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A panel is subject to dynamic instability when induced aerodynamic loads under the 

supersonic/hypersonic environment result in a self-excited oscillation called panel flutter. 

The panel of an aircraft that flies at supersonic speed or a structural panel that is in fluid 

flow at such regime may experience panel flutter. A plate with highly distributed 

piezoelectric actuators and sensors connected to processing networks, referred to as 

intelligent plate can actively control its vibrations. The objective of this research is to 

analytically demonstrate panel flutter suppression using piezoelectric actuation based on 

feedback linearization controllers.  

A nonlinear control system is formulated using the nonlinear dynamic equations for 

a simply supported rectangular panel with piezoelectric layers based on Galerkin’s 

method with modal expansions of nonlinear partial differential equation obtained from  
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von Kárman large-deflection plate theory, which accounts for the structure nonlinearity. 

The nonlinear equations also account for loads such as externally applied in-plane loads, 

aerodynamic loads, and electrical displacements. The aerodynamic loads are given by the 

first-order piston theory or the quasi-steady supersonic theory. The control inputs are 

given by the electric fields required to drive the actuators based on piezoelectric 

actuation, which is modeled by linear piezoelectric constitutive relations. Outputs of the 

nonlinear system are feedback and used to transform it into an equivalent controllable 

linear system in new coordinates by formulating nonlinear feedback control laws, which 

cancel the nonlinear dynamics resulting in a linear system. The pole placement technique 

is then employed to make the states of the feedback linearized models locally 

asymptotically stable at a given equilibrium.   

Numerical simulations are carried out for the closed-loop systems at dynamic 

pressures higher than the critical dynamic pressures for the onset of panel flutter, where 

limit-cycle motions are generated. The simulated systems show that the closed-loop 

systems based on the controllers effectively suppress panel flutter limit-cycle motions 

with the generated piezoelectric bending actuations as control inputs. Therefore, with the 

feedback linearization controllers developed, the limit-cycle motion of panel flutter can 

be completely suppressed or the panel can be made flutter free if the controller gains are 

carefully selected.  
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NOMENCLATURE 
 
 

,1a ,2a ,na nmA , nA   = modal amplitudes 
a, b   = plate length, plate span 

,A ,B D   = extensional, coupling, bending stiffnesses  

3b , 4b    = electro-elastic coupling coefficients 
E
ijklC , E

ijklQ , [ ]EQ  = elastic constant matrix   

1C , 2C , 3C , 4C , 5C , 6C  = nonlinear modal amplitude terms 

dc    = aerodynamic damping term 

fvc    = flow speed coupling term 

3kc , 4kc   = linear stiffness terms 

312c , 330c , 403c   = nonlinear stiffness terms 

ijkd , [ ]d   = piezoelectric strain coefficients 

iD    = electric displacement 
e    = piezoelectric stress coefficient 
E , ,iE { }E   = electric field 
E , sE , pE   = elastic constant  

sE , pE   = aluminum elastic constant, piezo ceramic elastic constant 
f    = dielectric permittivity 
h , ph , sh   = panel,  piezo ceramic, substructure thicknesses 
H    = electrical enthalpy 
( )⋅H    = Heaviside function 

K    = kinetic energy 
∞M    = Mach number 

{ }M    = bending stress couple 
{ }N    = stress resultants 

iP    = Polarization vector 
q , aq    = dynamic pressure 

31R , 32R   = moment-electric field coefficients 
t    = time 
T    = transpose 
u , v , w    = displacement field along −x , −y , −z directions 
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0u , 0v    = midplane displacement fields 
U    = internal strain energy 
V    = workdone due to external force 
w , W    = deflection or transverse displacement 

maxw , maxW   = maximum deflection  
W&    = rate of change of deflection 
 
x , y , z   = displacement field components 
δ , Δ    = delta 
( )⋅δ    = dirac 

ijke    = piezoelectric stress coefficients 
ε , ijε , [ ]ε , { }ε  = strains 

{ }pε , { }0ε    = piezoelectric strain, midplane strain 
λ , crλ    = dynamic pressure, critical dynamic pressure 
{ }Λ    = piezoelectric induced strain vectors 
{ }κ , xκ , yκ , xyκ  = curvature 

εκ kl , [ ]εκ , [ ]σκ  = dielectric permittivity 

xyγ    = shear strain 

xyτ    = shear stress 
τ    = nondimensional time 

aρ    = air density 
φ , Φ    = potential, airy stress potential 
∇    = gradient 

ijσ , [ ]σ , { }σ   = elastic stress components 

om    = mass per unit area  
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1.  INTRODUCTION 
 
 

Panel flutter is the self-excited oscillation of a plate or shell when exposed to 

airflow along its surface [1]. This is a dynamic instability phenomenon in the 

supersonic/hypersonic speed regime, and is induced by the aerodynamic loads, which act 

only on one side of a panel. This differs from aeroelastic wing flutter, where the flow acts 

on both sides of the wing. Generally, flutter is an oscillatory aeroelastic instability 

characterized by the loss of system damping due to the presence of unsteady aerodynamic 

loads [2]. 

The consequences of aeroelastically induced motion are structural failures, and they 

have been observed in research aircraft, launch vehicles for spacecraft, and jet engines. 

The earliest reported structural failures that can be attributed to panel flutter were the 

failures of early German V-2 rockets during World War II [3, 4]. Panel flutter can be 

experienced by a vehicle that flies at a supersonic speed in the air. The skin panels 

experience sustained vibrations with associated limit cycle oscillations that can result in 

structural failures by fatigue due to the aerodynamic pressure on the vehicle surface.  

Experiments indicate that there are critical dynamic pressures (air flow speeds) 

above which panel flutter exists. At dynamic pressures below these critical dynamic 

pressures the panel has random oscillations with small amplitudes. These are small 

compared to the panel thickness, and they die out with time. Linear structural theory 

predicts the critical dynamic pressure value above which the panel motion becomes 
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unstable and grows exponentially with time, but it only predicts the flutter boundary and 

the corresponding structural flutter frequency. At dynamic pressures above the critical 

pressure, the amplitude of vibration becomes large, and it is on the order of the panel 

thickness, the effect of in-plane stretching forces becomes significant and acts as a 

restoring force, while the aerodynamic forces tend to increase the amplitude. Therefore, 

the interplay of the mid-plane stretching forces, which generally restrain the motion and 

cause stability, and the aerodynamic forces, which grows the amplitudes and causes 

instability, results in the bounded limit cycle oscillations that are observed. This is shown 

in Fig. 1.1. Therefore linear theory becomes insufficient, and nonlinear structural theory, 

which is based on von Kármán large deflection plate theory, is suggested for further 

analysis. 

Flexible structures, such as satellites, atmospheric re-entry vehicles, and other 

aerodynamic vehicles are generally lightly damped due to low structural damping in the 

materials used and the lack of other forms of damping. In these structures, vibrations 

have long decay times that can lead to fatigue, instability, or other problems associated 

with the operation of the structures. One of the earliest works of actively controlling the 

vibrations of these flexible structures using active materials is by Bailey and Hubbard [5] 

who developed an active vibration damper for a cantilever beam using a distributed-

parameter actuator and distributed-parameter control theory. When these structures are 

made with highly distributed actuators, sensors, and processing networks [6], they are 

referred to as intelligent structures. The study of aeroelastic phenomena has received 

serious attentions in the past few decades in two particular areas of interest, namely wing 

flutter and panel flutter, and efforts have been made to develop controllers for these 
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classes of problems. Much attention has been focused in the literature on active control of 

wing flutter using nonlinear control techniques, but very little has been done in the area 

of panel flutter control using such techniques. Moon, S. H. et al. [7] noted that the system 

to be controlled is both nonlinear and underactuated, and that it is better to control 

nonlinear systems using a nonlinear control method. A nonlinear controller using a 

feedback linearization control method was proposed and applied to suppress panel flutter 

using a finite element method.  

 

 

Fig. 1.1  Nonlinear oscillations of a simply-supported plate 

  

 



 4 

1.1  Panel Flutter 
 
 

There are voluminous works on panel flutter over several decades, with most 

analyses placed in one of five categories [8] based on the structural and aerodynamics 

theories employed, and they are described in [9 -14]. They are shown in Table 1.1. The 

first category is the linear structural theory and quasi-steady aerodynamic theory [9, 10]. 

The second is the linear structural theory and full linearized (inviscid, potential) 

aerodynamic theory [11, 12]. The third is the nonlinear structural theory and quasi-steady 

aerodynamic theory [13-18]. The fourth is the nonlinear structural theory and the full 

linearized (inviscid, potential) aerodynamic theory [19, 20], and the fifth is the nonlinear 

structural theory and the nonlinear piston aerodynamic theory [21].  

The aerodynamic pressure, which acts on one side of the panel surface, is developed 

as a function of the panel motion. Linearized potential flow theory is recommended for 

air speeds close to Mach one, quasi-steady linear (first-order) piston theory is employed 

for supersonic air flow ( 2>∞M ), and nonlinear (third-order) piston theory is 

recommended for the hypersonic regime ( 5>∞M ). Structural theory can be linear or 

nonlinear depending on the order of magnitude of the transverse deflection compared to 

the panel thickness.  

Table 1.1  Panel flutter theories 
Type Structural theory Aerodynamic theory Mach number 
1 linear Quasi-steady piston 52 << ∞M  
2 linear Full-linearized potential 51 << ∞M  
3 nonlinear Quasi-steady piston 52 << ∞M  
4 nonlinear Full-linearized potential 51 << ∞M  
5 nonlinear Nonlinear piston 5>∞M  

 



 5 

Linear panel flutter can be solved with the Fourier method in the frequency domain. 

The critical dynamic pressure and flutter boundary are found by increasing the 

aerodynamic pressure until two linear frequencies coalesce. The two values of 

frequencies, which are real become a complex pair. Beyond the flutter boundary, the 

panel will undergo fluttering motion, and the amplitude of the panel motion diverges, but 

various experiments indicate that the amplitude grows to a limiting value, which becomes 

stable, nearly sinusoidal and independent of the initial conditions. This motion is called 

limit cycle oscillation. This phenomenon is explained by the interplay between damping 

due to the structural nonlinearities and instability due to aerodynamic pressure effect. The 

transverse deflection of the panel is of the order of the panel thickness when it undergoes 

limit cycle oscillation in the fluttering zone, so linear analysis is inadequate. In order to 

account for the geometric nonlinearity, von Kármán large-plate theory is usually 

employed in nonlinear panel flutter problem, and it agrees well with experimental results 

[22] as shown in Fig. 1.2. 

The analysis of nonlinear panel flutter involves analytical techniques such as 

Galerkin or the Rayleigh-Ritz method, which is used to reduce the partial differential 

equations of motion to a set of ordinary, nonlinear, integral-differential equations in time 

for the modal amplitudes. The integral terms are omitted, if quasi-steady aerodynamic 

theory is used instead of the linearized full (inviscid, potential) aerodynamic theory. The 

linear panel flutter problem can be obtained, if the nonlinear terms are omitted [23]. The  

set of ordinary differential equations obtained is further solved by a direct integration 

method, harmonic balance method, or perturbation method.  
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Fig. 1.2  Comparison of experimental results and first-order piston theory solutions 

 

The numerical time integration, when employed, produces the time-displacement 

history, from which limit cycle oscillation is obtained.  

