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Thesis Abstract

Auto-configuration in Multi-hop Mobile ad hoc Networks

Priyanka Sinha

Master of Science, May 10, 2007
(Bachelor of Technology, Indian Institute of Technology Guwahati, 2004)

105 Typed Pages

Directed by Prathima Agrawal

As devices with wireless access technology, greater memory and longer battery life,

proliferate, there is a need to be able to allow more than one hop communication amongst

them. Also, such a network, with wireless enabled devices, is easier to deploy in case

of a disaster. But, these devices that participate to form a multi-hop Mobile Ad Hoc

Network (MANET), need a unique identifier such as an Internet Protocol (IP) address to

be able to participate in networking. To deploy and access services in this network they

also need a service management infrastructure. In the wired and wireless local area network

such an identifier is provided either by static assignment or via auto-configuration protocols

such as Dynamic Host Configuration Protocol (DHCP). To support service discovery, the

Domain Name System (DNS) translates from the name of the service to the IP address

associated with it. Distributed Hash Table (DHT) based protocols such as Chord have

been used for service discovery and content management. This thesis exposes the problem

of configuring networks that experience partitions and mergers due to disasters. Thus,

physical damages to networks may affect service architectures. This thesis illustrates with

v



specific examples, how adaptation of existing solutions does not solve the problem. It

recommends the use of a protocol that allows concurrent joins and leaves.
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Chapter 1

Introduction

Communication in an Internet uses a layered approach as shown in Figure 1.1. Each

node consists of several layers of standard communication protocols commonly called the

network stack. The physical layer consists of protocols that allow bits to be transmitted and

received using the communication medium. The data link layer along with Medium Access

Control (MAC) mechanisms consist of protocols for point to point communication over

the physical layer. The network layer consists of protocols that allow multipoint routing

amongst nodes using the data link layer. The transport layer consists of protocols that allow

point to point connections over multiple links using the network layer. The application layer

consists of services such as DNS. In a device following such an approach, any upper layer

cannot communicate with another device if its lower layers cannot.

1.1 Description of a mobile ad hoc network

MANET is formed out of a cluster of nodes equipped with wireless communications

and networking capability that are deployed without a predefined topology [1]. Each node

can communicate with any other node within its’ interfaces’ radio range. To communicate

with nodes beyond its radio range, it forwards packets to nodes within its radio range that

have a path to the destination node. Hence, each node in the network potentially works

as a router. Apart from physical layer connectivity, medium access control and multi-hop

routing protocols, nodes also participate in services that are accessed by others.
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Figure 1.1: Layered model of communication

1.1.1 Modeled as a graph

In wireless Local Area Network (LAN)s, according to the standard, IEEE 802.11 [2]

interfaces associated with the same Basic Service Set Identifier (BSSID) are part of the

same network. In a MANET, the network can be represented as a graph G = (V,E), where

physical interfaces are represented as vertices in V and existing links are represented as edges

E [1]. According to the transmission range of each interface, the topology emerges. The

graph is assumed to be connected and simple. This graphical representation of a MANET

holds for a time instant. In this instant, the topology can be represented as a graph where

the edges depend on a distance relation, i.e., if the distance between the vertices v1 and

v2 is less than the range of each interface there exists a possible edge. An example graph

is shown in Figure 1.2. Furthermore, due to the use of directional antennas, these links

may also be asymmetric and modeled as directed edges. To note, for interfaces in the

network that connect to a wired network, the edge between the wired interfaces need not

be representative of physical distance between them.
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Figure 1.2: MANET

Devices participating in a MANET need not consist of interfaces of the same type

[3]. If the devices participating in the MANET have more than one type of wireless access

technology, the possible edges form an overlay graph where the vertices are partitioned with

respect to their access technology. Vertices in V1 have interfaces with range D1, in V2 with

D2, in V3 with D3, where V1,V2,V3 ⊆ V, V1
⋃

V2
⋃

V3=V. The edge set is the union of all

edges from each access technology type with the assumption that there are some nodes that

have more than one interface with different access technologies that bridge between them.

3



Figure 1.3: Wired Wireless Scenario

1.2 Gateways to wired networks

A MANET may also have nodes that connect it to the wired Internet [4].In the wired

Internet, parts of the network are predetermined topologies, deployed and maintained by

network administrators.

The above Figure 1.3 depicts a typical office environment deployment of wired and

wireless LAN, where the configuration DHCP [5] server is part of the wired network.

1.3 Description of domain name system

1.3.1 How names are essential in the Internet

Most useful services such as web services, distributed databases, email, instant mes-

saging, and gaming are not hosted or served from a fixed topological location(s). Change in

entities’ location results in its network address and routing path to change. In the Internet,

4



instead of discovering the topological location of a service every time it is required, an in-

frastructure is maintained for scalable access to translations of a service name to topological

location, making service management an important framework of a network. It allows the

logical name of an entity such as a service or a user to remain constant irrespective of its

location in the network. The aim of such a system is if nodes are topologically reachable, as

in the transport layer can establish a data connection, then it should be logically reachable,

i.e., all services on nodes within this connected network, should be accessible to all others,

using the service infrastructure. Any such scheme needs to adapt to failure of nodes and

changes in underlying network conditions.

In such a service, functions should be able to lookup the current translation, update

to change the translation, assign responsibility of the translation, allow new name servers

to join, delete failed name servers, and maintain association amongst name servers, (also

known as the naming scheme). Considering a few different ways in which the servers

may be logically related to one another, such as Peer to Peer (p2p), multicast, replicated

database, tree, each of these solutions may be categorized based on whether they make use

of a hierarchical structure in the naming scheme/topological placement/search (routing)

scheme. One structure is where all the clients and servers form a multicast topology, where

each server consists of translations that are registered with it. This result in worst case

O(N) lookups, i.e., time to search for a translation, where N is the number of servers. It

may utilize topological hierarchy but not naming or search hierarchy. Another topology is a

DHT. Here each server has a unique identifier and is responsible for entries that map to it.

Query may take O(logN) * Diameter of the network. A DHT thus usually utilizes hierarchy

for search only. Another topology is a centralized scheme where all the translations are

5



kept with one server. Querying in this setting is of O(1) * Diameter of the network since

the server is well-known. Updating, i.e., reflecting changes is also of O(1). DNS in its own

form utilizes hierarchy in naming as well as search.

Example of such a service that is essential to a large number of applications in the

World Wide Web (WWW) is the DNS [6], [7], [8].It is used to lookup the translation of

a name to an IP address. DNS is a distributed database that maintains the current name

to IP address translations of nodes in the Internet. In the Internet every machine that

can host services has a hostname. This hostname’s translation to IP address needs to be

updated in its authoritative DNS server.

1.3.2 How the DNS works

DNS servers are arranged hierarchically as a multi-way tree with the root of the tree

responsible for all records. An authoritative name server for a domain is responsible for all

translations whose names end in this domain name. In order to manage unique names in a

scalable manner, the names as well as the responsibility of resolving them are arranged in

a hierarchical tree structure. A tree structure, for a given number of nodes maintains the

minimum number of links. For n nodes, a tree has only (n-1) links. The root of the tree

is responsible for resolving any query. Any leaf node can obtain the resolution of any node

by traversing up the tree. In case it cannot reach some intermediate node, it can always

start with the root node. This makes the root server a hotspot, if it collapses, the tree is

invalidated.

This is not a problem in the mostly wired Internet since the root server is physically

replicated on the Internet backbone and every machine is manually configured with the root

6



server’s IP addresses. So, any temporary failure of an intermediate node would only make

its sub tree unreachable. The rest of the tree would still be reachable from the root. Thus,

in the wired Internet, there has not been a strong requirement for auto-configuration of

the root servers themselves. Currently authoritative DNS servers themselves are statically

configured. Update is done statically at each authoritative server. Each name server needs

to maintain one link, i.e., to its root. The naming scheme and lookup mechanism are

hierarchical. There is no automated assignment of responsibility of translation within the

scheme. In order to be resilient to intermittent failures, it relies on replication of the

database physically. DNS currently does not support any manner in which their name-

IP address translations can be setup ad hoc. The root nodes, which are a constant, are

responsible for all translations in the Internet. Searching, that is a very frequent operation,

is highly efficient in this structure.

1.4 About peer to peer service protocols

Newer examples of scalable service management are peer to peer networks [9]. Both un-

structured ones such as Gnutella, KaZaa, etc and structured models such as CAN, CHORD,

Kademlia, Bamboo, SkipNets. The most notable application where this has been used is in

file sharing. It is an effective manner to index current location of files or file parts and then

access. It differs significantly from the DNS structure in that responsibility of the current

translation is assigned dynamically depending upon the current membership in the struc-

ture. Further, joining and leaving from such structures need no manual configuration. The

cost of such flexibility is in the maintenance of redundant linkages, and regular maintenance
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messages. In structured peer to peer networks [9], current location of content is at a desig-

nated member of the ring that is searchable from any other member. For unstructured peer

to peer networks [9], frequent network wide broadcasts may occur that may cause severe

traffic congestion. Location of content is disseminated as the request for it increases. A two

level hierarchy as in KaZaa allows unstructured peer to peer networks to reduce the amount

of messages. Both structured as well as unstructured peer to peer networks have been suc-

cessfully used in various applications. Most applications such as publish-subscribe systems,

content distribution systems assume the underlying physical network to be connected.

