
Non-metric Continua that support Whitney maps

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee.

This dissertation does not include proprietary or classified information.

Jennifer Stone

Certificate of Approval:

Jo Heath, Co-Chair
Professor
Mathematics and Statistics

Michel Smith, Co-Chair
Professor and Chairman
Mathematics and Statistics

Gary Gruenhage
Professor
Mathematics and Statistics

Piotr Minc
Professor
Mathematics and Statistics

George T. Flowers
Interim Dean
Graduate School



Non-metric Continua that support Whitney maps

Jennifer Stone

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
May 10, 2007



Non-metric Continua that support Whitney maps

Jennifer Stone

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon the request of individuals or institutions and at

their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation

iii



Vita

Jennifer Williamson Stone, daughter of Cecil and Peggy(Duke) Williamson, was

born on October 22, 1973 in Selma, Alabama. She graduated from Morgan Academy

in 1992. In March of 1997, she graduated (with distinction) from Auburn University

with a B.S. in mathematics. In June of 1998, she graduated (Sum Cum Laude) from

Auburn University with a M.S. in Mathematics. She and her husband, Russ Stone,

have a son Nicholas(13) and a daughter Emily(7).

iv



Dissertation Abstract
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An example of a non-metric continuum is constructed, where every non-degenerate

subcontinuum is non-metric, that supports a Whitney map. Additional non-metric

examples are given and examinations of conditions under which non-metric continua

support Whitney maps are made.
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Chapter 1

Introduction and Background

The purpose of this paper is to explore non-metric continua that support Whitney

maps. An indecomposable non-metric continuum, where each proper non-degenerate

subcontinuum is non-metric, that supports a Whitney map is constructed. Several

other examples of non-metric continua that support Whitney maps are given. In

addition, topological properties that will prevent non-metric continua from supporting

a Whitney map are examined.

A non-metric analog of the Cantor set and the Solenoid are used in the con-

struction of an example of a non-metric continuum that supports a Whitney map.

This example will then be used to construct an indecomposable non-metric contin-

uum, where each proper non-degenerate subcontinuum is non-metric, that supports

a Whitney map. Thus a short discussion of the Cantor set and the Solenoid will be

useful.

A metric Cantor set is any uncountable topological space that is compact, each

point of the set is a limit point of the set and the only connected subsets are singleton

points. The most common example of a Cantor set is the “middle third” Cantor set.

This Cantor set is in [0, 1] and has the following structure:

M1 = [0, 1/3] ∪ [2/3, 1]

M2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]

...etc.
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At each stage, Mj is formed by removing the middle third open interval from

each segment of Mj−1. The middle third Cantor set is
⋂∞

i=1 Mi. Every Cantor set

is homeomorphic to the middle third Cantor set. In Chapter 2 an example S is

constructed. S is an non-metric continuum (A continuum is a compact, connected

space) that supports a Whitney map. S will be formed using a subset Z of the

lexicographic arc Lx. The lexicographic arc, Lx, is a non-metric linearly ordered

connected compact Hausdorff space. ( A space is Hausdorff if given points x 6= y

there exist open disjoint sets U and V such that x ∈ U and y ∈ V .) The standard

lexicographic arc is the topological space Lx defined as follows. Lx = [0, 1] × [0, 1].

If x1 = (p1, q1) and x2 = (p2, q2), then x1 <Lx x2 if and only if p1 < p2 or p1 = p2

and q1 < q2 where “<” denotes the standard order on [0, 1]. The space Lx together

with the order topology induced by the order “<Lx” is called the lexicographic arc.

Z is defined as {(p, q) ∈ Lx|q = 0, q = 1}\{(0, 0), (1, 1)}. Z is a non-metric analog of

the Cantor set. Z is an uncountable compact space where every point of the set is

a limit point of the set and the only connected subsets are singleton points; however

this set is non-metric and so is not homeomorphic to the Cantor set.

As an example of an indecomposable continuum we construct a “solenoid” in

Euclidean three space. A solenoid can be embedded in R3 and has roughly the

following structure:

Let M1 =solid torus

M2= a smaller solid torus lying inside of M1 wrapped twice around the “hole”

inside of M1 before joining up with itself.
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M3= a still smaller solid torus wrapped twice inside of M2,

...etc.

The solenoid =
⋂∞

i=1 Mi. (The solenoid is more commonly defined in terms of

inverse limit see pages 9-10.)

One of the central cross-sections of the solenoid will yield the Cantor set. Each

point from this Cantor set is connected to another point from the Cantor set with

a unique arc in the solenoid. This fact can be used to give another construction of

the solenoid. In that construction, begin with the Cantor set cross a metric arc, then

assign a “gluing pattern” between C × {0} and C × {1} to reproduce the solenoid

according to how theses arcs are connected. In Chapter 2 in order to construct S we

will replace the Cantor set with Z and assign a “gluing” that will create S. Thus S

is a non-metric analog of the solenoid. Both S and the solenoid are indecomposable

continua. (An indecomposable continuum is one that is not the union of two proper

subcontinua.) They both have uncountably many composants. (If X is a continuum

and p ∈ X then the composants of X at p is the set to which x belongs if and only

if there is a proper subcontinuum of X containing x and p). Each composant can be

linearly matched with the real line. Also both the solenoid and S have the property

that each proper subcontinuum is a metric arc. A good understanding of S will be

needed since our main example in Chapter 3 will use S with a dense set of points

“blown up” into copies of S-like continua.

A Whitney map g is a measure on the space of compact subsets of a continuum

that has the property that if A ( B then g(A) < g(B), and g({x}) = 0 for each

3



x ∈ X [9]. A Whitney map on the space of subcontinua of a space will be denoted

by µ.

In the 1930’s H. Whitney first constructed Whitney functions (now called Whit-

ney maps) to study families of curves [12],[13]. In 1942, J.L. Kelly was the first to

use Whitney maps to study hyperspaces [5]. It is known that if X is a compact

metric space then there exist a Whitney map for 2X and C(X), where 2X is the

space of compact subsets of X and C(X) = {K ∈ 2X |K is a continuum }. Whit-

ney defined one as follows: let A ∈ 2X . Let Fn(X) = {H ∈ 2X |H has at most n

points}. Let n ≥ 2 be a fixed natural number. Define λn : Fn(A) → [0,∞) by given

K = {a1, a2, ...an} ∈ Fn(A) [where the enumeration of K may not be one-to-one],

then

λn(K) = min{d(ai, aj)|i 6= j}.

Note that λn(K) ≤ diam[A] for each K ∈ Fn(A); hence ωn(A) given by

ωn(A) = l.u.b.{λn(K)|K ∈ Fn(A)}

is a real number. This defines ωn(A) for each natural number n ≥ 2. Since ωn(A) ≤

diam[A] for each n = 2, 3, ..., the series
∑∞

n=2 21−nωn(A) converges; define ω(A) by

ω(A) =
∞∑

n=2

21−nωn(A).
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Since A was an arbitrary member of 2X , we have defined a function ω : 2X → [0,∞).

Whitney proved that this function has all the properties that are now defined as a

Whitney map [9](p.24-26). It has recently been shown that local connectivity plus

the existence of a Whitney map implies metrizablity. [7]

V. E. Šnĕıder showed that if X is a Hausdorff compact space and the diagonal

of X × X is a G − delta set then X is metric [11]. A corollary is that if there is a

continuous function f : X×X → R so that f(x, y) = 0 if and only if x = y, and X is

compact then X is metric. Using those facts it is easily shown that no Whitney map

for 2X exists when X is compact and non-metric. In 2000 J.J. Charatonik and W.J.

Charatonik [1] showed that the non-metric indecomposable continuum example given

by Gutek and Hagopian [3] will support a Whitney map on C(X). They also provided

examples of non-metric continua that will not support a Whitney map. They posed

the question of characterizing non-metric continua for which there exist a Whitney

map for C(X) [1]. From this point forward since it is known that no Whitney map

on 2X exists, where X is a non-metric compact space, a Whitney map will refer to

a Whitney map on C(X). In this paper the author will first construct an example

of a non-metric indecomposable continuum that supports a Whitney map. It will be

shown that its hyperspace is an example of a non-metric continuum, which is arcwise

connected by metric arcs, that does not support a Whitney map. Thus it shows

that arcwise connectedness by metric arcs is not a sufficient condition for admitting

a Whitney map. The author will also give an example of a hereditarily non-metric

indecomposable continuum that supports a Whitney map. In this paper a space is
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hereditarily non-metric if every non-degenerate proper subcontinuum is non-metric.

In addition, a method that proves that there exist continuum-many decomposable

non-metric continua, each of which supports a Whitney map, is given. An example of

a hereditarily indecomposable non-metric continuum that supports a Whitney map

is also constructed.

While the question of characterizing which non-metric continua will support a

Whitney map is still unsolved, several theorems are given showing when non-metric

continuum cannot support a Whitney map. For example, if X is a non-metric con-

tinuum which has a specific contraction then X cannot support a Whitney map. It

is also shown that given two non-metric continua that support Whitney maps, their

union does not necessarily support a Whitney map. Lastly the author will examine

Whitney properties for non-metric spaces. It is shown that µ−1(t) is also a contin-

uum even if X is non-metric. It is also shown that hereditary indecomposablity is a

Whitney property in the non-metric case.

The work on Whitney maps of non-metric continua opens up an area of interest-

ing research for two reasons. First, it will be a challenge to prove what properties are

Whitney properties for non-metric continuum. Second, properties that are trivial to

prove in the metric case can be considered, for example separability. It is not known

if a non-metric continuum that support Whitney maps must be separable. Lastly the

existence of Whitney maps on non-metric continua will be useful in that it will pro-

vide an additional tool for the study of the hyperspaces of a large class of non-metric

continua.

6



Statements of needed background Definitions and Theorems

Definition: A compact connected Hausdorff space is said to be a continuum.

Note: It need not be metric.

Theorem 1.1. If H and K are closed subsets of the compact set M but no subcon-

tinuum of M intersects both H and K, then M is the union of two closed sets one

containing H and the other containing K.

Theorem 1.2. Suppose that M is a continuum and U is an open set intersecting

but not containing M . If L is a component of M − U then L contains a point of the

boundary of U .

Definition: If X is a continuum and p ∈ X then the composant of X at p is the

set to which x belongs if and only if there is a proper subcontinuum of X containing

x and p.

In the solenoid and the example S outlined above, all points connected to a given

point by an arc is a composant.

Theorem 1.3. If K is a composant of the continuum X, then K is dense in X.

Definition: The continuum X is said to be irreducible from the point p to the

point q if and only if no proper subcontinuum of X contains p and q.

We define the sin1/x curve as the closure of {(x, y)|x ∈ (0, 1], y = sin1/x}. The

sin1/x curve is irreducible between the points (0, 0) and (1, sin1).
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Definition: If X is a set then the subset K of X is said to be nowhere dense in

X if and only if every open set intersecting X contains an open set that contains no

point of K.

Definition : A space X is separable if X contains a countable dense set.

Definition: A space X is completely separable if X has a countable basis.

The set Z as defined above is not completely separable; this implies that it is

non-metric.

Definition: The continuum X is said to be indecomposable if and only if it is

not the union of two proper subcontinua. As previously mentioned the solenoid is an

example of an indecomposable continuum.

Theorem 1.4. The continuum X is indecomposable if and only if every proper sub-

continuum of X is nowhere dense in X.

Theorem 1.5. If X is an indecomposable continuum and each of C and D is a

composant of X then either C = D or C ∩D = ∅.

Theorem 1.6. If the continuum M intersects each of two closed sets H and K then

there is a subcontinuum of M irreducible from H to K.

Definition: A space X is hereditarily indecomposable if every subcontinuum is

indecomposable.

Theorem 1.7. If X and Y are non-degenerate hereditarily indecomposable metric

chainable continua then they are homeomorphic.
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Definition: A non-degenerate hereditarily indecomposable chainable continuum

is called a pseudo-arc.

Definition: A chain is a finite collection of open sets G1, ..., Gn such that Gi∩Gj 6=

∅ if and only if |i− j| ≤ 1. A member of this chain is called a link.

Definition: A continuum X is chainable provided that for each positive ε, there

is a chain in X such that each link has diameter less than ε.

Theorem 1.8. The pseudo-arc can be mapped onto any chainable metric continuum.

Definition: Let I be an ordered index set. For each α ∈ I let Xα be a topological

space and for each α < β let fβ
α : Xβ → Xα be a continuous map so that for α < β < γ

we have fβ
α ◦ fγ

β = fγ
α . Then {Xα, fβ

α}I is called the inverse system of the spaces

{Xα}α∈I and mappings {fβ
α}α<β.

Definition. Suppose that {Xα, fβ
α} is an inverse system with index set I. Then

the inverse limit space X = lim←−{Xα, fβ
α}I is defined as follows.

The element P = {Pα}α∈I is a point of X provided for each α ∈ I, Pα ∈ Xα and

for each α < β, fβ
α (Pβ) = Pα. The set R is a basic open set provided there exists an

i ∈ I and an open set Oi in the space Xi so that R = {P ∈ X|Pi ∈ Oi}.

Theorem 1.9. The inverse limit space XI = lim←−{Xα, fβ
α}I is a subspace of the product

space Πα∈IXα.

Theorem 1.10. The inverse limit of arcs is chainable.

9



As mentioned previously the solenoid is usually defined as an inverse limit on a

circle. The solenoid equals lim←−{Xi, fi} where i runs over natural numbers, each Xi is

a circle, and fi wraps the circle Xi+1 a certain number of times around the circle Xi.

Definition: Suppose that X is a topological space. Then the hyperspace of X

denoted by 2X is the space of compact subsets of X. Suppose that U1, U2, U3, ...Un

is a finite collection of open sets. Then {K ∈ 2X |K ∈ ∪n
i=1Ui and for all 1 ≤ i ≤

n,K ∩ Ui 6= ∅} is a basic open set for the topology.

Definition: Let C(X) = {K ∈ 2X | K is a continuum}; C(X) is called the hyper-

space of subcontinua of X.

Theorem 1.11. C(X) is a closed subset of 2X .

Definition: Let X be a continuum. A Whitney map is defined as a continuous

function µ : C(X) → [0,∞) such that µ(M) = 0 if and only if the set M in X is a

singleton, and for any A,B ∈ C(X) such that A ( B then µ(A) < µ(B).

Definition: A Whitney level is a subset of C(X) that is of the form µ−1(t), where

µ is some Whitney map for C(X) and t ∈ [0, µ(X)].

Definition: A property P is a Whitney property provided that if a continuum X

has the property P so does µ−1(t) for each Whitney map µ on C(X) and for each

t ∈ [0, µ(X)].

Considerable work has been done on Whitney properties of metric continua. [9]

Definition: Suppose that X is a Hausdorff space. Then the collection G of subsets

of X is upper semi-continuous means that for each g ∈ G and open set D containing

10



g there is an open set D′ containing g so that each member of G intersecting D′ lies

in D.

Definition: Suppose that X is a Hausdorff space and G is an upper semi-

continuous collection so that ∪G = X. Then X/G is the space whose points are

the elements of G; the set R is a basis element for the topology of X/G if R is a

subset of G so that ∪R is an open set in X.

Theorem 1.12. If X is a Hausdorff compact space and the diagonal of X ×X is a

G− delta set, then X is metric [11].

Theorem 1.13. If there is a continuous function f : X ×X → R so that f(x, y) = 0

if and only if x = y, and X is compact, then X is metric.

11



Chapter 2

A Non-metric continuum that supports a Whitney map

Theorem 2.1. There exists a non-metric indecomposable continuum that

supports a Whitney map.

Part 1. Definitions. The Lexicographic Arc.

Let I denote the unit interval I = [0, 1] with the usual topology.

Definition. The standard lexicographic arc is the topological space Lx defined

as follows. Lx = [0, 1] × [0, 1]. If x1 = (p1, q1) and x2 = (p2, q2), then x1 <Lx x2 if

and only if p1 < p2 or p1 = p2 and q1 < q2 where “<” denotes the standard order on

[0, 1]. The space Lx together with the order topology induced by the order “<Lx” is

called the lexicographic arc.

Background Theorem 2.1.1. The lexicographic arc is a nonmetric Hausdorff arc.

It is first countable at each point but is not separable and not completely separable.

Let Z denote the subspace of Lx defined by Z = {(p, q) ∈ Lx| q = 0 or q =

1} \ {(0, 0), (1, 1)}. (Note these two points are removed because they turn out to be

isolated points.)

Let us denote the set Z0 = {(p, q) ∈ Z| q = 0} as the “bottom” part of Z and

Z1 = {(p, q) ∈ Z| q = 1} as the “top” part of Z. For each t ∈ [0, 1] let t0 be the

element (t, 0) in Z and similarly let t1 = (t, 1).

