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       Profit maximization for power companies is highly related to the bidding strategies 

used. In order to sell electricity at high prices and maximize profit, power companies 

need suitable bidding models that consider power operating constraints and price 

uncertainty within the market. Therefore, models that include price uncertainty are 

needed to analyze the market and to make better bidding decisions. 
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      In this dissertation, the main objective is to develop bidding models for electric power 

generators and wholesale power suppliers under price uncertainty. A quadratic 

programming model and a nonlinear programming model were developed to find a 

solution to the bidding problem. However, in these models the computational time 

increases exponentially as the size of the problem increases. To overcome this limitation, 

two particle swarm optimization models are developed. The first method uses a 

conventional particle swarm optimization technique to find bid prices and quantities 

under the rules of a competitive power market. The second method uses a decomposition 

technique in conjunction with the particle swarm optimization approach. In addition, a 

spreadsheet based simulation algorithm is developed to evaluate a bid offer under given 

price samples. It is shown that for nonlinear cost functions particle swarm optimization 

solutions provide higher expected profits than marginal cost based bidding. A model to 

find an equilibrium solution in competitive power markets for power suppliers bidding 

into day-ahead market under forecasted demand is also developed. 
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                                                            CHAPTER 1 

        INTRODUCTION                                                                                          

 
After the 90s, many countries changed the economics of their electricity markets 

from monopolies to oligopolies in an effort to increase competition. One of the main 

market competition structures used in the new deregulated environments is the poolco 

[1]. A poolco market is a central auction that brings regional buyers and sellers together. 

All competitive power generators (supply) and buyers (demand) are required to submit 

blocks of energy amounts and corresponding prices they are willing to receive from or 

pay to the pool. The prices and quantities submitted by the market participants are 

binding obligations as they require financial commitments to the market. Once all the 

supply and demand bids have been submitted and the bidding period ends, an 

Independent System Operator (ISO) ranks these quantity-price offers based on the least-

cost for selling bids and the highest price for buying bids. The ISO then matches the 

selling bids with buying offers such that the highest offers are matched with the lowest 

selling bids. The point that supply meets demand determines the market clearing price 

(MCP). 

Perfect competition and oligopoly are two models of interest in the deregulation 

of the electricity market. Under a perfect competition model, power suppliers are 

expected to bid their marginal costs. For generating units with a nonlinear cost function 

(such as coal and gas fired units), the marginal cost depends on the quantity of electricity 
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produced by the unit. This implies the necessity of knowing the amount of energy that 

will be offered to the market before the marginal production cost can be computed. 

However, if the electricity market is not perfectly competitive, a power supplier may 

increase benefits by bidding a price higher than its marginal production costs [2]. This 

behavior is called strategic bidding [3]. This strategy imposes the risk of producing no 

profit at all if the bid price is too high. There is a risk that the supplier’s bid might be 

placed in jeopardy. Thus, the strategic bidding problem (SBP) is to determine proper sizes 

and bid prices such as to maximize expected profits.  

In both situations described above, the MCP plays an important role in the SBP 

since it determines what blocks will be selected by the market clearing mechanism. The 

MCP is the result of a complex interaction among producers and consumers. When power 

suppliers have the ability to affect the MCP by altering its power output, oligopoly 

models such as Cournot [4] or supply function equilibrium [5] are usually adopted.  

These models can incorporate detailed economic information about the system, but they 

are difficult to solve and they present theoretical problems related to the lack of 

equilibrium or the existence of multiple equilibriums. In addition, these models require 

suppliers’ cost data, which may not be openly available. An alternative approach, 

suggested in [6], is to assume that the future values of the MCP are actually unknown by 

the market participants since the interaction of processes that governs the MCP is too 

complex to model. Thus, the MCP can be modeled as a random variable to represent the 

complexity and uncertainty involved in current electricity markets. The advantage of this 

modeling approach is that it allows the inclusion of the MCP as an exogenous variable to 

the SBP. In [6], it has been shown that when the MCP is assumed to be exogenous each 
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generating unit can be considered separately. Nevertheless, this modeling approach can 

be considered as an approximation to the game theoretic method. Its accuracy will 

depend in part on whether there is a chance that the generating unit that is bidding into 

the market will be the unit that will set the MCP.  

In this dissertation, bidding models for two power producer behaviors are 

developed. The first set of bidding models assumes that power producers cannot 

influence the price, i.e. they behave as price takers; while the second set assumes that 

power producers influence the prices with their bids. One contribution of this dissertation 

is to model the SBP and find a solution using quadratic and nonlinear programming given 

that the power producer has imperfect price estimations. However, an optimal solution 

can only be obtained within a reasonable computational time for a limited number of 

price scenarios. A second contribution is the development of a spreadsheet based 

simulation algorithm to evaluate bids and help power companies with their decision 

analysis. A third contribution is the application of heuristic approaches to solve the SBP. 

Two models are developed to demonstrate the effectiveness of particle swarm 

optimization method to solve the SBP. A fourth contribution is the application of agent-

based simulation method for finding bids when power producers compete for fixed 

demand. Numerical results show that the agent based simulation model is capable of 

finding an equilibrium solution for each power supplier.  

The remainder of this dissertation is organized as follows: Chapter 2 provides a 

review of related research currently available about auction designs, bidding processes, 

pricing and market equilibrium. Chapter 3 provides details about the developed 

spreadsheet based simulation method and its application on bid evaluation. Chapter 4 
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describes the model formulation of the SBP and implemented solution techniques.  

Chapter 5 provides a description of the conventional particle swarm optimization (cPSO) 

and decomposition based particle swarm optimization (dBPSO) methods. Chapter 6 

describes the formulation and model of the proposed market equilibrium model and 

developed solution technique. The conclusion and implications for future research may 

be found in Chapter 7.  
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                                                            CHAPTER 2 

REVIEW OF LITERATURE AND BACKGROUND 

2.1 Literature Review 

 
Since the 1980s, much effort has been made to restructure the traditional 

monopoly of the power industry with the objectives of introducing fair competition and 

improving economic efficiency [7]. The electricity supply industry has unique features 

such as a limited number of producers, large investment size (which poses a barrier to 

entering the market), transmission constraints (which are obstacles for consumers to 

effectively reach many generators), and transmission losses (which discourage consumers 

from purchasing power from distant suppliers) [7].These features force market players to 

be more aggressive on their bidding strategies; it also makes them construct models that 

carefully consider their constraints and the uncertainty of the market price.  

The deregulated electricity market usually has a few generators (market suppliers) 

that usually dominate the market. This makes the market seem more similar to an 

oligopoly. In such oligopolistic markets, an individual generator can exercise market 

power and manipulate the market price via its strategic bidding behavior [8]. Companies 

have to determine bidding strategies so that they can profit even if they are price takers 

and do not dominate the market.  
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There are several approaches to analyze and develop bidding models. The bidding 

strategies used in the market are discussed in [9] which contains a literature survey of the 

current approaches to the bidding problem. The performance of a power market is 

measured by the common term “social welfare”. Social welfare is the benefit of a 

commodity to society: to both customers and suppliers.  

The game theory approach is commonly used in the literature to model market 

participant’s behaviors [10].  The approach assumes that each market player tries to 

maximize its profit. The behavior of the market player is affected by other players’ 

behavior. Several methods used in modeling bidding strategies are explained in [11] as 

they compare the game theory approach with the conjectural variation based method. In 

both approaches, each firm in the market rationally tries to maximize its profit while 

considering the reactions of its competitors. They show that firms can increase their profit 

by using conjectural variation based method and the equilibrium found corresponds to 

Nash equilibrium.  

Several solution methods have been used to solve the bidding problem. In [12], a 

genetic algorithm is used to solve the bidding problem. Although the solution obtained is 

a heuristic one, it could be used by a company in its daily bidding process. The authors 

explain the process of bidding and how the equilibrium price is determined. They 

construct their model based on the assumption of exogenous prices. In [13], an 

optimization tool to determine a bidding curve for the Ontario Power Market was 

developed. The authors used different scenarios of market prices and load. The decision 

process for the generator is based on the probability distribution of forecasted prices. The 

model chooses the block of the curve (the price and the corresponding quantity) to be 
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submitted in order to maximize expected profits. The model assumes exogenous prices 

and includes operational constraints such as ramp-up limits, start-up limits and minimum 

up-down times. In [14], bids are represented as quadratic functions of power levels. The 

model optimizes the parameters of each function during a two-phase process. In the first 

phase, the ISO minimizes the total system cost in which the parameters for other 

generators are known. In the second phase, solutions are plugged into the generator’s 

model. The Lagrangian relaxation procedure is used to solve the expected cost 

minimization problem.   

In [15], the authors assume that suppliers bid linear supply functions; the 

coefficients of the functions are chosen for each supplier in such a way that the expected 

profit is maximized subject to the behavior of one’s rivals.  They formulate a stochastic 

optimization model and use a Monte Carlo based method to tune the parameters of the 

function.  They also include the level of information known for each generator in a 

symmetric and asymmetric market. In [16], [17] and [18] bidding strategies are 

developed for price taker generating units.  

 The papers mentioned above deal with bidding problems that consist of bids of 

one or two blocks. The models developed in this dissertation consider that companies 

submit up to ten blocks in their bids and include multiple price scenarios. These 

additional features increase the computational time required to solve these problems. In 

addition, in some papers the bids are modeled as a price-quantity function. Thus, the 

optimization consists of finding the coefficients of this function.  In contrast, the price-

quantity is function free in this dissertation.  
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2.2 Background  

 
 

In order to better analyze the SBP, one should understand the fundamentals of 

auction theory, power market, electricity pricing, cost of electricity production and bid 

structures. The fundamentals might not be exactly the same for all power markets, but 

they are similar. Auction based markets are also used in some other markets such as the 

stock exchange, agricultural wholesale, and goods wholesale on the Internet. The solution 

approaches developed in this dissertation could also be applied to such markets. 

 

2.2.1 Auction Theory 

 
 

Auction theory deals with how participants of an endeavor behave in auction 

markets where game-theoretic behaviors are involved.  The objective of an auction is 

generally determined by an operator. It can be the maximization of the outcome (revenue) 

like government licenses, or it can be the minimization of the cost like public service by 

giving equal market opportunity to each competing player. The players, rules, outcomes 

and payoffs of the auction along with their mission might change depending on the 

objective, but the same essence of competition remains [19]. An auction design requires 

careful research and experiments on efficiency, optimum and equilibrium bidding 

strategies and revenue so that an effective auction can be created and manipulations can 

be eliminated. It is important that each player does not have perfect information about 

their competitors’ bid. The operator is supposed to provide a confidential environment to 

provide equal opportunity for players [19]. 
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Typical auctions are classified by designs (rules). Some examples are first-price 

sealed-bid auctions, second-price sealed-bid auctions, open ascending-bid auctions 

(English auctions) and open descending-bid auctions (Dutch auctions). In first-price 

sealed-bid auctions, bids are submitted simultaneously in sealed envelopes by all bidders 

to the operator. The individual with the highest bid wins and pays the proposed amount. 

In second-price sealed-bid auctions, bids are submitted in sealed envelopes 

simultaneously. The individual with the highest bid wins and pays the amount equal to 

the second highest bid. In open ascending-bid auctions, the price is steadily raised by the 

operator. Some players drop out as the price becomes too high and the last player wins 

the auction at the current price. This is more common in revenue maximizing auctions. In 

open descending-bid auctions, the price starts at a relatively high level and is steadily 

decreased by the operator until one player is willing to accept the offer. This approach is 

more common in cost minimization auctions which often are an issue for public service 

providers. Many auctions are hybrids of these four types. Since Electric power auctions 

aims to minimize the cost of electricity provided to the market, they are a hybrid of open 

descending-bid auctions and first-price sealed-bid auctions [20]. The success of a 

competetive market is related to the design of the auction mechanism used [19]. 

Auctions can also be classified as single-round auctions and multi-round auctions. 

In single-round auctions, sell bids are matched with buy bids to reach equilibrium at 

once. On the other hand, in multi-round auctions bidders are asked to update their offers 

at each iteration/round so that a more effective equilibrium can be reached [21].  

 

 



 10 

2.2.2 Market Design 

 

Federal Energy Regulatory Commission proposed a design on July 31, 2002 titled 

“Standard Market Design” (SMD) for the standardization of electric power markets in 

USA [22], [23]. The major power markets in the US such as PJM, New England 

(NEEPOL), New York (NYPX), and Midwest ISO (MISO) are variants of the SMD [19]. 

The Electric Reliability Council of Texas (ERCOT) and California power market 

(CAISO) are in the process of implementing SMD rules as well. 

The objective of a typical SMD is to develop a market structure that brings 

together the physical system and the economic financial operations. This is achieved by 

defining the roles and the interaction of system components. SMD also deals with the 

system governance, market operations, risk management, market monitoring and conflict 

resolutions that might occur among the members [23], [24]. Figure 2.1 illustrates general 

services involved in SMD [24].  

