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A panel is subject to dynamic instability when indd aerodynamic loads under the
supersonic/hypersonic environment result in aaetited oscillation called panel flutter.
The panel of an aircraft that flies at supersopeesl or a structural panel that is in fluid
flow at such regime may experience panel fluttepl&e with highly distributed
piezoelectric actuators and sensors connectedtegsing networks, referred to as
intelligent plate can actively control its vibraim The objective of this research is to
analytically demonstrate panel flutter suppressising piezoelectric actuation based on
feedback linearization controllers.

A nonlinear control system is formulated using tio@linear dynamic equations for
a simply supported rectangular panel with piezdgtelayers based on Galerkin’s

method with modal expansions of nonlinear partiiécential equation obtained from
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von Karman large-deflection plate theory, whichagts for the structure nonlinearity.
The nonlinear equations also account for loads asaxternally applied in-plane loads,
aerodynamic loads, and electrical displacements.aemodynamic loads are given by the
first-order piston theory or the quasi-steady sspeic theory. The control inputs are
given by the electric fields required to drive Hetuators based on piezoelectric
actuation, which is modeled by linear piezoeleatnaostitutive relations. Outputs of the
nonlinear system are feedback and used to transtomo an equivalent controllable
linear system in new coordinates by formulatinglmear feedback control laws, which
cancel the nonlinear dynamics resulting in a lirmestem. The pole placement technique
is then employed to make the states of the feedlraedrized models locally
asymptotically stable at a given equilibrium.

Numerical simulations are carried out for the ctbk®p systems at dynamic
pressures higher than the critical dynamic pressiarethe onset of panel flutter, where
limit-cycle motions are generated. The simulatexsteays show that the closed-loop
systems based on the controllers effectively siggppanel flutter limit-cycle motions
with the generated piezoelectric bending actuatasnsontrol inputs. Therefore, with the
feedback linearization controllers developed, timaticycle motion of panel flutter can
be completely suppressed or the panel can be ratkr free if the controller gains are

carefully selected.
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NOMENCLATURE

a,, a,,a,, A,, A, =modal amplitudes

a, b = plate length, plate span

A B, D = extensional, coupling, bending stiffnesses
b,, b, = electro-elastic coupling coefficients

Ci. Qi [Q] = elastic constant matrix
c,.C,,C,,C,,C,,C, =nonlinear modal amplitude terms

Cq = aerodynamic damping term

Cy = flow speed coupling term

Cyz» Cis = linear stiffness terms

Ca12» Ca305 Cuos = nonlinear stiffness terms

dy [d] = piezoelectric strain coefficients

D, = electric displacement

e = piezoelectric stress coefficient

E, E,{E} = electric field

E, E E, = elastic constant

E., E, = aluminum elastic constant, piezo ceramic elastic constant
f = dielectric permittivity

h,h,,h = panel, piezo ceramic, substructure thicknesses
H = electrical enthalpy

H() = Heaviside function

K = Kinetic energy

M = Mach number
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= moment-electric field coefficients

=time
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1. INTRODUCTION

Panel flutter is the self-excited oscillation gblate or shell when exposed to
airflow along its surface [1]. This is a dynamistability phenomenon in the
supersonic/hypersonic speed regime, and is indoigéle aerodynamic loads, which act
only on one side of a panel. This differs from atastic wing flutter, where the flow acts
on both sides of the wing. Generally, flutter iscmaillatory aeroelastic instability
characterized by the loss of system damping ddest@resence of unsteady aerodynamic
loads [2].

The consequences of aeroelastically induced matierstructural failures, and they
have been observed in research aircraft, launcichesHor spacecraft, and jet engines.
The earliest reported structural failures thatloarttributed to panel flutter were the
failures of early German V-2 rockets during WorlcdaiV [3, 4]. Panel flutter can be
experienced by a vehicle that flies at a supersgpeéed in the air. The skin panels
experience sustained vibrations with associateil tiycle oscillations that can result in
structural failures by fatigue due to the aerodyiecgmessure on the vehicle surface.

Experiments indicate that there are critical dyrapressures (air flow speeds)
above which panel flutter exists. At dynamic pressibelow these critical dynamic
pressures the panel has random oscillations witldl @mplitudes. These are small
compared to the panel thickness, and they die dbttine. Linear structural theory

predicts the critical dynamic pressure value abekieh the panel motion becomes
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unstable and grows exponentially with time, bunly predicts the flutter boundary and
the corresponding structural flutter frequencydghamic pressures above the critical
pressure, the amplitude of vibration becomes laagd,it is on the order of the panel
thickness, the effect of in-plane stretching forlsesomes significant and acts as a
restoring force, while the aerodynamic forces tenohcrease the amplitude. Therefore,
the interplay of the mid-plane stretching forcehjali generally restrain the motion and
cause stability, and the aerodynamic forces, whrolws the amplitudes and causes
instability, results in the bounded limit cycle distions that are observed. This is shown
in Fig. 1.1. Therefore linear theory becomes insight, and nonlinear structural theory,
which is based on von Karman large deflection pladery, is suggested for further
analysis.

Flexible structures, such as satellites, atmospherentry vehicles, and other
aerodynamic vehicles are generally lightly dampeel t low structural damping in the
materials used and the lack of other forms of dagdn these structures, vibrations
have long decay times that can lead to fatigu¢almisty, or other problems associated
with the operation of the structures. One of thdiest works of actively controlling the
vibrations of these flexible structures using axtivaterials is by Bailey and Hubbard [5]
who developed an active vibration damper for ailswdr beam using a distributed-
parameter actuator and distributed-parameter cathigory. When these structures are
made with highly distributed actuators, sensord, @ocessing networks [6], they are
referred to as intelligent structures. The studgerbelastic phenomena has received
serious attentions in the past few decades in twtcolar areas of interest, namely wing
flutter and panel flutter, and efforts have beemen® develop controllers for these

2



classes of problems. Much attention has been focusthe literature on active control of
wing flutter using nonlinear control techniquest bery little has been done in the area
of panel flutter control using such techniques. Mad®. H. et al. [7] noted that the system
to be controlled is both nonlinear and underactyaad that it is better to control
nonlinear systems using a nonlinear control metAagonlinear controller using a
feedback linearization control method was propaaetiapplied to suppress panel flutter

using a finite element method.

"
l

(a) No flutter

(b) Flutter

Fig. 1.1 Nonlinear oscillations of a simply-supjear plate



1.1 Pand Flutter

There are voluminous works on panel flutter overesal decades, with most
analyses placed in one of five categories [8] basetthe structural and aerodynamics
theories employed, and they are described in [R ¥y are shown in Table 1.1. The
first category is the linear structural theory aj@si-steady aerodynamic theory [9, 10].
The second is the linear structural theory andlifudlarized (inviscid, potential)
aerodynamic theory [11, 12]. The third is the no@dir structural theory and quasi-steady
aerodynamic theory [13-18]. The fourth is the noadir structural theory and the full
linearized (inviscid, potential) aerodynamic thefk9, 20], and the fifth is the nonlinear
structural theory and the nonlinear piston aerodyonaheory [21].

The aerodynamic pressure, which acts on one sitteegdanel surface, is developed
as a function of the panel motion. Linearized pb&tflow theory is recommended for

air speeds close to Mach one, quasi-steady litfiesirdrder) piston theory is employed
for supersonic air flowj , > \/E), and nonlinear (third-order) piston theory is
recommended for the hypersonic reginh ( >5). Structural theory can be linear or

nonlinear depending on the order of magnitude eftthnsverse deflection compared to
the panel thickness.

Table1.1 Panel flutter theories

Type Structural theory Aerodynamic theory Mach nemb
1 linear Quasi-steady piston J2<M_ <5

2 linear Full-linearized potential 1<M_ <5

3 nonlinear Quasi-steady piston J2<M_ <5

4 nonlinear Full-linearized potential 1<M_ <5

5 nonlinear Nonlinear piston M_>5




Linear panel flutter can be solved with the Founthod in the frequency domain.
The critical dynamic pressure and flutter boundae/found by increasing the
aerodynamic pressure until two linear frequencasdeasce. The two values of
frequencies, which are real become a complex Bayond the flutter boundary, the
panel will undergo fluttering motion, and the arydie of the panel motion diverges, but
various experiments indicate that the amplitudevgrto a limiting value, which becomes
stable, nearly sinusoidal and independent of thialiconditions. This motion is called
limit cycle oscillation. This phenomenon is expkinby the interplay between damping
due to the structural nonlinearities and instapditie to aerodynamic pressure effect. The
transverse deflection of the panel is of the oade¢he panel thickness when it undergoes
limit cycle oscillation in the fluttering zone, §oear analysis is inadequate. In order to
account for the geometric nonlinearity, von Karnenge-plate theory is usually
employed in nonlinear panel flutter problem, anagtees well with experimental results
[22] as shown in Fig. 1.2.

The analysis of nonlinear panel flutter involveslgtical techniques such as
Galerkin or the Rayleigh-Ritz method, which is usededuce the partial differential
equations of motion to a set of ordinary, nonlin@&aegral-differential equations in time
for the modal amplitudes. The integral terms ardétenh if quasi-steady aerodynamic
theory is used instead of the linearized full (soii, potential) aerodynamic theory. The
linear panel flutter problem can be obtained, & tlonlinear terms are omitted [23]. The
set of ordinary differential equations obtainedfuigher solved by a direct integration

method, harmonic balance method, or perturbatiothodke



o EXPERIMENTAL DATA
—— CONVENTIONAL FLUTTER ANALYSIS
— CONVENTIONAL NOISE ANALYSIS

NQISE FLUTTER

Fig. 1.2 Comparison of experimental results arst-brder piston theory solutions

The numerical time integration, when employed, poas the time-displacement
history, from which limit cycle oscillation is obteed.

The harmonic balance method has been widely armkssfully applied to
nonlinear panel analysis [1, 2, 14, 15, 17, 18251 26]. Using this method, Fung [2,
14] and Kobayashi [17] solved 2-D plates, and Lsbbte[18] developed general solutions
for rectangular and cylindrical specific orthotroplates. Eastep and Mclintosh in [21]
used a Rayleigh-Ritz approximation to Hamilton’siatonal principle instead of
Galerkin’s method to set up the equations of moiotie spatial domain for the solved
rectangular plates. Kuo, Morino and Dugundji [[Boasolved the nonlinear panel flutter

problem for rectangular plates. Eslami [25] studipdcific orthotropic panels. Yen and
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Lau [26] studied the dynamical behaviour of a htrpénged 2-D plate excited by
supersonic flow.

Perturbation methods are used to solve problentssmiiall nonlinearity due to the
assumption of small disturbance from an equilibrpwsition, and they have been used to
solve panel flutter for rectangular plates by Morit, 27], and by Eslami [25] for
specific orthotropic plates.

The nonlinear theory of supersonic panel fluttetagerministic. Ibrahim and Orono
[28] investigated stochastic nonlinear flutter cfimply-supported 2-D isotropic panel
subjected to random in-plane forces. The aerodynérading was modeled using a first-
order quasi-steady piston theory. A general moreguation for two- and three-mode
interactions was derived by using the Fokker-Plaggpkation approach. The stochastic
nonlinear flutter was studied using Gaussian arst-irder non-Gaussian closure
schemes. They concluded that the nonlinear ranéldgterfof panels in terms of four and
more modes can adequately be determined by usen@dlussian closure scheme.