12



Background Theorem 2.1.2. Properties of the space Z:

1. Z is a compact separable subspace of Lx.

2. Z is not completely separable (and hence is not metric).

3. If M is a subset of the bottom (or top) of X which is dense with respect to

the usual order topology on [0, 1] then it is dense in Z with respect to the lexicographic

topology.

4. Every point of Z is a limit point of the space.

5. Z is totally disconnected.

6. The collection {[a1, b0]|a < b ∈ R} is a basis for the topology of Z.

2

Let J ⊂ [0, 1] be an interval.

Background Theorem 2.1.3. Let f : J → [0, 1] be an order preserving home-

omorphism. Then the function f ′ defined by f ′(ti) = (f(t), i) = f(t)i is an order

preserving homeomorphism on Z. Similarly, if f : [0, 1] → [0, 1] is an order revers-

ing homeomorphism. Then the function f ′ defined by f ′(ti) = f(t)1−i is an order

reversing homeomorphism on Z.

Proof. Let J ⊂ [0, 1] be an interval and let f be an order preserving homeo-

morphism from J into f(J) ⊂ [0, 1] with respect to the usual topology of [0,1]. Let

J{0,1} = {ti ∈ Z|t ∈ J} and let f ′ : J{0,1} → Z be defined by f ′(ti) = (f(t))i.

(i) f ′ is one-to-one: Suppose ak 6= bi, then:

Case 1. a 6= b; then f(a) 6= f(b) so f ′(ak) = (f(a))k 6= (f(b))i = f ′(bi).

Case 2. a = b; then k 6= i so (f(a))k 6= (f(a))i and hence f ′(ak) 6= f ′(bi).

13



(ii) f ′ is onto f(J){0,1}: Given ak ∈ J{0,1} then a ∈ J so there is a point b ∈ f(J)

such that f(b) = a, so f ′(bk) = (f(b))k = ak.

(iii) f ′ is order preserving: Assume ak < bi, a, b ∈ R, and k, i ∈ {0, 1}.

Case 1. a 6= b. Then a < b implies that f(a) < f(b) and then, f ′(ak) =

(f(a), k) <Z (f(b), i) = f ′(bi).

Case 2. a = b. Then k = 0 and i = 1; which implies that f ′(ak) =

(f(a), 0) <Z (f(a), 1) = (f(b), 1) = f ′(bi).

(iv) f ′ is continuous: Let U be a basic open set with f ′(ti) ∈ U and U = [a1, b0].

Let V = [(f−1(a))1, (f
−1(b))0]. Then V is open in Z, ti ∈ V , and f ′(V ) ⊂ U since f

is order preserving.

2

This establishes that f ′ is an order preserving homeomorphism. Now let us

consider f ′ : J{0,1} → Z defined by f ′(ti) = (f(t), 1− i) = (f(t))1−i.

The proof of one-one and onto is similar to the order preserving case.

(i) f ′ is order reversing: Let ak < bi.

Case 1. a 6= b. Then a < b implies that f(a) > f(b) so, f ′(ak) = (f(a), 1−

k) >Z (f(b), 1− i) = f ′(bi).

Case 2. a = b. Then k = 0 and i = 1. So we have ak = a0 and bi = a1.

Thus, f ′(a0) = (f(a), 1− 0) > (f(a), 0) = f ′(a1).

(ii) f ′ is continuous: Let U be a basic open set with f ′(ti) ∈ U and U =

[a1, b0]. Then f(a) ≤ f(t) ≤ f(b) implies that t ∈ [f−1(b), f−1(a)]. Let V =

14



[(f−1(b))1, (f
−1(a))0]. So V is open in Z, ti ∈ V , and f ′(V ) ⊂ U since f is order

reversing.

Part 2. Definition of f’s. Construction.

Define H1
1 = [01, (

1
2
)0] and H1

2 = [(1
2
)1, 10].

Define H2
1 = [01, (

1
4
)0], H2

2 = [(1
4
)1, (

1
2
)0], H2

3 = [(1
2
)1, (

3
4
)0], and

H2
4 = [(3

4
)1, 10].

For each positive integer n and 1 ≤ i ≤ n define Hn
i = [( i−1

2n )1, (
i

2n )0]. Note that

Hn
i = Hn+1

2i−1 ∪Hn+1
2i .

Claim 2.2.1. For each integer n, {Hn
i }2n

i=1 is a partition of Z into disjoint clopen

sets and if U is an open set in Z then there exists integers n and i so that Hn
i ⊂ U .

Construction: For each n we wish to find a homeomorphism fn from Z onto Z

by using order preserving maps to map elements of {Hn
i }2n

i=1 onto each other.

Define fn
i,j : Hn

i → Hn
j , for tk ∈ Z with t ∈ [0, 1] and k ∈ {0, 1}, by fn

i,j(tk) =

( j−1
2n + t− i−1

2n )k. Note by Background Theorem 2.1.3 that fn
i,j is an order preserving

homeomorphism.

We define fn : Z → Z inductively.

Let f 1(t) = f 1
1,2(t) for t ∈ H1

1 ; let f 1(t) = f 1
2,1(t) for t ∈ H1

2 .

For n > 0 let fn+1(t) = fn(t) for t ∈ Hn
i for i > 1 (i.e. t ∈ Hn+1

i for i > 2).

Let fn+1(t) = fn+1
1,2n+1(t) for t ∈ Hn+1

1 ; let fn+1(t) = fn+1
2,2n+1−1(t) for t ∈ Hn+1

2 . What

this does is interchange Hn+1
1 and Hn+1

2 before moving them to Hn+1
2n+1 and Hn+1

2n+1−1

but keeps the rest of Z in the same order and preserves the previous assignments
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made at the nth level. We have fn+1(Hn+1
1 ) = Hn+1

2n+1 , fn+1(Hn+1
2 ) = Hn+1

2n+1−1 and

fn+1(rk) = fn(rk) if rk ∈ Z − (Hn+1
1 ∪Hn+1

2 ).

Define F : Z → Z by F (t) = limn→∞fn(t).

Note:

1. For each n and each point x ∈ Z, the orbit of x under fn intersects every

set in {Hn
i }2n

i=1.

2. For every point xk ∈ Z except 01, xk ∈ H i
2 for some i. This is true since

xk ∈ [( 1
2n )1, (

2
2n )0] = Hn

2 for some n whenever xk 6= 01. Thus Z = ∪∞n=1H
n
2 ∪ {01}.

3. Given i is the least integer such that xk ∈ H i
2 then F (xk) = f i(xk). This

is true since f i(xk) = f j(xk) for all j > i so F (xk) = limn→∞fn(xk) = f i(xk).

4. f j(Hj
1) ⊂ f i(H i

1) for i < j.

5. f i(H i
2) ⊂ f i−1(H i−1

1 ).

Part 3. F is a homeomorphism.

Claim 1. F (01) = 10:

We have 01 ∈ Hn
1 for every n.

fn(Hn
1 ) = Hn

2n , thus fn(01) = (2n−1
2n )1. By the topology on Z,

F (01) = limn→∞(2n−1
2n )1 = 10. So F (01) = 10.

Claim 2. F is well-defined:

Given a point xk ∈ Z, xk 6= 01, we have xk ∈ H i
2 for some i; so F (xk) = f i(xk)

which uniquely defines F (xk). From above we have 01 mapped only to 10.

Claim 3. F is one-to-one:

Case 1. Suppose ak and bh such that ak 6= bh and ak, bh 6= 01.

16



Case 1.1: a 6= b. Then there exist i, j, m with j and m not equal to 1 such that

ak ∈ H i
j and bk ∈ H i

m with j 6= m. Then F (ak) = f i(ak) 6= f i(bk) = F (bk) because f i

is one-to-one.

Case 1.2: a = b. Then there exist i, j such that j 6= 1 so that ak, bh ∈ H i
j. Then

F (ak) = f i(ak) 6= f i(bh) = F (bh) because f i is one-to-one.

Case 2. Suppose ak and bh = 01 such that ak 6= 01.

Then there exists an i such that 01 ∈ H i
1 and ak ∈ H i

j with j 6= 1. Thus

f i(ak) /∈ f i(H i
1); therefore F (ak) = f i(ak) 6= 10 = F (01).

Claim 4. F is onto:

We know that F (01) = 10; so we need only show onto for ak 6= 10. Since

⋂∞
n=1 Hn

2n = {10}, then given ak 6= 10 there exists i such that ak ∈ H i
j and j 6= 2i (i.e.

not the last partition element.) Since f i is onto there exists H i
m and bk ∈ H i

m with

m 6= 1 such that f i(H i
m) = H i

j such that ak = f i(bk) = F (bk) since m 6= 1.

Claim 5. F is continuous:

Suppose that F (xk) 6= 10 and U is an open set such that F (xk) ∈ U . There

exists H i
j such that F (xk) ∈ H i

j ⊂ U and j 6= 2i. Let V = (f i)−1(H i
j); this set is open

since f i is a homeomorphism and V 6= H i
1 since j 6= 2i. So,

F ((f i)−1(H i
j)) = f i((f i)−1(H i

j)), since j 6= 2i,

f i((f i)−1(H i
j)) = H i

j ⊂ U .

If F (xk) = 10 and U is the open set [a1, 10] then there exists an i such that

H i
2i ⊂ [a1, 10]. Since H i

2i ⊂ [a1, 10] we have, f i(H i
1) ⊂ [a1, 10].

Claim: F (H i
1) ⊂ [a1, 10].
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Suppose for every point wm 6= 01 such that wm ∈ H i
1 there exists n such that

wm ∈ H i+n
2 for some n. This implies by construction (see notes 3, 4, and 5) that

F (wm) = f i+n(wm).

So F (H i+n
2 ) = f i+n(H i+n

2 ) ⊂ f i+n−1(H i
1) ⊂ f i(H i

1) ⊂ U .

Hence F (wm) ∈ U and we know that F (01) ∈ U .

Thus F (H i
1) ⊂ U , and F is continuous.

2

Part 4. Definition of a non-metric continuum S such that S supports a Whitney

map.

Let X = Z × [0, 1].

Let G = {{(t, 0), (F (t), 1)}| t ∈ Z} ∪ {{(t, r)}| r 6= 0, 1}.

Let S = X/G.

Observe that G is an upper semi-continuous collection filling up X.

Lemma 2.4.1. Let {x0, x1, ..., xn} be points in Z so that F (xi) = xi+1 for i =

0, 1, ..n − 1; then there exists open sets V0, V1, ..., Vn in Z that are pairwise disjoint

and so that F (Vi) = Vi+1 and xi ∈ Vi with i = 0, 1, ..., n.

Proof. Step 1. There exists pairwise disjoint sets U0, U1, ..., Un, such that xi ∈ Ui

and each Ui = [axi
1 , bxi

0 ], with i = 0, 1, ..., n.

Step 2. Let W1 = [F (ax0
1 ), F (bx0

0 )] ∩ [ax1
1 , bx1

0 ]; note [F (ax0
1 ), F (bx0

0 )] = F (U0).

So we define:

W1 = F (U0) ∩ U1;
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W2 = F (W1) ∩ U2;

...

Wi = F (Wi−1) ∩ Ui;

...

Wn = F (Wn−1) ∩ Un.

Step 3. Define:

Vn = Wn;

Vn−1 = F−1(Vn) = F−1(Wn);

Vn−2 = F−1(Vn−1) = F−1(F−1(Wn));

...

V0 = F−1(V1) = F−1(F−1 · ··︸ ︷︷ ︸(Wn)).

n-times.

We have:

• The Vi ’s are pairwise disjoint since the Ui ’s are pairwise disjoint, Wi ⊂ Ui,

and Vi ⊂ Wi.

• F (Vi) = Vi+1 by construction.

• xi ∈ Vi.

Proof: x0 ∈ U0 so F (x0) ∈ F (U0);

x1 ∈ U1 so x1 = F (x0) ∈ U1 and so x1 ∈ W1 = F (U0)
⋂

U1.

Likewise x2 ∈ W2 and so on: xi ∈ Wi for each i.
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Then we have xn ∈ Wn = Vn. So xn−1 = F−1(xn) ∈ F−1(Vn) = Vn−1; xn−1 ∈

Vn−1; and likewise for all i we have xi ∈ Vi. Note that Vi ⊂ Ui; so the elements {Vi}n
i=1

are disjoint. This establishes the lemma.

2

Part 5. Indecomposablity of S.

Notation:

We have X = Z × [0, 1] and S = X/G. Note that the point (z, 0) is identified

with the point (F (z), 1),and that the points z ∈ Z are written in the form z = ti for

some t ∈ [0, 1] and i ∈ {0, 1}.

Let z ∈ Z; for each positive integer n we define an arc Az
n. Let Az

0 be the arc

{z} × [0, 1] ⊂ S. Az
0 is an arc beginning at (z, 1) and ending at (z, 0). Let Az

1 be the

arc {z} × [0, 1] ∪ {F (z)} × [0, 1] ⊂ S. Let Az
n = {z} × [0, 1] ∪ ∪n

i=1{F n(z)} × [0, 1].

Thus for example Az
2 is the arc in S beginning at (z, 1) and ending at (F 2(z), 0).

Define Az =
⋃∞

i=0 Az
i .

Theorem 2.5.1. Az is dense and is the union of metric arcs for each z ∈ Z.

Proof. First, since each Az
i is just finitely many metric arcs glued together, each

Az
i is metric.

Assume that Ax is not dense for some x ∈ Z. Let y ∈ S be such that y /∈ Ax

and y is not a limit point of Ax. Thus there exists a basic open set U in the form

U = [z1, z2]×(r, s) such that y ∈ U and no point of Ax is in U . Look at the projection

π1(U) of U onto Z×{1}. Now since y is not a limit point of Ax then π1(U)
⋂Ax = ∅.

We also know that there exist i and j such that H i
j × {1} ⊂ U which implies that:
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(H i
j × {1})

⋂Ax = ∅.

This implies that (F−1(H i
j)× {1})

⋂Ax = ∅.

Thus (F−2(H i
j))× {1}

⋂Ax = ∅.
...

(F−2i
(H i

j))× {1})
⋂Ax = ∅.

But then Ax

⋂
(
⋃2i

j=1 H i
j × 1) = ∅ which is a contradiction since Ax is nonempty

and
⋃2i

j=1 H i
j = Z. Therefore Ax is dense.

2

Similarly define Az
−n = {z} × [0, 1] ∪ ∪n

i=1{F−n(z)} × [0, 1] and A−
z =

⋃∞
i=0 Az

−i.

Then by the same argument we have:

Theorem 2.5.2. A−
z is dense and is the union of metric arcs for each z ∈ Z.

Theorem 2.5.3. Every proper subcontinuum of S is a metric arc or a singleton

point.

Proof. Let M be a proper subcontinuum of S.

Let (z, t) ∈ M . [To use our rough terminology: we wish to find points (a, r) and

(b, s) “above” and “below” this point that are not in M . This will show that there

is a metric arc, which will be denoted as L, that is contained in M and then we will

show that L = M .]

Consider the arc {z} × [t, 1]. If this arc is not a subset of M then there is a

number r > t so that (z, r) /∈ M . Let (a, r) = (z, r). If {z} × [t, 1] ⊂ M then there

is a first integer n so that Az
−n * M . Otherwise the dense subset A−

z would be a
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subset of M and this would contradict the fact that M is a proper subcontinuum

of S. Then there is an integer n and points (F−n(z), u) and (F−n(z), r) so that

({z} × [t, 1]) ∪ Az
−(n−1) ∪ ({F−n(z)} × [0, u]) ⊂ M and (F−n(z), r) = (a, r) /∈ M ; and

furthermore since M
⋂

({F−n(z)} × [0, 1]) is closed u has the property that for every

w between u and r there is a w′ so that u < w′ < w and (a, w′) /∈ M . We can think

of (a, u) as one endpoint of the arc L that is contained in M .

Similarly, consider the arc {z}×[0, t]. If this arc is not a subset of M then there is

a number s < t so that (z, s) /∈ M . Let (b, s) = (t, s). If {z}× [0, t] ⊂ M then there is

a first integer j so that Az
j *M . Thus, as in the above argument there is a first integer

m and points (Fm(z), v) and (Fm(z), s) so that {z}×[0, t]∪Az
(m−1)∪{Fm(z)}×[v, 1] ⊂

M and (Fm(z), s) = (b, s) /∈ M ; and furthermore for every w between s and v there

is a w′ so that w < w′ < v and (b, w′) /∈ M . Thus we can think of (b, v) as being the

other endpoint of the metric arc L ⊂ M .

Let L be the arc lying in Az ∪ A−
z with end points (a, u) and (b, v) as defined

above. Note that (roughly) L = Az
(m−1) ∪ {Fm(z)} × [v, 1] ∪ {z} × [0, 1] ∪ Az

−(n−1) ∪

{F−n(z)}× [0, u]. (Roughly in the sense that a slight modification is necessary in the

case that n = 0 or m = 0.)

We now will show that L = M . Assume not so that there exists (q, w) such that

(q, w) ∈ M but (q, w) /∈ L.