ENERGY
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Auctions, 

Dispatches

MARKET 

MONITORING
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Market mitigation

INVESTMENT
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Generation 
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RETAIL 
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                                         Figure 2.1. Services in a typical SMD 
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An electric power system consists of four main parts: generation, transmission, 

distribution and customers.  Figure 2.2 shows the flow of electricity from generation to 

customers [24].  SMD governs the processes through scheduling coordinator (SC), power 

exchange (PX), independent system operator (ISO), transmission owner (TO) and load 

serving entity (LSE). The role of the ISO might slightly change in each SMD, but the 

major role remains the same. 

Competition

Generation

Transmission

Distribution

Demand

Federally 

Regulated (FERC)

State Regulated

Customers

 
Figure 2.2. Electric power system 

 
 

The ISO is a neutral entity responsible for maintaining the instantaneous balance 

of the grid system [24], [25]. It performs its function by controlling the dispatch of 

flexible plants to ensure that loads match resources available to the system. It also 

coordinates the day-ahead market and real-time balancing market and monitors 

compliance with all regional operating and reliability standards. The members of the ISO 
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are power suppliers, wholesale power customers and, transmission line owners.  The day-

ahead market and real-time market are used to equate supply and demand based upon the 

sell and buy bids submitted by the members [25]. In a typical SMD, pricing is handled by 

a nodal mechanism [24]. 

2.2.3 Locational Marginal Pricing 

 

Locational Marginal Pricing (LMP) is a market-pricing method that is used to 

manage the efficient use of the transmission system when congestion occurs between 

source and sink. In a SMD, congestion occurs when restrictions such as capacity of the 

line and losses prevent the economic or least expensive supply of energy from serving the 

demand. It also means that, if the system was entirely unconstrained and there were no 

losses, all the LMPs would be same and it would reflect only the energy price [26], [27].  

In an SMD, after offers and bids are submitted and the market is settled, the 

LMPs are usually calculated at three types of locations, at the node, the load zone and the 

hub. Nodes are the places on the system where generators inject power into the system or 

demand (load) withdraws from the system. Each node is connected to one or more buses, 

which are specific components of the power system at which generators, loads or the 

transmission system are connected. Prices are made up of three components energy, 

congestion and losses. The energy component is the cost to serve the next increment of 

demand at a specific location or node which should be produced by the least expensive 

generating unit in the system that still has available capacity [26], [28]. If the 

transmission network is congested, the next increment of energy cannot be delivered from 

the least expensive unit on the system because it would violate transmission operating 
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criteria or cause overloading. The extra cost which is called congestion cost is calculated 

at a node as the difference between the energy component of the price and the cost of the 

providing the additional more expensive energy that can be delivered at that location 

[24],[25]. Losses occur during the transmission of power from one location to another 

and incurred costs are also included to the calculation.  

Generators are paid nodal LMPs and assured by market rules to recover their 

costs. Load zones consist of aggregations of nodes in a region. SMD requires a load to 

pay the price calculated for that particular zone. The prices calculated for each zone are a 

load-weighted average of the nodal prices located within each zone. They are less volatile 

than nodal prices since they are aggregated from nodes that reflect the true cost for 

delivering power by different location [25].  

 

2.2.4 Cost of Generation 

 

The cost of the energy produced by the generating unit depends on the amount of 

fuel consumed and is typically approximated by a quadratic cost 

function 2
321)( qaqaaqC ++=  ($/MWh), where q is the amount of energy generated in 

one hour [27],[29],[[30].  The coefficient a1 represents the fixed cost or no-load cost for 

each hour. This cost includes the labor and the cost of non-direct goods necessary to 

produce power for that hour. The value a2 represents the linear cost which is proportional 

to the amount of power produced. The parameter a3 is the quadratic cost coefficient and it 

is related with the amount of fuel used to produce electricity [29]. 
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Generators use a single cost function when they bid into market but it is also 

possible to combine number of cost functions and get an approximated cost function. 

Most of the time this approach is used by firms which have several generators and prefer 

to bid into the market using portfolio-based cost functions. Generators also have start-up 

costs, minimum-load operating costs and minimum up-down constraints. These are also 

used by the ISO when the bids are evaluated [31].  

 

2.2.5 PJM Power Market 

 

The PJM interconnection is a federally regulated and nonprofit organization that 

manages the transmission of wholesale electricity in Pennsylvania, New Jersey, Maryland 

(PJM), Delaware, Illinois, Indiana, Kentucky, Michigan, North Carolina, Ohio, 

Tennessee, Virginia, West Virginia and the District of Columbia, involving more than 51 

million people. Its dispatching capacity is more than 164,000 MW [32]. PJM’s members, 

totaling more than 450, include power generators, transmission owners, electricity 

distributors, power marketers and large consumers. PJM’s role as a federally regulated 

RTO means that it acts independently and impartially in managing the regional 

transmission system and the wholesale electricity market. 

The PJM energy market includes two markets – day-ahead and real-time markets. 

In addition to these markets, there is daily capacity market, Monthly capacity market, 

fixed transmission rights (FTRs) auction market, regulation market and spinning reserve 

market. In the day-ahead market, bilateral transaction schedules, generator offers, and 

consumer demands are submitted twelve hours before the actual delivery of electricity. 
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Each installed capacity in the day-ahead market has an obligation to submit an offer to 

the market even if it is unavailable or in outage [24], [25].  All participants must submit 

bids offers until 12:00 p.m. for the next operating day. The ISO evaluates the bid offers 

between 12:00-4:00 p.m. No offer is accepted during this time. PJM announces the 

accepted bids at 4:00 p.m. Non-winning participants have the chance to modify their bids 

until 6:00 p.m. Demand bids also follow the same process for the day-ahead market [32].  

Based on these offers and demands, market clearing prices are determined for 

each hour of the next operating day. The day-ahead market is considered a forward 

market because the formation of the generation and consumption is determined the day 

before the operating day [25]. On the other hand, the real-time energy market balances 

the deviations occurred in the day-ahead market and the actual generation. Unlike the 

day-ahead market, market clearing prices in the real-time market are calculated every 5 

minutes based on the actual system operations. The methods developed in this 

dissertation assume that the bids are submitted to the PJM power market. 

 

2.2.6 Bidding into the PJM Market 

 
A generator offer for the PJM market is composed of two components, the price 

and quantity of electricity that a supplier is willing to generate. Offers are submitted in 

blocks of price quantity pairs. PJM allows submitting at the most ten blocks for a 

generator offer [32]. Figure 2.3 illustrates a valid offer curve in PJM power market. 
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Figure 2.3. A generator’s offer curve in the PJM day-ahead market 

Each generating unit also submits its minimum run time, minimum down time, 

no-load costs and start-up costs to the PJM market [32]. 

PJM runs the “two-settlement” software to determine the hourly commitment 

schedules and the LMPs. Generating units that have minimum run times that exceed 24 

hours are asked by PJM to submit binding offer prices for the next seven hours. PJM 

supports mainly three offer types: Cost-capped offers, historic LMP based offers and 

market-based (or price-based) offers. Each unit submits its operating constraints in its 

profiles however its usage differs for each offer type [32].  

Cost-based offer in the PJM market consists of the incremental operating cost of 

the generation resource, plus a 10% and, plus variable operations and maintenance costs. 

The production cost method is the method of capping. Generators use no-load cost and 

start-up costs as classified hot, intermediate and cold in their offers. Generator offers 

consist of three parts, offers for energy ($/MWh), start-up ($/day) and no-load ($/hr). 
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  Historic LMP capped offers are determined by calculating the average LMP at the 

generation bus during all hours over the past six months in which the resource was 

dispatched above minimum. Generators also use start-up cost and no-load cost in their 

offers. Table 2.1 shows the summary of the offer characteristics [32]. 

 

Table 2.1. Comparison of offer types 

Offer Component Cost-Capped Offers LMP-capped offers Market-based offers 

Energy offer 

($/MWh) 

Production cost,  Average historic 

LMP 

No cap, support  

up to 10 blocks 

Start-up cost 

($/day) 

Production cost,  

plus 10% 

Production cost,  

plus 10% 

No cap 

No-load cost  

($/hr) 

Production cost, 

 plus 10% 

Production cost,  

plus 10% 

No cap 

 

Price-capped offers are offers that are not necessarily capped with costs. Firms bid 

on the market price and get paid the price determined with the respective auction 

procedure. The start-up cost and no-load cost are still submitted to the PJM but their 

usage is not same as the former two offer types. However, cost components for cost-

capped offers and historic LMP-capped offers directly impact their selection chance since 

if cost recovery is not possible for those generator, ISO chooses cheaper offers. Figure 

2.7 summarizes the characteristics of three types of offers including differences [32]. 
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Table 2.2. Bid components in offer types 

Component Cost & LMP-capped offers Market-based offers 

Start-up Daily- 3 types  Optional- every 6 months 

No-load Yes Optional- every 6 months 

Maintain Minimum Yes No 

Cooling Requirement  Basic Optional- every 6 months 

Incremental Cost ∑ Energy from min to max ∑ Energy from 0 to max 

Maximum Offer Based on cap methodology $1000/MWh 

 

Notice that in Table 2.2 there is a cap for start-up and no-load costs for cost-

capped offers, while there is no-cap for market-based offers. This is because market-

based offers bid on the price while cost based offers bid on their cost. PJM audits the 

costs if it is necessary. The unit’s offer type is initially set by the generator owner to 

indicate whether the unit is to be scheduled as a market-based offer or a cost-based offer. 

PJM also imposes the rule if the generator once chooses market-based offer and it cannot 

switch to another offer type [32].  

  SMDs usually use uniform-price auctions and pay-as-bid auctions to govern the 

market mechanism. After bids are submitted and the market is settled by the ISO, all 

dispatched generators in the uniform price auction are paid the market price where as 

they got paid their bid price in pay-as-bid auction. The selection process for winning 

generators and the equilibrium price are the same for both designs with the difference that 

the generators would make different revenues.  
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The pay-as-bid auction method motivates the lower cost generators to bid too high 

to increase the market price. However, in uniform price auctions generators need to bid 

lower than market price in order to be selected. Thus, it is accepted that uniform price 

auctions generally end up with lower market prices because of price pressure [31].  

 

  

2.2.7 Power Market Equilibrium 

 
SMD aims to increase competition and hence it is a good place where suppliers 

and consumers meet under the supervision of an ISO and economic fundamentals.  The 

balancing of supply and demand is always crucial in an economic market. However it is 

vital for an electricity market since the lack of electricity when needed can cause very 

costly consequences. After wholesale power suppliers bid sell offers and wholesale power 

customers bid demand offers into the market, the next step is to find an equilibrium point 

where supply and demand meet. The price at this point not only sets the market clearing 

price but also sets the market clearing quantity that makes social welfare an optimum. A 

power market is said to be in equilibrium if  i) all suppliers maximize their return at the 

given market clearing price and market determined dispatch schedule ii) all consumers 

maximize their utility at the given price and schedule iii) the total supply equals total 

demand [33]. 

Equilibrium approaches for power markets are constructed on the behavior of 

system participants, which involve the game theory approach. In [34], authors classify the 

modeling approaches of power market problems. They use exogenous price and demand-

price function methods to model optimization problems for a single firm.  
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Simulation models that consider all firms behaviors’ are classified into equilibrium 

models and agent-based models. There have also been efforts to model power market 

equilibrium as Cournot, Bertrand and Supply Function Equilibrium (SFE). The SFE has 

been of most use in power market modeling [31], [35].  

Cournot models have not been found satisfactory for the power markets since 

quantity produced by each player, the decision variable, is not responsive to the effects of 

price sensitivity. The cournot model also has the assumption that the residual demand is 

elastic. But it is not considered as an issue for electricity markets [31], [35]. Cournot 

models also expect that player’s output will not change the rival’s output, but the offered 

quantity along with its price by the market participant actually affect the rival’s expected 

revenue in the market. On the other hand, Bertrand model which has the market price as a 

decision variable requires each player to build its strategy on expected market price. 

Bertrand leads to perfect competition if there were player with unlimited capacity. But it 

is known that as the market converges to equilibrium the players with small capacities 

will be out of the game. This strategy also does not cover all market’s issues [31], [35]. 

Klemperer and Meyer first developed SFE [36] and showed that each firm can 

express its decisions in terms of a quantity and a price in the absence of certainty and 

having an idea about competitors’ strategic variables. It is after that SFE was applied to 

power markets by Green and Newbery showing that if a firm expose its decision tool in a 

form of supply function indication prices at which it is willing to offer various quantities 

to the market for a given demand curve, it can expect in general a greater profit in return 

[37].  SFE is more accurate comparing to former mentioned approaches since it reflects 

the bidding rules in SMD where players submit price-quantity offers as decision 
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variables. In [38], authors analyze SFE applications by assuming that the functions 

provided are linear and there are strategic players in the market with price and capacity 

cap. They show that SFE will be more effective than the other approaches in terms of 

representation and reaching to the equilibrium. In [39], authors work on SFE by modeling 

the market players as non-degreasing supply function providers and competing in a game. 