Here, the DHT is a data structure used in structured peer to peer protocols. As against

the use of flooding in unstructured peer to peer protocols, DHT’s attempt to balance the

load and require asymptotically less number of messages for search and maintenance. As

described in [10], it is an important data structure for an architecture that manages services.

The basic structure consists of a distributed circular linked list. For consistency, only the

successor pointers need to be maintained correctly. But, for performance, extra linkages,

i.e., fingers are maintained. These are maintained using a passive stabilization routine and

are useful to reduce the search time to O(log(n)). Current DNS relies on hierarchy in the

naming and search scheme, maintaining very few links. Multicast based solutions would

rely on hierarchy in the topological sense. DHT or p2p solutions rely on a hierarchical

search scheme. Similarly other variations of solutions may be classified.

1.4.1 Description of DHT based DNS

Chord [10] is a structured, DHT based peer to peer protocol. In this scheme of

DNS servers, the names would hash into the server identifiers, allowing the name-resolution

8



responsibility of a node to change dynamically. Each node is analogous to an array slot in

a hash table. Its index in the hash table is generated using a consistent hashing technique

such as Secure Hash Algorithm (SHA)-1 [11]. DHTs are typically designed to scale to a

large numbers of nodes and to handle continual node arrivals and failures. The invariant

in Chord is as long as the successor pointer of each node is correct, the ring is stable.

The join operation proceeds by requesting a current member of the ring to search for its

correct successor in the ring. The passive stabilization routine updates pointers to repair

incorrect pointers to predecessor nodes. The join, stabilize and finger update algorithm is

described in [10]. In Chord, as long as each node points to its correct successor, all the

nodes will eventually form a stable structure where all its members are reachable. The

successor is then the node whose identifier is circularly greater than its own and is part of

the logical network. Each node in addition to its correct successor also maintains links to

O(log(n)) other nodes in a predetermined manner that allows O(log(n)) searching. Thus, in

Chord, a node n’s neighbor is successor(n) and it also forms linkages with successor(n+21),

successor(n + 22), ..., successor(n + 2k), where k = log(N),N= maximum number of nodes

possible in the network. A node that attempts to join an existing Chord network need just

find its successor and configure its logical link to it. As part of a passive stabilization routine,

this node, sends a stabilize message to its successor, on receiving which, the successor sends

a notify message to its current predecessor informing of its new successor, after which the

node changes its predecessor to the new one. Periodically, a node that is part of the logical

network, sends a stabilize message to its successor, the successor adjusts its predecessor

pointer and sends back a notify message to its earlier predecessor if there is a change. This

allows the predecessor to update its successor link as well.

9



Node Entry at bit 4 Entry at bit 3 Entry at bit 2 Successor
0000 0001 0010 0100 1000
0001 0010 0011 0101 1001
0010 0011 0100 0110 1010
0011 0100 0101 0111 1011
0100 0101 0110 1000 1100
0101 0110 0111 1001 1101
0110 0111 1000 1010 1110
0111 1000 1001 1011 1111
1000 1001 1010 1100 0000
1001 1010 1011 1101 0001
1010 1011 1100 1110 0010
1011 1100 1101 1111 0011
1100 1101 1110 0000 0100
1101 1110 1111 0001 0101
1110 1111 0000 0010 0110
1111 0000 0001 0011 0111

Table 1.1: Routing Table

Apart from Chord, there are other DHT based protocols, such as Pastry [12] and

Kademlia [13] that maintain their links differently. In Kademlia, each node n forms links

with (nXOR2i) nodes where 0 < i < k and k=number of bits in the maximum size of the

ring. Although this allows for choice of link based upon topology or other criteria, it can

become less balanced than Chord when all the nodes are participating. The invariant in

Kademlia is to have at least one member in each sub tree if such a member is present.

In order to compare a DHT based DNS as opposed to current DNS or Logical Name

System (LNS), we attempt to find a mapping between them as structures. Here name

servers would be the nodes of the structure. To demonstrate the different mappings of

Chord as DNS, consider a network where k =4 and all the nodes exist. In this case, the

routing table for each of the nodes is as in Table 1.1.
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Figure 1.4: mapping Chord to DNS

In the above case, if multiple name servers share the same identifier, i.e., responsibility

of maintaining the translations of different authoritative server lie with the same Chord

node, an example map of part of the Chord structure is shown to map to a section of

the DNS in Figure 1.4. The advantage of using a DHT based scheme over DNS is that

in a DHT, the responsibility of the translation is automatically assigned depending on the

current members of the logical structure. There is always a node that is currently responsible

for a given translation. For an example, we assume that a number of servers can map to

the same identifier. Such as ., .com, telcordia.com all map to 0.0.0.0.

As opposed to Chord, the Pastry routing table where the size of the network is maxi-

mum 16, i.e., 4 bits per node identifier, is more flexible. The routing table for a full network

would have choices for the entries as in Table 1.2

As against Chord, where each logical node has the same responsibility as all others, in

the above, some nodes can be assigned more responsibility than others, even if all of them
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Node Entry at bit 4 Entry at bit 3 Entry at bit 2 Successor
0000 1XXX 01XX 001X 0001
0001 1XXX 01XX 001X 0000
0010 1XXX 01XX 000X 0011
0011 1XXX 01XX 000X 0010
0100 1XXX 00XX 011X 0101
0101 1XXX 00XX 011X 0100
0110 1XXX 00XX 010X 0111
0111 1XXX 00XX 010X 0110
1000 0XXX 11XX 101X 1001
1001 0XXX 11XX 101X 1000
1010 0XXX 11XX 100X 1011
1011 0XXX 11XX 100X 1010
1100 0XXX 10XX 111X 1101
1101 0XXX 10XX 111X 1100
1110 0XXX 10XX 110X 1111
1111 0XXX 10XX 110X 1110

Table 1.2: Options for Routing Table
X here denotes a 0 or 1.

are present in the ring at the same time. For example, an instance of the table can be as

in Table 1.3

From the sample routing table, looking at the number of incoming links at each node,

we observe 0000 has 15 nodes linking to it, that is, node 0000 occurs in the routing table

of 15 other nodes. Node 1111 on the other hand has 1 incoming link. Table 1.4 shows the

number of incoming links for each node.

As a complete structure, this is similar to a DNS tree with either 0000 or 1000 as the

root node.

1.5 Address resolution protocol

In wired networks, Address Resolution Protocol (ARP) [14] is used to aid in routing

as well as IP address assignment. An Ethernet LAN segment can be viewed as a bus
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Node Entry at bit 4 Entry at bit 3 Entry at bit 2 Successor
0000 1000 0100 0010 0001
0001 1000 0100 0010 0000
0010 1000 0100 0000 0011
0011 1000 0100 0000 0010
0100 1000 0000 0110 0101
0101 1000 0000 0110 0100
0110 1000 0000 0100 0111
0111 1000 0000 0100 0110
1000 0000 1100 1010 1001
1001 0000 1100 1010 1000
1010 0000 1100 1000 1011
1011 0000 1100 1000 1010
1100 0000 1000 1110 1101
1101 0000 1000 1110 1100
1110 0000 1000 1100 1111
1111 0000 1000 1100 1110

Table 1.3: Sample Routing Table

Node Number of Incoming links
0001 1
0010 3
0011 1
0100 7
0101 1
0110 3
0111 1
1000 15
1001 1
1010 3
1011 1
1100 7
1101 1
1110 3
1111 1

Table 1.4: Number of incoming links
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where a host can broadcast to other hosts on it and every such host can rebroadcast to all

those hosts. For the purpose of address resolution, the ARP request packet has destination

MAC layer address FF:FF:FF:FF:FF:FF (broadcast address), its own MAC address as the

host address, host IP address and destination IP address. This broadcast reaches all hosts

connected by protocol stack layer 2 and below elements (such as bridges and switches as

long as they allow broadcasts to propagate). If there is any host with the destination IP

address, it replies.

1.6 Dynamic host configuration protocol

These resolutions are cached in order to reduce the number of broadcast messages.

ARP allows auto-configuration. The ARP request for a node requesting to be assigned its

IP address, broadcasts with its host MAC address, destination MAC address set to the

broadcast address, host IP address set to 0.0.0.0 (, i.e., this host IP address), destination

host address set to 255.255.255.255 (which is the broadcast IP address, unless its ARP cache

has adverts from DHCP servers). This request is also known as a DHCP request. It is sent

as a UDP packet. This ARP request propagates until it reaches a protocol stack layer 3

element such as a router. In this stretch either it encounters a DHCP relay agent or a DHCP

server [5]. A DHCP relay agent unicasts the request to a DHCP server which replies back

with an IP address assignment and configuration information. A ARP reply with requestors

MAC address and IP address as destination and server’s MAC address and IP address is

rebroadcast and this updates the requestor’s ARP cache and assigns it its IP address.

Duplicate DHCP servers for the same network segment can exist as long as either their
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address pools are non-overlapping or they ping the IP address before assigning to discover

any conflicts and avoid duplicates , i.e., perform Duplicate Address Detection (DAD).
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Chapter 2

Need for auto-configured DNS and auto-configuration

2.1 Network partitions and mergers in MANET

We note in this section how the underlying network is easily partitioned in a MANET

leading to the case of the authoritative servers being unreachable and physically connected

nodes being logically unreachable:

In the graph G=(V,E), representing a MANET, a link is sensitive to change in channel

conditions, changes in the surrounding environment such as short term fading effects, high

error rate or excessive collision as well as mobility of the devices. Thus, not all possible

neighbors by distance may be reachable at a particular point in time. Also, apart from the

change in possible neighbor relations of a node due to mobility, the above reasons result in

the graph representing the network to change with time.