Note that the projection of L onto Z is the set {F i(z)}m
i=−n.

Case 1. q /∈ {x|(x, y) ∈ L for some y ∈ [0, 1]}, i.e. q /∈ {F i(z)}m
i=−n.

Case 2. q ∈ {x|(x, y) ∈ L for some y ∈ [0, 1]}, i.e q ∈ {F i(z)}m
i=−n.
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We will now make a tube-like open set in S such that it will contain L but not

(q, w) and whose boundary misses M (thus getting a contradiction). We say an open

set U is tube-like in S if the projection of U onto Z is a collection of disjoint open

sets {U1, U2, ...Uj} such that F (Ui) = Ui+1, for i ∈ [1, j].

Case 1: q /∈ {x|(x, y) ∈ L for some y ∈ [0, 1]}.

We know that (a, r) and (b,s) are not in M ; thus there exists Va and Vb, open

sets in S containing (a, r) and (b, s) respectively, that do not intersect M .

By Lemma 2.4.1 (about the V’s), there exists a clopen set V ⊂ Z containing z

so that VL = ∪{F i(V )}m
i=−n does not contain q. Note that VL contains all the points

from {F i(z)}m
i=−n. Furthermore, V can be chosen so that F−n(V ) × {r} ⊂ Va and

Fm(V )× {s} ⊂ Vb.

Thus F−n(V ) × [0, r) ∪ (∪m−1
i=−(n−1)(F

i(V ) × [0, 1])) ∪ Fm(V ) × (s, 1] is an open

set O in S that contains L. Moreover (q, w) is not in O and, since V is clopen,

Bd(O) ⊂ Va ∪ Vb and hence Bd(O) does not intersect M . But L ⊂ M and L lies in

O and (q, w) is a point in M not in O which contradicts the connectedness of M .

Case 2: q ∈ {x|(x, y) ∈ L for some y ∈ [0, 1]}.

There are two possibilities: q = Fm(z) or q = F−n(z). Suppose q = F−n(z);

thus (q, w) = (a, w). Since (a, u) is an endpoint of L, there exists a number r′ so that

u < r′ < w so that (a, r′) /∈ M .

Then repeat the construction as above but with (a, r′) replacing (a, r) and the

open set Va containing (a, r′) and no point of M . Then the open set O constructed

as above contains L and does not contain (q, w). And again Bd(O) does not intersect
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M which contradicts the connectedness of M . Therefore (a, w) /∈ M for w > u. If

q = Fm(z) then the same argument works by selecting s′ so that w < s′ < v and

(b, s′) /∈ M . Thus we have shown that every proper subcontinuum of S is a metric

arc or is a singleton point. Notice that since we showed M = L then the projection

of M onto Z is the set {F i(z)}m
i=−n. All proper subcontinua will have this feature.

Theorem 2.5.4. S is an indecomposable continuum such that each composant is

the union of a countable collection of metric arcs.

Proof. Claim 1. S is a continuum:

We know that, since G is an upper semicontinous collection filling up the compact

space X, S is compact.

For connectedness we know Ax is connected for any x ∈ S; thus Ax = S is also

connected.

Claim 2. S is indecomposable:

If S were decomposable then it would be the union of two arcs ( since each proper

subcontinuum is an arc) but S is not the union of two arcs.

Claim 3. Each composant is the union of a countable collection of metric arcs:

Claim: Ax =
⋃∞

i=−∞ Ax
i is the composant of (x, 0), x ∈ Z. Recall Az

n = {z} ×

[0, 1] ∪ (∪n
i=1{F n(z)} × [0, 1]) and that Ax is a countable collection of metric arcs.

Assume Ax =
⋃∞

i=−∞ Ax
i is not the composant of (x, 0); so there exist a point

(r, w) and a proper subcontinuum B of S such that (x, 0), (r, w) ∈ B and B\Ax 6= ∅.

But any proper subcontinuum is an arc and thus we can say B starts at (a, b) and

ends at (F p(a), d), for some p ∈ (−∞,∞). If (x, 0) is on this arc then x = F n(a)
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for some n which implies that a = F−n(x). Also F p(a) = Fm(x) for some m. Thus

B ⊂ ⋃m
i=−n Ax

i ⊂ Ax. This is a contradiction. Thus given any point that is in the

composant of x, that point is in Ax, and we know that given any point p ∈ Ax there

exist a subcontinuum that contains p and (x, 0), namely the arc with p and (x, 0) as

the starting and ending points respectively. Therefore Ax is the composant of (x, 0)

and actually is the composant of any point in Ax.

Part 6. Definition of len and continuity.

From Part 5 we have: If I ⊂ S is a proper subcontinuum of S then there exists

a finite number of points z1, z2, ..., zn so that:

I ⊂ ∪n
i=1{zi} × [0, 1]/G.

Let ρ denote the usual length of intervals in [0, 1] and let π2 denote the projection

of S onto the second coordinate (loosely defined by ignoring the decomposition part).

Define the “length” of I, len(I), as follows:

len(I) =
n∑

i=1

ρ(π2(I ∩ {zi} × [0, 1])).

Lemma 2.6.1. len is continuous.

Let M be a proper subcontinuum of S. Let U be an open set in R such that

len(M) ∈ U . Now there exists an ε > 0 such that (len(M)− ε, len(M) + ε) ⊂ U .

M ⊂ ∪n
i=0Axi

. [We assume that the sets Axi
are the “vertical” intervals compris-

ing Z × [0, 1] so that for xi we have Axi
= {xi} × [0, 1].]

25



Thus there exists x0, x1, ..., xn so that M has endpoints (x0, y0) and (xn, yn).

Using the Lemma 2.4.1, we can find V0, ..., Vn such that xi ∈ Vi, and Vi and Vj

are pairwise disjoint for i 6= j.

Let:

W0 = V0 × (y0 − ε
4
, y0 + ε

4
), and

Wn = Vn × (yn − ε
4
, yn + ε

4
).

Let M ′ be the arc that begins at (x0, yn − ε
4
) and ends at (xn, yn + ε

4
). Cover

M ′ with “balls” of radius ε
4
, where “ball” around the point (xi, s) would be the open

set Vi × (s− ε
4
, s + ε

4
). Since M ′ is compact, there exists finitely many of these open

sets, say G1, ..., Gm, that cover M ′. (Note: each Gi = Vj × (yj − ε
4
, yj + ε

4
) for some

j and some yj.) Then G = {G1, G2, ..., Gn,W0,Wn} will cover M . R(G) = {K ∈

C(S)|K intersects each element of G and is a subset of ∪ G} is open in C(S).

Thus, by definition, if N ∈ R(G) and the fact that we know that N is an arc

[previous result], N must start in W0 and end in Wn. Thus len(N) ∈ (len(M) −
ε
2
, len(M) + ε

2
). (Note: this is true since it is at most ε

2
longer than M or no shorter

than ε
2

of M .)

So len(N) ∈ U and hence len(R(G)) ⊂ U . So len is continuous.

Part 7. Definition of µ, where µ is a Whitney map.

Define µ : C(S) → R by

µ(I) = arctan(len(I))
π
2

for I 6= S and µ(S) = 1.
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Claim 2.7.1. µ is a Whitney map.

Part 1. µ is continuous:

Since len and arctan are continuous it suffices to show that µ is continuous at

S. Let µ(S) = 1∈ U where U is an open set in R. There exists an ε > 0 such that

(µ(S)− ε, µ(S)) ⊂ U . Furthermore there is a number N such that if len(K) > N + ε

then µ(K) > µ(S) − ε, where K is a proper subcontinuum of S. Now let K be a

proper subcontinuum so that len(K) > N + ε. By a previous argument we know that

K is a metric arc beginning at (x0, y0) and ending at (xn, yn).

Using the same method as in proof that len is continuous there exists an open

set R(G) in C(S) such that if J ∈ R(G) then len(J) > len(K) − ε > N ; so then

len(J) > N + ε and thus µ(J) > µ(S)− ε.

We will now make a new open set V in C(S). Let V = R(G ∪ {S}). Note V is

open since it is made from a collection of finitely many open sets from S, and S ∈ V .

Then, given any proper subcontinuum M ∈ V , M must intersect each open set from

G which means that len(M) > len(K)− ε > N . Thus µ(M) > µ(S)− ε which implies

that µ(M) ∈ U . Since µ(S) ∈ U then µ(V) ⊂ U , and thus µ is continuous.

Part 2: Given A ( B then µ(A) < µ(B).

If B 6= S and A ( B then len(A) < len(B) which implies that µ(A) < µ(B).

If B = S and A ( B then µ(A) < 1 = µ(B).

Corollary 2.1. The same construction can be done using any irreducible continuum

that supports a Whitney map.
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Chapter 3

A hereditarily non-metric continuum that supports a Whitney map

Note that in this paper, by a hereditarily non-metric continuum we mean a

continuum such that every nondegenerate subcontinuum is non-metric.

Theorem 3.1. If for each positive integer i the space Xi supports a Whitney map µi

and fi : Xi+1 → Xi, then X = lim←−(Xi, fi) supports a Whitney map.

Proof. We will assume that µi(Xi) = 1 for all i. Let πi be the projection map from

X onto Xi. Define a map Πi from the hyperspace of X onto the hyperspace of Xi by

Πi(H) = πi(H), where H is any subcontinuum of X. We first need to show that Πi

is continuous.

Let U be an open set in C(Xi) such that Πi(H) ∈ U , where H is a subcontinuum

of X. Now U = R({Uj}n
j=1) where Uj is an open set in Xi. Define an open set Vj in X

as Vj =
←−
Uj. Thus Vj = {x ∈ X| xi ∈ Uj}. Define Ṽ ⊂ C(X) as Ṽ = R({Vj}n

j=1). Let

K be a point in C(X) such that K ∈ Ṽ ; then K
⋂

Vj 6= ∅ for each j = 1 to n. Thus

πi(K)
⋂

Uj 6= ∅ for each j = 1 to n and by the definition of the V ′
j s, πi(K) ⊂ ⋃n

j=1 Uj.

Therefore πi(K) ∈ U in C(Xi); thus Πi(K) ∈ U , which implies that Πi(Ṽ ) ⊂ U . Thus

Πi is continuous.

Define µ : X → Xi by µ(H) =
∑∞

i=1
µi(Hi)

2i where H is a subcontinuum of X and

Hi = πi(H). First it is clear that if K ( H then µ(K) < µ(H) since in order for
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K ( H there exist an i such that Ki ( Hi; so µi(Ki) < µi(Hi) and µj(Kj) ≤ µj(Hj)

for i 6= j.

Second we need to show that µ is continuous. Let U be an open set in R such

that µ(H) ∈ U . There exist an n and an ε such that

[
∑n

i=1
µi(Hi)

2i ± ε] ⊂ U and

∑∞
i=n

1
2i < ε

2
. Note we define [A± ε] = [A− ε, A + ε]

Since each µi is continuous there exists an open set Vi ⊂ C(Xi) such that µi(Vi) ⊂

[µi(Hi)± ε
2
]. Also since Πi : C(X) → C(Xi) is continuous there exists an open set V

′
i ,

containing Hi, such that Π(V
′
i ) ⊂ Vi. Define an open set Ṽ ⊂ C(X) by Ṽ =

⋂n
i=1 V

′
i .

If K ∈ Ṽ then Πi(K) ∈ Vi for each i = 1 to n. Thus µi(K) ∈ [µi(Hi) ± ε
2
] for each

i = 1 to n. Therefore

∑n
i=1

µi(Ki)
2i < µ(K) =

∑∞
i=1

µi(Ki)
2i =

∑n
i=1

µi(Ki)
2i +

∑∞
i=n+1

µi(Ki)
2i <

∑n
i=1

µi(Ki)
2i + ε

2
∈ ∑n

i=1

µi(Hi)± ε
2

2i + ε
2
⊂ [

∑n
i=1

µi(Hi)
2i ± ε] ⊂ U .

Thus µ(Ṽ ) ⊂ U so µ is continuous and thus a Whitney map.

• Definition of breaking and gluing a copy of S at a point on the arc [e, f ].

Let I1 = [a, b] and I2 = [c, d] be two metric arcs. Let S be the space of our

example from Chapter 2, and let p, q be two points from S that are in different

composants. Define the decomposition space

D = (I1 ∪ I2 ∪ S)�{{p, b}, {q, c}}.
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Now we define what is meant by breaking an arc at a point and gluing in S.

(For shorthand we will refer to it as breaking and gluing S at a point). Let [e, f ] be

an arc and t ∈ [e, f ], t 6= e, f . There exist natural homomorphisms h1 : [a, b) → [e, t)

and h2 : (c, d] → (t, f ]. Define a new space

S1 = D ∪ ([e, f ] \ t)�{{{x, h1(x)}|x ∈ [a, b)}
⋃
{{y, h2(y)}|y ∈ (c, d]}}

where x ∈ [a, b) and y ∈ (c, d]. Note we use this notation loosely since this is not a

decomposition space.

Define the topology T by open sets on {x, h1(x)}. If x ∈ D , x ∈ I1 or I2, and

x /∈ {p, q} (thus x is on the arc but not the endpoints where S was glued), then the

basic open sets are the open sets from the normal topology of an arc.

If x ∈ D, x ∈ S, x /∈ {p, q} (thus x is inside the glued copy of S), then use the

relative topology from our example S.

If x = p, or x = q then an open set containing x would be the union of an open

set in S containing p(or q) and a half-open interval on either I1 (or I2). Observe an

important fact that since p and q are in different composants of S, D is irreducible

from e to f .

2

Now in the above definition we defined what was meant by breaking and gluing in

a copy of S at a point on an arc. Since our space S is Z× [0, 1] with identifications we

can think of S as having uncountably many disjoint arcs (except for the endpoints),
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namely z × [0, 1] for each z ∈ Z. Given a fixed z we can use the above procedure to

break and glue at a point in an arc from S. (Note: there are two different S ′s. First,

we start with S and then we take another S to glue into the first one). Thus we can

glue a copy of S into S at a point on the arc z × [0, 1] for some fixed z ∈ Z.

For example, let (1/20, 1/3) be a point in S. (1/20, 1/3) is on the arc 1/20× [0, 1],

so we can use the lemma to break and glue a copy of S at the point (1/20, 1/3).

Our resulting space would be our example S with one copy of S glued at the point

(1/20, 1/3).

In the next theorem we will not just break and glue in one copy of S. We will

want to “break and glue across S”, meaning that for some fixed t ∈ (0, 1), we will

break and glue at all points from the collection {(z, t)|z ∈ Z}. Using the previous

example of (1/20, 1/3), the term “break and glue across S at (1/20, 1/3)” would mean

that you would use the lemma and break and glue at each point from the collection

{(z, 1/3)|z ∈ Z}. The topology for this space would be locally the product topology

on Z × [0, 1] for points not in a new glued copy of S. For points inside a glued

copy we would use the product topology on Z × Z × [0, 1]. Note this idea can be

extended if, as we will do in a later step, we glued inside a glued copy; then locally

for the points inside the new glued copy the topology would be the product topology

of Z × Z × Z × [0, 1].

Another fact we will use considers the relationship between two spaces made by

using the lemma. Let S1/3 be the space made by breaking and gluing across S at

(1/20, 1/3), and let S1/4 be the space made by breaking and gluing across S at the
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point (1/20, 1/4). Notice that each of these spaces look like our original example S

but with a copy of S glued into each arc z× [0, 1] for all z ∈ Z. Thus it is easy to see

that S1/3
∼= S1/4. This is true because of our construction of S and the fact that it is

again really just uncountably many arcs with identifications. Thus for example the

homeomorphism would map the arc z × [0, 1] ⊂ S1/3 onto the arc z × [0, 1] ⊂ S1/4 by

mapping z × [0, 1/3) onto z × [0, 1/4), the copy of S onto the copy of S, and lastly

z × (1/3, 1] onto z × (1/4, 1]. We will use this fact in the future so that if we have

constructed a Whitney map on S1/3 then we would similarly be able to produce one

on S1/4.

Theorem 3.2. There exist a hereditarily non-metric continuum that supports a Whit-

ney map.

Proof. It has already been shown that the inverse limit of spaces {Xα}∞α=1 will support

a Whitney map if each Xα supports a Whitney map.

Using our lemmas and our space S we will construct a system of spaces {Sα}∞α=1

and maps {fβ
α}α<β so that the inverse limit space X supports a Whitney map and is

hereditarily non-metric.

To construct each Sα we will take specific points from Sα−1 and using our lemma

we will break and glue a copy of S at each of those points. We will rely heavily on

the understanding of S. Recall that S = Z × [0, 1]�{(z, 0), (F (z), 1)|z ∈ Z}. Locally

S is the topological product of an open subset of Z and a metric arc. Any point of

S can be represented as (z, t) where z ∈ Z and t ∈ [0, 1]. ( Note: z ∈ Z is actually
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the point x0 or x1 from Z). If the point p = (z, 1) or (z, 0) then the representation

of p is not unique since (z, 0) = (F (z), 1) and (z, 1) = (F−1(z), 0). For this example

we will insert multiple copies of S in Sn to obtain Sn+1; thus representing a point

as (z, t) will not be sufficient to identify that point. Denote the point (z, t) ∈ S as

P




z

t


. The P indicates a point in S and then




z

t


 indicates where in S the

point is, namely (z, t).