The other alternative approaches to Galerkin’s oetnd modal expansion are
numerical methods (finite difference and finiterent representations) and separation of
variables or so-called exact solutions. The forregrarticularly useful in solving
nonlinear panel flutter problems without simple bdary conditions or problems with
equations of motion with various terms which matkessanalytical solution improbable.
Survey of various applications of finite elementthoels to nonlinear panel flutter can be
found in Han and Yang [29] up to 1983, Gray and Mgup to 1991, Zhou et al. [30] up

to 1994.



1.2 Intelligent Structures

Pierre and Jacques Curie [31] discovered that swgstals produce charges on
their surfaces when compressed in particular doest and those charges are
proportional to the applied pressure. These chaagewithdrawn when the applied
pressure is removed. It was also found that thestats become strained when they are
electrically polarized. This effect is called piekctricity, and it is exhibited by
crystalline materials, such as quartz and roclsalle

Nowadays, the most commonly used piezoelectric maédéenclude ceramics called
lead zirconate titanate (PZT), and polymers sughohsvinylidene fluoride (PVDF),
Macro Fiber Composites (MFC) and Active Fiber Cosifes (AFC).

Piezoelectric materiasct as a generator by converting mechanical eriatgy
electrical energy when pressure is applied, arglishknown as the sensor mode or the
direct effect. Conversely, it acts as motor by @ting electrical energy into mechanical
energy, when electric field is applied to it, ahitis known as the actuator mode or
converse effect. It also acts as a capacitor twirgg electrical energy. These materials
have been used extensively in electromechaniaasdiecers, such as ultrasonic
generators, filters, strain gages, pressure trasduaccelerometers, sensors, and
actuators because of their direct and conversetsffe

Piezoelectric layers or patches are usually bonoed embedded in the surface of a
structure. The mechanical/electrical behavior ekthflexible structure members can
then be monitored or modified by the piezoeleday@rs or patches used as sensors or

actuators.



Actuation strain is the component of strain thatug to stimuli other than
mechanical stress, and it can be produced by gezoe materials. This strain
physically causes induced strains to be produckd.pbtential applications for induced
strain actuators are their uses as highly distedbaictuators in intelligent structures.
Therefore, flexible structures can be controlledh®s/use of smart sensors and actuators.
Intelligent structures having distributed actuatwith induced strain actuations can be
used to design structures with intrinsic vibratéord shape control capabilities. Some
studies have been carried out on induced strauatoh for beams [6, 32, 33, 34, 35]
and plates [36, 37]. The actuation strain is mati@le the constitutive relations as is
usually done with thermal strain. In [6], both gtand dynamic models were developed
for segmented piezoelectric and substructure cogpliThese were incorporated into the
Bernoulli-Euler beam equations, and these modets vefined into three types [32]: the
uniform strain model with only extensional stramtlne actuator for surface bonded
actuators; the Bernoulli-Euler or consistent strawmdel, which accounts for both
extension and bending in the actuator and is agpkcto both surface bonded or
embedded actuators; and finite element models wdgcbunt for extension, bending and
shear in the actuator and structure. Experimeasallts were used to validate the beam
actuation models presented.

The static model of the mechanical coupling ofdgbgmented piezoelectric
actuators accounts for only pure bending of thetelsubstructure, therefore Im and
Atluri [34] proposed a refined model, which inclsd@e transverse shear forces, axial

forces and the bending moments induced by actuators



Crawley and Lazarus [36] formulated a general moflghe induced strain
actuation of plates with various boundary condgiand externally applied loads for both
isotropic and anisotropic plates that are enticglpartially covered with piezoelectric
actuators in various orientations, either bondeortembedded in the substrates. This
model combines both the actuators and the subsirateone integrated structure, and it
is referred to as the “consistent plate model.’sTrhbdel considers the induced strain
actuators to be plies of a laminated plate. Thesmniassumption of consistent
deformations in the actuators and the substratessirain distribution is assumed to
result from a linear combination of in-plane exienal (constant strain through the
thickness) and bending (linearly varying througé tihickness) displacements.

Hagood, Chung and von Flotow [38] modeled the ¢ffet dynamic coupling
between a structure and an electrical network tiindbe piezoelectric effect. Burke and
Hubbard [39, 40] applied a spatially shaped disteld actuator for the vibration control
of a simply supported beam, and this distributiaxcilitates the control of desired
vibrational modes.

Static and dynamic models have been derived fansated piezoelectric actuators
that are bonded to elastic substructures or emlgeiddaminated structures [6]. These
models are used to predict the response of a stalechember to a command voltage
applied to the actuators and give guidance asetoptimal locations for their
placements.

Dimitriadis, Fuller and Rogers [41] extended thatistand dynamic models
developed in [6] for piezoelectric elements bonttednd embedded in one dimensional
beams to two dimensional plates by estimatingdld induced by the actuators to the

10



supporting elastic structures. The results werd tzselectively excite and suppress
particular vibrational modes leading to improvedtcol behavior.

A conservation of strain energy model has been tesddtermine the equivalent
force and moment induced by finite-length spatidiistributed induced strain actuation
attached to or embedded in laminate beams andsplateg the applied moment on the
cross-section of the edges of the actuators [35k Model was extended into developing
classical laminated plate theory (CLPT) for a laaténplate with induced strain actuators
for actuator patches that are spatially distriby8xg.

This “consistent plate model” has been experimgntarified and has been shown
to be the most accurate representation of the laogivior of both discrete surface
bonded or embedded actuators, either segmentezhtngous.

The placement of actuators primarily is dependerthe mode to be controlled. The
placement of piezoelectric actuators for contrgllparticular free vibration modes was
considered by Crawley and de Luis.[bge[42, 43] developed a piezoelectric laminate
theory based on modal sensors and actuators. Tiesa& sensors/actuators sense and
actuate the modal coordinate of a particular mddeleam or plate. They are also used
to excite or measure combinations of modes. Taffgplaced a number of sensor
patches on a structure to measure the responseurhber of modes. Results
demonstrate that modes can be selectively excitddrat the geometry of the actuator
shape affects the distribution of the response gnmoodes [41 — 44].

A piezoelectric material can be used as an actwatarsensor, but when it is made
to simultaneously effect deformations and sensetitaén in structural members, thereby
combining both functions in a single device, thieis referred to as a “self-sensing

11



piezoelectric actuator,” or simply “simultaneoussar actuator” (SSA), and Anderson
and Hagood [45], and Anderson, Hagood and GoodHh®é presented a coupled
electromechanical model for such a SSA. They algestigated issues relating to its
implementation in both open and closed-loop expenit® performed on a cantilevered
beam. Typically, the current drawn by the piezoieie material is ignored when it is
used as an actuator. When the current drawn is take account, there is the possibility
of reconstructing the actuator strain from a vadtagiven piezoelectric. Dosch, Inman
and Garcia [47] developed a technique for usinglfasensing actuator in a closed-loop
that is truly collocated and effective in vibratisappression of intelligent structures.

In the past few decades, a tremendous amountednes has been devoted to the
vibration control of structures. While passive ecohimproves the performance
characteristics of a structure through the useatenals or devices that enhance the
damping and/or stiffness characteristics of thecstire, active control achieves the
desirable performance characteristics through feekibontrol, whereby actuators apply
forces or moments to a structure based on thetgtalcesponse measured by the
sensors.

Some of the research in the field of vibration cohof flexible structures using
piezoelectric sensors and actuators include effyrtBlump and Hubbard, Sung and
Chen, Chen et. al., Joseph [48 - 51]. They stusliecttures that are able to sense and
control their own behaviors, so as to achieve ntugher levels of operational
performance than conventional materials and strastlA technique called positive
position feedback (PPF) for vibration suppressiolarge space structures was also
investigated, and this technique makes use of géped displacement measurements.
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These works also include suppression of elastodimaaponses of high-speed flexible
linkage mechanisms by employing a state feedbatiknapcontrol scheme.
Piezoceramics are used to generate the contralsnand they are also used as sensing

devices.

1.3 Panel Flutter Suppression

The effectiveness of using passive or active coofréiexible structures has been
demonstrated by many researchers. However, inrfaed panel flutter suppression
using piezoelectric materials, only a few resea&ftbtrts have been reported [52 - 57].
Frampton, et. al. [57] investigated the active oanaf panel flutter with piezoelectric
transducers by implementing direct rate feedbackrob and they demonstrated a
significant increase in the flutter boundaries.

Chuh Mei and his research group [54, 56, 58 - @@klcarried out extensive
research on the suppression of nonlinear panétflusing piezoelectric actuators. They
used both the finite element method and Galerkiméshod with modal expansion. The
finite element models account for nonlinear stifmenatrices, thermal and aerodynamic
loads on the panel. Optimal control was used twelgtsuppress large-amplitude, limit
cycle flutter motions of rectangular plates at sgpric speeds using piezoelectric
actuators.

Moon. S. H. et al. [61, 62] investigated both aetand passive suppression schemes
for nonlinear flutter of composite panel. Optimahtrollers based on linear optimal

control theory were designed for active suppressaremes, while piezoelectric
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actuators connected with an inductor-resistor sesteint circuits were used for the
passive suppression. An active/passive hybrid glerntric network was also formulated.
Since the previous studies on panel flutter sumwasused optimal controllers for
linearized models, Moon, S. H. et al. [5] appliedoalinear controller using a feedback
linearization control method to suppress panetdluising the finite element method.
This technigue was alsmployed in developing nonlinear control technigioesa
prototypical wing sections with torsional nonliniearat Texas A. & M. [63]. Locally
asymptotically stable (nonlinear) feedback conémslifor a range of flow speeds and
elastic axis locations were derived for this aaaset system using partial feedback
linearization techniques when either the pitchlange is chosen as the output. This
leads to a partial input-output feedback lineagzioordinate transformation with the use
of a single trailing-edge control surface. As aitgshe associated zero dynamics of the
subsystem was studied, and it was found that itatsmbe locally asymptotically stable.
Full feedback linearization was also carried ouhwavo trailing-edge control surfaces.
When the nonlinear partial feedback linearizat®oanstructed so as to explicitly control
the pitch degree of freedom, the zero dynamict@ttosed-loop system are linear. But,
when the nonlinear partial feedback linearizatigpligitly controls the plunge degree of
freedom, closed-loop stability of the zero dynaniscsonsiderably more difficult. It is
shown that there exist locations of the elastis axid speeds of the
subsonic/incompressible flow for which feedbacktgtgy exhibits a wide range of

bifurcational phenomena.
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1.4 Objectives and Scope

There is much research going on in the developmwigintelligent systems using
active materials, and some of these efforts incthéedevelopment of intelligent plates.
Panel flutter has also posed tremendous challegasroelasticians, and has generated
lots of research in the design of structural sw$aexposed to aerodynamic loads,
especially in supersonic environments. The apptinatf these intelligent plates in
aircraft or vehicles and surfaces in a fluid medias the potential of making these
surfaces actively respond to external stimuli. Ehiegelligent plates have actuators and
sensors embedded or bonded to their surfaceshagdte connected to processors
which modify the signals so that these intelligelates are able to react to stimuli that
can cause large deflections and instability resglin the failure of the panel. With these
developments, advanced aircraft or vehicles anidses in a fluid medium can operate
in harsh environments.

