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Two overlapping confidence intervals have been used in many sources in the past 

30 years to conduct statistical inferences about two normal population means (μx and μy).  

Several authors have examined the shortcomings of Overlap procedure in the past 13 

years and have determined that such a method completely distorts the significance level 

of testing the null hypothesis H0: μx = μy and reduces the statistical power of the test.  

Nearly all results for small sample sizes in Overlap literature have been obtained either 

by simulation or by somewhat inaccurate formulas, and only large-sample (or known-

variance) exact information has been provided.  Nevertheless, there are many aspects of 

Overlap that have not yet been presented in the literature and compared against the 

standard statistical procedure.  This paper will present exact formulas for the % overlap, 
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ranging in the interval (0, 61.3626%] for a 0.05-level test, that two independent 

confidence intervals (CIs) can have, but the null hypothesis of equality of two population 

means must still be rejected at a pre-assigned level of significance α for sample sizes ≥ 2.   

The exact impact of Overlap on the α-level and the power of pooled-t test will 

also be presented.  Further, the impact of Overlap on the power of the F-statistic in testing 

the null hypothesis of equality of two normal process variances will be assessed.  Finally, 

we will use the noncentral t distribution, which has never been applied in Overlap 

literature, to assess the Overlap impact on type II error probability when testing H0: μx = 

μy for sample sizes nx and ny ≥ 2.  
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1.0  Introduction 

 When testing the equality of means of two processes, the sampling distribution 

(SMD) of the difference of two sample means must be used to conduct statistical 

inference (confidence intervals and test of hypothesis) about the corresponding processes’ 

mean difference μx − μy.  An interesting problem arises as to whether the same 

conclusions will be reached if the SMD of individual sample means are used to construct 

separate confidence intervals for μx and μy and examine the amount of overlap of the 

individual confidence intervals in order to make statistical inferences about μx − μy.  If 

the underlying distributions are normal with known variances, exact relationships are 

given by Schenker and Gentleman, (2001) about the changes in the type I and II error 

probabilities if the overlapping of individual confidence intervals are used to make 

inferences about μx − μy at the 5% level.  Because there is no mention of proof in the 

above article, we will use the normal theory to generalize their formulas in chapter 3 for 

any LOS α and will verify that in order to attain a nominal type I error rate of 5%, the 

corresponding two confidence levels must be set exactly at 83.42237%, which is nearly 

consistent with the 85% reported by Payton et al. (2000).  

 When the process variances are unknown and sample sizes are small (i.e., the 

real-life encountered cases), this dissertation will obtain exact formulas for type І and II 

error probabilities whose values can be obtained once the unbiased estimators, 2
xS  and 2

yS , 

of process variances are realized.  However, this dissertation will verify that in general 



 

2

Using individual confidence intervals diminishes type I error rate, depending on sample 

sizes nx and ny, and increases type II error probability.  Assessment of type П error 

probability (β) for the general unknown variances case has not been investigated in the 

literature because the computation of type II error probability requires the use of 

noncentral t-distribution, although Schenker and Gentleman (2001) provide the impact of 

Overlap on the Power Function (PWF =1 − β) only for the limiting case in terms of  nx 

and ny (or the known-variances case). The noncentral t-distribution has wide-spread 

applications when testing a hypothesis about one or two normal means.  Specifically both 

the OC (Operating Characteristic) and Power Function (PWF =1 − β) for testing H0: μ = 

μ0 and H0: μx − μy = δ0 (in the unknown variance cases) are constructed using the 

noncentral t-distribution.  We will use the noncentral t-distribution to obtain the PWF of 

testing H0: μx − μy = 0 (in the unknown variance cases) both using the SMD of  x y−  

(i.e., the Standard method which has been available in statistical literature for well over 

50 years) and also the Overlap for sample sizes ≥ 2.  It will be determined that the type II 

error rate always increases if individual confidence intervals are used to make inferences 

about μx − μy.  Even if the underlying distributions are not Laplace-Gaussian*, the t-

distribution can still be used for statistical inferences about two process means for 

moderate and large sample sizes because the application of the t-distribution requires the 

 ----------------------------------------------------------------------------------------------------------- 

* Kendal and Stuart (1963, Vol.1, p.135) report that “The description of the distribution as the “normal,” 

due to Karl Pearson (who is known for the definition of product-moment correlation coefficient and 

Pearson System of Statistical distributions), is now almost universal among English writers.  Continental 

writers refer to it variously as the second law of Laplace, the Laplace distribution, the Gauss distribution, 

the Laplace-Gauss distribution and the Gauss-Laplace distribution. As an approximation to the binomial it 

was reached by DeMoivre in 1738 but he did not discuss its properties.” 
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assumption that only sample means be approximately normally distributed (due to the 

Central Limit Theorem). 

Investigation of the overlapping CIs is worthy because as Schenker and 

Gentleman (2001) mentioned in the article “On Judging the Significance of Differences 

by Examining the Overlap Between Confidence Intervals” that there are many articles,  

such as Mancuso (2001), that still use the Overlap method for testing the equality of two 

population quantities. Although we found some articles, such as Payton et al. (2000) 

entitled “Testing Statistical Hypotheses Using the Standard Error Bars and Confidence 

Intervals” that have somewhat rectified the Overlap problem and have pointed out the 

misconceptions therein, there are still some details to be worked out.  Thus, the objective 

is to investigate the exact differences between the Overlap method and the Standard [a 

term coined by Schenker and Gentleman (2001)] method for testing the null hypotheses 

H0: σx = σy and H0: μx = μy under different assumptions.  The former hypothesis has 

never been investigated with the Overlap method.  The statistical literature reports results 

for the impact of Overlap on type I and II error probabilities in testing H0: μx = μy  only 

for the case of large sample sizes (i.e., the limiting case where nx and ny → ∞ ). Therefore, 

this work will investigate the same and other aspects of Overlap but for small sample 

sizes (i.e., n ≤ 20, which also will hold true for moderate and large sample sizes).  To be 

on the conservative side, we refer to n ≤ 20 as small, 20 < n  ≤ 50 as moderate and n > 50 

as large in this dissertation, although some statisticians prefer n > 60 as large because for 

n > 60, ,t Zα ν α≅  to one decimal place, where Zα represents the (1 − α) quantile of a 

standard normal deviate.  
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The contents of different chapters are as follows:  In chapter 2, an extensive 

literature survey and the results thus far are provided.  In chapters 3.1 and 3.2, the known-

variance case is discussed and compared with what has been reported without proof in the 

literature for the limiting case.  In chapter 4, the Bonferroni method is compared against 

the overlap.  In chapter 5, the statistical inference on the ratio of two process variances 

( 2 2/x yσ σ ) from the Overlap is compared against the Standard method.  Chapter 6 

discusses the impact of Overlap on type I error probability.  Chapter 7 discusses the 

amount and % overlap required to reject H0: μx = μy at the α-level of significance when 

process variances are unknown and samples sizes are small and moderate.  Similarly, 

chapter 8 considers the impact of Overlap on type II error Pr when process variances are 

unknown for nx and ny ≤ 50.  Finally, chapter 9 summarizes the dissertation findings.   

In summary, the primary objectives of this dissertation are: (1) To examine the 

impact of Overlap procedure on type I error probability (Pr) when testing equality of two 

process variances or two population means for unknown process variances and sample 

sizes ≥ 2.  Payton et al. (2000) obtained results for the latter objective but there are 

inaccuracies (for n < 50) in their development; further, the former objective has not been 

investigated.  Moreover, the Overlap literature has not considered the case of pooled t-

test and little has been mentioned by Schenker and Gentleman (2001) about the paired t-

test. (2) To determine the maximum % overlap of two individual confidence intervals 

(CIs) below which the null hypothesis (either H0: σx = σy or H0: μx = μy) cannot still be 

rejected at a given level of significance (LOS) α.  This Objective has not yet been 

investigated. (3) To examine the impact of Overlap procedure on type II error Pr for 
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sample sizes nx and ny ≥ 2.  Schenker and Gentleman (2001) carried out this last objective 

only for limiting case (i.e., as nx and ny → ∞, and or known σx and σy ).   

The above objectives are worthy of further investigation because there are many 

researchers who still use the overlapping CIs to test hypotheses, especially in the biology 

and medical papers (see the references mentioned in chapter 3.1).  Furthermore, some 

statistical software, such as Minitab, still exhibit overlapping CIs that may lead users to 

wrong conclusions.  Although the CI for two population quantities is the common method 

to make decisions regarding H0: σx = σy or H0: μx = μy, our objective is to ascertain the 

exact relationship between the overlapping of two individual CIs and the corresponding 

single CI.  Most former researches have only discussed the limiting case (i.e., as nx and ny 

→ ∞).  In the real-life situations, sufficient resources may not be available to gather very 

large samples. Thus, the case of small (n ≤ 20) to moderate sample sizes (20 < n ≤ 50) is 

a major contribution of this dissertation.  

The reader should bear in mind that all primed symbols in this dissertation pertain 

to the Overlap method. 
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2.0  Literature Review 

It has been well known that when two underlying populations are normal, the null 

hypothesis H0: x yμ μ= is tested, in case of known variances, using the sampling 

distribution of X Y− , which is also the Laplace-Gaussian 2 2( , / / )x y x x y yN n nμ μ σ σ− + .  

However, in practice, rarely the population variances are known.  Thus, the equality of 

two process variances should first be tested with an F-statistic.  If H0: 2 2/x yσ σ  = 1 is not 

rejected (and P-value > 0.20), the two-sample pooled-t procedure will be applied for 

testing H0: x yμ μ= .  Otherwise, the two-independent sample t-statistic has to be used to 

perform statistical inferences about x yμ μ− .  In case of related samples (or paired 

observations), the paired t-statistic has to be used to conduct statistical inferences about 

μx − μy. 

The above rules are the formal (or Standard) procedures for testing H0: x yμ μ= . 

What if we discuss this question with two individual relevant intervals? Cole et al. (1999) 

mentioned that using two individual CIs to test the null hypothesis H0: x yμ μ= would 

lead to a smaller type І Error and larger type П error rate than the formal procedures.  

Payton et al. (2000) pointed out that many researchers use the standard error bars (sample 

mean ± standard error of the mean) to test the equality of two population means.  

Therefore, if the two individual standard error bars fail to overlap, they will conclude
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that two sample means are significantly different.  Actually, these researchers are making  

a test of hypothesis with an approximate Pr(type І error) = α = 0.16 not α = 0.05.  Payton 

et al. (2000) also derived a formula for the probability of the overlap from two individual 

CIs.  Payton et al. (2000) defined A to be the event that confidence intervals computed 

individually for two population means to overlap.  Thus, if the sample sizes are equal 

( 1 2n n n= = ), and population variances are unknown, they deduced that Pr( ) PrA =  

2 2
1 2 1 2

,1, 12 2 2 2
1 2 1 2

( ) ( )
n

n Y Y S SF
S S S Sα −

⎡ ⎤− +
<⎢ ⎥

+ +⎢ ⎥⎣ ⎦
.  They state that the random variable 

2
1 2
2 2
1 2

( )n Y Y
S S

−

+
 has 

the F-distribution with numerator degrees of freedom (df) ν1 = 1 and denominator df  ν2 = 

(n − 1) if the two samples are from the same normal population.  It will be shown in 

Chapter 6 that their above statement is inaccurate.  The two samples need not originate 

from the same population, and that the denominator df of the F-distribution is not (n − 1) 

but rather in the case of n1 = n2 = n it is given by 
2 2 2
1 2

4 4
1 2

( 1)( )n S S
S S

ν − +
=

+
, where (n − 1) < ν 

< 2(n − 1).  Further, they state that if the two samples are from two different normal 

populations with the same mean but unequal variances, the quantity 
2

1 2
2 2
1 2

( )n Y Y
S S

−

+
 is still 

approximately F-distributed with ν1 = 1 and  ν2 = (n −1) df , where their value of  ν2 = (n 

−1) df is accurate only in the limiting case.  Therefore, they conclude that         

1 2
1, 1 ,1, 1 2 2

1 2

2Pr( ) Pr( _ ) Pr 1n n
S SA Intervals overlap F F

S Sα− −

⎡ ⎤⎛ ⎞
= ≅ < +⎢ ⎥⎜ ⎟⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

. 

Payton et al. (2000) further state that for the 95% CIs, nx = ny = n = 10, S1 (= Sx) = 0.80 

and S2 = 1.60, 1 − 1,9 0.05,1,9Pr( ) 1 Pr( _ ) 1 Pr( 1.8)A Intervals overlap F F= − ≅ − < ×  = 1 − 
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0.9859 = 0.0141 (which was misprinted as 0.0149).   It will be shown in Chapter 6 that 

this last Overlap Pr should be revised to α′ = 0.00608057, i.e., their result has a relative 

error of 56.8754% 

Moreover, Payton et al. (2000) used SAS Version 6.11 to simulate from a N(0, 1)  

when sample sizes varied from n = 5 to n = 50 in order to ascertain the accuracy of the 

above formula.  In this article, the authors do not give information about the known 

variances case.  For the unknown variances case, they only consider the case when the 

sample sizes are equal.  The largest sample size Payton et al. (2000) considered was n = 

50.  Furthermore, Schenker and Gentleman (2001) found more than 60 articles in the 

health sciences for testing the equality of two population means by using the Overlap 

method. Schenker and Gentleman (2001) state that the Overlap method will fail to reject 

H0 when the Standard method would reject it.  In other words, the Overlap will lead to 

less statistical power than the Standard method.  The authors considered three population 

quantities Q1, Q2 and 1 2Q Q− .  They state that Brownlee (1965) provided the 95% 

confidence intervals for the three quantities as 11 1.96Q SE± , 2 21.96Q SE±  and 

2 2
1 21 2( ) 1.96Q Q SE SE− ± + .  However, using the Overlap method, the null hypothesis 

will not be rejected if and only if 1 2 1 2( ) 1.96( )Q Q SE SE− ± + contains zero.  Schenker 

and Gentleman (2001) defined k as the limiting SE (standard error) ratio, i.e., either 

SE1/SE2 or SE2/SE1, and considered only ratios that are greater than or equal to 1.  For a 

limiting SE ratio of k and a standardized difference of d = 2 2
1 2 1 2( ) /Q Q SE SE− + , they 

reported that the asymptotic power for the standard method is ( 1.96 )dΦ − + +  

( 1.96 )dΦ − − , where Φ represents the cdf of N(0, 1), and the asymptotic power for the  
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Overlap method is 
2

1.96(1 )( )
1

k d
k

− +
Φ + +

+ 2

1.96(1 )( )
1

k d
k

− +
Φ −

+
.  Note here, in this 

dissertation, we use different definition for k from Schenker’s definition.  Schenker and 

Gentleman (2001) use small case k as the standard error ratio for the limiting sample 

sizes or known variances cases but we use k as the standard error ratio for small to 

moderate sample sizes or unknown variances cases. It means k= ( / ) /( / )x x y yS n S n  in 

this dissertation. Therefore, for distinguishing, let K = ( / ) /( / )n nx x y yσ σ  represent 

the limiting sample sizes or known variances cases.  In this chapter, we still use 

Schenker’s symbol to represent their work.  Schenker and Gentleman (2001) also stated 

that for the Pr of type І error, just simply let d = 0 in the above formulas.  Then, the 

authors concluded that the Overlap method will lead to smaller α and larger β.     

Furthermore, Schenker and Gentleman (2001) state that when SE1 is nearly equal 

to SE2, the Overlap method is expected to be more deficient (i.e., smaller type I error Pr 

and larger type II error Pr) relative to the Standard method.  In this article, the authors did 

not give specific values of type І error and type П error probabilities for different k and d 

values.  Their results pertain only to large sample sizes so that the need for using the t-

distribution in the case of small and moderate sample sizes was not discussed.        

  Payton et al. (2003) continued to provide the formula Pr(Intervals_Overlap), 

which they had also obtained in the year 2000 as follows:   

             1 2
1, 1 ,1, 1 2 2

1 2

2Pr( ) Pr( _ ) Pr 1n n
S SA Intervals overlap F F

S Sα− −

⎡ ⎤⎛ ⎞
= ≅ < +⎢ ⎥⎜ ⎟⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

.  

Payton et al. (2003) state that a large-sample version of the above statement can be 

derived (assuming the two populations are identical): 
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/ 2Pr( ) Pr( _ ) Pr | | 2A Intervals overlap Z zα⎡ ⎤= ≅ <⎣ ⎦ = Φ( / 22 Zα ) −Φ( − / 22 Zα ), where 

Φ(z) (almost) universally represents the cumulative of the standardized normal density 

function at point z.  The authors set α at the nominal value of 5%, generated 95% 

confidence intervals and gave the approximate probability of overlap as 

                Pr( _ )Intervals overlap  [ ]Pr 2.77 2.77 0.994Z≅ − < < = . 

Thus, the authors concluded that “the 95% CIs will overlap over 99% of the time”.  They 

also mentioned that Schenker and Gentleman (2001) showed, for large sample sizes, that 

the probability of type І error when comparing the overlap of 100(1-γ)% confidence 

intervals is 2
/ 22 Pr[ (1 ) / 1 ]Z z k kγ< − + + (k is the ratio of limiting standard errors here). 

Replacing k with 1 will yield a multiplier for the z value in the above probability 

statements of 2 , which is the same as the formula of Pr(Intervals_overlap) by Payton et 

al. (2003).  Therefore, the authors made the conclusion that when one uses 95% 

confidence intervals to test the equality of two population means, one should set the 

confidence coefficient of each confidence interval equal to roughly 83 to 84%.  Payton et 

al. (2003) also used SAS to verify that if α is set at 0.16, what proportion of the times the 

two individual CIs from the same normal N(0, 1)  population would overlap.  After a 

simulation run of 10,000 trials, the proportion of the trials that the two 84% confidence 

intervals overlapped (at n = 10) was 0.949 (very close to 0.95).  In this article, the authors 

didn’t discuss the unequal sample sizes and no details about the effects from the unequal 

variances or the case of the unknown variances were provided.  Further, no article 

discussed the maximum % overlap that two individual CIs can have but H0 should still be 

rejected at a specified LOS α.  All the articles up to now have concentrated on the 
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limiting results and have not provided specific results for type II error Pr for the overlap 

case as sample sizes differ and the LOS vary.  

Kelton (2004) states in Simulation With Arena that “looking at whether 

(individual) confidence intervals do or do not overlap (in order to make a decision about 

H0: x yμ μ= ) is not quite the right procedure; to do the comparison the right way, we’ll 

use the input analyzer, as discussed next.”  The input-analyzer used the paired-t statistic 

to H0: x yμ μ= .  But, the authors do not explain the reason why we should not use the two 

individual CIs to make statistical inferences regarding the process mean difference 

x yμ μ− , nether do they justify the use of a block design over a completely randomized 

design.    
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3.0  Comparing Two Normal Population Means for the Known Variances Case, or    

        the Limiting Unknown Variances Case Where Both Sample Sizes Approach  

        Infinity  

Consider a random sample of size nx from the normal universe N(μx, 2
xσ ); then 

the statistic sample mean, x , is also normally distributed with expected-value equal to 

the population mean and variance V(x) = 2
xσ /nx as depicted in figure 1. 

x / 2 x xZ / nαμ − σ x / 2 x xZ / nαμ + σ

x x x/ nσ = σ

xxμ
/ 2α/ 2α

 

Figure 1 clearly shows that   

Pr( μx − Zα/2 x x/ nσ  ≤ x ≤ μx + Zα/2 x x/ nσ ) = 1−α 

Rearranging the above (1-α)×100 % Pr statement results in the (1 − α) CI for μx: 

Pr( x − Zα/2 x x/ nσ  ≤  μx  ≤ x  + Zα/2 x x/ nσ ) = 1−α 

Hence, the lower CI limit for μx is L(μx) = x − Zα/2 x x/ nσ  and the corresponding upper 

limit is U(μx) = x + Zα/2 x x/ nσ .  It resulting in the CIL (confidence interval length) of 
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μx  is CIL(μx) = 2× Zα/2 x x/ nσ .  Similar procedure as above leads to L(μy) = y − Zα/2 ×  

y y/ nσ , U(μy) = y + Zα/2 y y/ nσ , and the corresponding CIL(μy) = 2Zα/2 y y/ nσ .  

Note that Figure 1 will roughly hold if the underlying distributions were non-normal and 

variances were unknown but both nx and ny > 60 and σx and σy are replaced by their 

biased estimates Sx and Sy, respectively. 

