 1111 0000 0010 0110
1111 0000 0001 0011 0111
Table 1.1: Routing Table
Apart from Chord, there are other DHT based protocols, such as Pastry [12] and
Kademlia [13] that maintain their links difierently. In Kademlia, each node n forms links
with (nXOR2i) nodes where 0 < i < k and k=number of bits in the maximum size of the
ring. Although this allows for choice of link based upon topology or other criteria, it can
become less balanced than Chord when all the nodes are participating. The invariant in
Kademlia is to have at least one member in each sub tree if such a member is present.
In order to compare a DHT based DNS as opposed to current DNS or Logical Name
System (LNS), we attempt to flnd a mapping between them as structures. Here name
servers would be the nodes of the structure. To demonstrate the difierent mappings of
Chord as DNS, consider a network where k =4 and all the nodes exist. In this case, the
routing table for each of the nodes is as in Table 1.1.
10
Figure 1.4: mapping Chord to DNS
In the above case, if multiple name servers share the same identifler, i.e., responsibility
of maintaining the translations of difierent authoritative server lie with the same Chord
node, an example map of part of the Chord structure is shown to map to a section of
the DNS in Figure 1.4. The advantage of using a DHT based scheme over DNS is that
in a DHT, the responsibility of the translation is automatically assigned depending on the
currentmembers of the logical structure. There is alwaysa node that iscurrentlyresponsible
for a given translation. For an example, we assume that a number of servers can map to
the same identifler. Such as ., .com, telcordia.com all map to 0.0.0.0.
As opposed to Chord, the Pastry routing table where the size of the network is maxi-
mum 16, i.e., 4 bits per node identifler, is more  exible. The routing table for a full network
would have choices for the entries as in Table 1.2
As against Chord, where each logical node has the same responsibility as all others, in
the above, some nodes can be assigned more responsibility than others, even if all of them
11
Node Entry at bit 4 Entry at bit 3 Entry at bit 2 Successor
0000 1XXX 01XX 001X 0001
0001 1XXX 01XX 001X 0000
0010 1XXX 01XX 000X 0011
0011 1XXX 01XX 000X 0010
0100 1XXX 00XX 011X 0101
0101 1XXX 00XX 011X 0100
0110 1XXX 00XX 010X 0111
0111 1XXX 00XX 010X 0110
1000 0XXX 11XX 101X 1001
1001 0XXX 11XX 101X 1000
1010 0XXX 11XX 100X 1011
1011 0XXX 11XX 100X 1010
1100 0XXX 10XX 111X 1101
1101 0XXX 10XX 111X 1100
1110 0XXX 10XX 110X 1111
1111 0XXX 10XX 110X 1110
Table 1.2: Options for Routing Table
X here denotes a 0 or 1.
are present in the ring at the same time. For example, an instance of the table can be as
in Table 1.3
From the sample routing table, looking at the number of incoming links at each node,
we observe 0000 has 15 nodes linking to it, that is, node 0000 occurs in the routing table
of 15 other nodes. Node 1111 on the other hand has 1 incoming link. Table 1.4 shows the
number of incoming links for each node.
As a complete structure, this is similar to a DNS tree with either 0000 or 1000 as the
root node.
1.5 Address resolution protocol
In wired networks, Address Resolution Protocol (ARP) [14] is used to aid in routing
as well as IP address assignment. An Ethernet LAN segment can be viewed as a bus
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Node Entry at bit 4 Entry at bit 3 Entry at bit 2 Successor
0000 1000 0100 0010 0001
0001 1000 0100 0010 0000
0010 1000 0100 0000 0011
0011 1000 0100 0000 0010
0100 1000 0000 0110 0101
0101 1000 0000 0110 0100
0110 1000 0000 0100 0111
0111 1000 0000 0100 0110
1000 0000 1100 1010 1001
1001 0000 1100 1010 1000
1010 0000 1100 1000 1011
1011 0000 1100 1000 1010
1100 0000 1000 1110 1101
1101 0000 1000 1110 1100
1110 0000 1000 1100 1111
1111 0000 1000 1100 1110
Table 1.3: Sample Routing Table
Node Number of Incoming links
0001 1
0010 3
0011 1
0100 7
0101 1
0110 3
0111 1
1000 15
1001 1
1010 3
1011 1
1100 7
1101 1
1110 3
1111 1
Table 1.4: Number of incoming links
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where a host can broadcast to other hosts on it and every such host can rebroadcast to all
those hosts. For the purpose of address resolution, the ARP request packet has destination
MAC layer address FF:FF:FF:FF:FF:FF (broadcast address), its own MAC address as the
host address, host IP address and destination IP address. This broadcast reaches all hosts
connected by protocol stack layer 2 and below elements (such as bridges and switches as
long as they allow broadcasts to propagate). If there is any host with the destination IP
address, it replies.
1.6 Dynamic host conflguration protocol
These resolutions are cached in order to reduce the number of broadcast messages.
ARP allows auto-conflguration. The ARP request for a node requesting to be assigned its
IP address, broadcasts with its host MAC address, destination MAC address set to the
broadcast address, host IP address set to 0.0.0.0 (, i.e., this host IP address), destination
host address set to 255.255.255.255 (which is the broadcast IP address, unless its ARP cache
has adverts from DHCP servers). This request is also known as a DHCP request. It is sent
as a UDP packet. This ARP request propagates until it reaches a protocol stack layer 3
element such as a router. In this stretch either it encounters a DHCP relay agent or a DHCP
server [5]. A DHCP relay agent unicasts the request to a DHCP server which replies back
with an IP address assignment and conflguration information. A ARP reply with requestors
MAC address and IP address as destination and server?s MAC address and IP address is
rebroadcast and this updates the requestor?s ARP cache and assigns it its IP address.
Duplicate DHCP servers for the same network segment can exist as long as either their
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address pools are non-overlapping or they ping the IP address before assigning to discover
any con icts and avoid duplicates , i.e., perform Duplicate Address Detection (DAD).
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Chapter 2
Need for auto-configured DNS and auto-configuration
2.1 Network partitions and mergers in MANET
We note in this section how the underlying network is easily partitioned in a MANET
leading to the case of the authoritative servers being unreachable and physically connected
nodes being logically unreachable:
In the graph G=(V,E), representing a MANET, a link is sensitive to change in channel
conditions, changes in the surrounding environment such as short term fading efiects, high
error rate or excessive collision as well as mobility of the devices. Thus, not all possible
neighbors by distance may be reachable at a particular point in time. Also, apart from the
change in possible neighbor relations of a node due to mobility, the above reasons result in
the graph representing the network to change with time.
In MANET, a link failure mayoccur due to mobility. An interfacethat has moved out of
the radio range of another node dissolves the link between them. The resulting link failures
between interfaces that have no other redundant paths, lead to network partition. An
interface in a MANET is not only responsible for connectivity between its direct neighbors
but also for providing paths for other nodes in the network.
Apart from the environmental conditions that afiect a MANET network nodes that are
currently associated with one network may decide to leave and join another geographically
collocated network and thus cause a change in the topology as well. Geographically close
nodes need not participate in the same network. For example, in a city wide MANET
created out of users that voluntarily participate in it, as nodes move, change the network
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they are associated with or switch ofi, temporary holes in the network may emerge, i.e.,
parts of the network may get isolated from each other due to such dissolution of links.
Further, they may merge back together again as links are formed between interfaces in
difierent partitions. This phenomenon may occur frequently. Hence, not all devices that
exist with wireless access technologies may participate in a given network. There may
also be devices with interfaces that participate in difierent networks thus bridging them.
At difierent points of time, even if the nodes do not move, on changing the network it is
associated with, changes the graph.
As we note from the above changes, some of the links between nodes may be lost from
time t1 to time t2, where t2 > t1. If these deleted edges in E cause the formation of disjoint
components, the MANET network has partitioned. This results in nodes belonging to the
same network but in difierent components not being able to communicate with each other.