The main objective of this research is to inveségatechnique for suppressing the
fluttering of a fluid loaded flat panel or flat pelrwith aerodynamic loads, which is also
acted upon by in-plane forces. This problem is algtely known as panel flutter
suppression. The technique that is used is basedmear control theory. The main
idea is to transform the nonlinear panel fluttexigpem into an equivalent controllable
linear problem that can be written in simple Brusloycanonical form by the method
called feedback linearization. This involves depéilg nonlinear feedback control laws,

which cancel the nonlinear dynamics resulting iim@ar system, and a pole placement
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technique is then employed so as to make the siathe linearized feedback models
locally asymptotically stable at a given equilibniu

The active materials used in this investigation@mezoelectric ceramics, and they
have dual effects coupling their electrical andcural properties. The
electromechanical quantities involved are presemd&thapter 2 and these lead to linear
piezoelectric constitutive relations.

Equations of motion are given for a flat panel wattnded and distributed actuators
and sensors subject to aerodynamic loads, in-pets and applied electric fields.
These equations are coupled nonlinear partialréifiigal equations, which are reduced to
nonlinear ordinary differential equations in tinaed presented in state-space format, in
Chapter 3.

In Chapter 4, feedback linearizing controllers @egeloped for a fluid loaded flat
panel with limit cycle oscillations at a dynami@psure above the critical dynamic
pressure with or without externally applied in-g@doads. The suppression of the
oscillations after the onset of flutter is inveatigd. Numerical simulations are carried out
in Chapter 5 to study the feedback linearized nahagies, and to establish the stability

of the resulting states. The conclusions to thiestigation are presented in Chapter 6.
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2. PIEZOELECTRICITY

Piezoelectric materials are active materials that are either ceramic or polymeric.
Ceramic materials include lead zirconante titanates (PZT) and single crystals; while
polymeric materials include polyvinylidene fluoride (PVDF), macro fiber composite
(MFC) and Active Fibers (AFC). These materias are bonded to the surface of, or
embedded into flexible structural members, so that actuation and sensing are achieved at

the material level.

2.1 Characteristics of the Materials

A ceramic material is made active by a poling process, which is the application of a
large external electrical field, which aligns the randomly orientated unit cellsin the
medium. One can consider a material with geometrical orientation as shownin Fig. (2.1).

The coupling coefficients are defined by the direction of the poling. Three mutually
perpendicular directions are shown along the axes 1, 2 and 3. There are a so three other
modes, and these are 4, 5, and 6, which represent shear inthe 1, 2 and 3 directions,
respectively. The material, is poled as shown, in the 3-direction, so that the polarization is
taken to be along that direction. The piezoelectric strain coefficient, piezoelectric stress
coefficient, and permittivity are represented as d, €, and «, respectively. They have 2
subscripts. The first indicates the direction of the electric field, while the second indicates

the direction of strain. Therefore, the piezoelectric coefficients are d,,, d,,, dy;, d;5, o,
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and d, . The most commonly used coefficient is d.,, and thisimplies that electric field is

applied in the direction of polarization, 3-direction, while, the induced strainisin the 1-

direction.

Poling
direction

A

1

Fig.2.1 Geometrical orientation of an active material showing the poling direction
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Piezoel ectric materials have distinctive effects. They develop an electrical charge
when subjected to mechanical stress in the direct piezoelectric effect, and conversely they
develop mechanical strain when subjected to an electrical field. Therefore, they can
convert electrical energy into mechanical energy and vice-versa. The applied electric
potential produces an electrical field across the material that induces mechanical strain in
it, while in reversal; the application of stress to the same material generates electrical
chargesonit.

The direct piezoel ectric effect is the production of both positive and negative
electric charges on the corresponding surfaces, and it results in the deformation that takes
place under external pressure (stress). Thus, there is polarization of the medium due to

deformation in the absence of an electric field, E;, and the relationship between the
polarization vector, P, isgiven as

P =€y or B=d0o, (2.1)
The converse piezoelectric effect is the mechanical deformation which results from the
application of electric field, E;, due to the polarization of a medium, and the relationship
isgiven as

£, =dE (2.2)

Therefore, there is strong coupling between the deformation fields and internal electric

fields.
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2.2 Electrical Enthalpy and Electric Field

The electrical enthalpy H describes the amount of energy stored in amaterial and is
defined in [64]. The electrical enthalpy can be written as

H =U -ED, (2.3)
whereU isthetotal internal energy, E and D are the electric field and displacement
vectors, respectively.

Toupin[65] formulated electric enthal py density using a polynomial approximation
based on a power series expansion about the natural state of a piezoelectric medium. The
result is as shown

H =H(¢,E) (2.9)
where, £ isstrain, and Eisthe electric field.

H=1Cfing; &~ Eey — 2K EE (2.5)

H = 3{e}"[Q]"{e} ~{E} [ele} - 3{E}" [<]'{E} (26)
where, Cj, is used interchangeably with Q, and Cf, g, and «; are elastic stiffness

constants, piezoel ectric stress constant, and dielectric permittivity, respectively.

The electric field vector is the negative gradient of the electric potential, ¢, and it is
assumed to vary linearly in the thickness, t, , direction, that is,
E=-[¢ (2.7)
={o 0 E}

with E, = -
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2.3 Linear Piezodlectric Constitutive Relations

Although there are many nonlinear phenomenain piezoel ectric materials, linear
constitutive relations are often used to describe the behavior of piezoelectric layers. The
mechanical stress and strain vectors, g and ¢, respectively, are related through the
electric enthalpy H . The linear piezoel ectric constitutive equations obtained from [66]

aregivenin Eqg. (2.8) and Eq. (2.9).

oH
g; = 6_ =CFiug, — € Ex (2.8)

D, :_$:euk|5k| +K E, (2.9)

and, in matrix form

o =[Q){e}-[e]'{E} (2.10)
D = [effe} + [«][E] (2.12)
Just asin the relationship between mechanical stress and mechanical strain, the

piezoelectric stress coefficient is proportional to the piezoelectric strain coefficient, with

elastic materia properties as the constants of proportionality. Hence,

[e] =[d]lQ] (2.12)
substituting Eq. (2.12) into Eq. (2.8), one obatins
SN GERE) (2.13)
We can write
[o1=1aI"{e} - (el {2}
= [QF (i} -[a]"{g}) (2.14)
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One can observe that the piezoelectric induced strain is the product of the applied electric

field and piezoelectric strain coefficient of the material, and it is written as
{AY=[d]'{E} (2.15)
The free permittivity matrix [K]S is easier to obtain than the clamped permittivity

matrix[«]”, We can use the relationship below to relate the two.

[«]" = [«]” - [d]lQ)"[d]' (2.16)

Similarly, one can re-write the expression for the electrical displacement density using

Eq. (2.11), Eqg. (2.12), and Eq. (2.16) as

(D} =[dlQl{e} + (] [l [a] e}
= [alQl* e} - [al"{E})+ [«]°{E} (217)

In this section, both the linear piezoel ectric constitutive relations and linear electrical

displacement density relations have been obtained. They are given by

O 1 v 0 E d,,
oy =V 1 0 Eyr —Eqd,, (2.18)
Tyl 10O %(1—v)k Y, dy |,
and
1 v o 1“[e d, "
D¥={d, d, dJ¥v 1 o0 LB L |+ egEY
0 0 3(1-v) Vi d
(2.19)
respectively.
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3. FORMULATIONS

In this chapter, the generalized nonlinear dynamic equations for a simply supported
rectangular panel with piezoelectric layers are presented.

The flat plate or panel is considered to be an intelligent plate, and it is made up of
the host substructure and piezoelectric materials embedded within the host or bonded to
the surface of the host. The panel considered in this study is thin. The piezoelectric
materials are in the form of distributed patches or continuous layers, while the host
substructure is considered to be an isotropic material.

Many research efforts have been conducted in the field of vibration control of
structures using piezoelectric actuators and sensors. In the case studied here, the structure
is a simply supported rectangular intelligent plate or panel, and its generalized nonlinear
dynamic equations are derived as in [54]. The intelligent plate is considered to undergo
large transverse displacement of the order of the plate thickness, therefore, von Karman
large-deflection plate theory, which accounts for the structure nonlinearity, is used for
modeling the plate deflection. The linear piezoelectric theory is used to derive the
equations of piezoelectric actuation and sensing, and first-order piston theory or the
quasi-steady supersonic theory is used to model the aerodynamic force due to the

supersonic fluid flow.
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3.1 Aerodynamic Forces

In the case where the fluid flow over a panel is considered as aerodynamic loads or
forces, this problem is sometimes referred to as panel flutter, in the literature. The
aerodynamics pressures can be represented by quasi-steady first-order piston theory, full
linearized (inviscid, potential) aerodynamic theory, or nonlinear piston aerodynamic
theory. The aerodynamic theory that is applied in this study is the quasi-steady first-order
piston aerodynamic theory, and it is employed to model the aerodynamic pressure when a
flight vehicle is in the supersonic airflow regime. This theory describes the aerodynamic
loads on a skin panel as pressure on a piston in a long narrow tube with a given velocity,

and this is expressed as in [24].

Ap = —+

29, | 0w Mi—Zi% (3.1)
B lox M2-1V,_ ot '

where g, =1 p,V? is the dynamic pressure, p, is the air density, V_ the free stream

airflow speed, M _ the Mach number, w the transverse displacement of the panel, and
L=y M?-1.