 

3.1  The Case of σx = σy = σ   

Statistical theory suggests that the total resources N = nx +ny be allocated 

according to nx = /( )x x yNσ σ σ+ , and hence the allocation nx = ny = n = N/2 is 

recommended.  Suppose that the two CIs for μx and μy are disjoint; then it follows that 

either L(μx) > U(μy), or L(μy) > U(μx).  These two possibilities lead to the condition 

either / 2 /x xx Z nα σ−  > / 2 /y yy Z nα σ+  , or / 2 /y yy Z nα σ−  > x + / 2Zα ×  

/x xnσ , respectively.  Combining the two conditions leads to rejecting H0: μx = μy  

iff⏐ x − y ⏐> / 2Zα x x y y( / n / n )σ + σ ; for the case of σx = σy = σ  and thus nx = ny = 

n, this last condition reduces to ⏐ x − y ⏐> 2 / 2Zα / nσ at the level of significance α 

based on the Overlap method.  If α is set at the nominal value of 5%, this last inequality 

will lead to the same condition as that of Schenker et al. (2001) who stated that the two 

intervals overlap if and only if the interval 1 2( )Q Q− ± 1 21.96( )SE SE+ contains 0.  

Sometimes, it is then concluded that the null hypothesis H0: μx = μy must be 

rejected in favor of H1: μx ≠ μy at the LOS α, such as Djordjevic et al. (2000), Tersmettte 

et al. (2001) and Sont  et al. (2001) who used this concept to test H0: μx = μy.  In fact, 
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Schenker and Gentleman (2001) state that they found more than 60 articles where the 

Overlap method was used either formally or informally to demonstrate visual significant 

difference between x and y .  This procedure is not accurate because the correct (1 − 

α)×100% CI for the difference in means of two independent normal universes must be 

obtained from the SMD (sampling distribution) of the statistic x y− , which is also 

Gaussian with E( x y− ) = μx − μy  and  V( x y− ) = V( x ) + V( y ) = 2 2
x x y y/ n / nσ + σ  = 

22 / nσ , assuming x yσ σ σ= = .  Thus, the correct (1−α)×100% CI on μx − μy is given 

by  

x y−  − 2 2
/2 x x y yZ / n / nα σ + σ  ≤  μx − μy  ≤ x y−  + 2 2

/2 x x y yZ / n / nα σ + σ      (1a) 

For the balanced design case and σx = σy = σ, Eq. (1a) reduces to    

                x y−   − / 22Zα σ / n  ≤  μx − μy   ≤  x y−  + / 22Zα σ / n               (1b)                

The length of the above exact (1 − α)×100% CI for a balanced design is / 22 2Zα σ / n .   

Thus, H0: μx  − μy = 0 must be rejected at the LOS α iff (i.e., it is necessary and sufficient) 

that                   x y−  > 2 2
/ 2 x yZ ( ) / nα σ + σ = /22 Zα / nσ .                               (1c)                          

However, requiring that the two separate CIs to be disjoint leads to rejection of H0 

iff  x y−  > /2 x x y yZ ( / n / n )α σ + σ = / 22Zα × / nσ .  It is clear that the 

requirement for rejecting H0 of two disjoint CIs is more stringent (or more conservative) 

than that of the Standard method because, in the case of x yσ σ σ= =  and nx = ny = n, 

/ 22Z / nα σ > 2 2
/2 x x y yZ / n / nα σ + σ = /22 Zα / nσ .  Further, the more stringent 

requirement to reject H0 (based on two independent separate CIs) leads to a smaller type I 
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error Pr than the specified α.  The correct value of α using the Standard method is given 

by  

     α = Pr ( x − y < AL, or x − y > AU⏐ x y 0μ − μ = )        

                    = 2 2
/2 x x y y x yPr[ x y Z / n / n 0]α− > σ + σ μ − μ = = /2Pr( Z Z )α>  = α, 

where AL and AU denote the lower and upper α-acceptance limits, respectively. 

On the other hand, if we require that the two individual CIs must be disjoint in 

order to reject H0 : μx  − μy = 0, then the type I error Pr from Overlap is given by 

α′= Pr( y − / 2 yZ / nα σ > x + / 2 xZ / nα σ ) + Pr( x − / 2 xZ / nα σ > y  + / 2 yZ / nα σ )    

= 2×Pr[Z > 2 2
/ 2 x y x yZ ( ) / ( )α σ + σ σ + σ ]  

    = 2×Pr(Z > / 22 Zα ) = 2×Φ(− / 22 Zα ), assuming σx = σy = σ                             (2)     

●  Setting α at 0.01 leads to the Overlap LOS of α′  = 0.00026971696 < < 0.01.  

                 The % relative error, [( ) / ] 100%α′α − α × , in the LOS α = 0.01 is      

                 [(0.01─0.0026971696)/0.01] 100%× = 97.303%. 

●  For the nominal value of α = 0.05, Eq. (2) gives α′  = 0.00557459668 <<  

    0.05. The value of α′  = 0.00557459668 is consistent with the limiting value of     

    0.006 provided by Payton et al. (2003, p.36) in their equation (6).  The %    

    relative error is 88.851%.  As a result, the larger the LOS α  is, the smaller the  

    % relative error becomes.  Payton et al. (2000) provide simulation results of  

    run sizes 10,000 from two independent N(0, 1)  populations in their column 3   

    of TABE 1, p. 551, that claim the value of α′  ranges from 0.0039 at n = 5 to  

    0.0055 at n = 50 (n incremented by 5).  Our Eq. (2) shows that in the case of     
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    known  equal variances and sample sizes the value of Overlap type I error Pr    

    does not depend on n at all.  However, their simulation inaccuracies were   

     rectified by Payton et. al (2003, Table 4) again through simulation run sizes of   

    10,000 independent pairs from N(0, 1). 

●  Setting α at the maximum widely-accepted LOS of 10%, Eq. (2) shows that α′    

    = 0.020009254 << 0.10 and the % relative error is [(0.10 − 0.020009254)/0.10]  

    ×100% = 79.99%.    

Regardless of the value of LOS α the same conclusion made by Cole et al. (1999) will be 

reached that the Overlap method will lead to a much smaller type І error rate.   

If the alternative H1 is one-sided, say H1: μx − μy > 0, then from the Overlap 

standpoint H0 should be rejected only if both conditions x − y > 0 and L(μx) −U(μy) > 0 

[or L(μx) > U(μy)] hold, and as a result the Overlap type I error Pr reduces to 

1α′   =  Pr[ x − Z0.025 x / nσ  > y + Z0.025 y / nσ ]     

       =  Pr[ x − y >  Z0.025 x / nσ  +  Z0.025 y / nσ ] = Pr[ x − y >Z0.025 x y( ) / nσ + σ ] 

       =  Pr(Z > 2 2
0.025 x y x yZ ( ) / ( )σ + σ σ + σ ) = Pr(Z > 0.0252 Z );  

assuming σx = σy = σ, 1α′  =  0.0027873 < < 0.05.  Thus the impact of Overlap on type I 

error Pr is even greater for a one-sided alternative than for the 2-sided one.  Note that 

when L(μy) > U(μx), the two CIs are disjoint but such an occurrence is congruent with H0: 

μx  − μy ≤ 0 rather than H1: μx  − μy > 0.  Thus for the one-sided alternative the type I 

error Pr from the Overlap is exactly half of the 2-sided alternative, which was equal to 

0.00557459668.  Henceforth, unless specified otherwise, the alternative is two-sided. 
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Now, let Ο represent the amount of overlap length between the two individual CIs, 

a variable that has not been considered in the Overlap literature.  From Figures (1a &b),  

Ο will be zero if either L(μx) > U(μy) or L(μy) > U(μx), in which case H0: μx = μy is 

rejected at the LOS < α.  Thus, Ο is larger than 0 when U(μx) > U(μy) > L(μx) or U(μy) > 

U(μx) > L(μy).  The overlap is 100% if U(μx) ≥ U(μy) > L(μy) ≥ L(μx), or if U(μy) ≥ U(μx) 

> L(μx) ≥ L(μy).  Because both conditions U(μx) > U(μy) > L(μx)  and U(μy) > U(μx) > 

L(μy) will lead to the same result, only the case of U(μx) > U(μy) > L(μx) [Figure 2(a)] for 

which x y− ≥ 0 is discussed here.  See the illustration in Figure 2(a&b). 

 

                          Figure 2(a)                                                   Figure 2(b) 

 

That is, for the known-variance case, the larger sample mean will be denoted by x .  Thus 

for the equal-sample-size &-variance case,  

                     Ο = U(μy) − L(μx) = ( / 2 /y Z nα σ+ × ) – ( / 2 /x Z nα σ− × )  

                        = 2 / 2 /Z nα σ  − ( x y− )                                                                    (3a)  

On the other hand, the span of the two individual CIs (assuming x y> ) is given by  

                    U(μx) − L(μy) = / 2 /x Z nα σ+ ×  − ( / 2 /y Z nα σ− × )  

                                           = 2 / 2 /Z nα σ  + ( x y− )                                                 (3b)      

( )yU μ  ( )yU μ  

( )xU μ  ( )xU μ  ( )xL μ  ( )xL μ  

( )yL μ  ( )yL μ  
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Combining equations (3a & 3b) gives the exact % overlap as 

                ω = / 2

/ 2

2 / ( )
2 / ( )

Z n x y
Z n x y

α

α

σ
σ

− −
+ −

×100%                  (3c)                             

Let rO be the borderline value of Ο at which H0 is barely rejected at the LOS α.  

From Eq. (1c), H0: μx = μy should be rejected iff x y− ≥ / 22 /Z nα σ .  Therefore, from 

Eq.(3a) the value of Ο at which H0 should be rejected at the α-level or less is given by  

Ο ≤  2 / 2 /Z nα σ − / 22 /Z nα σ , and the exact amount of overlap that leads to an α-

level test is given by                rO  = / 2(2 2) /Z nα σ−                                      (3d)                             

Eq. (3d) implies that H0 must be rejected at the LOS α or less iff Ο ≤ / 2(2 2) /Z nα σ− .  

Inserting the borderline rejection condition, x y− = / 22 /Z nα σ , into Eq. (3b) yields 

    U(μx) − L(μy) = / 22 /Z nα σ  + 2 / 2 /Z nα σ = / 2(2 2) /Z nα σ+ .              (3e)                              

Eq. (3e) implies that if the two CIs span larger than / 2(2 2) /Z nα σ+ , then H0 must be 

rejected at the LOS less than α.  The percent overlap in Eq. (3c) ranges from zero 

(occurring when x y− = 2 /2 /Z nα σ ) to 100% (occurring when x y−  = 0).  Inserting 

the borderline value of x y−  = /22 /Z nα σ at which H0 must be rejected into Eq. (3c) 

results in rω   = /2

/2

(2 2) /
(2 2) /

−
+

Z n
Z n

α

α

σ
σ

×100% = 2 2
2 2

−
+

×100%  = 17.1573%              (3f)   

which means that H0: μx = μy must be rejected at the LOS α or less if the percent overlap 

between the two individual CIs is less than or equal to 17.1573%.  It seems that the 

percent overlap at which H0 should barely be rejected is 17.1573% regardless of the LOS 

α, but the amount of overlap from (3a) does depend on α.   Further, as | |x y−  increases, 
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the P-value of testing H0: x yμ μ= decreases and so does the value of  % overlap in Eq. 

(3c).  As | |x y−  → /22 /Z nα σ , ω → 0.  Thus, in the case of known x yσ σ σ= = , 

once the % overlap exceeds 17.1573%, then H0: x yμ μ= must not be rejected at any α 

level.        

If the alternative is one-sided, H1: μx − μy > 0, it can be argued that the maximum 

percent overlap is given by       ( ) ( )
( ) ( )

Y X

X Y

U L
U L

μ μ
μ μ

−
−

  = /2

/2

2 2
2 2

Z Z
Z Z

α α

α α

−
+

                          (3g)                    

and for a 5%-level test Eq. (3g) reduces to 0.025 0.05

0.025 0.05

(2 2)
(2 2)

Z Z
Z Z

−
+

 = 25.51597%, which 

implies that H0 can be rejected at less than 5% level if the percent overlap between the 

two individual CIs is smaller than 25.51597%.  Thus, the impact of overlap on ωr is 

greater for a one-sided alternative because for the 2-sided alternative the value of ωr = 

17.15729%.  Further, for the one-sided alternative the % overlap does depend on α.  As 

an example, for a 10%-level one-sided test the value of ωr increases to 28.96%. 

          The question now is what individual confidence levels, (1− γ), should be used that 

will lead to an exact α−level test?  Clearly, the overlap amount for a (1− γ)×100% CI is 

given by y xU ( ) L ( )′ ′μ − μ =  ( y + / 2Z / nγ σ ) −( x − / 2Z / nγ σ )  

                    = 2 / 2Z / nγ σ − ( x − y )                                                  (4)                              

Because H0: x yμ μ= must be rejected iff | |x y− ≥ /22 /Z nα σ  and the overlap must 

become zero or less in order to reject H0, Eq. (4) shows that 2 / 2Z / nγ σ  = 

  / 22 /Z nα σ   →   / 2Zγ = /2 / 2Zα →  γ/2 = Φ( − /2 / 2Zα )                             (5)               
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 Eq. (5) shows that the confidence level for each individual interval must be set at 

(1 )γ− = / 21 2 ( / 2)Zα− × Φ −  in order to reject H0 at the LOS α iff the two CIs are 

disjoint.  The value of (1 )−γ can also be obtained by equating the span of the two 

independent CIs, 2 / 2Z / nγ σ + ( x − y ), to the length of the CI from the Standard  

method given by 2 / 22Zα σ / n , and invoking the rejection condition x − y = 

/22 /Z nα σ .  

● If α is set at 0.01 in Eq.(5), then γ = 0.068548146, 1 γ− = 0.931451854, which     

   implies that the confidence level of each individual interval must be set at  

   0.931451854 in order to reject H0 at the 1% level iff the two CIs are disjoint.   

● If α = 0.05 is substituted in Eq.(5), then γ  = 0.165776273, 1 γ− = 0.834223727,     

   which implies that the confidence level of each individual interval must be set  

   at 83.4223727% in order to reject H0 at the 5% level iff the two CIs are disjoint.    

            This assertion is in fair agreement with the simulation results given in TABLE 1     

            of Payton et al. (2000, p. 551) for 15 ≤ n  ≤ 50.  Their TABLE 1, although             

            inaccurate at n = 5 & 10, clearly shows that as n increases toward n = 50,                                

            the size of adjusted CIs is equal to 83.835%, which is very close to the exact     

            1 γ− = 83.422372710%.   

● Further, when the confidence level 1−α = 0.90, then 1 γ− = 0.755205856.  The    

   first and third 1 γ−  values have not been reported in Overlap literature. 

If the alternative is one-sided, H1: μx − μy > 0, it can be argued that the value of 1 γ−  is 

given by1− γ = 1− 2 ( Z / 2)αΦ − .  If α = 0.05 is substituted into this last equation, then 
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the one-sided 1 γ− = 0.75520585634665, which implies that the confidence level of each 

individual interval must be set at 0.75520585634665 in order to reject H0 at the 5% level 

iff the two CIs are disjoint, while for the 2-sided alternative 1 γ− was equal to 

0.83422372710.  Again, the impact of Overlap on individual confidence levels is greater 

for the one-sided alternative than that of the 2-sided one. 

Lastly, since rejecting  H0 : x yμ μ= using the two independent CIs is more 

stringent than the SMD of x y− , therefore, it will lead to many more type II errors (or 

much less statistical power) in testing H0: μx  − μy = 0, as shown below.         

In Figure 3, the solid line represents the null distribution of x y− , and the dotted 

line curve represents the distribution of x y− under H1 , where δ = μx − μy > 0 is the 

amount of specified shift in μx − μy = δ from zero, which in Figure 3 exceeds one 

standard error of x y− .  Figure 3 clearly shows that the acceptance interval (AI) for the  

 

1−β

x y−

2 2
x y

n
σ + σ

/ 2α / 2α

δ
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sample mean difference, x − y , when testing H0: 0x yμ μ− =  at the LOS α is given by 

AI = (AL, AU) = [ 2 2
/2 x yZ ( ) / nα− σ + σ  , 2 2

/2 x yZ ( ) / nα σ + σ ], i.e., in the case of σx = σy 

= σ  and nx = ny = n we cannot reject H0 at the significance level α if our test statistic 

x − y falls inside the AI = (AL, AU) = (− / 22Zα / nσ ,  / 22Zα / nσ ).  Thus, the Pr 

of committing a type II error as shown in Figure 3 is given by 

 β = Pr[AL ≤ x − y ≤ AU⏐ μx  − μy = δ] 

    = Pr[ 2 2
/2 x yZ ( ) / nα− σ + σ  ≤ x − y ≤  + 2 2

/2 x yZ ( ) / nα σ + σ  ⏐ μx  − μy = δ] 

    = Pr[ x − y ≤ 2
/2Z 2 / nα σ ⏐δ > 0] − Pr[ x − y  ≤ − 2

/2Z 2 / nα σ ⏐δ ]              (6a) 

    = Φ( / 2Zα − n
2

δ
σ

) − Φ( / 2Zα− −
n
2

δ
σ

), where δ = μx  − μy .                              (6b)    

At α = 0.05 if the specified value of  μx  − μy = δ exceeds 0.5 2 2
x yσ + σ , then the 

value of standard normal cdf  Φ( − Z0.025 − 0.5 n ) < 0.001 for sample sizes n ≥ 6, i.e., 

the last term on the RHS of equation (6a), becomes less than 0.001 once n ≥ 6.  Hence, 

Eq. (6b) for the nominal value of α = 5% approximately reduces to     

                                        β ≅ Φ(Z0.025 − n / 2 /δ σ )                                          (6c)  

where (6c) is accurate to at least 3 decimals for n ≥ 6 and  δ > 0.5 2 2
x yσ + σ = 0.5 2σ .                        

When the null hypothesis H0: μx  − μy = 0 is not rejected at the LOS α iff the two 

individual CIs ( x − / 2 xZ / nα σ  ≤  μx  ≤ x + / 2Zα x / nσ ) and  ( y − / 2Zα y / nσ  ≤ μy 

≤ y + / 2Zα y / nσ ) are overlapping, then the Pr of a type II error (assuming μx > μy )  
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from the Overlap Method is given by  

β' = Pr(Overlap⎢δ > 0) = Pr{[ ( ) ( )x yL Uμ μ≤ ] ∩ [ ( ) ( )y xL Uμ μ≤ ]| 0δ > } 

   = Pr{[ x − / 2Zα /x nσ  ≤ y + / 2Zα /y nσ ] ∩ [ / 2
yy Z
nα

σ
− ≤ x + / 2Zα /x nσ ]| 0δ > } 

   = Pr{[ x − y  ≤ / 2Zα /x nσ + / 2Zα /y nσ ] ∩     

                                                                       [ /2
yZ
nα

σ
− − / 2Zα /x nσ ≤ x y− ]| 0δ > }  

When σx = σy = σ, and nx = ny = n, the SE( x − y ) = 2 / nσ and as a result  

β′ = Pr{[ x − y  ≤ 2 / 2Zα / nσ ] ∩ [−2 / 2Zα / nσ ≤ x y− ]| 0δ > }     

    = Pr{[−2 / 2Zα / nσ ≤ x − y  ≤ 2 / 2Zα / nσ ]| 0δ > }                                         (7a) 

    = Φ( /22 Zα − n
2

δ
σ

)  − Φ( /22 Zα− − n
2

δ
σ

)                                                       (7b)       

Since the cdf of the standard normal density Φ(z) is a monotonically increasing 

function of z, comparing Eq. (6b) with Eq. (7b) shows that  

Φ( / 22Zα − n
2

δ
σ

) > Φ( / 2Zα  −  n
2

δ
σ

)  &  Φ( / 22Zα− − n
2

δ
σ

) < Φ(− / 2Zα − n
2

δ
σ

). 