In MANET, a link failure may occur due to mobility. An interface that has moved out of

the radio range of another node dissolves the link between them. The resulting link failures

between interfaces that have no other redundant paths, lead to network partition. An

interface in a MANET is not only responsible for connectivity between its direct neighbors

but also for providing paths for other nodes in the network.

Apart from the environmental conditions that affect a MANET network nodes that are

currently associated with one network may decide to leave and join another geographically

collocated network and thus cause a change in the topology as well. Geographically close

nodes need not participate in the same network. For example, in a city wide MANET

created out of users that voluntarily participate in it, as nodes move, change the network
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they are associated with or switch off, temporary holes in the network may emerge, i.e.,

parts of the network may get isolated from each other due to such dissolution of links.

Further, they may merge back together again as links are formed between interfaces in

different partitions. This phenomenon may occur frequently. Hence, not all devices that

exist with wireless access technologies may participate in a given network. There may

also be devices with interfaces that participate in different networks thus bridging them.

At different points of time, even if the nodes do not move, on changing the network it is

associated with, changes the graph.

As we note from the above changes, some of the links between nodes may be lost from

time t1 to time t2, where t2 > t1. If these deleted edges in E cause the formation of disjoint

components, the MANET network has partitioned. This results in nodes belonging to the

same network but in different components not being able to communicate with each other.

This new graph G’ = (V, E) has at least two disjoint components. Similarly, if edges are

added to the graph G’ to form G”, i.e., it goes from G’ to G”, where G” either does not have

more than one component or has re-organized into different components, a network merger

has occurred between the disjoint components. For example, take a linearly arranged nodes

a, b, c, d, e, f and g, i.e., a-b-c-d-e-f-g. If the link between c and d, and e and f breaks,

the resulting graph has three disjoint parts, a-b-c, d-e and f-g. If further, there is a new

link formed between c and f, the resulting graph re-organizes to two disjoint components

a-b-c-f-g and d-e.

A break in links does not necessarily mean a loss of connectivity. Due to the number

of extra links, there may be more than one path between a pair of nodes, which may be

utilized when a link breaks on a path being used between two nodes. To note, we make the
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assumption that detecting a link break as against congestion or collision is assisted by the

MAC layer. We do not assume that a path break can be easily detected.

2.2 Network partitions in other networks

Although infrequent, network wide disruption of infrastructure in wired networks arise

in the event of a disaster due to either natural calamities such as tsunamis, volcanoes,

hurricanes, earthquakes or man-made such as terrorist attacks, wars. They result in physical

faults in the connecting media leading to link failure. This may lead to a partitioning of

networks if there are no other paths connecting the two entities. An example is the failing

of a fiber-optic cable connecting two routers in different cities for example like in [15], [16].

It is difficult to bring up the communication infrastructure quickly, manually. In a wireless

network, it may obliterate a number of interfaces, thereby removing links associated with it

that could lead to potential partitions. Damage that is local to the point of disaster, affects

far ends of the service infrastructure because of its hierarchical arrangement.

In an infrastructure based wireless network, such as 802.11b or cellular networks, the

link failures occur due to mobility of nodes from one infrastructure point to another. Since,

these nodes act as hosts and do not serve other nodes, only these hosts are affected by

mobility. Thus, when they form a new link with another infrastructure point, they require

re-configuration.

Changing the static configuration in clients of the root DNS servers also results in

partitioning of the service architecture [17].
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2.3 Effect of underlying network partition and merger on DNS

In a given network, the topological links are from one interface in a network to another,

while logical links are the topological configuration maintained by logical entities according

to their logical relations. Loss of topological links due to failures in the underlying physical

connections may lead to loss of some logical links as well. These topological partitions may

or may not be recovered for a long time afterwards. They may behave as distinct entities,

able to support networking services within their partition. Changes such as addition and

deletion of interfaces or links may occur in each of them, while they are partitioned. After

a period of time, when these stabilized partitions merge, services from one partition may

not be accessible from the other. This could create a partition in the service management

framework although the underlying physical network would have healed.

Currently DNS servers are statically configured. In order to be resilient to intermittent

failures, it relies on replication of the translations it is responsible for, physically. This solu-

tion does not provide robustness by the DNS architecture itself towards network partitions.

For example, a large MANET with two different domains breaks down into two partitions

each consisting of nodes from each of the domains. In this case, although the MANET can

reconfigure itself to setup lower layer communication between the nodes, DNS currently

does not support any manner in which their name to IP address translations can be setup

in an ad hoc manner. Figure 2.4 depicts the partition in services even when the underlying

network partitions have regained communication within.

In the event of a disaster, either natural or man-made, infrastructures are disrupted.

Damage that is usually local to the point of disaster is propagated to the far ends of the

service infrastructure. Hierarchy and caching improve performance in a stable infrastructure
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but do not exist in a disaster scenario. This makes ad hoc auto-configuration solutions

relevant.

2.3.1 Root of the DNS as a hotspot

In DNS, the name to IP address resolution responsibility is hierarchically distributed.

The root server, i.e., ”.”, is the only one responsible for all the translations. Its IP addresses

are constant. All clients are configured with the 13 root server’s IP address. If all of the 13

root servers’ IP address change, the root server becomes logically unreachable. This creates

a single point of failure. DNS roots exist in practice because 13 root servers by design

are guaranteed to be a constant for the internet. The following example describes how a

network partition and merger would lead to the above assumption to invalidate.

The Figure 2.1 represents a section of the DNS as it exists today. Each of the nodes’

iisc.ernet.in, iitg.ernet.in, cbse.nic.in, eng.auburn.edu is a host. Each host is associated

with an authoritative DNS server which is responsible for all the translations of its domain

zone that includes hosts, child DNS name servers. ernet.in is the authoritative server for

iisc.ernet.in and iitg.ernet.in. nic.in is the authoritative server for cbse.nic.in. auburn.edu

is the authoritative server for eng.auburn.edu. in is the top level domain server for ernet.in

and nic.in. edu is the top level domain server for auburn.edu. ”.” Is the root server for edu

and in.

In the section of DNS, assume that a disaster causes the underlying network to partition

as in Figure 2.1, at time t=0, causing .edu. to be inaccessible from all hosts named *.edu..

Thus, none of the translations for *.edu. can be accessed by those in the other domain

such as *.in, even if they can reach the root server. Within the .edu domain, hosts with
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Figure 2.1: Section of the DNS before the partition at time t=0-

the authoritative server auburn.edu shall now be able to resolve queries for those within

auburn.edu but not of other *.edu, since the server containing the correct translation for

authoritative servers for those zones is no longer reachable. The correct name to IP address

translations are listed in Table 2.1, using nslookup [18].

The above example describes a situation where the partitioning of the underlying net-

work is not on organizational boundaries that are arranged hierarchically in DNS, resulting

in hosts not being able to obtain translations from one broken domain to another. The ex-

isting logical structure is not connected although there is physical connectivity. This would

inevitably lead to service discontinuities due to the partitions formed. It is likely that the

IP address for the corresponding names would have changed and earlier transactions or

sessions would break and not resume.

In order to repair the logical structure to resume name resolution within the partition,

a new node within the partition would need to become the .edu server. Without the original

translation table of .edu., the list of *.edu. names is unknown and so are their translations.

It would be difficult for any one *.edu to take over its responsibilities. This is because all

the *.edu do not know of each other’s existence. So, for any one of them to take over the

function of the root, does not guarantee that all the *.edu nodes will be able to modify their
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Name IP Addresses
. 198.41.0.4, 128.63.2.53, ..

.edu 192.41.162.32,..
.in 204.152.184.64, 193.0.0.193,..

uab.edu 138.26.1.2, 207.230.75.50,
health.uab.edu 138.26.153.226
math.uab.edu 138.26.76.18, 207.230.75.50,..

nic.in 164.100.3.1
cbse.nic.in 164.100.52.226,164.100.52.227
delhi.nic.in 164.100.52.74
auburn.edu 131.204.2.251

ernet.in 202.41.97.61
iitg.ernet.in 202.41.110.33
iisc.ernet.in 144.16.64.3

eng.auburn.edu 131.204.110.158
pharmacy.auburn.edu 131.204.250.29

Table 2.1: Name To IP Translations at t=0-

links to the new root and consequently communicate with *.in nodes. Multiple partitions

within *.edu, aggravate the problem further.

Automatic repair for this logical structure may be possible if there were more logical

links maintained. For example if auburn.edu had a logical link to .in, all the translations for

*.in could be reached from the nodes *.auburn.edu even without the existence of ”.”.Fig-

ure 2.2 depicts the logical links after the merger and a fictitious change in name to IP

translations in Table 2.2.

Thus, if an intermediate authoritative server becomes unreachable, there is no way for

its child servers to access services from the other parts of the logical tree. Healing a partition

depends on whether there are redundant links to different parts of the logical structure that

can be accessed in order to access information of parts of this tree. In DNS, since such links

are hierarchical in nature, it is simple to say that the loss of the root is an essential loss of

all translation. Alternatively, these links can be discovered, but a broadcast discovery at
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Figure 2.2: Section of DNS after network merger at t=0+

every network partition is an expensive solution in terms of the number of messages and

time taken to repair.