The harmonic balance method has been widely and successfully applied to 

nonlinear panel analysis [1, 2, 14, 15, 17, 18, 21, 25, 26].  Using this method, Fung [2, 

14] and Kobayashi [17] solved 2-D plates, and Librescu [18] developed general solutions 

for rectangular and cylindrical specific orthotropic plates. Eastep and McIntosh in [21] 

used a Rayleigh-Ritz approximation to Hamilton’s variational principle instead of 

Galerkin’s method to set up the equations of motion in the spatial domain for the solved 

rectangular plates.  Kuo, Morino and Dugundji [1] also solved the nonlinear panel flutter 

problem for rectangular plates. Eslami [25] studied specific orthotropic panels. Yen and 
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Lau [26] studied the dynamical behaviour of a hinged-hinged 2-D plate excited by 

supersonic flow. 

Perturbation methods are used to solve problems with small nonlinearity due to the 

assumption of small disturbance from an equilibrium position, and they have been used to 

solve panel flutter for rectangular plates by Morino [1, 27], and by Eslami [25] for 

specific orthotropic plates. 

The nonlinear theory of supersonic panel flutter is deterministic. Ibrahim and Orono 

[28] investigated stochastic nonlinear flutter of a simply-supported 2-D isotropic panel 

subjected to random in-plane forces. The aerodynamic loading was modeled using a first-

order quasi-steady piston theory. A general moment equation for two- and three-mode 

interactions was derived by using the Fokker-Planck equation approach. The stochastic 

nonlinear flutter was studied using Gaussian and first-order non-Gaussian closure 

schemes. They concluded that the nonlinear random flutter of panels in terms of four and 

more modes can adequately be determined by using the Gaussian closure scheme. 

The other alternative approaches to Galerkin’s method and modal expansion are 

numerical methods (finite difference and finite element representations) and separation of 

variables or so-called exact solutions. The former is particularly useful in solving 

nonlinear panel flutter problems without simple boundary conditions or problems with 

equations of motion with various terms which makes the analytical solution improbable.  

Survey of various applications of finite element methods to nonlinear panel flutter can be 

found in Han and Yang [29] up to 1983, Gray and Mei [8] up to 1991, Zhou et al. [30] up 

to 1994.  
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1.2  Intelligent Structures 
 
 

Pierre and Jacques Curie [31] discovered that some crystals produce charges on 

their surfaces when compressed in particular directions, and those charges are 

proportional to the applied pressure. These charges are withdrawn when the applied 

pressure is removed. It was also found that these crystals become strained when they are 

electrically polarized. This effect is called piezoelectricity, and it is exhibited by 

crystalline materials, such as quartz and rochelle salt.   

Nowadays, the most commonly used piezoelectric materials include ceramics called 

lead zirconate titanate (PZT), and polymers such as poly-vinylidene fluoride (PVDF), 

Macro Fiber Composites (MFC) and Active Fiber Composites (AFC).  

Piezoelectric materials act as a generator by converting mechanical energy into 

electrical energy when pressure is applied, and this is known as the sensor mode or the 

direct effect. Conversely, it acts as motor by converting electrical energy into mechanical 

energy, when electric field is applied to it, and this is known as the actuator mode or 

converse effect. It also acts as a capacitor for storing electrical energy. These materials 

have been used extensively in electromechanical transducers, such as ultrasonic 

generators, filters, strain gages, pressure transducers, accelerometers, sensors, and 

actuators because of their direct and converse effects.  

Piezoelectric layers or patches are usually bonded to or embedded in the surface of a 

structure. The mechanical/electrical behavior of these flexible structure members can 

then be monitored or modified by the piezoelectric layers or patches used as sensors or 

actuators. 
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Actuation strain is the component of strain that is due to stimuli other than 

mechanical stress, and it can be produced by piezoelectric materials. This strain 

physically causes induced strains to be produced. The potential applications for induced 

strain actuators are their uses as highly distributed actuators in intelligent structures. 

Therefore, flexible structures can be controlled by the use of smart sensors and actuators.  

Intelligent structures having distributed actuators with induced strain actuations can be 

used to design structures with intrinsic vibration and shape control capabilities. Some 

studies have been carried out on induced strain actuation for beams [6, 32, 33, 34, 35]  

and plates [36, 37]. The actuation strain is modeled into the constitutive relations as is 

usually done with thermal strain. In [6], both static and dynamic models were developed 

for segmented piezoelectric and substructure couplings. These were incorporated into the 

Bernoulli-Euler beam equations, and these models were refined into three types [32]: the 

uniform strain model with only extensional strain in the actuator for surface bonded 

actuators; the Bernoulli-Euler or consistent strain model, which accounts for both 

extension and bending in the actuator and is applicable to both surface bonded or 

embedded actuators; and finite element models which account for extension, bending and 

shear in the actuator and structure. Experimental results were used to validate the beam 

actuation models presented. 

The static model of the mechanical coupling of the segmented piezoelectric 

actuators accounts for only pure bending of the elastic substructure, therefore Im and 

Atluri [34] proposed a refined model, which includes the transverse shear forces, axial 

forces and the bending moments induced by actuators. 
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Crawley and Lazarus [36] formulated a general model of the induced strain 

actuation of plates with various boundary conditions and externally applied loads for both 

isotropic and anisotropic plates that are entirely or partially covered with piezoelectric 

actuators in various orientations, either bonded to or embedded in the substrates. This 

model combines both the actuators and the substrates into one integrated structure, and it 

is referred to as the “consistent plate model.” This model considers the induced strain 

actuators to be plies of a laminated plate. There is an assumption of consistent 

deformations in the actuators and the substrates. The strain distribution is assumed to 

result from a linear combination of in-plane extensional (constant strain through the 

thickness) and bending (linearly varying through the thickness) displacements.  

Hagood, Chung and von Flotow [38] modeled the effects of dynamic coupling 

between a structure and an electrical network through the piezoelectric effect. Burke and 

Hubbard [39, 40] applied a spatially shaped distributed actuator for the vibration control 

of a simply supported beam, and this distribution facilitates the control of desired 

vibrational modes. 

Static and dynamic models have been derived for segmented piezoelectric actuators 

that are bonded to elastic substructures or embedded in laminated structures [6]. These 

models are used to predict the response of a structural member to a command voltage 

applied to the actuators and give guidance as to the optimal locations for their 

placements.  

Dimitriadis, Fuller and Rogers [41] extended the static and dynamic models 

developed in [6] for piezoelectric elements bonded to and embedded in one dimensional 

beams to two dimensional plates by estimating the load induced by the actuators to the 
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supporting elastic structures. The results were used to selectively excite and suppress 

particular vibrational modes leading to improved control behavior.  

A conservation of strain energy model has been used to determine the equivalent 

force and moment induced by finite-length spatially-distributed induced strain actuation 

attached to or embedded in laminate beams and plates using the applied moment on the 

cross-section of the edges of the actuators [35]. This model was extended into developing 

classical laminated plate theory (CLPT) for a laminate plate with induced strain actuators 

for actuator patches that are spatially distributed [37]. 

This “consistent plate model” has been experimentally verified and has been shown 

to be the most accurate representation of the actual behavior of both discrete surface 

bonded or embedded actuators, either segmented or continuous. 

The placement of actuators primarily is dependent on the mode to be controlled. The 

placement of piezoelectric actuators for controlling particular free vibration modes was 

considered by Crawley and de Luis [6]. Lee [42, 43] developed a piezoelectric laminate 

theory based on modal sensors and actuators. These modal sensors/actuators sense and 

actuate the modal coordinate of a particular mode of a beam or plate. They are also used 

to excite or measure combinations of modes. Tanaka [44] placed a number of sensor 

patches on a structure to measure the response of a number of modes. Results 

demonstrate that modes can be selectively excited and that the geometry of the actuator 

shape affects the distribution of the response among modes [41 – 44].  

A piezoelectric material can be used as an actuator or a sensor, but when it is made 

to simultaneously effect deformations and sense the strain in structural members, thereby 

combining both functions in a single device, then it is referred to as a “self-sensing 
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piezoelectric actuator,” or simply “simultaneous sensor actuator” (SSA), and Anderson 

and Hagood [45], and Anderson, Hagood and Goodliffe [46] presented a coupled 

electromechanical model for such a SSA. They also investigated issues relating to its 

implementation in both open and closed-loop experiments performed on a cantilevered 

beam.  Typically, the current drawn by the piezoelectric material is ignored when it is 

used as an actuator. When the current drawn is taken into account, there is the possibility 

of reconstructing the actuator strain from a voltage-driven piezoelectric. Dosch, Inman 

and Garcia [47] developed a technique for using a self-sensing actuator in a closed-loop 

that is truly collocated and effective in vibration suppression of intelligent structures.  

In the past few decades, a tremendous amount of research has been devoted to the 

vibration control of structures. While passive control improves the performance 

characteristics of a structure through the use of materials or devices that enhance the 

damping and/or stiffness characteristics of the structure, active control achieves the 

desirable performance characteristics through feedback control, whereby actuators apply 

forces or moments to a structure based on the structural response measured by the 

sensors.  

Some of the research in the field of vibration control of flexible structures using 

piezoelectric sensors and actuators include efforts by Plump and Hubbard, Sung and 

Chen, Chen et. al., Joseph [48 - 51]. They studied structures that are able to sense and 

control their own behaviors, so as to achieve much higher levels of operational 

performance than conventional materials and structures. A technique called positive 

position feedback (PPF) for vibration suppression in large space structures was also 

investigated, and this technique makes use of generalized displacement measurements. 
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These works also include suppression of elastodynamic responses of high-speed flexible 

linkage mechanisms by employing a state feedback optimal control scheme. 

Piezoceramics are used to generate the control inputs, and they are also used as sensing 

devices. 

 
1.3  Panel Flutter Suppression 

 
 

The effectiveness of using passive or active control of flexible structures has been 

demonstrated by many researchers. However, in the area of panel flutter suppression 

using piezoelectric materials, only a few research efforts have been reported [52 - 57]. 

Frampton, et. al. [57] investigated the active control of panel flutter with piezoelectric 

transducers by implementing direct rate feedback control, and they demonstrated a 

significant increase in the flutter boundaries.  

Chuh Mei and his research group [54, 56, 58 - 60] have carried out extensive 

research on the suppression of nonlinear panel flutter using piezoelectric actuators. They 

used both the finite element method and Galerkin’s method with modal expansion. The 

finite element models account for nonlinear stiffness matrices, thermal and aerodynamic 

loads on the panel. Optimal control was used to actively suppress large-amplitude, limit 

cycle flutter motions of rectangular plates at supersonic speeds using piezoelectric 

actuators.  

Moon. S. H. et al. [61, 62] investigated both active and passive suppression schemes 

for nonlinear flutter of composite panel. Optimal controllers based on linear optimal 

control theory were designed for active suppression schemes, while piezoelectric 
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actuators connected with an inductor-resistor series shunt circuits were used for the 

passive suppression. An active/passive hybrid piezoelectric network was also formulated.  