Let S0 be a copy of S. Points in S0 will be denoted as P0




z

t


. Note the

subscript indicates which space the point is in.

Let R = 1/20 × (0, 1) ⊂ S0.

Let





P0




1/20

c0
1


 , P0




1/20

c0
2


 , P0




1/20

c0
3


 , ....





be a countable dense sub-

set of R ⊂ S0.

We will break and glue a copy of S at the point P0




1/20

c0
1


. Thus the arc

1/20 × [0, 1] in S would now have a copy of S glued in at the point c0
1 ∈ [0, 1]. We

want to not only break and glue on the arc 1/20 × [0, 1] but for every arc z × [0, 1]

from S0. Thus at every point P0




z

c0
1


 , z ∈ Z break and glue a new copy of S. S1

will be this new space made by breaking and gluing at all the points mentioned.

We need notation for the points in S1. In S1 there are two types of points; points

that are in new glued copies of S and points of the form P0




z

t


 for t 6= c0

1. ( Note:
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the point P0




z

c0
1


 for any z ∈ Z does not exist in S1 since these are the points

that were “replaced” by a copy of S).

Case 1: Points corresponding to P0




z

t


 for t 6= c0

1.

These points can still be thought of as a point (z, t) for some z ∈ Z, t ∈ [0, 1], t 6=

c0
1; thus let P1




z

t


 denote the corresponding point in S1 that is the point that is

on the arc z × [0, 1] at the tth coordinate.

Case 2: Points inside a glued copy of S.

There are uncountably many new glued copies of S in S1. Thus to name a point

inside a glued copy you must indicate which glued copy it is inside and then where

on the glued copy the point is located. To indicate this we will use the same type of

notation but add another pair of coordinates. A point inside the glued copy will be

denoted by

P1




z1 z2

c0
1 , t




for some z1, z2 ∈ Z. In this notation the first column will tell you which glued copy

the point is in ( namely the one glued at P0




z1

c0
1


 ) and the second column tells

the position of the point on the new glued copy.
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For example:

P1




1/20 1/31

c0
1 , 1/4




would indicate the point P




1/31

1/4


 from the glued copy of S at the point P0




1/20

c0
1


.

The topology of S1 is defined as follows. If p ∈ S1 and p is of the form P1




z

t




for t 6= c0
1, then a local basic element at that point is a set





P1




z

t


 | P0




z

t


 ∈ O0





for some open set O0 ∈ S0 not containing P0




z

c0
1


.

For a point of the form P1




z1 z2

c0
1 , t


 we will use the open set J from the

definition that described an open set in an arc that did not contain 0 or 1 with a

copy of S glued in at the point c0
1 . Thus an open set in S1 for a point of the form

P1




z1 z2

c0
1 , t


 would be U × J where U is an open set in Z. This is topologically

an open set containing P1




z1 z2

c0
1 , t


 with the product topology.

Note that, like S, S1 is indecomposable. Also recall: given any proper subcontin-

uum M ⊂ S, M was contained in finitely many arcs joined together ( see explanation

of composants of S). S has a fiber-like structure with each fiber being an arc [0, 1].
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In S1 if we think of a fiber now as an arc with a glued copy of S; the composants

and the description of proper subcontinua will be the same as it was for S. Thus any

proper subcontinuum M will be contained in finitely many fibers and hence can only

intersect finitely many of the new glued copies of S.

Now that we have described S1 and the points from S1 we need to describe the

bonding map f 1
0 from S1 to S0. This bonding map will take all the glued copies from

S1 and collapse them down to the point at which they were glued. On all other points

the bonding map will be the identity. In notation this would be represented as

f 1
0


P1




z

t





 = P0




z

t


 , t 6= c0

1

f 1
0


P1




z1 z2

c0
1 , t





 = P0




z1

c1
0


 .

In order to define this bonding map we needed notation to describe each point

in S1; in order to describe the Whitney map we will need notation to distinguish

between the uncountably many copies of S that we glued into S0 when we made S1.

The reason this is important goes back again to our example S and what we have

already mentioned about proper subcontinua of S1. A composant in S1 is similar

to the composant from S0 = S except with countably many copies of S glued in at

specific points. Observe that if J is a composant of S0 then (f 1
0 )−1(J) is a composant

36



of S1. Thus any proper subcontinuum of S1 would be contained in what could be

thought of as finitely many fibers joined together where each of these is an arc that

has a copy of S glued into it. Because of this fact about the composants, a proper

subcontinuum M will only intersect finitely many of these new glued copies of S in

S1. ( Note: This fact will hold for any Sα. If M is a proper subcontinuum then M

will only intersect finitely many of the glued copies from S1. This will be used heavily

in future levels.)

The easiest way to distinguish between copies of S is to denote the copy by using

the point at which the copy was glued. For instance we glued in a copy of S at the

point P0




1/20

c0
1


, denote this copy as

S
′
1


P0




1/20

c0
1





 .

Notice that the ′ will indicate that we are denoting a copy of S, the subscript

indicates what space the copy is in ( in our case S1), and P0




1/20

c0
1


 tells at which

point from the previous space the copy of S was glued.

Thus





S
′
1


P0




z

c0
1











for all z ∈ Z would be the collection of all glued

copies of S in S1.
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Next we will define the Whitney map. Let µ be the whitney map defined for our

example S. Since S0 is a copy of S we can define a Whitney map µ0 for S0 the same

way we defined µ.

Let M be a proper subcontinuum of S1.

For each z ∈ Z, let Az = M
⋂

S
′
1


P0




z

c0
1





. Now since M is a proper

subcontinuum, {Az|Az 6= ∅} is finite or empty. (This is true for the previous reasons

stated about the composants and proper subcontinua of S1). Let {Ai}n1
i=1 = {Az|Az 6=

∅}. Now S
′
1


P0




z

c0
1





 ∼= S0 Therefore each S

′
1


P0




z

c0
1





 will have a Whit-

ney map defined the same way as µ0. Call this Whitney map µ1
0. Note: the superscript

indicates that the Whitney map is on S
′
1


P0




z

c0
1





 and the subscript indicates

that S
′
1


P0




z

c0
1





 ∼= S0. Now since each Ai is either a proper subcontinuum of or

equal to S
′
1


P0




z

c0
1





 for some z ∈ Z, then each Ai would have a Whitney value

for µ1
0. Note that at most two of A′

is are such that Ai = Az 6= S
′
1


P0




z

c0
1





; thus

µ1
0(Ai) 6= 1 for at most two A′

is.

Define µ1 : C(S1) −→ R by

µ1(M) =
Arctan (len(f 1

0 (M)) +
∑n

i=1 µ0(Ai))
π
2

, and
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µ1(S1) = 1.

Since µ1 is the composition of continuous functions, it is continuous. To see that

the Whitney property is satisfied, notice that given M,N ∈ C(S1) if M ( N then

len(f 1
0 (M)) +

∑nM

i=1 µ(A1M
i ) � len(f 1

0 (N)) +
∑nN

i=1 µ(A1N
i ). Thus µ1(M) � µ1(N).

Now to make S2 we will again want to break and glue at specific points from S1.

The first step in this process is again to find a countable dense set. This time (and

in infinitely many future steps) we will choose a countable dense set from one of the

new glued copies from the previous space. In S0 our countable dense set came from

the arc {1/20} × (0, 1), we will again look at the arc {1/20} × (0, 1) but this time it

be will inside the copy of S glued at the point P0




1/20

c0
1


. Recall we denoted this

copy as S
′
1


P0




1/20

c0
1





, and points on this copy would have the form

P1




1/20 z

c0
1 , t


.

Let





P1




1/20 1/20

c0
1 , c1

1


 , P1




1/20 1/20

c0
1 , c1

2


 , P1




1/20 1/20

c0
1 , c1

3


 , ....





be a countable dense set from the arc {1/20} × (0, 1) on S
′
1


P0




1/20

c0
1





 . Make

the collection so that none of the c1
i ’s are 0 or 1.
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We want to glue inside S
′
1


P0




1/20

c0
1





 ( recall this is the copy of S glued at


P0




z

c0
1





 ) and we will repeat the procedure used in making S1. We will break

and glue at the point P1




1/20 1/20

c0
1 , c1

1


. In a similar way that we made S1, we

also want to break and glue all the way across S
′
1


P0




1/20

c0
1





. Thus for every

z ∈ Z we have the point P1




1/20 z

c0
1 , c1

1


. Break and glue at those points. At

this stage in our construction the arc {1/20} × [0, 1] from S0 would now look like an

arc with a copy of S glued in and then within that copy there are uncountably many

copies of S glued on each arc z × [0, 1] . (Hopefully it is becoming clear why you

need notation to indicate all the points and all the copies of S). We have glued in

uncountably many copies of S into the copy of S glued at P0




1/20

c0
1


. We want to

do the same gluing on all other copies of S from S1, using the same c1
1 ∈ (0, 1). Recall

a glued copy was denoted as S
′
1


P0




z

c0
1





. And a point inside was named by

P1




z1 z2

c0
1 , t


. If we fix z1 then





P1




z1 z2

c0
1 , t


 |z2 ∈ Z, t ∈ [0, 1]





would be
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all the points from S
′
1


P0




z1

c0
1





. We want to break and glue at all points where

t = c1
1. Thus for a fixed z1 we will break and glue at each point from the collection




P1




z1 z2

c0
1 , c1

1


 |z2 ∈ Z





. Repeat this procedure for z1 = z, all z ∈ Z .

Putting this all together and using the notation, what we have done is break and

glue a copy of S at each point from the collection



P1




z1 z2

c0
1 , c1

1


 |z1, z2 ∈ Z





.

Denote this new space as S2. Using the same notation as before, the new

glued copies can be represented by the points at which they were glued. Thus



S
′
2


P1




z1 z2

c0
1 , c1

1


 |z1, z2 ∈ Z








is the set of all new glued copies of S. Build-

ing on our previous notation we can denote the three different types of points from

S2.

Type 1 :





P2




z

t


 |z ∈ Z, t ∈ [0, 1]/c0

1





. These are the points not in any glued

copy of S.

Type 2 :





P2




z1 z2

c0
1 , t


 |z1, z2 ∈ Z, t ∈ [0, 1]/c1

1





. These points are in the

copies of S that were glued to make S1.

Type 3 :





P2




z1 z2 z3

c0
1 , c1

1 , t


 |z1, z2, z3 ∈ Z, t ∈ [0, 1]





. These are the points

that lay inside one of the new copies of S from the collection
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S
′
2


P1




z1 z2

c0
1 , c1

1


 |z1, z2 ∈ Z








.

For example P2




1/20 1/30 1/40

c0
1 , c1

1 , 1/5


 would be the point P




1/40

1/5


 on

the copy of S glued at P




1/30

c1
1


 where P




1/30

c1
1


 is a point inside the copy of

S glued at P0




1/20

c0
1


. In notation P2




1/20 1/30 1/40

c0
1 , c1

1 , 1/5


 would be the

point P




1/40

1/5


 on S

′
2


P1




1/20 1/30

c0
1 , c1

1





.

The bonding map f 2
1 : S2 → S1 will be defined in the same matter as before.

New glued copies of S will collapse down to the point at which they were glued and

f 2
1 will be the identify on all other points. Thus f 2

1


P2




z

t





 = P1




z

t


 (these

are the points not in any glued copy of S, they map to themselves), and

f 2
1


P2




z1 z2

c0
1 , t





 = P1




z1 z2

c0
1 , t


 (these are the points in the glued

copy at the first level, they map to themselves), and

f 2
1


P2




z1 z2 z3

c0
1 , c1

1 , t





 = P1




z1 z2

c0
1 , c1

1


 (these are the points inside

the new copy of S, they collapse down to point at which S was glued).

As before if J is a composant of S2 then f 2
1 (J) is a composant of S1, and con-

versely if J is a composant of S1 then (f 2
1 )−1(J) is a composant of S2. We need
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to define a Whitney map on S2. In the first level, when we defined our Whit-

ney map, given M a proper subcontinuum we intersected M with the new glued

copies of S and then used the sum of these values to define µ1. But that was pos-

sible because M intersected only finitely many of the new glued copies. Notice that

given M in S2, M can intersect uncountably many copies of S from the collection



S
′
2


P1




z1 z2

c0
1 , c1

1


 |z1, z2 ∈ Z








( this is the collection of all new copies of S

glued into S1 in order to make a new space S2). Therefore we can not use these

Whitney values since we can not sum this uncountable amount. By the definition

of f 2
1 if M is a proper subcontinuum of S2 then f 2

1 (M) is a proper subcontinuum of

S1. Thus a proper subcontinuum of S2 can only intersect finitely many copies of S

from the collection





S
′
1


P0




z

c0
1





 |z ∈ Z





. Thus to define µ2 we will use the

intersection of M with the collection





S
′
1


P0




z

c0
1











for all z ∈ Z. To define

the Whitney map on S2 let M be a proper subcontinuum. Since at this level the

copies of S were glued inside of S
′
1


P0




z

c0
1





, let Az = M

⋂
S
′
1


P0




z

c0
1





.

Note that {z|Az 6= ∅} is finite, so let {Ai}n2
i=1 = {Az|Az 6= ∅}. Also note that each Az

is a subcontinuum.

Now S
′
1


P0




z

c0
1





 ∼= S1 (because both are the original S with a copy of S

glued onto each arc; thus as previously explained they are homeomorphic.) Therefore
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each S
′
1


P0




z

c0
1





 will have a Whitney map defined the same way as µ1. Call

this Whitney map µ1
1. Note: the superscript indicates that the Whitney map is on

S
′
1


P0




z

c0
1





 and the subscript indicates that S

′
1


P0




z

c0
1





 ∼= S1. Now since

each Ai is either a proper subcontinuum of or equal to S
′
1


P0




z

c0
1





 for some

z ∈ Z, then each Ai would have a Whitney value for µ1
1. Note that µ1

1(Az) = 1

for all but at most two i = 1, 2, ...., n2. (Notice we used the homeomorphism only

to show quickly that Az does support a Whitney map. If Az was not homomorphic

to a previously constructed space then we could prove directly that Az supports a

Whitney map by using the same techniques used to prove S1 supports a Whitney

map. In future stages we may not have spaces homeomorphic to previous stages.)

Let µ2 : C(S2) −→ R be defined by

µ2(M) =
Arctan(µ1(f

2
1 (M)) +

∑n2

i=1 µ1
1(Ai))

π
2

, and

µ2(S2) = 1.

Roughly speaking µ2 divides M into different pieces where each piece has a

Whitney map associated with it. Note it is not the same Whitney map for every

piece. For the subcontinuum f 2
1 (M) we use the Whitney map µ1, for each Ai we use
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µ1
1. Then we take the sum of the respective Whitney values of each piece and apply

the arctan function and divide by π
2

to bound µ2 by 1. Thus we can define µ2(S2) = 1

and satisfy the Whitney property. This idea will be used in all future levels to define

the Whitney map; what will change will be the collection that a subcontinuum M

intersects.

To begin the process of defining S3 we again will find a countable dense set from

inside one of the glued copies of S used in making S2. Namely

S
′
2


P1




1/20 1/20

c0
1 , c1

1





. Recall points on S

′
2


P1




1/20 1/20

c0
1 , c1

1





 have

the form P2




1/20 1/20 z

c0
1 , c1

1 , t


 for some z ∈ Z, t ∈ [0, 1]. Let z = 1/20 and

thus let

{
P2




1/20 1/20 1/20

c0
1 , c1

1 , c2
1


 , P2




1/20 1/20 1/20

c0
1 , c1

1 , c2
2


 ,

P2




1/20 1/20 1/20

c0
1 , c1

1 , c2
3


 , ....

}
be a countable dense set from the arc 1/20 ×

(0, 1) on S
′
2


P1




1/20 1/20

c0
1 , c1

1





.

We will again break and glue but not using the first element from our count-

able dense set as we have done in previous levels. We need our inverse limit to be

hereditarily non-metric; thus all the points from all the countable dense sets must

eventually end up with a copy of S glued at that point. If we continue gluing at each

level using the first element from the countable dense set obtained at that level it
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will not result in hereditarily nonmetric. We will set up a diagonal system using the

dense sets that are found at each level and a function h from the positive integers

into a diagonal array that will determine which point will be used at which level. For

ease in making our diagonal array, think of the dense sets as {c0
1, c

0
2, c

0
3...} instead of




P0




1/20

c0
1


 , P0




1/20

c0
2


 , P0




1/20

c0
3


 , ....