In IPv4 [19] networks, there are not enough IP addresses anyway that can be assigned

to every interface for its entire lifetime. Hence, translations of name to IP addresses for

services on them will change with time. Since the root node is an integral non-changing

parameter in the internet, its translation is fixed always and is a constant static configuration

in all hosts. In partitioned networks though, name-services can fail especially if there

are nodes from two different domains communicating. To note, that one DNS name may

translate to more than one IP address that exist in different organizational and geographical

locations.

2.3.2 Partitions and mergers in MANET

Figure 2.3 depicts two ad hoc network partitions merging. When they merge together,

apart from by the MAC and routing protocols, in such a changing network, nodes may host

services that are accessed by other nodes. Services from the combination of nodes should be

available to each node. To continue accessibility of services, configuration is made difficult

as a central authority within the network cannot always be trusted to be reachable. If
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Name IP Addresses
. 168.3.4.5, 124.3.0.123..

.edu 192.41.162.32,..
.in 178.2.3.19

uab.edu 138.26.1.2, 207.230.75.50,
health.uab.edu 138.26.153.226
math.uab.edu 138.26.76.18, 207.230.75.50,

nic.in 164.100.3.1
cbse.nic.in 164.100.52.226,164.100.52.227
delhi.nic.in 164.100.52.74
auburn.edu 131.204.2.249

ernet.in 202.41.96.11
iitg.ernet.in 202.42.24.12
iisc.ernet.in 144.16.64.3

eng.auburn.edu 131.204.110.158
pharmacy.auburn.edu 131.204.250.29

Table 2.2: Name to IP translations at t=0+

Figure 2.3: Ad hoc Partition and Merge
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Figure 2.4: Authoritative servers unreachable in MANET

each partition ran their local DNS with local root, in the merged case as neither of them

would have translations for the merged nodes. In Figure 2.4, if .edu was responsible for all

translations ending in it and similarly .com, in the partitioned case, services by cs.edu would

not be accessible to tel.com and vice versa, even though they are physically reachable.

In Figure 2.5 above, consider that the name servers form a Chord [10] ring. Consider

the entire network as a large group of wireless nodes. The nodes marked 0-9 are the Chord

name servers as shown in Figure 2.6. Each of the LNS name server’s consists of a topological

database of translations of the nodes it serves. The logical association amongst the LNS

servers is a ring formed by the hash of its node name. The LNS server that is logically

responsible server for a name is the successor(hash(name)). The collision-resistant hash

function is considered to be the same for all nodes. As an example, let hash (eng.auburn.edu)

= 2035, hash (auburn.edu) = 900. The reachable name server whose identifier is closest to

900 and greater than or equal to it contains the name to IP mapping of auburn.edu.

Consider an example case where Figure 2.5 depicts the topological links between

nodes. Let hash(m.n.edu)=9, hash(a.b.com)=0, hash(p.b.com)=1, hash(o.n.edu)=2, etc as

depicted in Figure 2.6. Logical links are formed over the underlying network, between

reachable nodes that form the network, where each node maintains O(log(n)) links. For
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Figure 2.5: Physical links between nodes and LNS servers

Figure 2.6: Chord logical structure amongst LNS servers
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Figure 2.7: Break in underlying network

Figure 2.8: Stabilized logical links in partitions
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Node Successor 2nd Successor 4th Successor 8th Successor
0 1 2 4 8
1 2 3 5 9
2 3 4 6 0
3 4 5 7 0
4 5 6 8 0
5 6 7 9 0
6 7 8 0 0
7 8 9 0 0
8 9 0 0 0
9 0 0 0 1

Table 2.3: Before Breaking

example, there is a topological link between 3 and 8, 8 and 6, consequently a path from 3 to

6, i.e., 3 and 6 are reachable from each other through 8. Now, assume that an event causes

breaking of the number of topological links, breaking quite a few of the logical ones as well

as shown in Figure 2.7. In this event, although a number of the topological links were

broken, the logical network is partitioned into two pieces. In these two partitions, nodes

whose logical links are lost attempt to re-stabilize the structure and result in discovering

each other as shown in Figure 2.8. The following is the description of the breaking and a

possible manner of rejoining of links:

Before partitioning, the LNS servers’ maintained logical links as shown in Table 2.3

where incoming links at node-from node are 0-9, 9-8, 8-7, 7-6, 6-5, 5-4, 4-3, 3-2, 2-1 and

1-0.

After the partition, the logical links are depicted in Table 2.4 where X is used to

denote a null entry. Incoming links at node-from node are 0-9, 9-8, 8-7, 7-6, 5-4, 4-3, 3-2,

and 2-1. Logical links would be detected to be broken since they timeout, when pinged or

used, although a timeout on a single logical link can mean either that the two nodes are
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Node Successor 2nd Successor 4th Successor 8th Successor
0 X X X 8
1 2 3 5 X
2 3 4 X X
3 4 5 X X
4 5 X X X
5 X X X X
6 7 8 0 0
7 8 9 0 0
8 9 0 0 0
9 0 0 0 X

Table 2.4: Just After Breaking

on different partitions or that there is a lot of congestion on the path connecting the two

nodes.

Due to the partition, 0 and 5 have lost their successors resulting in an inconsistent ring.

Amongst 0’s logical link, is a link to 8, to which it can update as its new successor, which

due to the stabilization routine will eventually change to 6. All of 5’s logical links are lost.

5 would be able to discover 1 as its successor if all the nodes had all their predecessor links

as well. For links that have broken, to discover the right member that returns the logical

structure to a consistent state would take time. The existing links that have not broken will

not need to be readjusted unless there is a simultaneous change in the membership of the

logical structure. The resulting logical links as the partitions stabilize is depicted in Table

2.5 where incoming links at node-from node are 0-9, 9-8, 8-7, 7-6, 6-0, 5-4, 4-3, 3-2, 2-1 and

1-5.

Consider that a merger event occurs after this, where the underlying network has

repaired itself. On merging, detecting that a merger has occurred is difficult since there

aren’t any logical links between the partitions. Assuming that the two partitions do discover
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Node Successor 2nd Successor 4th Successor 8th Successor
0 6 6 6 8
1 2 3 5 1
2 3 4 1 1
3 4 5 1 1
4 5 1 1 1
5 1 1 1 1
6 7 8 0 0
7 8 9 0 0
8 9 0 0 0
9 0 0 0 6

Table 2.5: Broken Stabilized

each other, the logical links would be in the same state as that right after the partition event,

i.e., as in Table 2.4, where incoming links at node-from node are 0-9, 9-8, 8-7, 7-6, 6-0,

5-4, 4-3, 3-2, 2-1 and 1-5. As this structure stabilizes itself, it would eventually return to

its original stable state as depicted in Table 2.3

2.3.3 Importance of extra links for DNS in MANET

In large ad hoc networks, a single name server may not be sufficient to serve the entire

network. For nodes in the largely wired Internet, to access services hosted by nodes in

the MANET, IP addresses and DNS need to work in MANET as well. As ad hoc networks

partition and merge, name servers within each partition need some manner in which they can

update the translation of reachable names. This is to ensure that physically reachable nodes

are able to access each other’s services in the condition shown in Figure 2.4. Currently,

there is no automatic detection of network layer failures and delegation of responsibility of

translations to other nodes.

Attempting to get rid of the hierarchy in responsibility of who has the name gets rid

of a single point of failure, the root name server. Redundancy in the associations amongst
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name servers (i.e., links between them) than physical redundancy leads to robustness. It is

self evident that extra linkages are required to make the structure more robust than a tree.

Extra links help rebuild the structure. How these linkages are arranged would affect how

easy it is to recover from a partition. Backwards compatibility of a solution to current DNS

is also desired. To add these extra linkages in a manner that they can be maintained with

least cost, in the event of network partitions, explored is the possibility of mapping Chord

[10] to DNS. The first step would be to convert names in current DNS to numbers. Hashing

functions can do the job to convert names to numbers and then numbers can be compared.

As against names, these numbers have fixed length. Collision resistant hash functions with

sufficiently large key space allow that each logical name be mapped to a unique number. The

ease in creating and maintaining links dynamically in DHT’s is because you can compare

two numbers and find out which way you need to search. Two arbitrary names cannot be

compared in this manner. This predefines a position for the responsibility of resolution that

need not force hierarchical naming, and allow transfer of responsibility based upon how the

links are maintained. The logical links that a DHT maintains is independent of hierarchy.

It maintains O(log(n)) links on an average, where n is the number of nodes in the network.

The logical links that a DNS maintains depends on hierarchy. A DNS authoritative server

maintains links to all its child authoritative servers. Most DNS servers are deployed in an

organizational manner, i.e., an organization usually has a DNS server(s) of its own that is

registered to an external parent server(s). In the mobile ad hoc network case, such kind of

servers would not be useful, since a partition in mobile ad hoc networks has no correlation

to organizational boundaries. Thus the hierarchical structure does not help.
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In terms of membership, DHT has dynamic membership, while DNS has manual mem-

bership. A DNS node, i.e., an authoritative server can be deleted and added. To add a

node in a DHT, any existing node in the DHT can be contacted and sent a join request to.