3.2 Displacement Field Theory:

The displacement field theory is based on Kirchhoff’s hypothesis, and it states that
line elements which originally are perpendicular to the middle surface of the plate remain
straight and normal to the deformed middle surface, and there is no change in length. The
displacement field, which comprises longitudinal u, and normal displacements v, in the
plane of the plate, and transverse displacement w, can be written as
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U=u,(x,y,t)—zw,,
V=V (XY, t) - 2w, ,

w=w,(X,VY,t) (3.2a,b,c)

3.3 Nonlinear Strain-Displacement Relations:

In panel flutter, the plate displacement can be of the order of the thickness of the
plate due to both static and dynamic instabilities and the associated limit cycle.
Therefore, the plate is considered to undergo large displacement, and one can use von

Kéarman’s theory, which considers nonlinear strain-displacement relations.

o ou® 1fow)’

Ew = A
ox 2\ OXx

o oV 1(ow
€y = "5 A
oy 2oy

o _ou’ v owow

= +—
"=y Tk ox oy

(3.3a,b,0)

The flat panel is considered to be an isotropic material, and it is thin, so that the ratio of
the length or width over thickness of the panel is greater than 20. The rotary inertia and
transverse shear deformation effects are negligible, hence from the assumptions of

Kirchhoff’s hypothesis, the transverse strain components¢,,, &,, and y,, are taken to be

negligible, so that, one can write

ow

&,=—=0
0z
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ou Oow

_- — —:O
Y 0z  ox
ov oW

Yp=2o+——=0
oz oy

and from von Karman’s strain-displacement relations, one obtains

OX

au’ 1/aw)  a*w
Ey = += —-z
ox 2 ox?2

a1 (GWJZ 02w
=—+ -z

Fo e, _ —
Y oy 2\ oy oy’®
_ifar ot owow)  o'w
w2y T ax ax oy ) oxay
In vector form
au’ 1(ow) | a*w
bRl b [
; ox 2\ ox ox?
= a° 1(ow) o%w
{‘9}: Sy (= —t5| | ¢ 2
oy 2oy oy
ol l1fou® av®  owow
Sl T | 222
2\ o0y ox ox oy
that is
gXX g)‘()X KX
£y = ggy + 24 K,
yxy 7/>(<)y ny

where, the middle-surface strain components are
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o oy
0 ox 2\ 0OX
©o o 1fowY
) =1eh 1 = —+—(—j (3.6)
/0 oy 2\ oy
X 1(ou® ov® owow
2l oy  ox  ox oy

and the curvatures are given by

0w

K, 8§2
{K}: Ky (= —gy‘;v (3.7)

ny 2

_Zaw

OXoy

3.4 Constitutive Equations

In the analysis carried out in this study, both the elastic and the piezoelectric properties of
the piezoelectric ceramic utilized are included. The stress-strain relations for an
active/piezoelectric layer in an intelligent structure are given by the linear piezoelectric

constitutive equations obtained in Eq. (2.18), that is,

fo}=[Ql, (i - zfx} -t )

XX 1 Vp O 8xx d3l

E
" :1_:/2 v, 1 0 £, t— €10, (3.8a)
Ty P10 0 2=V )| |7y s



It can easily be observed that when any layer is passive or the piezoelectric properties of
an active/piezoelectric layer is not activated, the stress-strain relations are given in Eq.
(3.8b). This is simply achieved by taking the electric field term to be zero in the linear
piezoelectric constitutive equations derived, and they are the same as in the literatures for

purely passive layers.

o}=[QL(e*)- 2l

O . 1 v, 0 E
Oy = 1_; v, 1 0 Eyy (3.8b)
z-><y 10 0 % (l Vs ) 7/xy

3.5 Dynamic Version of the Principle of Virtual Work

The equations of motion are derived using the dynamic version of the principle of
virtual work or Hamilton’s principle. The derivation accounts for both the elastic work

done and piezoelectric effect.
t
[[(U +06V —K oW, Mt =0 (3.9)

where oK and oU are the virtual kinetic energy and virtual internal strain energy of the

system, oW, is the virtual electrical energy, and 6V is the virtual work done due to

external forces and the applied surface charge only.

The virtual internal strain energy 6U is given as:

& = | j (0,06, + 0,58, + 20,56, Jdzdxdy (3.10a)
Q, 2
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The virtual external applied load oV is given as:

N =-— j (Ap, +Ap, )dwdxdy (3.10b)
Q
where Ap, = static pressure differential on the surface of the plate, excluding

aerodynamic loading, and Ap, is the aerodynamic loading over the surface of the plate.

The virtual kinetic energy oK is given as:

ow [ ow
K= |m —o| — |dxd 3.10c
i"at (atj y ( )

The variational quantities obtained in Eq. (3.10) are substituted into Eq. (3.9), and after
carrying out the appropriate integration across the plate thickness, quantities such as the
stress resultants and bending couples can be obtained. After carrying out the integration
by parts and applying appropriate variational statements, these become the von Kéarméan
equations for a plate with large deflections, with the piezoelectric terms included.

Reference can be made to [13, 54, 67] where appropriate derivations were carried out.
3.6 Stress Resultants and Bending Couples

Stress resultants, N, and bending couples, M, are the forces and couples per unit

width, and they are defined as
{oh (1, 2)dz (3.11)

Substituting Eq. (3.8) into the above equations result in the constitutive relations for the
laminated panel used as an intelligent plate with piezoelectric ceramics bonded to both
surfaces of the host layer. The stress components in the plate are integrated over each
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layer thickness, and thereafter the stress resultants in each layer are summed for the

whole plate. Therefore, the stress resultants and bending couples are given by

N A Bl[g° P
- el )N (3.12)
M B D|| « M P
where NPand M * are the piezoelectric induced inplane forces and bending moments.

The stiffness terms are the extensional stiffness matrix, [A], bending stiffness matrix, [D],

and coupling (stretching-bending) stiffness matrix, [B]; and these are represented as

(A}[B)[DD= [} o} 2,22z (319

_h
2

The piezoelectric layers are assumed to be symmetrically bonded to the host layer,
therefore the laminate does not exhibit coupling between bending and stretching, hence

the coupling matrix, [B] =0. Generally, we consider that the Poisson ratio for both host
and piezoelectric materials are similar, hence v, = v =v. The stiffness matrices are

represented as

(Y 0
[A]=1Et'/2 v1i 0 (3.14a)
0 0 i(l-v)
1 v 0
[D]=D|v 1 0 (3.14b)
3(1-v)

with the equivalent panel elastic constant,

E =%(Eshs +E,(h-h,)) (3.15a)
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and equivalent panel bending stiffness

1

D:m(Eshs +E,(h*-h?)) (3.15h)

3.7 Piezoelectric In-plane Force and Moment

The piezoelectric materials are assumed to be perfectly bonded to the entire top and
bottom of the panel surfaces; so that classical analytical approaches can be applied to the
problem of panel flutter in this research.

The piezoelectric actuators produce the actuation strain that physically causes
induced strains to be produced. The actuators are used as modal actuators [42], which
actuate the modal coordinate of a particular mode of the panel. They are also used to
excite and measure combinations of modes [44] when they are used as sensors.

The piezoelectric layers are also assumed to be segmented so that only the desired
portions of the piezoelectric layers are activated. This arrangement provides the
opportunity to consider the piezoelectric materials as patches at the activated areas only.
The mechanical/electrical behavior of the flexible panel are monitored or modified with
these piezoelectric layers or patches acting as actuators and sensors. The piezoelectric
patches are taken to be rectangular in shape; therefore, the piezoelectric layer is divided
into N by N elements. E} and E? are the electric fields on the top and bottom
piezoelectric layers, respectively. The overall thickness of the panel ish, the length of
the panel in the air flow direction is a, and the span isb. The thickness of each

piezoelectric patch or layer is h, and the thickness of the host layer is h;. The

geometrical properties of the panel are shown in Fig. (3.1).
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Fig. 3.1 Geometrical properties of a panel with bonded piezoceramic patches.

The inplane force induced by the piezoelectric layers, or patches per unit length or

simply piezoelectric force per unit length is represented as

{N ’ }: fg [G]k {‘9p }k dz - J._hzhz [6]k {gp }k dz

E
NP =2—"_h (d, +vd,, )E,

XX 1—V2 p

S h d,E
Zy s

p

m

32

(3.16)

(3.173)

(3.17b)



and
(3.17¢)

NP =0

Xy

Where E, is the effective electric field applied on the top and bottom layers which

produces only in-plane force, and denoted by E_ given as

(3.18)

E, =5 (Es+E2)

The induced bending moment actuation per unit length, or simply the piezoelectric
bending moment per unit length is
et [ Q) dee o zdz - [ [Q) e o 2a (3.19)

where E, is the effective electric field applied on the top and bottom layers, which in this

case is referred to as E,; producing only bending moment, and it is given as

1
Ebij = E(Eéij - Egij) (3.20)
and defining
E
Ry = ﬁd?ﬂhp(hp + hs)
EP
Ry =1 dyh, (h, +h,) (3.21a,b)

The piezoelectric induced bending moment actuation due to discontinuously attached or

embedded piezoelectric patches [54] can be written as

My = iNZj:NZg‘,Rlebij [H(X_Xi—l)_ H(X_Xi )][H (y_ yj—l)_ H(y— Yj)]

j=L

Ne N
(3.22a,b)

M; = ZZR32Ebij [H (X_ Xi—l)_ H(X_ Xi )][H(y_ yj—l)_ H(y_ yj)]

i1 j=1
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where the Heaviside function H is given by

H(X—a)={(1) ii: (3.23)
5(x-a) =~ [H(x-a)]

[* 8" (x-a)g(x)dx = g @)(-1)"

3.8 Nonlinear Equations of Motion

The governing differential equations for an isotropic plate with finite length and
piezoelectric ceramic actuators bonded as patches or layers on a host plate subject to
large deflection due to flow velocity over its surface and combined equivalent inplane
loads, combined equivalent bending moments, aerodynamic load, and static pressure
differential are derived in [67, 24]. The inclusion of piezoelectric terms can also be

reviewed in [54]. The von Karméan’s large deflection plate equations are represented as

2 2 2 2 2 2 2 2pp ¢ 6ZMC 2 2
DV“w:a (O35} W+8 @@J_Zaqnaw_ﬁp_moaiw_aw:x_ 2y+N:a\:V+N§6\;V—Aap
oy’ ox?  ox* oy?  oxoy oxoy o2 ox oy OX oy

(3.24)
20, \? 2 2

iV“(D— o'w | [0'w | o'w (3.25)
Eh oXoy ox* )\ oy?

The plate deflectionis w, m, = p.h; +2p h,, @ is the Airy stress potential function,

N, NJ are combined equivalent inplane loads, and M, M are combined equivalent

bending moments.

The aerodynamic pressure loading is assumed to be
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s 2qlow (M?-2)1 ow
AD=p_p. = N Lo 3.26
P=PmP ,B{@x (MZ—JU at} (3:26)

Membrane inplane loads are given by

2 2
Nxm=aE—h a(@j dX,N;"=aE—hb@ d
2a 0\ ox 2a 0 oy

Induced piezoelectric inplane loads are given by

Np—ZEpth Np—ZEpth
x_mpfﬂm’ y_EpMm

Induced piezoelectric bending moments are given by

N X

C

Mf = ZNZCYRMEbij [H(X_Xi—l)_ H(X_Xi )][H (y_ yjfl)_ H(y_ yj)]

i=1 j=1
e
M;’ = ZZR32Ebij [H (X_ Xi—l)_ H(X_ Xi )][H (y_ yj—l)_ H(y_ Yi )]
i=L j=1
The inplane stress resultants are
2
v -0
0D
Ny = ox?
Ny =- oo (3.27)
Xy axay .