, and

{c1
1, c

1
2, c

1
3, ...} instead of




P1




1/20 1/20

c0
1 , c1

1


 , P1




1/20 1/20

c0
1 , c1

2


 , P1




1/20 1/20

c0
1 , c1

3


 , ....





, etc.

Arrange these sets in a diagonal array




c0
1 , c0

2 , c0
3 , c0

4 , c0
5 , ....

c1
1 , c1

2 , c1
3 , c1

4 , . , ....

c2
1 , c2

2 , c2
3 , . , . , ....

c3
1 , c3

2 , . , . , . , ....

c4
1 , . , . , . , . , ....

c5
1 , . , . , . , . , ....

. , . , . , . , . , ....




We can construct a function h from N into the diagonal array to indicate which

point to choose at which level. We have already completed the first two levels and

thus we know that h(1) = c0
1 and h(2) = c1

1. Let h(3) = c0
2, h(4) = c2

1, h(5) = c1
2,

h(6) = c0
3, etc.
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We know that in order to make S3 we will use the point in S2 that corresponds

to c0
2. This point is P2




1/20

c0
2


. Just as before we will break and glue at this point

and all points from the collection





P2




z

c0
2


 |z ∈ Z





. These points are not in any

previous glued copy. This new space is S3.

Notice that what we have done is glue a new copy of S not inside a previously

glued copy. Recall in S1 a fiber z × [0, 1] had the form of an arc with a copy of

S glued in at the point (z, c0
1). In S2 a fiber had the form of the arc from S1 but

now had uncountably many copies of S glued into the previous glued copy. In S3

a fiber would look like the arc from S2 except with a new copy of S glued at the

point (z, c0
2). In making S3 we notice that the points from the first countable set are

special in the sense that when h(n) = c0
j for some n, j then we are not gluing inside

any previous glued copy. This is the only time that will happen; if h(n) 6= c0
j then we

will always be gluing inside a previous copy . But even in this case the points from

the first countable set are unique in that we will always be gluing inside an S that

was glued at the points from this first dense set. In other words if h(n) 6= c0
j then

the new copies of S will be glued inside S
′
l


Pk




z

c0
m





 for some l, k, z, m,. This

is important because it enables us to define a Whitney map on any Sn. Before we

define µ3 we will define the bounding map f 3
1 : S3 −→ S2. This will be similar to

previous levels. Define
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f 3
1


P3




z

t





 = P2




z

t


, t 6= c0

1, t 6= c0
2,

f 3
1


P3




z1 z2

c0
1 , t





 = P2




z1 z2

c0
1 , t


, t 6= c1

1,

f 3
1


P3




z1 z2 z3

c0
1 , c1

1 , t





 = P2




z1 z2 z3

c0
1 , c1

1 , t


, and

f 3
1


P3




z1 z2

c0
2 , t





 = P2




z1

c0
2


.

On the first three types of points f is the identity and then on the last type f

collapses the glued copy of S onto the point at which it was glued.

Let M be a proper subcontinuum. As before we will think of M in pieces. The

first will be f 3
2 (M). But notice at this level we did not glue inside S

′
1


P0




z

c0
1





 as

we did in the previous level; thus the way we define Az must change. For each z ∈ Z,

let Az = M
⋂

S
′
3


P2




z

c0
2





. Again each Az is a subcontinuum and {z|Az 6= ∅}

is finite. Let {Ai}n3
i=1 = {Az|Az 6= ∅}.

S
′
3


P2




z

c0
2


 |z ∈ Z


 ∼= S0, thus there exist a Whitney map on the space,

call it µ3
0. As stated when defining µ2, if Az is not homeomorphic to a previous space

then we can show directly that Az will support a Whitney map by using the same

techniques.

Define µ3 : C(S3) −→ R by
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µ3(M) =
Arctan(µ2(f

3
2 (M)) +

∑n3

i=1 µ3
0(Ai))

π
2

, and

µ3(S3) = 1.

To begin on the fourth level we again choose a countable dense set from the arc

1/20 × (0, 1) in S
′
3


P2




1/20

c0
2





. Recall this is a copy of S glued in the previous

level. Let



P3




1/20 1/20

c0
2 , c3

1


 , P3




1/20 1/20

c0
2 , c3

2


 , P3




1/20 1/20

c0
2 , c3

3


 , ...





be a countable dense set from the arc 1/20 × (0, 1) in S
′
3


P2




1/20

c0
2





.

Since h(4) = c2
1 we will break and glue at the corresponding point which is

P1




1/20 1/20 1/20

c0
1 , c1

1 , c2
1


. Remember this point is inside a copy of S glued

inside another copy of S. We want to break and glue “across” S3, so break and glue

at each point from the collection





P3




z1 z2 z3

c0
1 , c1

1 , c2
1


 |z1, z2, z3 ∈ Z





. This

new space will be S4.



S
′
4


P3




z1 z2 z3

c0
1 , c1

1 , c2
1


 |z1, z2, z3 ∈ Z








is the collection of all copies of

S glued into the space S3 in order to make a new space S4.

Define f 4
3 : S4 −→ S3 as the identity on all points except those of the form
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P4




z1 z2 z3 z4

c0
1 , c1

1 , c2
1 , t





.

For these points define f 4
3 by

f 4
3


P4




z1 z2 z3 z4

c0
1 , c1

1 , c2
1 , t





 =


P3




z1 z2 z3

c0
1 , c1

1 , c2
1





.

We want to define the Whitney map at this level. Let M be a proper subcontin-

uum. In S4 the new copies were again glued inside of S
′
1


P0




z

c0
1





.

Therefore for each z ∈ Z, let Az = M
⋂

S
′
1


P0




z

c0
1





, and {Ai}n4

i=1 =

{Az|Az 6= ∅}. At this level S
′
1


P0




z

c0
1





 ∼= S2. There exist a Whitney map

µ1
2 on S

′
1


P0




z

c0
1





 that is defined in the same manner as µ2. Again if it was

not homoeomorphic to a copy we could have proved directly that Az will support a

Whitney map.

Then define µ4 by

µ4(M) =
Arctan(µ3(f

4
3 (M)) +

∑n4

i=1 µ1
2(Ai))

π
2

and

µ4(S4) = 1.
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In each of the previous four cases we used the fact that Az was homeomorphic

to a previous Si in order to show that there was a Whitney map on Az. In some

future levels it is the case that Az will not be homeomorphic to any previously made

space. As previously mentioned this will not be a problem though because we do not

need Az to be homeomorphic to a previous copy we just need to know that Az has

a Whitney map. If Az is not homeomorphic to a previous copy then it is necessary

to determine directly that it has Whitney map. This can be done by using the same

techniques that were used to show S1, ..., S4 have Whitney maps.

For example when n = 8, Az is not homeomorphic to any previous copy. Az

though is homeomorphic to a space call it S3⊕ 1, that is S3 with copies of S glued in

at each point from the collection P1




1/20 z

c0
1 , c1

2


 , z ∈ Z. We will want to show

that a Whitney map can be constructed on this space. First we need to show that a

simpler space has a Whitney map. Take S1 and break and glue at each point from

the collection P0




z

c0
2


 , z ∈ Z. Thus each fiber would now have two copies of S

glued into it. Call this new space S1 ⊕ 1. (Note we have clearly glued uncountably

many copies of S not just one, but the ⊕1 indicates we have we have done one more

step and glued at just one more collection of points.) Now there exists a bonding map

g : S1 ⊕ 1 → S1 defined as the identity except on the new copies of S and those will

collapse down to the point at which they were glued. If M is a proper subcontinuum

of S1 ⊕ 1 then Az will be homeomorphic to S. Thus Az will have a Whitney map,

namely µ0. There are only finitely many Az say A1 to An. Thus define the Whitney
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map using out technique on S1 ⊕ 1 as µ(M)S1⊕1 = µS1(g(M)) +
∑n

i=1(µ0(Ai)). This

can be shown to be a Whitney map by the previous methods. Now the next step is to

prove that S3 ⊕ 1 has a Whitney map. There exists a bonding map g : S3 ⊕ 1 → S3.

g will be the identity on all points except the new glued copies which will collapse

down to the point at which they were glued. If M is a proper subcontinuum of S3⊕1

then Az will be M intersected with





S
′
1


P0




z

c0
1











for every z ∈ Z. Only

finitely many of these will be non-empty. Denote those as A1 to Am. Now Az is

homomorphic to S1⊕ 1 which was just shown to have a Whitney map . Thus Az will

have a Whitney map. Let µ′S1⊕1 denote the Whitney map on Az. Define a Whitney

map µS3⊕1 as µS3⊕1(M) = µ3(g(M)) +
∑m

i=1(µ
′
S1⊕1(Ai)).

Now the same procedure can be used to show that no matter what the structure

of Az, it will have a Whitney map. This fact is what is needed to construct a Whitney

map on Sn, any n. For example, when n = 9, then a typical Az will be homeomorphic

to (S3⊕ 1)⊕ 1. Since we know that S3⊕ 1 has a Whitney map then it can be proven

that (S3 ⊕ 1)⊕ 1 has a Whitney map, regardless of where the copies of S are glued.

When n = 10, Az is homeomorphic to S, thus we know it has a Whitney map.

Define Sn inductively assuming that we have defined Sn−1. At the nth level first

define a countable dense subset from the 1/20 × (0, 1) arc in the copy of S glued in

the previous level. As before we want to make a new space by breaking and gluing

in copies of S. There are 2 cases that can occur at the nth level.

Case 1. h(n) = c0
m for some m. Thus we will beak and glue at
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Pn−1




z

c0
m


 |z ∈ Z





. Note these points are not in any previously glued copy

of S.

The map fn
n−1 : Sn −→ Sn−1 will be defined as in previous levels. It will be the

identify on all points except those points from the new glued copies and those will

collapse down to the point at which the copy was glued.

In this case to define the Whitney map let M be a proper subcontinuum of

Sn. Since we have not glued inside any previous copy, for each z ∈ Z let Az =

M
⋂

S
′
n


Pn−1




z

c0
m





; Az is a subcontinuum and {z|Az 6= ∅} is finite, so let

{A1
i }j

i=1 = {Az|Az 6= ∅}.

Note that S
′
n


Pn−1




z

c0
m





 ∼= S so the corresponding Whitney map on

S
′
n


Pn−1




z

c0
m





 will be labeled µn

0 .

Let µn : C(Sn) −→ R be defined by

µn(M) =
Arctan(µn−1(f

n
n−1(M)) +

∑j
i=1 µn

0 (Ai))
π
2

and

µn(Sn) = 1.
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Case 2: h(n) = cj
m some j 6= 0. Break and glue at the points





(Pn−1




z1 zr−1 zr

c0
k , . . . cb

a , cj
m


)|(z1, z2, ...zr ∈ Z)





.

Note that these points are in a previously glued copy of S that was made by break-

ing and gluing at a point from the first countable dense set, namely Ph−1(c0k)




z

c0
k




for some k.

The bonding map will be as in Case 1.

To define the Whitney map we previously noted that at this level the new copies

of S are glued inside a previous copy. Call this copy S
′
h−1(c0k)


Ph−1(c0k)




z

c0
k





 for

some k. Let Az = M
⋂

S
′
h−1(c0k)


Ph−1(c0k)




z

c0
k





, and {Ai}j

i=1 = {Az|Az 6= ∅}.

Now we have two cases for Az, either Az is homomorphic to some previous space

(example n = 4) or it is not ( example n = 8). If S
′
h−1(c0k)


Ph−1(c0k)




z

c0
k





 ∼= Sl for

some l, then the Whitney map on S
′
h−1(c0k)


Ph−1(c0k)




z

c0
k





 will be defined in the

same manner as µl and so will be named µ
h−1(c0k)

l . Let µn : C(Sn) −→ R be defined

by

µn(M) =
Arctan(µn−1(f

n
n−1(M)) +

∑j
i=1 µ

h−1(c0k)

l (Ai))
π
2
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and

µn(Sn) = 1.

If Az is not homeomorphic to any previous Si, Az can be shown to have a

Whitney map using the same techniques that proved Si has a Whitney map. Denote

that Whitney map by µh−1(c0k). Let µn : C(Sn) −→ R be defined by

µn(M) =
Arctan(µn−1(f

n
n−1(M)) +

∑j
i=1 µh−1(c0k)(Ai))

π
2

and

µn(Sn) = 1.

Let X = lim←−{Sn, f} To show the inverse limit space X is hereditarily non-metric,

let M be a nondegenerate proper subcontinuum of X. There exist a, b ∈ M such that

a 6= b. By the nature of our inverse limit space and the fact that M is a continuum,

we can find an n and an r and points ar, br ∈ πSr(M), such that ar 6= br and

ar, br ∈ S
′
n


Pn−1




z1 zr

c0
k , . . . , cj

k





. Furthermore ar, br are such that

ar = Pr




z1 zr zar

c0
m , . . . cj

k , tar


 and

br = Pr




z1 zr zbr

c0
m , . . . cj

k , tbr


 , where zar = zbr , and tar � tbr .
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By the way we chose our countable dense sets at each level there exists a cv
w such

that tar < cv
w < tbr . Since M is connected there exists an x ∈ M such that

x = Pr




z1 zr zar

c0
m , . . . cj

k , cv
w


.

Now at some level, call it p, h(p) = cv
w; a copy of S was glued at x, namely

S
′
p


Pr




z1 zr zar

c0
m , . . . cj

k , cv
w





. Thus in Sp, πp(M) must contain a point

from this copy of S. But it also contains ap, and bp which, because of the irreducibility

of the continua at each level, lies on either side of this copy of S; thus the whole copy

of S must be in πp(M) . Therefore πp(M) is non-metric and so M must also be

non-metric.
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Chapter 4

a hereditarily indecomposable non-metric continuum that supports a

Whitney map

Theorem 4.1. There exist a hereditarily indecomposable non-metric continuum that

supports a Whitney map.

Proof. It has already been shown that the inverse limit of spaces {Xα}∞i=1 will support

a Whitney map if each Xα supports a Whitney map.

Using the space S from the example we will construct a system of spaces {Sα}∞i=1

and maps {fβ
α}α<β so that the inverse limit space supports a Whitney map and is

hereditarily indecomposable.

Let S be as in the example and µ the Whitney map on S. Let S0 = S and

µ0 = µ.

Recall that in our example Az
0 = z × [0, 1], Az

1 = z × [0, 1]
⋃

F (z) × [0, 1], Az
2 =

z × [0, 1]
⋃

F (z)× [0, 1]
⋃

F 2(z)× [0, 1], etc.

Let Ps stand for the pseudo-arc.

First recall that given any chainable continuum, then the pseudo-arc can be

mapped onto that continuum. In order to make S1 for each z ∈ Z, replace each Az
0 in

S0 with a pseudo-arc in such a way that two “endpoints” a and b of the pseudo-arc

map to (z, 0) and (z, 1) respectively . Another way of thinking of this is that S1 is Z

cross Ps with identifications.
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To define the bonding map f 1
0 , first define a function g : Ps −→ [0, 1] such that

g is continuous and g(a) = 0, g(b) = 1. A point in S1 can be thought of as a point

on the pseudo-arc that is associated with a specific z ∈ Z. Thus the point (z, x)

would represent the point x on the pseudo-arc associated with z. For ease of notation

denote the pseudo-arc associated with z as Ps(z).

Define f 1
0 (z, x) = (z, g(x)). To show this is continuous let U × V be an open set

in S0 such that f 1
0 (z, x) ∈ U ×V . U is an open set in Z. Since g is continuous and V

is an open set in Ps there exist an open set B such that x ∈ B and g(B) ⊂ V . Now

U ×B is an open set in S1 and by the definition of U ×B, f 1
0 (U ×B) ⊂ U ×V . Thus

f 1
0 is continuous.

To define the Whitney map, let M be a subcontinuum in S1. First note that

M is contained in the union of finitely many pseudo-arcs joined end to end, say

{Ps(zi)}n
i=1. Define M

⋂
Ps(zi) = Mi. Let µp be the Whitney map defined on the

pseudo-arc.

Define µ1 : C(S1) −→ R by

µ1(M) =
Arctan (

∑n
i=1 µp(Mi))
π
2

and

µ1(S1) = 1.
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This is continuous and satisfies the Whitney property since if N (M then there

exist a zi such that Ni = N
⋂

Ps(z) ( M
⋂

Ps(z) = Mi which would mean that

µp(Ni) < µp(Mi). So then µ1(N) < µ1(M).

For S2, for every z ∈ H1
2 (recall: H1

2 = [(1
2
)1, 10] is the second half of Z), replace

Az
1 ⊂ S0 with Ps. This can be represented as H1

2 ×Ps with identifications. We think

of these pseudo-arcs as twice as long as the pseudo-arcs from S1.