The above two conditions lead to  

           β′ = Φ( / 22Zα − n
2

δ
σ

) − Φ( / 22Zα− − n
2

δ
σ

) >  

                                                        Φ( / 2Zα −  n
2

δ
σ

) − Φ(− / 2Zα − n
2

δ
σ

) = β . 

and as a result 1 β ′− <1−β , i.e., using individual CIs loses statistical power as illustrated 

in Table 1 (for n = 10, 20, 40, 60 and 80 at α = 0.05).  Table 1 clearly shows that the Pr  
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Table 1.  The Relative Power of Overlap as Compared to the Standard Method for 

                 Different Sample Sizes n and /( 2)δ σ Combinations 

n 2

δ

σ
 

1− β  1 β ′−  
[ ]100%

1

β ′ − β

− β n 2

δ

σ 1 − β  1 β ′−  
[ ]100%

1

β ′ − β

− β
 

10 0 0.050000 0.005575 88.850807 10 0.2 0.096935 0.016535 82.941952 
10 0.2 0.096935 0.016535 82.941952 30 0.2 0.194775 0.046889 75.926797 
10 0.4 0.244141 0.065946 72.988712 50 0.2 0.292989 0.087310 70.200085 
10 0.6 0.475101 0.190941 59.810521 70 0.2 0.387332 0.136000 64.887986 
10 0.8 0.715617 0.404396 43.489888 90 0.2 0.475101 0.190941 59.810521 
10 1 0.885379 0.651905 26.369907 110 0.2 0.554768 0.250096 54.918821 
10 1.2 0.966730 0.846828 12.402799 130 0.2 0.625674 0.311552 50.205361 
10 1.4 0.993192 0.951076 4.240407 150 0.2 0.687770 0.373606 45.678672 
10 1.6 0.999031 0.988926 1.011467 170 0.2 0.741418 0.434816 41.353531 
10 1.8 0.999905 0.998251 0.165374 190 0.2 0.787231 0.494017 37.246245 
10 2 0.999994 0.999809 0.018425 210 0.2 0.825958 0.550319 33.372049 
20 0 0.050000 0.005575 88.850807 230 0.2 0.858407 0.603086 29.743564 
20 0.2 0.145473 0.030356 79.132788 250 0.2 0.885379 0.651905 26.369907 
20 0.4 0.432158 0.162818 62.324449 270 0.2 0.907642 0.696558 23.256232 
20 0.6 0.765259 0.464729 39.271657 290 0.2 0.925899 0.736982 20.403620 
20 0.8 0.947141 0.789850 16.606937 310 0.2 0.940785 0.773239 17.809209 
20 1 0.994000 0.955465 3.876765 330 0.2 0.952858 0.805484 15.466533 
20 1.2 0.999671 0.995267 0.440547 350 0.2 0.962600 0.833939 13.365991 
20 1.4 0.999991 0.999758 0.023375 400 0.2 0.979327 0.890313 9.089308 
20 1.6 1.000000 0.999994 0.000573 450 0.2 0.988775 0.929332 6.011824 
20 1.8 1.000000 1.000000 0.000006 500 0.2 0.994000 0.955465 3.876765 
20 2 1.000000 1.000000 0.000000 600 0.2 0.998354 0.983297 1.508145 
40 0 0.050000 0.005575 88.850807 700 0.2 0.999568 0.994127 0.544334 
40 0.2 0.244141 0.065946 72.988712 800 0.2 0.999891 0.998043 0.184785 
40 0.4 0.715617 0.404396 43.489888 900 0.2 0.999973 0.999377 0.059617 
40 0.6 0.966730 0.846828 12.402799 1100 0.2 0.999999 0.999944 0.005488 
40 0.8 0.999031 0.988926 1.011467 1300 0.2 1.000000 0.999995 0.000444 
40 1 0.999994 0.999809 0.018425 1500 0.2 1.000000 1.000000 0.000032 
40 1.2 1.000000 0.999999 0.000072 20 0.5 0.608779 0.296070 51.366706 
60 0 0.050000 0.005575 88.850807 40 0.5 0.885379 0.651905 26.369907 
60 0.2 0.340845 0.110745 67.508566 60 0.5 0.972127 0.864590 11.062062 
60 0.4 0.872528 0.628007 28.024464 80 0.5 0.994000 0.955465 3.876765 
60 0.6 0.996402 0.969657 2.684165 100 0.5 0.998817 0.987066 1.176501 
60 0.8 0.999989 0.999693 0.029611 120 0.5 0.999782 0.996589 0.319361 
60 1 1.000000 1.000000 0.000032 140 0.5 0.999962 0.999167 0.079444 
80 0 0.050000 0.005575 88.850807 160 0.5 0.999994 0.999809 0.018425 
80 0.2 0.432158 0.162818 62.324449 180 0.5 0.999999 0.999959 0.004033 
80 0.4 0.947141 0.789850 16.606937 200 0.5 1.000000 0.999991 0.000841 
80 0.6 0.999671 0.995267 0.440547 220 0.5 1.000000 0.999998 0.000168 
80 0.8 1.000000 0.999994 0.000573 240 0.5 1.000000 1.000000 0.000032 
80 1 1.000000 1.000000 0.000000 260 0.5 1.000000 1.000000 0.000006 
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of type П error from two individual CIs is always larger than the Pr of type П error from 

the Standard method (i.e., β ′ > β ).  Thus, the statistical power of Overlap method is less 

than that of the standard method (1 1β ′− < − β ).  And, for fixed n, both 1−β  and 1 β ′−  

increase as / 2δ σ  increases.  Further, the power of the Overlap procedure very slowly 

approaches that of the standard method as n increases.  The difference in percent relative 

power is obtained from {[(1 ) (1 )] /(1 )}100%β ′−β − − −β  = [( ) /(1 )]100%β ′ −β −β .  Thus, 

from Table 1, we can also conclude that if /( 2 )δ σ is fixed, as sample size increases, the 

difference in percent relative power decreases.  Figure 4 shows that the difference of the  
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power ( (1 ) (1 )β β β′ ′− − − = −β  ) increases first then decreases as / 2δ σ  increases at 

fixed n = 50.  See the summary conclusion in Table 2.  To verify that the formulas forβ   
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Table 2.  Summary Conclusion of β and β’ 

n 2
δ

σ
  

β ′ −β   
 [ ]100%

1
β ′ − β

− β
 

fixed increasing increasing then decreasing decreasing  
increasing fixed increasing then decreasing decreasing  

 

(Eq.(6a)) and β ′  (Eq.(7)) are correct, we use the fact that if α = 0.05, then 1 γ− = 

0.83422372710 (γ = 0.165776273), which implies that the confidence level of each 

individual interval must be set at 0.8342237271 in order to reject H0 at the 5% level iff 

the two CIs are disjoint. Table 3 shows that the value of β  at α = 0.05 from  

the Standard method and the corresponding β' from Overlap atγ = 0.165776273 are  

exactly equal.  

 

Table 3.  Type П Error Prs at α = 0.05 from the Standard Method and at α =   

                0.16578 from the Overlap Method   

n 2n
δ

  
β  at α = 0.05 

β ′  at γ = 
0.165776273   n 

 
2n

δ
β  at α = 0.05  

β ′  at γ = 
0.165776273  

10 0 0.95 0.95 60 0 0.95 0.95 
10 0.2 0.9030645532 0.9030645532 60 0.2 0.6591548759 0.6591548759
10 0.4 0.7558587930 0.7558587930 60 0.4 0.1274718000 0.1274718000
10 0.6 0.5248991294 0.5248991294 60 0.6 0.0035982047 0.0035982047
10 0.8 0.2843833932 0.2843833932 60 0.8 0.0000113359 0.0000113359
10 1 0.1146208592 0.1146208592 60 1 0.0000000036 0.0000000036
20 0 0.9500000000 0.9500000000 80 0 0.9500000000 0.9500000000
20 0.2 0.8545274876 0.8545274876 80 0.2 0.5678423724 0.5678423724
20 0.4 0.5678423724 0.5678423724 80 0.4 0.0528587903 0.0528587903
20 0.6 0.2347406798 0.2347406798 80 0.6 0.0003288883 0.0003288883
20 0.8 0.0528587903 0.0528587903 80 0.8 0.0000001021 0.0000001021
20 1 0.0059995300 0.0059995300 100 1 0.0000000000 0.0000000000
40 0 0.9500000000 0.9500000000 100 0 0.9500000000 0.9500000000
40 0.2 0.7558587930 0.7558587930 100 0.2 0.4839947260 0.4839947260
40 0.4 0.2843833932 0.2843833932 100 0.4 0.0206733681 0.0206733681
40 0.6 0.0332699421 0.0332699421 100 0.6 0.0000267215 0.0000267215
40 0.8 0.0009686482 0.0009686482 100 0.8 0.0000000008 0.0000000008
40 1 0.0000063680 0.0000063680 100 1 0.0000000000 0.0000000000
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If the alternative is one-sided, H1: μx − μy > 0, clearly the expression for β'  given 

in Eq. (7b) stays in tact but the Standard method type II error Pr becomes β1 = Φ( Zα − 

n / 2 /δ σ ), where δ = μx  − μy .  Because for δ > 0, β'  = Φ( /22 Zα − n / 2 /δ σ )  − 

Φ( /22 Zα− − n / 2 /δ σ ) > β = Φ( / 2Zα  − n / 2 /δ σ ) − Φ( / 2Zα− − n / 2 /δ σ ) > β1 

= Φ( Zα  − n / 2 /δ σ ), it follows that the impact of Overlap on type II error Pr for the 

one-sided alternative is greater that that of the two-sided alternative.  Note that β1 

becomes equal to β only at δ = 0. 

 

3.2    The Case of Known but Unequal Variances  

        If variances of the two independent processes are known but not equal, then 

statistical theory dictates that the two sample sizes should be allocated according to   

                                 nx  = x

x y

Nσ ×

σ + σ
 ,         ny  = y

x y

Nσ ×

σ + σ
 ,                                      (8)      

 where N = nx + ny = the total recourses available to the experimenter.  The sample size                             

allocations given in equations (8) lead to the minimum SE( x y− ) = x y( ) / Nσ + σ .  

Schenker and Gentleman (2001) make similar statement as above but did not use 

equation (8) to set the values of nx and ny.  They use notational procedure by letting 

/
/

x x

y y

n
k

n
σ
σ

=  .  Note that Schenker and Gentleman (2001) refer to the limiting value of 

small-letter k as the SE ratio because they investigated the impact of Overlap on type I 

and II error rates only when nx and ny → ∞. Since we discuss both limiting case 
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(populations) and small to moderate sample size cases in this dissertation, the small k 

refers to the standard error ration for samples, ie, 
/
/

x x

y y

S n
k

S n
= and K refers to the SE  

ratio for populations, ie, K=
/
/

x x

y y

n
n

σ
σ

 = SE(x) SE(y)/ . Clearly, 

              SE( x y− ) = 2 2/ /x x y yn nσ σ+   = 2 2 2K / /y y y yn nσ σ+  

                                 = 21 K /y ynσ +  = SE( y ) 21 K+                                        (9a)                              

Substituting equations (9a) into the Standard (1 − α)×100% CI: / 2 SE( )x y Z x yα− ± × −  

leads to  

          x y−  − 2
/ 2 1 K /y yZ nα σ + ≤  μx − μy  ≤  x y−  + 2

/ 2 1 K /y yZ nα σ +     (9b)              

Thus, the Standard CIL equals to 2
/ 22 1 K /y yZ nα σ + .  Equation (9b) shows that the 

null hypothesis H0: μx − μy = 0 must be rejected at the LOS α iff the CI in equation (9b)  

excludes zero, or iff             x y−  > 2
/ 2 1 K /y yZ nα σ + .                                    (9c)                              

However, requiring that the two independent CIs must not overlap in order to 

reject H0: μx  − μy = 0 at the LOS α, is equivalent to requiring that either L(μx) > U(μy) or 

L(μy) > U(μx).  These two inequalities lead to the Overlap rejection of H0: μx −μy = 0 iff  

                       x y−  > /2 /2/ /+x x y YZ n Z nα ασ σ = / 2 (1 K) /y yZ nα σ +           (10)                             

Therefore, if the exact Pr of type I error is α but we reject H0 when the two independent  

CIs are disjoint, the Overlap type I error Pr reduces to   

α′=Pr[ y − /2 y yZ / nα σ > x + /2 x xZ / nα σ ]+Pr[ x − /2 x xZ / nα σ > y + /2 y yZ / nα σ ]  
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    = 2×Pr( x y− > /2 y yZ (1 K) / nα σ + ) = 2×Pr(Z > 2
/2Z (1 K )/ 1 Kα + + )           (11)              

which is identical to that of equation (7) provided by  Schenker and Gentleman (2001, p. 

184) when their standardized difference, d, is set  equal to 0.  Eq.(11) shows that as K → 0 

or ∞, the value of α′  slowly approaches the exact type I error probability α [consistent 

with Table 3 on p. 3 of Payton et al. (2003)].  Further, since 2(1 K)/ 1 K+ + > 1 and 

2
/2Z (1 K )/ 1 Kα + +  > /2Zα , then α′= 2×Pr[Z > /2Z (1 K )α + / 21 K+ ] is smaller than α = 

2×Pr(Z > /2Zα ), which means that the Overlap always leads to a smaller type I error Pr than 

that of the Standard method, consistent with Figure 3 of Schenker and Gentleman (2001, p. 

184).  Table 4 shows the value of α′atα = 0.01and 0.05 for different K values.  Note that 

Table 4 values are valid for either Gaussian underlying distributions or for the limiting 

values of nx and ny.  Figure 5(a) and 5(b) show that as K increases, the value of α′  slowly 

approaches the exact type I error probability α.   

To determine the minimum value of α′ from Eq.(11),  let g(K)= / 2Z (1 K )/α +  

21 K+ .  The first derivative of g(K) is (K)g′ = / 2 2 2 3

1 K(1 K)[ ]
1 K (1 K )

Zα
+

−
+ +

.  Setting 

(K)g′ = 0 will lead to K = 1.  To ascertain whether K=1 is a point of minimum or 

maximum, the second differentiation yields:        

                     (K)g′′ =
2

/ 2 2 3/ 2 2 5 / 2 2 3/ 2
2K 3(1 K)K 1 K[ ]

(1 K ) (1 K ) (1 K )
Zα

− + +
+ −

+ + +
 

Substituting K =1 and Z0.025 = 1.959964 into the above equation results in (1)g′′ =   

0.353553391 0− < , which shows that K =1 maximize g(K). Thus, α′  has the minimum  
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value at K =1, as shown in Table 4.                         

 

   Table 4.  The Type I Error Pr of Two Individual CIs with Different K at α = 0.05     

                   and 0.01  

K ( 0.05)α α′ =  K ( 0.05)α α′ = K ( 0.01)α α′ = K ( 0.01)α α′ =
1 0.005574597 6 0.024101169 1 0.000269717 6 0.003034255 

1.2 0.005772632 7 0.026592621 1.2 0.000285833 7 0.003565806 
1.4 0.006255214 8 0.028674519 1.4 0.000326631 8 0.004034767 
1.6 0.006916773 9 0.030432273 1.6 0.000385984 9 0.004447733 
1.8 0.007695183 10 0.031932004 1.8 0.000460718 10 0.004812093 
2 0.008549353 11 0.033224353 2 0.000548586 11 0.005134764 

2.2 0.009450168 12 0.034348214 2.2 0.000647644 12 0.005421799 
2.4 0.010376313 13 0.035333699 2.4 0.000756080 13 0.005678348 
2.6 0.011312004 14 0.036204361 2.6 0.000872186 14 0.005908733 
2.8 0.012245574 15 0.036978819 2.8 0.000994382 15 0.006116572 
3 0.013168478 16 0.037671953 3 0.001121233 16 0.006304887 

3.2 0.014074567 17 0.038295773 3.2 0.001251466 17 0.006476214 
3.4 0.014959516 18 0.038860068 3.4 0.001383967 18 0.006632687 
3.6 0.015820399 19 0.039372889 3.6 0.001517779 19 0.006776110 
3.8 0.016655348 20 0.039840912 3.8 0.001652089 20 0.006908016 
4 0.017463296 21 0.040269717 4 0.001786217 21 0.007029710 

4.2 0.018243773 22 0.040664002 4.2 0.001919599 22 0.007142316 
4.4 0.018996754 23 0.041027747 4.4 0.002051774 23 0.007246798 
4.6 0.019722537 24 0.041364351 4.6 0.002182369 24 0.007343994 
4.8 0.020421655 25 0.041676725 4.8 0.002311086 25 0.007434630 
5 0.021094804 26 0.041967382 5 0.002437694 26 0.007519342 
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As before, let Ο  represent the amount of overlap length between the two 

individual CIs. Similar procedure as in previous section yields  

            Ο = U(μy)  −  L(μx) =   ( / 2 /y yy Z nα σ+ × ) – ( / 2 /x xx Z nα σ− × )                          

                = / 2 ( / / )x x y yZ n nα σ σ+ −( x y− )                                                       (12a) 

Let rΟ be the borderline value of Ο  at which H0 is barely rejected at an α-level.  From 

Eq. (9c), H0: μx = μy must be rejected iff x y−  > 2
/ 2 1 K /α σ +y yZ n , which upon 

substitution into (12a) results in  

                      Οr  =  / 2 ( / / )x x y yZ n nα σ σ+ − ( x y− )  

                           = / 2 ( / / )x x y yZ n nα σ σ+ − 2
/ 2 1 K /α σ +y yZ n .   

Substituting / K /σ σ=x x y yn n  in the above equation yields  

        rΟ  = 2
/ 2 ( / ) [1 K 1 K ]α σ × + − +y yZ n                                                  (12b)                           

Eq. (12b) indicates that H0 must be rejected at the LOS α or less iff Ο ≤ / 2 ( / )α σ ×y yZ n  

2[1 K 1 K ]+ − + .  Further, the span of the two individual CIs is  

           U(μx) − L(μy) = ( / 2 /x xx Z nα σ+ × ) − ( / 2 /y yy Z nα σ− × )                        

                                  = / 2 ( / / )x x y yZ n nα σ σ+ + ( x y− )                                     (12c) 

Thus, the exact percent α-overlap is given by  

                             ω = / 2

/ 2

( / / ) ( )

( / / ) ( )
x x y y

x x y y

Z n n x y

Z n n x y
α

α

σ σ

σ σ

+ − −
×

+ + −
100%       
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                        ω = / 2

/ 2

(1 K) / ( )

(1 K) / ( )
α

α

σ

σ

+ − −

+ + −
y y

y y

Z n x y

Z n x y
  ×100%                                    (12d)                            

As before, ω lies in the closed interval [0, 100%].  The % overlap in Eq. (12d) clearly 

shows that as x y 0− >  increases, the P-value of the test decreases, and Eq.(12d) shows 

that the % overlap also decreases. Because H0 must be rejected at the LOS α or less iff  

| |x y− ≥ 2
/ 2 1 K /α σ +y yZ n , the maximum % overlap above which H0 cannot be 

rejected at an α-level is given by  

           r (k)ω  = 
2

/ 2 / 2

2
/ 2 / 2

(1 K) / 1 K /

(1 K) / 1 K /

α α

α α

σ σ

σ σ

+ − +
×

+ + +

y y y y

y y y y

Z n Z n

Z n Z n
 100%  

                      = 
2

2

1 K 1 K

1 K 1 K

+ − +
×

+ + +
100%                                                                     (12e) 

Eq. (12e) shows that the maximum prevent overlap doesn’t depend on α and  reduces to 

17.1573% when 
/

K
/

σ
σ

= x x

y y

n
n

= 1.  It can be verified that the 1st derivative of r (K)ω is 

r 2 2 2

2 2K(K)
1 K (1 K 1 K )

−′ω =
+ × + + +

  whose root is K = 1.  Moreover, the value of the 2nd 

derivative of r (K)ω at K = 1 is  − 0.121320344, which means that K = 1 maximizes the % 

overlap and the null hypothesis H0: μx = μy must be rejected at any α if the overlap does not 

exceed 17.1573%.  The farther K is from 1, the smaller the amount of allowable overlap 

becomes (i.e., the Overlap procedure becomes less deficient).  For example, at K = 2 or 

0.50, the % overlap reduces to 14.5898%.  This implies that when the limiting SE ratio is K 

= 2 or 0.50, the two individual CIs can overlap up to 14.5898% and H0: μx = μy must still 
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be rejected at the LOS α or less.  At K = 3 or 1/3, the % overlap reduces to 11.696312% 

below which H0 must be rejected at α or less level; at K = 10, it reduces to 0.04513682.  As 

K → 0 or ∞, rω → 0 so that the Overlap procedure very gradually approaches an exact α-

level test [consistent with Table 3 of Payton et al. (2003, p. 3)]  

Furthermore, what should the individual confidence level, (1− γ), be so that 

comparisons of individual CIs will lead to the exact α−level test?  From Eq.(12c), the 

corresponding span of two individual CIs at confidence level (1− γ) is U′(μx) − L′(μy) = 

/ 2 (1 K) /γ σ +y yZ n + ( x y− ).  From Eq.(9c), H0: μx − μy = 0 must be rejected at the LOS 

α iff x y−  > 2
/ 2 1 K /α σ +y yZ n .  Substituting the critical limit x y− =  / 2 ( / )α σ y yZ n  

21 K× +  into U′(μx) − L′(μy) results in U′(μx) − L′(μy) = / 2 (1 K) /γ σ +y yZ n  + 

2
/ 2 1 K /α σ +y yZ n . Furthermore, the (1 − α)×100% CIL from the Standard method is 

equal to 2
/ 22 1 K /α σ +y yZ n  . Thus, the individual confidence levels, (1− γ), should be 

set as follows which in turn leads individual CIs to an exact α−level test. 