For a node to delete in a DHT, it can search its predecessor and update its predecessor’s

successor. Thus, before a scheduled delete, it can also transfer the data that it was respon-

sible for, to its successor. To add an authoritative DNS server requires manual registration

with its parent DNS server. To delete an authoritative DNS server requires that the entry

for it in the parent server be deleted. This causes the authoritative DNS server and all

its children to be unreachable from the rest of the network, as well as, all the translations

for them to be lost. In order to service the translations in the deleted DNS server, entries

would require to be added to the parent server. DNS clients can send queries to any DNS

server.

One of the salient points of using a DHT over the conventional DNS is that, ordering

numbers is easier than ordering names. Thus, the concept of distance and direction are

difficult using names in DNS. Comparing eng.auburn.edu with auburn.edu and us.gov tells

us that auburn.edu is closer to it than us.gov. It does not say whether for google.com

translation sending the search request to auburn.edu or us.gov would be better. If instead

of names they were replaced by numbers where the range of numbers is fixed, we can

measure the distance between 0 and 19 as well as say that 4 is closer to 0 than it is to 19

and thus to search for 4, we can send the query to 0 than 19.

From the above, we can see that a MANET with a large number of nodes would be a

dynamically changing network that needs to be self-organizing and autonomous in order to
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scalably maintain its configuration information. Apart from basic connectivity and commu-

nication as offered by the MAC and routing protocols, nodes will also be participating in

services that are accessed by others. To assure accessibility of these services, tree-structured

configuration is made difficult as a central authority within the network cannot always be

trusted to be reachable. Services should be available to all nodes that are part of the net-

work and are reachable. In order to withstand disasters, auto-configuration capability is

required. This necessitates the existence of a higher number of linkages with the associated

databases than the tree structure in DNS. The redundancy here is not in terms of the repli-

cation in databases, rather it is the redundancy due to linkages maintained in the logical

network of DNS servers.

The research challenges in making a DNS for MANET are thus, scalability in the order

of the number of messages that are floating around needed to sustain the proper functioning

of the structure, robustness that is to be able to structure consistent even in the case of

arbitrary failures, discovery that is to be able to discover services on all nodes that is

reachable. A correct solution is one, where the name of every physically reachable node

is found. An efficient solution is one which has the least cost and time to maintain as is

robust to partitions.

2.4 Auto-configuration

In the event of disruption of communication infrastructure, the location that maintains

the mapping between logical and topological entities might not be reachable any longer,

while the topology has changed. Thus, auto-configuration is the natural first step to discover
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the same. To support the service management framework, the location or path to the

participating management servers needs to be configured in these nodes.

2.4.1 Address resolution protocol (ARP) in MANET

The address resolution protocol was introduced to be able to translate between IP ad-

dresses and device address on the Ethernet bus. It allows the address used for networking

to not depend on the manufacturers address, making adding and removing network inter-

faces and dynamic routing possible. ARP can be used successfully in situations where the

membership of a network interface to other interfaces is constant, i.e., on the link that the

network interface participates, the other interfaces are also participating on that link. In

MANET, since every node is potentially a router, it participates in more than one link and

thus in the multi-hop case the neighbors of neighbors need not be the same. This makes

it difficult to use ARP for resolution. It leads to nodes two hops apart to think they are

on the same link, while on subsequent ARPing they cannot resolve each other as they are

more than one hop away [20].

In multi-hop wireless networks, each interface in the MANET is part of the same

network. Each Interface (IF) is a potential router. This may lead to the situation where

IF0–r–IF1–r–IF2,where r=maximum radio range for the interface. In this scenario, a one

hop broadcast from IF1 reaches IF0 and IF2, but a one hop broadcast from IF0 does not

reach IF2. This makes it difficult to define a bus like segment as in Ethernet. If the DHCP

server resides at IF1, its broadcast is heard by both IF0 and IF2, but are they considered

being on the same link? DHCP server on IF0 can be easily seen to have IF1 on its broadcast

reach and naturally on its link. Now is IF2 part of a different link from IF1 even though it
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can hear IF1’s broadcasts and not IF0’s or is it on the same link? One solution to resolve

this situation is to have DRCP relay agents running on each node that discover the route

to the DHCP server and cache it.
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Chapter 3

Previous Work

3.1 Other naming solutions

There has been work towards making DNS more robust. Collaborative Domain Name

System (CoDNS) [21] is a scheme where in to increase robustness of a name server, its

database is physically replicated as a peer-to-peer network. The effect of churn, that is, the

cycle of nodes joining and leaving the DHT, on performance of DHT has been studied in

[22], but the effect of churn is significantly different from network partitions as are traditional

solutions used for failure resilience and load balancing such as physical server redundancy.

In Dynamic Domain Name System (DDNS) [23] the DNS UPDATE message can be used to

update translations to an authoritative DNS server. Session Initiation Protocol (SIP) [24]

is an elaborate protocol that allows application layer routing based on logical names, with

the help of service registration, location servers, etc. These schemes address robustness in

the case of node failures and light mobility.

A solution that does concern with change in IP addresses is the Unmanaged Internet

Protocol (UIP) [25] and [26]. It proposes the use of Kademlia like routing substrate over IP

that works around network partitions and mobility issues. Recent work in UIP has proposed

a non-hierarchical DNS like scheme for handling mergers and partitions as described in

[26]. Hence, there has been no extensive study into the possibility of incorporating DNS for

dynamic ad hoc network topology that results due to disasters or mobility, while it is an

essential service for applications.
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Skipnet [27], [28] is a proposed scheme using skip graphs [27] to effectively address

the problem of DNS unavailability on disconnects at organizational boundaries. It sup-

ports simultaneous use of multiple DHTs guaranteeing that message routes traverse only

intermediate nodes sharing the same name prefix as do source and destination nodes. It

elaborates failure recovery algorithms describing how probabilistic skiplists are used to route

by name and numeric Identifier (ID). In each organization segment, a well-known root node

is present that forms part of the alternate means of discovery. The assumption here is that

partitions occur at organizational boundaries. On organizational disconnect, Skipnets make

the assumption that well-known nodes will exist in each disconnected segment that aid in

discovery of partitions. In a MANET, there need not be a correlation between a node name

and its topological location making it difficult to take advantage of name ID routing.

LNS as proposed in [29], [30], [31], [32], [33] is a naming scheme for large ad hoc

networks. A group of LNS servers serve in a MANET. Each LNS server has a topological,

logical and home database. The topological database consists of all translations of nodes

registered with it. The logical database consists of translations of LNS servers responsible

for a set of logical groups. The home database contains translations of nodes’ home server.

In Figure 3.1 LNS servers form a multicast group.

Every isolated network contains at least one server responsible for containing the name-

IP address translation. It broadcasts periodic beacons for nodes to join and register with

it. For nodes that are registered within a LNS server, irrespective of their ”domain”, can

access translations of all nodes reachable and registered in the LNS server in its topological

database. It is not backwards compatible with DNS.
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Figure 3.1: LNS servers logically associated as a multicast group in a MANET
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The technical report by Xiaozhou Li [34] discusses concurrent management of a ring.

It details that a bidirectional ring is required for a ring to maintain consistency in the event

of concurrent joins and fails. It mentions an active join and leave algorithm as opposed to

Chords passive stabilization method as described in [34]. His more detailed work, compiled

as RANCH [35], allows for a locality aware, efficient, concurrent joins and leaves, structured

p2p protocol. In the case, where the bi-ring need not be maintained in an ordered manner,

performance might be better.

3.2 Auto-configuration in MANET

Different techniques have been proposed for auto-configuration of IP addresses in

MANET. One approach is assignment of globally unique conflict free addresses to each

network interface, and the other is assignment of addresses with DAD thereafter [4]. For

conflict free assignment, in order to reclaim already assigned addresses that are no longer

in use, the lease timer allows, for addresses that have not been reallocated to be reclaimed.

Schemes that use conflict free mechanisms are Prophet [36] and DRCP [37], [38], [39].

DRCP assumes nodes have formed into IP links. In the single-hop wireless LAN scenario,

this is indeed the case, where the DRCP server may reside on the Access Point and any

broadcast by the interfaces associated with the Access Point will reach it and vice versa.

This allows the Access Point to manage the IP address assignments and DNS server con-

figuration.
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3.3 Comparing possible solutions

In order to compare performance, with solutions that reach full logical reachability of

physically reachable nodes, the percentage of the network reachable and the time to end

in a fully connected network, are relevant. On the other hand, if solutions asymptotically

aim parts of the network to be logically connected, and may not result in a fully connected

network, then staleness, i.e., the number of incorrect translations due to mobility and failures

is a useful measure. In order to measure staleness, the lookup time that nodes take for

correct and incorrect translations can be noted. The rate at which updates in the translation

tables occur, number of servers looked up on an average to resolve a query and the traffic

overhead due to maintenance of the structure.
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Chapter 4

J-SIM simulation study of DNS for MANET

Having identified the problem of existing name resolution service architectures not be-

ing able to recover from network partitions and mergers, the following protocol is simulated

and studied.