In [40], authors analyze the market power by modeling the equilibrium for large scale 

power systems. They briefly explain the equilibrium approaches and show that SFE can 

fit best to the power market. In [41], it is showed that if there are multiple players with 

identical marginal costs and asymmetric capacities, a unique piece-wise symmetric 

supply function exists. The authors show that small players will be eliminated at some 

point and larger players will use this advantage in their supply functions. In [31], authors 

analyze the equilibrium models in terms of transmission network, generator cost function 

and operating characteristics, bidding, demand and uncertainty. These are evaluated under 

the umbrella of economic, physical and commercial modeling.  
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            CHAPTER 3 

                       SPREADSHEET BASED SIMULATION FOR ELECTRIC 

    POWER OFFER EVALUATION 

3.1 Bid Simulator  

 
In order to evaluate a bidding strategy for given market price scenarios, a 

simulation method needs to be developed. The simulation method should include 

different price samples and should be able to work for different cost functions. We 

develop a simulation model called Bid Simulator in Excel that includes all parameters 

needed to evaluate a bidding curve. Bid Simulator is a spreadsheet based simulation 

model to assess the value of a given bid using market price samples. It provides 

supportive statistical outputs to the decision maker.  

The simulation model includes market price scenarios and calculates hourly 

profits according to the market prices. The pseudo code for the simulation is given in 

Figure 3.1. If the market price at a particular hour is larger or equal to any given price 

bid, the supplier would sale power. Otherwise it would not sell power at that hour.   
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               Figure 3.1. Pseudo code of the simulation model 

3.2 Simulation Functionality 

 

The model is implemented in Excel. The simulation spreadsheet consists of five 

modules: main screen, simulation, hourly profits, daily profits and output analysis. Figure 

3.2 and Figure 3.3 show the main screen and menu for the model respectively. 

 

Determine bid prices and quantities 

Generate N Price Samples each for 24 hours 

 For each N 

             For each hour 

   For each block in bidding curve 

                 If bidding price <= Market price  

Calculate hourly profit  

               Else 

                 Hourly profit=0 

    Next block  

  Next hour 

                        Daily Profit = Sum (Hourly profit) 

   Next sample 

   Average Profit = Sum (Daily Profit )/N 
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   Figure 3.2. Bid Simulator main screen 
 
 

 
   Figure 3.3. Bid Simulator menu 
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The simulation model generates up to 1000 market price samples for 24 hour, i.e. 

a total of 24000 market prices. The price sampling can be defined in terms of a 

probabilistic distribution of interest before the simulation. Figure 3.4 shows the 

simulation model. The results shown are for a generator whose cost function is 

20.004245)( qqqc +=  and maximum capacity 300 MW. The market prices are 

generated using a normal distribution with mean equal to day-ahead prices of April 20th , 

2008 of the PJM market and standard deviation 2 $/MWh. 

 

  Figure 3.4. Bid Simulator simulation and price generation 
 

For the hourly profits module, a given bid is evaluated for each hour using the 

sampled prices. Figure 3.5 shows the hourly profits. 
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  Figure 3.5. Bid Simulator hourly profits 

Daily profits are calculated for each day using hourly profits in the daily profits 

module of the package, i.e. 1000 profits. Figure 3.6 shows the hourly profits. 

 
  Figure 3.6. Bid Simulator daily profits 
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In the output analysis module, the descriptive statistics are calculated for the 

hourly generated prices, hourly profits and daily profits. Figure 3.7 shows the output 

analysis. The output analysis includes the following components. 

Statistics on hourly generated prices: 

-Expected market price for each hour 

 - Expected hourly market price graph 

Statistics on hourly profits: 

- Expected hourly profit 

- Expected hourly profit graph 

Statistics on daily profits: 

- Minimum daily profit 

- Maximum daily profit 

 - Expected daily profit 

 - Standard deviation of daily profits 

 - Variance of daily profits 

 - 5% and 95% percentile of daily profits 

 - 5% confidence interval on mean  

 - Probabilistic distribution of profits  

   - Histogram of probability density function (PDF) 

                                    - Histogram of cdf (cumulative distribution function) 
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   Figure 3.7. Bid Simulator output analysis 
 
 

3.3 Numerical Example 

 
 

We evaluate an offer using the Bid Simulator and we compute the probabilistic 

distribution of profits. The descriptive statistics and graphs mentioned above indicate to 

the decision maker how good the bidding solution is. We evaluate the bid given in Table 

3.1.  Figure 3.8 gives expected hourly prices and Figure 3.9 gives expected hourly profits. 

Table 3.2 gives the descriptive statistics. A 90% confidence interval mean profit lies 

between $55,934 and the $56,207. Figure 3.10 gives the plot of the histogram and Figure 

3.11 gives the cumulative distribution.  
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Table 3.1. An example bidding solution to the problem 

Block 1 2 3 4 5 6 7 8 9 10 

bi 45.12 45.50 45.75 46.00 46.26 46.51 46.76 47.01 47.26 47.52 

qi 30 60 90 120 150 180 210 240 270 300 
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             Figure 3.8. Expected hourly price graph from generated prices 

 

          Table 3.2. Descriptive Statistics for Daily Profits 

Maximum Profit ($) 64,066.00 

Minimum Profit ($) 49,248.06 

Expected Profit ($) 56,070.85 

Standard Deviation 2,204.29 

Variation 4,858,884.50 

95% Percentile ($) 59,652.06 

5% Percentile ($) 52,335.05 
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             Figure 3.9. Expected hourly profits based on generated prices 
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             Figure 3.10. Histogram of daily profits 
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             Figure 3.11. Cumulative histogram of daily profits 

 
 
3.4 Conclusion 
 
 
  In this chapter, the use of simulation to evaluate a bidding curve was explained. 

Its effectiveness was showed using a numerical example. A decision maker can use the 

simulator to estimate expected profit and variation under the market price uncertainty. 

The tool also gives expected profit and price for each hour which can be used as an input 

in unit scheduling problems. Especially if an efficient market price forecasting method is 

available, Bid Simulator method can be used to help decision maker to reach more 

accurate results. Different offers can be compared to further analyze the sensitivity. The 

Bid Simulator will be used in next chapters to verify the results found in the analysis.  
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            CHAPTER 4 

      ELECTRIC POWER BIDDING UNDER PRICE UNCERTAINITY 

 

4.1 Price Uncertainty 

 
Electricity is generally accepted as different from other commodities. It is not 

storable and its demand is instantaneous so it must be produced and used in real time. 

These unique characteristics of electricity and necessity of real time balance create a need 

for coordinated markets. As explained in previous chapters, LMP create diversified 

market prices by location. The price is strongly load-dependent, highly volatile, seasonal 

and consumption dependent [16], [17], [42]. The parameters are stochastic which gives a 

stochastic behavior to the electricity price [43]. Energy consumption, fuel costs, 

availability of fuels, equipment capacity and market participants’ behavior are stochastic 

[31], [44],[49]. Figure 4.1 shows an example of day-ahead market prices and real time 

market prices for one day in the PJM power market. 
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          Figure 4.1. Day-ahead and real time prices for February 29, 2008 

 

 

In the literature there are many models that are used to forecast market clearing 

prices. In [45], the authors develop wavelets and multivariate time series based price 

modeling. They analyze the market price data statistically to determine the model 

parameters. In [46], the authors use artificial neural networks to model the market price 

changes. Neural networks are useful to reflect nonlinear changes that are difficult to 

predict otherwise. Automatic dynamic harmonic regression model is used in [47] to 

handle the regression among market prices. In [48], the authors develop an algorithm to 

calculate the mean and variance of the electricity market price. They also give a 

stochastic method for load estimation. 

The bidding models that consider the market price exogenous usually include the 

electricity price as an input. Market price forecasting methods can be used to determine 

the prices used in the model. As an alternative, electricity prices can be generated based 

on a probability distribution function.  
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The market price scenarios then can be included into the model and the developed 

bidding strategy is the offer that maximizes the expected profit across all scenarios.  

 

4.2 The bidding model 

 
We consider an electric power producer with a set of generating units and assume 

that the producer wishes to submit an offer curve to the day-ahead market for each of its 

units. We assume that the producer is a price-taker market player that obtains its revenues 

by selling power at the market clearing prices of the PJM pool. That is, if the power 

supplier produces electricity with its generating units at a particular hour, it is then 

willing to take the price prevailing in the market at that hour. We also assume a lack of 

market power, i.e. the power supplier does not perceive its decisions as affecting market 

prices.  

 The SBP is formulated under the following additional assumptions: 

 

i) An offer or bid, which consists of N price-quantity blocks at the most, needs to be 

determined for each generator separately. 

ii) The market clearing prices are considered exogenous to the model, i.e. they are not 

affected by the bidding decisions of the unit for which the model is being solved.  

iii) The market clearing price at each hour is considered a random variable whose 

probability distribution has known parameters. 

iv) The offer is determined before the market closes at 12 noon and is valid for the next 

twenty four hours, starting at 12 midnight the same day. 
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In finding an optimal offer curve for a particular generator (see Figure 4.2), there 

are N pairs of decision variables ib  and iq∆  (i=1,..,N) that need to be determined. Figure 

4.2 shows the relations of ib  and iq∆  (i=1,..,N) in the PJM market. The 

variable iq∆ denotes the amount of energy increase to get the bid price ib for delivery at 

any hour of the next day. These values are represented by the vectors∆q  and b, 

respectively. If the market clearing price at hour t is equal to or higher than the offered 

price ib , then all energy blocks offered at this price or lower are accepted by the market 

operator. Thus, the total energy to be produced at time t and sold to the market at a price 

Pt is given by: 

∑
=

∆=
)(

1

tPI

i

it qq , where
tjt PbjPI ≤=  such that  Max )(        for t=1..T; i=1..I(Pt)             (4.1) 

 

Figure 4.2. Bid prices and power quantity intervals 



 36 

 

The objective function is total profit (revenue minus generation cost) over a 24-

hour period. The revenue during hour t is obtained from selling the quantity stipulated 

under the offer (only if the generator is dispatched) at the market price, Pt ($/MWh). The 

cost includes those of producing the energy. As mentioned above, Pt is a random variable, 

and therefore the total profit over a period of T hours is also a random variable. We 

assume that K samples of the hourly prices are available and they have equal probability 

of occurrence. We denote the price at hour t of sample k as Pt
k. Thus, the objective is to 

maximize the expected profit over the time period T (usually 24 hours). The bidding 

problem, which is called ),P( b∆q , is stated as follows: 
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E[Profit] Max),P(
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∑∑
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b∆q      for k=1..K;  t=1..T;             (4.2) 

 
 
Subject to the following constraints: 
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1

Qq
N

i

i ≤∆∑
=

                                                                                                            (4.3) 

max0 Bbi ≤≤                                            for i=1..N.                             (4.4) 

max0 Qqi ≤∆≤                                            for i=1..N.                (4.5) 
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k
).        (4.6) 

2

321 )()( k

t

k

t

k

t qaqaaqC ++=                                for k=1..K;  t=1..T.                          (4.7) 
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4.3 Quadratic Programming Model 

 
Mathematical Programming is one way to find an optimal solution to the bidding 

problem. However, it can solve relatively small sized problems. By setting the number of 

samples to the one and the number of maximum bidding blocks equal to the number of 

hours of the time horizon, a quadratic programming model can be formulated and solved 

using a commercial software package such as Cplex. Notice that when the market price 

consists of one sample and the number of blocks is equal to the number of hours, the 

optimal bidding price of a block of power is equal to one of the market prices. Therefore, 

the bidding problem ),P( b∆q reduces to the following mathematical representation: 

Max Z = ∑
=

−−
T

t

tttt qaqaqP
1

2

32 ][               for t=1,..,N                                               (4.8) 

Subject to 

∑
=

∆=
t

i

it qq
1

       for t=1,..,N                                                                                    (4.9) 

max

1

Qq
N

i

i ≤∆∑
=

       for i=1,..,N                                                                                    (4.10) 

0≥∆ iq          for i=1,..,N                   (4.11) 

 

4.4 Nonlinear Programming Model 

 
Nonlinear Programming (NLP) is the process of solving a problem that includes 

equalities, inequalities, constraints and an objective function some of which is nonlinear.  
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The process finds a set of unknown real variables that makes the objective function 

maximized or minimized. 

   
The bidding model is formulated as follows: 
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Subject to the following constraints: 
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max0 Bbi ≤≤           for i=1..N.      (4.4) 
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and (4.7). 
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Note that M is a large number here, and z and r are binary variables. When we 

model the problem in AMPL and solve it using the NEOS solver MINLP, an optimal 

solution can be found for a limited number of price samples. 

 

4.5 Marginal Cost Bidding 

 

A power producer also can submit its marginal cost of production as its bid offer. 