Before we define the bonding map we will define a function from a single pseudo-

arc onto two pseudo-arcs glued end to end. Let Ps be a pseudo-arc with endpoints e

and f . Let P ′ = Ps1
⋃

Ps2, where Ps1 has endpoints a and b and Ps2 has endpoints

b and c. P ′ is two pseudo-arcs joined end to end. There exists a continuous function

g2 : Ps −→ P ′ such that g2(e) = a, g2(f) = c, the points between e and g−1
2 (b), which

we will call the bottom half of Ps, will all map to Ps1, and the points between g−1
2 (b)

and f , which we will call the top half of Ps, will all map to Ps2. Thus this g2 can be

thought of as having two parts. The first part would tell which of the 2 pseudo arcs a

point will map to and then the second part would tell exactly where on that pseudo

arc the point maps. Define h : PS → {1, 2} by h(x) = 1 if g2 maps x somewhere onto

the Ps1, h(x) = 2 if g2 maps x somewhere onto Ps2. Note: if g2(x) = b then h(x)

could be thought of as 1 or 2 since the point b is in both Ps1 and Ps2.

Define f 2
1 (z, x) = (z, g2(x)) if h(x) = 1 and f 2

1 (z, x) = (F (z), g2(x)) if h(x) = 2,

where F is the function used for identifications in S. Roughly speaking, instead

of thinking of S1 as Z × Ps, think of S1 as {z × Ps}z∈H1
2

⋃{F (z) × Ps}z∈H1
2

with

identifications. In S1, Ps(z) could be thought of as Ps1 and Ps(F (z)) could be
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thought of as Ps2. Recall because of the identifications they are joined at a point.

Then f 2
1 would take Ps(z) (recall this is the pseudo-arc in S2 associated with the

point z) onto Ps(z)
⋃

Ps(F (z)) for each z ∈ H1
2 .

To show continuity, let f 2
1 (z, x) ∈ U × V , where U × V is an open set in S1.

Case 1: h(x) = 1 and g(x) 6= b.

That means that f 2
1 (z, x) = (z, g2(x)); thus the point (z, x) is on the bottom half

of the Ps(z) in S2. Now there exists a U ′ × V ′ ⊂ S1 such that U ′ × V ′ ⊂ U × V ,

S2
1(z, x) ∈ U ′ × V ′, U ′ ⊂ H1

2 , and V ′ is contained in Ps(z). Since g2 is continuous

and V ′ is an open set in Ps1 there exists an open set B such that g(B) ⊂ V ′. U ′×B

is an open set in S2, and (z, x) ∈ U ′ ×B.

Claim : f 2
1 (U ′ ×B) ⊂ U × V .

Recall that, since g2 has two parts, g(B) ⊂ V ′ means that all points in B must

map to the same pseudo arc as x does. So either they all map to Ps1 or they all

map to Ps2; in Case 1 since h(x) = 1, they will all map to Ps1 which is actually

Ps(z). So given any (z′, x′) ∈ U ′ × B, since x′ ∈ B, then h(x′) = 1 which will

imply that f 2
1 (z′, x′) = (z′, g2(x

′)). We know that z′ ∈ U ′ ⊂ U and we know that

g2(x
′) ∈ g2(B) ⊂ V ′ ⊂ V ; thus (z′, g2(x

′) ∈ U × V . Therefore f 2
1 is continuous.

Case 2. h(x) = 2 and g2(x) 6= b.

A similar argument using a V ′ such that V ′ ⊂ Ps(F (z)) can be used to show

that f 2
1 is continuous in this case.

Case 3. g2(x) = b.
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If g2(x) = b then that point could be thought of as belonging to Case 1 or Case

2; either way it will be continuous at that point since the two pseudo-arcs are glued

together at that point and g2 is continuous at each preimage of that point.

Let M be a subcontinuum of S2. We will define µ2 in a similar manner as µ1.

First M is contained in finitely many pseudo-arcs joined end to end, say {Ps(zi)}n
i=1.

Define M
⋂

Ps(zi) = Mi.

Define µ2 : C(S2) −→ R by

µ2(M) =
Arctan (

∑n
i=1 µp(Mi))
π
2

and

µ2(S2) = 1.

This is continuous and by the previous argument used to show µ1 satisfied the

Whitney property, µ2 can be shown to satisfy the Whitney property.

For S3 replace Az
3 with pseudo-arc for each z ∈ H2

4 (the last quarter of Z). Thus

similarly S3 = H2
4 × Ps with identifications where these pseudo-arcs can be thought

of as twice as long as those from S2 and four times as long as those from S1.

Now the bonding map will be the same as the bonding map that went from S2 to

S1. We once again can think of it as mapping one pseudo-arc onto two pseudo-arcs,

if we think of S2 as {z × Ps}z∈H2
4

⋃{F 2(z)× Ps}z∈H2
4

with identifications, instead of

{z × Ps}z∈H1
2

with identifications. So in this case we will map Ps(z) in S3, where
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z ∈ H2
4 , onto the Ps(z) and Ps(F 2(z)) in S2, where z ∈ H2

4 . Thus by the same

argument f 3
2 will be continuous.

The Whitney map on S3 will be defined as it was for S1 and S2.

For Sn replace Az
2n−1 in S0 with a pseudo-arc for each z ∈ Hn−1

2n . As before then

Sn = Hn−1
2n ×Ps with identifications.The bonding map and the Whitney map will be

defined similarly as above. Let X = lim←−{Sn, f}

We now have a non-metric inverse limit X that supports a Whitney map. We

need to show that X is hereditarily indecomposable. To show the inverse limit space

is hereditarily indecomposable, suppose that M is a nondegenerate decomposable

subcontinuum, M = M1 ∪ M2. There exist a, b ∈ M , such that a ∈ M1 − M2,and

b ∈ M2 − M1. By the nature of our inverse limit space and the fact that M is a

continuum, we can find an r such that ar, br ∈ πSr(M), ar 6= br and both ar, br ∈ Ps(z)

for some z; thus there exists an irreducible continuum in the form of a pseudo-arc

between ar and br that is contained in this Ps(z). Since M is a subcontinuum, this

pseudo-arc associated with ar and br must be contained in πSr(M) which would imply

that M is indecomposable.
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Chapter 5

Property + Whitney map = metric

Theorem 5.1. If the cone over the compact space X supports a Whitney map then

X is metric.

Proof. Define Cone(X) = (X × [0, 1])�(X × {1}). Let µ be a Whitney map on

Cone(X). Define F (x, y) : X×X → R by F (x, y) = µ(x, t ∪ t, y)−min{µ(x, t), µ(y, t)}

where x, t represents the arc {(x, a)|a ∈ [0, 1]} from x × {0} to the top point t =

X × {1}.

We will show that each part of F is continuous; thus F is continuous. Then we

will use the fact that if F is a continuous function from X × X into R such that

F (x, y) = 0 if and only if x = y, then X is metric.

Let f(x, y) = µ(x, t ∪ t, y). Let (x, y) ∈ X × X and let U be an open set in R

such that f(x, y) ∈ U . Since x, t∪ t, y is a continuum and µ is continuous there exists

a basic open set V in C(Cone(X)) such that x, t∪ t, y ∈ V and µ(V ) ⊂ U . Now there

exist open sets in Cone(X), V1, V2, ..., Vn, so that V = R({Vi}n
i=1) which implies that

x, t ∪ t, y ⊂ ⋃n
i=1 Vi ⊂ Cone(X).

For each point (x, a) in x, t, (x, a) ∈ Vi for some i. Therefore we can find a basic

open set in the cross product space of X × [0, 1], namely W x
a × (ca, da) ⊂ Vi, such

that (x, a) ∈ W x
a × (ca, da).
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Now x, t ⊂ ⋃
a∈[0,1](W

x
a × (ca, da)). Since x, t is compact there exist a finite

subcover so that

x, t ⊂ ⋃m
i=1(W

x
ai
× (cai

, dai
)) ⊂ ⋃n

i=1 Vi ⊂ Cone(X).

Then consider
⋂m

i=1(W
x
ai

). It is open and nonempty and for any z ∈ W x
ai

the arc

z, t ⊂ ⋃n
i=1 Vi.

Doing the same procedure for the arc y, t will yield y, t ⊂ ⋃j
i=1(W

y
bi
×(cai

, dai
)) ⊂

⋃n
i=1 Vi ⊂ Cone(X) so that for any r ∈ ⋂j

i=1(W
y
bi
) the arc r, t ⊂ ⋃n

i=1 Vi.

Let Ṽ = (
⋂m

i=1(W
x
ai

))× (
⋂j

i=1(W
y
bi
)); this is open in X ×X.

Claim: If (r, s) ∈ Ṽ then f(r, s) ∈ U .

Proof. If (r, s) ∈ Ṽ then r, t ⊂ ⋃n
i=1 Vi and s, t ⊂ ⋃n

i=1 Vi, which implies that

r, t
⋃

s, t ⊂ ⋃n
i=1 Vi and it must intersect each Vi from the construction of the Wi.

Thus the subcontinuum (r, t
⋃

s, t) is a point in V ⊂ C(Cone(X)); therefore f(r, s) =

µ(r, t
⋃

s, t) ∈ U .

Now to show that the minimum is continuous define f(x, y) = min{µ(x, t), µ(y, t)}.

Case 1. Assume that µ(x, t) < µ(y, t).

Given f(x, y) ∈ U , open, there exist ε > 0 such that [f(x, y) ± ε] ⊂ U , where

[f(x, y)± ε] = [f(x, y)− ε, f(x, y)+ ε]. Let δ = min{ ε
4
, µ(y,t)−µ(x,t)

2
}. By the continuity

of µ there exist a

Vx, open in C(ConeX), such that x, t ∈ Vx ⊂ C(Cone(X)) and µ(Vx) ⊂ [µ(x, t)±

δ]

and

Vy such that y, t ∈ Vy ⊂ C(X) and µ(Vy) ⊂ [µ(y, t)± δ].
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Since x, t ∈ Vx and Vx = R({Vi}n
i=1) we can do the same construction as before

and get open sets such that x, t ⊂ ⋃m
i=1(W

x
ai
× (cai

, dai
)) ⊂ ⋃n

i=1 Vi ⊂ Cone(X).

Let Ṽ ⊂ X ×X be defined as

Ṽ = (
⋂m

i=1(W
x
ai

))× (
⋂j

i=1(W
y
bi
)). Now if (r, s) ∈ Ṽ then µ(r, t) ∈ [µ(x, t)± δ] and

µ(s, t) ∈ [µ(y, t)± δ].

Therefore min{µ((r, t), µ(s, t)} = µ(r, t) ∈ [µ(x, t)± δ] ⊂ [f(x, y)± ε] ⊂ U . Thus

f(Ṽ ) ⊂ U .

Case 2.µ(x, t) = µ(y, t).

Same proof except let δ = ε
4

so that if r, t ∈ Vx then µ(r, t) ∈ [f(x, y)± ε
4
], and if

s, t ∈ Vx then µ(s, t) ∈ [f(x, y)± ε
4
]. Therefore min{µ(r, t), µ(s, t)} ∈ [f(x, y)± ε

4
] ⊂ U ,

regardless of which arc is the minimum. So that f(Ṽ ) ⊂ U and thus f is continuous.

So we have shown that F (x, y) is a difference of two continuous functions and

thus is continuous. We will now show that F (x, y) = 0 ⇔ x = y.

Assume that F (x, y) = 0. Then µ(x, t ∪ y, t) = min{µ(x, t), µ(y, t}, but x, t ⊂

(x, t ∪ y, t) so by definition of a Whitney map µ(x, t) < µ(x, t ∪ y, t). Thus x, t =

(x, t ∪ y, t) which implies that x = y.

Assume that x = y. Then x, t ∪ y, t = x, t = y, t so µ(x, t) = µ(x, t ∪ y, t) which

implies that F (x, y) = 0.

Therefore X is metric.

The next proof is a generalize of Theorem 5.1
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Theorem 5.2. Given X is contractible let φ : X × [0, 1] −→ R be the contraction

map, where φ(x, 1) = p for any x. Let xp = {φ(x, t)|t ∈ [0, 1]}. If xp = yp if and

only if x = y and X supports a Whitney map, then X is metric.

Proof. Let φ : X × [0, 1] −→ X be the contraction map, where φ(x, 1) = p for any x.

Let xp = {φ(x, t)|t ∈ [0, 1]}. This will be a subcontinuum of X.

Define G : X ×X −→ R by G(x, y) = µ(xp
⋃

yp)−min{µ(xp), µ(yp)}.

We will show that each part of G is continuous and thus G is continuous. We

will then use the fact that if you have a continuous function G from X × X into R

such that G(x, y) = 0 if and only if x = y then, X is metric.

Define F : X ×X −→ R by F (x, y) = µ(xp
⋃

yp).

Let (x, y) ∈ X × X and let U be an open set in R with F (x, y) ∈ U . By the

continuity of µ there exists a basic open set V ′ in C(X) such that (xp
⋃

yp) ∈ V ′ and

µ(V ′) ⊂ U . Now V ′ = R ({Vi}n
i=1) where each Vi is an open set in X. First make

this collection such that for each i there exists a z ∈ (xp
⋃

yp) such that z ∈ Vi and

z /∈ Vj for every j 6= i. There exist subcollections {V x
j }m

j=1 and {V y
k }l

k=1 of {Vi}n
i=1

such that
({V x

j }m
j=1

⋃{V y
k }l

k=1

)
= {Vi}n

i=1, xp ⊂ {V x
j }m

j=1, and yp ⊂ {V y
k }l

k=1.

For each z = φ(x, t) ∈ xp there exists a j such that z ∈ V x
j and by the continuity

of φ there exists a basic open set Wt = Ut× (ct, dt) ⊂ X × [0, 1] such that (x, t) ∈ Wt

and φ(Wt) ⊂ V x
j .

⋃
t∈[0,1] Wt covers x× [0, 1] thus there exists a finite subcover {Wtr}s

r=1 that covers

x × [0, 1]. Furthermore the subcover can be chosen to satisfy the condition that for

each V x
j there exists Wtr such that φ(Wtr) ⊂ V x

j . ( If this condition is not satisfied
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then just add to the collection a finite number of the Wt’s so that the needed property

is satisfied.)

Let A =
⋂s

r=1 πx(Wtr), where πx(Wtr) is the projection of Wtr onto the space X.

A is open in X and if z ∈ A then

1. Given any t there exists r such that (z, t) ∈ Wtr which implies that φ(z, t) ∈ V x
j

for some j. Thus zp ⊂ ⋃m
j=1 V x

j .

2. Since we added in the extra condition on the Wtr ’s, given any V x
j there exists

Wtr such that φ(Wtr) ⊂ V x
j , which implies that zp intersects each V x

j for j = 1 to m.

Therefore, using the above two facts, zp ∈ R({V x
j }m

j=1).

Repeating the same procedure using yp we obtain an open set B =
⋂d

q=1 πx(Oq)

such that if z ∈ B then zp is contained in
⋃l

k=1 V y
k and intersects each V y

k , k = 1 to l.

Now A × B is an open set in X × X. If (a, b) ∈ A × B then ap
⋃

bp intersects

each Vi since ap intersects each member of the collection {V x
j }m

j=1 and bp intersects

each {V y
k }l

k=1 and
({V x

j }m
j=1

⋃{V y
k }l

k=1

)
= {Vi}n

i=1.

Also ap
⋃

bp ⊂ ⋃n
i=1 Vi. Therefore ap

⋃
bp ∈ V ′ thus µ(ap

⋃
bp) ∈ U which

implies that F is continuous.

Now it can be shown that if F (x, y) = min{µ(xp), µ(yp)}, then F is continuous.

Thus G is continuous.

We just need to show that G(x, y) = 0 if and only if x = y. If x = y then xp =

xp
⋃

yp which implies that min{µ(xp, µ(yp)} = µ(xp) = µ(xp
⋃

yp), so G(x, y) = 0.

If G(x, y) = 0 then µ(xp
⋃

yp) = min{µ(xp), µ(yp)}. We know that xp = yp if

and only if x = y thus µ(xp
⋃

yp) = µ(xp) only if x = y.

67



Therefore X is metric.

Theorem 5.3. Given X is contractible, let φ : X × [0, 1] −→ X be the contraction

map, where φ(x, 1) = p for any x. Let xp = {φ(x, t)|t ∈ [0, 1]}. If X supports a

Whitney map and if Q is a compact subset of X such that xp = yp if and only if

x = y for every x and y in Q, then Q is metric.

Theorem 5.4. Let S be the example from Chapter 2. C(S) is contractible, and

furthermore that contraction satisfies that conditions of Theorem 5.2.

Proof. Before we begin, a lemma will be useful.

Lemma 5.1. Let V be an open set in C(S). Let M be a proper subcontinuum of S

that starts at the endpoint (a, t) and ends at the point (b, s), such that M ∈ V . There

exists an open set Ṽ lying in V and associated ε > 0 so that

1.

Ṽ = R({V ′
a, V

′
b , V

′
c}).