This new graph G? = (V, E) has at least two disjoint components. Similarly, if edges are
added to the graph G? to form G", i.e., it goes from G? to G", where G" either does not have
more than one component or has re-organized into difierent components, a network merger
has occurred between the disjoint components. For example, take a linearly arranged nodes
a, b, c, d, e, f and g, i.e., a-b-c-d-e-f-g. If the link between c and d, and e and f breaks,
the resulting graph has three disjoint parts, a-b-c, d-e and f-g. If further, there is a new
link formed between c and f, the resulting graph re-organizes to two disjoint components
a-b-c-f-g and d-e.
A break in links does not necessarily mean a loss of connectivity. Due to the number
of extra links, there may be more than one path between a pair of nodes, which may be
utilized when a link breaks on a path being used between two nodes. To note, we make the
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assumption that detecting a link break as against congestion or collision is assisted by the
MAC layer. We do not assume that a path break can be easily detected.
2.2 Network partitions in other networks
Although infrequent, network wide disruption of infrastructure in wired networks arise
in the event of a disaster due to either natural calamities such as tsunamis, volcanoes,
hurricanes, earthquakes or man-made such as terrorist attacks, wars. They result in physical
faults in the connecting media leading to link failure. This may lead to a partitioning of
networks if there are no other paths connecting the two entities. An example is the failing
of a flber-optic cable connecting two routers in difierent cities for example like in [15], [16].
It is di?cult to bring up the communication infrastructure quickly, manually. In a wireless
network, it may obliterate a number of interfaces, thereby removing links associated with it
that could lead to potential partitions. Damage that is local to the point of disaster, afiects
far ends of the service infrastructure because of its hierarchical arrangement.
In an infrastructure based wireless network, such as 802.11b or cellular networks, the
link failures occur due to mobility of nodes from one infrastructure point to another. Since,
these nodes act as hosts and do not serve other nodes, only these hosts are afiected by
mobility. Thus, when they form a new link with another infrastructure point, they require
re-conflguration.
Changing the static conflguration in clients of the root DNS servers also results in
partitioning of the service architecture [17].
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2.3 Efiect of underlying network partition and merger on DNS
In a given network, the topological links are from one interface in a network to another,
while logical links are the topological conflguration maintained by logical entities according
to their logical relations. Loss of topological links due to failures in the underlying physical
connections may lead to loss of some logical links as well. These topological partitions may
or may not be recovered for a long time afterwards. They may behave as distinct entities,
able to support networking services within their partition. Changes such as addition and
deletion of interfaces or links may occur in each of them, while they are partitioned. After
a period of time, when these stabilized partitions merge, services from one partition may
not be accessible from the other. This could create a partition in the service management
framework although the underlying physical network would have healed.
Currently DNS servers are statically conflgured. In order to be resilient to intermittent
failures, it relies on replication of the translations it is responsible for, physically. This solu-
tion does not provide robustness by the DNS architecture itself towards network partitions.
For example, a large MANET with two difierent domains breaks down into two partitions
each consisting of nodes from each of the domains. In this case, although the MANET can
reconflgure itself to setup lower layer communication between the nodes, DNS currently
does not support any manner in which their name to IP address translations can be setup
in an ad hoc manner. Figure 2.4 depicts the partition in services even when the underlying
network partitions have regained communication within.
In the event of a disaster, either natural or man-made, infrastructures are disrupted.
Damage that is usually local to the point of disaster is propagated to the far ends of the
service infrastructure. Hierarchy and caching improve performance in a stable infrastructure
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but do not exist in a disaster scenario. This makes ad hoc auto-conflguration solutions
relevant.
2.3.1 Root of the DNS as a hotspot
In DNS, the name to IP address resolution responsibility is hierarchically distributed.
The root server, i.e., ".", is the only one responsible for all the translations. Its IP addresses
are constant. All clients are conflgured with the 13 root server?s IP address. If all of the 13
root servers? IP address change, the root server becomes logically unreachable. This creates
a single point of failure. DNS roots exist in practice because 13 root servers by design
are guaranteed to be a constant for the internet. The following example describes how a
network partition and merger would lead to the above assumption to invalidate.
The Figure 2.1 represents a section of the DNS as it exists today. Each of the nodes?
iisc.ernet.in, iitg.ernet.in, cbse.nic.in, eng.auburn.edu is a host. Each host is associated
with an authoritative DNS server which is responsible for all the translations of its domain
zone that includes hosts, child DNS name servers. ernet.in is the authoritative server for
iisc.ernet.in and iitg.ernet.in. nic.in is the authoritative server for cbse.nic.in. auburn.edu
is the authoritative server for eng.auburn.edu. in is the top level domain server for ernet.in
and nic.in. edu is the top level domain server for auburn.edu. "." Is the root server for edu
and in.
In the section of DNS, assume that a disaster causes the underlying network to partition
as in Figure 2.1, at time t=0, causing .edu. to be inaccessible from all hosts named *.edu..
Thus, none of the translations for *.edu. can be accessed by those in the other domain
such as *.in, even if they can reach the root server. Within the .edu domain, hosts with
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Figure 2.1: Section of the DNS before the partition at time t=0-
the authoritative server auburn.edu shall now be able to resolve queries for those within
auburn.edu but not of other *.edu, since the server containing the correct translation for
authoritative servers for those zones is no longer reachable. The correct name to IP address
translations are listed in Table 2.1, using nslookup [18].
The above example describes a situation where the partitioning of the underlying net-
work is not on organizational boundaries that are arranged hierarchically in DNS, resulting
in hosts not being able to obtain translations from one broken domain to another. The ex-
isting logical structure is not connected although there is physical connectivity. This would
inevitably lead to service discontinuities due to the partitions formed. It is likely that the
IP address for the corresponding names would have changed and earlier transactions or
sessions would break and not resume.
In order to repair the logical structure to resume name resolution within the partition,
a new node within the partition would need to become the .edu server. Without the original
translation table of .edu., the list of *.edu. names is unknown and so are their translations.
It would be di?cult for any one *.edu to take over its responsibilities. This is because all
the *.edu do not know of each other?s existence. So, for any one of them to take over the
function of the root, does not guarantee that all the *.edu nodes will be able to modify their
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Name IP Addresses
. 198.41.0.4, 128.63.2.53, ..
.edu 192.41.162.32,..
.in 204.152.184.64, 193.0.0.193,..
uab.edu 138.26.1.2, 207.230.75.50,
health.uab.edu 138.26.153.226
math.uab.edu 138.26.76.18, 207.230.75.50,..
nic.in 164.100.3.1
cbse.nic.in 164.100.52.226,164.100.52.227
delhi.nic.in 164.100.52.74
auburn.edu 131.204.2.251
ernet.in 202.41.97.61
iitg.ernet.in 202.41.110.33
iisc.ernet.in 144.16.64.3
eng.auburn.edu 131.204.110.158
pharmacy.auburn.edu 131.204.250.29
Table 2.1: Name To IP Translations at t=0-
links to the new root and consequently communicate with *.in nodes. Multiple partitions
within *.edu, aggravate the problem further.
Automatic repair for this logical structure may be possible if there were more logical
links maintained. For example if auburn.edu had a logical link to .in, all the translations for
*.in could be reached from the nodes *.auburn.edu even without the existence of ".".Fig-
ure 2.2 depicts the logical links after the merger and a flctitious change in name to IP
translations in Table 2.2.
Thus, if an intermediate authoritative server becomes unreachable, there is no way for
its child servers to access services from the other parts of the logical tree. Healing a partition
depends on whether there are redundant links to difierent parts of the logical structure that
can be accessed in order to access information of parts of this tree. In DNS, since such links
are hierarchical in nature, it is simple to say that the loss of the root is an essential loss of
all translation. Alternatively, these links can be discovered, but a broadcast discovery at
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Figure 2.2: Section of DNS after network merger at t=0+
every network partition is an expensive solution in terms of the number of messages and
time taken to repair.