The inplane equations of equilibrium:

ON
ON, LNy )
OX oy
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oN, oN,
i 0 (3.28)

are satisfied by @, the Airy stress potential function.
The boundary conditions for a plate that is simply-supported on the four edges are

o’w(0,y) o*w(a,y)
ox? X2

u@,y)=u(a,y)=w(,y)=w(,y) = 0 (3.29)

d*w(x,0) _ o*w(x,b) _

,0) =Vv(x,b) =w(x,0) = w(x,b) =
v(x,0) = v(x,b) = w(x,0) = w(x,b) & Y

0 (3.30)

The solution to the nonlinear equation given in Eq. (3.24), which is the displacement, can
be represented as combination of linearly independent mode shapes. The assumed
solutions must satisfy the given boundary conditions given in Eg. (3.29) and Eq. (3.30).
Therefore, for a rectangular plate, simply-supported on all edges, one can assume that the
transverse deflection can be written as

w=>>A, sin(n—”xjsin(mTﬂyj (3.31)

n m a‘

with the longitudinal axis of the plate in the flow direction. One can simply retain only
the first spanwise mode for panel flutter limit cycle analyses, hence m =1, and the

transverse deflection can be simplified as
w=> A sin(%)sin[%} (3.32)

Therefore, substituting Eqg. (3.32) into Eq. (3.24) above [24], one obtains the nonlinear
differential equations in time, and Lai et al. [54] obtained the additional term for

piezoelectric bending moment:
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2
d’a da, | (a]z I (a]z 2nr
L+ JAC, —+7'|\n"+| = | |a,+7|RnN“+R |- | [a,+A)y ——[1-(-D™"
dz? “dr ﬁ{ b I \b) | an—rZ[ =D }lr

(3.33)

4a° nb afa)’ |\ nax "
ST i b E,; COS| —
a nb\ b i=1 j=1 a i1

using the below non-dimensional quantities

h mya‘ " S o T
_2qa® , 2qa’
M,D' D

3.9 Nonlinear Modal Equations

Approximate deflections of the given system can be obtained using a linear
combination of two modes. Hence, the modal nonlinear equations lead to a set of two
coupled nonlinear differential equations, and they are given as

Forn=1:

2
d’a da a\’ a\’ 8
] 21+1/;Lcad;+7z4|:n2+[bj } a1+7z2{Rxn2+Ry(bj al—;tga2

T
3 2 4
724ﬂ & n201+(3j C, +[Ej C3+C4+&—&
4D | 2 b b 4 2
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48.3 nb 2 INX N/ 7y Yj
=—R, | — E, . cos cos| — 3.34a
Dhb | a ' nb [bj .21:,21: . [a jxil (bjyjl (5:549)
Forn=2:
dza 272 r a 2 8
; 22 |AC, +7r4|:n2 +( ] } a2+7r2 R.n +Ry(bj :|a2+/1 a
T
2 4
< En° n2C1+[— C, +(Ej C3+C4+&—C6
4D 2 b 4 2
—4—aSR n—b+i(gj2_iiE cos( j cos(ﬂj " (3.34b)
Dhb | a nblb) <™ .. \bJ,. '

C,, C,, C,, C,, C,and C, are nonlinear terms of the modal amplitudes, and they are
defined in the appendix.

The above equations can be rewritten by defining their coefficients with the

quantities defined in the appendix, and these equations become

8, +C,8, —C,,a, +C,,a, +Cyud, +Cypa,a; =byu

a"Z + Cd aZ + Cfval + Ck4a'2 + C403a§ + C421a12a2 = b4u (335)

with a, and a, as the amplitudes of the first mode and second mode, respectively, and the
coupling is caused by both the nonlinear terms and the flow velocity over the flat panel.
The coefficients, C, Cy,, C,3, Ciss Ca1py Casg, CyogaNd C,y,, OF the two coupled nonlinear
ordinary differential equations in Eg. (3.35) are non-negative quantities, which are easily
obtained by expansion and collection of the coefficients of the modal amplitudes a, and
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a,and their derivatives. One writes the equations of motion in Eq. (3.35) as a set of first-

order differential equations using state space format. State variables are defined as

{lexzvxa’x4}T = {al’az’alvaz}T

and the system with Single Input can be written as:

x=f(xX)+g(x)u

y =h(x)
where,

X3

F(0) = .

3 2
—Cp Xy =Gy Xy —Cy Xy —ChpaX; = Cup X X,

and x € R" is the state vector, u € R™ is the control vector, and f : R" - R" isa

3 2
CnX; — Ck3Xl - Cd X3 - C330 X — C312 X X,

(3.36)

(3.37)

(3.36.9)

(3.36.b)

sufficiently smooth nonlinear function of its argument. g : R" — R", is a sufficiently

smooth nonlinear function of its argument.
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4. FEEDBACK LINEARIZATION

The mathematical modeling of most physical systems results in nonlinear systems,
and in order to achieve the desired dynamic behavior for such systems, feedback control
systems are often designed which make the closed-loop systems achieve the specified
objectives. There are numerous ways to design a feedback control system. There are both
linear and nonlinear feedback control systems. The former are usually based on an
approximate linearized model of an actual nonlinear system about the equilibrium point,
while the later are based on the actual nonlinear system. There are various types of
nonlinear control techniques, and these include a technique called feedback linearization.

Feedback linearization is achieved by exact state transformations and feedback,
rather than by linear approximations to the system dynamics, and this implies that the
original system models are transformed into equivalent linear models of a simpler form.
Feedback linearization problems have attracted considerable attention, and have been
used successfully in practical control problems, such as control of helicopters, high
performance aircraft, industrial robots, and biomedical devices.

Panel flutter with its associated limit cycle motions, if not suppressed, can lead to
failure of the panel. Flutter suppression of a panel with distributed and embedded or
bonded active materials can be achieved using feedback control with distributed active

materials acting as sensors and actuators, or self-sensing actuators.
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The sensors can be made to sense the outputs (motions) of the panel, and the sensed
signals are modified by the feedback controllers and then used to actuate the panel
through the actuators. This active system is used to stabilize the motion of the panel so
that the states have a locally asymptocally stable origin, which is the main control
objective.

Design of linear controllers requires that an equilibrium point be selected, usually
the system origin, and corresponding to the state of a panel without deflection. The
formulated nonlinear system is linearized about this equilibrium point with the
assumption that there are only very small displacements of the states from the origin, but
in panel fluttering these displacements can be large, therefore, the assumption of small
displacements about the origin is invalid. The design of linear feedback controllers only
extends the flutter free region of the panel; it does not effectively suppress the fluttering,
since fluttering involves large displacements from the origin.

With feedback linearization, the nonlinear panel flutter problem is transformed
using output feedback into an equivalent controllable linear system that is in simple
Brunovsky canonical form. This involves the formulation of nonlinear feedback control
laws, which cancel the nonlinear dynamics. The pole placement technique is then
employed to make the states of the feedback linearized model locally asymptotically

stable to the origin.
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4.1 Mathematical Background

In this section, the mathematical tools required for linearization by feedback control
are developed. The nonlinear control system is first transformed into the Brunovsky form by
a change of coordinates and state feedback, and then linear controllers are designed to control
the linearized system. A thorough review of feedback linearization can be found in the
literature [68-69].

A single-input single-output (SISO) closed-loop system is given in Eq. (4.1) below:
x=f(x)+g(x)u (4.1a)
y = h(x) (4.1b)

where x € R"is a vector of states, u € R" is the input vector, y € R™, f and g are smooth

vector fields on R"and ha smooth (i.e., an infinitely differentiable) nonlinear function.

If the input feedback u and coordinate transformations of the states ®(x) are applied, such

that,

u=a(x)+ B(x)v (4.2)

Z=>(x) (4.3)

where Vv is the external reference input, and the coordinate transformation ®(x) has the

following properties

(i) ®(x)isinvertible, Vx e R"

(i) ®(x)and ®*(z) are both smooth mappings
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then, d(x) is the “normal form” of special interest, which provides suitable change of

coordinates in the state space. The nonlinear closed-loop system in Eq. (4.1) is transformed to

the new coordinates to become a linear closed-loop system given in Eq. (4.4).
2= Az+Bv (4.4)
4.1.1 Lie derivatives

Let h:R" — R be a smooth scalar function, and f : R" — R" be a smooth vector
field on R", then the Lie derivative L, h(x) is the directional derivative of a function
h(x) along the direction of the vector f (x) .

L,h(x):R" > R,
L, h(x) _ () f(x) (4.5)
OX

Lie derivatives may be generated recursively, and they are defined as

LSh=h (4.63)

a(L*h
OX

S—

Uih=L,(L*h)= f,i=12....n (4.6D)

Similarly, if g:R" — R" is a smooth vector field, then
L,h(x):R" =R

)

L,h(x) = g9(x) (4.7)

also, the scalar function L L h(x) is defined as

(L, h
L, L h(x) =%g(x) (4.8)
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4.1.2 Lie Bracket

Let f and gbe two vector fields onR". The Lie bracket of f and g written as

[f,g]is a third vector defined as

[f,91= 2 19 - 2 X g (.92
[f.g]=L,f-L;g=ad,g (4.9b)

Repeated Lie brackets can be defined recursively by,

ad’g=g (4.10a)

ad?g =|f,ad{g], i=12...,n (4.10b)

4.1.3 Frobenius Theorem

A nonsingular distribution A = span{fl, fp o, }is completely integrable if, and
only if, it is involutive. The distribution A is involutive if the Lie bracket [fi, f, Jof any
pair of vector fields f;and f;belongs to the distribution A, that is,

fen, fea=|f, f e (4.11)

where f.,..., f_ are smooth vector fields locally spanning A.

4.1.4 Diffeomorphisms and State Trannsformations

A function®: R" — R", defined in a region Q, is called a diffeomorphism if it is
smooth, and if its inverse @ "exists and is smooth. If the region Q is the whole

space R", then d(x) is called a global diffeomorphism, but if the transformations are
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defined only in a finite neighborhood of a given point, then it is a local diffeomorphism

about the given point.
4.1.5 Controllability

A system is said to be controllable if and only if it is possible, by means of the input,

to transfer the system from any initial state x(t,) = X,, to any other state x(t;) =x, ina
finite time t, —t, > 0. The controllability matrix for a nonlinear system in Eq. (4.12 ) is
given by

C= [gl v 9., ad.g, ,..., ad.g,, ad{'g, ,..., ad ;‘1gm] (4.12)

with relative degree, r <n
4.2 Single-Input Single Output (SISO) System

Consider a single-input single output (SISO) nonlinear system of the form given in

Eqg. (4.1).
4.2.1 Relative degree

The system given by Eq. (4.1) is said to have a relative degree r at a particular point
X, If

L,L'7*h(x) =0, for all x in a neighborhood of x, i=12,...,r-1

L,L"h(x) # 0
Intuitively, relative degree is the number of times one has to differentiate the output

function, h(x) to obtain an expression where the input u appears explicitly.
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4.2.2 Exact linearization

Full feedback linearization or exact linearization is carried out when the relative

degree of the nonlinear system is the same as the dimension of the system, thatisr =n.