4.1 Beaconing Chord based LNS

A node participating in this protocol is in either UNJOINED, JOINED, DELETE

or REVERSE state. A node in the UNJOINED state is not participating in the logical

network, although it can cache topological beacons to update its contact id. When a node

is interested in participating, it sends out a search query to a node already participating

in the network, such as its contact id. In the UNJOINED state, a node does not respond

to any search or join requests that it may erroneously receive. When a node’s first search

request, which is also its join request, is replied to with the address of the current successor,

the node changes state from UNJOINED to JOINED. In the JOINED state it participates

in the logical structure. When a node in the JOINED state loses its link to its successor, the

structure becomes inconsistent. The node then uses its reverse links, i.e., its predecessor

pointers, to find the point in the ring that is its new successor. Thus, when a ping to

its successor times out, the node enters the REVERSE state and sends a search query

to its predecessor, listening to replies until TIMEOUT. Out of the replies received from

different nodes, the reply from the node that is farthest from it is updated as the new

successor, making the recovery robust. It is possible that a node does not receive any
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replies whatsoever. In that case, the node assumes that it is isolated, and makes its own

ring. In the DELETE state, a node is attempting to leave the logical network voluntarily.

In this state too it does not reply to any search queries.

Node enters network {

State = UNJOINED

Listens for a topological beacon

If (no beacon)

Then (becomes MASTER), state = JOINED

If (MASTER)

Then (send topological beacon every T1 seconds)

Else

Beacon rcvd

JOIN (MASTER)

}

JOIN (MASTER)

Send JOIN request to MASTER’s IP address

RECIEVE (JOIN) from NEW_ID

SEARCH (NEW_ID)

SEARCH (ID)
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If (ID in my Range then reply)

Else send Search (ID) to successor’s IP address

On network merge {

Hear topological beacon from ID,

If (MASTER) (if Own_ID>ID become SLAVE and JOIN (ID))

}

For the scenarios discussed in this thesis, the initial state of a network is assumed to be

a stable state where the node with the lowest identifier being the MASTER is topologically

beaconing. This beacon makes it easier for other LNS servers to discover partitions to merge

into. In the event of a network partition, a change in the node’s contact id reflects loss of

its association to a ring. Nodes that cannot hear the beacon assume that they no longer

belong to the existing partition. When a node’s contact id times out, i.e., it cannot hear

the topological beacon anymore, it sets the contact id to itself thereby declaring itself to be

a MASTER node. Thereafter, the discovery process for the lowest identifier node ensues.

Each MASTER node beacons topologically, unless it hears a beacon from a lower identifier

stop beaconing and change status to SLAVES. Eventually, the lowest identifier node would

remain as the MASTER since in any given topology there is always an entity which has the

lowest identifier. Meanwhile, the stabilization algorithm attempts to repair the links. In the

event of a merger of existing partitions, the ring consisting of a lower identifier MASTER

remains the same, while all others join this ring. The following algorithm is how distance

between two identifiers is determined.

x1 = num1 - src_id
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x2 = num2 - src_id

if ( x1 >0 && x2>0 )

then if x1<x2, x2 is further

if (x1 >0 && x2 <0 )

then x1 is closer

if ( x1< 0 && x2<0 )

then if abs(x1)<abs(x2), x2 is closer

Taking the example above in Figure 2.6, initially in the stable state, 0 beacons topo-

logically as it has the lowest identifier in the network. After a partition as shown in Figure

2.7 occurs, each of the nodes 0,6,7,8 and 9 can hear a beacon from 0, while 1,2,3,4 and 5

cannot. In the partition with 1,2,3,4 and 5, each of them not being able to listen to any

topological beacon, change their status to MASTER and start beaconing. That is, at some

point, 1, 2,3,4,5 each start beaconing, unless they hear a beacon themselves. This way,

eventually, only 1 would be beaconing. Do note that any logical links that has not been

lost to a partition is still maintained by each node.

Initially, each of nodes 1,2,3,4 and 5 as shown in Figure 2.7 do not hear any beacons

from 0. Hence, when they time out each of them start beaconing. 1 ignores all beacons.

2 ignores 3, 4 and 5, but it changes its contact id to 1, simultaneously it issues a search

request for itself to 1. If the search request is delivered back to 2, it assures that there is a

logical path from 1 to 2. Similarly with 3, 4 and 5 there is no change in the contact id for
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node numbers below their own and for those where the contact id changes. Hence, no links

are changed due to the contact id change in each one of them as shown in Figure 2.8

In the stable state, the stabilization routine consists of pinging your successors. Since

there are no insertions and deletions at this time, notifies require no change in links. After

the partition event, 0 cannot reach its successor, and 6 receives no stabilization messages

from its predecessor. In the other partition, 1 does not receive any stabilization messages

from its predecessor and 5 cannot reach its successor. In such a scenario, Chord would

designate the next lowest link it has as the successor, and the stabilize operation would

fix the successor-predecessor pointers of each node. In the worst case scenario, where none

of the fingers are reachable or haven’t formed, the above method does not work. In this

case, one approach would be for 0, whose successor timer has expired to utilize the circular

nature of the ring and do a reverse-search for the farthest point to close the ring. The

other approach would be for 6, which does not obtain a ping from its predecessor, to issue a

search request for its predecessor, informing it, as its successor. The third approach is for an

external agent (automated/user-generated) that knows about 6 and its current IP-address

to inform 0 of it. Since merging would not be easy with just the stabilization protocol, an

anchor node (i.e. the node with the lowest identifier amongst the LNS servers) beacons

regularly topologically, making it easier for other LNS servers to discover if there is another

partition to merge into.

Further, in the event that the underlying network has reconnected, the logical partitions

attempt to merge. In the above case, 0 hears 1’s beacon and since 0<1, it is ignored. 1 on

the other hand, hears 0’s beacon and changes its contact to 0. It then issues a search for 1

to 0, which fails to locate 1 and returns 6 to 1 instead. At this point, 1 informs 0 that it is
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Figure 4.1: Physical and Logical Links at Initial State

its successor and notifies 5 that its successor is 6. 0 subsequently updates its successor to

1 and 6 on stabilization updates its predecessor to 5. This causes the entire ring to merge.

SLAVE nodes change their contact id to the lowest identifier beacon heard.

There is an issue here as to what to do with current links when you hear a topological

broadcast from a node that is not your contact id, i.e., there is more than one master in

your reach. One possibility is if the contact id changes, to break all the existing links

and join the more recent leader ring. The other option is to keep the links as is, unless

the stabilization algorithm invalidates it. Existing links may be kept because identifiers are

globally unique and for the application that we are considering, globally there is assumed to

be just one such universal structure. Hence, links between nodes are not those that cannot

be fixed with stabilization/search. In essence, since the existing links during and after a
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Figure 4.2: Physical and Logical Links after network partition

Figure 4.3: Physical and Logical Links after network merger
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failure are not incorrect, there is no need to delete them voluntarily. As in the example

considered, the logical overlay need not partition into contiguous segments. The Figure 4.1

is the same as in the earlier example. After the break, the topology as shown in Figure 4.2

emerges, leading to non-contiguous segments. Even then, the linkages that existed before

the partition, that have not broken, can be used still. The network on stabilizing reforms

as shown in Figure 4.3.

This protocol was modeled using J-Sim [40] and its network models, where only the

basic Chord ring was modeled. All initial joins in the simulation scenarios were sequential.

A successful lookup is when a search query is answered. The links are wired links that are

simulated to be broken at various points in time. Network layer routing tables in each node

are pre-configured before the start of the simulation, and so there is no route discovery.

The Figures 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9 show the behavior of the ring under various

conditions.

4.2 Failure modes

4.2.1 Examples of pathological cases

In an earlier example, two partitions merge into a consistent ring using the algorithm

described. In the case of more than two partitions, assume that initially the ring consisted

of 16 members, 0-15 as shown in Figure 4.10. Further, in the event of a partition, it breaks

into three parts 8-15, 0-3 and 4-7 as shown in Figure 4.11. These three partitions even-

tually stabilize themselves independently as shown in Figure 4.12. When this partitioned

network reconnects, different structures arise depending on the order in which messages are

exchanged. If the network reconnects such that two partitions merge at a time, that is first
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Figure 4.4: Time units required for sequential join of nodes into a Chord ring
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Figure 4.7: Percentage of successful search queries during a network partition where prop-
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Figure 4.10: LNS servers logically associated as a Chord ring

Figure 4.11: Disruption in the logical connections due to network partition
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Figure 4.12: Stabilized logically partitioned rings after a network merger

two merge and then the merged ring merges with the last partition, it results in stabiliz-

ing to the original stable state. But, if several topological links are formed, such that all

three networks merge concurrently, irrecoverable structures may emerge. In the scenario

described, 6 may hear both 0 and 1’s beacon and change its contact id accordingly. 1 would

change its contact id only on hearing 0’s beacon. One possible scenario is the ring 6 − 8

attempts to join 1− 5 while 1− 5 joins 9− 0. Here, as part of the stabilization routine, 6

requests 1 for its predecessor, i.e., 5, while 1 requests 0 for its predecessor, i.e., 9. 6 notify

5 that it is its successor, while 1 notifies 0 that it is its successor. 6 notify 8 that 1 is its

successor, while 1 notifies 5 that 9 is its successor. 6 then changes its predecessor to 5, while

1 change its predecessor to 0. Both 6 and 1 stop beaconing after that, making it difficult

to detect such a condition. Both of these configurations are depicted in Figure 4.13 and
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Figure 4.13: Irrecoverable scenario when more than one partition attempts to merge

Figure 4.14. The stabilization routine running in the background would not be able to

recover from this to a consistent single ring. If 6− 8 and 1− 5 try joining 0− 9 at the same

time, the race conditions for the successor-predecessor pointers at 0 and 9 would lead to

irrecoverable rings as well.