In IPv4 [19] networks, there are not enough IP addresses anyway that can be assigned
to every interface for its entire lifetime. Hence, translations of name to IP addresses for
services on them will change with time. Since the root node is an integral non-changing
parameter intheinternet, itstranslation isflxedalwaysandisaconstantstaticconflguration
in all hosts. In partitioned networks though, name-services can fail especially if there
are nodes from two difierent domains communicating. To note, that one DNS name may
translate to more than one IP address that exist in difierent organizational and geographical
locations.
2.3.2 Partitions and mergers in MANET
Figure 2.3 depicts two ad hoc network partitions merging. When they merge together,
apart from by the MAC and routing protocols, in such a changing network, nodes may host
services that are accessed by other nodes. Services from the combination of nodes should be
available to each node. To continue accessibility of services, conflguration is made di?cult
as a central authority within the network cannot always be trusted to be reachable. If
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Name IP Addresses
. 168.3.4.5, 124.3.0.123..
.edu 192.41.162.32,..
.in 178.2.3.19
uab.edu 138.26.1.2, 207.230.75.50,
health.uab.edu 138.26.153.226
math.uab.edu 138.26.76.18, 207.230.75.50,
nic.in 164.100.3.1
cbse.nic.in 164.100.52.226,164.100.52.227
delhi.nic.in 164.100.52.74
auburn.edu 131.204.2.249
ernet.in 202.41.96.11
iitg.ernet.in 202.42.24.12
iisc.ernet.in 144.16.64.3
eng.auburn.edu 131.204.110.158
pharmacy.auburn.edu 131.204.250.29
Table 2.2: Name to IP translations at t=0+
Figure 2.3: Ad hoc Partition and Merge
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Figure 2.4: Authoritative servers unreachable in MANET
each partition ran their local DNS with local root, in the merged case as neither of them
would have translations for the merged nodes. In Figure 2.4, if .edu was responsible for all
translations ending in it and similarly .com, in the partitioned case, services by cs.edu would
not be accessible to tel.com and vice versa, even though they are physically reachable.
In Figure 2.5 above, consider that the name servers form a Chord [10] ring. Consider
the entire network as a large group of wireless nodes. The nodes marked 0-9 are the Chord
name servers as shown in Figure 2.6. Each of the LNS name server?s consists of a topological
database of translations of the nodes it serves. The logical association amongst the LNS
servers is a ring formed by the hash of its node name. The LNS server that is logically
responsible server for a name is the successor(hash(name)). The collision-resistant hash
function is considered to be the same for all nodes. As an example, let hash (eng.auburn.edu)
= 2035, hash (auburn.edu) = 900. The reachable name server whose identifler is closest to
900 and greater than or equal to it contains the name to IP mapping of auburn.edu.
Consider an example case where Figure 2.5 depicts the topological links between
nodes. Let hash(m.n.edu)=9, hash(a.b.com)=0, hash(p.b.com)=1, hash(o.n.edu)=2, etc as
depicted in Figure 2.6. Logical links are formed over the underlying network, between
reachable nodes that form the network, where each node maintains O(log(n)) links. For
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Figure 2.5: Physical links between nodes and LNS servers
Figure 2.6: Chord logical structure amongst LNS servers
26
Figure 2.7: Break in underlying network
Figure 2.8: Stabilized logical links in partitions
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Node Successor 2nd Successor 4th Successor 8th Successor
0 1 2 4 8
1 2 3 5 9
2 3 4 6 0
3 4 5 7 0
4 5 6 8 0
5 6 7 9 0
6 7 8 0 0
7 8 9 0 0
8 9 0 0 0
9 0 0 0 1
Table 2.3: Before Breaking
example, there is a topological link between 3 and 8, 8 and 6, consequently a path from 3 to
6, i.e., 3 and 6 are reachable from each other through 8. Now, assume that an event causes
breaking of the number of topological links, breaking quite a few of the logical ones as well
as shown in Figure 2.7. In this event, although a number of the topological links were
broken, the logical network is partitioned into two pieces. In these two partitions, nodes
whose logical links are lost attempt to re-stabilize the structure and result in discovering
each other as shown in Figure 2.8. The following is the description of the breaking and a
possible manner of rejoining of links:
Before partitioning, the LNS servers? maintained logical links as shown in Table 2.3
where incoming links at node-from node are 0-9, 9-8, 8-7, 7-6, 6-5, 5-4, 4-3, 3-2, 2-1 and
1-0.
After the partition, the logical links are depicted in Table 2.4 where X is used to
denote a null entry. Incoming links at node-from node are 0-9, 9-8, 8-7, 7-6, 5-4, 4-3, 3-2,
and 2-1. Logical links would be detected to be broken since they timeout, when pinged or
used, although a timeout on a single logical link can mean either that the two nodes are
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Node Successor 2nd Successor 4th Successor 8th Successor
0 X X X 8
1 2 3 5 X
2 3 4 X X
3 4 5 X X
4 5 X X X
5 X X X X
6 7 8 0 0
7 8 9 0 0
8 9 0 0 0
9 0 0 0 X
Table 2.4: Just After Breaking
on difierent partitions or that there is a lot of congestion on the path connecting the two
nodes.
Due to the partition, 0 and 5 have lost their successors resulting in an inconsistent ring.
Amongst 0?s logical link, is a link to 8, to which it can update as its new successor, which
due to the stabilization routine will eventually change to 6. All of 5?s logical links are lost.
5 would be able to discover 1 as its successor if all the nodes had all their predecessor links
as well. For links that have broken, to discover the right member that returns the logical
structure to a consistent state would take time. The existing links that have not broken will
not need to be readjusted unless there is a simultaneous change in the membership of the
logical structure. The resulting logical links as the partitions stabilize is depicted in Table
2.5 where incoming links at node-from node are 0-9, 9-8, 8-7, 7-6, 6-0, 5-4, 4-3, 3-2, 2-1 and
1-5.
Consider that a merger event occurs after this, where the underlying network has
repaired itself. On merging, detecting that a merger has occurred is di?cult since there
aren?t any logical links between the partitions. Assuming that the two partitions do discover
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Node Successor 2nd Successor 4th Successor 8th Successor
0 6 6 6 8
1 2 3 5 1
2 3 4 1 1
3 4 5 1 1
4 5 1 1 1
5 1 1 1 1
6 7 8 0 0
7 8 9 0 0
8 9 0 0 0
9 0 0 0 6
Table 2.5: Broken Stabilized
each other, the logical links would be in the same state as that right after the partition event,
i.e., as in Table 2.4, where incoming links at node-from node are 0-9, 9-8, 8-7, 7-6, 6-0,
5-4, 4-3, 3-2, 2-1 and 1-5. As this structure stabilizes itself, it would eventually return to
its original stable state as depicted in Table 2.3
2.3.3 Importance of extra links for DNS in MANET
In large ad hoc networks, a single name server may not be su?cient to serve the entire
network. For nodes in the largely wired Internet, to access services hosted by nodes in
the MANET, IP addresses and DNS need to work in MANET as well. As ad hoc networks
partitionandmerge, nameserverswithineachpartitionneedsomemannerinwhichtheycan
update the translation of reachable names. This is to ensure that physically reachable nodes
are able to access each other?s services in the condition shown in Figure 2.4. Currently,
there is no automatic detection of network layer failures and delegation of responsibility of
translations to other nodes.
Attempting to get rid of the hierarchy in responsibility of who has the name gets rid
of a single point of failure, the root name server. Redundancy in the associations amongst
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name servers (i.e., links between them) than physical redundancy leads to robustness. It is
self evident that extra linkages are required to make the structure more robust than a tree.
Extra links help rebuild the structure. How these linkages are arranged would afiect how
easy it is to recover from a partition. Backwards compatibility of a solution to current DNS
is also desired. To add these extra linkages in a manner that they can be maintained with
least cost, in the event of network partitions, explored is the possibility of mapping Chord
[10] to DNS. The flrst step would be to convert names in current DNS to numbers. Hashing
functions can do the job to convert names to numbers and then numbers can be compared.