Since the previous studies on panel flutter suppression used optimal controllers for 

linearized models, Moon, S. H. et al. [5] applied a nonlinear controller using a feedback 

linearization control method to suppress panel flutter using the finite element method. 

This technique was also employed in developing nonlinear control techniques for a 

prototypical wing sections with torsional nonlinearies at Texas A. & M. [63]. Locally 

asymptotically stable (nonlinear) feedback controllers for a range of flow speeds and 

elastic axis locations were derived for this aeroelastic system using partial feedback 

linearization techniques when either the pitch or plunge is chosen as the output. This 

leads to a partial input-output feedback linearizing coordinate transformation with the use 

of a single trailing-edge control surface. As a result, the associated zero dynamics of the 

subsystem was studied, and it was found that it can also be locally asymptotically stable. 

Full feedback linearization was also carried out with two trailing-edge control surfaces. 

When the nonlinear partial feedback linearization is constructed so as to explicitly control 

the pitch degree of freedom, the zero dynamics of the closed-loop system are linear. But, 

when the nonlinear partial feedback linearization explicitly controls the plunge degree of 

freedom, closed-loop stability of the zero dynamics is considerably more difficult. It is 

shown that there exist locations of the elastic axis and speeds of the 

subsonic/incompressible flow for which feedback strategy exhibits a wide range of 

bifurcational phenomena.  
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1.4  Objectives and Scope 
 
 

There is much research going on in the development of intelligent systems using 

active materials, and some of these efforts include the development of intelligent plates. 

Panel flutter has also posed tremendous challenges to aeroelasticians, and has generated 

lots of research in the design of structural surfaces exposed to aerodynamic loads, 

especially in supersonic environments. The application of these intelligent plates in 

aircraft or vehicles and surfaces in a fluid medium has the potential of making these 

surfaces actively respond to external stimuli. These intelligent plates have actuators and 

sensors embedded or bonded to their surfaces, and they are connected to processors 

which modify the signals so that these intelligent plates are able to react to stimuli that 

can cause large deflections and instability resulting in the failure of the panel. With these 

developments, advanced aircraft or vehicles and surfaces in a fluid medium can operate 

in harsh environments.   

The main objective of this research is to investigate a technique for suppressing the 

fluttering of a fluid loaded flat panel or flat panel with aerodynamic loads, which is also 

acted upon by in-plane forces. This problem is also widely known as panel flutter 

suppression. The technique that is used is based on nonlinear control theory. The main 

idea is to transform the nonlinear panel flutter problem into an equivalent controllable 

linear problem that can be written in simple Brunovsky canonical form by the method 

called feedback linearization. This involves developing nonlinear feedback control laws, 

which cancel the nonlinear dynamics resulting in a linear system, and a pole placement 
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technique is then employed so as to make the states of the linearized feedback models 

locally asymptotically stable at a given equilibrium.  

The active materials used in this investigation are piezoelectric ceramics, and they 

have dual effects coupling their electrical and structural properties. The 

electromechanical quantities involved are presented in Chapter 2 and these lead to linear 

piezoelectric constitutive relations.  

Equations of motion are given for a flat panel with bonded and distributed actuators 

and sensors subject to aerodynamic loads, in-plane loads and applied electric fields. 

These equations are coupled nonlinear partial differential equations, which are reduced to 

nonlinear ordinary differential equations in time, and presented in state-space format, in 

Chapter 3.  

In Chapter 4, feedback linearizing controllers are developed for a fluid loaded flat 

panel with limit cycle oscillations at a dynamic pressure above the critical dynamic 

pressure with or without externally applied in-plane loads. The suppression of the 

oscillations after the onset of flutter is investigated. Numerical simulations are carried out 

in Chapter 5 to study the feedback linearized methodologies, and to establish the stability 

of the resulting states. The conclusions to this investigation are presented in Chapter 6. 
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2.  PIEZOELECTRICITY 
 
 

Piezoelectric materials are active materials that are either ceramic or polymeric. 

Ceramic materials include lead zirconante titanates (PZT) and single crystals; while 

polymeric materials include polyvinylidene fluoride (PVDF), macro fiber composite 

(MFC) and Active Fibers (AFC). These materials are bonded to the surface of, or 

embedded into flexible structural members, so that actuation and sensing are achieved at 

the material level. 

 
2.1  Characteristics of the Materials 

 
 

A ceramic material is made active by a poling process, which is the application of a 

large external electrical field, which aligns the randomly orientated unit cells in the 

medium. One can consider a material with geometrical orientation as shown in Fig. (2.1).  

The coupling coefficients are defined by the direction of the poling. Three mutually 

perpendicular directions are shown along the axes 1, 2 and 3. There are also three other 

modes, and these are 4, 5, and 6, which represent shear in the 1, 2 and 3 directions, 

respectively. The material, is poled as shown, in the 3-direction, so that the polarization is 

taken to be along that direction. The piezoelectric strain coefficient, piezoelectric stress 

coefficient, and permittivity are represented as ,d ,e and ,κ respectively. They have 2 

subscripts. The first indicates the direction of the electric field, while the second indicates 

the direction of strain. Therefore, the piezoelectric coefficients are ,31d ,32d ,33d ,15d ,25d  
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and 36d . The most commonly used coefficient is 31d , and this implies that electric field is 

applied in the direction of polarization, 3-direction, while, the induced strain is in the 1-

direction.  

 

Fig.2.1  Geometrical orientation of an active material showing the poling direction

1 

Poling 
direction 

2 

3 
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Piezoelectric materials have distinctive effects. They develop an electrical charge 

when subjected to mechanical stress in the direct piezoelectric effect, and conversely they 

develop mechanical strain when subjected to an electrical field. Therefore, they can 

convert electrical energy into mechanical energy and vice-versa. The applied electric 

potential produces an electrical field across the material that induces mechanical strain in 

it, while in reversal; the application of stress to the same material generates electrical 

charges on it.  

The direct piezoelectric effect is the production of both positive and negative 

electric charges on the corresponding surfaces, and it results in the deformation that takes 

place under external pressure (stress). Thus, there is polarization of the medium due to 

deformation in the absence of an electric field, iE , and the relationship between the 

polarization vector, iP , is given as 

jkijki eP ε=  or jkijki dP σ=            (2.1) 

 
The converse piezoelectric effect is the mechanical deformation which results from the 

application of electric field, iE , due to the polarization of a medium, and the relationship 

is given as 

iijkjk Ed=ε              (2.2) 

 
Therefore, there is strong coupling between the deformation fields and internal electric 

fields.  
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2.2  Electrical Enthalpy and Electric Field 
 
 

The electrical enthalpy H describes the amount of energy stored in a material and is 

defined in [64]. The electrical enthalpy can be written as 

ii DEUH −=              (2.3) 

 
whereU is the total internal energy, E and D are the electric field and displacement 

vectors, respectively. 

Toupin[65] formulated electric enthalpy density using a polynomial approximation 

based on a power series expansion about the natural state of a piezoelectric medium. The 

result is as shown 

),( EHH ε=              (2.4) 
 
 where, ε  is strain, and E is the electric field. 
 

lkkljkiijkklijijkl
E EEEeCH εκεεε 2

1
2
1 −−=          (2.5) 

 

{ } [ ] { } { } [ ]{ } { } [ ] { }EEeEQH TTET εκεεε 2
1

2
1 −−=         (2.6) 

 
where, E

ijklC  is used interchangeably with Q , and E
ijklC , ijke , and εκ ij are elastic stiffness 

constants, piezoelectric stress constant, and dielectric permittivity, respectively.  

The electric field vector is the negative gradient of the electric potential,φ , and it is 

assumed to vary linearly in the thickness, kt , direction, that is, 

φ−∇=E            (2.7) 
 

    { }T
zE00=  

 
 with 

ktzE φ−=  
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2.3  Linear Piezoelectric Constitutive Relations 
 
 

Although there are many nonlinear phenomena in piezoelectric materials, linear 

constitutive relations are often used to describe the behavior of piezoelectric layers. The 

mechanical stress and strain vectors,σ and ε , respectively, are related through the 

electric enthalpy H . The linear piezoelectric constitutive equations obtained from [66] 

are given in Eq. (2.8) and Eq. (2.9).  

 

kkijklijkl
E

ij
ij EeC

H −=
∂
∂= ε
ε

σ            (2.8) 

kikklikl
i

i Ee
E

H
D εκε +=

∂
∂−=            (2.9) 

 
and, in matrix form  
 

{ } [ ] { } [ ] { }EeQ TE −= εσ           (2.10) 
 

[ ]{ } [ ] [ ]EeD εκε +=           (2.11) 
 
Just as in the relationship between mechanical stress and mechanical strain, the 

piezoelectric stress coefficient is proportional to the piezoelectric strain coefficient, with 

elastic material properties as the constants of proportionality. Hence, 

[ ] [ ][ ]E
Qde =            (2.12) 

 
substituting Eq. (2.12) into Eq. (2.8), one obatins 
 

{ } [ ] { } [ ] { }( )EdQ TE −= εσ          (2.13) 
 
We can write  
 

[ ] [ ] { } [ ][ ]( ) { }EQdQ
TEE −= εσ  

 

      [ ] { } [ ] { }( )EdQ TE −= ε          (2.14) 



 22 

 
One can observe that the piezoelectric induced strain is the product of the applied electric 

field and piezoelectric strain coefficient of the material, and it is written as 

{ } [ ] { }Ed T=Λ            (2.15) 
 

The free permittivity matrix [ ]εκ is easier to obtain than the clamped permittivity 

matrix [ ] ,σκ  We can use the relationship below to relate the two. 

[ ] [ ] [ ][ ] [ ]TE dQd−= σε κκ          (2.16) 
 
 
Similarly, one can re-write the expression for the electrical displacement density using 

Eq. (2.11), Eq. (2.12), and Eq. (2.16) as 

 

{ } [ ][ ] { } [ ] [ ][ ] [ ]( ){ }EdQdQdD TEE −+= σκε  
 

       [ ][ ] { } [ ] { }( ) [ ] { }EEdQd TE σκε +−=         (2.17) 
 
In this section, both the linear piezoelectric constitutive relations and linear electrical 

displacement density relations have been obtained. They are given by 
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respectively. 
 



 23

3.  FORMULATIONS 
 

 
In this chapter, the generalized nonlinear dynamic equations for a simply supported 

rectangular panel with piezoelectric layers are presented.   

The flat plate or panel is considered to be an intelligent plate, and it is made up of 

the host substructure and piezoelectric materials embedded within the host or bonded to 

the surface of the host. The panel considered in this study is thin. The piezoelectric 

materials are in the form of distributed patches or continuous layers, while the host 

substructure is considered to be an isotropic material. 