Consider a SISO (Single-Input, Single-Output) nonlinear system

x=f(x)+g(x)u

y =h(x)
repeatedly differentiating the output

,_oh,
y_éx

ch
=5[f(x)+g(x)u]

=L h(x)+ L h(x)u

where L, h(x) Ea—hf(x), L h(x) Ea—hg(x)
OX OX

by repeated differentiations of the output y, r times, we obtain
L,L7h(x) =0, i=12...r-1
L,L7"h(x) =0
L, L' h(x) = L, L h(x
L'h(x) = L, [L*ho], i=12,...,r-1,
and L°h(x) = h(x)

y" = Lth(x) + L, LT h(x)u
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(4.153)
(4.15b)
(4.15¢)

(4.15d)
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for reference trajectory
y® =y (4.17)
where the new input v is chosen to cancel the nonlinear dynamics in Eq. (4.16), that is,

V- L h(x)

h= 0 (4.18)
L, L' *h(x)

4.2.2.1 Nonlinear coordinate transformation:

The nonlinear system is transformed to the normal form by r functions h(x),
L h(x), ..., L7*h(x) when the relative degree is same as the system dimension, that is,

r =n, and these form a new set of coordinate functions around the point x, .

h
L h
z=0(x)=| Lih |, (4.19)

LT h

x =®*(z) exists and is unique Vx € R", so that

2, =12,
L, =13
2, = LTh(x)+ L, LT h(x)u(t) or z, =b(z)+a(z)u (4.20)
Output
y=1 (4.21)
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For reference trajectory

7 =v (4.22)
where
1
u= 200 (—b(d(z)) +V) (4.23a)
or
L (CLheo+v) (4.230)

U=s-—7-"=
L, L *h(x)

4.2.3 Partial linearization

Nonlinear system with relative degree less than the dimension of the system (r <n)
cannot be fully feedback linearized, but can only be partially linearized. In this case, it
can be transformed into the “normal form” of the feedback linearization.
4.2.3.1 Nonlinear coordinate transformation:

In the case where the relative degree is less than the system dimension, that is,

r <n, r functions h(x), L,h(x),...,L " h(x) provide a partial set of new coordinate
functions around the pointXx, . It is possible to find n—r more functions

@, (X),...,9,(X) so that

L,4(x)=0 Vr+l<i<nand VxaroundXx,

The nonlinear system is transformed into the normal form by these functions.
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h
L h

L"h

n

x =®'(&,n) exists and is unique vx e R"

(4.24)

Therefore, the new variables areh, L. h,..., L7 in &coordinates, and ¢, ,(X),..., 4, (X)in

ncoordinates. The nonlinear system is transformed to the new (&,7) coordinates, that is,

& =6

ng :fs
& =b(&,n)+a(& nu(t)
n=a(&n)

Output
y=¢

for reference trajectory
& =v

hence, choosing the new input as
v=b(&,n)+a(s,nu(t)

where, b(&,7) = L\ h(® 7 (&,7)),

a(&,n) = L,LT"h(®@ 7 (&,7))
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(4.28)
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(4.29b)



The original input can be written as

1

u= m(— b(®(£,7)) +V) (4.30a)
or,

1

u= m(— L h(x) +V) (4.30b)

The system in Eq. (4.25) is partially linear. The system is decomposed into a linear
subsystem with r™ -order dynamics and a possibly nonlinear subsystem with (n—r)™"-
order dynamics, which has been rendered unobservable, and this part of the dynamics
describes the internal behavior of the system, and it is referred to as the internal
dynamics. It is given by

i =a(&n)

It is necessary to check the stability of the internal dynamics so as to determine if it
is stable, otherwise, the feedback linearized system is useless. Therefore, the internal
behavior of the system is studied when the input and the initial conditions are chosen so
as to constrain the output to remain identically zero, and this is called the zero dynamics,
and it is given by

71=09(0,7)
4.3 Multi-Input Multi-Output (MIMO) System

Consider a MIMO (Multi-Input, Multi-Output) nonlinear system of the form given
in Eq. (4.31). In this analysis, it is assumed that the system has the same number, m, of

input and output channels.
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X = f(x)+Zm:gi(x)ui (4.31a)

Y1 = h1 (x)

Ym =Ny (X) (4.31b)
The outputs can be repeatedly differentiated until one of the outputs appears explicitly. If

r; is assumed to be the smallest integer, then,

=

with Ly L} hu; =0, for at least one j

If at least one of the inputs appears at r; differentiation in y;" , such that, L, Lr;'"l # 0, then

one can define a matrix E(x) e R™", such that

Lgll-r%_lhl(x) I—gm Lr%_lhl(x)

E(x) = (4.33)

LU Ly h (0
A system is said to have vector relative degree, {r,,...,r,} at x,, if
L, Lih(x)=0, 0<k<r -2
for, i =1,...,m, and the matrix E(x,) is nonsingular [sastry].
r,+...+r, <n,and total scalar relative degrees is givenby r=r, +...+r,
4.3.1 Nonlinear coordinate transformation:

The normal form for MIMO nonlinear system is obtained based on the functions
h,(x), Lh(x),...,L7"h (x) generated by the Lie derivatives in Eq. (4.32).
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¢2I=thi
¢ =L"h, for1<i<m
() = ol (x) 1o BN v BE) s B0, () s L]

from the differentiations in Eq. (4.32), one can write;

yi Lih, U,
D=2 i r+EMX) (4.34a)
Yo Lih, Uy,

hence the state feedback control laws are formulated so that the nonlinear dynamics can

be cancelled, and they are written as;

Uy Lih yr
=E'(x){ @ t+E(X)
U, Lih 2
or
Lih,
u=E*(x)y ¢ F+ET(X)V (4.34b)
Lih,

for the reference trajectories

yy vy
S QU (4.34c)
Yo Vi,

and these yield the linear closed loop system represented as

&4=%
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éjlﬁi—l = frl,

£ =b (&) + YAl Emu, () (4.35)

y, =& (4.35b)
4.4 Application to Panel Flutter Suppression

The technique of linearizing a nonlinear system by feedback control presented in
Section 4.1 is applied to the resulting nonlinear system from the mathematical modeling
of a flat panel with embedded or bonded distributed piezoelectric patches subjected to
both aerodynamic loads and externally applied inplane forces carried out in Chapter 3.
The dynamic analysis reveals that vibrations with large amplitudes exist, and
nonlinearities in the system give rise to limit cycle motions. The amplitudes of the
vibrational modes are sensed by piezoelectric sensors, and these are represented as the
outputs. The inputs are the actuation of the panel by the piezoelectric actuators. The
output signals from the sensors are feedback through the linearizing controllers
developed in this research to the actuators, and these are used to suppress the fluttering of

the panel by placing the poles of the linearized system so they are stable.
4.4.1 Control with first mode as the ouput:

In this section, it is considered that the state-space representation of the panel
fluttering dynamics has a single input signal fed to the actuators distributed over the

surface of the panel and single output. Therefore, the analysis for single-input single-
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output nonlinear system represented by Eq. (4.1) in Section 4.2 can be applied to the
panel flutter nonlinear dynamics given by Eq. (3.36) and Eq. (3.37), and these presented

as Eq. (4.36) below:

x=f(xX)+g(x)u (4.36a)
y =h(x) (4.36h)
where
X3
Xy
f(x)=

3 2
Cr Xy = CiaXy —Cy X3 = Cg30 Xy —C3 X, X,
3 2
—Cp Xy = Cig Xy —Cy Xy —CupaX; —Cyp X X,
0
0
g(x) =

w

b
b,
and the output function chosen is the amplitude of the first mode, and it is given as
y=h(x)=x,
differentiating the chosen output
L,Lih=b; #0 = relative degree, r =2

2 2 3
Lf h= Cr Xy = CyaXy —Cg1p X1 X5 = Caa0 Xy —Cy X3

Since the relative degreer is 2, while the system is a set of four first-order differential
equations, then one can only carry out partial feedback linearization of the system with

the chosen output, therefore, the x coordinates of the original domain becomes x(&,7) in

the transformed coordinates.
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Using the computed Lie derivative, the normal form is given as:

& h X
ool bl % (4.37)
&s m X, .

S4 m, b,Xs —b;X,
where &;and &, are defined such that Ly, =0 and L 7, =0.

The Jacobian matrices of the transform and inverse transform are given below, and they

are nonsingular and are well defined, since for any input, b, # 0.

do

9y
dx| °

Therefore, this system with the chosen output has a transformation that is global
diffeomorphism, and inversion of the coordination transformations can be carried out
globally. The original states are obtained in terms of the linearizing coordinates as given

in Eq. (4.18) below

. ‘
X, m
X = = &, (4.38)

1
X, b_3(b4‘§2 _772)

The system dynamics for panel flutter given in Eq. (4.36), is partially feedback linearized

and it is represented in the new coordinates as
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S

él C 7l —Ciaéy —Capall & —Cagol —Cy7l
z 1
5.2 = F(b4§2 _772)
Ui 3
, _bl- _ 3 _ 2 b4ézz_@ b( _ _ 2_ 3 )
5| —Cia?h —Caoalh —C&1 —Cyny Th —Cy b b +0,(Cq 7 —Cy38) —Co1p&imh —Canedy —Cu&,
3 3
0
b3
+ u (4.39)
0
0

and for reference trajectory:
v=¢

fromeq. 4.19
& =Lih+L L hu

therefore, the control input u is designed to cancel the nonlinear dynamics, hence

v-L%h

u= :
L,L.h
1

u= b_(v - (Cfv771 —Cy3& — Capa?1 &) — ool — Cy7l, )) (4.40)
3

Output:
y=¢ (4.41)

Substituting Eq. (4.20) into Eq. (4.19), the resulting system is partially linearized with the

linearized subsystem given as;
HEHHEY
£, 0 0S4, v
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They are made asymptotically stable by pole placements;
V(§) =-K¢&, or v=-k,& — k&,

4.4.1.1 Internal dynamics

The internal dynamics are given by the subsystem below:

.1
Yl :b_(bztfz _772)
3
T _ 3 _ 2 b4§2_@ b( _ _ 2 3 )
1, =05 =Cpu?h —Cyofly —C1, & —Cyn& 1 —Cy b b +b,\C 7 —Cia&y —Carp&ith —Caz08y —Cu&o
3 3
(4.43)
4.4.1.2 Zero dynamics
The zero dynamics are given below:
set 7 =1{m,,1,,£,,&, } = {n,,1,,0,0}, hence,
s
i b3
n, = (bACfv +b,cy, )’71 —Cy77, _C4037713 (4-44)

The feedback linearized subsystem presented in Eq. (4.42) is a second-order
dynamic system, with the modal amplitude of the first mode and its derivative as the two
new states in the transformed coordinates. The designed controllers are proportional to
the two new states therefore the controlled subsystem simply becomes a damped mass
spring oscillator in the new coordinates in terms of the first mode. The modal amplitude
of the second mode and its derivatives constitute the zero dynamics presented in Eq.

(4.44).
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4.4.2 Control with second mode as the output:

In this case, the output from the system dynamics is taken as the amplitude of the
second mode of the panel flutter sensed by the distributed sensors attached to the panel at
appropriate locations, and a single input signal fed to the actuators distributed over the
surface of the panel. Therefore, again, the analysis for single-input single-output

nonlinear system in Section 4.2 can be applied also to the system presented in Eq. (4.36).

x=f(xX)+g(x)u
y =h(x)
X3

Xy

f(x) =

3 2
Cn Xy — Ck3Xl - Cd X3 - C330 X, — C312 X X,
3 2
—Cp X =Gy X, — Cd Xy — C403)(2 —Cun X1 X,

0
0

g(x) =

w

b
b,
and the output is given as

y =h(x) = X, (4.45)
differentiating the chosen output

L,Lih=b, =0 = relative degree, r =2
2 2 3
Lf h= —Cr Xy = Cua Xy = Cyp Xp Xy = CupgX; —Cy Xy

The relative degree, r, is 2, while the system is a set of four first-order differential

equation, therefore, one can only carry out partial feedback linearization of the system
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with the chosen output, therefore, the x coordinate of the original domain

becomes x(&,7) in the transformed coordinates

Using the computed Lie derivatives, the normal form is given as:

& h X,
O = &, _ L:h _ Xy
s m Xy

&, 7, b, X; —bsX,

where &;and &, are defined such that Ly, =0 and L 7, =0.