As a matter of fact, in a perfectly competitive market it is expected that each player 

submits its marginal costs. To do so, a power producer could offer, for each generating 

unit, one energy block consisting of the maximum capacity and price equal to the 

marginal cost of producing this amount. Alternatively, the power supplier could split the 

maximum capacity into N blocks of identical size and offer them at prices equal to the 

marginal costs of producing each block. PJM accepts a maximum of ten energy blocks in 

its daily bidding process, so maximum capacity can be split into 10 blocks and marginal 

cost of these quantities can be offered to the market. 
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b∆q      for k=1..K;  t=1..T;                       (4.2) 

 
 

Subject to the following constraints: 

N

Q
q i

max

=∆                                                         for  i=1..N.                                      (4.20) 

k

ti qaab 32 2+=                                                   for k=1..K;  t=1..T; i=1..N.              (4.21) 

(4.4), (4.6) and (4.7). 
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4.6 Numerical Example and Analysis 

 
 

We now present results obtained with the developed models. We use CPLEX for 

solving the quadratic programming model, NEOS MINLP for solving the nonlinear 

programming problem.  

 

4.6.1 Quadratic Programming Model 

 
  In order to solve the quadratic programming problem we use the generator used in 

Chapter 3 whose cost function is 20.004245)( qqqc +=  and maximum capacity 300 

MW. The time horizon is set to ten hours. The ten hourly market prices are given in Table 

4.1.  

 
 Table 4.1. Price sample for the example problem 
Hour 1 2 3 4 5 6 7 8 9 10 

Price($/MWh) 35.20  36.80  39.30  45.00  45.50  45.90  46.10  46.80  47.10  50.20  

 

 After solving the above model using Cplex 7.0, the optimal profit is found to be 

$1772.48. The optimal solution to the problem is given in Table 4.2. 

 

   Table 4.2. Optimum solution to the problem 
   Block 1 2 3 4 5 6 

   bi ($/Mwh) 45.50  45.90  46.10  46.80  47.10  50.20  

   qi (Mwh) 59.52 107.14 130.95 214.28 250.00 300.00 

 

4.6.2 Nonlinear Programming Model 

 
In order to solve the bidding problem under market price uncertainty, we use the 

same generator used in section 4.6.1 but the problem is solved for three day price 
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samples. The problem was coded in AMPL and submitted to the one of the NEOS Servers 

MINLP to get a solution. Table 4.3 gives the price samples used in the model and Table 

4.4 provides the optimum solution. 

       Table 4.3. Price samples used in the problem  

Hour 1 2 3 

1 49.21 49.58 47.14 

2 47.56 46.78 46.52 

3 50.44 40.68 46.1 

4 43.48 44.59 46.59 

5 41.97 46.87 46.16 

6 43.78 48.8 49.83 

7 47.25 44.27 45.56 

8 57.28 54.37 55.42 

9 57.56 53.37 53.29 

10 58.59 52.87 55.02 

11 51.66 48.85 46.39 

12 45.54 48.36 49.36 

13 40.14 38.55 42.55 

14 37.39 40.44 38.28 

15 37.52 42.54 38.82 

16 39.45 34.4 37.2 

17 40.64 44.53 40.38 

18 53.45 53.41 53.71 

19 79.44 77.53 75.92 

20 72.7 75.02 74.5 

21 71.83 70.09 67.66 

22 60.39 62.78 64.41 

23 48.94 50.19 50.53 

24 40.8 44.97 45.43 

 

    Table 4.4. Optimum solution to the problem 
Block 1 2 3 4 5 6 7 8 9 

bi ($/MWh) 45.01 45.54 46.10 46.16 46.39 46.52 46.56 46.87 47.56 

qi (MWh) 51.19 65.47 130.94 138.08 165.46 180.93 211.88 222.59 261.28 
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The objective function of the optimum solution was $44,779.83. However, it takes 

about 5 hours to solve the problem with 3 price samples and 300 Mwh capacity. If we 

increase the capacity to 1500 Mwh and try to solve the problem with same price samples, 

we could not find an optimal solution after 24-hour run. Results show that it is not likely 

to solve the problem with more than 3 price samples. 

 

4.6.3 Marginal Cost Bidding  

The Marginal cost bidding model requires splitting the maximum capacity into 

equal block sizes. We solve the problem using the same generator with the price samples 

given in Table 4-3. Table 4.5 gives the bid prices and quantities for marginal cost bidding. 

 

Table 4.5. Bid prices and quantities for marginal cost bidding 

Block 1 2 3 4 5 6 7 8 9 10 

bi ($/MWh) 45.25 45.50 45.75 46.00 46.26 46.51 46.76 47.01 47.26 47.52 

qi (MWh) 30 60 90 120 150 180 210 240 270 300 

 

Marginal cost model is evaluated for both price samples given in Table 4.1 and 

4.3. The profit found for 10-hour price sample is $1766.58 where the optimum solution is 

$1,772.48. The profit found in for 3 day price samples is $44,750.86 where the optimum 

solution is $44,779.83. 

 
4.7 Conclusion 
 
  In this chapter the strategic bidding model was defined and possible solution 

approaches and their limitations were explained. One can solve a problem with 10 hours 

of market prices using quadratic programming. We also showed that it is possible to find 
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an optimum solution using 3 days price samples for a generator with 300 Mw capacity. It 

is clear that a more effective method is needed to solve the problems with more than 3 

days price samples and more generating capacity. The solution method should require 

low computational time since the bidding process is done daily. It might be that in same 

cases there are not much profit difference between bidding the marginal cost and 

optimum solution. We will show in Chapter 5 that this is not always the case.  
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                   CHAPTER 5 

       PARTICLE SWARM OPTIMIZATION FOR BIDDING 

 INTO MARKET UNDER PRICE UNCERTAINITY 

 

5.1 Rationale for Heuristics Approach 

 
      Heuristic approaches are commonly used when it is not possible to find optimum 

solutions to the problems, or when it takes much computational time to find optimum 

solutions. The approaches are generally accepted as easy to implement, easy to apply to 

the problems and require less computational time. They do not guarantee an optimum 

solution though. But in cases where an optimum solution and a good solution don’t make 

much difference, heuristics approaches are preferred because of the less effort that they 

require.  It is possible to find a solution using more than 3 days price samples using 

heuristics approaches whereas nonlinear programming could not find an optimum 

solution. We will show in this chapter that it is possible to find a good solution for every 

generator regardless of generator capacity. It will also be showed that the required 

computational time is dramatically less than the nonlinear programming method.  

 

 5.2 Particle Swarm Optimization 

 
Particle Swarm Optimization (PSO) is a computation technique, introduced by 

Kennedy and Eberhart in 1995 [50], which was inspired by social behavior of bird 
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flocking or fish schooling. Like genetic and evolutionary algorithms, PSO is a 

population-based search method, i.e. it moves from a set of points (particles’ positions) to 

another set of points. The particles move through a D-dimensional space and each 

particle has a velocity that acts as an operator to obtain a new set of individuals. The 

particles adjust their movements depending on both their own experience and the 

population’s experience.  

The following pseudo code describes the PSO approach: 

 
   Figure 5.1. Pseudo code for the PSO method 
 

   (The symbol ⊗ denotes the multiplication of two vectors component by component.) 
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At each iteration a particle moves in a direction computed from its best visited 

position and the best visited position of all the particles in its neighborhood. Among the 

several variants of PSO, the global variant considers the neighborhood as the whole 

population, called the swarm, which enables the global sharing of information. The basic 

elements of the PSO technique are particle, population, velocity, inertia weight, 

individual best, global, learning coefficients, and stopping criteria best [51]. These are 

briefly discussed below. 

 

I. Particle, Xj(t): a particle j represents an m-dimensional vector candidate solution. The 

value of m is determined by the number of decision variables. At time t the particle j 

can be described as Xj(t) = [x1,j,…, xm,j] where the x components are the decision 

variables. A value of xi,j denotes the position of particle j in the ith coordinate in the 

search space, i.e. the value of the ith decision variable in the candidate solution j. 

II. Population, POP(t): The population is a set of n particles at any given time t and it can 

be represented as POP(t)=[ X1(t) …, Xn(t)]. 

III. Velocity, Vj(t): The velocity of moving particles at time t represented by an                 

m-dimensional vector Vj(t) = [v1,j,…, vm,j]. 

IV. Inertia weight, w: The parameter that controls and directs the impact of the previous 

velocities on the current velocity. If the inertia weight is large, the search becomes more 

global, while for smaller w the search becomes more local. 

V. Individual best, )(* tjX : When a particle flies through the search space it compares its 

fitness value at the current position to the best fitness value so far. The best position 

visited by the particle i at time t is denoted by ],...,[)( *

,

*

,1

*

jmjj xxt =X . 
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VI. Global best, G(t): Represents the best position that gives the best fitness among all 

individual best positions achieved so far. It is defined by G(t) = [g1,…, gm]. 

VII. Learning factors, c1 and c2: these coefficients help particles to accelerate towards better 

areas of the solution space. 

VIII. Stopping Criteria: represent the conditions for which the search process will terminate 

and lead to a result. 

 

5.3 Conventional Particle Swarm Optimization 

 

The conventional PSO approach (cPSO) is used for solving the whole problem. 

The population size is set to µ particles. Decision variables bi and iq∆  are evaluated 

using the price scenarios in fitness function below.  
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        for k=1..K;  t=1..T;                            (5.1) 

Subject to:  

max0 Bbi ≤≤                                            for i=1..N.                             (5.2) 

maxQq k

t ≤                       for k=1..K; t=1..T                             (5.3) 
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t qaqaaqC ++=                               for k=1..K;  t=1..T.                            (5.5) 

1+≤ ii bb                      for i=1..N                                          (5.6) 
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N

i
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Notice that the function penalty (j) is used to penalize the objective function due 

to the violation of the maximum bid price and/or the maximum available capacity of the 

generating unit. Penalty functions are generally used to eliminate solutions that violate 

constraints. The following pseudo code describes the main procedure: 

 

 
 
Figure 5.2. Pseudo code for the cPSO method 
 
 
 
 
 

Main Procedure 

Randomly generate q∆ , b 

Set q∆=*∆q  and b=*b  

While Run < NRuns 

Run PSO and obtain solution∆q , b 

If fitness of P(∆q ,b) > fitness of P( *∆q , *
b ) then    

Set ∆q∆q =*  and bb =*  

Endif 

EndWhile  

Output *∆q and *
b as the best solution of P 
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5.4 Decomposition Based Particle Swarm Optimization 

 

The decomposition-based PSO (dBPSO) consists of separating P into two sub-

problems. One of the sub-problems assumes that the values of the decision variables bi 

are known for each i. This sub-problem is called PQ. Using the given values of bi’s and 

price scenarios, the following variable is computed as in (5.4): 

 

k
ti

k
t PbiPI ≤=  such that  Max )(      for k=1..K;  t=1..T.                                                  (5.9) 

 

Thus, the formulation of PQ is as follows: 
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         for k=1..K;  t=1..T;             (5.10) 

Subject to: (5.3), (5.4), (5.5) and 

0≥∆ iq                                                           for i=1..N                 (5.11) 

The second sub-problem assumes that the values of the decision variables iq∆ are 

known for each i. The objective of this optimization problem is to find the values of bi 

that maximize the firm’s profits. This sub-problem is called PB. 
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         for k=1..K;  t=1..T;             (5.12) 

Subject to: (5.2), (5.3), (5.4), (5.5), and (5.6) constraints. 
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5.5 dBPSO Genetic Representation 

 

The dBPSO is used for solving both sub-problems, PQ and PB. The sub-problem 

PB is solved first using the algorithm dBPSOB and its solution is then used to solve PQ 

using the algorithm dBPSOQ. Then the new solution of PQ is used to re-solve PB. This 

process is applied successively until no improvement is observed after two iterations. For 

both problems, the population size is set to µ particles. To initialize the population of 

dBPSOQ, we proceed as follows: we first sample ∆q1 as the amount at which the marginal 

production cost is equal to the given bid price b1 plus a random uniformly distributed 

quantity in the interval [-Q, Q], where Q is a user defined parameter. Thus, 
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−
=∆                                                                   (5.13) 

and all other values ∆qi (for i=2,..,N) are sampled as 

)1,0(
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q ii
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−−
=∆        .     for  i=2,..,N                  (5.14) 

Similarly, we use the marginal cost function to initialize the population of dBPSOB. 