As against names, these numbers have flxed length. Collision resistant hash functions with
su?ciently large key space allow that each logical name be mapped to a unique number. The
ease in creating and maintaining links dynamically in DHT?s is because you can compare
two numbers and flnd out which way you need to search. Two arbitrary names cannot be
compared in this manner. This predeflnes a position for the responsibility of resolution that
need not force hierarchical naming, and allow transfer of responsibility based upon how the
links are maintained. The logical links that a DHT maintains is independent of hierarchy.
It maintains O(log(n)) links on an average, where n is the number of nodes in the network.
The logical links that a DNS maintains depends on hierarchy. A DNS authoritative server
maintains links to all its child authoritative servers. Most DNS servers are deployed in an
organizational manner, i.e., an organization usually has a DNS server(s) of its own that is
registered to an external parent server(s). In the mobile ad hoc network case, such kind of
servers would not be useful, since a partition in mobile ad hoc networks has no correlation
to organizational boundaries. Thus the hierarchical structure does not help.
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In terms of membership, DHT has dynamic membership, while DNS has manual mem-
bership. A DNS node, i.e., an authoritative server can be deleted and added. To add a
node in a DHT, any existing node in the DHT can be contacted and sent a join request to.
For a node to delete in a DHT, it can search its predecessor and update its predecessor?s
successor. Thus, before a scheduled delete, it can also transfer the data that it was respon-
sible for, to its successor. To add an authoritative DNS server requires manual registration
with its parent DNS server. To delete an authoritative DNS server requires that the entry
for it in the parent server be deleted. This causes the authoritative DNS server and all
its children to be unreachable from the rest of the network, as well as, all the translations
for them to be lost. In order to service the translations in the deleted DNS server, entries
would require to be added to the parent server. DNS clients can send queries to any DNS
server.
One of the salient points of using a DHT over the conventional DNS is that, ordering
numbers is easier than ordering names. Thus, the concept of distance and direction are
di?cult using names in DNS. Comparing eng.auburn.edu with auburn.edu and us.gov tells
us that auburn.edu is closer to it than us.gov. It does not say whether for google.com
translation sending the search request to auburn.edu or us.gov would be better. If instead
of names they were replaced by numbers where the range of numbers is flxed, we can
measure the distance between 0 and 19 as well as say that 4 is closer to 0 than it is to 19
and thus to search for 4, we can send the query to 0 than 19.
From the above, we can see that a MANET with a large number of nodes would be a
dynamically changing network that needs to be self-organizing and autonomous in order to
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scalably maintain its conflguration information. Apart from basic connectivity and commu-
nication as ofiered by the MAC and routing protocols, nodes will also be participating in
services that are accessed by others. To assure accessibility of these services, tree-structured
conflguration is made di?cult as a central authority within the network cannot always be
trusted to be reachable. Services should be available to all nodes that are part of the net-
work and are reachable. In order to withstand disasters, auto-conflguration capability is
required. This necessitates the existence of a higher number of linkages with the associated
databases than the tree structure in DNS. The redundancy here is not in terms of the repli-
cation in databases, rather it is the redundancy due to linkages maintained in the logical
network of DNS servers.
The research challenges in making a DNS for MANET are thus, scalability in the order
of the number of messages that are  oating around needed to sustain the proper functioning
of the structure, robustness that is to be able to structure consistent even in the case of
arbitrary failures, discovery that is to be able to discover services on all nodes that is
reachable. A correct solution is one, where the name of every physically reachable node
is found. An e?cient solution is one which has the least cost and time to maintain as is
robust to partitions.
2.4 Auto-conflguration
In the event of disruption of communication infrastructure, the location that maintains
the mapping between logical and topological entities might not be reachable any longer,
while the topology has changed. Thus, auto-conflguration is the natural flrst step to discover
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the same. To support the service management framework, the location or path to the
participating management servers needs to be conflgured in these nodes.
2.4.1 Address resolution protocol (ARP) in MANET
The address resolution protocol was introduced to be able to translate between IP ad-
dresses and device address on the Ethernet bus. It allows the address used for networking
to not depend on the manufacturers address, making adding and removing network inter-
faces and dynamic routing possible. ARP can be used successfully in situations where the
membership of a network interface to other interfaces is constant, i.e., on the link that the
network interface participates, the other interfaces are also participating on that link. In
MANET, since every node is potentially a router, it participates in more than one link and
thus in the multi-hop case the neighbors of neighbors need not be the same. This makes
it di?cult to use ARP for resolution. It leads to nodes two hops apart to think they are
on the same link, while on subsequent ARPing they cannot resolve each other as they are
more than one hop away [20].
In multi-hop wireless networks, each interface in the MANET is part of the same
network. Each Interface (IF) is a potential router. This may lead to the situation where
IF0{r{IF1{r{IF2,where r=maximum radio range for the interface. In this scenario, a one
hop broadcast from IF1 reaches IF0 and IF2, but a one hop broadcast from IF0 does not
reach IF2. This makes it di?cult to deflne a bus like segment as in Ethernet. If the DHCP
server resides at IF1, its broadcast is heard by both IF0 and IF2, but are they considered
being on the same link? DHCP server on IF0 can be easily seen to have IF1 on its broadcast
reach and naturally on its link. Now is IF2 part of a difierent link from IF1 even though it
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can hear IF1?s broadcasts and not IF0?s or is it on the same link? One solution to resolve
this situation is to have DRCP relay agents running on each node that discover the route
to the DHCP server and cache it.
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Chapter 3
Previous Work
3.1 Other naming solutions
There has been work towards making DNS more robust. Collaborative Domain Name
System (CoDNS) [21] is a scheme where in to increase robustness of a name server, its
database is physically replicated as a peer-to-peer network. The efiect of churn, that is, the
cycle of nodes joining and leaving the DHT, on performance of DHT has been studied in
[22], but the efiect of churnissigniflcantlydifierentfrom networkpartitions as are traditional
solutions used for failure resilience and load balancing such as physical server redundancy.
In Dynamic Domain Name System (DDNS) [23] the DNS UPDATE message can be used to
update translations to an authoritative DNS server. Session Initiation Protocol (SIP) [24]
is an elaborate protocol that allows application layer routing based on logical names, with
the help of service registration, location servers, etc. These schemes address robustness in
the case of node failures and light mobility.
A solution that does concern with change in IP addresses is the Unmanaged Internet
Protocol (UIP) [25] and [26]. It proposes the use of Kademlia like routing substrate over IP
that works around network partitions and mobility issues. Recent work in UIP has proposed
a non-hierarchical DNS like scheme for handling mergers and partitions as described in
[26]. Hence, there has been no extensive study into the possibility of incorporating DNS for
dynamic ad hoc network topology that results due to disasters or mobility, while it is an
essential service for applications.
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Skipnet [27], [28] is a proposed scheme using skip graphs [27] to efiectively address
the problem of DNS unavailability on disconnects at organizational boundaries. It sup-
ports simultaneous use of multiple DHTs guaranteeing that message routes traverse only
intermediate nodes sharing the same name preflx as do source and destination nodes. It
elaborates failure recovery algorithms describing how probabilistic skiplists are used to route
by name and numeric Identifler (ID). In each organization segment, a well-known root node
is present that forms part of the alternate means of discovery. The assumption here is that
partitions occur at organizational boundaries. On organizational disconnect, Skipnets make
the assumption that well-known nodes will exist in each disconnected segment that aid in
discovery of partitions. In a MANET, there need not be a correlation between a node name
and its topological location making it di?cult to take advantage of name ID routing.
LNS as proposed in [29], [30], [31], [32], [33] is a naming scheme for large ad hoc
networks. A group of LNS servers serve in a MANET. Each LNS server has a topological,
logical and home database. The topological database consists of all translations of nodes
registered with it. The logical database consists of translations of LNS servers responsible
for a set of logical groups. The home database contains translations of nodes? home server.
In Figure 3.1 LNS servers form a multicast group.