=

X X X X
o5 N

iS

m
&

é(bsfz + 772)
&

(4.46)

(4.47)

The Jacobian matrices of the transform and inverse transform are given below, and they

are nonsingular and are well defined, since for any input, b, = 0.

do
dx

= b,

The partial feedback linearized system becomes:

:
S
7

S

2 3
—Cih —Ciu&y —Cofh & —Cagsly —Cuha

t;:(bségz +772)
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; U
) |- bs(‘ Ceadi ~Caoes —Cab2 ~CrTh —Conlilly ) +b, (Cfvérl ~Cialh ~Cay Th —Coafly —Cy [b + ZD
I

b,



+1 tu (4.48)

reference trajectory:
V=4,

from eq. 4.48
& =Lih+L L hu

therefore, input u is designed so that the nonlinear dynamics are cancelled.

u= bi(V - (_ Cill —Cialy — C4217712651 - (:403513 —Cy7, ))

4

Output:
y=¢ (4.49)

The linear subsystem of the feedback linearized system is given below:

t:j i (3 3@*@ (450)

and by pole placements; v(&) = -K¢&, or v=—k,¢& —k,&,
The new control input v is chosen, so that Eq. (4.50) is linear and in canonic form,

therefore, the linear control gains k, and k; are designed so that the subsystem is

asymptotically stable.
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4.4.2.1 Internal dynamics:

The internal dynamics are given by the subsystem below:

) 1
m= b_(bségz "'772)

4

. & N
1, = _Q(_ Cuil _C40§13 —Cy&, —Crh _C421§17712 )"’ bA(Cfvfl —Ca?h _C3129812771 _C3307713 —Cq (h +-2

b, b,
(4.51)

4.4.2.2 Zero dynamics
The zero dynamics are given below in Eq. (4.52), by setting:

n= {771v772’§1"§2}: {7711772'070}1
hence,

. _ T

m b4

n, = (b3cfv —b,Cys )’71 —Cy77, —0,Caq07) (4.52)

As a reversal to the case in previous section, the feedback linearized subsystem
presented in Eq. (4.50) is second-order, with the modal amplitude of the second mode
and its derivative as the two new states in the transformed coordinates. The designed
controllers are also chosen to be proportional to the two new states. The modal amplitude

of the first mode and its derivatives constitute the zero dynamics presented in Eq. (4.52).

61



4.4.3 Control with both first and second modes as the outputs:

The distributed active sensors embedded in or bonded to the panel are located so
that the amplitudes of both the first and second modes of the fluttering panel are sensed
separately as outputs. Similarly, input signals are fed to the actuators distributed over the
surfaces of the panel so as to independently actuate both the first and second modes of the
panel. This is a case of a multi-input multi-output nonlinear system, and the analysis
presented in Section 4.3 can be applied to the multi-input multi-output active panel

undergoing fluttering given in Eq. (4.31) below:

x=f(x)+9g,(X)u; +9,(x)u, (4.53)
Y. = hl(X)
y, =h,(x) (4.54a,b)
where
XS
Xy
f(x) =

3 2
Cr Xy =CiaXp —Cy X3 = Cga0 Xy —Cg X, X,
3 2
—Cp Xy = Cyg Xy —Cy Xy —Cupg Xy = Cypp X X,

0 0
0 0

X)= ) X)=
9.00=1y K=
b4l b42

and the outputs are:
Y1 = hl(x) =X
Y, = hz (xX) = Xy
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From the computed Lie derivatives, we have
2 3 2

Lf h1 = —Cy3Xy —Cazo Xy +Cq Xy —C5p X X; —Cy Xy
2 2 3

Lf hz =—C Xy = Cuy Xy = Cpp Xy Xy —CypgX; —Cy Xy

The vector relative degree, {r,,r,} ={2,2}, and the total scalar relative degree is 4.

(4.55)

E(X) — |:b31 b32:|

b41 b42

The coordinate transformations of the x coordinates in terms of the new coordinates & are

given as:

el

Xl -

_ g2

X2 -

_ g1

X3 - 92

2

Xy = 52

The Jacobian matrices of the transform and inverse transform are given below, and they
are nonsingular and well defined.

do

=1
dx

Hence, the coordinate transformation is global diffeomorphism.

The original system dynamics given in Eq. (4.31) are represented in the new coordinates
as:

& & 0 0
é:zz _ _Ck3§11 —Cay (6811)3 + Cfvflz - Cslzégll (512)2 —Cy 521 I b31 u, + bsz u, (4.56)
1 & 0 0

22 - Ck4§12 —Cyps (512)3 —Cy 522 _Cfvésll _C421(§11)2§12 b41 b42

for reference trajectories:

21
fz =V,
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E2 v, (4.57a,b)
where the new control input are

v, =D, (&) +a; (Hu, (1) + a3 (), (1)

v, =0, (£) +a; (§)u, (t) + a3 (§)u, (1)

The state feedback control laws are formulated so that the nonlinearities in eq. (4.56) are

cancelled, and they are given as

h= %(Vl B (_ Ck3§11 ~Ca3o (511)3 + Cfv‘fl2 - 0312511 (512)2 —Cy 521))

+ %(_ V, = Coulf —Copa(&7)° —Cy&s —C &t — o (&1)° 512) (4.58a)
U, = %(_ Vi — Cksgll —Ca3o (fll)s + Cf\,§12 - C312§11(§12)2 —c, 521)

+ %(Vz - (_ Cesll —Cas(&7)° —Cy&5 —C &) —Cupy (&) &7 )) (4.58b)

A= b31b42 - b32 b41

The feedback linearized models, which are two fully decoupled second-order dynamic

system given in Eqg. (4.59) and Eq. (4.60) become

Mode 1:
=&
El=v,, (4.59a)

where v, = —k;& —k; & by pole placements (4.59b)
The first output

Y. = 511
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& =V, (4.60a)
where v, = -k &2 — k[ EZ by pole placements (4.60b)

The second output

Y, = 512

Once again, just as in the previous two sections, the new inputs are chosen so that
each resulting mode is asymptotically stable. One can observe that there is no internal
dynamics when the original multi-input multi-output nonlinear system is employed
because the original system given in Eq. (4.53) and Eq. (4.54) is fourth-order with two

control inputs having total scalar relative degree of 4, that is, r = n.
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5. NUMERICAL SIMULATIONS

A simply supported rectangular panel with two piezoelectric layers segmented into
rectangular patches is used for the numerical simulations. The panel is an aluminum
panel, while the piezoelectric layers are lead zirconate titanate (PZT) ceramics. It is
assumed that the PZT patches are perfectly and symmetrically bonded to the rectangular
aluminum panel to form an active panel. The geometry and the material properties of the
intelligent panel are given in Table 5.1.

The mathematical model of the active panel dynamics is presented in Chapter 3.
This model, which is represented as a set of modal nonlinear differential equations,
accounts for various forces acting on the intelligent panel including aerodynamic loads,
externally applied in-plane loads and electrical displacements. The aerodynamic loads,
which are represented by the nondimensional dynamic pressures, induce instability of the
intelligent panel resulting in panel flutter with associated limit cycle motions. The
electrical displacements produced the actuation of the piezoelectric ceramics that are used
to suppress the limit cycle motions through output feedback linearizing control developed
in this research. The feedback linearizations transform the nonlinear models to simple

Brunovsky canonical forms.
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Table 5.1 The geometrical and the material properties of the active panel

Host layer Actuator
Material Aluminum Lead zirconium titanate
Length (in.) a:12.0 X, : 0.1a
Width (in.) b :12.0 y, : 0.6b
Thickness (in.) h,:0.05 h, :0.005
Mass density (Ib- p,: 0.2588x10°° p, : 0.7101x10°°
sec’/in®)
Young’s modulus (psi) E.:10.4x10° E,: 9.0x10°
Poisson’s ration v, : 03 v, 103
Charge constant (in./v) - dy, : —7.478x10°°
Charge constant (in./v) - dg, : —7.478x10°°
Charge constant (in./v) - dy : 0
Coercive Field (v/in.) - max - 15243
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A Runge-Kutta integration scheme was used to simulate the modal nonlinear
models. The integration time step was chosen to be about one tenth of the smallest period
of the normal modes, that is, Az = 0.0015. Initial conditions were chosen arbitrarily, but
the same values were used for all the simulations. Generally, any chosen initial
conditions still result in limit cycle motions. Panel flutter with associated limit cycle
motions were obtained by the integrations, and the suppression of these limit cycle
motions were demonstrated by activating the controllers at specified time. Two linear
normal modes were used to model panel flutter in this research. The calculations were
conducted in time domain.

The PZT patches were used as both actuators and sensors simultaneously. These
patches were activated independently, so that the motions of the panel were sensed and
actuated at desired locations on its surfaces, therefore, the active panel was controlled by
single input and multi-input signals through these actuators. Three cases were considered:
the first case was when the first mode was sensed as output signal, and it was shown in
Fig. (5.1), the second case was when the output signal of the second mode was sensed as
shown in Fig. (5.2), and the third case was when both the first and the second modes were
sensed as shown in Fig. (5.3). The output signals were modified and fed back through the

actuators as shown above.
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Fig. 5.1 A simply-supported plate showing the actuators for the first mode
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Fig. 5.2 A simply-supported plate showing the actuators for the second mode
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Fig. 5.3 A simply-supported plate showing the actuators for first and second modes
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5.1 Limit-Cycle Motion of the Panel Flutter

The panel flutter is induced by the aerodynamic pressure on one side of the panel.
The critical dynamic pressure is calculated by eigenvalue analysis of the linear system,
and this is given by its open-loop roots.

Based on the panel dynamics, the aerodynamic pressure affects both the damping
terms and the flow coupling terms in the system. The panel exhibits free oscillations
when there is no aerodynamic pressure, and there are no other damping and nonlinear
effects in the system. Linear eigenvalue analysis shows that it has purely imaginary
eigenvalues. The application of aerodynamic pressure introduces both damping and flow
coupling terms, so the panel exhibits damped oscillations, and the system has complex
eigenvalues with negative real parts, which lead to the decay of the oscillation of the
panel. As the dynamic pressure (1) is increased, the rate of decay increases until it
reaches a critical point, at which there exists a pair of purely imaginary eigenvalues, with
the other eigenvalues having negative real parts, and this signifies the onset of panel
flutter. At this critical point, the dynamic pressure is called the critical dynamic pressure

(4, =385), and the system becomes critical. Beyond this critical point, the pair of

purely imaginary eigenvalues becomes eigenvalues with positive real parts, the motion of
the panel diverges, and the system becomes unstable by linear analysis and the amplitude
of the panel deflection diverges, but the structural nonlinearity due to the effect of the in-
plane stretching forces becomes significant and acts as a restoring force, and the
amplitude stays at a certain value with limit-cycle motion of the panel, and fluttering of

the panel is sustained.
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In [54], six linear normal modes were used for numerical analysis, but the critical
dynamic pressures using two to six linear normal modes were presented. While the
critical dynamic pressure obtained is 515 for six linear normal modes, it is 385 for two
normal linear modes. Although, four or six linear modes are required for obtaining a
converged limit-cycle amplitude and frequency [13], several research works have been
presented with two normal modes [10, 16, 17, 21, 27].