),(2 1321 BBUqaab −+∆+=                       (5.15) 

)1,0(2 3 Uqab ii ∆=                                                                     for  i=2,..,N               (5.16) 

 

Since the objective functions of P, PQ, and PB are identical, we define the same 

fitness function for each problem. When b(j) and )( j∆q denote a particular solution j 

(again a particle is not necessarily feasible), the fitness function is calculated as in (5.4), 

(5.5),  (5.7) and (5.8). 
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Notice that the same penalty function penalty (j) is used to penalize the objective 

function due to the violation of the maximum bid price and/or the maximum available 

capacity of the generating unit. The following pseudo code describes the main procedure: 

 

             Figure 5.3. Pseudo code for the dBPSO method 
 

In this procedure, the initial values of ∆q are randomly selected from a uniform 

distribution as follows: 

∆q1 = U(0, Q
max/N)                        (5.17) 

∆qi = U(qi-1, Q
max) − q i-1, where ∑

=

∆=
i

k

ki qq
1

                 for  i=2,..,N  (5.18) 

Main Procedure 

Set 0∆q =*  and 0b =*  

Randomly generate ∆q  

NoImprovement = 0 

While NoImprovement < 2 

Run dBPSOB and obtain solution b  

Using this b as input, run dBPSOQ and obtain solution ∆q  

If fitness of P(∆q ,b) > fitness of P( *∆q , *
b ) then                   

Set ∆q∆q =*  and bb =*  

NoImprovement = 0 

Else 

NoImprovement = NoImprovement + 1 

Endif 

EndWhile  

Output *∆q and *
b as the best solution of P 
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 5.6 Numerical Example and Analysis 

 

The cPSO and dBPSO methods were coded in C. We run the methods using c1=2, 

c2=2, w=0.5 [52], and µ=30 [51]. We compute the quantity-price offers for two different 

generators say GEN-1 and GEN-2. The maximum capacity of GEN-1 is 400 MW and its 

cost function is equal to 56.52q + 0.0139q2 ($/MWh). This cost function is obtained by 

multiplying the heat-input function of the generator given in [29] by the current fuel cost 

of oil-fired units (7.2 $/MBtu) [52]. Similarly, the maximum capacity of GEN-2 is 600 

MW and its cost function is equal to 43.2q + 0.108q2 ($/MWh). This cost function is 

obtained by multiplying the function of the generator given in [53] by 7.2 as well. In both 

cases, the aim is to have the marginal cost of the unit within the range of the sampled 

prices. Otherwise, the solution of the SBP would be trivial. 

In market price generation procedure, we first choose the date of May 17th, 2007, 

arbitrarily, and use the PJM day-ahead market prices to produce twelve 24-hour price 

scenarios.  At each hour twelve prices are generated by sampling values from a normal 

distribution with mean equal to the price at that hour of May 17th and a standard deviation 

equal to 4 ($/MWh). For example, for hour 1 AM twelve prices are sampled from a 

normal distribution with mean 27.14 ($/MWh) and standard deviation 4. The price 

scenarios for all twenty four hours are given in Table 5.1. To show the variability among 

samples and the hourly fluctuations in the market price, we plot the prices in Figure 5.4.  
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Table 5.1. Day-ahead market price samples for PSO 
 Sample 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 

1 29.36 26.54 29.47 25.30 25.09 31.33 24.26 27.05 23.79 25.17 28.28 26.59 

2 24.62 24.04 24.26 24.74 26.44 31.88 28.00 26.45 21.09 24.37 24.28 24.87 

3 26.09 21.12 25.66 20.57 20.29 21.28 18.79 20.80 21.50 23.20 21.96 22.31 

4 21.04 16.80 19.94 21.71 23.34 21.25 22.54 21.38 19.46 21.54 18.82 20.58 

5 24.16 24.30 21.24 18.89 22.24 20.51 18.20 21.63 18.25 22.61 25.04 24.29 

6 24.89 23.56 25.21 26.88 25.16 25.70 25.15 27.25 25.60 23.45 27.76 23.77 

7 36.87 33.02 33.47 34.77 33.24 36.83 31.67 34.86 32.51 31.01 35.13 35.82 

8 43.27 46.09 44.46 44.99 44.43 44.75 46.92 43.09 47.58 46.53 47.04 48.78 

9 50.33 48.31 45.03 47.86 47.85 45.83 48.64 48.90 48.45 48.01 47.12 47.92 

10 50.09 51.61 54.90 54.44 52.08 55.02 52.34 51.52 54.34 50.53 50.23 50.53 

11 58.65 54.42 56.90 58.72 57.59 52.62 56.27 56.17 58.57 56.40 53.20 56.75 

12 58.97 57.09 57.96 57.88 56.81 57.02 58.60 56.35 54.99 63.38 56.13 59.27 

13 62.51 55.20 59.87 56.92 59.85 59.02 54.83 57.97 56.97 58.22 57.82 59.38 

14 60.64 63.48 61.66 55.30 60.85 58.96 58.68 60.22 58.82 64.52 58.21 61.70 

15 59.63 59.17 62.39 60.45 59.99 60.60 59.86 60.68 63.71 62.35 59.85 59.16 

16 56.70 58.07 59.67 58.83 61.24 61.37 56.58 61.36 60.53 58.92 63.00 61.66 

17 65.77 61.57 65.12 63.23 64.56 67.54 65.22 64.65 62.40 61.77 62.87 61.79 

18 58.31 59.13 59.22 57.99 64.11 56.78 56.24 57.55 59.78 55.91 57.63 58.52 

19 49.60 48.38 50.14 50.82 48.86 49.97 52.34 52.97 52.01 50.92 53.74 53.00 

20 47.06 48.48 49.13 48.45 47.35 49.46 49.05 48.82 48.19 48.52 48.74 48.76 

21 59.66 61.85 55.34 58.47 60.59 58.58 58.35 57.67 59.93 61.16 59.85 62.18 

22 61.14 55.29 59.71 56.65 61.09 56.54 58.43 58.51 63.87 60.14 54.70 62.94 

23 34.77 36.46 33.50 34.29 37.06 35.50 29.80 32.79 36.34 35.31 35.58 36.44 

24 19.95 28.45 24.52 26.64 23.69 26.28 29.70 30.15 26.51 26.80 29.55 27.38 

 
 

 
Figure 5.4. Hourly day-ahead market price samples 
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5.6.1 Comparison Analysis of cPSO and Marginal Cost based Bidding 

 

We first compare the results provided by the cPSO and the marginal cost method 

(MC). The MC method consists of dividing the maximum capacity into ten blocks of 

equal size and then offering them at prices equal to their marginal cost. We plotted GEN-

1 and GEN-2 in Figure 5.5a and Figure 5.5b respectively. We compute the quantity-price 

offer for two different generators say GEN-1 and GEN-2. Notice that although the cost 

function of GEN-1 is quadratic, the curve is approximately linear in the range 0 to 400 

MWh; whereas, the curve of GEN-2 is clearly quadratic. In addition, we assume that each 

generator bids into the PJM market (Bmax =999) where the maximum number of blocks is 

ten (N=10). 

 

 

      Figure 4.5.a. Cost function of GEN-1                          Figure 4.5.b. Cost function of GEN-2 

 

We run the cPSO algorithm using 10 replications and 400 cycles, and choose the 

solution with the highest fitness value.  The MC and cPSO solutions are given in Table 

5.2. For GEN-1, the expected profit of the MC solution is $2,766. The cPSO provides a 



 55 

solution with a slightly higher expected profit of $2,819. For GEN-2, the expected profit 

of the MC solution is $5,525, whereas cPSO provides a solution with a higher expected 

profit of $6,619.  

 

Table 5.2. Quantity-price solutions for GEN-1 and GEN-2  
Block GEN-1- MC GEN-1- cPSO GEN-2 –MC GEN-2- cPSO 

i 
 

bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 

1 57.64   40 57.37   68.43 56.16 60 40.10  24.55 

2 58.75   80 59.20 124.17 69.12 120 52.75  64.29 

3 59.87 120 60.83 177.19 82.08 180 59.55  86.30 

4 60.99 160 62.02 220.51 95.04 240 98.79 179.08 

5 62.11 200 63.05 258.47 108.00 300 98.89 479.77 

6 63.22 240 64.41 294.94 120.96 360 99.20 480.27 

7 64.34 280 65.69 312.82 133.92 420 99.30 480.77 

8 65.46 320 65.79 332.54 146.88 480 99.49 481.27 

9 66.58 360 66.68 396.18 159.84 540 155.02 481.77 

10 67.64 400 67.64 400.00 172.80 600 172.80 600.00 

              
 

The cPSO approach is more effective for GEN-2 than for GEN-1. The small 

difference in profit for GEN-1 seems to be due to the small value of the quadratic 

coefficient of its cost function. To show that, we change the quadratic coefficient a3 of 

GEN-1 between 0.0139 and 0.1139 in steps of 0.01 and compute the quantity-price 

solutions for each of these values using the MC and cPSO methods. We plot the 

difference of profits in relation to the MC solution in Figure 5.6 below. 
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Figure 5.6. Percentage of increase of cPSO solution in relation to MC 

5.6.2. Comparison Analysis of cPSO and dBPSO 

 

For the comparison analysis of cPSO and dBPSO, we use GEN-2 and the same 

price samples and PSO parameters. To compare the performance of both methods in 

terms of the fitness value, we use three different combinations of replications and cycles 

(see Table 5.3). Notice that the dBPSO algorithm evaluates two fitness functions at each 

iteration, which we refer to as a “cycle”, while cPSO evaluates one function at each 

cycle. We compare both methods using different numbers of cycles and replications. A 

replication is a complete run of the algorithm using a different starting seed for 

generating the random numbers. We select three combinations of numbers of cycles and 

replications to reach a total of 4,000 function evaluations in each PSO. These values are 

given in Table 5.3. To assure that these combinations are indeed different settings, we 

conduct an ANOVA test for cPSO and dBPSO. This procedure allows us to properly 

compare both approaches under similar parameters and diverse setting. 
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           Table 5.3: Parameter set for the experiment 

Parameter cPSO dBPSO 

Number of Replication (R) 10 20 40 10 20 40 

Number of Cycles (C ) 400 200 100 200 100 50 

Total Function Evaluations 4000 4000 4000 4000 4000 4000 

 

First, we run the cPSO for each combination. In Table 5.4 I give the averages, 

standard deviations, and the best fitness values. The bid prices and quantities that provide 

the best fitness are given in Table 5.5. Second, we conduct the one-way ANOVA test on 

means to determine whether there is a statistical difference among these results. The 

values of the ANOVA table are given in Table 5.6. The results of the test show that with 

a p-value=0.15 and level of significance α=0.05 there is no statistical evidence to show 

that the setting conditions are different. This result indicates that cPSO is robust with 

regard to changes to R and C.   

    Table 5.4. Statistical summary of the results of the cPSO solutions 

Parameter set Average fitness($) Standard deviation ($) Best fitness ($) 

R=10, C=400 6,346.84 143.08 6,530.02 

R=20, C=200 6,304.85 125.24 6,529.35 

R=40, C=100 6,315.40 127.89 6,524.05 

 
  Table 5.5. Bid prices and quantities for best solutions of cPSO  
 R=10, C=400 R=20, C=200 R=40, C=100 

Block i bi ($/MWh) qi (MWh) bi ($/MWh) qi (MWh) bi ($/MWh) qi (MWh) 

1 46.72 31.57 46.89 31.60 45.86 27.66 

2 54.75 75.58 54.80 75.58 54.70 75.69 

3 114.76 109.02 107.84 348.03 77.03 290.36 

4 136.21 298.12 131.37 430.19 77.13 386.62 

5 136.31 432.95 166.70 448.01 80.01 417.34 

6 136.41 477.58 166.80 448.51 80.11 481.06 

7 136.51 478.08 166.90 449.01 80.39 503.23 

8 136.61 480.47 167.00 449.51 80.49 503.73 

9 136.71 480.97 167.10 450.01 80.59 504.23 

10 172.80 600.00 172.80 600.00 172.80 600.00 
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           Table 5.6. ANOVA test results for cPSO 

Source of Variation Sum of Square DF Mean Square F0 P-Value 

Factor 11959 2 5980 0.36 0.701 

Error 1120190 67 16719   

Total 1132149 69    

 

 

Similarly, we run dBPSO for each of the setting conditions. In Table 5.7, I show 

the averages, standard deviations, and the best fitness values. The bid prices and 

quantities that provide the best fitness are given in Table 5.8. The same ANOVA test on 

means was applied to the experimental data of dBPSO. The results of the statistical test 

are given in Table 5.9. This ANOVA table also shows no evidence of statistical 

difference among the setting conditions with a level of significance α=0.05 and p-

value=0.488. dBPSO is also robust with regard to changes to its parameters.  

          Table 5.7. Statistical summary of dBPSO solutions 

Parameter  Set Average fitness ($) Standard Deviation ($) Best fitness ($) 

R=10, C=200 6,607.18 64.91 6,691.43 

R=20, C=100 6,630.04 52.10 6,701.11 

R=40, C= 50 6,612.69 61.29 6,689.76 

 

 

          Table 5.8: Bid prices and quantities for best solutions of dBPSO 
R=10, C=200 R=20, C=100 R=40, C=50 

Block 
i 

bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 

1   46.45   27.71   46.17   27.72   46.20   27.02 

2   52.48   57.18   52.48   57.18   52.29   56.36 

3   57.54   74.03   57.18   71.46   57.46   73.54 

4   57.64   74.53   59.84   81.74   61.08   89.17 

5   61.57   91.34   59.94   82.24   61.18   89.67 

6   61.67   91.84   60.04   82.74   61.28   90.17 

7   61.77   92.34   62.85   96.58   61.38   90.67 

8   61.87   92.84   62.95   97.08   61.48   91.17 

9   61.97   93.34   63.05   97.58   61.58   91.67 

10 172.80 600.00 172.80 600.00 172.80 600.00 
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           Table 5.9. ANOVA test results for dBPSO 

Source of Variation Sum of Square Df Mean Square F0 P-Value 

Factor 5,106 2 2,553 0.72 0.488 

Error 236,012 67 3,523   

Total 241,118 69    

 

Using an analysis of means and a t-test, we test whether the mean of the fitness 

values of dBPSO is greater than that of cPSO. The results are given in Table 5.10. It 

shows strong evidence with p=0.00 and confidence level α=0.05 that dBPSO provides 

better solutions than cPSO on the average. 