For robust recovery from partitions and mergers, if we consider that each node main-

tains both successor and predecessor links as shown in Figure 4.15, that partitions as shown

in Figure 4.16, and the partitions stabilize as shown in Figure 4.17, when they merge, it

may lead to irrecoverable cases. In the case where 6− 8 joins 1− 5 while 1− 5 joins 0− 9, 6

requests 1 for the current location of its predecessor, that being 5, and successor, that being

2, while 1 requests 0 for the current location of its predecessor, that being 15, and successor,

that being 9. 6 notifies 8 that its new successor is 1 and 1 that its new predecessor is 8;
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Figure 4.14: Other Irrecoverable scenario when more than one partition attempts to merge

Figure 4.15: 16 LNS servers logically associated with both successor and predecessor point-
ers maintained
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Figure 4.16: Effect on the logical structure due to network partition

Figure 4.17: State after a network merger
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Figure 4.18: One Merger scenario

Figure 4.19: Other Merger scenario
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Figure 4.20: Yet another merger scenario

while 1 notifies 9 that its new predecessor is 5 and 5 that its new successor is 9. This result

in the following irrecoverable bi-directional ring as shown in Figure 4.18. Similarly, when

both 6-8 and 1-5 attempt to join 0-9, it may result in the following scenarios as shown in

Figure 4.19 and Figure 4.20.

There are many problems with using a unidirectional ring based DHT with passive

stabilization technique as we observe in this section, particularly with respect to behavior

while merging. Not described is the case as to what happens, when the partitioned nodes

leave the rings immediately on detecting a new partition and joins it. One of the obvious

problems is that it would cause concurrent joins which the DHT may not be able to handle.

The other problem is that beacons from the non-leader partitions may not subside at the

same time, causing nodes to join and leave the wrong partitions and lead to irrecoverable
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topologies as well. The passive maintenance protocols do not help in recovering from net-

work partitions. After such partitions attempt to merge, they form linkages that do not

eventually lead to a consistent ring. This causes sections of the logically connected overlay,

to lose service connectivity to parts of the network without possibility of recovery. The need

here is to be able to reach all current services management servers translations. During the

partition or the merger, a part of the services may be available, but as the network stabi-

lizes, all translations should be available. The current DNS as it exists does not allow this.

Most of the configuration is handled manually, but in a highly distributed manner. This

may not scale in the disaster or high mobility or frequent node death scenarios that lead to

partitions. Further, a DHT structure allows dynamic assignment of responsibility.

4.3 Use of concurrent management

As opposed to Chords passive stabilization method, in order to maintain consistency

while there are concurrent joins and leaves, [34] proves that active joins and leaves, i.e., the

successor and predecessor pointers be managed at join and leave time rather than using a

periodic background process, and a bidirectional ring, i.e., one where both the predecessor

and successor pointers are correctly maintained, is required. This idea is exploited in the

above cases allowing partitions to heal with higher probability. When rings start merging,

MASTER nodes that hear beacons from a lower identifier node, leave the ring, passing

the beacon to the next available server, and join the leader ring. Figure 4.21 states the

condition at the start of a merger due to network merger, Figure 4.22 depicts the first few

nodes leaving the non-leader rings as does Figure 4.23, while Figure 4.24 shows the point

when all the non-leader rings have been dissolved and nodes concurrently attempt to join
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Figure 4.21: Stable rings at start of merger

the leader ring. Even if they do attempt to join a non-leader ring, the non-leader rings

would eventually deplete.

Without the detailed examples, it is also suspected that concurrent joins and deletes

during repair due to partitioning or merging may make the structure irrecoverable as may

merging before the partitions have stabilized on either sides of the network break. Further,

if there are nodes that join or leave the partitioned service management infrastructure, they

change the logical linkages, such that merging may no longer be simple since the ring may

need to be broken into further parts in order for the node to be merged. Such joins may

not be avoided since the network may merge after a long time and more servers may be

required for sharing the load.
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Figure 4.22: Nodes leaving non leader rings

Figure 4.23: More nodes leaving non leader rings
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Figure 4.24: Dissolution of non leader rings
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Chapter 5

Auto-configuration in MANET

Nodes that connect to the internet, either through wired interfaces or through last hop

wireless, are special nodes that need at least one interface to route to the MANET and

others that interface to the internet. For nodes participating in a MANET, routing consists

of interfaces that use MANET routing protocols such as AdHoc OnDemand Vector (AODV)

[41], Directed Source Routing (DSR) [42]. They discover routes that create and maintain

entries in a node’s routing table. In accordance with the layered approach to protocols,

interfaces participating in networking require a unique IP address or identifier. During a

node’s assignment of an IP address, it is also configured with its local DNS server’s IP

address to which it can send its lookup queries. In most MANET routing algorithms, each

node contains the IP-MAC translations of its neighbors. The following is a manually worked

out example of how the above Chord based protocol for MANET may be used.

The scheme would be that a node, when it wakes up, either joins or creates its own

MANET. It decides to be a configuration server or client. As a configuration server, it uses

the auto-configuration protocol to discover at least one other configuration server to join into

the group of configuration servers. As a host client, it uses the auto-configuration protocol

to discover one other configuration server, to which it can search for its current ”responsible”

server and then upgrade its configuration information. It can also issue searches to it for

service discovery for all reachable nodes. If it becomes a host, it needs to find a server, if it

cannot reach a server it becomes its own server. As new servers discover this server, they

join and form a bi-directional Chord like ring. The beaconing is then by the server which
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has the lowest identifier. Since, the servers form an ordered logical ring it is easy to assign

the beaconing to the lowest identifier node.

5.1 Extended DRCP to work with Chord LNS

In MANET, consider the case of three wireless interfaces IF0, IF1 and IF2 separated

at maximum range from each other linearly (such as IF0-maximum range of the interface-

IF1-maximum range of the interface-IF2). Let the DRCP server process be running on

IF0. It has a list of IP addresses that it can assign to requesting interfaces. If IF1 sends a

DRCP SOLICIT requesting configuration, IF0 will be able to hear it. If IF2 sends a DRCP

SOLICIT requesting configuration, IF1 will be able to hear it. In order to limit broadcasts

and floods, once IF1 is configured, it can respond to IF2’s DRCP SOLICIT by acting as a

relay agent for IF0.

The proposed is the modification to the DRCP client to modify it as a DRCP relay

agent. The current DRCP client state transition diagram is modified to Figure 5.1. Note

that only configured clients participate in routing, non-configured clients do not and neither

receive nor forward messages. A non-configured client either receives a configuration or

broadcasts a DRCP SOLICIT.

It is assumed that devices in the internet have some non-identical and non-conflicting

data that can be used to generate a unique ID. At boot time, an interface decides to be either

a server or a client. If it is a server it may broadcast its availability using DRCP REQUESTs.

If it is a client, it broadcasts DRCP SOLICITs link locally for Maximum Hops to a Con-

figuration Server (MAXHOPS)*(Time for one hop), before becoming a server. This results

in a two-level hierarchy.
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Figure 5.1: Modified DRCP client state machine for multi-hop configuration

5.1.1 Behavior of a server

If an interface elects to be or becomes a server, it creates a unique signature id of a

fixed length, for example using SHA-1 [11]. On doing so, it starts one-hop broadcasting,

its 〈ID, timestamp〉. It is then configured.

Once configured, it listens for messages of the form 〈IDA, timestamp, routenodelist〉.

This allows it to build up its routing table to other nodes. Each next hop destination MAC

address is obtained from the routing table and neighbor set.

As a server, it also disseminates information about itself. This allows a client interface

to test if its original contact is alive and in the case that it is no longer reachable it registers

itself with the advertised server.
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For communication, originating at a server, the server sends packets of the form Server’s

MAC address as Src, Next Hop Client as Dst, Server’s IP address as Src, Desired Dst IP,

message.

At the next hop Client, it changes the header to Client’s MAC address as Src, Next

hop as Dst, Server’s IP address as Src, Desired Dst IP, message. Since, from a server, all

the hops are configured, this will ensure delivery of the packet.

When an interface receives an ID, it can use it unless it is changed by some other

server. Once assigned, until the interface registers with another server and changes it, it

remains the same. For a server, that has no connections to other servers, it assigns addresses

sequentially, starting with its own ID. For example if the ID of a server is 192.134.24.56,

the address that it assigns to the next client that requests for one is 192.134.24.57.

5.1.2 Behavior of a client

If an interface decides to be a client, then it waits for MAXHOPS*(Time for one hop)

time before it transforms into a server. On boot up, it sends out a message with Client’s

MAC as Src, Broadcast MAC as Dst, A default IP as Src (such as 0.0.0.0), Link local

Broadcast IP address as Dst.

This is broadcast to one hop neighbors. Amongst the one hop neighbors if any of them

is a DRCP server, they can reply back to notify the client of their existence. This allows the

client to select one of the possible servers to associate with. To the selected server it then

sends a bind message. The bind message is of the form Client’s MAC ID as Src, Server’s

MAC is as Dst, Server’s IP as Dst, A default IP as src, to which the server’s reply would

be Server’s MAC ID as Src, Client’s MAC ID as Dst, Server’s IP as Src, Client’s IP as Dst,
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message. This would assign the IP to the client along with configuration information and

keep a searchable copy on the server.