Many research efforts have been conducted in the field of vibration control of 

structures using piezoelectric actuators and sensors. In the case studied here, the structure 

is a simply supported rectangular intelligent plate or panel, and its generalized nonlinear 

dynamic equations are derived as in [54]. The intelligent plate is considered to undergo 

large transverse displacement of the order of the plate thickness, therefore, von Kárman 

large-deflection plate theory, which accounts for the structure nonlinearity, is used for 

modeling the plate deflection. The linear piezoelectric theory is used to derive the 

equations of piezoelectric actuation and sensing, and first-order piston theory or the 

quasi-steady supersonic theory is used to model the aerodynamic force due to the 

supersonic fluid flow. 
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3.1  Aerodynamic Forces 
 
 

In the case where the fluid flow over a panel is considered as aerodynamic loads or 

forces, this problem is sometimes referred to as panel flutter, in the literature. The 

aerodynamics pressures can be represented by quasi-steady first-order piston theory, full 

linearized (inviscid, potential) aerodynamic theory, or nonlinear piston aerodynamic 

theory. The aerodynamic theory that is applied in this study is the quasi-steady first-order 

piston aerodynamic theory, and it is employed to model the aerodynamic pressure when a 

flight vehicle is in the supersonic airflow regime. This theory describes the aerodynamic 

loads on a skin panel as pressure on a piston in a long narrow tube with a given velocity, 

and this is expressed as in [24]. 
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      (3.1) 

 
where 2

2
1

∞= Vq aa ρ  is the dynamic pressure, aρ  is the air density, ∞V  the free stream 

airflow speed, ∞M the Mach number, w  the transverse displacement of the panel, and 

12 −= ∞Mβ . 

3.2  Displacement Field Theory: 
 
 

The displacement field theory is based on Kirchhoff’s hypothesis, and it states that 

line elements which originally are perpendicular to the middle surface of the plate remain 

straight and normal to the deformed middle surface, and there is no change in length. The 

displacement field, which comprises longitudinal u , and normal displacements v , in the 

plane of the plate, and transverse displacement w , can be written as  
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xzwtyxuu ,00 ),,( −=  
 

yzwtyxvv ,00 ),,( −=  
 

),,(0 tyxww =                 (3.2a,b,c) 
 
 

3.3  Nonlinear Strain-Displacement Relations: 
 
 

In panel flutter, the plate displacement can be of the order of the thickness of the 

plate due to both static and dynamic instabilities and the associated limit cycle. 

Therefore, the plate is considered to undergo large displacement, and one can use von 

Kármán’s theory, which considers nonlinear strain-displacement relations.   
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The flat panel is considered to be an isotropic material, and it is thin, so that the ratio of 

the length or width over thickness of the panel is greater than 20. The rotary inertia and 

transverse shear deformation effects are negligible, hence from the assumptions of 

Kirchhoff’s hypothesis, the transverse strain components zzε , xzε  and yzγ are taken to be 

negligible, so that, one can write 

0=
∂
∂

=
z
w

zzε  
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and from von Kármán’s strain-displacement relations, one obtains 
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In vector form 
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that is 
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where, the middle-surface strain components are 



 27

{ }

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+
∂
∂

+
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+
∂
∂

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=

y
w

x
w

x
v

y
u

y
w

y
v

x
w

x
u

xy

yy

xx

00

20

20

0

0

0

0

2
1

2
1
2
1

γ
ε
ε

ε          (3.6) 

 
and the curvatures are given by 
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or, simply  
 

{ } { } { } { }κεεε θ zm −+= 00  
 
{ } { } { }κεε z−= 0  

 
 

3.4  Constitutive Equations 
 
 
In the analysis carried out in this study, both the elastic and the piezoelectric properties of 

the piezoelectric ceramic utilized are included. The stress-strain relations for an 

active/piezoelectric layer in an intelligent structure are given by the linear piezoelectric 

constitutive equations obtained in Eq. (2.18), that is,  

{ } [ ] { } { } { }( )p
p zQ εκεσ −−= 0  

 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
−

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

36

32

31

3

2
1

2

)1(00
01
01

1
d
d
d

e
v

v
v

v
E

xy

yy

xx

p

p

p

p

p

xy

yy

xx

γ
ε
ε

τ
σ
σ

     (3.8a) 



 28

It can easily be observed that when any layer is passive or the piezoelectric properties of 

an active/piezoelectric layer is not activated, the stress-strain relations are given in Eq. 

(3.8b). This is simply achieved by taking the electric field term to be zero in the linear 

piezoelectric constitutive equations derived, and they are the same as in the literatures for 

purely passive layers.   
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3.5  Dynamic Version of the Principle of Virtual Work 
 
 

The equations of motion are derived using the dynamic version of the principle of 

virtual work or Hamilton’s principle. The derivation accounts for both the elastic work 

done and piezoelectric effect.  
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where Kδ  and Uδ are the virtual kinetic energy and virtual internal strain energy of the 

system, eWδ  is the virtual electrical energy, and Vδ is the virtual work done due to 

external forces and the applied surface charge only. 

 
The virtual internal strain energy Uδ  is given as: 
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The virtual external applied load Vδ is given as: 

 
       wdxdyppV as δδ )(
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       (3.10b) 

where spΔ = static pressure differential on the surface of the plate, excluding 

aerodynamic loading, and apΔ is the aerodynamic loading over the surface of the plate. 

 
The virtual kinetic energy Kδ is given as: 
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The variational quantities obtained in Eq. (3.10) are substituted into Eq. (3.9), and after 

carrying out the appropriate integration across the plate thickness, quantities such as the 

stress resultants and bending couples can be obtained. After carrying out the integration 

by parts and applying appropriate variational statements, these become the von Kármán 

equations for a plate with large deflections, with the piezoelectric terms included. 

Reference can be made to [13, 54, 67] where appropriate derivations were carried out. 

  
3.6  Stress Resultants and Bending Couples 

 
 

Stress resultants, ,N and bending couples, ,M are the forces and couples per unit 

width, and they are defined as 
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h
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Substituting Eq. (3.8) into the above equations result in the constitutive relations for the 

laminated panel used as an intelligent plate with piezoelectric ceramics bonded to both 

surfaces of the host layer. The stress components in the plate are integrated over each 
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layer thickness, and thereafter the stress resultants in each layer are summed for the 

whole plate. Therefore, the stress resultants and bending couples are given by 
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where pN and pM  are the piezoelectric induced inplane forces and bending moments. 

The stiffness terms are the extensional stiffness matrix, [ ]A , bending stiffness matrix, [ ]D , 

and coupling (stretching-bending) stiffness matrix, [ ]B ; and these are represented as 
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The piezoelectric layers are assumed to be symmetrically bonded to the host layer, 

therefore the laminate does not exhibit coupling between bending and stretching, hence 

the coupling matrix, [ ] 0=B . Generally, we consider that the Poisson ratio for both host 

and piezoelectric materials are similar, hence vvv ps == . The stiffness matrices are 

represented as 
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with the  equivalent panel elastic constant, 
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and equivalent panel bending stiffness  
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3.7  Piezoelectric In-plane Force and Moment 
 
 

The piezoelectric materials are assumed to be perfectly bonded to the entire top and 

bottom of the panel surfaces; so that classical analytical approaches can be applied to the 

problem of panel flutter in this research.  

The piezoelectric actuators produce the actuation strain that physically causes 

induced strains to be produced. The actuators are used as modal actuators [42], which 

actuate the modal coordinate of a particular mode of the panel. They are also used to 

excite and measure combinations of modes [44] when they are used as sensors. 

The piezoelectric layers are also assumed to be segmented so that only the desired 

portions of the piezoelectric layers are activated. This arrangement provides the 

opportunity to consider the piezoelectric materials as patches at the activated areas only. 

The mechanical/electrical behavior of the flexible panel are monitored or modified with 

these piezoelectric layers or patches acting as actuators and sensors.  The piezoelectric 

patches are taken to be rectangular in shape; therefore, the piezoelectric layer is divided 

into x
cN  by y

cN elements. tE3  and bE3  are the electric fields on the top and bottom 

piezoelectric layers, respectively.  The overall thickness of the panel is ,h  the length of 

the panel in the air flow direction is ,a and the span is .b  The thickness of each 

piezoelectric patch or layer is ,ph and the thickness of the host layer is .sh  The 

geometrical properties of the panel are shown in Fig. (3.1). 
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Fig. 3.1  Geometrical properties of a panel with bonded piezoceramic patches. 
 
 
 

The inplane force induced by the piezoelectric layers, or patches per unit length or 

simply piezoelectric force per unit length is represented as 
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and 
 
       0=p

xyN                      (3.17c) 
 
Where 3E  is the effective electric field applied on the top and bottom layers which 

produces only in-plane force, and denoted by mE  given as 
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The induced bending moment actuation per unit length, or simply the piezoelectric 

bending moment per unit length is 
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where 3E  is the effective electric field applied on the top and bottom layers, which in this 

case is referred to as bijE  producing only bending moment, and it is given as 
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and defining   
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The piezoelectric induced bending moment actuation due to discontinuously attached or 

embedded piezoelectric patches [54] can be written as  
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where the Heaviside function H  is given by 
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3.8  Nonlinear Equations of Motion 
 
 

The governing differential equations for an isotropic plate with finite length and 

piezoelectric ceramic actuators bonded as patches or layers on a host plate subject to 

large deflection due to flow velocity over its surface and combined equivalent inplane 

loads, combined equivalent  bending moments, aerodynamic load, and static pressure 

differential are derived in [67, 24]. The inclusion of piezoelectric terms can also be 

reviewed in [54]. The von Kármán’s large deflection plate equations are represented as 
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The plate deflection is w , ppsso hhm ρρ 2+= , Φ  is the Airy stress potential function, 

c
xN , c

yN  are combined equivalent inplane loads, and c
xM , c

yM  are combined equivalent 

bending moments.  

The aerodynamic pressure loading is assumed to be  
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Membrane inplane loads are given by 
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Induced piezoelectric inplane loads are given by 
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Induced piezoelectric bending moments are given by 
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The inplane stress resultants are  
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The inplane equations of equilibrium: 
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are satisfied by ,Φ  the Airy stress potential function. 
 
The boundary conditions for a plate that is simply-supported on the four edges are  
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The solution to the nonlinear equation given in Eq. (3.24), which is the displacement, can 

be represented as combination of linearly independent mode shapes.  The assumed 

solutions must satisfy the given boundary conditions given in Eq. (3.29) and Eq. (3.30). 

Therefore, for a rectangular plate, simply-supported on all edges, one can assume that the 

transverse deflection can be written as 
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with the longitudinal axis of the plate in the flow direction. One can simply retain only 

the first spanwise mode for panel flutter limit cycle analyses, hence 1=m , and the 

transverse deflection can be simplified as  
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Therefore, substituting Eq. (3.32) into Eq. (3.24) above [24], one obtains the nonlinear 

differential equations in time, and Lai et al. [54] obtained the additional term for 

piezoelectric bending moment:  



 37

       [ ] r
r

rn
nyxn

n
a

n a
rn

nra
b
aRnRa

b
an

d
da

c
d

ad ∑ +−−
−

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+++ )1(12

22

2
22

22
24

2

2

λππ
τ

λ
τ

 

       
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −++⎟

⎠
⎞

⎜
⎝
⎛+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛++

2424
65

43

4

2

2

1
2

3
4 CC

CC
b
aC

b
aCn

a
D

Eh nπ  

 

       
j

j

i

i

x
c

y
c

y

y

x

x

N

i

N

j
bij b

y
a
xnE

b
a

nb
a

a
nbR

Dhb
a

11

coscos4
1 1

2

31

3

−−

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+= ∑∑

= =

ππ      (3.33) 

 
using the below non-dimensional quantities 
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3.9  Nonlinear Modal Equations 
 
 

Approximate deflections of the given system can be obtained using a linear 

combination of two modes. Hence, the modal nonlinear equations lead to a set of two 

coupled nonlinear differential equations, and they are given as  
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For :2=n  
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1C , 2C , 3C , 4C , 5C  and 6C  are nonlinear terms of the modal amplitudes, and they are 
defined in the appendix. 
 