          / 2 (1 K) /γ σ +y yZ n  + 2
/ 2 1 K /α σ +y yZ n = 2

/ 22 1 K /α σ +y yZ n  

     / 2 (1 K) /γ σ +y yZ n = 2
/ 2 1 K /α σ +y yZ n  

     γ  = 2
/ 22 [ 1 K /(1 K)]Zα×Φ − + +                                                                  (13)                             

Eq.(13) shows that the level of each CI must be set at (1 − γ) = 1− 2
/ 22 [ 1 Kα×Φ − +Z / 

(1 K)]+  in order to reject H0 at α LOS iff the two CIs are disjoint, which is in agreement 

with Eq.(8) of Payton et al. (2003, p.2).  To verify this assertion, let q(K) = 
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2
/ 2 1 K /(1 K)Zα− + + .  The 1st derivative of q(K) is given by (K)q′ = 

2

22

K 1 K
(1 K)1 K (1 K)

+
−

++ +
.  Setting (K)q′ = 0 results in K =1. Moreover, the 2nd 

derivative of q(K) is 
K 1

2

2
d q(K)

dK =
= −0.346476 <0, which implies K =1 maximizes q(k) 

and in turn also maximizes γ.  Table 5 shows that as K increases toward 1, γ also 

increases to reach its maximum and then decreases for the fixed α as K departs from 1. 

    

        Table5.  Values of γ Versus K at α = 0.05 and α = 0.01 

     0.05α =        0.01α =    
K γ K γ K γ K γ 

0.2 0.095783 3.5 0.112872 0.2 0.028594 3.5 0.037197 
0.4 0.131601 4 0.106045 0.4 0.047523 4 0.033663 
0.6 0.153132 4.5 0.100440 0.6 0.060458 4.5 0.030857 
0.8 0.163187 5 0.095783 0.8 0.066863 5 0.028594 
1 0.165776 6 0.088541 1 0.068548 6 0.025201 

1.2 0.164038 7 0.083206 1.2 0.067415 7 0.022802 
1.4 0.160015 8 0.079131 1.4 0.064818 8 0.021030 
1.6 0.154931 9 0.075927 1.6 0.061587 9 0.019674 
1.8 0.149483 10 0.073346 1.8 0.058189 10 0.018606 
2 0.144051 20 0.061628 2 0.054869 20 0.014040 

2.2 0.138834 30 0.057723 2.2 0.051746 30 0.012627 
2.5 0.131601 40 0.055779 2.5 0.047523 40 0.011944 
3 0.121265 50 0.054616 3 0.041713 50 0.011543 

 

 

Lastly, the impact of Overlap on type II error probabilities for the known variance 

normal case is investigated. Comparing Eq.(9c) with Eq.(10), it clearly shows that the 

RHS of Eq. (10) is larger than that of Eq. (9c)   

/ 2 (1 K) /α σ +y yZ n  − 2
/ 2 1 K /α σ +y yZ n = 2

/ 2 ( / )(1 K 1 K )α σ + − +y yZ n > 0  
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because 21 K 1 K+ > + .  Thus rejecting H0 when the two separate CIs are disjoint is  

more stringent than using the SMD of x − y and will always lead to much less statistical 

power. 

The Standard method Pr of committing a type II error (assuming μx > μy), using 

Figure 3 is given by 

β  = Pr[ 2 2
/2 x x y yZ / n / nα− σ + σ ≤ x − y ≤ 2 2

/ 2 x x y yZ / n / nα σ + σ  ⏐δ]                (14a) 

   = 
2 2 2 2

/ 2 / 2
2 2 2 2 2 2

/ / / /( )Pr[ ]
/ / / / / /

x x y y x x y y

x x y y x x y y x x y y

Z n n Z n nx y

n n n n n n

α ασ σ δ σ σ δδ

σ σ σ σ σ σ

− + − + −− −
≤ ≤

+ + +
     

   = 2 2 2 2
/ 2 / 2Pr[ / / / / / / ]x x y y x x y yZ n n Z Z n nα αδ σ σ δ σ σ− − + ≤ ≤ − +                     (14b)            

   = / 2 / 22 2

/ /
Pr

1 K 1 K

x x x xn n
Z Z Zα α

δ σ δ σ⎡ ⎤
− − ≤ ≤ −⎢ ⎥

⎢ ⎥+ +⎣ ⎦
                                             (14c) 

As in Schenker et al. (2001), let d represent a standardized difference, i.e., d = 

2 2/ /x x y yn n

δ

σ σ+
=

2

/

1 K

δ σ

+

y yn
.  Thus, the above equation results in the following form:  

                                  / 2 / 2( ) ( )Z d Z dα αβ = Φ − − Φ − −                                             (14d)              

Eq. (14d) is the same result as Schenker et al. (2001, p.184) in their formula (6), except 

that they provide the equation for 1−β.  Furthermore, when the null hypothesis H0: μx − μy 

= 0 is not rejected at LOS α iff the two independent CIs ( x −Zα/2 x x/ nσ  ≤  μx  ≤ x + 

Zα/2 x x/ nσ ) and ( y −Zα/2 y y/ nσ  ≤ μy ≤ y + Zα/2 y y/ nσ ) are overlapping, the Pr of 

a type II error (assuming μx > μy) from the Overlap method is given by 
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β′ = Pr(Overlap⎢δ > 0) = Pr{[ ( ) ( )x yL Uμ μ≤ ] ∩ [ ( ) ( )y xL Uμ μ≤ ]|μx  − μy > 0} 

     = Pr{[ x − / 2Zα
x

xn
σ

≤ y + / 2Zα
y

yn
σ

] ∩  [ / 2
y

y

y Z
nα

σ
− ≤ x + / 2Zα

x

xn
σ ]| 0δ > } 

   = Pr{[ x − y ≤ / 2Zα
x

xn
σ + / 2Zα

y

yn
σ

] ∩  [ /2
y

y

Z
nα

σ
−   − / 2Zα

x

xn
σ

≤ x y− ]| 0δ > }    

   = Pr{[ /2
y

y

Z
nα

σ
−   − / 2Zα

x

xn
σ

≤ x − y ≤ / 2Zα
x

xn
σ + / 2Zα

y

yn
σ

| 0δ > ]                  (15a)                            

  

/2 /2

2 2 22 2 2

( ) ( )

Pr[ ]
− + − + −

− −
= ≤ ≤

+ + +

y yx x

x y x y

y y yx x x

x y x y x y

Z Z
n n n nx y

n n n n n n

α α

σ σσ σδ δ
δ

σ σ σσ σ σ           

  = / 2 / 22 2 2 22 2

(1 K) (1 K)Pr
1 K 1 K

[ ]
y yx x

x y x y

Z Z Z

n n n n

α α
δ δ

σ σσ σ

+ +
− − ≤ ≤ −

+ +
+ +

 

  = Φ ( / 2 2

(1 K)

1 K
Zα

+

+
 −d) − Φ ( − / 2 2

(1 K)

1 K
Zα

+

+
 −d)                                                 (15b)                           

where K2 = V(x) V(y)/ , and 2(1 K) 1 K/+ + = / /( ) /σ σ+x x y yn n  

2 2/ /σ σ+x x y yn n .  Thus, the PWF (power function) of the Overlap procedure in the 

case of known-Variances is  

       1− ′β = Φ (d − / 2 2

(1 K)

1 K
Zα

+

+
)  + Φ ( − / 2 2

(1 K)

1 K
Zα

+

+
 −d)                              (15c)                          

The result in Eq. (15c) is the same as that of Schenker et al. (2001, p. 184) in their Eq.(7), 

as they also provide the expression for 1 − β′.  Schenker et al. (2001) just provide both 
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power functions without any explanation.  The step by step derivations provided above 

have not been presented in statistical literature.  For the comparison of β and ′β see Table 

6A.  In Table 6A, the comparison is done for both α = 0.05 and α = 0.01.  As the table 

shows, if d is fixed, as k increases, the type II error Pr increases.  If k is fixed, the type П 

error rate decreases as d increases.  Thus, as Table 6A shows, the probability of type II 

error based-on Overlap is larger than that of the Standard method, i.e., the Overlap method 

will lead to smaller statistical power.  Secondly, when k is fixed, as d increases, β ′ −β  is 

not necessarily increasing or decreasing, this is consistent with figure 4 of Schenker and 

Gentleman (2001).  Furthermore, Table 6A shows that at a fixed K the difference in 

percent relative power decreases as the standardized difference d increases for both α = 

0.05 and α = 0.01.   

By definition, for an α-level test the relative efficiency of the Overlap to the 

Standard method, assuming the same statistical power, is given by      

        RELEFF(Overlap to Standard) = RELEFF(O, ST) = x y x y(n n ) / ( )n n′ ′+ +        (15d)            

where the type II error Pr of the Standard method is given by Eq. (14) and n′ is the 

Overlap sample size for which β′ = β.  The exact solution to n′ is obtained by setting the 

first argument in Eq. (14b) to that of (15b), i.e.,  

2
0.025Z (1 ) / 1 K′ ′+ +K − 2 2

x x y y/ / n / n′ ′δ σ + σ = 0.025Z − 2 2
x x y y/ / n / nδ σ + σ    (15e) 

Schenker and Gentleman (2001) state in their section 3 that the minimum ARE is 

½ which clearly occurs at their limiting SE ratio of k = 1.  We could obtain their value if 

we equate the argument of β on the RHS of Eq. (14a), 2 2
/ 2 x x y yZ / n / nα σ + σ , to that of  
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Table 6A.  The Relative Power of Overlap with the Standard Method for Different   

                Sample Sizes n and /( 2)δ σ Combinations for the Case of Known but  

                Unequal Variances 

      0.05α =       0.01α =     
 

x

x

nδ
σ

 
d k 1− β  1 β ′−  

( )100%
1
β ′ − β

− β
  

 

x

x

nδ
σ d k 1− β  1 β ′−  

( )100%
1
β ′ − β

− β
  

0.2 0.141 1 0.06898 0.00853 87.6361 0.1 0.071 1 0.01224 0.00035 97.10660 
0.4 0.283 1 0.09352 0.01281 86.3005 0.3 0.212 1 0.01809 0.00060 96.67198 
0.8 0.566 1 0.16323 0.02738 83.2293 0.5 0.354 1 0.02626 0.00100 96.17487 
1 0.707 1 0.21026 0.03895 81.4745 1 0.707 1 0.06166 0.00333 94.60226 

1.5 1.061 1 0.36849 0.08705 76.3756 1.5 1.061 1 0.12973 0.00982 92.43060 
2 1.414 1 0.58524 0.17459 70.1672 2 1.414 1 0.24539 0.02584 89.46857 

0.2 0.111 2 0.06445 0.00913 85.8305 0.1 0.055 1.5 0.01172 0.00044 96.27097 
0.4 0.222 2 0.08220 0.01256 84.7235 0.3 0.166 1.5 0.01598 0.00066 95.86846 
0.8 0.444 2 0.12947 0.02295 82.2715 0.5 0.277 1.5 0.02153 0.00099 95.42442 
1 0.555 2 0.15994 0.03052 80.9184 1 0.555 1.5 0.04327 0.00255 94.10605 

1.5 0.832 2 0.25936 0.05930 77.1341 1.5 0.832 1.5 0.08120 0.00614 92.43297 
2 1.109 2 0.39501 0.10771 72.7329 2 1.109 1.5 0.14253 0.01379 90.32345 

0.2 0.089 2 0.06141 0.01108 81.9557 0.1 0.045 2 0.01137 0.00065 94.30995 
0.4 0.179 2 0.07490 0.01426 80.9631 0.3 0.134 2 0.01462 0.00089 93.87954 
0.8 0.358 2 0.10911 0.02310 78.8304 0.5 0.224 2 0.01866 0.00123 93.41816 
1 0.447 2 0.13034 0.02908 77.6870 1 0.447 2 0.03329 0.00262 92.11581 

1.5 0.671 2 0.19735 0.05014 74.5919 1.5 0.671 2 0.05678 0.00535 90.57311 
2 0.894 2 0.28663 0.08272 71.1422 2 0.894 2 0.09268 0.01042 88.75241 

0.2 0.074 3 0.05934 0.01338 77.4461 0.1 0.037 2.5 0.01113 0.00093 91.64804 
0.4 0.149 3 0.07008 0.01643 76.5492 0.3 0.111 2.5 0.01372 0.00121 91.19269 
0.8 0.297 3 0.09634 0.02441 74.6610 0.5 0.186 2.5 0.01684 0.00156 90.71390 
1 0.371 3 0.11216 0.02953 73.6684 1 0.371 2.5 0.02749 0.00291 89.40730 

1.5 0.557 3 0.16065 0.04652 71.0407 1.5 0.557 2.5 0.04351 0.00525 87.93005 
2 0.743 3 0.22353 0.07109 68.1980 2 0.743 2.5 0.06680 0.00918 86.26369 

0.2 0.063 3 0.05787 0.01569 72.8768 0.1 0.032 3 0.01095 0.00125 88.56141 
0.4 0.126 3 0.06673 0.01864 72.0702 0.3 0.095 3 0.01310 0.00156 88.09595 
0.8 0.253 3 0.08783 0.02600 70.3948 0.5 0.158 3 0.01562 0.00193 87.61275 
1 0.316 3 0.10023 0.03054 69.5255 1 0.316 3 0.02385 0.00326 86.32330 

1.5 0.474 3 0.13738 0.04498 67.2582 1.5 0.474 3 0.03560 0.00537 84.91009 
2 0.632 3 0.18434 0.06479 64.8547 2 0.632 3 0.05197 0.00865 83.36362 

0.2 0.055 4 0.05678 0.01788 68.5051 0.1 0.027 3.5 0.01082 0.00159 85.26635 
0.4 0.110 4 0.06430 0.02072 67.7825 0.3 0.082 3.5 0.01265 0.00192 84.80442 
0.8 0.220 4 0.08183 0.02758 66.2952 0.5 0.137 3.5 0.01475 0.00231 84.32904 
1 0.275 4 0.09194 0.03169 65.5304 1 0.275 3.5 0.02139 0.00362 83.07963 

1.5 0.412 4 0.12165 0.04433 63.5559 1.5 0.412 3.5 0.03048 0.00557 81.73909 
2 0.549 4 0.15839 0.06099 61.4915 2 0.549 3.5 0.04273 0.00842 80.30232 
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(15a), namely / 2Zα
σ

′
x

xn
+ / 2Zα

σ
′

y

yn
, and letting σx = σy and nx = ny = n, but this seems to 

ignore the true mean difference δ = μx − μy. 

There are a numerous solutions for the Overlap sample sizes xn′  and yn′  from Eq. 

(15e) that must be at least as large as nx and ny in order to make the Overlap attain the 

same statistical power as the Standard method.  Fortunately, an exact solution can be 

obtained only when σx = σy and nx = ny because it will be shown below that optimum 

efficiency will be achieved if n′x = n′y and as a result the above equation reduces to   

    0.025Z 2 − ( / ) n / 2′δ σ = 0.025Z − ( / ) n / 2δ σ  

The solution to this last equation is  

                n′ = 0.025Z (2 2) ( / )/− δ σ + n                                          (15f) 

Eq. (15f) clearly shows that as δ/σ increases, the value of n′ decreases. Further, as n 

increases, the RELEFF of Overlap to the Standard method (n/n′) increases.  In fact, the 

larger δ/σ is, the faster the RELEFF(O, ST) approaches 100% as n → ∞.  

To obtain a rough approximation to (15e), we compare the 1st statement for β with 

the 4th statement for β′ and equate 2 2
x x y y/ n / nσ + σ   to /x xnσ ′ + /y ynσ ′ .  Dividing 

both sides of the last equality by /x xnσ  yields 21 K+  = /x xn n′ + K /y yn n′ , where 

K = 
/

/
y y

x x

n

n

σ

σ
 is called the SE ratio.  The equation 21 K+  = /x xn n′ + K /y yn n′  

shows that the solutions xn′  and yn′  do not depend on the specific values of σx and σy but 

rather only on their ratio /x yσ σ .  Unfortunately, the same cannot be said about the ratio 
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Rn = ny/nx, i.e., xn′  and yn′  do depend on the specific values of nx and ny and not just on 

their ratio Rn.  Further, the equation 21 K+  = /x xn n′ + K /y yn n′  clearly shows that 

when xn′  = nx and yn′  = ny, the RHS reduces to 1+ K which obviously exceeds the LHS 

21 K+  for all k. As K → ∞, this last equation also shows that xn′  → nx and yn′  → ny 

so that the Overlap becomes an exact α-level test.  When K > 1, the minimum n′x+ yn′  

occurs (i.e., the Overlap achieves its maximum relative efficiency) when n′x ≥ yn′  and 

vice a versa when K < 1.  It seems that we have a constrained optimization problem 

where (nx+ny)/( n′x+ yn′ ) is to be maximized subject to the nonlinear constraint /x xn n′ + 

K /y yn n′  = 21 K+ .   The solution to this optimization can be obtained through the 

use of Lagrangian multipliers as shown below. 

The objective is to maximize f(n′x, yn′ ) = (nx+ny)/( n′x+ yn′ ) subject to 21 K+  − 

/x xn n′  − K /y yn n′  = 0 and hence it is sufficient to maximize f(n′x, yn′ ) = N/( n′x+ yn′ ) 

+ λ( 21 K+  − /x xn n′  − K /y yn n′ ), where N = nx + ny and λ is an arbitrary constant.   

Taking the partial derivatives of f(n′x, yn′ ) with respective to n′x & yn′  and setting them 

equal to zero yields: 

             xf / n′∂ ∂  = −N( n′x+ yn′ )−2 + λ( / 2xn ) 3/2
x(n )−′       Set to⎯⎯⎯→ 0 

            yf / n′∂ ∂  = −N( n′x+ yn′ )−2  + λ( K / 2yn ) 3/2
y(n )−′    Set to⎯⎯⎯→ 0 

Because λ is a completely arbitrary constant, the above system is satisfied as soon as we 

equate xn 3/2
x(n )−′   to K yn 3/2

y(n )−′ , i.e., xn 3/2
x(n )−′ = K yn 3/2

y(n )−′  → 
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xn 3
x(n )−′  = 2K yn 3

y(n )−′  → 2K yn / xn  = 3
x(n )−′ / 3

y(n )−′  → 2K yn / xn = 3
y x(n / n )′ ′  → 

y xn / n′ ′ = ( 2K yn / xn )1/3; thus the optimum solution is obtained if we select n′x and yn′  in 

such a manner that their ratio y xn / n′ ′  is close to ( 2K yn / xn )1/3.  Table 6B provides the 

RELEFF of Overlap to the Standard for various values of δ/σ only for the case of nx = ny 

= n and σx = σy = σ for which K = 1.  When σx ≠ σy, there are uncountable ways that K 

can equal 1, and therefore, the procedure is to solve xn′ and yn′  from (15f) and to 

compute the RELEFF from the ratio of (nx+ny)/( xn′ + yn′ ). 

The results of this chapter verifies what has been reported in Overlap literature for 

the limiting case (i.e., large sample sizes) by Goldstein H. & Healy MJR (1995), Payton 

et al. (2000), Schenker N. & Gentleman J. F (2001), and Payton et al. (2003).  Payton et 

al. (2000) report some approximate Overlap results for smaller sample sizes (nx = ny = n 

= 5(5) 50) but used simulation to obtain them instead of the exact normal theory as 

applied here in Chapter 3.  Further, it must be emphasized that the results reported in this 

chapter will also apply to non-normal underlying populations only if both nx & ny > 60.  