Every isolated network contains at least one server responsible for containing the name-
IP address translation. It broadcasts periodic beacons for nodes to join and register with
it. For nodes that are registered within a LNS server, irrespective of their "domain", can
access translations of all nodes reachable and registered in the LNS server in its topological
database. It is not backwards compatible with DNS.
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Figure 3.1: LNS servers logically associated as a multicast group in a MANET
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The technical report by Xiaozhou Li [34] discusses concurrent management of a ring.
It details that a bidirectional ring is required for a ring to maintain consistency in the event
of concurrent joins and fails. It mentions an active join and leave algorithm as opposed to
Chords passive stabilization method as described in [34]. His more detailed work, compiled
as RANCH [35], allows for a locality aware, e?cient, concurrent joins and leaves, structured
p2p protocol. In the case, where the bi-ring need not be maintained in an ordered manner,
performance might be better.
3.2 Auto-conflguration in MANET
Difierent techniques have been proposed for auto-conflguration of IP addresses in
MANET. One approach is assignment of globally unique con ict free addresses to each
network interface, and the other is assignment of addresses with DAD thereafter [4]. For
con ict free assignment, in order to reclaim already assigned addresses that are no longer
in use, the lease timer allows, for addresses that have not been reallocated to be reclaimed.
Schemes that use con ict free mechanisms are Prophet [36] and DRCP [37], [38], [39].
DRCP assumes nodes have formed into IP links. In the single-hop wireless LAN scenario,
this is indeed the case, where the DRCP server may reside on the Access Point and any
broadcast by the interfaces associated with the Access Point will reach it and vice versa.
This allows the Access Point to manage the IP address assignments and DNS server con-
flguration.
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3.3 Comparing possible solutions
In order to compare performance, with solutions that reach full logical reachability of
physically reachable nodes, the percentage of the network reachable and the time to end
in a fully connected network, are relevant. On the other hand, if solutions asymptotically
aim parts of the network to be logically connected, and may not result in a fully connected
network, thenstaleness, i.e., thenumberofincorrecttranslationsduetomobilityandfailures
is a useful measure. In order to measure staleness, the lookup time that nodes take for
correct and incorrect translations can be noted. The rate at which updates in the translation
tables occur, number of servers looked up on an average to resolve a query and the tra?c
overhead due to maintenance of the structure.
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Chapter 4
J-SIM simulation study of DNS for MANET
Having identifled the problem of existing name resolution service architectures not be-
ing able to recover from network partitions and mergers, the following protocol is simulated
and studied.
4.1 Beaconing Chord based LNS
A node participating in this protocol is in either UNJOINED, JOINED, DELETE
or REVERSE state. A node in the UNJOINED state is not participating in the logical
network, although it can cache topological beacons to update its contact id. When a node
is interested in participating, it sends out a search query to a node already participating
in the network, such as its contact id. In the UNJOINED state, a node does not respond
to any search or join requests that it may erroneously receive. When a node?s flrst search
request, which is also its join request, is replied to with the address of the current successor,
the node changes state from UNJOINED to JOINED. In the JOINED state it participates
in the logical structure. When a node in the JOINED state loses its link to its successor, the
structure becomes inconsistent. The node then uses its reverse links, i.e., its predecessor
pointers, to flnd the point in the ring that is its new successor. Thus, when a ping to
its successor times out, the node enters the REVERSE state and sends a search query
to its predecessor, listening to replies until TIMEOUT. Out of the replies received from
difierent nodes, the reply from the node that is farthest from it is updated as the new
successor, making the recovery robust. It is possible that a node does not receive any
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replies whatsoever. In that case, the node assumes that it is isolated, and makes its own
ring. In the DELETE state, a node is attempting to leave the logical network voluntarily.
In this state too it does not reply to any search queries.
Node enters network {
State = UNJOINED
Listens for a topological beacon
If (no beacon)
Then (becomes MASTER), state = JOINED
If (MASTER)
Then (send topological beacon every T1 seconds)
Else
Beacon rcvd
JOIN (MASTER)
}
JOIN (MASTER)
Send JOIN request to MASTER?s IP address
RECIEVE (JOIN) from NEW_ID
SEARCH (NEW_ID)
SEARCH (ID)
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If (ID in my Range then reply)
Else send Search (ID) to successor?s IP address
On network merge {
Hear topological beacon from ID,
If (MASTER) (if Own_ID>ID become SLAVE and JOIN (ID))
}
For the scenarios discussed in this thesis, the initial state of a network is assumed to be
a stable state where the node with the lowest identifler being the MASTER is topologically
beaconing. This beacon makes it easier for other LNS servers to discover partitions to merge
into. In the event of a network partition, a change in the node?s contact id re ects loss of
its association to a ring. Nodes that cannot hear the beacon assume that they no longer
belong to the existing partition. When a node?s contact id times out, i.e., it cannot hear
the topological beacon anymore, it sets the contact id to itself thereby declaring itself to be
a MASTER node. Thereafter, the discovery process for the lowest identifler node ensues.
Each MASTER node beacons topologically, unless it hears a beacon from a lower identifler
stop beaconing and change status to SLAVES. Eventually, the lowest identifler node would
remain as the MASTER since in any given topology there is always an entity which has the
lowest identifler. Meanwhile, the stabilization algorithm attempts to repair the links. In the
event of a merger of existing partitions, the ring consisting of a lower identifler MASTER
remains the same, while all others join this ring. The following algorithm is how distance
between two identiflers is determined.
x1 = num1 - src_id
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x2 = num2 - src_id
if ( x1 >0 && x2>0 )
then if x1<x2, x2 is further
if (x1 >0 && x2 <0 )
then x1 is closer
if ( x1< 0 && x2<0 )
then if abs(x1)<abs(x2), x2 is closer
Taking the example above in Figure 2.6, initially in the stable state, 0 beacons topo-
logically as it has the lowest identifler in the network. After a partition as shown in Figure
2.7 occurs, each of the nodes 0,6,7,8 and 9 can hear a beacon from 0, while 1,2,3,4 and 5
cannot. In the partition with 1,2,3,4 and 5, each of them not being able to listen to any
topological beacon, change their status to MASTER and start beaconing. That is, at some
point, 1, 2,3,4,5 each start beaconing, unless they hear a beacon themselves. This way,
eventually, only 1 would be beaconing. Do note that any logical links that has not been
lost to a partition is still maintained by each node.
Initially, each of nodes 1,2,3,4 and 5 as shown in Figure 2.7 do not hear any beacons
from 0. Hence, when they time out each of them start beaconing. 1 ignores all beacons.
2 ignores 3, 4 and 5, but it changes its contact id to 1, simultaneously it issues a search
request for itself to 1. If the search request is delivered back to 2, it assures that there is a
logical path from 1 to 2. Similarly with 3, 4 and 5 there is no change in the contact id for
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node numbers below their own and for those where the contact id changes. Hence, no links
are changed due to the contact id change in each one of them as shown in Figure 2.8
In the stable state, the stabilization routine consists of pinging your successors. Since
there are no insertions and deletions at this time, notifles require no change in links. After
the partition event, 0 cannot reach its successor, and 6 receives no stabilization messages
from its predecessor. In the other partition, 1 does not receive any stabilization messages
from its predecessor and 5 cannot reach its successor. In such a scenario, Chord would
designate the next lowest link it has as the successor, and the stabilize operation would
flx the successor-predecessor pointers of each node. In the worst case scenario, where none
of the flngers are reachable or haven?t formed, the above method does not work. In this
case, one approach would be for 0, whose successor timer has expired to utilize the circular
nature of the ring and do a reverse-search for the farthest point to close the ring. The
other approach would be for 6, which does not obtain a ping from its predecessor, to issue a
search request for its predecessor, informing it, as its successor. The third approach is for an
external agent (automated/user-generated) that knows about 6 and its current IP-address
to inform 0 of it. Since merging would not be easy with just the stabilization protocol, an
anchor node (i.e. the node with the lowest identifler amongst the LNS servers) beacons
regularly topologically, making it easier for other LNS servers to discover if there is another
partition to merge into.