The above equations can be rewritten by defining their coefficients with the 

quantities defined in the appendix, and these equations become 
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with 1a  and 2a as the amplitudes of the first mode and second mode, respectively, and the 

coupling is caused by both the nonlinear terms and the flow velocity over the flat panel. 

The coefficients, ,dc ,fvc  ,3kc ,4kc ,312c ,330c ,403c and ,421c of the two coupled nonlinear 

ordinary differential equations in Eq. (3.35) are non-negative quantities, which are easily 

obtained by expansion and collection of the coefficients of the modal amplitudes 1a  and 
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2a and their derivatives. One writes the equations of motion in Eq. (3.35) as a set of first-

order differential equations using state space format. State variables are defined as 

       { } { }TT aaaaxxxx 21214321 ,,,,,, &&=  
 
and the system with Single Input can be written as: 
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and nRx∈  is the state vector, mRu∈  is the control vector, and nn RRf →:  is a 

sufficiently smooth nonlinear function of its argument. nn RRg →: , is a sufficiently 

smooth nonlinear function of its argument. 
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4.  FEEDBACK LINEARIZATION 
 

 
The mathematical modeling of most physical systems results in nonlinear systems, 

and in order to achieve the desired dynamic behavior for such systems, feedback control 

systems are often designed which make the closed-loop systems achieve the specified 

objectives. There are numerous ways to design a feedback control system. There are both 

linear and nonlinear feedback control systems. The former are usually based on an 

approximate linearized model of an actual nonlinear system about the equilibrium point, 

while the later are based on the actual nonlinear system. There are various types of 

nonlinear control techniques, and these include a technique called feedback linearization. 

 Feedback linearization is achieved by exact state transformations and feedback, 

rather than by linear approximations to the system dynamics, and this implies that the 

original system models are transformed into equivalent linear models of a simpler form. 

Feedback linearization problems have attracted considerable attention, and have been 

used successfully in practical control problems, such as control of helicopters, high 

performance aircraft, industrial robots, and biomedical devices. 

Panel flutter with its associated limit cycle motions, if not suppressed, can lead to 

failure of the panel. Flutter suppression of a panel with distributed and embedded or 

bonded active materials can be achieved using feedback control with distributed active 

materials acting as sensors and actuators, or self-sensing actuators.  
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The sensors can be made to sense the outputs (motions) of the panel, and the sensed 

signals are modified by the feedback controllers and then used to actuate the panel 

through the actuators. This active system is used to stabilize the motion of the panel so 

that the states have a locally asymptocally stable origin, which is the main control 

objective.  

Design of linear controllers requires that an equilibrium point be selected, usually 

the system origin, and corresponding to the state of a panel without deflection. The 

formulated nonlinear system is linearized about this equilibrium point with the 

assumption that there are only very small displacements of the states from the origin, but 

in panel fluttering these displacements can be large, therefore, the assumption of small 

displacements about the origin is invalid. The design of linear feedback controllers only 

extends the flutter free region of the panel; it does not effectively suppress the fluttering, 

since fluttering involves large displacements from the origin.  

With feedback linearization, the nonlinear panel flutter problem is transformed 

using output feedback into an equivalent controllable linear system that is in simple 

Brunovsky canonical form. This involves the formulation of nonlinear feedback control 

laws, which cancel the nonlinear dynamics. The pole placement technique is then 

employed to make the states of the feedback linearized model locally asymptotically 

stable to the origin.  
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4.1 Mathematical Background 
 
 

In this section, the mathematical tools required for linearization by feedback control 

are developed. The nonlinear control system is first transformed into the Brunovsky form by 

a change of coordinates and state feedback, and then linear controllers are designed to control 

the linearized system. A thorough review of feedback linearization can be found in the 

literature [68-69].  

A single-input single-output (SISO) closed-loop system is given in Eq. (4.1) below: 
 
       uxgxfx )()( +=&             (4.1a) 
 
       )(xhy =             (4.1b) 
 
where nRx∈ is a vector of states, pRu∈ is the input vector, mRy∈ , f and g are smooth 

vector fields on nR and h a smooth (i.e., an infinitely differentiable) nonlinear function.  

If the input feedback u and coordinate transformations of the states )(xΦ are applied, such 

that, 

 
       vxxu )()( βα +=              (4.2) 
 
       )(xz Φ=               (4.3) 
 
 
where v  is the external reference input, and the coordinate transformation )(xΦ has the 

following properties 

 
(i)  )(xΦ is invertible, nRx∈∀  
 
(ii)  )(xΦ and )(1 z−Φ are both smooth mappings 
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then, )(xΦ  is the “normal form” of special interest, which provides suitable change of 

coordinates in the state space. The nonlinear closed-loop system in Eq. (4.1) is transformed to 

the new coordinates to become a linear closed-loop system given in Eq. (4.4). 

 
       BvAzz +=&              (4.4) 
 
 
4.1.1  Lie derivatives 
 
 

Let RRh n →: be a smooth scalar function, and nn RRf →:  be a smooth vector 

field on nR , then the Lie derivative )(xhL f is the directional derivative of a function 

)(xh along the direction of the vector )(xf .  

       RRxhL n
f a:)( ,  

 

       )()()( xf
x
xhxhL f ⋅

∂
∂

=             (4.5)  

 
Lie derivatives may be generated recursively, and they are defined as  
 
       hhL f =0             (4.6a) 

       ( ) ( )
f

x
hL

hLLhL
i
fi

ff
i
f ⋅

∂

∂
==

−
−

1
1 , ni ,,2,1 K=        (4.6b) 

 
Similarly, if nn RRg →:  is a smooth vector field, then  
 
       RRxhL n

g a:)(  
 

       )()()( xg
x
xhxhLg ⋅

∂
∂

=             (4.7) 

 
also, the scalar function )(xhLL fg is defined as 
 

       
( )

)(
)(

)( xg
x

xhL
xhLL f

fg ∂

∂
=            (4.8) 
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4.1.2  Lie Bracket 
 
 

Let f and g be two vector fields on nR . The Lie bracket of f and g written as 

[ ]gf , is a third vector defined as 

       [ ] )()()()(, xg
x
xfxf

x
xggf

∂
∂

−
∂

∂
=         (4.9a) 

 
       [ ] gadgLfLgf ffg =−=,          (4.9b) 
 
Repeated Lie brackets can be defined recursively by, 
 
       ggad f =0           (4.10a) 
 
       [ ]gadfgad i

ff
10 , −= ,     ni ,,2,1 K=    (4.10b) 

 
 
4.1.3  Frobenius Theorem 
 
 

A nonsingular distribution { }mfffspan ,,, 21 K=Δ is completely integrable if, and 

only if, it is involutive. The distributionΔ is involutive if the Lie bracket [ ]ji ff , of any 

pair of vector fields if and jf belongs to the distributionΔ , that is, 

,Δ∈if Δ∈jf [ ] Δ∈⇒ ji ff ,           (4.11) 
 
where mi ff ,,K  are smooth vector fields locally spanningΔ . 
 
 
4.1.4  Diffeomorphisms and State Trannsformations 
 
 

A function nn RR →Φ : , defined in a region Ω , is called a diffeomorphism if it is 

smooth, and if its inverse 1−Φ exists and is smooth. If the region Ω  is the whole 

space nR , then )(xΦ is called a global diffeomorphism, but if the transformations are 
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defined only in a finite neighborhood of a given point, then it is a local diffeomorphism 

about the given point. 

 
4.1.5  Controllability 
 
 

A system is said to be controllable if and only if it is possible, by means of the input, 

to transfer the system from any initial state ,)( 00 xtx = to any other state ff xtx =)(  in a 

finite time .00 ≥− tt f  The controllability matrix for a nonlinear system in Eq. (4.12 ) is 

given by  

       [ ]m
r
f

r
fmffm gadgadgadgadggC 1

1
1

11 ,,,,,,,, −−= KKK    (4.12) 
 
with relative degree, nr ≤  
 
 

4.2  Single-Input Single Output (SISO) System 
 
 

Consider a single-input single output (SISO) nonlinear system of the form given in 

Eq. (4.1). 

 
4.2.1  Relative degree 
 
 

The system given by Eq. (4.1) is said to have a relative degree r at a particular point 

0x if  

       0)(1 =− xhLL i
fg , for all x  in a neighborhood of 0x  1,,2,1 −= ri K  

 
       0)(1 ≠− xhLL r

fg  
 
Intuitively, relative degree is the number of times one has to differentiate the output 

function, )(xh to obtain an expression where the input u appears explicitly. 
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4.2.2  Exact linearization 
 
 

Full feedback linearization or exact linearization is carried out when the relative 

degree of the nonlinear system is the same as the dimension of the system, that is nr = . 

Consider a SISO (Single-Input, Single-Output) nonlinear system 
 
       uxgxfx )()( +=&  
 
       )(xhy =   
 
repeatedly differentiating the output 
 

       x
x
hy &&
∂
∂

=  

 

          [ ]uxgxf
x
h )()( +
∂
∂

=  

 
          uxhLxhL gf )()( +=           (4.14) 
 

where )()( xf
x
hxhL f ∂
∂

≡ ,  )()( xg
x
hxhLg ∂
∂

≡  

 
 

by repeated differentiations of the output ,y r times, we obtain 
 
       0)(1 =− xhLL i

fg ,  1,,2,1 −= ri K         (4.15a) 
 
       0)(1 ≠− xhLL r

fg          (4.15b) 
 
       [ ],)()( xhLLxhLL i

fg
i
fg =         (4.15c) 

 
       [ ])()( 1 xhLLxhL i

ff
i
f

−= ,   1,,2,1 −= ri K ,      (4.15d) 
 
and )()(0 xhxhL f ≡  
 
       uxhLLxhLy r

fg
r
f

r )()( 1)( −+=          (4.16) 
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for reference trajectory 
 
       vy r =)(             (4.17) 
 
where the new input v  is chosen to cancel the nonlinear dynamics in Eq. (4.16), that is, 
 

       
)(
)(

1 xhLL
xhLv

u r
fg

r
f
−

−
= ,             (4.18) 

 
4.2.2.1  Nonlinear coordinate transformation: 
 

The nonlinear system is transformed to the normal form by r functions ),(xh  

),(xhL f …, )(1 xhLn
f
−  when the relative degree is same as the system dimension, that is, 

nr = , and these form a new set of coordinate functions around the point 0x .   