This is due the Central Limit Theorem (CLT) that states the sample mean distribution 

from non-normal population approaches normality as n → ∞.  In practice, the rate of 

approach to normality depends only on skewness and kurtosis of the underlying 

distributions.  It is well known that both the skewness and kurtosis of a normal universe 

are zero.  The closer the skewness and kurtosis of the parent populations are to zero, the 

more rapidly the means ( x and y ) approach normality.  For example, because the 

skewness of a uniform distribution is zero and its kurtosis is −1.20, only samples of size 

at least 6 are needed for the corresponding sample mean to be approximately normally  
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Table 6B.  RELEFF of Overlap to the Standard Method at α = 0.05 and K=1 

           0.2       0.4       0.6   

n RELEFF n RELEFF n RELEFF n RELEFF n RELEFF n RELEFF

4 0.06676  25 0.21671  4 0.16864  25 0.40361  4 0.26117  25 0.52305  

5 0.07858  30 0.23840  5 0.19175  30 0.43053  5 0.29037  30 0.54922  

6 0.08945  35 0.25758  6 0.21201  35 0.45337  6 0.31519  35 0.57094  

8 0.10895  40 0.27479  8 0.24634  40 0.47312  8 0.35577  40 0.58940  

10 0.12617  50 0.30462  10 0.27479  50 0.50592  10 0.38814  50 0.61940  

12 0.14163  60 0.32987  12 0.29907  60 0.53236  12 0.41495  60 0.64305  

14 0.15571  70 0.35174  14 0.32023  70 0.55438  14 0.43776  70 0.66237  

16 0.16864  80 0.37098  16 0.33898  80 0.57313  16 0.45754  80 0.67859  

18 0.18060  90 0.38814  18 0.35577  90 0.58940  18 0.47495  90 0.69248  

20 0.19175  100 0.40361  20 0.37098  100 0.60370  20 0.49048  100 0.70456  

    0.8       1       1.5   

n RELEFF n RELEFF n RELEFF n RELEFF n RELEFF n RELEFF

4 0.33898  25 0.60370  4 0.40361  25 0.66139  4 0.52305  25 0.75211  

5 0.37098  30 0.62787  5 0.43658  30 0.68345  5 0.55501  30 0.76981  

6 0.39760  35 0.64766  6 0.46358  35 0.70136  6 0.58052  35 0.78401  

8 0.44009  40 0.66431  8 0.50592  40 0.71632  8 0.61940  40 0.79574  

10 0.47312  50 0.69103  10 0.53823  50 0.74014  10 0.64822  50 0.81419  

12 0.49994  60 0.71180  12 0.56411  60 0.75849  12 0.67081  60 0.82823  

14 0.52240  70 0.72860  14 0.58553  70 0.77323  14 0.68919  70 0.83939  

16 0.54162  80 0.74258  16 0.60370  80 0.78542  16 0.70456  80 0.84855  

18 0.55836  90 0.75447  18 0.61940  90 0.79574  18 0.71769  90 0.85626  

20 0.57313  100 0.76474  20 0.63317  100 0.80463  20 0.72908  100 0.86286  

    2       2.5       3   

n RELEFF n RELEFF n RELEFF n RELEFF n RELEFF n RELEFF

4 0.60370  25 0.80463  4 0.66139  25 0.83883  4 0.70456  25 0.86286  

5 0.63317  30 0.81927  5 0.68826  30 0.85126  5 0.72908  30 0.87365  

6 0.65632  35 0.83092  6 0.70916  35 0.86112  6 0.74800  35 0.88217  

8 0.69103  40 0.84050  8 0.90471  40 0.86919  8 0.77584  40 0.88914  

10 0.71632  50 0.85546  10 0.76246  50 0.88175  10 0.79574  50 0.89995  

12 0.73589  60 0.86677  12 0.77959  60 0.89119  12 0.81092  60 0.90805  

14 0.75166  70 0.87571  14 0.79331  70 0.89864  14 0.82303  70 0.91443  

16 0.76474  80 0.88302  16 0.80463  80 0.90471  16 0.83298  80 0.91962  

18 0.77584  90 0.88914  18 0.81419  90 0.90978  18 0.84136  90 0.92395  

20 0.78542  100 0.89437  20 0.82242  100 0.91411  20 0.84855  100 0.92764  

 

distributed.  This is due to the fact that the skewness of the 6-fold convolution of a U(0, 1) 

is zero (due to symmetry) while its kurtosis is −1.20/6 = −0.20.  It can be shown that  
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the kurtosis of an n-fold convolution of the U(0, 1) is exactly equal to  −1.20/n (see 

Appendix A).  Further, our experience indicates [Hool J. N. and Maghsoodloo S. (1980) 

and Maghsoodloo S. and Hool J. N. (1981)] that the 3rd moment (skewness) plays a more 

important role in normal approximation of a linear combination than the 4th moment 

(kurtosis).  
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4.0    Bonferroni Intervals for Comparing Two Sample Means           

The two independent 95% confidence intervals for each of the two population 

means have a joint Pr of 0.952 of containing μx and μy.  Although, this concept of joint Pr 

has not been considered in the Overlap literature, we consider it here to investigate its 

impact on type I & II error rates from the Overlap method.  In order to compare two 95% 

CIs against a single 95% CI for μx − μy, it may be best to use the Bonferroni concept so 

that the overall confidence Pr (regardless of the correlation structure) of the two CIs is 

raised from 0.952 = 0.9025 to 0.95.  This is accomplished by setting individual CI 

coefficient at 1 − α = 0.95  = 0.9746794345 so that the joint confidence level will equal 

to ( 0.95  )2 .  To this end, let (1 − αB) = 0.95  (the subscript B stands for Bonferroni) = 

0.9746794345; thus, Bα  = 0.02532056552, which results in Bα  /2 = 0.01266028276 and 

Z0.0126603 = 2.23647664456.  Thus, the 97.468% confidence Pr statement for μx is 

Pr( x −Z0.0126603 x x/ nσ  ≤  μx  ≤ x  + Z0.0126603 x x/ nσ ) = 0.97468.  As a result, the 

lower 97.468% Bonferroni CI limit for μx is L(μx) = x − Z0.0126603 x x/ nσ  and the 

corresponding upper limit is U(μx) = x + Z0.0126603 x x/ nσ  resulting in the Bonferroni 

CIL (confidence interval length) of CIL(μx) = 2×Z0.0126603 x x/ nσ .  Following the same 

procedure, the 97.468% CI for μy will be: L(μy) = y − Z0.0126603 y y/ nσ  , U(μy) = y + 

Z0.01266 y y/ nσ , and the corresponding Bonferroni CIL(μy) = 2Z0.0126603 y y/ nσ .   
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The Bonferroni confidence Intervals for μx and μy will not change the 95% CI 

for x yμ μ− , i.e., the 95% CI for x yμ μ−  is still the same as in Eq. (9b), as shown below: 

   x y− − 2
0.025( / ) 1 Kx xZ nσ × + ≤ x yμ μ−  ≤ x y−  + 2

0.025( / ) 1 Kx xZ nσ × + .   

The 95% CI in Eq.(9c) shows that the H0 : μx − μy = 0  must be rejected at the 5% level of 

significance iff  x y−  > 2
0.025( / ) 1 Kx xZ nσ × + .  However, requiring that the two 

separate independent CIs must be disjoint in order to reject H0 : μx  − μy = 0 at the 5% 

level, is equivalent to either L(μx) > U(μy), or L(μy) > U(μx).  These two possibilities lead 

to either x − Z0.01266 x x/ nσ  > y + Z0.01266 y y/ nσ  , or  y − Z0.01266 y y/ nσ  > x +                            

Z0.01266 x x/ nσ , respectively.  Inserting / K /y y x xn nσ σ=  into this last inequality 

leads to the rejection of H0 iff  

       x y−  > 0.0126603 0.0126603/ /x x y yZ n Z nσ σ+  = 0.0126603(1 K) /x xZ nσ+            (16a)                           

Thus the Bonferroni CIL for the Eq.(16a) is 0.01266032 (1 K) /x xZ nσ+ .                    (16b)   

Using the same procedures as in chapter 3, if we set the exact type I error at 5% 

and reject H0 when the two independent CIs do not overlap; then the Bonferroni type I 

error Pr reduces to 

Bα′  

= Pr( x +Z0.0126603
x

xn
σ < y −Z0.0126603

y

yn

σ
)+ Pr( x −Z0.0126603

x

xn
σ > y +Z0.0126603

y

yn

σ
)                          

= 0.01266032 Pr (1 K) /x xx y Z nσ⎡ ⎤× − > +⎣ ⎦ = 0.0126603
2 2

(1 K) /
2 Pr

/ /
x x

x x y y

Z n
Z

n n

σ

σ σ

⎡ ⎤+⎢ ⎥× >
⎢ ⎥+⎣ ⎦
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= 0.0126603
2 2 2

(1 K) /
2 Pr

/ K /
x x

x x x x

Z n
Z

n n

σ

σ σ

⎡ ⎤+⎢ ⎥× >
⎢ ⎥+⎣ ⎦

= 2×Pr[Z > 2
0.0126603Z  (1 K )/ 1 K+ + ]      (17)                              

Eq. (11) leads toα′=2×Pr[Z > 2
0.025Z (1 K )/ 1 K+ + ]. Comparing Eq.(17) with Eq.(11),  

clearly, since Z0.0126603 > Z0.025  0.0126603
2

Z  (1 K )

1 K

+

+
> 0.025 2

(1 K )Z
1 K

+

+
 , then Bα α′ ′< .  

Thus, the Bonferroni intervals lead to an even smaller type І error Pr than both α andα′ , 

i.e., Bα′ <α′ < α . Using the same logic as before, the minimum Bα′  occurs at K = 1. Figure 

6 shows that from k = 0.1 to 10 and at α = 0.05  B Bα α α α′ ′ ′ ′< − < < α  = 0.05. 

Moreover, Figure 6 shows that the minimum Bα′  occurs when K =1 (or see Table 7). 

The value of Type I Errors at α=0.05
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Figure 6 

 

 As before, let Ο  represent the amount of overlap length between the two 

individual Bonferroni CIs.  Using the same procedure as the former section   
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           Table7.  Type I Errors for Overlap and Bonferroni Methods at α =0.05 

K Bα′  α′  K Bα′  α′  
1 0.0015623 0.0055746 6 0.0100611 0.0241012 

1.2 0.0016335 0.0057726 6.2 0.0103455 0.0246370 
1.4 0.0018096 0.0062552 6.4 0.0106211 0.0251532 
1.6 0.0020571 0.0069168 6.6 0.0108879 0.0256507 
1.8 0.0023567 0.0076952 6.8 0.0111465 0.0261302 
2 0.0026949 0.0085494 7 0.0113970 0.0265926 

2.2 0.0030617 0.0094502 7.2 0.0116398 0.0270387 
2.4 0.0034487 0.0103763 7.4 0.0118751 0.0274693 
2.6 0.0038493 0.0113120 7.6 0.0121032 0.0278850 
2.8 0.0042579 0.0122456 7.8 0.0123243 0.0282865 
3 0.0046702 0.0131685 8 0.0125388 0.0286745 

3.2 0.0050825 0.0140746 8.2 0.0127469 0.0290496 
3.4 0.0054921 0.0149595 8.4 0.0129488 0.0294124 
3.6 0.0058968 0.0158204 8.6 0.0131448 0.0297634 
3.8 0.0062950 0.0166553 8.8 0.0133350 0.0301032 
4 0.0066853 0.0174633 9 0.0135198 0.0304323 

4.2 0.0070670 0.0182438 9.2 0.0136993 0.0307510 
4.4 0.0074393 0.0189968 9.4 0.0138738 0.0310600 
4.6 0.0078019 0.0197225 9.6 0.0140433 0.0313595 
4.8 0.0081545 0.0204217 9.8 0.0142082 0.0316501 
5 0.0084970 0.0210948 10 0.0143686 0.0319320 

5.2 0.0088295 0.0217428 10.2 0.0145246 0.0322057 
5.4 0.0091520 0.0223665 10.4 0.0146764 0.0324714 
5.6 0.0094646 0.0229668 10.6 0.0148242 0.0327296 
5.8 0.0097676 0.0235447 10.8 0.0149681 0.0329805 

 

 

Ο = U(μy)  −  L(μx) = ( 0.0126603 /y yy Z nσ+ × ) – ( 0.0126603 /x xx Z nσ− × ) 

              = ( )0.0126603 / /x x y yZ n nσ σ+ − ( x y− )                                                    (18a)     

Let Οr be the border line value of Ο at which H0 is barely rejected at the 5% level. 

From Eq. (9c), H0:μx = μy should be rejected iff x y−  > 2
0.025 1 K /x xZ nσ + .  

Therefore, the value of   

                Οr = ( )0.0126603 / /x x y yZ n nσ σ+  − 2
0.025 1 K /x xZ nσ +  
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                   2
0.0126603 0.025( / ) (1 K) 1 Kx xn Z Zσ ⎡ ⎤= × + − +⎢ ⎥⎣ ⎦

                               (18b)      

Eq. (18b) indicates that H0 must be rejected at the 5% or less level iff  Ο ≤ ( / )x xnσ ×  

2
0.0126603 0.025(1 K) 1 KZ Z⎡ ⎤+ − +⎢ ⎥⎣ ⎦

.  Further, the span of the two individual CIs is 

( ) ( )x yU Lμ μ− =  ( 0.0126603 /x xx Z nσ+ × )－( 0.0126603 /y yy Z nσ− × ) 

                         2
0.0126603 0.025( / ) (1 K) 1 Kx xn Z Zσ ⎡ ⎤= × + + +⎢ ⎥⎣ ⎦

                        (18c)                            

Thus, the percentage of the overlap length at the borderline condition for the Bonferroni 

case is given by ( ) ( )
( ) ( )

Y X

X Y

U L
U L

μ μ
μ μ

−
−

×100%  

                           = 
2

0.0126603 0.025
2

0.0126603 0.025

(1 K) 1 K[ ] 100%
(1 K) 1 K

Z Z

Z Z

+ − +
×

+ + +
                               (18d) 

Let h(K)= 
2

0.0126603 0.025
2

0.0126603 0.025

(1 K) 1 K[ ]
(1 K) 1 K

Z Z

Z Z

+ − +

+ + +
.  From Maple, (K)h′ =  

2 2 2
0.025 .025 0.025

2 2 2
0.025 0.025

K / 1 K ( K 1 K )( K / 1 K )

K 1 K ( K 1 K )
B B B B

B B B B

Z Z Z Z Z Z Z

Z Z Z Z Z Z

− + + − + + +
−

+ + + + + +
    (18e)     

Plugging K = 1 into Eq.(18e), result in K 1'(K) | 0.117405174 0.117405174 0h = = − =  and 

K 1(K) |h =′′ = -0.095648707-0.425286147+0.117405174-0.022459306= −0.425988985<0,  

which implies that K =1 maximizes h(K). Thus, the maximum overlap occurs when  

K=1 as before. Table 8 shows that, at the same K, the amount of overlap based on 

Bonferroni concept is larger than that of two individual CIs at LOS of 0.05.  As K  

increases, the difference in overlap and Bonferroni overlap monotonically and slowly  
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      Table 8.  The Impact of  Bonferroni on Percent Overlap at Different K 

K 
Bonferroni 
Overlap(%) 

Overlap 
(%) 

 Difference 
(%) K 

Bonferroni
Overlap(%)

Overlap 
(%) 

 Difference 
(%) 

1 23.481035 17.157288 6.323747 3.1 17.907989 11.453938 6.454051 
1.1 23.427525 17.102324 6.325201 3.2 17.678328 11.219816 6.458512 
1.2 23.286523 16.957512 6.329012 3.3 17.456447 10.993694 6.462753 
1.3 23.082143 16.747656 6.334487 3.4 17.242089 10.775302 6.466787 
1.4 22.832795 16.491705 6.341089 3.5 17.034990 10.564364 6.470625 
1.5 22.552471 16.204060 6.348410 3.6 16.834880 10.360601 6.474279 
1.6 22.251757 15.895613 6.356143 3.7 16.641492 10.163735 6.477758 
1.7 21.938629 15.574565 6.364064 3.8 16.454562 9.973490 6.481072 
1.8 21.619071 15.247062 6.372009 3.9 16.273829 9.789598 6.484232 
1.9 21.297543 14.917681 6.379862 4 16.099042 9.611797 6.487245 
2 20.977344 14.589803 6.387541 4.1 15.929955 9.439834 6.490121 

2.1 20.660894 14.265901 6.394993 4.2 15.766332 9.273465 6.492867 
2.2 20.349935 13.947753 6.402182 4.3 15.607946 9.112454 6.495491 
2.3 20.045701 13.636613 6.409088 4.4 15.454576 8.956577 6.497999 
2.4 19.749033 13.333333 6.415700 4.5 15.306015 8.805616 6.500399 
2.5 19.460480 13.038464 6.422016 4.6 15.162061 8.659366 6.502695 
2.6 19.180364 12.752325 6.428039 4.7 15.022524 8.517630 6.504894 
2.7 18.908840 12.475065 6.433775 4.8 14.887219 8.380218 6.507001 
2.8 18.645939 12.206705 6.439233 4.9 14.755973 8.246951 6.509022 
2.9 18.391594 11.947169 6.444424 5 14.628619 8.117658 6.510960 
3 18.145672 11.696312 6.449360 5.1 14.504998 7.992177 6.512821 

 

increases toward the limit of 0.065892072. 

Finally, the same conclusion as before can be reached that separate CIs lead to 

larger type П error when Bonferroni concept is applied.  The exact Pr of type П error is 

the same as Eq.(14)  /2 /2( ) ( )= Φ − − Φ − −Z d Z dα αβ .  

For Bβ ′  (B stands for Bonferroni) will be changed to  

       Bβ ′ = Pr(Overlap⎢μx  − μy = δ) = Pr{[ ( ) ( )x yL Uμ μ≤ ] ∩ [ ( ) ( )y xL Uμ μ≤ ]| δ}                   

             = Φ ( 0.0126603 2

1 K
1 K

Z +

+
 −d) − Φ ( − 0.0126603 2

1 K
1 K

Z +

+
−d)                               (19)                       

Table 9 clearly shows that the Bonferroni concept leads to the largest type П error Pr than 

other two methods, i.e., Bβ β′ ′> > β .  Because the Bonferroni CIs always have larger  



 

50

 

Table 9.  Type П Error Pr for the Standard, Overlap, and Bonferroni Methods with  

                Different K and d Combinations 

K d β β ′  Bβ ′  K d β β ′  Bβ ′  

1 0 0.95 0.994425 0.998438 1.8 0 0.95 0.992305 0.997643
1 0.2 0.921586 0.993461 0.998090 1.8 0.2 0.921586 0.991068 0.997157
1 0.4 0.881232 0.990392 0.996952 1.8 0.4 0.881232 0.987161 0.995579
1 0.6 0.826159 0.984692 0.994725 1.8 0.6 0.826159 0.979999 0.992544
1 0.8 0.753937 0.975507 0.990896 1.8 0.8 0.753937 0.968656 0.987431
1 1 0.662927 0.961706 0.984708 1.8 1 0.662927 0.951936 0.979356

1.2 0 0.95 0.994227 0.998367 2 0 0.95 0.991451 0.997305
1.2 0.2 0.921586 0.993237 0.998006 2 0.2 0.921586 0.990111 0.996763
1.2 0.4 0.881232 0.990085 0.996826 2 0.4 0.881232 0.985887 0.995010
1.2 0.6 0.826159 0.984241 0.994523 2 0.6 0.826159 0.97818 0.991656
1.2 0.8 0.753937 0.974842 0.990571 2 0.8 0.753937 0.96604 0.986044
1.2 1 0.662927 0.960747 0.984200 2 1 0.662927 0.948262 0.977248
1.4 0 0.95 0.993745 0.998190 2.5 0 0.95 0.989156 0.996352
1.4 0.2 0.921586 0.992690 0.997798 2.5 0.2 0.921586 0.987554 0.995662
1.4 0.4 0.881232 0.989343 0.996518 2.5 0.4 0.881232 0.98253 0.993443
1.4 0.6 0.826159 0.983155 0.994030 2.5 0.6 0.826159 0.973451 0.989250
1.4 0.8 0.753937 0.973245 0.989780 2.5 0.8 0.753937 0.959334 0.982342
1.4 1 0.662927 0.958455 0.982970 2.5 1 0.662927 0.938958 0.971701
1.6 0 0.95 0.993083 0.997943 3 0 0.95 0.986832 0.995330
1.6 0.2 0.921586 0.991944 0.997508 3 0.2 0.921586 0.984982 0.994490
1.6 0.4 0.881232 0.988334 0.996090 3 0.4 0.881232 0.979206 0.991807
1.6 0.6 0.826159 0.981690 0.993349 3 0.6 0.826159 0.968852 0.986788
1.6 0.8 0.753937 0.971106 0.988699 3 0.8 0.753937 0.952921 0.978626
1.6 1 0.662927 0.955405 0.981300 3 1 0.662927 0.930202 0.966232

 

 

confidence bands, will always lead to larger % overlap and to smaller type I error and 

larger type II error rates, they will not be henceforth considered.  

Moreover, Figure 7 shows the three type II errors ( , , Bβ β′ ′β ) at k =1, 1.2, 1.5 and 

2.  These four figures clearly show the relation that Bβ β′ ′> > β .  In other words, 

Bonferroni method will lead to the largest type II error. 
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Type II error (at K=1)
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Type II error (at K=1.5)
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Type II error (at K=2)
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Figure 7 
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5.0  Comparing the Overlap of Two Independent CIs with a Single CI for the Ratio 

       of Two Normal Population Variances  

Because there are two different t-tests (pooled t-test and two-sample t-test) to 

compare independent normal means when variances are unknown, it is prudent to pretest 

H0: 2 2
x yσ σ=  at an α−level.  Because statistical literature cautions against using the pooled 

t-test unless there is convincing evidence in favor of H0: 2 2
x yσ σ= , then when testing 

H0: 2 2
x yσ σ=  just to ascertain to pool or not, the LOS α will be set much higher than 5%. 