Further, in the event that the underlying network has reconnected, the logical partitions
attempt to merge. In the above case, 0 hears 1?s beacon and since 0<1, it is ignored. 1 on
the other hand, hears 0?s beacon and changes its contact to 0. It then issues a search for 1
to 0, which fails to locate 1 and returns 6 to 1 instead. At this point, 1 informs 0 that it is
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Figure 4.1: Physical and Logical Links at Initial State
its successor and notifles 5 that its successor is 6. 0 subsequently updates its successor to
1 and 6 on stabilization updates its predecessor to 5. This causes the entire ring to merge.
SLAVE nodes change their contact id to the lowest identifler beacon heard.
There is an issue here as to what to do with current links when you hear a topological
broadcast from a node that is not your contact id, i.e., there is more than one master in
your reach. One possibility is if the contact id changes, to break all the existing links
and join the more recent leader ring. The other option is to keep the links as is, unless
the stabilization algorithm invalidates it. Existing links may be kept because identiflers are
globally unique and for the application that we are considering, globally there is assumed to
be just one such universal structure. Hence, links between nodes are not those that cannot
be flxed with stabilization/search. In essence, since the existing links during and after a
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Figure 4.2: Physical and Logical Links after network partition
Figure 4.3: Physical and Logical Links after network merger
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failure are not incorrect, there is no need to delete them voluntarily. As in the example
considered, the logical overlay need not partition into contiguous segments. The Figure 4.1
is the same as in the earlier example. After the break, the topology as shown in Figure 4.2
emerges, leading to non-contiguous segments. Even then, the linkages that existed before
the partition, that have not broken, can be used still. The network on stabilizing reforms
as shown in Figure 4.3.
This protocol was modeled using J-Sim [40] and its network models, where only the
basic Chord ring was modeled. All initial joins in the simulation scenarios were sequential.
A successful lookup is when a search query is answered. The links are wired links that are
simulated to be broken at various points in time. Network layer routing tables in each node
are pre-conflgured before the start of the simulation, and so there is no route discovery.
The Figures 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9 show the behavior of the ring under various
conditions.
4.2 Failure modes
4.2.1 Examples of pathological cases
In an earlier example, two partitions merge into a consistent ring using the algorithm
described. In the case of more than two partitions, assume that initially the ring consisted
of 16 members, 0-15 as shown in Figure 4.10. Further, in the event of a partition, it breaks
into three parts 8-15, 0-3 and 4-7 as shown in Figure 4.11. These three partitions even-
tually stabilize themselves independently as shown in Figure 4.12. When this partitioned
network reconnects, difierent structures arise depending on the order in which messages are
exchanged. If the network reconnects such that two partitions merge at a time, that is flrst
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Figure 4.4: Time units required for sequential join of nodes into a Chord ring
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Figure 4.5: Percentage of successful search queries during a network partition where prop-
agation delay of links is 0.1 time units and a search query to all other nodes is sent every
0.5 time units
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Figure 4.6: Percentage of successful search queries during a network partition where prop-
agation delay of links is 5 time units and a search query to all other nodes is sent every 5
time units
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Figure 4.7: Percentage of successful search queries during a network partition where prop-
agation delay of links is 0.1 time units and a search query to all other nodes is sent every 5
time units
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Figure 4.8: Percentage of successful search queries in consistent state where propagation
delay of links is 0.1 time units and a search query to all other nodes is sent every 5 time
units
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Figure 4.9: Percentage of successful search queries in consistent state where propagation
delay of links is 5 time units and a search query to all other nodes is sent every 5 time units
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Figure 4.10: LNS servers logically associated as a Chord ring
Figure 4.11: Disruption in the logical connections due to network partition
55
Figure 4.12: Stabilized logically partitioned rings after a network merger
two merge and then the merged ring merges with the last partition, it results in stabiliz-
ing to the original stable state. But, if several topological links are formed, such that all
three networks merge concurrently, irrecoverable structures may emerge. In the scenario
described, 6 may hear both 0 and 1?s beacon and change its contact id accordingly. 1 would
change its contact id only on hearing 0?s beacon. One possible scenario is the ring 6? 8
attempts to join 1?5 while 1?5 joins 9?0. Here, as part of the stabilization routine, 6
requests 1 for its predecessor, i.e., 5, while 1 requests 0 for its predecessor, i.e., 9. 6 notify
5 that it is its successor, while 1 notifles 0 that it is its successor. 6 notify 8 that 1 is its
successor, while 1 notifles 5 that 9 is its successor. 6 then changes its predecessor to 5, while
1 change its predecessor to 0. Both 6 and 1 stop beaconing after that, making it di?cult
to detect such a condition. Both of these conflgurations are depicted in Figure 4.13 and
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Figure 4.13: Irrecoverable scenario when more than one partition attempts to merge
Figure 4.14. The stabilization routine running in the background would not be able to
recover from this to a consistent single ring. If 6?8 and 1?5 try joining 0?9 at the same
time, the race conditions for the successor-predecessor pointers at 0 and 9 would lead to
irrecoverable rings as well.
For robust recovery from partitions and mergers, if we consider that each node main-
tains both successor and predecessor links as shown in Figure 4.15, that partitions as shown
in Figure 4.16, and the partitions stabilize as shown in Figure 4.17, when they merge, it
may lead to irrecoverable cases. In the case where 6?8 joins 1?5 while 1?5 joins 0?9, 6
requests 1 for the current location of its predecessor, that being 5, and successor, that being
2, while 1 requests 0 for the current location of its predecessor, that being 15, and successor,
that being 9. 6 notifles 8 that its new successor is 1 and 1 that its new predecessor is 8;
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Figure 4.14: Other Irrecoverable scenario when more than one partition attempts to merge
Figure 4.15: 16 LNS servers logically associated with both successor and predecessor point-
ers maintained
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Figure 4.16: Efiect on the logical structure due to network partition
Figure 4.17: State after a network merger
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Figure 4.18: One Merger scenario
Figure 4.19: Other Merger scenario
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Figure 4.20: Yet another merger scenario
while 1 notifles 9 that its new predecessor is 5 and 5 that its new successor is 9. This result
in the following irrecoverable bi-directional ring as shown in Figure 4.18. Similarly, when
both 6-8 and 1-5 attempt to join 0-9, it may result in the following scenarios as shown in
Figure 4.19 and Figure 4.20.
There are many problems with using a unidirectional ring based DHT with passive
stabilization technique as we observe in this section, particularly with respect to behavior
while merging. Not described is the case as to what happens, when the partitioned nodes
leave the rings immediately on detecting a new partition and joins it. One of the obvious
problems is that it would cause concurrent joins which the DHT may not be able to handle.
The other problem is that beacons from the non-leader partitions may not subside at the
same time, causing nodes to join and leave the wrong partitions and lead to irrecoverable
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topologies as well. The passive maintenance protocols do not help in recovering from net-
work partitions. After such partitions attempt to merge, they form linkages that do not
eventually lead to a consistent ring. This causes sections of the logically connected overlay,
to lose service connectivity to parts of the network without possibility of recovery. The need
here is to be able to reach all current services management servers translations. During the
partition or the merger, a part of the services may be available, but as the network stabi-
lizes, all translations should be available. The current DNS as it exists does not allow this.
Most of the conflguration is handled manually, but in a highly distributed manner. This
may not scale in the disaster or high mobility or frequent node death scenarios that lead to
partitions. Further, a DHT structure allows dynamic assignment of responsibility.