 

       

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Φ=

− hL

hL
hL

h

xz

n
f

f

f

1

2)(
M

,          (4.19) 

 
 

)(1 zx −Φ=  exists and is unique nRx∈∀ , so that  
 
       21 zz =&  
 
       32 zz =&  
 
        M  
 
       )()()( 1 tuxhLLxhLz n

fg
n
fn

−+=&  or uzazbzr )()( +=&       (4.20) 
 
Output 
 
       1zy =             (4.21) 
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For reference trajectory 
 
       vzr =&             (4.22) 
 
where 
 

       ( )vzb
za

u +Φ−
Φ

= ))((
))((

1        (4.23a) 

 
or 
 

       ( )vxhL
xhLL

u r
fr

fg

+−= − )(
)(

1
1        (4.23b) 

 
 
4.2.3  Partial linearization 
 
 

Nonlinear system with relative degree less than the dimension of the system ( nr < ) 

cannot be fully feedback linearized, but can only be partially linearized. In this case, it 

can be transformed into the “normal form” of the feedback linearization.  

4.2.3.1  Nonlinear coordinate transformation: 
 

In the case where the relative degree is less than the system dimension, that is, 

nr < , r functions ),(xh  ),(xhL f …, )(1 xhLr
f
− provide a partial set of new coordinate 

functions around the point 0x . It is possible to find rn − more functions 

)(,),(1 xx nr φφ K+ so that  

0)( =xL igφ  nir ≤≤+∀ 1 and x∀ around 0x  
 
The nonlinear system is transformed into the normal form by these functions.  
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Φ
−

η
hL

hL
h

x
r
f

f

1

: Ma ,       (4.24)  

 
),(1 ηξ−Φ=x  exists and is unique nRx∈∀  

 
 
Therefore, the new variables are h , hL f ,K , 1−r

fL in ξ coordinates, and )(,),(1 xx nr φφ K+ in 

η coordinates.  The nonlinear system is transformed to the new ),( ηξ  coordinates, that is, 

       21 ξξ =&  
 
       32 ξξ =&  
 
        M  
 
       )(),(),( tuabr ηξηξξ +=&  
 
       ( )ηξη ,q=&            (4.25) 
 
Output 
 
       1ξ=y             (4.26) 
 
for reference trajectory 
 
       vr =ξ&             (4.27) 
 
hence, choosing the new input as   
 
       )(),(),( tuabv ηξηξ +=           (4.28) 
 

where, )),((),( 1 ηξηξ −Φ= hLb r
f ,       (4.29a) 

 
)),((),( 11 ηξηξ −− Φ= hLLa r

fg       (4.29b) 
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The original input can be written as 
 

       ( )vb
a

u +Φ−
Φ

= )),((
)),((

1 ηξ
ηξ

      (4.30a) 

 
or, 
 

       ( )vxhL
xhLL

u r
fr

fg

+−= − )(
)(

1
1        (4.30b) 

 
The system in Eq. (4.25) is partially linear. The system is decomposed into a linear 

subsystem with thr -order dynamics and a possibly nonlinear subsystem with thrn )( − -

order dynamics, which has been rendered unobservable, and this part of the dynamics 

describes the internal behavior of the system, and it is referred to as the internal 

dynamics. It is given by  

( )ηξη ,q=&  
 

It is necessary to check the stability of the internal dynamics so as to determine if it 

is stable, otherwise, the feedback linearized system is useless. Therefore, the internal 

behavior of the system is studied when the input and the initial conditions are chosen so 

as to constrain the output to remain identically zero, and this is called the zero dynamics, 

and it is given by  

( )ηη ,0q=&   
 

 
4.3  Multi-Input Multi-Output (MIMO) System 

 
 

Consider a MIMO (Multi-Input, Multi-Output) nonlinear system of the form given 

in Eq. (4.31). In this analysis, it is assumed that the system has the same number, m , of 

input and output channels. 
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       ∑
=

+=
m

i
ii uxgxfx

1
)()(&         (4.31a) 

 
       )(11 xhy =  
 
            M  
 
       )(xhy mm =          (4.31b) 
The outputs can be repeatedly differentiated until one of the outputs appears explicitly. If 

ir is assumed to be the smallest integer, then, 

       ( )∑
=

−+=
m

j
ji

r
fgi

r
f

r
i uhLLhLy i

j

ii

1

1          (4.32) 

 
with 01 ≠−

ji
r
fg uhLL i

j
, for at least one j  

 
If at least one of the inputs appears at jr  differentiation in jr

jy , such that, ,01 ≠−j

i

r
fg LL then 

one can define a matrix mmRxE ×∈)( , such that 

 

       
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
−−

−−

)()(

)()(
)(

11

1
1

1
1

1

11

1

xhLLxhLL

xhLLxhLL
xE

m
r
fgmm

r
fg

r
fg

r
fg

mm

m

L

MOM

L

       (4.33) 

 
A system is said to have vector relative degree, },,{ 1 mrr K  at 0x , if  
 
       0)( ≡xhLL i

k
fgi

, 20 −≤≤ irk  
 
for, mi ,,1K= , and the matrix )( 0xE is nonsingular [sastry]. 
 

nrr m ≤++K1 , and total scalar relative degrees is given by mrrr ++= K1   
 
4.3.1  Nonlinear coordinate transformation: 
 

The normal form for MIMO nonlinear system is obtained based on the functions 

),(xhi  ),(xhL if …, )(1 xhL i
r
f
i −  generated by the Lie derivatives in Eq. (4.32).  
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       i
i h=1φ  

 
       if

i hL=2φ  
 
        M  
 
       i

r
f

i
r hL i

i

1−=φ ,  for mi ≤≤1  
 
       [ ])(,,)(),(,,)(,,),(,,)()( 11

1
1111

1 xxxxxxcolx mrrmr mi
φφφφφφ KKKK +=Φ  

 
from the differentiations in Eq. (4.32), one can write; 
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       (4.34a) 

 
hence the state feedback control laws are formulated so that the nonlinear dynamics can 

be cancelled, and they are written as; 

       
⎪
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for the reference trajectories 
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         (4.34c) 

 
and these yield the linear closed loop system represented as 
 
       ii

21 ξξ =&  
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        M  
 
       i

r
i
r ii

ξξ =−1
&  

 

       ∑+=
m

j
j

i
ji

i
r tuab
i

)(),(),( ηξηξξ&        (4.35a) 

       i
iy 1ξ=           (4.35b) 

 
 

4.4  Application to Panel Flutter Suppression 
 
 

The technique of linearizing a nonlinear system by feedback control presented in 

Section 4.1 is applied to the resulting nonlinear system from the mathematical modeling 

of a flat panel with embedded or bonded distributed piezoelectric patches subjected to 

both aerodynamic loads and externally applied inplane forces carried out in Chapter 3. 

The dynamic analysis reveals that vibrations with large amplitudes exist, and 

nonlinearities in the system give rise to limit cycle motions. The amplitudes of the 

vibrational modes are sensed by piezoelectric sensors, and these are represented as the 

outputs. The inputs are the actuation of the panel by the piezoelectric actuators. The 

output signals from the sensors are feedback through the linearizing controllers 

developed in this research to the actuators, and these are used to suppress the fluttering of 

the panel by placing the poles of the linearized system so they are stable.  

 
4.4.1  Control with first mode as the ouput: 
 
 

In this section, it is considered that the state-space representation of the panel 

fluttering dynamics has a single input signal fed to the actuators distributed over the 

surface of the panel and single output. Therefore, the analysis for single-input single-
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output nonlinear system represented by Eq. (4.1) in Section 4.2 can be applied to the 

panel flutter nonlinear dynamics given by Eq. (3.36) and Eq. (3.37), and these presented 

as Eq. (4.36) below: 

       uxgxfx )()( +=&          (4.36a) 
 
       )(xhy =           (4.36b) 
 
where 
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and the output function chosen is the amplitude of the first mode, and it is given as 
  
       1)( xxhy ==           
 
differentiating the chosen output 
 
       03 ≠= bhLL fg  ⇒  relative degree, 2=r  
 
       3

3
1330

2
21312132

2 xcxcxxcxcxchL dkfvf −−−−=  
 
Since the relative degree r  is 2, while the system is a set of four first-order differential 

equations, then one can only carry out partial feedback linearization of the system with 

the chosen output, therefore, the x  coordinates of the original domain becomes ),( ηξx  in 

the transformed coordinates. 
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Using the computed Lie derivative, the normal form is given as: 
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        (4.37) 

 
where 3ξ and 4ξ are defined such that 01 =ηgL  and 02 =ηgL .  
 
The Jacobian matrices of the transform and inverse transform are given below, and they 

are nonsingular and are well defined, since for any input, .03 ≠b   

       3b
dx
d

=
Φ  

 
Therefore, this system with the chosen output has a transformation that is global 

diffeomorphism, and inversion of the coordination transformations can be carried out 

globally. The original states are obtained in terms of the linearizing coordinates as given 

in Eq. (4.18) below 
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The system dynamics for panel flutter given in Eq. (4.36), is partially feedback linearized 

and it is represented in the new coordinates as 
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and for reference trajectory:  
 
       2ξ&=v  
 
from eq. 4.19 
 
       huLLhL fgf += 2

2ξ&  
 
therefore, the control input u is designed to cancel the nonlinear dynamics, hence 
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Output: 
 
       1ξ=y             (4.41) 
 
Substituting Eq. (4.20) into Eq. (4.19), the resulting system is partially linearized with the 

linearized subsystem given as; 
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They are made asymptotically stable by pole placements;  
 

ξξ Kv −=)( , or 2110 ξξ kkv −−=  
 
4.4.1.1  Internal dynamics 
 
The internal dynamics are given by the subsystem below: 
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              (4.43) 
 
4.4.1.2  Zero dynamics     
 
The zero dynamics are given below: 
  
set { } { }0,0,,,,, 212121 ηηξξηηη == , hence, 
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1 b

η
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       ( ) 3

1403214342 ηηηη cccbcb dkfv −−+=&          (4.44) 
 

The feedback linearized subsystem presented in Eq. (4.42) is a second-order 

dynamic system, with the modal amplitude of the first mode and its derivative as the two 

new states in the transformed coordinates. The designed controllers are proportional to 

the two new states therefore the controlled subsystem simply becomes a damped mass 

spring oscillator in the new coordinates in terms of the first mode. The modal amplitude 

of the second mode and its derivatives constitute the zero dynamics presented in Eq. 