The union of V ′
a, V

′
b , V

′
c (the open sets that make up Ṽ ) is a tube-like set in S (recall

definition of tube-like in S from Chapter 2)

2. M ∈ Ṽ

3. Suppose (aN , tN) and (bN , sN) are endpoints of a subcontinuum N . Let

(aN , tN) be the starting point and (bN , sN) be the ending point. If N ∈ Ṽ then

|t− tN | < ε and |s− sN | < ε, for some ε > 0.
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Proof. Let M be a proper subcontinuum. M is a metric arc with endpoints (a, t) and

(b, s). Let (x, y) be the midpoint of the proper subcontinuum M . Let F−n(x) = a,

F j(x) = b, and F 0(x) = x. Then

M = (F−n(x) × [0, t])
⋃

(F−n+1(x) × [0, 1])
⋃

. . . . .
⋃

(F−1(x) × [0, 1])
⋃

({x} × [0, 1])
⋃

(F (x)× [0, 1])
⋃

. . . . .
⋃

(F j(x)× [s, 1]).

V = R({Vk}m
k=1). Let {πZ(Vk)}m

k=1 be the projection onto Z of {Vk}m
i=1. For each

i ∈ {−n, ...− 1, 0, 1, ...j}, let {Vk}k∈Ji
, Ji ∈ {1, 2, ...m}, be the collection of V ′

ks such

that F i(x) ∈ π(Vk). Let Wi =
⋂

k∈Ji
Vk for each i ∈ {−n, ...− 1, 0, 1, ...j}. Note Wi is

an open set in Z, and F i(x) ∈ Wi. Using the methods from the proof of lemma 4.1

in Chapter 2, the W ′
is can be refined into U ′

is so that

1. Ui is open,

2. F i(x) ∈ Ui,

3. F (Ui) = Ui+1 for each i ∈ {−n, ...− 1, 0, 1, ...j}, and

4. {Ui}j
i=−n are pairwise disjoint.

We will use these open sets in Z to create open sets in S. We will also need open

sets in [0, 1]. The endpoint (a, t) is in at most m open sets from {Vk}m
k=1. Thus there

exists an εa such that if (a, t) ∈ Vk then (a, t + εa) ∈ Vk and (a, t− εa) ∈ Vk. Likewise

there exists an εb such that if (b, s) ∈ Vk then (b, s + εb) ∈ Vk and (b, s − εb) ∈ Vk.

Let ε = min{εa, εb}. Define V ′
a = U−n × (t − ε, t + ε), and V ′

b = Uj × (s − ε, s + ε).

Note V ′
a and V ′

b are open sets in S and are contained in any Vk that contained (a, t)

and (b, s) respectively. Let V ′
c = (U−n × [0, t − ε

2
))

⋃
(U−n+1 × [0, 1])

⋃
. . . . .

⋃

(Uj−1× [0, 1])
⋃

(Uj× [s, s+ ε
2
)). Note that V ′

c is tube-like in S. Thus by construction
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⋃{V ′
a, V

′
b , V

′
c} is tube-like in S. Define

Ṽ = R({V ′
a, V

′
b , V

′
c}).

Given N is a proper subcontinuum of S if N ∈ Ṽ then N must begin in V ′
a and

end in V ′
b . Let (aN , tN) and (bN , sN) be the endpoints of N ; then |t − tN | < ε and

|s− sN | < ε. Also, by the construction of Ṽ , N ∈ V . Therefore Ṽ lies in V .

Before we begin,we need some notation.

1. If N is a proper subcontinuum of S then N + α is the arc in S made by

extending N by α
2

in each direction. Thus len(N + α) = len(N) + α.

2. If aN is an endpoint of N then aN + ε, ε < 1, is the endpoint on the new

arc N + 2ε. Given aN = (x, t) then aN + ε would be the point (x, t + ε) or (x, t− ε)

depending on which direction we want to go. Note, if t is within ε of 0 or 1 then a

slight modification must be made. If t is within ε of 1 then aN + ε , the new point,

would be (F−1(x), t+ε−1). If t is within ε of 0 then aN−ε would be (F (x), t−ε+1).

3. Let (a, b) and (c, d) be two points in S. “(a, b) is within ε of (c, d)” will mean

|b− d| < ε.
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Now we need to define the contraction map f : [0, 1] × C(S) → C(S). Let

f(δ,M) =





M if δ ≤ µ(M),

M ′ if δ > µ(M), where M ′ has the same midpoint as M

and µ(M ′) = δ,

S if δ = 1,

S if M = S.

Notice that M ′ is uniquely defined by the nature of S since if M ′ = M + ε where

µ(M ′) = δ then δ = arctan(lenM ′)
π
2

.

We wish to prove that f is continuous. Let V ∈ C(S) be an open set such that

f(δ,M) ∈ V . Let M be a proper subcontinuum and δ ∈ [0, 1); then we have three

cases:

1. µ(M) > δ,

2. µ(M) = δ, and

3. µ(M) < δ.

Case 1. µ(M) > δ.

If µ(M) > δ then f(δ,M) = M . Let V ∈ C(S) be an open set such that

f(δ,M) = M ∈ V . Using the lemma we can find a tube-like refinement Ṽ with

associated ε containing M so that Ṽ is tube-like in S, Ṽ = R(V ′
a, V

′
b , V

′
c ), and the

associated ε is small enough so that if N ∈ Ṽ then

µ(N) > δ +
|δ − µ(M)|

2
> δ.
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Let W = (δ − |δ−µ(M)|
4

, δ + |δ−µ(M)|
4

) × Ṽ . If (j, N) ∈ W then j is within |δ−µ(M)|
4

of

δ. If N ∈ Ṽ then µ(N) > δ + |δ−µ(M)|
2

> δ + |δ−µ(M)|
4

> j. So, for any (j, N) ∈ W ,

f(j, N) = N . We already know N ∈ Ṽ which is contained in V . Therefore f(j, N) ∈

V . Thus f is continuous if µ(M) > δ.

Case 2. µ(M) = δ

Let f(δ,M) ∈ V where V is an open set in C(S). We can again refine V into a

tube-like Ṽ with associated ε, such that M ∈ Ṽ . Also we can choose ε small enough

so that M + 2ε ∈ V and if N ∈ Ṽ then the endpoints of N are within ε
2

of the

endpoints of M . (Recall: “within ε” and M + 2ε are defined in the notation section

at the beginning of this proof).

Let N ∈ Ṽ . If N ′ is the subcontinuum made by increasing N equidistance at

each end then by the definition of ε and Ṽ if len(N ′) < len(M + 2ε) then N ′ ∈ V.

There exist an α ∈ R such that if N ∈ Ṽ then

δ − α < µ(N) < δ + α < µ(M + 2ε).

Let W = (δ − α, δ + α)× Ṽ .

Claim: f(W ) ⊂ V . Let (j, N) ∈ W . We have two cases

Case 2.1. µ(N) ≥ j. If µ(N) ≥ j then f(j, N) = N ∈ Ṽ ⊂ V .

Case 2.2. µ(N) < j. If µ(N) < j then f(j, N) = N ′ where N ′ is made by

increasing N on each end until µ(N ′) = j. We know if N ∈ Ṽ and len(N ′) <

len(M + 2ε) then N ′ ∈ V . Thus we just need to prove that len(N ′) < len(M + 2ε).

Now j ∈ (δ−α, δ +α) so we know that j = µ(N ′) < µ(M +2ε). Therefore len(N ′) <

len(M + 2ε). Thus f is continuous if µ(M) = δ.
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Case 3. µ(M) < δ. Now since µ(M) < δ, f(δ,M) = M ′ where µ(M ′) = δ. Let V

be an open set in C(S) and f(δ,M) = M ′ ∈ V . Now assume that M /∈ V . (If it were

we could refine V using the lemma and ε ≤ len(M ′)−len(M)
4

). Assume that V is tube-like

in S. Now there exists a γ such that for any continuum N ∈ V then the endpoints of

N are within γ of the endpoints of M ′. Note since M /∈ V that the endpoints of M

are more than γ away from the endpoints of M ′. Let O = (µ(M ′ − γ
4
), µ(M ′ + γ

4
)).

Recall that M ′+ γ
4

was made by adding γ
8

to each end of M ′ and likewise M ′− γ
4

was

made by subtracting γ
8

from each end. Now len is continuous so there exist an open

set U containing M such that len(U) ⊂ (len(M)− γ
4
, len(M) + γ

4
).

Assume that U is a tube. We know that V is also a tube. Let Ũ = U
⋂

V . This

makes the tube corresponding to Ũ have radius less than the tube corresponding to

V . (We do this because we will extend continua in Ũ and we want to make sure that

when we extend a continuum we stay inside the tube corresponding to V .) Notice

that if N ∈ Ũ then len(N) is within γ
4

of len(M). Thus the endpoints of N are within

γ
4

of the endpoints of M . Also note that the endpoints of M are at least γ away from

the endpoints of M ′. Thus if N ∈ Ũ then N /∈ V which implies that µ(N) ∈ O.

Let W = O × Ũ . If (j, N) ∈ W , then N ∈ Ũ and µ(N) /∈ O. Therefore for all

(j, N) ∈ W , f(j, N) = N ′ where len(N ′) > len(N).

Let αδ ∈ [0,∞) be the unique number such that µ(M + αδ) = µ(M ′) = δ. For

any j ∈ O there exist a number αj such that µ(M + αj) = j.
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For j ∈ O, j = µ(M + αj) < µ(M ′ + γ
4
) = µ(M + αδ + γ

4
). Thus αj < αδ + γ

4
.

Similarly j = µ(M +αj) > µ(M ′− γ
4
) = µ(M +αδ− γ

4
). Thus αj > αδ− γ

4
). Therefore

for any j ∈ O, αj is within γ
4

of αδ.

Given (j, N) ∈ W , f(j, N) = N ′. N ′ is made by adding a certain length onto

each end of N . We have three cases.

Case 3.1. If the len(N) = len(M), then we add
αj

2
to each end of N .

Case 3.2. If len(N) < len(M), then add
αj+|len(M)−len(N)|

2
to each end of N .

Case 3.3. If len(N) > len(M), then add
αj−|len(M)−len(N)|

2
to each end of N .

Let aN and bN be the endpoints of N , aN ′ and bN ′ be the endpoints of N ′, aM

and bM be the endpoints of M , and aM ′ and bM ′ be the endpoints of M ′. We will

show in all three cases that aN ′ is within γ of aM ′ , and bN ′ is within γ of bM ′ . Thus

N ′ ∈ V .

Case 3.1. len(N) = len(M).

Now aN is within γ
4

of aM so aN +
αj

2
is within γ

4
of aM +

αj

2
. aM +

αj

2
is within

γ
4

of aM ′ . Thus aN +
αj

2
= aN ′ is within γ

4
of aM ′ . Likewise bN +

αj

2
= bN ′ is within γ

4

of bM ′ . Therefore N ′ ∈ V .

Case 3.2. len(N) < len(M).

In this case in order to make N ′ we will add
αj+|len(M)−len(N)|

2
to each end of N .

Thus aN ′ = aN +
αj+|len(M)−len(N)|

2
. The endpoints of N are within γ

4
of the endpoints

of M so if we add
αj+|len(M)−len(N)|

2
to each endpoint then aN +

αj+|len(M)−len(N)|
2

is

within γ
4

of aM +
αj

2
+ |len(M)−len(N)|

2
. If we show that aM +

αj

2
+ |len(M)−len(N)|

2
is within

3γ
4

of aM ′ then we will know that aN ′ is within γ of aM ′ . Thus N ′ ∈ V .
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Recall that

1. |len(M)− len(N)| < γ
4
.

2. αδ − γ
4

< αj < αδ + γ
4
.

3. aM + αδ

2
= aM ′ .

Using these facts we have

aM +
αj

2
+ |len(M)−len(N)|

2
< aM +

αj

2
+ γ

8
< aM + αδ

2
+ γ

8
+ γ

8
= aM ′ + γ

4
.

Similarly we have

aM +
αj

2
+ |len(M)−len(N)|

2
> aM +

αj

2
+ 0 > aM + αδ

2
− γ

8
> aM ′ − γ

8
.

Therefore aM+
αj

2
+ |len(M)−len(N)|

2
is within γ

4
of aM ′ . Thus aN+

αj

2
+ |len(M)−len(N)|

2
=

aN ′ is within γ
2

of aM ′ . Thus N ∈ V .

Case 3.3. len(N) > len(M).

In this case in order to make N ′ we will add
αj−|len(M)−len(N)|

2
to each end of N .

Thus aN ′ = aN +
αj−|len(M)−len(N)|

2
. The endpoint of N are within γ

4
of the endpoint

of M so if we add
αj−|len(M)−len(N)|

2
to each endpoint then aN +

αj−|len(M)−len(N)|
2

is

within γ
4

of aM +
αj

2
− |len(M)−len(N)|

2
. If we show that aM +

αj

2
− |len(M)−len(N)|

2
is within

3γ
4

of aM ′ then we will know that aN ′ is within γ of aM ′ . Thus N ′ ∈ V .

aM +
αj

2
− |len(M)−len(N)|

2
> aM +

αj

2
− γ

8
> aM + αδ

2
− γ

8
− γ

8
= aM ′ − γ

4
.

Similarly we have

aM +
αj

2
− |len(M)−len(N)|

2
< aM +

αj

2
+ 0 < aM + αδ

2
+ γ

8
= aM ′ − γ

8
.

Therefore aM+
αj

2
− |len(M)−len(N)|

2
is within γ

4
of aM ′ . Thus aN+

αj

2
− |len(M)−len(N)|

2
=

aN ′ is within γ
2

of aM ′ . Thus N ′ ∈ V . Thus if µ(M) < δ, then f is continuous.
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We still need to show continuity if M is a proper subcontinuum and δ = 1.

If δ = 1 then f(δ,M) = S. Let S ∈ V where V is open in C(S). By definition

V = R({Vi}n
i=1) for some open sets Vi in S. There exist an i such that Vi = S.

Also there exist a number r ∈ [0, 1) such that if µ(N) ≥ r then N ∈ V . Since µ is

continuous there exists an open set U in C(S) so that

M ∈ U , and µ(U) ⊂ (µ(M)− |r−µ(M)|
2

, µ(M) + |r−µ(M)|
2

). Let W = (r, 1)× U . If

(j, N) ∈ W then

Case 1. f(j, N) = N . Thus µ(N) = j > r which implies that N ∈ V .

Case 2. f(j, N) = N ′. Thus µ(N ′) = j > r which implies that N ′ ∈ V .

Therefore if M is a proper subcontinuum then f is continuous for all values in

[0, 1].

Lastly we need to prove continuity if M = S. If M = S then f(δ, S) = S for any

δ.

Case 1. δ < 1.

Let f(δ, S) = S ∈ V , V is open in C(S). Since we know that one of the open

sets that make up V must be S, if N ∈ V then N + ε ∈ V for any ε.

Let W = ( δ
2
, 1) × V . Given (j, N) ∈ W , then N ∈ V . If f(j, N) = N then

N ∈ V . If f(j, N) = N ′ then since N is in V so is N ′.

Case 2. δ = 1.

Let f(δ, S) = S ∈ V , V is open in C(S). Let W = (r, 1] × V . If (j, N) ∈ W ;

then N ∈ V . If f(j, N) = N then N ∈ V . If f(j, N) = N ′ then since N ∈ V then
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N ′ ∈ V . Given f(j, N) = S, then S ∈ V . Therefore we have proved continuity if

M = S. Since f is continuous in all cases then C(S) is contractible.

Let Q = {H ∈ C(S)|H is a singleton point in S}; then the previous contraction

for C(S) has the property that xp = yp if and only if x = y for every x and y in Q. If

we assume C(S) supports a Whitney map then Q is metric by Corollary 5.1, which

is a contradiction; thus C(S) can not support a Whitney map. This is an example

of a space supporting a Whitney map but whose hyperspace does not. This is also

an example of a space that is arcwise connected by metric arcs that does not support

a Whitney map thus proving that being arcwise connected by metric arcs is not a

sufficient condition for supporting a Whitney map in the non-metric case.

Theorem 5.5. Suppose X and Y are a continua and Y is nondegenerate. If X × Y

supports a Whitney map then X is metric.

Proof. Let p be an arbitrary point in Y . Define F : X × X → R as F (x, y) =

µ((x× Y )∪ (y× Y )∪ (X × p))− min {µ((x× Y )∪ (X × p)), (µ((y× Y )∪ (X × p))}.

We will show that each part of F is continuous and thus F is continuous. We will

then use the fact that if you have a continuous function F from X ×X into R such

that F (x, y) = 0 if and only if x = y, then X is metric.

Let f(x, y) = µ((x×Y )∪(y×Y )∪(X×p)). We want to show f is continuous. Let

(x, y) ∈ X×X and let U ∈ R be an open set such that f(x, y) ∈ U . We need an open

set Ṽ ∈ X ×X such that f(Ṽ ) ⊂ U . Since X ×Y supports a Whitney map we know
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there exist a basic open set V ∈ C(X×Y ) such that (x×Y )∪(y×Y )∪(X×p) ∈ V and

µ(V ) ⊂ U . Now there exist open sets V1, V2, ...Vn ⊂ X×Y such that V = R({Vj}n
j=1).