Consider a random sample of size nx from the normal universe N(μx, 2
xσ ).  Using 

the fact that the rv 2

2( 1)x

x

xn S
σ
−

 has a chi-square distribution with νx = 1xn − degrees of 

freedom, it follows that the Pr [
1 /2,
2

xα ν
χ

−
<

2

2

( 1) x

x

n S

σ

−
< 

/2,
2

xα ν
χ ] = 1 − α.  Rearranging this 

last Pr statement results in the (1 − α)100% CI for 2
xσ   

                                
2

2
/ 2,

( 1)

x

x xn S

α νχ
− < 2

xσ < 
2

2
1 / 2,

( 1)

x

x xn S

α νχ −

−                                              (20a) 

Hence, the lower CI limit for 2
xσ  is L( 2

xσ ) =
2

2
/ 2, x

x xS

α ν

ν
χ

 and the upper CI limit is U( 2
xσ ) 

=
2

2
1 / 2, x

x xS

α ν

ν
χ −

.  These CI lower and upper limits result in the confidence interval length        
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           CIL( 2
xσ ) = U( 2

xσ ) − L( 2
xσ ) = 

2

2
1 / 2, x

x xS

α ν

ν
χ −

 −  
2

2
/ 2, x

x xS

α ν

ν
χ

 

                          = 2
2 2
1 /2, /2,

1 1( )
−

× −
x x

x xS
α ν α ν

ν
χ χ

                                                        (20b)                            

The same procedure as above leads to the (1 − α)100% upper and lower CI limits for 2
yσ  

as L( 2
yσ ) = 

2

2
/ 2,

( 1)

y

y yn S

α νχ

−
 , U( 2

yσ ) = 
2

2
1 / 2,

( 1)

y

y yn S

α νχ −

−
 and  

                         CIL( 2
yσ ) = 2

2 2
1 / 2, / 2,

1 1[ ]
y y

y yS
α ν α ν

ν
χ χ−

× − .                                          (20c) 

With the above information, requiring that the two independent CIs must be 

disjoint in order to reject H0: 2 2
x yσ σ=  at the α×100% level is equivalent to either L( 2

xσ ) 

 > U( 2
yσ ) or L( 2

yσ )  > U( 2
xσ ), i.e., L( 2

xσ ) > U( 2
yσ ) 

2

2
/ 2, 1

( 1)

x

x x

n

n S

αχ −

− > 
2

2
1 / 2, 1

( 1)

y

y y

n

n S

αχ − −

−
    

Thus, based on the Overlap procedure, reject H0 if  

                      F0 =
2

2
x

y

S
S

> y

x

ν
ν

×
2

/ 2,
2
1 / 2,

x

y

α ν

α ν

χ

χ −

, or F0 =
2

2
x

y

S
S

> y

x

ν
ν

× / 2, ,x y
Cα ν ν ,                   (21a) 

where / 2, ,x y
Cα ν ν = 

2
/ 2,

2
1 / 2,

x

y

α ν

α ν

χ

χ −

 .                                         

Or L( 2
yσ ) > U( 2

xσ )      
2

2
/ 2,

( 1)

y

y yn S

α νχ

−
 > 

2

2
1 / 2,

( 1)

x

x xn S

α νχ −

−     
2

2
x

y

S
S

< y

x

ν
ν

2
1 / 2,

2
/ 2,

x

y

α ν

α ν

χ

χ
−×  

     Reject H0 if F0 =
2

2
x

y

S
S

< y

x

ν
ν

× 1 / 2, ,x y
C α ν ν−                                     (21b)  
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However, the exact (1− α)100% CI for the ratio of the two independent normal  

variances must be obtained from the Fisher’s F distribution as follows:  

Consider two samples from N(μx, 2
xσ ) and N(μy, 2

yσ ), respectively. Thus,             

   
2

2

( 1) xx

x

n S

σ

−
1

2
−nx

χ  ;    
2

2

( 1) yy

y

n S

σ

−
1

2
−ny

χ  ;  1, 1x yn nF − − =
2 2

2 2

[( 1) ] ( 1)
[( 1) ] ( 1)

x x x x

y y y y

n S n
n S n

σ
σ

− −
− −

 

                      Pr(
,1 2, x y

F α ν ν− ≤
2 2

2 2
x x

y y

S
S

σ
σ

 ≤  
,2, x y

Fα ν ν ) = 1 − α     

                    
2

2
x

y

S
S 1 / 2, ,y x

F α ν ν−  ≤  
2

2
x

y

σ
σ

 ≤  
2

2
x

y

S
S / 2, ,y x

Fα ν ν                                             (22a) 

         CIL = F0( / 2, ,y x
Fα ν ν − 1 / 2, ,y x

F α ν ν− ), where 1x xnν = −  and 1y ynν = − .           (22b)                           

Then H0: 2 2
x yσ σ=  or H0: 2 2/x yσ σ  = 1 must be rejected at the α×100% level of 

significance if the CI in Eq. (22a) excludes one; otherwise, H0 must not be rejected at the 

α×100% level.  Thus, based on the Standard procedure H0: 2 2
x yσ σ=  (or

2

2 1x

y

σ
σ

= ) must be 

rejected at the α level iff either F0 =
2

2
x

y

S
S

< 1 / 2, ,x y
F α ν ν−  or F0 = 

2

2
x

y

S
S

> / 2, ,x y
Fα ν ν           (22c)                            

 The Pr of type I error for the exact procedure (i.e., using the Standard method from the 

null SMD of the ratio 2 2
x yS S which is

x y,Fν ν ) is α.  This implies that H0: 2 2
x yσ σ=   will be 

rejected at the α-level iff F0 = 2 2
x yS S < 1 / 2, ,x y

F α ν ν− , or F0 = 2 2
x yS S > / 2, ,x y

Fα ν ν . Therefore, 

the type I error Pr for the two disjoint CIs (α′ ) is given by  

α′ (two disjoint CIs) = Pr[ 2 2( ) ( )X YU Lσ σ< ] + Pr[ 2 2( ) ( )X YL Uσ σ> ] 
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                                 = Pr[
2

2
1 / 2,

( 1)

x

x xn S

α νχ −

− <
2

2
/ 2,

( 1)

y

y yn S

α νχ

−
] + Pr[

2

2
/ 2,

( 1)

x

x xn S

α νχ
− >

2

2
1 / 2,

( 1)

y

y yn S

α νχ −

−
] 

                                 = Pr[
2

2
x

y

S
S

< y

x

ν
ν

×
2
1 / 2,

2
/ 2,

x

y

α ν

α ν

χ

χ
− ] + Pr[

2

2
x

y

S
S

> y

x

ν
ν

×
2

/ 2,
2
1 / 2,

x

y

α ν

α ν

χ

χ −

 ]                       

                                 = Pr(
2

2
x

y

S
S

< y

x

ν
ν

× 1 2, ,x y
C α ν ν− ) + Pr(

2

2
x

y

S
S

> y

x

ν
ν

× 2, ,x y
Cα ν ν ) 

                                 = Pr( ,x y
Fν ν < y

x

ν
ν

× 1 2, ,x y
C α ν ν− )+Pr( ,x y

Fν ν > y

x

ν
ν

× 2, ,x y
Cα ν ν )   (23) 

Table 10 gives the values of α and α′ (where α′ represents type I error Pr from the 

Overlap procedure) for various values of xν and yν , verifying the same conclusion as 

before: the Overlap method always leads to a smaller type І error Pr than that of the null 

sampling distribution of 2 2/x yS S , which is the Fisher’s F.  Moreover, we have verified 

thatα′  value depends on the sizes of x yandν ν  and not much on their ratio /x yν ν . Eq. 

(23) can easily verify that at α = 0.01, as x yandν ν  increase, the Overlap type I error Pr, 

α′, decreases toward 0.000269717, while at α = 0.05 the value of α′ decreases (from 

0.017800531 at x yν ν= = 1) toward 0.0055746, similar to the overlapping of CIs for 

population means.  For the special case that x yn n n= = , the rejection of H0 from the 

Overlap method given by Eq. (21a) and Eq. (21b) is reduced to 

  Reject H0 if either F0 = 
2

2
x

y

S
S

< 
2
1 / 2, 1

2
/ 2, 1

n

n

α

α

χ

χ
− −

−

= 1 /2,n 1C −α −  

                   or F0 = 
2

2
x

y

S
S

> 
2

/ 2, 1
2
1 / 2, 1

n

n

α

α

χ

χ
−

− −

= /2,n 1Cα −                                                (24)   
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                 Table 10.  The Values of α and α' for Various Values of νx and νy  

     0.05α =         0.01α =    

xν  yν  y xν ν  α′  xν  yν  y xν ν  α′  
10 20 2 0.007839 10 20 2 0.000624 
10 40 4 0.009969 10 40 4 0.000912 
10 60 6 0.011917 10 60 6 0.001182 
10 80 8 0.013579 10 80 8 0.001420 
30 20 0.666667 0.006640 30 20 0.666667 0.000425 
30 40 1.333333 0.006262 30 40 1.333333 0.000368 
30 60 2 0.006818 30 60 2 0.000424 
30 80 2.666667 0.007546 30 80 2.666667 0.000502 
50 20 0.4 0.007611 50 20 0.4 0.000534 
50 50 1 0.005954 50 50 1 0.000326 
50 80 1.6 0.006228 50 80 1.6 0.000349 
50 100 2 0.006611 50 100 2 0.000386 
100 60 0.6 0.006233 100 60 0.6 0.000346 
100 80 0.8 0.005865 100 80 0.8 0.000308 
500 500 1 0.005612 100 100 1 0.000297 

1000 1000 1 0.005594 100 120 1.2 0.000300 
20 30 1.5 0.006640 20 30 1.5 0.000425 
40 60 1.5 0.006230 40 60 1.5 0.000355 
80 120 1.5 0.006025 80 120 1.5 0.000322 
100 150 1.5 0.005984 100 150 1.5 0.000315 
20 40 2 0.007077 20 40 2 0.000473 
40 80 2 0.006689 40 80 2 0.000400 
80 160 2 0.006493 80 160 2 0.000365 

1000 2000 2 0.006313 1000 2000 2 0.000333 
40 100 2.5 0.007232 40 100 2.5 0.000456 
60 150 2.5 0.007105 60 150 2.5 0.000430 
100 250 2.5 0.007003 100 250 2.5 0.000410 

1000 2500 2.5 0.006864 1000 2500 2.5 0.000383 
30 150 5 0.010087 30 150 5 0.000798 
40 200 5 0.009970 40 200 5 0.000765 
50 250 5 0.009900 50 250 5 0.000746 
100 500 5 0.009759 100 500 5 0.000706 

1000 5000 5 0.009630 1000 5000 5 0.000671 
 

From Eqs. (22a & b), the rejection of H0 using Fisher’s F will be simplified as follows: 

1, 1n nF − − =
2 2

2 2
x x

y y

S
S

σ
σ

, thus, (1 − α)100% CIs for 
2

2
x

y

σ
σ

    

             
2

2
x

y

S
S 1 2, 1, 1n nF α− − −  ≤  

2

2
x

y

σ
σ

 ≤  
2

2
x

y

S
S / 2, 1, 1n nFα − −                             (25a)                            
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From Eq.(25a), the length of the exact (1-α)% CI is given by F0( / 2, 1, 1n nFα − − − 1 , 1, 1n nF α− − − ).  

Thus, H0 should be rejected if  

                         F0 =
2

2
x

y

S
S

< 1 / 2, 1, 1n nF α− − −   or F0 =
2

2
x

y

S
S

> / 2, 1, 1n nFα − − .                             (25b)   

Comparing Eq.(24) with Eq.(25b), it can be verified (See Figure 8) that at the same 

α-level, 
2
1 / 2, 1

2
/ 2, 1

n

n

α

α

χ

χ
− −

−

= 1 /2,n 1C −α − < 1 / 2, 1, 1n nF α− − −                                                          (26a)    

 and 
2

/ 2, 1
2
1 / 2, 1

n

n

α

α

χ

χ
−

− −

= /2,n 1Cα −  > 2, 1, 1n nFα − −  for all n.                                                    (26b)                        
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Figure 8 

Furthermore, for the balanced x yn n n= =  case, if the type I error Pr for the 

Standard Method (Fisher’s F distribution) isα , the type I error Pr from the two disjoint 

CIs (α′ ), Eq.(23), is reduced to  

   α′= Pr[
2

2
1 / 2, 1

( 1)

x

x x

n

n S

αχ − −

− <
2

2
/ 2, 1

( 1)

y

y y

n

n S

αχ −

−
] + Pr[

2

2
/ 2, 1

( 1)

x

x x

n

n S

αχ −

− >
2

2
1 / 2, 1

( 1)

y

y y

n

n S

αχ − −

−
] 

        = Pr(
2

2
x

y

S
S

< 1 / 2, 1nC α− − ) + Pr(
2

2
x

y

S
S

> / 2, 1nCα − )  

        = Pr( 1, 1n nF − − < 1 / 2, 1nC α− − ) + Pr( 1, 1n nF − − > / 2, 1nCα − )                  
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        = 1, 1 / 2, 12 Pr( )− − −× >n n nF Cα , where / 2, 1nCα − = 
2

/ 2, 1
2
1 / 2, 1

n

n

α

α

χ

χ
−

− −

                                (27)  

Table 11 shows that α′ is much smaller thanα for the special case that x yn n n= = .  As 

in the case of testing H0: μx = μy at α = 0.05, the value of Overlap type I error Pr seems to 

slowly approach 0.0055746 as n → ∞ and at α = 0.01, α′  approaches 0.0002697. 

 

     Table 11.  The Impact of Overlap on Type I Error Pr for the Equal-Sample Size                 

                      Case When Testing the Ratio 2 2
x y/σ σ  Against 1 

      
n-1 α  α′  n-1 α  α′  
10 0.01 0.000585 10 0.05 0.007468 
20 0.01 0.000418 20 0.05 0.006525 
50 0.01 0.000326 50 0.05 0.005954 
80 0.01 0.000304 80 0.05 0.005812 

100 0.01 0.000297 100 0.05 0.005764 
130 0.01 0.000291 130 0.05 0.005720 
150 0.01 0.000288 150 0.05 0.005701 
200 0.01 0.000283 200 0.05 0.005669 
250 0.01 0.000281 250 0.05 0.005650 
500 0.01 0.000275 500 0.05 0.005612 

1000 0.01 0.000272 1000 0.05 0.005594 
2000 0.01 0.000271 2000 0.05 0.005584 
3000 0.01 0.000271 3000 0.05 0.005581 

    

       

As before, let Ο represent the length of overlap between the CIs for 2
xσ  and 2

yσ .  

Thus, Ο is larger than 0 only if U( 2
xσ ) > U( 2

yσ ) > L( 2
xσ ) or U( 2

yσ ) > U( 2
xσ ) > L( 2

yσ ). 

Because both conditions lead to the same result only the case U( 2
xσ ) >U( 2

yσ ) > L( 2
xσ ) is 

considered, and without loss of generality the X-sample is the one with larger variance so 

that 2 2/x yS S  ≥ 1. 
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 Because of symmetry, Ο = U( 2
yσ ) − L( 2

xσ ) = 
2

2
1 / 2, y

y yS

α ν

ν

χ −

 − 
2

2
/ 2, x

x xS

α ν

ν
χ

                   (28a)    

Let rO be the maximum value of Ο  at which H0 is barely rejected at the α level.  From 

Eq. (22c), H0 must be rejected iff  F0 =
2

2
x

y

S
S

> / 2, ,x y
Fα ν ν .  Therefore, the borderline value of 

Ο  will occur when 2
xS = 2

yS × / 2, ,x y
Fα ν ν .  Inserting this into Eq. (28a) will result in: 

rO  ≤
2

2
1 / 2, y

y yS

α ν

ν

χ −

 − 
2

2, ,
2

/ 2,

x y

x

x yS Fα ν ν

α ν

ν

χ

×
= 2

yS
/ 2, ,

2 2
1 / 2, / 2,

( )x y

y x

xy Fα ν ν

α ν α ν

νν

χ χ−

× −                       (28b)                 

The span of the two individual CIs is U( 2
xσ ) − L(σ2

y) = 
2

2
1 / 2, 1

( 1)

x

x x

n

n S

αχ − −

−  −  
2

2
/ 2, 1

( 1)

y

y y

n

n S

αχ −

−
 

 =
2

2, ,
2
1 / 2,

x y

x

x yS Fα ν ν

α ν

ν

χ −

×
 − 

2

2
/ 2, y

y yS

α ν

ν

χ
= 2

yS
2, ,

2 2
1 2, 2,

( )x y

x y

x yFα ν ν

α ν α ν

ν ν

χ χ−

× −                                  (28c)                             

Thus, the percent overlap at the critical limits is 

                  ωr  = 
2 2

2 2

( ) ( )
( ) ( )

Y X

X Y

U L
U L

σ σ
σ σ

−
−

= [ 

2, ,
2 2
1 2, 2,

2, ,
2 2
1 2, 2,

x y

y x

x y

x y

xy

x y

F

F

α ν ν

α ν α ν

α ν ν

α ν α ν

νν

χ χ
ν ν

χ χ

−

−

−

−

]×100%                          

                         = (
2 2

/ 2, , / 2, / 2, , / 2,
2 2

/ 2, , / 2, , / 2, / 2,

x y y x y y

x x x y y x

y x

x y

C F

C F
α ν ν α ν α ν ν α ν

α ν ν α ν ν α ν α ν

ν χ ν χ

ν χ ν χ

× × − × ×

× × × − ×
)×100%        (28d) 

Table 12 shows that as xν  and yν increase, the percentage of the overlap approaches 

17.1573% (although not monotonically).  Further, once the % overlap exceeds Eq. (28d), 

then H0 must not be rejected at the α×100% level.  Further, it is the size of xν and yν that 
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Table 12.  The % Overlap for the Different Combinations of Degree of 

                            Freedom at α = 0.05.   

xν  yν  /y xν ν Overlap 
(%)   xν  yν  /y xν ν Overlap 

(%)   
10 5 0.5 13.92184 10 12 1.2 10.91515  
10 10 1 11.54543 20 24 1.2 13.50590  
10 15 1.5 10.15131 40 48 1.2 15.04864  
10 20 2 9.18956 60 72 1.2 15.62065  
10 25 2.5 8.46961 80 96 1.2 15.92389  
20 10 0.5 16.24648 100 120 1.2 16.11365  
20 20 1 14.11596 150 180 1.2 16.37981  
20 30 1.5 12.73993 300 360 1.2 16.67183  
20 40 2 11.73402 500 600 1.2 16.80378  
20 50 2.5 10.95112 700 840 1.2 16.86607  
40 20 0.5 17.20430 800 960 1.2 16.88670  
40 40 1 15.57376 900 1080 1.2 16.90327  
40 60 1.5 14.35904 1000 1200 1.2 16.91691  
40 80 2 13.40830 2000 2400 1.2 16.98483  
40 100 2.5 12.63712 3000 3600 1.2 17.01169  
60 30 0.5 17.40395 10 15 1.5 10.15131  
60 60 1 16.08722 20 30 1.5 12.73993  
60 90 1.5 14.98840 40 60 1.5 14.35904  
60 120 2 14.08884 60 90 1.5 14.98840  
60 150 2.5 13.34073 80 120 1.5 15.33298  
80 40 0.5 17.45225 100 150 1.5 15.55403  
80 80 1 16.34928 150 225 1.5 15.87382  
80 120 1.5 15.33298 300 450 1.5 16.24474  
80 160 2 14.47217 500 750 1.5 16.42384  
80 200 2.5 13.74343 700 1050 1.5 16.51241  

100 50 0.5 17.45418 800 1200 1.5 17.76296  
100 100 1 16.50824 900 1350 1.5 16.56697  
100 150 1.5 15.55403 1000 1500 1.5 16.58737  
100 200 2 14.72328 2000 3000 1.5 16.69266  
100 250 2.5 14.01021 3000 4500 1.5 16.73654  

 

determines the % overlap and not the ratio /y xν ν .  For the case that x yn n n= = , the 

percent overlap in Eq.(28d) reduces to 

         ω = 
2 2

2 2

( ) ( )
( ) ( )

Y X

X Y

U L
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σ σ
σ σ
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 = [
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χ χ
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− − −
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− × −
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        = [

2, 1, 1
2 2
1 2, 1 2, 1

2, 1, 1
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1

1
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n n

n n

n n

F

F
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χ χ

− −

− − −

− −

− − −

−

−
]×100%  =  [ 2, 1 2, 1, 1

2, 1 2, 1, 1 1
− − −

− − −

−

× −
n n n

n n n

C F
C F

α α

α α
]×100%    (29) 

Eq.(29) shows that the rejection percent overlap between the two CIs for the ratio of 

variances will increase as n increases.  Further, ωr in Eq. (12b) is also a monotonically 

increasing function of α.  For example, at α = 0.05, n = 2, ωr = 0.1348%; at n = 3, ωr = 

1.8781%; at n = 5, ωr = 6.0921%; and at n = 20 and α = 0.05, ωr = 13.9695%, while at n 

= 20 and α = 0.01, ωr = 12.0224%.  Matlab shows that at ν = n − 1 = 7,819,285 df  [note 

that Matlab 7.6(R2008a) loses accuracy in inverting F at the 7th decimal place beyond 

7,819,285 df], the 0.05-level overlap is 17.157261356%, which is very close to the 

overlap for two independent normal population means discussed in section 2 (which was 

17.157287525%).  Further, for very small sample sizes within the interval [2, 4], the 

Variance-Overlap method is almost an α-level test, like the case of CIs for normal 

population means when σx = σy and  K is far away from 1. See the illustration in Table 13. 