 
            Table 5.10. ANOVA test results for dBPSO for method comparisons 

Sample Sample Size Mean St. Deviation T-Value P-Value 

dBPSO 70   6616.9    59.10 16.57 0.00 

cPSO 70  6316.9   128.10   

Difference 70 300.00 151.50   

 

5.6.3. Converging Process of dBPSOB and dBPSOQ 

To illustrate the converging process of the two sub problems, dBPSOB and 

dBPSOQ, of the dBPSO approach, we plot the evolution of the fitness function of each 

sub problem with respect to the number of iterations. In Figures 5.7 through 5.9, we show 

the evolution of the fitness value for the number of cycles equal to 200, 100, and 50, 

respectively. Notice that in the three plots the fitness value of the dBPSOB starts at a low 

value, whereas the dBPSOQ starts at a higher value. This is because we begin by solving 

dBPSOB using randomly selected bi values, while dBPSOQ uses ∆qi values that are 

determined by dBPSOB. Also notice that for the three cases the two sub-problems 

converge before the 25th iteration. 
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 Figure 5.7: Converging process of dBPSOB and dBPSOQ to the solution (C=200) 
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             Figure 5.8: Converging process of dBPSOB and dBPSOQ to the solution (C=100) 
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               Figure 5.9: Converging process of dBPSOB and dBPSOQ to the solution (C=50) 

 

5.6.4 Impact of the order of dBPSOB and dBPSOQ 

In order to analyze the impact of the order of solving dBPSOB and dBPSOQ, we 

solve the problem using dBPSOB first and then dBPSOQ. In this procedure, the initial 

values of b are randomly selected from a uniform distribution as follows: 

b1 = U(0, B
max/N)                                     (5.19) 

bi = U(bi-1, B
max) − b i-1,                                             for  i=2,..,N               (5.20) 

 

In Figures 13 through 15, we show the evolution of the fitness value for number of cycles 

equal to 200, 100, and 50, respectively.  
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Figure 5.10: Converging process of dBPSOB and dBPSOQ to the solution (C=200) 
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Figure 5.11: Converging process of dBPSOB and dBPSOQ to the solution (C=100) 
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Figure 5.12: Converging process of dBPSOB and dBPSOQ to the solution (C=50) 

 

Similarly to the former case of dBPSO, in the three plots the fitness value of the 

dBPSOQ starts at a low value, whereas the dBPSOB starts at a higher value. This is 

because we begin by solving dBPSOQ using randomly selected ∆qi values, while dBPSOB 

uses bi values that are determined by dBPSOQ. Notice that for the three cases the two 

sub-problems converge again before the 25th iteration. Table 5.11 gives a summary of the 

results. After comparing the plots and Table 5.11 with Table 5.7, the order of the sub-

problems is not relevant for solving the problem. 

 Table 5.11: Statistical summary of dBPSO solutions 

Parameter  Set Average fitness ($) Standard Deviation ($) Best fitness ($) 

R=10, C=200 6,615.90 73.83 6,688.56 

R=20, C=100 6,635.57 55.67 6,688.72 

R=40, C= 50 6,614.85 69.28 6,689.48 

 

 5.7 Conclusion 

 

Results showed that PSO outperforms the MC method on determining price-

quantity pairs that will be submitted to the day-ahead market. The percentage of 
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improvement is accentuated when the quadratic coefficient of the generator’s cost 

function is significant. In terms of time and experimentation burden, both models took 

three minutes on average to find a solution. All three experiments of dBPSO showed that 

we need less than 25 iterations to obtain a good solution. The results also showed that 

dBPSO give much better solutions than cPSO. This tells us that the decomposition 

technique can be applied to problems that have two or more decision variable sets. The 

problems can be decomposed into two or more parts, and one or more decision sets can 

be used as components of the solution of the other parts of the problem. This process 

continues until no improvement is observed. The model discussed here can be further 

improved by including a forecasting technique for the market prices. If the characteristics 

of the generating unit and constraints change, the model and solution approach still may 

remain valid. 
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                                                            CHAPTER 6 

 AGENT BASED PARTICLE SWARM OPTIMIZATION FOR SUPPLY  

    FUNCTION EQUILIBRIUM 

6.1 Introduction 

In the previous chapters, we developed models for an individual generator which 

submits a bidding curve to the PJM Day-ahead market. We developed two PSO methods 

to find a heuristic solution to the problem. The models did not include the behavior of all 

market participants. In this chapter, we include the strategic change in competitors’ 

behavior for a particular generator. The model assumes that the strategy employed by one 

player is affected by the others’ behavior. Game theory and agent based models are two 

ways to represent this market interaction. We develop an agent based simulation method 

to simulate the behaviors of all firms in the market. We combine the dBPSO approach 

and agent based model to compute an equilibrium solution. 

 

6.2 Supply Function Equilibrium Model 

This model assumes that there are m participants in a power pool who may be 

referred to as power suppliers. These power suppliers may either have individual 

generators or even a portfolio of generators.  All these participants bid into the day-ahead 

market and aims to maximize their profit by using bidding strategies that represent their 

expectations best.  The ISO collects the buy bids simultaneously and it starts the security 
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constrained optimum dispatch algorithm to set the equilibrium for the market. The ISO 

sorts the sell offers starting from minimum price offers to more expensive ones and sorts 

the buy offers starting from the maximum price offers to less expensive ones. The ISO 

sets the equilibrium market price where the aggregated supply and demand meet. Figure 

6.1 shows the equilibrium process in the day-ahead market [54]. In this figure, supply 

represents the power quantities offered and demand represents the respective buy offers; 

bij and qij represent the offered bid price and the power quantity respectively. Notice that 

the day-ahead equilibrium price is used for uniform bid auctions, and the winners will be 

paid the MCP.  

bij

Equilibrium
Pt

Market 

Price ($/Mwh)

Power Allocation

(Bid Quantities Mwh)

Demand

Supply

qij

(Bid Prices)

 

The model is formulated under the following additional assumptions: 

Figure 6.1. Equilibrium process in day-ahead power market 



 67 

i. An offer or bid, which consists of N price-quantity blocks at the most, needs 

to be determined for each firm separately. 

ii. Each firm can build its strategy based on separate resources or on its portfolio 

of power resources.  

iii. The equilibrium for each day is determined before the market closes at noon 

and is valid for the next twenty four hours, starting at midnight the same day. 

iv. Demand can be forecasted and is known for the analysis 

v. The transmission constraints are not included in the model. 

vi. Equilibrium of interest occurs in a single-round auction market.  

 

In finding an equilibrium, there are Nxm pairs of decision variables bji and ∆qji 

(j=1,…M) (i=1,..,N) for each firm j that need to be determined.. The variable ∆qji denotes 

the amount of energy increase in firm j in block i, to get the bid price bji for delivery at 

any hour of the next day. Total energy to be produced at time t and sold to the market at a 

price Pt  by the firm j is given by: 

 

∑
=

∆=
)(

1

)(
tPI

i

jitjt qPq , 
tjit PbiPI ≤=  such that  Max )(     for j=1...m;  t=1...T; i=1..I(Pt)   (6.1)          

                                                                                             

In equilibrium, it is accepted that firms cannot make more profit by bidding other 

than their current bid. Also the cost of dispatching is minimized for the system operator at 

this state [33]. 
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The maximum profit for the firm j in equilibrium can be expressed as: 
 

∑
=

−=Π=
T

t

tjttjttjj PqCPqP
jj 1

j
,

))(()( Max),P(
b∆q

b∆q      for j=1...m;  t=1..T;                 (6.2) 

 

Subject to the following constraints [55]: 

))(),(())(),(( ***

tjttjtjtjttjtj PqPqPqPq −− Π≥Π      for j=1...m;  t=1...T;          (6.3) 
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                                                                  for  i=1..N; j=1...m;          (6.4) 

max0 Bb ji ≤≤                                                           for j=1...m; i=1...N;           (6.5) 
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 Where 
tjit PbiPI ≤=  such that  Max )(                               for j=1..m;  t=1..T; i=1...N; 

2

321 ))(()())(( tjtjtjtjjtjt PqaPqaaPqC ++=                       for j=1..m;  t=1..T;            (6.8) 

 
 

The equilibrium in an economic system requires supply and demand to be equal. 

As equilibrium constraint, the total amount of power generated is equal to total supply as 

given below: 

t

m

j

tjt DPq =∑
=1

)(                                                   t=1..T;                                          (6.9) 
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6.3 Agent Based Modeling and Simulation 

 
Agent-Based Modeling and Simulation (ABMS) is a computational approach to 

model economic systems which have interacting components or dynamic agents. Agents 

usually interact among themselves and between environments by updating themselves 

sequentially rather than simultaneously. In building an ABMS, the definition of agents 

and their interaction environment are crucial. Figure 6.2 shows the ABMS building 

process [56].  

 

Figure 6.2. Agent based modeling and simulation  
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ABMS is applied to very complex systems where interdependencies are difficult 

to capture and traditional models are hard to apply. ABMS replaces its framework with an 

individual agent’s behavioral rules that are updated over time [57]. ABMS is a descriptive 

method which aims to model the behavior of agents rather than optimality. ABMS models 

are useful in economics models. In a micro-economic point of view, agents assume that 

1) they behave in a rational manner that aims to  optimize their well-defined objectives 2) 

they have identical characteristics that make them alike 3) they will have decreasing 

marginal utility as the number of agents increase 4) long-run equilibrium of the system is 

of primary interest to the model [58], [59]. Figure 6.3 shows the process of a typical 

ABMS [57], [58], [59]. 

 

 

                  Figure 6.3. General flow of a typical ABMS   
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ABMS, like many other heuristic methods, searches for the best feasible solution 

by an updating process. The process is evolutionary, in which updating, learning and 

convergence are involved. ABMS has been used in flow management of evacuation, 

traffic, stock market, strategic simulation of market, organizational design, and in other 

areas where players dynamically move [56], [58], [60]. In [61], an agent-based model is 

developed for a supply chain in which the flow of a commodity finds a way between 

factories, distributors, wholesalers, retailers and customers. The goal of supply chain 

agents is to minimize their cost on their way. These are the research assumptions that are 

made for the agent based modeling to work. In [57], authors develop an agent based 

model for modeling the human immune system. Authors in [62] address the agent-based 

modeling approach in financial markets by explaining trading behaviors of firms.  

In [54], [59] authors develop an agent-based simulation approach for modeling 

the day-ahead power trading in the US wholesale power market. The model is developed 

for wholesale power suppliers, individual power generators and wholesale power 

consumers that are bidding into the day-ahead market. Their hypothesis is that agent-

based approach is as good as other approaches like neural networks. They show the 

effectiveness of the model using data provided in PJM west. Agents bid into the market 

and they update their bidding strategies in each run of the simulation based on a learning 

factor until the equilibrium is reached.  

In [63], an agent-based model was developed for the wholesale electricity market, 

operating in a short-term environment under capacity conditions and double auction 

rules. A simulation model that uses a multi-adaptive agent model for generators bidding 

in the UK power market was developed in [64]. It shows that agents learn bidding 
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strategies in a manner similar to their behavior in real world. In [65], authors use an agent 

based simulation model to show how companies use market power during the electricity 

market bidding process. They compare the production cost bidding with the bidding 

strategies based on physical and economic withholding, including congestion 

management. 

 

6.4 Agent based particle swarm optimization model  

 

It was demonstrated in Chapter 5 that the dBPSO method is an effective way to 

find a solution for an individual generator. Now let’s assume that m firms compete in the 

day-ahead market using dBPSO. The objective of this chapter is to show that the model 

can reach an equilibrium point at which each player’s payoff is maximized and the 

equilibrium conditions are met using ABMS and dBPSO. Each firm participating in the 

day-ahead market is modeled as an agent. Figure 6.4 shows the details for the ABMS 

method with dBPSO applied. Each agent has a unique cost function, a capacity and pairs 

of quantity-price bids as attributes. The agents’ interaction occurs in the pool where 

offered quantities and corresponding prices are submitted. Agents aim to allocate their 

price-quantity offers in a way that their profit is maximized. In other words, their 

interaction occurs based on power quantities and offered prices.  



 73 

 

Figure 6.4: Components of ABMS method 

 

The model assumes that the day-ahead market demand is known and the final 

objective is to reach equilibrium for the next day. The model starts with an initial price 

scenario and given demand for 24 hours. It runs until the equilibrium is reached. Each 

agent’s objective is to maximize its profit by bidding into the environment using dBPSO. 

Figure 6.5 shows a flow chart of the Agent Based Particle Swarm Optimization 

(ABPSO). 
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                                     Figure 6.5: The flow of the ABPSO 
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Notice that each agent in the model is a price-taker while bidding into market. The 

cleared prices that are set at each iteration are the result of bidding strategies submitted 

by each agent. Since the analysis is for a single-round auction market, an agent can use 

the simulation to test the behavior of its rivals.  Agents update their price and quantity 

bids at each iteration until the equilibrium is reached. The particular agents simulating the 

model would be able to observe the behavior of their competitors during this process. 