4.3 Use of concurrent management
As opposed to Chords passive stabilization method, in order to maintain consistency
while there are concurrent joins and leaves, [34] proves that active joins and leaves, i.e., the
successor and predecessor pointers be managed at join and leave time rather than using a
periodic background process, and a bidirectional ring, i.e., one where both the predecessor
and successor pointers are correctly maintained, is required. This idea is exploited in the
above cases allowing partitions to heal with higher probability. When rings start merging,
MASTER nodes that hear beacons from a lower identifler node, leave the ring, passing
the beacon to the next available server, and join the leader ring. Figure 4.21 states the
condition at the start of a merger due to network merger, Figure 4.22 depicts the flrst few
nodes leaving the non-leader rings as does Figure 4.23, while Figure 4.24 shows the point
when all the non-leader rings have been dissolved and nodes concurrently attempt to join
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Figure 4.21: Stable rings at start of merger
the leader ring. Even if they do attempt to join a non-leader ring, the non-leader rings
would eventually deplete.
Without the detailed examples, it is also suspected that concurrent joins and deletes
during repair due to partitioning or merging may make the structure irrecoverable as may
merging before the partitions have stabilized on either sides of the network break. Further,
if there are nodes that join or leave the partitioned service management infrastructure, they
change the logical linkages, such that merging may no longer be simple since the ring may
need to be broken into further parts in order for the node to be merged. Such joins may
not be avoided since the network may merge after a long time and more servers may be
required for sharing the load.
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Figure 4.22: Nodes leaving non leader rings
Figure 4.23: More nodes leaving non leader rings
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Figure 4.24: Dissolution of non leader rings
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Chapter 5
Auto-configuration in MANET
Nodes that connect to the internet, either through wired interfaces or through last hop
wireless, are special nodes that need at least one interface to route to the MANET and
others that interface to the internet. For nodes participating in a MANET, routing consists
of interfaces that use MANET routing protocols such as AdHoc OnDemand Vector (AODV)
[41], Directed Source Routing (DSR) [42]. They discover routes that create and maintain
entries in a node?s routing table. In accordance with the layered approach to protocols,
interfaces participating in networking require a unique IP address or identifler. During a
node?s assignment of an IP address, it is also conflgured with its local DNS server?s IP
address to which it can send its lookup queries. In most MANET routing algorithms, each
node contains the IP-MAC translations of its neighbors. The following is a manually worked
out example of how the above Chord based protocol for MANET may be used.
The scheme would be that a node, when it wakes up, either joins or creates its own
MANET. It decides to be a conflguration server or client. As a conflguration server, it uses
the auto-conflguration protocol to discover at least one other conflguration server to join into
the group of conflguration servers. As a host client, it uses the auto-conflguration protocol
to discover one other conflguration server, to which it can search for its current "responsible"
server and then upgrade its conflguration information. It can also issue searches to it for
service discovery for all reachable nodes. If it becomes a host, it needs to flnd a server, if it
cannot reach a server it becomes its own server. As new servers discover this server, they
join and form a bi-directional Chord like ring. The beaconing is then by the server which
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has the lowest identifler. Since, the servers form an ordered logical ring it is easy to assign
the beaconing to the lowest identifler node.
5.1 Extended DRCP to work with Chord LNS
In MANET, consider the case of three wireless interfaces IF0, IF1 and IF2 separated
at maximum range from each other linearly (such as IF0-maximum range of the interface-
IF1-maximum range of the interface-IF2). Let the DRCP server process be running on
IF0. It has a list of IP addresses that it can assign to requesting interfaces. If IF1 sends a
DRCP SOLICIT requesting conflguration, IF0 will be able to hear it. If IF2 sends a DRCP
SOLICIT requesting conflguration, IF1 will be able to hear it. In order to limit broadcasts
and  oods, once IF1 is conflgured, it can respond to IF2?s DRCP SOLICIT by acting as a
relay agent for IF0.
The proposed is the modiflcation to the DRCP client to modify it as a DRCP relay
agent. The current DRCP client state transition diagram is modifled to Figure 5.1. Note
that only conflgured clients participate in routing, non-conflgured clients do not and neither
receive nor forward messages. A non-conflgured client either receives a conflguration or
broadcasts a DRCP SOLICIT.
It is assumed that devices in the internet have some non-identical and non-con icting
datathat canbeusedto generateaunique ID. Atboottime, aninterfacedecides tobeeither
aserveroraclient. IfitisaserveritmaybroadcastitsavailabilityusingDRCP REQUESTs.
If it is a client, it broadcasts DRCP SOLICITs link locally for Maximum Hops to a Con-
flguration Server (MAXHOPS)*(Time for one hop), before becoming a server. This results
in a two-level hierarchy.
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Figure 5.1: Modifled DRCP client state machine for multi-hop conflguration
5.1.1 Behavior of a server
If an interface elects to be or becomes a server, it creates a unique signature id of a
flxed length, for example using SHA-1 [11]. On doing so, it starts one-hop broadcasting,
its hID;timestampi. It is then conflgured.
Once conflgured, it listens for messages of the form hIDA;timestamp;routenodelisti.
This allows it to build up its routing table to other nodes. Each next hop destination MAC
address is obtained from the routing table and neighbor set.
As a server, it also disseminates information about itself. This allows a client interface
to test if its original contact is alive and in the case that it is no longer reachable it registers
itself with the advertised server.
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For communication, originating at a server, the server sends packets of the form Server?s
MAC address as Src, Next Hop Client as Dst, Server?s IP address as Src, Desired Dst IP,
message.
At the next hop Client, it changes the header to Client?s MAC address as Src, Next
hop as Dst, Server?s IP address as Src, Desired Dst IP, message. Since, from a server, all
the hops are conflgured, this will ensure delivery of the packet.
When an interface receives an ID, it can use it unless it is changed by some other
server. Once assigned, until the interface registers with another server and changes it, it
remains the same. For a server, that has no connections to other servers, it assigns addresses
sequentially, starting with its own ID. For example if the ID of a server is 192.134.24.56,
the address that it assigns to the next client that requests for one is 192.134.24.57.
5.1.2 Behavior of a client
If an interface decides to be a client, then it waits for MAXHOPS*(Time for one hop)
time before it transforms into a server. On boot up, it sends out a message with Client?s
MAC as Src, Broadcast MAC as Dst, A default IP as Src (such as 0.0.0.0), Link local
Broadcast IP address as Dst.
This is broadcast to one hop neighbors. Amongst the one hop neighbors if any of them
is a DRCP server, they can reply back to notify the client of their existence. This allows the
client to select one of the possible servers to associate with. To the selected server it then
sends a bind message. The bind message is of the form Client?s MAC ID as Src, Server?s
MAC is as Dst, Server?s IP as Dst, A default IP as src, to which the server?s reply would
be Server?s MAC ID as Src, Client?s MAC ID as Dst, Server?s IP as Src, Client?s IP as Dst,
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message. This would assign the IP to the client along with conflguration information and
keep a searchable copy on the server.
If there are no servers within its immediate server set, the neighbor clients that are
conflgured, send their server information as the reply. The client then sends the bind
message to one of those clients, which the client routes to the server that it has been
conflgured by. This bind message looks like Client?s MAC ID as Src, Neighbor?s MAC ID
as Dst, Neighbors IP as Dst, A default IP as src. The neighbor client caches this, and sends
a new request to the server for a new IP address for the client MAC address. The server in
turn does that and sends back the results to the client acting as a relay. This relay client
on receiving the translation sends out a bind reply similar to the one above to the client,
thus conflguring it.
For communication, originating at a client, the conflgured client sends packets of the
form Client?s MAC ID as Src, Next Hop Client?s MAC ID as Dst, Client?s IP as Src, Desired
IP as Dst, message. Since, clients that are not conflgured do not participate in routing,
routing to the client can be through paths that have already conflgured nodes.
For a client that does not obtain a response from any client supporting a route to
a server, it re-broadcasts its query every exponential timeout waiting until MAXHOPS
*(Time for one hop). A server is expected to exist at least MAXHOPS away.
When a client does not receive a response of a path to the server after MAXHOPS
* (Time for one hop), it is considered to have no existing servers to obtain conflguration
from. Hence, it is forced to take on the role of a server. At this point, the client changes its
status to server, and proceeds as a server. In this manner during zero-conflguration if the
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intermediate clients need time to conflgure them, some of them will turn into servers and
eventually the further hop clients shall be serviced.