(4.44).  
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4.4.2  Control with second mode as the output: 
 
 

In this case, the output from the system dynamics is taken as the amplitude of the 

second mode of the panel flutter sensed by the distributed sensors attached to the panel at 

appropriate locations, and a single input signal fed to the actuators distributed over the 

surface of the panel. Therefore, again, the analysis for single-input single-output 

nonlinear system in Section 4.2 can be applied also to the system presented in Eq. (4.36).  
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and the output is given as 
  
       2)( xxhy ==            (4.45) 
 
differentiating the chosen output 
 
       04 ≠= bhLL fg  ⇒  relative degree, 2=r  
 
      4

3
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2
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2 xcxcxxcxcxchL dkfvf −−−−−=  
 
The relative degree, r , is 2, while the system is a set of four first-order differential 

equation, therefore, one can only carry out partial feedback linearization of the system 
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with the chosen output, therefore, the x  coordinate of the original domain 

becomes ),( ηξx  in the transformed coordinates 

Using the computed Lie derivatives, the normal form is given as: 
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where 3ξ and 4ξ are defined such that 01 =ηgL  and 02 =ηgL .  
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The Jacobian matrices of the transform and inverse transform are given below, and they 

are nonsingular and are well defined, since for any input, .04 ≠b  
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d
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The partial feedback linearized system becomes: 
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reference trajectory:  
 
       2ξ&=v  
 
from eq. 4.48 
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therefore, input u  is designed so that the nonlinear dynamics are cancelled. 
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Output: 
 
       1ξ=y             (4.49) 
  
The linear subsystem of the feedback linearized system is given below: 
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 and by pole placements; ξξ Kv −=)( , or 2110 ξξ kkv −−=  
 
The new control input v  is chosen, so that Eq. (4.50) is linear and in canonic form, 

therefore, the linear control gains 0k  and 1k  are designed so that the subsystem is 

asymptotically stable. 

 
 
 



 61

4.4.2.1  Internal dynamics: 
 
The internal dynamics are given by the subsystem below: 
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              (4.51) 
 
4.4.2.2  Zero dynamics 
 
The zero dynamics are given below in Eq. (4.52), by setting: 
 

{ } { }0,0,,,,, 212121 ηηξξηηη == ,  
 
hence, 
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As a reversal to the case in previous section, the feedback linearized subsystem 

presented in Eq. (4.50) is second-order, with the modal amplitude of the second mode 

and its derivative as the two new states in the transformed coordinates. The designed 

controllers are also chosen to be proportional to the two new states. The modal amplitude 

of the first mode and its derivatives constitute the zero dynamics presented in Eq. (4.52).  
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4.4.3 Control with both first and second modes as the outputs: 
 
 

The distributed active sensors embedded in or bonded to the panel are located so 

that the amplitudes of both the first and second modes of the fluttering panel are sensed 

separately as outputs. Similarly, input signals are fed to the actuators distributed over the 

surfaces of the panel so as to independently actuate both the first and second modes of the 

panel. This is a case of a multi-input multi-output nonlinear system, and the analysis 

presented in Section 4.3 can be applied to the multi-input multi-output active panel 

undergoing fluttering given in Eq. (4.31) below: 

 
       2211 )()()( uxguxgxfx ++=&        (4.53) 
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and the outputs are: 
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From the computed Lie derivatives, we have 
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The vector relative degree, }2,2{},{ 21 =rr , and the total scalar relative degree is 4.  
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The coordinate transformations of the x coordinates in terms of the new coordinatesξ  are 

given as: 
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The Jacobian matrices of the transform and inverse transform are given below, and they 

are nonsingular and well defined. 
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Hence, the coordinate transformation is global diffeomorphism. 
 
The original system dynamics given in Eq. (4.31) are represented in the new coordinates 
as: 
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for reference trajectories: 
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1
2 v=ξ&  
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       2

2
2 v=ξ&                   (4.57a,b) 

 
where the new control input are 
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The state feedback control laws are formulated so that the nonlinearities in eq. (4.56) are 

cancelled, and they are given as 
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The feedback linearized models, which are two fully decoupled second-order dynamic 

system given in Eq. (4.59) and Eq. (4.60) become 

 
Mode 1: 
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The first output 
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Mode 2: 
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2
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The second output 
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Once again, just as in the previous two sections, the new inputs are chosen so that 

each resulting mode is asymptotically stable. One can observe that there is no internal 

dynamics when the original multi-input multi-output nonlinear system is employed 

because the original system given in Eq. (4.53) and Eq. (4.54) is fourth-order with two 

control inputs having total scalar relative degree of 4, that is, .nr =    
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5.  NUMERICAL SIMULATIONS 
 

 
A simply supported rectangular panel with two piezoelectric layers segmented into 

rectangular patches is used for the numerical simulations. The panel is an aluminum 

panel, while the piezoelectric layers are lead zirconate titanate (PZT) ceramics. It is 

assumed that the PZT patches are perfectly and symmetrically bonded to the rectangular 

aluminum panel to form an active panel. The geometry and the material properties of the 

intelligent panel are given in Table 5.1.  

The mathematical model of the active panel dynamics is presented in Chapter 3. 

This model, which is represented as a set of modal nonlinear differential equations, 

accounts for various forces acting on the intelligent panel including aerodynamic loads, 

externally applied in-plane loads and electrical displacements. The aerodynamic loads, 

which are represented by the nondimensional dynamic pressures, induce instability of the 

intelligent panel resulting in panel flutter with associated limit cycle motions. The 

electrical displacements produced the actuation of the piezoelectric ceramics that are used 

to suppress the limit cycle motions through output feedback linearizing control developed 

in this research. The feedback linearizations transform the nonlinear models to simple 

Brunovsky canonical forms. 
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Table 5.1  The geometrical and the material properties of the active panel 
 Host layer Actuator 
Material Aluminum Lead zirconium titanate 
Length (in.) a  : 12.0 px  : a1.0  
Width (in.) b  : 12.0 py  : b6.0  
Thickness (in.) sh : 0.05 ph   : 0.005 
Mass density (Ib-
sec2/in4) 

sρ : 3102588.0 −×  pρ  : 3107101.0 −×  

Young’s modulus (psi) 
sE : 6104.10 ×  pE  : 6100.9 ×  

Poisson’s ration sν  :  0.3 pν   : 0.3 
Charge constant (in./v) - 

31d  : 910478.7 −×−  
Charge constant (in./v) - 

32d  : 910478.7 −×−  
Charge constant (in./v) - 36d  : 0 
Coercive Field (v/in.) - maxe : 15243 
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A Runge-Kutta integration scheme was used to simulate the modal nonlinear 

models. The integration time step was chosen to be about one tenth of the smallest period 

of the normal modes, that is, .0015.0=Δτ  Initial conditions were chosen arbitrarily, but 

the same values were used for all the simulations. Generally, any chosen initial 

conditions still result in limit cycle motions. Panel flutter with associated limit cycle 

motions were obtained by the integrations, and the suppression of these limit cycle 

motions were demonstrated by activating the controllers at specified time. Two linear 

normal modes were used to model panel flutter in this research. The calculations were 

conducted in time domain.  

The PZT patches were used as both actuators and sensors simultaneously. These 

patches were activated independently, so that the motions of the panel were sensed and 

actuated at desired locations on its surfaces, therefore, the active panel was controlled by 

single input and multi-input signals through these actuators. Three cases were considered: 

the first case was when the first mode was sensed as output signal, and it was shown in 

Fig. (5.1), the second case was when the output signal of the second mode was sensed as 

shown in Fig. (5.2), and the third case was when both the first and the second modes were 

sensed as shown in Fig. (5.3). The output signals were modified and fed back through the 

actuators as shown above.  
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Fig. 5.1  A simply-supported plate showing the actuators for the first mode 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 

b 
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Fig. 5.2  A simply-supported plate showing the actuators for the second mode 

 
 
 
 
 
 
 
 
 
 
 
 
 

a 

b 
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Fig. 5.3  A simply-supported plate showing the actuators for first and second modes 

 
 
 
 
 
 
 
 
 
 
 
 

a 

b 
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5.1  Limit-Cycle Motion of the Panel Flutter 
 
 

The panel flutter is induced by the aerodynamic pressure on one side of the panel. 

The critical dynamic pressure is calculated by eigenvalue analysis of the linear system, 

and this is given by its open-loop roots.  

Based on the panel dynamics, the aerodynamic pressure affects both the damping 

terms and the flow coupling terms in the system. The panel exhibits free oscillations 

when there is no aerodynamic pressure, and there are no other damping and nonlinear 

effects in the system. Linear eigenvalue analysis shows that it has purely imaginary 

eigenvalues. The application of aerodynamic pressure introduces both damping and flow 

coupling terms, so the panel exhibits damped oscillations, and the system has complex 

eigenvalues with negative real parts, which lead to the decay of the oscillation of the 

panel. As the dynamic pressure (λ ) is increased, the rate of decay increases until it 

reaches a critical point, at which there exists a pair of purely imaginary eigenvalues, with 

the other eigenvalues having negative real parts, and this signifies the onset of panel 

flutter. At this critical point, the dynamic pressure is called the critical dynamic pressure 

( 385=crλ ), and the system becomes critical. Beyond this critical point, the pair of 

purely imaginary eigenvalues becomes eigenvalues with positive real parts, the motion of 

the panel diverges, and the system becomes unstable by linear analysis and the amplitude 

of the panel deflection diverges, but the structural nonlinearity due to the effect of the in-

plane stretching forces becomes significant and acts as a restoring force, and the 

amplitude stays at a certain value with limit-cycle motion of the panel, and fluttering of 

the panel is sustained.   
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In [54], six linear normal modes were used for numerical analysis, but the critical 

dynamic pressures using two to six linear normal modes were presented. While the 

critical dynamic pressure obtained is 515 for six linear normal modes, it is 385 for two 

normal linear modes. Although, four or six linear modes are required for obtaining a 

converged limit-cycle amplitude and frequency [13], several research works have been 

presented with two normal modes [10, 16, 17, 21, 27]. 

The model was run with the dynamic pressure set to 1,500, which is about 3.9 times 

the critical dynamic pressure. An aerodynamic damping coefficient of 01.0=ac  was 

used. Fig. (5.4) shows the deflection profile of the mid-span of the panel in the flow 

direction at a specific instant of time. The position of the maximum deflection, ,maxw  of 

the panel is at about 68.5% of the panel length. The time history of the deflection of the 

position of maximum deflection is shown in Fig. (5.5a), and it reflects the panel flutter 

that is taking place, and the existence of limit cycle motion is shown in Fig. (5.5b).  
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Fig. 5.4  Panel deflection of a simply-supported plate at the mid-span in the flow 

direction 
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Fig. 5.5  Time history of uncontrolled panel deflection, at 1500=λ  and 0=m

xR . 
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Fig. 5.6  Phase plot of uncontrolled panel deflection, at 1500=λ  and 0=m

xR . 
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5.2  Suppression of Panel Flutter due to Aerodynamic Load only 
 
 

At a dynamic pressure, 1500=λ , panel flutter limit cycle motions are obtained first, 

and then the controllers are activated to suppress them at a selected time. In order to 

suppress the panel flutter limit cycle motion, a closed-loop system with feedback 

linearization controllers developed in this research were used. The linearized systems in 

the transformed coordinates were in canonical controllable forms; hence, the pole-

placement techniques were used to select the control gains, such that the roots of the 

closed-loop systems were entirely in the left half of the complex plane, hence, the 

feedback linearized system becomes asymptotically stable. The control inputs are the 

electric fields, generated by the electric potentials applied on the PZT patches. There are 

maximum allowable electric fields, above which depolarization of the piezoelectric 

property takes place, but that is not one of the objective of this research.  

The PZT patches sense the magnitude of the output of the first mode, second mode, 

or both first and second modes of the limit cycle motions of the panel flutter. These are 

the three cases shown in Fig. (5.1-3). In each case, the selected output is fed to the 

controllers that modify the signals, and is fed back to the actuators, and this actuates the 

panel so that the magnitudes of limit cycles are suppressed, until the sensor senses no 

deflection of the panel from the equilibrium.  