For each (x, a) ∈ x× Y there exist an open set W x
a ×Oa such that (x, a) ∈ W x

a ×Oa

and W x
a ×Oa ⊂ Vj for some j. Since x×Y is compact and x×Y ⊂ ⋃

a∈X W x
a ×Oa then

there exist a finite subcover of x×Y , namely x×Y ⊂ ⋃m
i=1 W x

ai
×Oai

⊂ ⋃n
j=1 Vj. We

also want to ensure that for every Vj intersecting x× Y there exist a W x
ai
×Oai

lying

in Vj. If this does not happen we can just add in finitely many open sets from the

collection {W x
a ×Oa}a∈X so that above condition will be met; thus we can just assume

that the collection {W x
ai
×Oai

}m
i=1 satisfies the fact that for every Vj intersecting x×Y

there exists W x
ai
×Oai

that lies in it.

Let W̃x =
⋂m

i=1 W x
ai

. If z ∈ W̃x, then z × Y ⊂ ⋃m
i=1 W x

ai
× Oai

⊂ ⋃n
j=1 Vj and

z × Y intersects each Vj, j = 1 to n.

By a similar construction using y × Y instead of x × Y you can find a W̃y so

that if w ∈ W̃y then w× Y ⊂ ⋃k
i=1 W y

bi
×Obi

⊂ ⋃n
j=1 Vj and w× Y intersects each Vj

intersecting y × Y , j = 1 to n.

Let Ṽ = W̃x× W̃y. If (z, w) ∈ Ṽ then f(z, w) = ((z×Y )∪ (w×Y )∪ (X × p)) ⊂
⋃n

j=1 Vj and f(z, w) intersects each Vj. Thus if f(z, w) ∈ Ṽ then (z× Y )∪ (w× Y )∪

(X×p) lies in V . Therefore µ((z×Y )∪(w×Y )∪(X×p)) ∈ U . Thus f is continuous.

Let g(x, y) = min {µ((x×Y )∪ (X × p)), (µ((y×Y )∪ (X × p))}. Using a similar

procedure we can show that g is continuous. Thus F is continuous.

If F (x, y) = 0 then µ((x × Y ) ∪ (y × Y ) ∪ (X × p)) = min {µ((x × Y ) ∪ (X ×

p)), (µ((y×Y )∪(X×p))}. With out loss of generality assume that µ((x×Y )∪(X×p) =
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min {µ((x × Y ) ∪ (X × p)), (µ((y × Y ) ∪ (X × p))}. Now we know that since Y is

nondegenerate that if x 6= y then (x× Y ) ∪ (X × p) ( (x× Y ) ∪ (y × Y ) ∪ (X × p);

thus by the Whitney property µ((x×Y )∪ (X×p)) < µ((x×Y )∪ (y×Y )∪ (X×p)),

which is a contradiction with µ((x × Y ) ∪ (y × Y ) ∪ (X × p)) = min {µ((x × Y ) ∪

(X × p)), (µ((y × Y ) ∪ (X × p))}; thus x× Y = y × Y , which implies that x = y.

If x = y then (x × Y ) ∪ (y × Y ) ∪ (X × p) = (x × Y ) ∪ (X × p) so then

µ((x × Y ) ∪ (X × p)) = µ((x × Y ) ∪ (y × Y ) ∪ (X × p)) = min {µ((x × Y ) ∪ (X ×

p)), (µ((y × Y ) ∪ (X × p))} = µ((x× Y ) ∪ (X × p)). Thus F (x, y) = 0.

Therefore X is metric.

Theorem 5.6. Let f be a function f : X −→ C(C(X)) such that f(x)= xX, which

is the point in C(C(X)) where xX represents an order arc in C(X) from {x} to X.

If f is continuous and C(X) supports a Whitney map then, X is metric.

Proof. Define G : X×X −→ R by G(x, y) = µ((f(x)
⋃

f(y))−min{µ(f(x)), µ(f(y))}.

We will show that each part of G is continuous thus G is continuous. We will

then use the fact that if you have a continuous function G from X ×X into R such

that G(x, y) = 0 if and only if x = y, then X is metric.

Let F : X ×X −→ R be defined as F (x, y) = µ(f(x)
⋃

f(y)). We need to show

F is continuous. Let U be an open set in R, (x, y) ∈ X ×X and F (x, y) ∈ U . By the

continuity of µ there exists an open set V in C(C(X)) such that (f(x)
⋃

f(y)) ∈ V and

µ(V ) ⊂ U . Now V = R ({Vi}n
i=1) where each Vi is an open set in C(X). There exists
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subcollections {V x
j }m

j=1 and {V y
k }l

k=1 of {Vi}n
i=1 such that

({V x
j }m

j=1

⋃{V y
k }l

k=1

)
=

{Vi}n
i=1,

xX ⊂ ⋃m
j=1 V x

j and intersects each Vj and

yX ⊂ ⋃l
k=1 V y

k and intersects each Vk.

Now let R({V x
j }m

j=1) = V x this is an open set in C(C(X)) such that xX ∈ V x,

and likewise V y is an open set that contains yX. By the continuity of f there exist

open sets A,B in X such that

x ∈ A and f(A) ⊂ V x and

y ∈ B and f(B) ⊂ V y.

A×B is an open set in X ×X.

Claim: F (A×B) ⊂ U .

We need to show that if (a, b) ∈ A× B then f(a)
⋃

f(b) ∈ V . Thus we need to

show that f(a)
⋃

f(b) ⊂ ⋃n
i=1 Vi and that f(a)

⋃
f(b) intersects each Vi. We know

that f(a) ∈ V x and f(b) ∈ V y, thus f(a)
⋃

f(b) ⊂ ⋃n
i=1 Vi. Since f(a) ∈ V x we

have that f(a) intersects each member of the collection {V x
j }m

j=1 and likewise f(b)

intersects each member of {V y
k }l

k=1. Thus f(a)
⋃

f(b) must intersect each member

of {Vi}n
i=1 since

({V x
j }m

j=1

⋃{V y
k }l

k=1

)
= {Vi}n

i=1. Therefore f(a)
⋃

f(b) ∈ V which

implies that µ(f(a)
⋃

f(b)) ∈ U . Thus F is continuous.

By a similar argument if F (x, y) = min{µ(f(x)), µ(f(y))} then F is continuous.

Therefore G is continuous.
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If G(x, y) = 0 then µ((f(x)
⋃

f(y)) = min{µ(f(x)), µ(f(y))}. But because of

the Whitney property and the fact that xX = yX if and only if x = y the only time

that will happen is when f(x) = f(y) which implies that x = y.

If x = y then µ((f(x)
⋃

f(y)) = min{µ(f(x)), µ(f(y))}, which implies that

G(x, y) = 0.

Therefore X is metric.

Theorem 5.7. If each X and Y support Whitney maps and X
⋂

Y is a singleton

point, then X
⋃

Y supports a Whitney map.

Proof. Suppose that K is a subcontinuum of X
⋃

Y and X ∩ Y = {z}. Let KX =

K
⋂

X and KY = K
⋂

Y . Let µX be the Whitney map on X and µY be the Whitney

map on Y . We will define the Whitney map on X
⋃

Y as

µ(K) = µX(KX) + µY (KY ).

First it is obvious that if H ( K then µ(H) < µ(K). Since, in order for H to be

a proper subset of K, then either HX ( KX , which implies that µX(HX) < µX(KX),

or HY ( KY , which implies that µY (HY ) < µY (KY ).

In order to show µ is continuous, let U be an open set in R and let µ(K) ∈ U ; then

there exists an ε > 0 such that [µ(K)±ε] ∈ U . Now since both µX and µY are Whitney

maps, for KX there exist an open set V X in C(X) such that µX(V X) ⊂ [µX(KX)± ε
2
]

and likewise for KY .
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Next we will refine each V X and V Y . Given V X there exist an open refinement

Ṽ X = R({WX
l }m

l=1) such that

1. KX ∈ Ṽ X .

2. If z is the intersection point of X
⋂

Y and z ∈ KX then z ∈ WX
l for only one

l, assume that l = 1. Thus z ∈ WX
1 .

3. In the open set WX
1 there exist another a point x ∈ KX such that x is in the

interior of WX
1 and x /∈ WX

l for l 6= 1.

4. z is not a limit point of any WX
l for l > 1.

Notice that WX
l for l > 1 is an open set not only in X but in X

⋃
Y , but WX

1 is

not an open set in X
⋃

Y . This is important because that means that we can not use

WX
1 to make an open set in C(X

⋃
Y ). To fix this problem we will make two open

sets in X
⋃

Y using WX
1 .

Make a new open set CX contained in X such that

1. CX ⊂ WX
1 ,

2. CX
⋂

KX 6= ∅,

3. CX
⋂

WX
l = ∅, for any l > 1,

4. z /∈ CX .

Notice that since CX does not contain the intersection point that means that CX

is an open set in X
⋃

Y . Also since CX ⊂ WX
1 that if we add CX into the collection

of open sets that made up Ṽ X we will just refine Ṽ X thus refining V X even more.

Doing the same procedure will yield similar open sets in Y .

Now we will make our second open set using WX
1 and W Y

1 .
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For z ∈ (X
⋂

Y )
⋂

K, let Dz = WX
1

⋃
W Y

1 . Note that since z ∈ WX
1 and z ∈ W Y

1

then z ∈ Dz. Also most important Dz is an open set in X
⋃

Y .

Let

O = R
({WX

l }m
l=2, {W Y

j }r
j=2, C

X , CY , Dz

)
.

O is open in C(X
⋃

Y ). Given H ∈ O, let HX = H
⋂

X. H must intersect each

WX
l and W Y

j for every l > 2 and j > 2 and CX , CY , Dz, and be contained in their

union. Thus HX ∈ V X . Note this was the reason CX was necessary so that HX

would be forced to intersect WX
1 . Similarly HY ∈ V Y .

Thus µX(HX) ∈ [µX(KX)± ε
2
] and µY (HY ) ∈ [µY (KY )± ε

2
], so µ(H) ∈ [µ(K)±ε].

Therefore µ is continuous and thus is a Whitney map on X
⋃

Y .

Corollary 5.1. There are continuum many nonhomeomorphic decomposable non-

metric continua that support Whitney maps.

Theorem 5.8. There exist X and Y , that both support Whitney maps, such that

X
⋃

Y does not support a Whitney map.

Proof. Our example S was made by taking the cross product of Z with [0, 1] and then

making the proper identifications. If instead of [0, 1] we use [−1, 0] then a similar non

metric space can be made that also supports a Whitney map. Denote this space as

S[−1,0].

The intersection of S and S[−1,0] has uncountably many points. Observe that

S
⋂

S[−1,0] = Z × {0}. S
⋃

S[−1,0] is a continuum.

Assume S
⋃

S[−1,0] supports a Whitney map.
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Let Z1/2 = {(z, t) ∈ S|t = 1/2}. Note that Z1/2
∼= Z and thus is non-metric.

Given a point x ∈ S, x = (zx, tx) for some zx ∈ Z, tx ∈ [0, 1]. Let xS = {(zx, t)|t ≤

tx}. Let F : Z1/2 × Z1/2 → R be defined as

F (x, y) = µ(xS ∪ yS ∪ S[−1,0])−min{µ(xS ∪ S[−1,0]), µ(yS ∪ S[−1,0])}.

Using a similar construction to the one in the proof of “If the cone over X supports

a Whitney map then X is metric” (where S[−1,0] behaves in a similar manner as the

top point of the cone), F can be shown to be continuous and it can be shown that

F (x, y) = 0 if and only if x = y. Thus Z1/2 is metric which is a contradiction.

Therefore the continuum S
⋃

S[−1,0] can not support a Whitney map.
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Chapter 6

Whitney levels

Let X be a continuum and µ a Whitney map on C(X). For t ∈ [0, µ(X)] and for

x ∈ X let W t
x = {H ∈ µ−1(t)| x ∈ H}.

Theorem 6.1. W t
x is a subcontinuum of C(X).[10]

Theorem 6.2. If t > 0 then µ−1(t) is a subcontinuum of C(X).

Proof. CLOSED: Let L be a continuum such that µ(L) 6= t. Then µ(L) = r where

r < t or t < r. Assume r < t

Let U = (r− t−r
2

, r + t−r
2

). µ(L) ∈ U . Since µ is continuous there exists an open

set V containing L such that µ(V ) ⊂ U . That implies that all continua that are in

V must have Whitney value in U . Thus U
⋂

µ−1(t) = ∅. Therefore V is an open set

that contains L and misses µ−1(t). Thus L is not a limit point of µ−1(t).

CONNECTED: Assume µ−1(t) in not connected and thus is the union of two

disjoint compact sets A and B. Then µ−1(t) = A
⋃

B. Now µ−1(t) =
⋃

x∈X W t
x.

Let A′ = {x|W t
x ⊂ A} and B′ = {x|W t

x ⊂ B}. Since W t
x is connected, A′ ∪B′ =

µ−1(t).

First: A′ ⋂ B′ = ∅.

Assume not. Then A′ ⋂ B′ 6= ∅ so there exist a z such that W t
z ⊂ A and

W t
z ⊂ B. But W t

z is connected and thus can not be contained in and intersect two

disjoint separated sets, so A′ ⋂ B′ = ∅.
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Second: A′ and B′ are separated. Let y ∈ B′ . We want to show that y can not

be limit point of A′. Notice for each continuum Kα in A, y /∈ K ( because if so then

Wy would intercept A and B). Therefore for each Kα in X such that Kα ∈ A there

exist open sets Uα and Vα in X such that Kα ⊂ Uα, y ∈ Vα and Uα

⋂
Vα = ∅.

In C(X) define open sets U ′
α = R(Uα). Then A ⊂ ⋃

α∈C U ′
α. A is compact

in C(X) so there exist finitely many of these open sets that cover A, namely A ⊂
⋃n

i=1 U ′
αi

in C(X).

A′ ⊂ ⋃n
i=1 Uαi

. Look at the corresponding Vαi
’s. Now y ∈ ⋂n

i=1 Vαi
; this is open

and contains no points of A′. Thus y is not a limit point of A′.

Therefore A′ and B′ are separated sets but X = A′ ⋃ B′ which is a contradiction

since X is connected. Thus µ−1(t) is a subcontinuum of C(X).

Theorem 6.3. If X is hereditarily indecomposable then µ−1(t) is hereditarily inde-

composable.

Proof. First we want to show that µ−1(t) is indecomposable. Note that if H and K are

two subcontinua of X such that H, K ∈ µ−1(t), then since X is hereditarily indecom-

posable, H
⋂

K = ∅. Now assume that µ−1(t) is not indecomposable; µ−1(t) = A
⋃

B

where A and B are two proper subcontinua. Let A′ = {x|x ∈ H, H ∈ A} and

B′ = {x|x ∈ K, K ∈ B}. Now A′ ⋃ B′ = X. Also A′ and B′ are proper subcon-

tinua since there exists H ∈ A \ B and K ∈ B \ A, and we know that H
⋂

K = ∅.

But we have now shown that X is the union of two proper subcontinua, which is a

contradiction since X is indecomposable.
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Next let M be a proper subcontinuum of µ−1(t), then define

M ′ = {x|x ∈ H, H ∈ M}. M ′ is a subcontinuum of X and thus is indecompos-

able so the previous argument will show that M must be indecomposable.

Theorem 6.4. If X supports a Whitney map µ then the order arcs are metric.

Proof. We will use the same fact as in Theorem 5.1. Let O denote the order arc.

We want to find a continuous function f from O × O into R such that f(H, K) = 0

if and only if H = K. Define f(H, K) = |µ(H) − µ(K)|. First, since O is an

order arc it is obvious that f(H, K) = 0 if and only if H = K, so we need to

show f is continuous. Let U be an open set such that f(H, K) ∈ U ; there exist an

ε > 0 such that f(H, K) ∈ [f(H, K) ± ε] ⊂ U . Assume that µ(H) < µ(K). Let

δ = min{ε, µ(K) − µ(H)}. Since µ is continuous there exists an open set VH such

that

µ(VH) ⊂ [µ(H)± δ
4
] and likewise there exists a VK such that

µ(VK) ⊂ [µ(K)± δ
4
].

Define Ṽ = VH×VK . If (R,S) ∈ Ṽ then µ(R) ∈ [µ(H)± δ
4
] and µ(S) ∈ [µ(K)± δ

4
].

Thus f(R,S) = |µ(R) − µ(S)| ∈ [|µ(K) − µ(H)| ± δ
2
] ⊂ [|µ(K) − µ(H)| ± ε] =

[f(H, K)± ε] ⊂ U . Therefore f is continuous and thus O is metric.
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