5.1.3 Discovery of other servers
The above description details the process of obtaining an IP address and other con-
flguration information at boot time. The following description enlists how to lookup for
translations and how the clients and servers behave once conflgured.
The above scenario is in consideration that no new LNS servers pop up and existing
LNS servers do not decide to stop being so, which may not necessarily be true.
Apart from basic networking, servers attempt to discover other servers. This it does,
using regular client notiflcations. As in, an un-conflgured client, when it receives replies to
its broadcast conflguration request from more than one client, it compares them and sends
out the notiflcation to each one of them of the other. This works during zero-conflguration,
when servers are trying to assign addresses to a large number of nodes. In this set up there
are a large number of nodes that do not have any conflguration information. The servers
either simultaneously or at difierent times wake up to service the clients around them. As
clients time out, they start becoming servers. This allows that as clients conflguration
spreads, at borders, clients will receive information of more than one server as available.
With the newly discovered servers, a given server can handofi part of its list of IP-MAC
translations to the new server and delete them from its own, thus transferring responsibility
of conflguration information to it. This occurs frequently in the scenario where a server
with ID1 has assigned IP addresses up to ID3, where ID3>ID1, and it further discovers a
new server ID2 where ID3>ID2>ID1. In this situation, ID1 hands ofi all translations from
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ID2 to ID3 to server with ID2 and then ID2 reconflgures them if it already has a set of
clients assigned up to ID3. If not, it keeps a pointer to the current server, i.e., ID1 that
manages the translations up to ID3 and thus it sets its current starting assignment ID to
ID3.
Consider the sample scenario where in there is one client conflgured via ID1 surrounded
by clients conflgured by ID2. When a new client enters the neighborhood, it obtains info
from ID1 and ID2 assigned clients, and can thus inform each other of the existence of the
other. In a stable scenario, there are also a few situations, one, wherein, there are servers
that already exist or new servers are formed for load balancing requirements or a client
wishes to modify itself to a server for accounting purposes. In that case, there may not be
any new nodes to be conflgured at boundaries to be able to inform nodes of the presence
of respective servers. The manner in which to discover each other to participate in the
overlay network can follow the following mechanism where a server with node ID1 sends a
MAXHOPS+2 limited message to discover another server. This message is a hop limited
broadcast. For each client that receives this message <ID1, Searching Other Nodes, Hop
Count (HOPCNT)>, it looks up its own registered server id.
This broadcast need not be frequent. The message may also contain IDs, for which
that are already discovered and do not need to be replied for. This list can be compared
by the client attempting to send back a reply.
if(server_id == ID1 or dont have a server_ID)
further broadcast the message after decrementing the HOP_CNT;
else
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{
reached a boundary area.
Reply back to the discovering server with route information.
}
The following flgures depict a hand worked example of how Figure 5.2 is the initial
state of the MANET where some nodes have decided to become servers and have a self
generated unique ID, Figure 5.3 is where the one hop nodes from the servers can detect
its presence and have been conflgured by their respective servers, Figure 5.4 is where the
second hop clients are conflgured through the help of some flrst hop clients acting as DRCP
relay agents and two servers are able to discover each other as one of the second hop nodes?
receives request for conflguration from two difierent servers, Figure 5.5, Figure 5.6, Figure
5.7 depict further hopes being conflgured and Figure 5.8 is the state where all of them have
been conflgured.
5.1.4 Changes due to mobility
As long as no new nodes enter, no change in conflguration needs to take place. If a
node moves that is not a server, only the entry in the server?s translation table needs to be
timed out as shown in Figure 5.9. If a server moves out, then if there are new nodes, that
cannot flnd a server to register with, it becomes the new server.
Discovering other servers, allows a server to distribute its database of IP-MAC address
translations to them and deleting those entries. For entries that it deletes, it sends out a
server identifler, timestamp, route node list to new server. When it moves out voluntarily,
it can hand out the database of IP-MAC translations to the node that is responsible next.
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Figure 5.2: Initial state with servers
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Figure 5.3: First Hop Clients Conflgured
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Figure 5.4: Second Hop Clients Conflgured and First Two Server Discover
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Figure 5.5: Third Hop Clients Conflgured Boundaries Detected Servers Discovered
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Figure 5.6: Fourth Hop of Clients Conflgured
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Figure 5.7: Fifth Hop of Clients Conflgured
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Figure 5.8: All clients conflgured
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Figure 5.9: Movement of a client
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Figure 5.10: Movement of a server
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If there are no neighbors at all, then it can force one of its next hop nodes to become a
server and hand over its database to it, along with its ID. One example scenario is depicted
in Figure 5.10
If a server does not leave voluntarily, then its neighbor set changes. Lets say that Node
ID - 2346 has neighbor clients 2563, 2564 and 2367 and it contains IP-MAC translations of
all of these as well as for 100?s more. If it moves to a difierent region, its neighbor set may
change, and these nodes may have a route to it as well, but they may be registered with
some other server. Thus, the route re-discovery may have to be done. If it leaves out of the
network, then all translation are all lost. In that case, no node in the network will have the
current MAC-IP translations, but the existing assignments would still remain valid.
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Chapter 6
Conclusions and Future Work
For a large MANET of wireless devices in a battlefleld, it would not be uncommon
for network partitions and mergers to occur. For networking amongst devices, being able
to uniquely identify or number each interface is necessary and to be able to participate
in services, access to a name resolution service is necessary. A large MANET would also
participate with the current internet through last hop wireless or wired interfaces. Proposed
solutions should be compatible with protocols used in the Internet.
An extensive survey of the literature has been done for available name resolution proto-
cols. From that it has been evident that they do not su?ciently address the problem of the
lack of service reachability in the event of network partitions and mergers. Robust service
reachability appears as a computationally intensive problem, wherein mobility exacerbates
the situation. This thesis exposes the problem in detail.
In order to further study possible solutions, one of the existing name resolution pro-
tocols has been adapted to work in a MANET and modeled using the network simulator
J-Sim. Through the various simulations of node joins, search for translations using the
model, insight has been gathered into the problem that passive stabilization creates. This
has led to identifying speciflc counterexamples wherein it fails to maintain consistency dur-
ing network partitions and mergers. Further, examples of how an active join and leave
technique helps is described.
In order to gain understanding of how such a name resolution service would work in a
MANET, IP address and auto-conflguration solutions such as DRCP have been looked at.
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DRCP is a one hop conflguration protocol that assume that interfaces have formed into IP
links. This is perhaps a simplistic assumption for a dynamic MANET environment and is
more suitable for last hop cellular networks and wireless LAN environments. By allowing
DRCP clients to act as relay agents, a manually worked out example of how the service
architecture and auto-conflguration would work in a MANET has been described.
For this yet unsolved problem, future work includes, modeling of the problem in a
graph theoretic manner; a more intensive study of proposed protocols through simulations;
analysis of solutions in terms of their computational complexity and heuristics that could
address a lot of the issues and flnally result in a more robust protocol.
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Appendix
List of Acronyms
AODV AdHoc OnDemand Vector
ARP Address Resolution Protocol
BSSID Basic Service Set Identifler
CoDNS Collaborative Domain Name System
DAD Duplicate Address Detection
DCDP Dynamic Conflguration and Distribution Protocol
DDNS Dynamic Domain Name System
DHCP Dynamic Host Conflguration Protocol
DHT Distributed Hash Table
DNS Domain Name System
DRCP Dynamic Rapid Conflguration Protocol
DSR Directed Source Routing
HOPCNT Hop Count
ID Identifler
IF Interface
IP Internet Protocol
LAN Local Area Network
LNS Logical Name System
MAC Medium Access Control
MANET Mobile Ad Hoc Network
MAXHOPS Maximum Hops to a Conflguration Server
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p2p Peer to Peer
SHA Secure Hash Algorithm
SIP Session Initiation Protocol
UIP Unmanaged Internet Protocol
WWW World Wide Web
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