For the three cases, plots of the zero dynamics, plots of the time histories for the 

panel at the position of maximum deflection, plots of the normalized control inputs, and 

phase plots are shown in Fig. (5.7 – 14). The zero dynamics for the single-input nonlinear 

systems show that they are asymptotically stable. The limit cycle motions are suppressed 



 78

and the selected point stabilized at the undeflected point, except for the second case, 

where the second mode is used as the output, the selected point stabilizes at a new 

equilibrium. See Fig. (5.10) and Fig. (5.11) for the phase plot of the zero dynamics and 

plot of time history, respectively. This is confirmed by placing the poles of the closed-

loop system at other various locations.  
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Fig. 5.7  Phase plot of the zero dynamics for the panel at 1500=λ  and 0=m

xR , using the 
first mode as the output. 
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Fig. 5.8  Time history of panel deflection and control effort with feedback linearization 

controller, at 1500=λ  and 0=m
xR , using the first mode as the output. 
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Fig. 5.9  Phase plot of the panel with feedback linearization controller, at 1500=λ  and 

0=m
xR , using the first mode as the output. 
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Fig. 5.10  Phase plot of the zero dynamics for the panel at 1500=λ  and 0=m

xR  shows a 
new equilibrium, when the second mode is the output. 
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Fig. 5.11  Time history of panel deflection and control effort with feedback linearization 

controller, at 1500=λ  and 0=m
xR , using the second mode as the output. 
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Fig. 5.12  Phase plot of the panel with feedback linearization controller, at 1500=λ  and 

0=m
xR , using the second mode as the output. 
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Fig. 5.13  Time history of panel deflection and control efforts with feedback linearization 

controller, at 1500=λ  and 0=m
xR , using first and second modes as outputs. 
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Fig. 5.14  Phase plot of the panel with feedback linearization controller, at 1500=λ  and 

0=m
xR , using first and second modes as outputs. 
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5.3   Suppression of Panel Flutter due to Combined Aerodynamic and Externally 
Applied In-plane Forces 

 
 

In this section, it is considered that an externally applied in-plane load is on the 

panel with the aerodynamic load. The latter is set at a dynamic pressure, ,380=λ  and the 

former is set at a normalized in-plane load ,2π−=xR  that is, a compressive load. At this 

dynamic pressure, without the externally applied load, the panel is stable, that is, there is 

no panel flutter, but the applied in-plane load causes the panel to flutter at lower dynamic 

pressure. For this condition, the critical dynamic pressure crλ  is 325. In order to suppress 

panel flutter limit cycle motion due to these conditions, the same controllers with the 

same closed-loop roots pole placed as in the previous section are employed. These poles 

can be placed in different places for better quality of suppression.  

The panel flutter in each case is suppressed. Plots of the zero dynamics, plots of the 

time histories, plots of the normalized control, and the phase plots are shown in Fig. 

(5.15-22). The time histories show that the point of maximum deflection stabilizes at the 

undeflected point, except for the second case again, where the second mode is used as the 

output. For the second case, the selected point stabilizes at a new equilibrium, although 

this is not revealed in Fig. (5.16), but it can be observed with higher value of dynamic 

pressure.  
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Fig. 5.15  Phase plot of the zero dynamics for the panel at 380=λ  and 2π−=m

xR , using 
the first mode as the output. 
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Fig. 5.16  Time history of panel deflection and control effort with feedback linearization 

controller, at 380=λ  and 2π−=m
xR , using the first mode as the output. 
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Fig. 5.17  Phase plot for the panel with feedback linearization controller, at 380=λ  and 

2π−=m
xR , using the first mode as the output. 
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Fig. 5.18  Phase plot of the zero dynamics for the panel at 380=λ  and 2π−=m

xR  shows 
a new equilibrium, when the second mode is the output. 
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Fig. 5.19  Time history of panel deflection and control effort with feedback linearization 

controller, at 380=λ  and 2π−=m
xR , using the second mode as the output. 

 
 
 
 



 93

 
 
 
 
 
 
 
 
 
 

-1.5 -1 -0.5 0 0.5 1 1.5
-30

-20

-10

0

10

20

30

w/h

w
do

t/h

 
Fig. 5.20  Phase plot for the panel with feedback linearization controller, at 380=λ  and 

2π−=m
xR , using the second mode as the output. 
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Fig. 5.21  Time history of panel deflection and control efforts with feedback linearization 

controller, at 380=λ  and 2π−=m
xR , using first and second modes as outputs. 

 
 
 
 



 95

 
 
 
 
 
 
 
 
 
 

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-30

-20

-10

0

10

20

30

w/h

w
do

t/h

 
Fig. 5.22  Phase plot for the panel with feedback linearization controller, at 380=λ  and 

2π−=m
xR , using first and second modes as outputs. 
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6.  CONCLUSIONS AND RECOMMENDATIONS 
 
 

6.1  Conclusions 
 

Feedback linearization is based on nonlinear control theory, and it has been used in 

this study to transform the nonlinear panel flutter problem into an equivalent controllable 

linear problem that can be written in simple Brunovsky canonical form by the chosen 

outputs. This takes into account the nonlinear characteristics of panel flutter dynamics in 

the design of nonlinear feedback controllers. Nonlinear feedback control laws are 

developed and used to cancel the nonlinear dynamics resulting in a linear problem. The 

pole placement technique is then employed so as to make the states of the feedback 

linearized model locally asymptotically stable at a given equilibrium.   

Using this approach of feedback linearization, nonlinear dynamic equations of an 

intelligent panel subject to aerodynamic loads with or without externally applied in-plane 

load are transformed into linear equations in the new coordinates. This intelligent plate 

has piezoelectric actuators and sensors symmetrically bonded to its surfaces. The 

piezoelectric actuations of the piezoelectric layers enable the plate to actively respond to 

external stimuli that cause large deflections and instability resulting in the failure of the 

panel due to fatigue. With this development, advanced aircraft or vehicles and surfaces in 

a fluid medium can operate in supersonic environments by the use of this intelligent 

panel.  
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The nonlinear dynamic are nonlinear coupled partial differential equations obtained 

from von Kárman large-deflection plate theory accounting for the structure nonlinearity, 

and reduced to nonlinear modal equations using two normal modes by Galerkin’s method 

with modal expansion. The nonlinear modal equations are transformed to state-space 

format, using the amplitudes of the modes and their derivatives as the states, and 

presented as a nonlinear control system. Linear panel flutter analyses are carried out to 

determine the critical dynamic pressures crλ at which there are onsets of panel flutter limit 

cycle motions. At dynamic pressures above the critical dynamic pressure, limit cycle 

motions are considered large, therefore nonlinear panel flutter analysis is employed. The 

piezoelectric actuation of the active panel drives the actuators to suppress the panel flutter 

associated limit cycle motions, and it is carried out by the piezoelectric bending moment 

generated by the electric field, which is considered as the control input, and it is applied 

on the actuators.  

In selecting the output to linearize the nonlinear control system, three outputs are 

considered, and these are the first mode, second mode, and both first and second modes. 

These are three cases for which numerical simulations are carried out. The closed-loop 

systems for the first two cases are classified as single-input single-output nonlinear 

systems, and only partial feedback linearization is carried out, therefore, there are internal 

dynamics, which are established to be locally asymptotically stable. In the third case, the 

closed-loop system is classified as multi-input multi-output nonlinear system, and full 

feedback linearization is carried out, thus, in this case, there are no internal dynamics.  

The closed-loop systems for the three cases are numerically simulated at much 

higher dynamic pressures than the critical dynamic pressures so that limit-cycle motions 
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are generated. The simulated systems show that the closed-loop systems based on the 

controllers effectively suppress panel flutter limit cycle motions with the generated 

piezoelectric bending actuations as control inputs. Therefore, with the feedback 

linearization controllers developed, the limit cycle motion of panel flutter can be 

completely suppressed if the controller gains are carefully selected.  

The flutter free dynamics are also achieved if the actuators are activated before the 

critical dynamic pressure is reached, therefore, the dynamic pressure of the panel can be 

allowed to exceed the critical dynamic pressure crλ without flutter. This approach is 

practically more feasible than the suppression of limit-cycle motions, when aircraft wing 

or air vehicle surface is loaded with aerodynamic loads.   

 
6.2 Recommendations 

 
 

Based on the studies carried out in this research, there are ample opportunities to 

improve and extended the effort here, and some of these are highlighted below:  

 The technique used in this study can be used to linearize the nonlinear dynamics for 

panel flutter reduced to nonlinear modal equations based on Galerkin’s method with 

modal expansions using five or six linear modes.   

In this research, feedback linearization has shown a promising opportunity to 

develop a flutter free intelligent panel, and this provides tremendous opportunity for 

aeroservoelasticians in terms of research and development of aircraft wings with superior 

performance in a supersonic environment. Therefore, it is necessary that a physical 

system be built, with the analysis in this study and other future analytical works used as 

benchmarks. 
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In the present effort, the maximum allowable electric field that can lead to 

depolarization of the piezoelectric ceramics is not considered as a limitation, but for 

practical system, it is. Therefore, optimal control technique can used to design the 

controllers for the feedback linearized system.  

The mathematical model of panel flutter is idealistic, and the actual system 

possesses uncertainties, therefore, there is a need to compensate for the uncertainties in 

the system by designing adaptive and robust controllers.  
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APPENDICES 
 
 
The expressions of )6,,1( K=iCi  of eq. 3 are given in [13] as; 
 

( )[ ]∑ −
+

≡
m

b
a

mamC 2
2

22

1 1 υ
υ  

 
( )[ ]∑ −

+
≡

m

b
a

mamC 2
2

22

2 1 υ
υ  

 
[ ]),(),(),({2

3 nrmsnrmsmsraaaC rs
m s r

m ++−−+≡ ∑∑∑ γγα  

[ ]}),(),(),( nrmsnrmsms +−−−−+ γγβ  
where 

  
( )[ ]224)(

)(),(
b

ams

msmms
++

−
=α  

 

  
( )[ ]224)(

)(),(
b

ams

msmms
+−

+
=β  

 
  =),( msγ  if 0== ms  
   = if 0≠= ms  
   = if ms ≠  
 

[ ]),(),(),(){(2
4 rnmsnrmsmsmsraaaC rs

m s r
m −+++++≡ ∑∑∑ ζζα  

[ ]}),(),(),()( rnmsnrmsmsms −−++−−+ ζζβ  
 
where 

   
=),( nsγ  if 0== ns  

   = if 0≠= ns  
   = if ns ≠  
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[ ]),(),(),(){( 22
5 nrmsnrmsmsmsraaaC rs

m s r
m ++−−++≡ ∑∑∑ γγα  

   [ ]}),(),(),()( 2 nrmsnrmsmsms +−−−−−+ γγβ  
 

[ ]),(),({2
6 nrmsnrms

ms
mraaaC rs

m s r
m ++−−+

+
≡ ∑∑∑ γγ  

   [ ]}),(),(),( nrmsnrmsms +−−−−+ γγη  
 

where 
 

 
ms

mms
−

=),(η   if ms ≠  

  0=      if ms =  
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