This iterative process ensures that each generator minimizes its risk of cost recovery and 

infeasibility of its offer.  

The definition of stopping criteria is important in ABSM since it shows whether 

the equilibrium is reached or not. In [21], authors propose two kinds of stopping criteria. 

First criterion stops the equilibrium process when the prices are too low. This is because 

the demand is not sufficiently covered at this price since some units will be eliminated 

due to low prices. At this point, iteration goes 2 steps back and defines the point as 

equilibrium point. The second criterion calculates demand-weighted average price and 

total financial loss for all players and it compares the values with those of the previous 

ones. When the current average prices are higher than those of the previous two iterations 

the process stops.  

The submission of the same or similar strategies at each iteration could lead to 

similar market prices. It might indicate that market price is converging and strategies 

submitted are reaching equilibrium. However, we need to verify that this state actually 

satisfies equilibrium conditions. We evaluate three new stopping rules to end the agent-

based process in order to find the best stopping rule that satisfies equilibrium conditions 

most of the time. In the first stopping rule, we calculate the percentage of differences of 



 76 

resulting market prices and previous iterations’ market prices for each hour. When the 

absolute value percentage of market price differences for the 24 hours are less than a 

value ε1 the process stops. It can be represented mathematically as: 
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In the second stopping rule, we calculate the average of differences of resulting 

market prices and previous iterations’ market prices for each hour. At each iteration, 

current market prices are compared with previous market prices. When the absolute 

average value of market price differences for 24 hours are less than a small value ε2 the 

process stops. It can also be represented mathematically as: 
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In the third stopping rule, we calculate the weight of each hour’s demand with 

regard to the total demand for 24 hours. At each iteration, we multiply this percentage for 

each hour with the price difference percentage found in the first stopping condition. 

When the average value of this calculation is less than a small value ε3 the process stops. 

The mathematical representation is: 
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Notice that at each iteration, agents could have available strategies from which 

they choose the best strategy for themselves. This strategy is selected based on  

interactions with other agents and interaction with the environment. The interaction with 

the environment occurs in a way that total supply of all agents should be equal to total 

demand. The amount of power allocated to an agent affects other agents. The interaction 

between agents occurs based on the offer prices and offer quantities. If the offer of an 

agent is selected, the agent can either maintain this strategy or update it in the next 

iteration in order to get better results. This process continues until the price difference in 

the two iterations is so low that it might lead to convergence.  

In order to test whether the results of the experiments actually satisfy the 

equilibrium conditions, we define conditions for equilibrium.  

 

I. Supply should be equal to demand as an essential rule of equilibrium. 

II. In equilibrium, all suppliers maximize their return at the given prices. Also according to 

the Nash equilibrium, if a player deviates from its strategy it will loose in the long run 

[38], [39], [40]. We will let each firm behave separately and run the dBPSO to get a 

separate bidding strategy and profit. The results found in dBPSO will be compared with 

the ABPSO results for each firm. It is expected that firms find a close strategy in 

dBPSO to the strategy found in equilibrium. If the difference is less than 1%, we will 

accept this as a satisfied condition.  
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6.5 Numerical Example and Analysis 

 

We coded the model in C and used the same dBPSO parameters we used in 

Chapter 5. We are more interested in the supply side bidding rather than demand side 

bidding. The demand for next day is known and is given in Table 6.1.  

                                  Table 6.1. Day-Ahead demand for next day 

Hour Demand(Mwh) Hour Demand(Mwh) 

1 3115 13 4510 

2 3711 14 5142 

3 3346 15 3424 

4 3771 16 3287 

5 3298 17 4501 

6 4266 18 5236 

7 4117 19 5790 

8 5176 20 6084 

9 5751 21 6561 

10 6513 22 6411 

11 6280 23 4411 

12 4472 24 4664 

 

6.5.1 ABPSO Experiment with Duopoly 

We start with a duopoly SMD that has m=2 firms competing. The cost functions 

of the firms and their capacities are given in Table 6.2.  

 

                               Table 6.2. Cost functions and market capacities of the firms for m=2 

 

 

 

Firm(m) a1 a2 a3 Unit 

1 0 41.73 0.0063 8085 

2 0 47.25 0.0057 6281 
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We start with the first stopping condition set to the value ε1 = 1%, in other words, 

the percentage price difference for each of the 24 hours is less than 1%. The equilibrium 

prices found are given in Table 6.3.  

Table 6.3. Equilibrium prices for first stopping rule (m=2) 

Hour Price($/Mwh) Hour Price($/Mwh) 

1 77.15 13 77.15 

2 77.15 14 77.15 

3 77.15 15 77.15 

4 77.15 16 77.15 

5 77.15 17 77.15 

6 77.15 18 77.15 

7 77.15 19 80.29 

8 77.15 20 80.29 

9 80.29 21 83.98 

10 83.68 22 83.68 

11 83.68 23 77.15 

12 77.15 24 77.15 

Table 6.4 shows the bids found for each firm at the equilibrium and their profits.  

                           Table 6.4. Results found in first stopping rule (m=2) 

Firm-1 Firm-2 

Block i 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 

1 70.79 2856.23 77.15 2642.64 

2 70.89 2861.75 77.42 2887.47 

3 70.99 2862.25 83.68 3200.27 

4 80.29 3254.57 83.78 3200.77 

5 80.47 3338.97 83.88 3218.77 

6 84.57 3450.30 83.98 3247.07 

7 86.50 3503.35 84.08 3254.22 

8 86.60 3507.39 84.18 3254.72 

9 86.70 3507.89 84.28 3255.22 

10 143.60 8085.00 118.85 6281.00 
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ε1 = 1% was chosen because values smaller than 1% increase the computational 

time and in some cases the stopping condition could not be reached in a reasonable time. 

In the second stopping rule we set ε2 = $0.25. In other words, the average price 

difference for the 24 hours should be less than $0.25. The values less than $0.25 also 

increase computational time and many times return no results. The equilibrium prices 

found are given in Table 6.5.  

Table 6.5. Equilibrium prices for second stopping rule (m=2) 

Hour Price($/Mwh) Hour Price($/Mwh) 

1 77.15 13 77.15 

2 77.15 14 77.15 

3 77.15 15 77.15 

4 77.15 16 77.15 

5 77.15 17 77.15 

6 77.15 18 77.15 

7 77.15 19 80.29 

8 77.15 20 80.29 

9 80.29 21 83.98 

10 83.68 22 83.68 

11 83.68 23 77.15 

12 77.15 24 77.15 

 

Table 6.6 shows the bids submitted by each firm at the equilibrium and firms’ profits.  
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                           Table 6.6. Results found in second stopping rule (m=2) 

Firm-1 Firm-2 

Block i 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 

1 70.79 2856.23 77.15 2642.64 

2 70.89 2861.75 77.42 2887.47 

3 70.99 2862.25 83.68 3200.27 

4 80.29 3254.57 83.78 3200.77 

5 80.47 3338.97 83.88 3218.77 

6 84.57 3450.30 83.98 3247.07 

7 86.50 3503.35 84.08 3254.22 

8 86.60 3507.39 84.18 3254.72 

9 86.70 3507.89 84.28 3255.22 

10 143.60 8085.00 118.85 6281.00 

In the third stopping rule we set ε3 =1%. In other words, the load weighted 

average for the 24 hours should be less than 1%.The equilibrium prices found are given 

in Table 6.7.  

Table 6.7. Equilibrium prices for the third stopping rule (m=2) 

Hour Price($/Mwh) Hour Price($/Mwh) 

1 78.45 13 78.45 

2 78.45 14 78.45 

3 78.45 15 78.45 

4 78.45 16 78.45 

5 78.45 17 78.45 

6 78.45 18 78.45 

7 78.45 19 79.77 

8 78.45 20 79.77 

9 79.77 21 84.17 

10 84.17 22 82.6 

11 82.6 23 78.45 

12 78.45 24 78.45 

Table 6.8 gives the bids submitted by each firm at the equilibrium and profits.  
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                           Table 6.8: Results found in third stopping condition (m=2) 

Firm-1 Firm-2 

Block i 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 

1 58.01 1343.58 78.45 2744.24 

2 78.32 2955.50 78.59 2795.03 

3 79.77 3318.26 82.60 3168.58 

4 93.90 3832.65 84.17 3247.16 

5 94.00 3840.36 84.27 3275.26 

6 94.38 3840.86 84.37 3275.76 

7 94.48 3841.36 84.47 3276.26 

8 94.58 3841.86 84.57 3276.76 

9 94.68 3863.55 84.67 3277.26 

10 143.60 8085.00 118.85 6281.00 

 

Using the equilibrium prices found, we run dBPSO to find a solution for each 

firm separately. The summary of the results are given in Table 6.9.          

                          Table 6.9: Overview of the results found in each method (m=2) 

Method Firm-1 Profit ($) Firm-2 Profit ($) 

First stopping rule 1,302,689 1,043,974 
Second stopping rule 1,302,689 1,043,974 
Third stopping rule 1,355,414 1,094,031 

All three stopping rules satisfy the balance condition, which is supply equals 

demand. The second and third stopping rules generally require close computational times 

which is around 15 minutes. Notice that rule-1 and rule-2 return the same values, i.e., 

they both satisfy each rule. We let each firm develop a separate strategy. To do so, we use 

the equilibrium prices found in each rule and run dBPSO. Table 6.10 shows the 

percentage of profit increase in dBPSO comparing with the equilibrium solution. 
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 Results show that three rules give similar profit increases which are smaller than 

acceptable level 1%. However, the profits found in rule-1 are almost same with the 

ABPSO solution.  

                              Table 6.10: Profit increases in each rule (m=2) 

 Rule 1 Rule 2 Rule 3 

Firm 1 0.08% 0.08% 0.15% 

Firm 2 0.00% 0.00% 0.01% 

 

6.5.2 ABPSO experiment with m=5 

We now suppose that there is a SMD that has m=5 firms computing. The cost 

functions of the firms and their capacities are given in Table 6.11. 

 

                             Table 6.11. Cost functions and market capacities of the firms for (m=5) 

Firm(m) a1 a2 a3 Unit 

1 0 47.273 0.0074 3450 

2 0 45.18 0.0048 1600 

3 0 44.76 0.0066 2935 

4 0 45.35 0.0087 4950 

5 0 46.72 0.0061 2281 

 

We set the ε1 = 1% and the find the results with firs stopping condition. The 

equilibrium prices found are given in Table 6.12 and the results for each firm are given in 

Table 6.13 and Table 6.14.  
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Table 6.12. Equilibrium prices for first stopping rule (m=5) 

Hour Price($/Mwh) Hour Price($/Mwh) 

1 56.24 13 57.83 

2 56.30 14 59.18 

3 56.24 15 56.24 

4 56.30 16 56.24 

5 56.24 17 57.83 

6 57.17 18 60.46 

7 56.30 19 63.11 

8 60.46 20 63.21 

9 63.11 21 63.90 

10 63.51 22 63.24 

11 63.24 23 57.83 

12 57.83 24 58.36 

         

 Table 6.13. Results found for firm 1, 2 and 3 in first stopping rule (m=5) 

         

 

            

                       

 

                   

 

 

 

 

 

 

 

Firm-1 Firm-2 Firm-3 

Block i 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 

1 54.76 636.21 52.77 1090.48 53.57 922.97 

2 57.83 829.31 54.67 1090.98 60.46 1365.98 

3 63.11 1061.94 55.88 1199.05 64.78 1610.22 

4 63.21 1082.94 58.36 1397.38 64.88 1617.56 

5 63.31 1083.44 58.86 1500.82 64.98 1618.06 

6 63.41 1088.85 58.96 1501.32 65.08 1627.13 

7 63.51 1101.42 59.06 1576.97 65.18 1627.63 

8 63.61 1105.74 59.16 1577.47 65.28 1648.61 

9 63.71 1128.88 59.26 1595.29 65.38 1649.11 

10 98.33 3450.00 60.54 1600.00 83.50 2935.00 
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Table 6.14. Results found for firm 4 and 5 in first stopping rule (m=5) 

Firm-4 Firm-5 

Block i 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 

1 56.24 690.41 56.30 788.31 

2 63.24 1031.96 56.40 814.21 

3 63.34 1061.27 57.17 908.10 

4 64.42 1112.65 59.18 1128.05 

5 64.68 1181.62 63.16 1359.23 

6 65.25 1182.12 63.33 1383.06 

7 65.35 1182.62 63.43 1386.21 

8 65.45 1185.39 63.53 1386.75 

9 65.55 1185.89 63.90 1414.27 

10 131.48 4950.00 74.55 2281.00 

 

In the second stopping rule we keep the same value and set the ε2 = $0.25. The 

equilibrium prices found are given in Table 6.15. Table 6.16 and Table 6.17 below show 

the bids submitted by each firm at the equilibrium.  