The model was run with the dynamic pressure set to 1,500, which is about 3.9 times

the critical dynamic pressure. An aerodynamic damping coefficient of ¢, = 0.01 was

used. Fig. (5.4) shows the deflection profile of the mid-span of the panel in the flow

direction at a specific instant of time. The position of the maximum deflection,w__ , of

the panel is at about 68.5% of the panel length. The time history of the deflection of the
position of maximum deflection is shown in Fig. (5.5a), and it reflects the panel flutter

that is taking place, and the existence of limit cycle motion is shown in Fig. (5.5b).
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Fig. 5.4 Panel deflection of a simply-supported plate at the mid-span in the flow

direction
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Fig. 5.5 Time history of uncontrolled panel deflection, at A
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Fig. 5.6 Phase plot of uncontrolled panel deflection, at 4



5.2 Suppression of Panel Flutter due to Aerodynamic Load only

At a dynamic pressure, 4 =1500, panel flutter limit cycle motions are obtained first,
and then the controllers are activated to suppress them at a selected time. In order to
suppress the panel flutter limit cycle motion, a closed-loop system with feedback
linearization controllers developed in this research were used. The linearized systems in
the transformed coordinates were in canonical controllable forms; hence, the pole-
placement techniques were used to select the control gains, such that the roots of the
closed-loop systems were entirely in the left half of the complex plane, hence, the
feedback linearized system becomes asymptotically stable. The control inputs are the
electric fields, generated by the electric potentials applied on the PZT patches. There are
maximum allowable electric fields, above which depolarization of the piezoelectric
property takes place, but that is not one of the objective of this research.

The PZT patches sense the magnitude of the output of the first mode, second mode,
or both first and second modes of the limit cycle motions of the panel flutter. These are
the three cases shown in Fig. (5.1-3). In each case, the selected output is fed to the
controllers that modify the signals, and is fed back to the actuators, and this actuates the
panel so that the magnitudes of limit cycles are suppressed, until the sensor senses no
deflection of the panel from the equilibrium.

For the three cases, plots of the zero dynamics, plots of the time histories for the
panel at the position of maximum deflection, plots of the normalized control inputs, and
phase plots are shown in Fig. (5.7 — 14). The zero dynamics for the single-input nonlinear

systems show that they are asymptotically stable. The limit cycle motions are suppressed
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and the selected point stabilized at the undeflected point, except for the second case,
where the second mode is used as the output, the selected point stabilizes at a new
equilibrium. See Fig. (5.10) and Fig. (5.11) for the phase plot of the zero dynamics and
plot of time history, respectively. This is confirmed by placing the poles of the closed-

loop system at other various locations.
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Fig. 5.7 Phase plot of the zero dynamics for the panel at A

first mode as the output.
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Fig. 5.8 Time history of panel deflection and control effort with feedback linearization
controller, at A =1500 and R, =0, using the first mode as the output.
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Fig. 5.9 Phase plot of the panel with feedback linearization controller, at 2 =1500 and
Ry =0, using the first mode as the output.
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new equilibrium, when the second mode is the output.

Fig. 5.10 Phase plot of the zero dynamics for the panel at A
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Fig. 5.11 Time history of panel deflection and control effort with feedback linearization
controller, at 2 =1500 and R;" =0, using the second mode as the output.
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Fig. 5.12 Phase plot of the panel with feedback linearization controller, at 4 =1500 and
R =0, using the second mode as the output.
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Fig. 5.13 Time history of panel deflection and control efforts with feedback linearization
controller, at A =1500 and R;" =0, using first and second modes as outputs.
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Fig. 5.14 Phase plot of the panel with feedback linearization controller, at 4

0, using first and second modes as outputs.
86

Ry =



5.3 Suppression of Panel Flutter due to Combined Aerodynamic and Externally
Applied In-plane Forces
In this section, it is considered that an externally applied in-plane load is on the

panel with the aerodynamic load. The latter is set at a dynamic pressure, A = 380, and the
former is set at a normalized in-plane load R, = —z?, that is, a compressive load. At this

dynamic pressure, without the externally applied load, the panel is stable, that is, there is
no panel flutter, but the applied in-plane load causes the panel to flutter at lower dynamic

pressure. For this condition, the critical dynamic pressure A is 325. In order to suppress

panel flutter limit cycle motion due to these conditions, the same controllers with the
same closed-loop roots pole placed as in the previous section are employed. These poles
can be placed in different places for better quality of suppression.

The panel flutter in each case is suppressed. Plots of the zero dynamics, plots of the
time histories, plots of the normalized control, and the phase plots are shown in Fig.
(5.15-22). The time histories show that the point of maximum deflection stabilizes at the
undeflected point, except for the second case again, where the second mode is used as the
output. For the second case, the selected point stabilizes at a new equilibrium, although
this is not revealed in Fig. (5.16), but it can be observed with higher value of dynamic

pressure.
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Fig. 5.16 Time history of panel deflection and control effort with feedback linearization
controller, at A =380 and R" = -7z, using the first mode as the output.
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Fig. 5.18 Phase plot of the zero dynamics for the panel at A

a new equilibrium, when the second mode is the output.
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Fig. 5.19 Time history of panel deflection and control effort with feedback linearization
controller, at 2 =380 and R" = —z?, using the second mode as the output.
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Fig. 5.20 Phase plot for the panel with feedback linearization controller, at A =380 and
R = -2, using the second mode as the output.
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Fig. 5.21 Time history of panel deflection and control efforts with feedback linearization
controller, at A =380 and R!" = -7z, using first and second modes as outputs.
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Feedback linearization is based on nonlinear control theory, and it has been used in
this study to transform the nonlinear panel flutter problem into an equivalent controllable
linear problem that can be written in simple Brunovsky canonical form by the chosen
outputs. This takes into account the nonlinear characteristics of panel flutter dynamics in
the design of nonlinear feedback controllers. Nonlinear feedback control laws are
developed and used to cancel the nonlinear dynamics resulting in a linear problem. The
pole placement technique is then employed so as to make the states of the feedback
linearized model locally asymptotically stable at a given equilibrium.

Using this approach of feedback linearization, nonlinear dynamic equations of an
intelligent panel subject to aerodynamic loads with or without externally applied in-plane
load are transformed into linear equations in the new coordinates. This intelligent plate
has piezoelectric actuators and sensors symmetrically bonded to its surfaces. The
piezoelectric actuations of the piezoelectric layers enable the plate to actively respond to
external stimuli that cause large deflections and instability resulting in the failure of the
panel due to fatigue. With this development, advanced aircraft or vehicles and surfaces in
a fluid medium can operate in supersonic environments by the use of this intelligent

panel.
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The nonlinear dynamic are nonlinear coupled partial differential equations obtained
from von Karman large-deflection plate theory accounting for the structure nonlinearity,
and reduced to nonlinear modal equations using two normal modes by Galerkin’s method
with modal expansion. The nonlinear modal equations are transformed to state-space
format, using the amplitudes of the modes and their derivatives as the states, and
presented as a nonlinear control system. Linear panel flutter analyses are carried out to

determine the critical dynamic pressures A, at which there are onsets of panel flutter limit

cycle motions. At dynamic pressures above the critical dynamic pressure, limit cycle
motions are considered large, therefore nonlinear panel flutter analysis is employed. The
piezoelectric actuation of the active panel drives the actuators to suppress the panel flutter
associated limit cycle motions, and it is carried out by the piezoelectric bending moment
generated by the electric field, which is considered as the control input, and it is applied
on the actuators.

In selecting the output to linearize the nonlinear control system, three outputs are
considered, and these are the first mode, second mode, and both first and second modes.
These are three cases for which numerical simulations are carried out. The closed-loop
systems for the first two cases are classified as single-input single-output nonlinear
systems, and only partial feedback linearization is carried out, therefore, there are internal
dynamics, which are established to be locally asymptotically stable. In the third case, the
closed-loop system is classified as multi-input multi-output nonlinear system, and full
feedback linearization is carried out, thus, in this case, there are no internal dynamics.

The closed-loop systems for the three cases are numerically simulated at much

higher dynamic pressures than the critical dynamic pressures so that limit-cycle motions
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are generated. The simulated systems show that the closed-loop systems based on the
controllers effectively suppress panel flutter limit cycle motions with the generated
piezoelectric bending actuations as control inputs. Therefore, with the feedback
linearization controllers developed, the limit cycle motion of panel flutter can be
completely suppressed if the controller gains are carefully selected.

The flutter free dynamics are also achieved if the actuators are activated before the
critical dynamic pressure is reached, therefore, the dynamic pressure of the panel can be

allowed to exceed the critical dynamic pressure A, without flutter. This approach is

practically more feasible than the suppression of limit-cycle motions, when aircraft wing

or air vehicle surface is loaded with aerodynamic loads.

6.2 Recommendations

Based on the studies carried out in this research, there are ample opportunities to
improve and extended the effort here, and some of these are highlighted below:

The technique used in this study can be used to linearize the nonlinear dynamics for
panel flutter reduced to nonlinear modal equations based on Galerkin’s method with
modal expansions using five or six linear modes.

In this research, feedback linearization has shown a promising opportunity to
develop a flutter free intelligent panel, and this provides tremendous opportunity for
aeroservoelasticians in terms of research and development of aircraft wings with superior
performance in a supersonic environment. Therefore, it is necessary that a physical
system be built, with the analysis in this study and other future analytical works used as

benchmarks.
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In the present effort, the maximum allowable electric field that can lead to
depolarization of the piezoelectric ceramics is not considered as a limitation, but for
practical system, it is. Therefore, optimal control technique can used to design the
controllers for the feedback linearized system.

The mathematical model of panel flutter is idealistic, and the actual system
possesses uncertainties, therefore, there is a need to compensate for the uncertainties in

the system by designing adaptive and robust controllers.
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APPENDICES

The expressions of C, (i =1,...,6) of eq. 3 are given in [13] as;

2 (o)
C, zz[r%]azm

m

|a 2 2|
CZ EZ (Aij_ul;m azm

m

C,=> > Y a,aari{a(s,m[y(s+mr—n)—y(s+m,r+n)]

+ A8, m[y(s—m,r—n)—y(s—m,r+n)}

where
a(s,m) = - m(s—m) _
(s +m) +4(%)2_2
B(s,m) = - m(s+m)
(s —m)+4(% )"

y(s,m)=if s=m=0
=ifs=m=0
=if s#m

C, =YD > a,a.a,r*{(s+ma(s,m[¢(s+mr+n)+(s+mn-r)]
S +(s—m)A(s,m[¢(s-m,r+n)+{(s-mn-r)}
where

y(s,n)=ifs=n=0

=ifs=n=0
=ifs#n
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Co=> > Y a,aari{(s+m’a(s,mly(s+mr-n)—y(s+mr+n)]

+(s—m)2B(s,m)[y(s—m,r—n)—y(s—m,r+n)j}

_ 2g M
CG =Zm:§Zamasarr {S+m

+n(s,m[y(s—m,r—n)—y(s—m,r+n)}

[y(s+m,r—=n)—y(s+m,r+n)]
where

77(s,m)=l if s#m
s—m

=0 if s=m
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