 

Table 13.  The % Overlap for the Case of α = 0.05 and nx = xy = n 

n-1 
Numerator 
of  Eq.(31) 

Denominator 
of Eq.(31) 

Overlap 
(%) n-1 

Numerator
of  Eq.(31)

Denominator 
of Eq.(31) 

Overlap 
(%) 

10 0.12652 1.09587 11.54543 200 0.00067 0.00397 16.83011 
20 0.03214 0.22770 14.11596 400 0.00023 0.00133 16.99303 
30 0.01541 0.10223 15.07427 600 0.00012 0.00070 17.04763 
40 0.00933 0.05990 15.57376 800 0.00008 0.00045 17.07499 
50 0.00637 0.04014 15.88014 1000 0.00005 0.00032 17.09142 
60 0.00469 0.02917 16.08722 1200 0.00004 0.00024 17.10239 
70 0.00363 0.02237 16.23652 1300 0.00004 0.00021 17.10661 
80 0.00291 0.01783 16.34928 1400 0.00003 0.00019 17.11022 
90 0.00240 0.01462 16.43743 1500 0.00003 0.00017 17.11336 

100 0.00202 0.01227 16.50824 2000 0.00002 0.00011 17.12433 
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  Now, what should the individual confidence level 1 − γ  be so that the two  

independent CIs lead to the exact α-level test on H0: 2
xσ = 2

yσ .  The expressions for the 

two 1−γ  independent CIs are given by 
2

2
/2,

( 1)

x

x xn S

γ νχ
−

≤ 2
xσ ≤ 

2

2
1 /2,

( 1)

x

x xn S

γ νχ −

−  ,         (30a)                        

                       and    
2

2
/2,

( 1)

y

y yn S

γ νχ

−
 ≤ 2

yσ  ≤ 
2

2
1 /2,

( 1)

y

y yn S

γ νχ −

−
                                       (30b)                          

From Eq.(30a) and Eq.(30b), the overlap amount of two individual CIs at confidence 

level (1− γ) is U'( 2
yσ ) −L'( 2

xσ ) . Therefore, we deduce from (30a &b) that  

                            U'( 2
yσ ) − L'( 2

xσ ) = 
2

2
1 /2, y

y yS

γ ν

ν

χ −

 − 
2

2
/2, x

x xS

γ ν

ν
χ

                                       (30c) 

Because H0: 2
xσ = 2

yσ  must be rejected at the α×100%-level as soon as Eq.(30c) becomes 

zero or smaller, we thus impose the rejection criterion 2
xS / 2

yS ≥ Fα/2  (where for the sake 

of convenience Fα/2 = 
x y/2, ,Fα ν ν ) into Eq. (30c).  In short, we are rejecting H0: 2

xσ = 2
yσ  as 

soon as the two independent CIs in (30a) and (30b) become disjoint.  This leads to 

rejecting H0: 2
xσ = 2

yσ  iff U'( 2
yσ ) −L'( 2

xσ ) =
2

2
1 /2, y

y yS

γ ν

ν

χ −

 − 
2

/2
2
/2, x

x yF Sα

γ ν

ν

χ
  ≤ 0.                  (31a)                          

At the borderline value, we set the overlap amount at LOS γ  in inequality (31a) to 0 in 

order to solve for γ  
2

2
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y yS

γ ν

ν

χ −

 − 
2

/2
2
/2, x

x yF Sα

γ ν

ν

χ
  =  0     2
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y

γ ν
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 − /2
2
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xFα

γ ν

ν
χ

  =  0  

  /2
2
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xFα

γ ν

ν
χ

= 2
1 /2, y

y

γ ν

ν

χ −

      /2x

y

Fαν
ν

 =
2
/2,

2
1 /2,

x

y

γ ν

γ ν

χ

χ −

   /2x

y

Fαν
ν

 = /2, ,x y
Cγ ν ν                (31b)                            
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where Fα/2  = 
x y/2, ,Fα ν ν  and /2, ,x y

Cγ ν ν = 2 2
/2, 1 /2,/

x yγ ν γ νχ χ − .  Eq. (31b) clearly shows that  

the value of  γ  depends on the LOS α of testing H0: 2
xσ = 2

yσ  and the sample sizes nx and 

ny.  For example, when α = 0.05, nx = 21 & ny = 11 Eq. (31b) reduces to 2F0.025,20,10  = 

/2,20,10Cγ  = 2 2
/2,20 1 /2,10/γ γχ χ −  →  2×3.4185 =  2 2

/2,20 1 /2,10/γ γχ χ −   → 6.8371 = 2
/ 2,20 /γχ  

2
1 / 2,10γχ − .  Through trial & error the solution to this last inequality is γ/2 = 0.0712  

( γ = 0.1424).  In turns out that as long as νx = 2νy, the required confidence level for the 

two independent CI on 2
xσ  and 2

yσ  must be set approximately equal to 1−2×0.0712 = 

85.76%.  Further, if νy = 2νx the required confidence level for the two independent CI on 

2
xσ  and 2

yσ  must be set approximately equal to 1−2×0.083 = 83.40%.  In the case of 

balanced design (i.e., when νx = νy) Eq. (31b) reduces to  

/ 2, 1, 1n nFα − −  = /2, 1−nCγ                                                  (31c) 

It can be verified that the approximate solution to Eq. (31c) when α = 0.05, n-1=10, 

through trial & error,  is γ/2 = 0.079.  Therefore, the individual CIs have to be set at 

84.20%.  For the moderate sample 10 ≤ n ≤30, the approximate solution is 0.08.  We used 

Matlab to determine that un the limit (as n → 7,819,286 at 7 decimal accuracy), γ/2 → 

0.08288800.  because MS Excel 2003 cannot invert 2
νχ  for df beyond ν = 1119.  Table14 

shows the value of γ  to make the two sides of Eq.(31b) equal for different  xν and 

yν combinations.  Table 15 shows the cases when yν is kept fixed at 20 but the ratio 

/x yν ν  changes from 0.5 to 50 causingγ  to become smaller and smaller.  
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Table 14.  The Overlap Significance Level, γ , that Yields the Same 5%-Level Test  

                  or 1%-Level Test by the Standard Method 

       0.05α =             0.01α =      

xν  yν  
x

y

ν
ν

 / 2x

y

Fαν
ν

  
γ   / 2, ,x y

Cγ ν ν xν  yν  
x

y

ν
ν

 / 2x

y

Fαν
ν

  
γ   / 2, ,x y

Cγ ν ν

10 20 0.5 1.38684 0.16658 1.38684 10 20 0.5 1.92350 0.06875 1.92350 
20 40 0.5 1.03386 0.16560 1.03386 20 40 0.5 1.29921 0.06878 1.29921 
30 60 0.5 0.90760 0.16489 0.90760 30 60 0.5 1.09372 0.06847 1.09372 
40 80 0.5 0.83952 0.16440 0.83952 40 80 0.5 0.98697 0.06819 0.98697 
50 100 0.5 0.79585 0.16402 0.79585 50 100 0.5 0.92002 0.06796 0.92002 
60 120 0.5 0.76497 0.16373 0.76497 60 120 0.5 0.87343 0.06776 0.87343 
80 160 0.5 0.72348 0.16329 0.72348 80 160 0.5 0.81179 0.06745 0.81179 
100 200 0.5 0.69635 0.16297 0.69635 100 200 0.5 0.77209 0.06722 0.77209 
200 400 0.5 0.63291 0.16211 0.63291 200 400 0.5 0.68121 0.06658 0.68121 
500 1000 0.5 0.58092 0.16128 0.58092 500 1000 0.5 0.60881 0.06592 0.60881 

1000 2000 0.5 0.55615 0.16117 0.55611 1000 2000 0.5 0.57498 0.06552 0.57499 
2000 4000 0.5 0.53918 0.16075 0.53915 2000 4000 0.5 0.55207 0.06551 0.55203 
10 10 1 3.71679 0.15810 3.71679 10 10 1 5.84668 0.05981 5.84668 
20 20 1 2.46448 0.16189 2.46448 20 20 1 3.31779 0.06400 3.31779 
30 30 1 2.07394 0.16317 2.07394 30 30 1 2.62778 0.06548 2.62778 
40 40 1 1.87520 0.16382 1.87520 40 40 1 2.29584 0.06623 2.29584 
50 50 1 1.75195 0.16421 1.75195 50 50 1 2.09671 0.06669 2.09671 
60 60 1 1.66679 0.16447 1.66679 60 60 1 1.96217 0.06699 1.96217 
80 80 1 1.55488 0.16480 1.55488 80 80 1 1.78924 0.06738 1.78924 
100 100 1 1.48325 0.16499 1.48325 100 100 1 1.68089 0.06761 1.68089 
200 200 1 1.32045 0.16538 1.32045 200 200 1 1.44159 0.06808 1.44159 
500 500 1 1.19185 0.16562 1.19185 500 500 1 1.25956 0.06836 1.25956 

1000 1000 1 1.13205 0.16570 1.13205 1000 1000 1 1.17708 0.06846 1.17708 
2000 2000 1 1.09164 0.16568 1.09164 2000 2000 1 1.12214 0.06854 1.12213 
10 5 2 13.23831 0.13278 13.23831 10 5 2 27.23636 0.04228 27.23640 
20 10 2 6.83709 0.14239 6.83709 20 10 2 10.54803 0.04970 10.54800 
30 15 2 5.28747 0.14629 5.28747 30 15 2 7.37349 0.05296 7.37349 
40 20 2 4.57464 0.14848 4.57464 40 20 2 6.04306 0.05483 6.04306 
50 25 2 4.15744 0.14990 4.15744 50 25 2 5.30448 0.05607 5.30448 
60 30 2 3.88002 0.15092 3.88002 60 30 2 4.83030 0.05696 4.83030 
80 40 2 3.52875 0.15230 3.52875 80 40 2 4.24979 0.05817 4.24979 
100 50 2 3.31170 0.15320 3.31170 100 50 2 3.90249 0.05896 3.90249 
200 100 2 2.84057 0.15532 2.84057 200 100 2 3.17944 0.06083 3.17944 
500 250 2 2.48968 0.15705 2.48968 500 250 2 2.66931 0.06234 2.66931 

1000 500 2 2.33277 0.15786 2.33277 1000 500 2 2.44932 0.06305 2.44932 
2000 1000 2 2.22893 0.15825 2.22900 2000 1000 2 2.30657 0.06352 2.30658 
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Table 15.  The Overlap Significance Level, γ , That Yields the Same 5%-Level Test  

                  or 1%-Level Test by the Standard Method at Fixed yν  and Changing xν  

       0.05α =             0.01α =      

xν  yν  
x

y

ν
ν

 / 2x

y

Fαν
ν

  
γ   / 2, ,x y

Cγ ν ν xν  yν  
x

y

ν
ν

 / 2x

y

Fαν
ν

  
γ   / 2, ,x y

Cγ ν ν

10 20 0.5 1.38684 0.16658 1.38684 10 20 0.5 1.92350 0.06875 1.92350 
12 20 0.6 1.60550 0.16628 1.60550 12 20 0.6 2.20674 0.06803 2.20674 
16 20 0.8 2.03723 0.16445 2.03723 16 20 0.8 2.76540 0.06611 2.76540 
20 20 1 2.46448 0.16189 2.46448 20 20 1 3.31779 0.06400 3.31779 
24 20 1.2 2.88907 0.15910 2.88907 24 20 1.2 3.86643 0.06192 3.86643 
28 20 1.4 3.31194 0.15629 3.31194 28 20 1.4 4.41266 0.05995 4.41266 
32 20 1.6 3.73362 0.15356 3.73362 32 20 1.6 4.95722 0.05811 4.95722 
36 20 1.8 4.15445 0.15095 4.15445 36 20 1.8 5.50059 0.05641 5.50059 
40 20 2 4.57464 0.14848 4.57464 40 20 2 6.04306 0.05483 6.04306 
50 20 2.5 5.62323 0.14287 5.62323 50 20 2.5 7.39659 0.05139 7.39659 
60 20 3 6.67008 0.13802 6.67008 60 20 3 8.74765 0.04853 8.74765 
70 20 3.5 7.71585 0.13380 7.71585 70 20 3.5 10.09722 0.04612 10.09722
80 20 4 8.76092 0.13010 8.76092 80 20 4 11.44579 0.04407 11.44579
90 20 4.5 9.80550 0.12683 9.80550 90 20 4.5 12.79368 0.04229 12.79368

100 20 5 10.84972 0.12392 10.84972 100 20 5 14.14107 0.04074 14.14107
110 20 5.5 11.89369 0.12130 11.89369 110 20 5.5 15.48809 0.03936 15.48809
120 20 6 12.93745 0.11894 12.93745 120 20 6 16.83483 0.03814 16.83482
130 20 6.5 13.98105 0.11679 13.98105 130 20 6.5 18.18134 0.03705 18.18134
140 20 7 15.02453 0.11482 15.02453 140 20 7 19.52768 0.03606 19.52768

1000 20 50 104.70358 0.07610 104.70360 1000 20 50 135.22825 0.01898 135.22158
 

Next, the type П error Pr for both the F-distribution and separate CIs cases are 

discussed.  Comparing equations (21 a & b) with Eq. (22c), because ( /y xν ν )× / 2, ,x y
Cα ν ν  

> / 2, ,x y
Fα ν ν , and ( /y xν ν ) 1 / 2, ,x y

C α ν ν−× < 1 / 2, ,x y
F α ν ν−  (see the illustration in the Figure 7), 

it follows that the disjoint CIs provide more stringent requirement for rejecting H0.  Thus, 

the rejecting rule from two disjoint CIs will always lead to a larger Type П error Pr (or 

much less statistical power) as illustrated below. By definition, β =Pr( Type П error) = 

Pr(not rejecting H0|H0 is false).  Since H0 is assumed false, it follows that 2 2
x yσ σ≠ .  Let λ 

= /x yσ σ  2 2 2
x yσ λ σ= .  Thus,  β( λ ) = Pr (

,1 /2,− x y
F α ν ν ≤ F0 ≤ /2, ,x y

Fα ν ν | λ = /x yσ σ )  
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  β( λ ) =  ,x y
cdfFν ν ( 2

/ 2, , /
x y

Fα ν ν λ ) – ,x y
cdfFν ν (

,
2

1 / 2, /
x y

F α ν ν λ− )                        (32a) 

And the Type П error Pr of the two independent CIs is given by                   

  β ′ ( λ ) = Pr{[ 2 2( ) ( )x yL Uσ σ≤ ] ∩ [ 2 2( ) ( )y xL Uσ σ≤ ]|λ = x

y

σ
σ

}  

              = Pr{[
2

2
/ 2, x

x xS

α ν

ν
χ

≤
2

2
1 / 2, y

y yS

α ν

ν

χ −

] ∩ [
2

2
/ 2, y

y yS

α ν

ν

χ
≤

2

2
1 / 2, x

x xS

α ν

ν
χ −

]| λ = x

y

σ
σ

}  

               = Pr{[ y

x

ν
ν

×
2
1 / 2,

2
/ 2,

x

y

α ν

α ν

χ

χ
− ≤

2

2
x

y

S
S

≤ y

x

ν
ν

×
2

/ 2,
2
1 / 2,

x

y

α ν

α ν

χ

χ −

]|λ = x

y

σ
σ

}          

             = Pr [ y

x

ν
ν

× 1 2, ,x y
C α ν ν− ≤

2

2
x

y

S
S

≤ y

x

ν
ν

× 2, ,x y
Cα ν ν |λ = x

y

σ
σ

] 

            = Pr [
2

2
y

x

σ
σ

× y

x

ν
ν

× 1 2, ,x y
C α ν ν− ≤ ,x y

Fν ν ≤
2

2
y

x

σ
σ

× y

x

ν
ν

× 2, ,x y
Cα ν ν | λ = x

y

σ
σ

]  

            = Pr [ 2

1
λ

× y

x

ν
ν

× 1 2, ,x y
C α ν ν− ≤ ,x y

Fν ν ≤ 2

1
λ

× y

x

ν
ν

× 2, ,x y
Cα ν ν ]                               

            = , 2
1(

x y
cdfFν ν λ

× y

x

ν
ν

× 2, ,x y
Cα ν ν ) − ,x y

cdfFν ν ( 2

1
λ

× y

x

ν
ν

× 1 2, ,x y
C α ν ν− )       (32b)             

Table 16 illustrates that the Type П Error Pr from the two overlapping CIs (Eq.(32b)) is 

larger than the corresponding exact value from the F distribution (Eq.(32a)).  For the 

case x yn n n= = , the type II error Pr, β(λ) in Eq.(32a), is reduced to    

             β(λ)= cdfF 2
/2, 1, 1( /− −n nFα λ ) – cdfF( 2

1 / 2, 1, 1 /n nF α λ− − − )                          (33a)      

As n increases, the second term on the RHS of Eq.(33a), cdfF( 2
1 / 2, 1, 1 /n nF α λ− − − ) , becomes 

smaller.  For example at λ =1.6, Table 17 shows that when n ≥ 10, the 2nd term is less 
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Table 16.   The Relative Power of the Overlap to the Standard Method for Different    

                  df Combinations at  λ=1.2  

xν  yν  β  β ′  
( )100%

1
β ′ − β

− β
 

xν  yν  β  β ′  
( )100%

1
β ′ − β

− β
 

10 10 0.91766 0.98481 81.55134 100 10 0.91207 0.96043 54.99654 
10 20 0.89163 0.98041 81.92535 100 40 0.74692 0.91585 66.74959 
10 30 0.87733 0.97509 79.69653 100 70 0.63397 0.87179 64.97326 
10 40 0.86842 0.96990 77.12143 100 100 0.55858 0.83125 61.77049 
10 50 0.86236 0.96505 74.61099 100 150 0.47954 0.75978 53.84462 
20 10 0.91548 0.97991 76.22917 120 20 0.84992 0.94123 60.84118 
20 20 0.87759 0.97518 79.72614 120 50 0.69250 0.89059 64.41798 
20 30 0.85247 0.96921 79.12977 120 80 0.58356 0.84178 62.00594 
20 40 0.83499 0.96306 77.61297 120 110 0.50857 0.79724 58.74004 
20 50 0.82223 0.95707 75.85031 120 150 0.44078 0.74501 54.40270 
40 20 0.86430 0.96531 74.43748 150 30 0.78694 0.91608 60.61311 
40 30 0.82554 0.95716 75.44521 150 70 0.59415 0.83886 60.29563 
40 40 0.79525 0.94876 74.97338 150 100 0.49836 0.78518 57.17595 
40 50 0.77124 0.94041 73.95230 150 130 0.43027 0.73690 53.81970 
40 60 0.75187 0.93229 72.71069 150 160 0.38045 0.69411 50.62713 
70 20 0.85581 0.95410 68.16592 200 50 0.66561 0.85840 57.65517 
70 40 0.76416 0.93059 70.56976 200 80 0.52932 0.79054 55.49954 
70 60 0.69858 0.90724 69.22532 200 120 0.40562 0.70859 50.97174 
70 80 0.65095 0.88509 67.07999 200 150 0.34220 0.65484 47.52817 
70 100 0.61528 0.86454 64.78992 200 180 0.29514 0.60752 44.31852 

 

Table 17.  Type II Error for Different Degrees of Freedom (The Case of  nx = ny = n ) 

 ν  λ  
Eq.(33a) 
1st term 

Eq.(33a) 
2nd term  β(λ) ν   λ  

Eq.(33a) 
1st term 

Eq.(33a) 
2nd term β(λ)  

5 1 0.975 0.025 0.95 21 1.6 0.4451093 5.2063E-05 0.4450573 
5 1.2 0.9482959 0.0115 0.9367963 22 1.6 0.4243906 4.2048E-05 0.4243486 
5 1.4 0.9090074 0.005788 0.9032193 23 1.6 0.4043861 3.4049E-05 0.4043521 
5 1.6 0.8578487 0.003139 0.8547093 24 1.6 0.3850938 2.7639E-05 0.3850662 
5 1.8 0.7971565 0.001811 0.7953453 25 1.6 0.3665092 2.2487E-05 0.3664867 
5 2 0.7301745 0.0011 0.7290745 30 1.6 0.2838905 8.2591E-06 0.2838822 
5 2.1 0.6954029 0.000872 0.6945313 35 1.6 0.2172298 3.1597E-06 0.2172266 