Table 6.15. Equilibrium prices for second stopping rule (m=5) 

Hour Price($/Mwh) Hour Price($/Mwh) 

1 54.61 13 57.69 

2 54.95 14 59.65 

3 54.61 15 54.61 

4 56.16 16 54.61 

5 54.61 17 57.69 

6 57.29 18 60.54 

7 57.29 19 61.86 

8 59.65 20 62.18 

9 61.86 21 63.95 

10 63.75 22 63.75 

11 62.67 23 57.69 

12 57.69 24 57.89 
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Table 6.16. Results found for firm 1, 2 and 3 in second stopping rule (m=5) 

 

 

 

 

 

 

 

 

           Table 6.17. Results found for firm 4 and 5 in second stopping rule (m=5) 

Firm-4 Firm-5 

Block i 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 

1 46.40 532.01 54.61 663.56 

2 50.27 604.27 54.71 685.44 

3 56.16 764.99 57.29 928.55 

4 61.86 967.41 58.93 1078.69 

5 63.72 967.91 61.41 1287.72 

6 63.82 994.97 63.75 1396.49 

7 63.93 1009.70 63.85 1396.99 

8 64.03 1057.48 63.95 1400.27 

9 64.13 1057.98 64.10 1414.97 

10 131.48 4950.00 74.55 2281.00 

 

For the third stopping rule we also go with the same stopping value and set ε3 = 

1%. The equilibrium prices found are given in Table 6.18.  

Firm-1 Firm-2 Firm-3 

Block i 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 

1 53.21 527.86 53.12 835.03 50.71 781.89 

2 56.61 769.26 53.28 877.46 57.69 1052.93 

3 61.25 1001.89 54.07 982.34 62.18 1338.63 

4 61.35 1006.83 54.95 1113.52 62.67 1433.25 

5 61.87 1007.33 57.89 1330.21 62.77 1439.68 

6 61.97 1007.83 57.99 1332.43 67.37 1463.38 

7 62.60 1040.61 58.13 1390.31 67.47 1474.14 

8 62.70 1064.30 59.65 1511.66 67.57 1475.78 

9 63.17 1114.08 59.75 1569.86 67.67 1479.80 

10 98.33 3450.00 60.54 1600.00 83.50 2935.00 
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Table 6.18. Equilibrium prices for third stopping rule (m=5) 

Hour Price($/Mwh) Hour Price($/Mwh) 

1 54.07 13 58.75 

2 54.07 14 60.85 

3 54.07 15 54.07 

4 54.10 16 54.07 

5 54.07 17 58.75 

6 57.36 18 60.85 

7 57.13 19 62.23 

8 60.85 20 62.43 

9 62.23 21 63.88 

10 62.76 22 62.43 

11 62.43 23 57.36 

12 58.75 24 60.54 

Table 6.19 and Table 6.20 below show the bids submitted by each firm at the 

equilibrium with third stopping rule. The summary of the results are given in Table 6.21.          

Table 6.19. Results found for firm 1, 2 and 3 in third stopping condition (m=5) 

 

 

 

 

 

 

 

 

 

Firm-1 Firm-2 Firm-3 

Block i 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 

1 54.12 623.77 55.47 1075.35 55.24 814.10 

2 59.82 934.01 55.67 1224.07 55.88 1010.89 

3 63.23 1084.28 58.32 1377.30 60.30 1237.79 

4 63.33 1088.76 58.42 1377.80 63.27 1404.40 

5 63.43 1095.11 58.52 1378.30 63.37 1404.90 

6 63.56 1095.61 58.62 1378.80 63.47 1412.75 

7 63.66 1115.29 58.72 1379.30 63.59 1418.85 

8 63.76 1115.79 58.82 1460.73 63.69 1432.33 

9 63.86 1116.29 58.92 1461.23 63.79 1440.80 

10 98.33 3450.00 60.54 1600.00 83.50 2935.00 
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Table 6.20. Results found for firm 4 and 5 in third stopping condition (m=5) 

Firm-4 Firm-5 

Block i 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 

1 54.38 641.24 46.25 0.50 

2 59.40 894.78 54.62 802.07 

3 62.08 965.90 60.51 1134.85 

4 62.33 998.53 60.61 1159.17 

5 62.67 999.03 60.71 1170.19 

6 62.77 999.53 61.58 1263.43 

7 63.30 1034.49 63.29 1367.16 

8 63.40 1042.20 63.39 1367.66 

9 63.50 1059.84 63.49 1398.41 

10 131.48 4950.00 74.55 2281.00 

 

Table 6.21. Overview of the results found in each method (m=5) 

 
Firm-1 
Profit($) 

Firm-2 
Profit ($) 

Firm-3 
Profit($) 

Firm-4 
Profit($) 

Firm-5 
Profit($) 

First rule 121,337 252,427 195,799 133,962 141,900 
Second rule 112,390 235,851 182,632 127,743 149,483 
Third  rule 110,166 240,275 182,493 126,768 149,629 

 

In terms of computational time, again first stopping rule is the most time 

consuming. The second and third stopping rules took around 35 minutes. Again we let 

each firm develop a separate strategy. Table 6.22 shows the percentage of profit increase 

in dBPSO comparing with the equilibrium solution.  
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                                  Table 6.22. Profit increases in each rule (m=5) 

 

 

6.5.3 ABPSO Experiment with m=10 

We now suppose that there is a SMD that has m=10 firms competing. Based on 

the results found for m=2 and m=5 it is better to use rule-2 as stopping rule. The cost 

functions of the firms and their capacities are given in Table 6.23 below. 

 

 

Table 6.23. Cost functions and market capacities of the firms (m=10) 
 

                                

 

 

 

 

 

  Rule 1 Rule 2 Rule 3 

Firm 1 0.46% 0.14% 4.28% 

Firm 2 0.17% 0.40% 0.11% 

Firm 3 0.51% 0.85% 2.20% 

Firm 4 2.87% 0.72% 2.30% 

Firm 5 13.51% 0.06% 1.54% 

Firm(m) a1 a2 a3 Capacity 

1 0 46.18000 0.00477 500 

2 0 32.95070 0.002357 600 

3 0 42.40000 0.004664 250 

4 0 40.12000 0.004364 1100 

5 0 41.75679 0.003896 585 

6 0 46.26748 0.007919 3000 

7 0 42.71000 0.016201 1528 

8 0 44.68000 0.017737 2000 

9 0 42.45727 0.006044 403 

10 0 43.19774 0.006153 4400 
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For given ε2 = $0.45, the equilibrium prices found are given in Table 6.24. Table 

6.25 through Table 6.28 below show the bids submitted by each firm at the equilibrium. 

The summary of the results and profit increase percentages are given in Table 6.29 and 

table 6.30 respectively.          

Table 6.24:.Equilibrium prices for second stopping rule (m=10) 

Hour Price($/MWh) Hour Price($/MWh) 

1 47.18 13 50.28 

2 48.56 14 53.26 

3 47.18 15 47.18 

4 48.56 16 47.18 

5 47.18 17 50.28 

6 49.04 18 53.26 

7 49.03 19 57.32 

8 53.26 20 57.33 

9 57.32 21 59.15 

10 59.08 22 58.94 

11 57.42 23 49.92 

12 50.18 24 51.57 

           

           Table 6.25. Results found for firm 1, 2 and 3 (m=10 

 

 

 

 

 

 

 

 

Firm-1 Firm-2 Firm-3 

Block i 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 

1 46.90 117.39 20.91 0.50 14.03 1.96 

2 48.56 283.36 22.02 85.45 14.13 3.18 

3 49.92 394.32 22.27 99.43 14.23 3.68 

4 50.18 425.57 22.37 114.02 14.33 12.13 

5 50.28 455.75 22.55 122.16 14.43 23.87 

6 50.38 456.25 22.65 124.67 14.53 33.95 

7 50.48 478.10 22.75 145.18 14.63 41.91 

8 50.58 478.78 22.85 149.52 14.73 51.55 

9 50.68 479.28 22.95 152.46 14.83 56.99 

10 50.95 500.00 35.78 600.00 44.73 250.00 
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Table 6.26. Results found for Firm 4, 5 and 6 (m=10) 

 

 

 

 

 

 

 

 

 

 

                           Table 6.27. Results found for firm 7 and 8 (m=10) 

Firm-7 Firm-8 

Block i 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 

1 46.71 187.75 44.57 116.03 

2 52.99 347.34 51.57 261.76 

3 56.30 451.20 54.82 390.04 

4 58.18 479.35 59.08 452.94 

5 58.28 479.85 59.19 453.44 

6 58.38 480.35 59.29 453.94 

7 58.48 480.85 59.39 456.96 

8 58.58 502.14 59.49 457.46 

9 58.68 502.64 59.59 457.96 

10 92.22 1528.00 115.63 2000.00 

 

Firm-4 Firm-5 Firm-6 

Block i 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 

1 47.18 809.78 24.65 0.50 49.03 363.19 

2 47.28 825.15 27.70 343.13 57.33 784.18 

3 48.32 973.01 27.95 368.73 58.94 866.18 

4 49.04 1028.94 28.07 383.73 59.04 878.95 

5 49.14 1040.43 28.17 385.00 59.14 889.98 

6 49.24 1042.02 28.27 396.61 59.24 913.65 

7 49.34 1047.96 28.37 400.68 59.34 914.15 

8 49.44 1057.33 28.47 411.19 59.44 921.36 

9 49.54 1057.83 28.57 423.03 59.54 921.86 

10 49.72 1100.00 46.32 585.00 90.37 3000.00 
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                           Table 6.28. Results found for Firm 9 and 10 (m=10) 

Firm-9 Firm-10 

Block i 
bi 

($/MWh) 
qi 

(MWh) 
bi 

($/MWh) 
qi 

(MWh) 

1 46.41 343.69 45.34 454.83 

2 46.51 347.94 53.26 875.22 

3 46.61 351.35 57.32 1149.35 

4 46.71 354.55 57.42 1216.91 

5 46.85 368.00 57.52 1222.98 

6 46.95 373.18 58.85 1255.57 

7 47.05 383.41 58.95 1256.07 

8 47.15 392.15 59.05 1258.21 

9 47.25 399.01 59.15 1284.19 

10 47.33 403.00 97.34 4400.00 

 
 
 

                                              Table 6.29. Unit’s profits (m=10) 
 

Unit Profit ($) Unit Profit ($) 

1 46,867 6 38,681 
2 254,940 7 38,759 
3 51,019 8 24,115 
4 190,774 9 69,412 
5 112,786 10 93,351 

 

    Table 6.30. Profit increases in rule 2 (m=10) 

 Rule 2 

Firm 1 0.05% 

Firm 2 0.00% 

Firm 3 0.00% 

Firm 4 0.01% 

Firm 5 0.00% 

Firm 6 0.96% 

Firm 7 0.30% 

Firm 8 0.97% 

Firm 9 0.00% 

Firm 10 0.37% 
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6.6 Conclusion 
 

In this chapter, we showed that ABMS with dBPSO applied can be used to 

simulate the bidding process and to find a nash equilibrium solution. The defined 

stopping conditions and their results confirm the equilibrium conditions. In terms of 

computational time, relatively not much time is required to reach to the results. The 

model can further be applied to the real market if anyhow real operational cost and 

demand data is provided.  
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CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH 

 
 

In this research, models of electric power bidding in power markets were 

introduced. The fundamentals of a market design were described and related current 

literature was discussed. In order to evaluate a given bid, a spreadsheet based simulation 

algorithm was developed. The results found in the numerical examples were verified 

using the Bid Simulator. It was shown that the nonlinear and quadratic programming 

models were able to give an optimal solution for a limited number of price samples. 

However, due to the stochastic nature of market prices more price samples needed to be 

included. This limitation was overcome using two particle swarm optimization models. 

From experimental results, both approaches did not carry much computational time 

burden.  

Based on the statistical analysis, the decomposition based approach gave better 

results than the conventional particle swarm optimization. The bids obtained were 

compared with the marginal cost bidding method. The comparison showed that the 

quadratic term of the cost function plays an important role in determining the bid 

strategy. An additional method that models the bidding behaviors of power suppliers for a 

fixed demand was developed. The method uses the decomposition based particle swarm 

optimization and agent based simulation. Three stopping conditions to find the Nash
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equilibrium were tested. The results found were analyzed using the equilibrium 

conditions needed for a competitive power market.  

Although the models described cover the fundamental process of bidding, they 

can be improved in future research. One improvement to the models is to include 

transmission constraints and congestion. Thus, the new models could be used to analyze 

the effect of transmission constraints on market prices as well as on bidding behaviors. 

Another improvement is to include operational constraints such as minimum up-down 

times, start-up costs and ramp-up limits of generating units. The models could provide a 

more realistic competition environment.  

Another extension could be considering operating reserve and contracts in the 

power market. Firms might choose to sell their power with fixed contracts or can be part 

of the operating reserve market. Thus, the bidding model could include these additional 

markets.  

The models developed in this dissertation consider uniform price auctions. 

However, there are markets that use the pay-as bid price auction mechanism. Therefore, 

new bidding models can be developed that include the pay-as bid auction type. Also, each 

power market has their own rules for the bidding process including number of blocks and 

the time period that the bid is valid for. The developed models can further be applied to 

those markets and perform economic comparisons. 
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