If there are no servers within its immediate server set, the neighbor clients that are

configured, send their server information as the reply. The client then sends the bind

message to one of those clients, which the client routes to the server that it has been

configured by. This bind message looks like Client’s MAC ID as Src, Neighbor’s MAC ID

as Dst, Neighbors IP as Dst, A default IP as src. The neighbor client caches this, and sends

a new request to the server for a new IP address for the client MAC address. The server in

turn does that and sends back the results to the client acting as a relay. This relay client

on receiving the translation sends out a bind reply similar to the one above to the client,

thus configuring it.

For communication, originating at a client, the configured client sends packets of the

form Client’s MAC ID as Src, Next Hop Client’s MAC ID as Dst, Client’s IP as Src, Desired

IP as Dst, message. Since, clients that are not configured do not participate in routing,

routing to the client can be through paths that have already configured nodes.

For a client that does not obtain a response from any client supporting a route to

a server, it re-broadcasts its query every exponential timeout waiting until MAXHOPS

*(Time for one hop). A server is expected to exist at least MAXHOPS away.

When a client does not receive a response of a path to the server after MAXHOPS

* (Time for one hop), it is considered to have no existing servers to obtain configuration

from. Hence, it is forced to take on the role of a server. At this point, the client changes its

status to server, and proceeds as a server. In this manner during zero-configuration if the
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intermediate clients need time to configure them, some of them will turn into servers and

eventually the further hop clients shall be serviced.

5.1.3 Discovery of other servers

The above description details the process of obtaining an IP address and other con-

figuration information at boot time. The following description enlists how to lookup for

translations and how the clients and servers behave once configured.

The above scenario is in consideration that no new LNS servers pop up and existing

LNS servers do not decide to stop being so, which may not necessarily be true.

Apart from basic networking, servers attempt to discover other servers. This it does,

using regular client notifications. As in, an un-configured client, when it receives replies to

its broadcast configuration request from more than one client, it compares them and sends

out the notification to each one of them of the other. This works during zero-configuration,

when servers are trying to assign addresses to a large number of nodes. In this set up there

are a large number of nodes that do not have any configuration information. The servers

either simultaneously or at different times wake up to service the clients around them. As

clients time out, they start becoming servers. This allows that as clients configuration

spreads, at borders, clients will receive information of more than one server as available.

With the newly discovered servers, a given server can handoff part of its list of IP-MAC

translations to the new server and delete them from its own, thus transferring responsibility

of configuration information to it. This occurs frequently in the scenario where a server

with ID1 has assigned IP addresses up to ID3, where ID3>ID1, and it further discovers a

new server ID2 where ID3>ID2>ID1. In this situation, ID1 hands off all translations from
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ID2 to ID3 to server with ID2 and then ID2 reconfigures them if it already has a set of

clients assigned up to ID3. If not, it keeps a pointer to the current server, i.e., ID1 that

manages the translations up to ID3 and thus it sets its current starting assignment ID to

ID3.

Consider the sample scenario where in there is one client configured via ID1 surrounded

by clients configured by ID2. When a new client enters the neighborhood, it obtains info

from ID1 and ID2 assigned clients, and can thus inform each other of the existence of the

other. In a stable scenario, there are also a few situations, one, wherein, there are servers

that already exist or new servers are formed for load balancing requirements or a client

wishes to modify itself to a server for accounting purposes. In that case, there may not be

any new nodes to be configured at boundaries to be able to inform nodes of the presence

of respective servers. The manner in which to discover each other to participate in the

overlay network can follow the following mechanism where a server with node ID1 sends a

MAXHOPS+2 limited message to discover another server. This message is a hop limited

broadcast. For each client that receives this message <ID1, Searching Other Nodes, Hop

Count (HOPCNT)>, it looks up its own registered server id.

This broadcast need not be frequent. The message may also contain IDs, for which

that are already discovered and do not need to be replied for. This list can be compared

by the client attempting to send back a reply.

if(server_id == ID1 or dont have a server_ID)

further broadcast the message after decrementing the HOP_CNT;

else
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{

reached a boundary area.

Reply back to the discovering server with route information.

}

The following figures depict a hand worked example of how Figure 5.2 is the initial

state of the MANET where some nodes have decided to become servers and have a self

generated unique ID, Figure 5.3 is where the one hop nodes from the servers can detect

its presence and have been configured by their respective servers, Figure 5.4 is where the

second hop clients are configured through the help of some first hop clients acting as DRCP

relay agents and two servers are able to discover each other as one of the second hop nodes’

receives request for configuration from two different servers, Figure 5.5, Figure 5.6, Figure

5.7 depict further hopes being configured and Figure 5.8 is the state where all of them have

been configured.

5.1.4 Changes due to mobility

As long as no new nodes enter, no change in configuration needs to take place. If a

node moves that is not a server, only the entry in the server’s translation table needs to be

timed out as shown in Figure 5.9. If a server moves out, then if there are new nodes, that

cannot find a server to register with, it becomes the new server.

Discovering other servers, allows a server to distribute its database of IP-MAC address

translations to them and deleting those entries. For entries that it deletes, it sends out a

server identifier, timestamp, route node list to new server. When it moves out voluntarily,

it can hand out the database of IP-MAC translations to the node that is responsible next.
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Figure 5.2: Initial state with servers
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Figure 5.3: First Hop Clients Configured
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Figure 5.4: Second Hop Clients Configured and First Two Server Discover
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Figure 5.5: Third Hop Clients Configured Boundaries Detected Servers Discovered
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Figure 5.6: Fourth Hop of Clients Configured

78



Figure 5.7: Fifth Hop of Clients Configured
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Figure 5.8: All clients configured
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Figure 5.9: Movement of a client
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Figure 5.10: Movement of a server
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If there are no neighbors at all, then it can force one of its next hop nodes to become a

server and hand over its database to it, along with its ID. One example scenario is depicted

in Figure 5.10

If a server does not leave voluntarily, then its neighbor set changes. Lets say that Node

ID - 2346 has neighbor clients 2563, 2564 and 2367 and it contains IP-MAC translations of

all of these as well as for 100’s more. If it moves to a different region, its neighbor set may

change, and these nodes may have a route to it as well, but they may be registered with

some other server. Thus, the route re-discovery may have to be done. If it leaves out of the

network, then all translation are all lost. In that case, no node in the network will have the

current MAC-IP translations, but the existing assignments would still remain valid.
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Chapter 6

Conclusions and Future Work

For a large MANET of wireless devices in a battlefield, it would not be uncommon

for network partitions and mergers to occur. For networking amongst devices, being able

to uniquely identify or number each interface is necessary and to be able to participate

in services, access to a name resolution service is necessary. A large MANET would also

participate with the current internet through last hop wireless or wired interfaces. Proposed

solutions should be compatible with protocols used in the Internet.

An extensive survey of the literature has been done for available name resolution proto-

cols. From that it has been evident that they do not sufficiently address the problem of the

lack of service reachability in the event of network partitions and mergers. Robust service

reachability appears as a computationally intensive problem, wherein mobility exacerbates

the situation. This thesis exposes the problem in detail.

In order to further study possible solutions, one of the existing name resolution pro-

tocols has been adapted to work in a MANET and modeled using the network simulator

J-Sim. Through the various simulations of node joins, search for translations using the

model, insight has been gathered into the problem that passive stabilization creates. This

has led to identifying specific counterexamples wherein it fails to maintain consistency dur-

ing network partitions and mergers. Further, examples of how an active join and leave

technique helps is described.

In order to gain understanding of how such a name resolution service would work in a

MANET, IP address and auto-configuration solutions such as DRCP have been looked at.
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DRCP is a one hop configuration protocol that assume that interfaces have formed into IP

links. This is perhaps a simplistic assumption for a dynamic MANET environment and is

more suitable for last hop cellular networks and wireless LAN environments. By allowing

DRCP clients to act as relay agents, a manually worked out example of how the service

architecture and auto-configuration would work in a MANET has been described.

For this yet unsolved problem, future work includes, modeling of the problem in a

graph theoretic manner; a more intensive study of proposed protocols through simulations;

analysis of solutions in terms of their computational complexity and heuristics that could

address a lot of the issues and finally result in a more robust protocol.
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Appendix

List of Acronyms

AODV AdHoc OnDemand Vector

ARP Address Resolution Protocol

BSSID Basic Service Set Identifier

CoDNS Collaborative Domain Name System

DAD Duplicate Address Detection

DCDP Dynamic Configuration and Distribution Protocol

DDNS Dynamic Domain Name System

DHCP Dynamic Host Configuration Protocol

DHT Distributed Hash Table

DNS Domain Name System

DRCP Dynamic Rapid Configuration Protocol

DSR Directed Source Routing

HOPCNT Hop Count

ID Identifier

IF Interface

IP Internet Protocol

LAN Local Area Network

LNS Logical Name System

MAC Medium Access Control

MANET Mobile Ad Hoc Network

MAXHOPS Maximum Hops to a Configuration Server
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p2p Peer to Peer

SHA Secure Hash Algorithm

SIP Session Initiation Protocol

UIP Unmanaged Internet Protocol

WWW World Wide Web
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