10 1.2 0.9246265 0.006969 0.9176572 40 1.6 0.1644551 1.2481E-06 0.1644538 
10 1.4 0.8361705 0.002117 0.8340535 45 1.6 0.123329 5.0597E-07 0.1233284 
10 1.6 0.7168104 0.000705 0.716105 50 1.6 0.0917083 2.0959E-07 0.0917081 
15 1.2 0.9024968 0.004697 0.8977997 55 1.6 0.067677 8.8419E-08 0.0676769 
15 1.4 0.7639183 0.000929 0.7629895 60 1.6 0.0495987 3.7894E-08 0.0495986 
15 1.6 0.5840969 0.000201 0.5838961 65 1.6 0.0361208 1.6465E-08 0.0361207 
20 1.1 0.9400273 0.009206 0.9308214 70 1.6 0.0261534 7.2419E-09 0.0261534 
20 1.2 0.880935 0.003341 0.877594 75 1.6 0.0188356 3.2198E-09 0.0188356 
20 1.3 0.7969205 0.001215 0.7957056 80 1.6 0.0134984 1.4455E-09 0.0134984 
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than 0.001 so that the 1st term on the RHS of (33a) gives the approximate value of  

β(λ=1.6) to 3 decimal accuracy once n ≥ 10 and  λ ≥1.6, where ν = n − 1 = degrees of 

freedom.  Thus, for the x yn n n= =  case, if the acceptance criterion is based on 

overlapping of the two CIs, then Eq.(32b) will be changed to   

( )′β λ = Pr[
2

2
y

x

σ
σ

2
1 / 2, 1

2
/ 2, 1

n

n

α

α

χ

χ
− −

−

× ≤
1, 1x yn nF

− −
≤

2

2
y

x

σ
σ

2
/ 2, 1

2
1 / 2, 1

n

n

α

α

χ

χ
−

− −

× | λ = x

y

σ
σ

]  

          = Pr[ 2

1
λ

2
1 / 2, 1

2
/ 2, 1

n

n

α

α

χ

χ
− −

−

≤
1, 1x yn nF

− −
≤ 2

1
λ

2
/ 2, 1

2
1 / 2, 1

n

n

α

α

χ

χ
−

− −

]            

         = cdfF( 2
/ 2, 1 /nCα λ− ) – cdfF( 2

1 /2, 1 /− −nC α λ ), where / 2, 1nCα − =
2

/ 2, 1
2
1 / 2, 1

n

n

α

α

χ
χ

−

− −

.      (33b)           

As the degrees of freedom, ν (= n − 1) or λ  increases, the second term of the Eq.(33b), 

cdfF( 2
/ 2, 11/ nCαλ − ), becomes smaller.  For example, if ν  is fixed at 10, the cumulative 

probability of the second term on the RHS of Eq.(33b) will be less than 0.001 when λ = 

1.2.  Conversely, if λ  is kept at 1.2, the 2nd term is less than 0.001 if ν ≥ 9 (see the 

illustration in Table 18).  Based on the above discussion, Eqs.(33) can be approximated 

as       β(λ) = cdfF( 2
/ 2, 1, 1 /n nFα λ− − )    and    β ′ ( λ ) = cdfF( 2

/ 2, 1 /nCα λ− )           (33c)  

In Eqs.(26), 
2

/ 2, 1
2
1 / 2, 1

n

n

α

α

χ
χ

−

− −

= / 2, 1−nCα > 
, 1. 12 n n

Fα − −
  for all n and 2

/ 2, 1 /nCα λ−  > 2
/ 2, 1, 1 /n nFα λ− −  

and as a result ( )β λ′ = cdfF( 2
/ 2, 1 /nCα λ− ) > cdfF( 2

/ 2, 1, 1 /n nFα λ− − ) = ( )λβ , i.e., β ′ is 

larger than β  for all n.  This conclusion is the same as that of testing the difference in     

population means.  Thus, the disjoint confidence intervals always lead to less statistical 

power (1 1β′− < − β ) than the Standard method as illustrated in Table 19.            
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Table 18. Type II Error Pr for Overlap Method at Different ν and λ Combinations 

 

ν  λ  cdfF[ 2
/ 2, 1 /nCα λ− ] cdfF[ 2

/ 2, 11/( )−nCαλ ] ( )β λ′  

5 1 0.995360773 0.004639227 0.9907215 
5 1.1 0.992857478 0.002991257 0.9898662 
5 1.2 0.989488051 0.001992928 0.9874951 
5 1.3 0.985109718 0.001366314 0.9837434 
5 1.4 0.979590495 0.000960523 0.97863 
5 1.5 0.972814945 0.000690369 0.9721246 
5 1.6 0.964688941 0.000506045 0.9641829 

10 1 0.996265764 0.003734236 0.9925315 
10 1.1 0.992320511 0.001754061 0.9905664 
10 1.2 0.985665823 0.000856962 0.9848089 
10 1.3 0.975349647 0.000434812 0.9749148 
10 1.4 0.960474199 0.000228614 0.9602456 
10 1.5 0.940325727 0.000124248 0.9402015 
5 1.2 0.989488051 0.001992928 0.9874951 
6 1.2 0.988854079 0.00162283 0.9872312 
7 1.2 0.988136592 0.001352309 0.9867843 
8 1.2 0.98735811 0.001146785 0.9862113 
9 1.2 0.986531801 0.000985905 0.9855459 

10 1.2 0.985665823 0.000856962 0.9848089 
 

To evaluate the approximate RELEFF of Overlap relative to the Standard method, 

we make use of Eq. (33c) and determine nx & ny by equating β ′ ( λ ) to β(λ), i.e.,     

                 cdfF( 2

1
λ

×
ν
ν

′

′
y

x
× 0.025, ,ν ν′ ′x y

C ) ≅ ,x y
cdfFν ν ( 2

0.025, , /ν ν λ
x y

F )                       (33d) 

The approximate solution from (33d) is quite accurate for nx & ny ≥ 10 and moderately 

large values of λ ≥ 1.40.  It is impossible to find a general closed-form solution from (33d) 

for xn′ and yn′ , the values of which depend on nx, ny and λ.  Accordingly, we used MS 

Excel to ascertain some knowledge about the Overlap RELEFF.  Our findings are as 

follows: 

●  As λ increases the RELEFF increases.  For example, at nx = ny = 20 and λ = 1.20, the     

       RELEFF is 26.32% while at λ = 1.6 the RELEFF is equal to 45.60%.  



 

70

Table 19.  Comparison of Exact Type II Error Pr with That of the Overlap Method  

                   for Different df and λ Combinations    

ν   λ   β  β ′  
( )100%

1
β ′ − β

− β ν   λ   β  β ′  
( )100%

1
β ′ − β

− β
 

10 1 0.95000 0.99253 85.06306 10 1.5 0.77819 0.94020 73.04082 
20 1 0.95000 0.99348 86.95072 20 1.5 0.57950 0.84388 62.87376 
40 1 0.95000 0.99395 87.90145 40 1.5 0.28357 0.59492 43.45754 
60 1 0.95000 0.99411 88.21829 60 1.5 0.12404 0.36520 27.53091 
80 1 0.95000 0.99419 88.37660 80 1.5 0.05021 0.20201 15.98204 
10 1.1 0.94135 0.99057 83.91660 10 1.6 0.71610 0.91441 69.85200 
20 1.1 0.93082 0.98916 84.32517 20 1.6 0.46648 0.76677 56.28565 
40 1.1 0.90933 0.98446 82.86491 40 1.6 0.16445 0.43432 32.29809 
60 1.1 0.88746 0.97886 81.21252 60 1.6 0.04960 0.19999 15.82399 
80 1.1 0.86531 0.97259 79.64573 80 1.6 0.01350 0.07962 6.70295 
10 1.2 0.91766 0.98481 81.55134 10 1.7 0.65039 0.88283 66.48510 
20 1.2 0.87759 0.97518 79.72614 20 1.7 0.36257 0.67786 49.46347 
40 1.2 0.79525 0.94876 74.97338 40 1.7 0.08785 0.29250 22.43585 
60 1.2 0.71313 0.91510 70.40623 60 1.7 0.01745 0.09560 7.95426 
80 1.2 0.63369 0.87553 66.01992 80 1.7 0.00305 0.02598 2.29994 
10 1.3 0.88125 0.97491 78.87485 10 1.8 0.58355 0.84576 62.96360 
20 1.3 0.79571 0.94822 74.65377 20 1.8 0.27316 0.58303 42.63294 
40 1.3 0.62785 0.87213 65.64046 40 1.8 0.04381 0.18296 14.55280 
60 1.3 0.47869 0.77595 57.02151 60 1.8 0.00553 0.04061 3.52738 
80 1.3 0.35514 0.67031 48.87405 80 1.8 0.00060 0.00723 0.66354 
10 1.4 0.83405 0.96025 76.04383 10 1.9 0.51777 0.80383 59.32096 
20 1.4 0.69286 0.90490 69.03678 20 1.9 0.20032 0.48840 36.02383 
40 1.4 0.44469 0.74960 54.90758 40 1.9 0.02065 0.10721 8.83884 
60 1.4 0.26610 0.57438 42.00565 60 1.9 0.00162 0.01561 1.40221 
80 1.4 0.15124 0.41297 30.83713 80 1.9 0.00011 0.00177 0.16613 

 

 

●  The asymptotic RELEFF is 100% as nx & ny → ∞.  The larger λ is, the more rapidly     

the ARE (asymptotic RELEFF) approaches 100%.  For example at nx = ny = 100 and λ  

= 1.20, the RELEFF is 48.10% while the corresponding RELEFF at λ = 1.6 is equal to  

73% and at λ = 2 is equal to 81%. 

Unfortunately, our Overlap results in this section is not applicable to non-normal 

underlying distributions as n → ∞ because (n − 1)S2/σ2  is a quadratic form unlike x .      
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6.0    The Impact of Overlap on Type I Error Probability of H0: μx = μy for    

          Unknown Normal Process Variances and Small Sample Sizes  

Since the population variances 2
xσ  and 2

yσ are unknown, then their point unbiased 

estimators 2
xS  and 2

yS , respectively, must be used in order to make statistical inferences 

regarding 2
xσ / 2

yσ  and μx −μy.  Thus, ( )
/

x

x x

x
S n

μ−  is not normally distributed but its 

sampling distribution (SMD) follows that of the Student’s t [or simply “Student’s”] with 

( xn −1) degrees of freedom.  As a result  

                 Pr ( / 2, 1 /
xn x xx t S nα −− xμ≤ ≤ / 2, 1 /

xn x xx t S nα −+ ) = 1 α−             (34a)          

Hence, the lower (1 α− )% CI for xμ  is L( xμ ) = / 2, 1 /
xn x xx t S nα −−  , the corresponding 

upper limit is U( xμ ) = / 2, 1 /
xn x xx t S nα −+ , and        

               CIL( xμ ) =2× / 2, 1 /
xn x xt S nα −                                                                (34b)   

Similarly, L( yμ ) = / 2, 1 /
yn y yy t S nα −− , U( yμ ) = / 2, 1 /

yn y yy t S nα −+  and  

                CIL ( yμ ) = 2× / 2, 1 /
yn y yt S nα − .                                                            (34c)  
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6.1    The Case of H0: = =x yσ σ σ  Not Rejected Leading to the Pooled t-Test         

Assuming that X ~ N( 2
,xμ σ ) and Y~N( 2

,yμ σ ), then X Y−  has the N( x yμ μ− ,  

2 2/ /x yn nσ σ+ ) sampling distribution, where it is assumed that 2σ is the common value 

of unknown 2 2 2
x yσ σ σ= = .  With the above assumptions, x y−  is an unbiased estimator of 

x yμ μ−  with Var( x y− ) = 2(1/ 1/ )x yn nσ + .  In practice, a preliminary test on H0: 2
xσ =   

2
yσ 2σ=  is advisable before deciding whether to use the pooled t-test in preference to the 

two-independent sample t-test.  If the assumption x yσ σ σ= =  is tenable and because 

statistical theory dictates that the total resources to be allocated according to nx = 

/ ( )+x x yNσ σ σ = N/2 = ny, then the most common application of the pooled t-test occurs 

under equal sample sizes.  This assertion is consistent with Montgomery and Runger (1994, 

p. 411) and J. L. Devore (2004, p. 377).  Although the LOS of a statistical test is rarely set 

beyond 10%, to be on the conservative side, we will use the pooled t-test iff the P-value of 

the pretest on 0 : x yH σ σ σ= = exceeds 20%.  Further, J. L Devore (2008, p. 340) states 

that “ Unfortunately, the usual “ F test” of equal variances (Section 9.5) is quite sensitive 

to the assumption of normal population distributions, much more so than t procedures”.  

Accordingly, if nx and ny both are less than 10, because of Devore’s quoted statement, 

pooling should be avoided unless the P-value of testing 0 : x yH σ σ σ= =  exceeds 40%.  

When σ σ σ= =x y  is tenable, the unbiased estimators 2
xS  and 2

yS  should be pooled to 

obtain one unbiased estimator of 2σ , which is given by their weighted average based on 

their degrees of freedom, i.e., 
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               2
pS  = 

2 2
x x y y

x y

S Sν ν
ν ν

+

+
 = 

2 2( 1) ( 1)
2

x x y y

x y

n S n S
n n

− + −

+ −
                (35) 

Note that E( 2
pS ) = 2σ .  Therefore, the sample se( x y− ) = 1/ 1/p x yS n n+  and as a 

result the rv [( x y− )-( x yμ μ− )]/( 1/ 1/p x yS n n+ ) has a Student’s t sampling 

distribution with ν  = x yν ν+ = 2x yn n+ − .  Accordingly, the exact two sided 

(1 α− )100% CI for x yμ μ− by the Standard method is given by      

  x y− / 2,tα ν− × 1/ 1/p x yS n n+ ≤ x yμ μ− ≤ x y− /2,+ ×tα ν 1/ 1/p x yS n n+      (36a)               

resulting in the CIL of        

                             2 / 2,tα ν × 1/ 1/p x yS n n+ , where ν  = 2x yn n+ − .                     (36b)                            

Thus, H0: x yμ μ− = 0 must be rejected at LOS = α  iff 

                                   | |x y− > / 2,tα ν × 1/ 1/p x yS n n+                                           (36c)       

But, for the individual two t-CIs, the rejection condition is either L( xμ ) > U( yμ ) 

or L( yμ ) > U( xμ ).  Using the definition of type I error Pr, bearing in mind that 2tν  = F1,ν, 

leads to  

α′= Pr(reject H0| x yμ μ− = 0) = Pr[L( xμ ) >U( yμ )] + Pr[L( yμ ) >U( xμ )] 

= Pr[ / 2, x
x

x

Sx t
nα ν− / 2, y

y

y

S
y t

nα ν> + ] + Pr[ / 2, y

y

y

S
y t

nα ν− > / 2, x
x

x

Sx t
nα ν+ ] 

= Pr[ x y− > / 2, x
x

x

St
nα ν / 2, y

y

y

S
t

nα ν+ ] + Pr[ x y− <- / 2, x
x

x

St
nα ν / 2, y

y

y

S
t

nα ν− ] 

= Pr[| |x y− > / 2, /
x x xt S nα ν / 2, /

y y yt S nα ν+ ]                                                    (37a)                            
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= Pr[ tν > 
/ 2, / 2,/ /

1/ 1/
x yx x y y

p x y

t S n t S n

S n n
α ν α ν+

+
]                                                            

    = Pr[F1,ν > 
2

/2, /2,
2

( / / )

(1/ 1/ )
x yx x y y

p x y

t S n t S n

S n n
α ν α ν+

+
]                                                   (37b)  

Without loss of generality, we name the sample with the larger variance as X and let 0F  

= 2
xS / 2

yS  ≥ 1.  Multiplying the argument on the RHS of Eq. (37b) by nxny for both 

numerator and denominator and substituting 0F = 2
xS / 2

yS  ≥ 1 into (37b) results in   

                             α′= Pr[F1,ν > 
2

/ 2, 0 / 2,

0( )( )

( )
x yy x

y x x y

t F n t n

F n n
α ν α νν

ν ν

+

+ +
]                                  

                         α′= Pr[F1,ν > 
2

/2, 0 /2,

0( )(1 )

( )
x yn

y x n

t F R t

F R
α ν α νν

ν ν

+

+ +
]                                    (37c)   

                                 = Pr[ 1,F ν > 
2

/ 2, / 2,

0( )(1 )

( )
x y

y x n

t t

F R

k α ν α νν

ν ν

× +

+ +
]                                        (37d)                           

where ν = nx +ny − 2,  Rn = ny/nx and k = n 0R F = (Sx yn )/(Sy xn ) is the sample se 

ratio.  Eq.(37c) clearly shows that, besides α, the value α′depends only on xn , yn  and F0 

= 2
xS / 2

yS  and not on the specific values of Sx and Sy.  For the pooled t-test, in the most 

common case of balanced design (i.e., nx = ny = n), Eq. (37c) reduces to              

                        α′  =  Pr[F1,ν > 
2

,1, 1 0

0

(1 )
1

nF F
F

α − +

+
]                                                   (37e)                            

where the pretest statistic 0F = 2 2/x yS S  must range within the interval ( 0.90,n 1,n 1F − − , 

0.10,n 1,n 1F − − ).    The random function 2
0 0(1 ) /(1 )F F+ + inside the argument of the RHS 
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of (37e) attains its maximum at 0F = 1 and its minimum at 0.10,n 1,n 1F − − or at 0.90,n 1,n 1F − − . 

As a result the minimum value of α′occurs at F0 =1 and its maximum occurs at either 

0.10,n 1,n 1F − − or 0.90,n 1,n 1F − − .  At the same F0, α′  in (37e) is a monotonically increasing 

function of n.        

Further, Matlab has verified that the limiting value of α′  in Eq. (37e), as n → 

7,819,286 lies in the interval [0.005574595835 (at F0 = F0.10), 0.005574597084 (at F0 = 

1)], both of which are very close to the known-Variance case of testing H0: μx = μy.  Eq. 

(37e) for Overlap type I error Pr is different from 1 − Pr(A) atop p. 549 of Payton et al. 

(2000) because theirs pertains to the general two-independent sample t-statistic, discussed 

in the next section, while (37e) pertains to the pooled t-test.  Further, it will be shown that 

the denominator df of the F statistic for their general case will not equal n −1 as stated by 

Payton et al. (2000).    

The next objective is to show that α′  < α for all nx, ny , Sx and Sy for which    

                                 
x y0.90,n 1,n 1F − − < 0F = 2

xS / 2
yS   <

x y0.10,n 1,n 1F − − . 

First, comparing inequality (36c) with Eq.(37a), it follows that if            

                  / 2, x
x

x

St
nα ν / 2, y

y

y

S
t

nα ν+ > / 2,tα ν ×
1 1

p
x y

S
n n

+                                    (38a)                   

then the same conclusion as the case of known and equal variances will be reached, i.e., 

α′<α .  For the case of balanced design where nx = ny = n, inequality (38a) reduces to  

              /2, 1
x

n
St

nα − /2, 1
y

n
S

t
nα −+ > /2,2( 1)ntα − × 2 2( ) / 2 2 /+ ×x yS S n  

              Is /2, 1( )n x yt S Sα − + > /2,2( 1)ntα − × 2 2
x yS S+ ?                                         (38b)                            
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Substituting 2 2
0 /= x yF S S  into Eq.(38b) results in  

                                  / 2, 1 0 / 2,2( 1) 0(1 ) 1n nt F t Fα α− −+ > + ?                                      (38c)                            

It is clear that the inequality in (38c) easily holds because /2, 1ntα −  > /2,2( 1)ntα −  for all 

finite n and 0 0(1 ) 1F F+ > +  for all values of 0F because 0F is never negative.  

Therefore, the inequality (38a) is true for the case of equal sample sizes but it is not 

always so for the unequal sample sizes case.  In the unbalanced case, the difficulty in 

inequality (38a) occurs when the larger sample size (which will be denoted by nx) also 

has much larger variance for which inequality (38a) will not be true. For example, if ny = 

20, 2
yS = 0.30, nx = 60 and 2

xS  = 1.8, the LHS of inequality (38a) becomes 0.6029 and its 

RHS becomes 0.6157 so that the inequality is violated.  However, in such a case the 

value of F-statistic is F0 = 2
xS / 2

yS  = 6 whose P-value for pre-testing 0 : x yH σ σ σ= =  

will equal to 0.00007736, i.e., this last hypothesis is easily rejected so that pooling is 

disallowed.  Again to be on the conservative side, we allow pooling iff the P-value of the 

variance-pretest exceeds 20%.  Otherwise, the two-independent sample t-statistic will be 

used for testing 0 : x yH μ μ= . This is consistent with Devore’s (2004, p. 377) assertion of 

“using the two-sample t procedure unless there is compelling evidence for doing 

otherwise, particularly when the two sample sizes are different”.  Further, unlike the case 

of balanced design, when nx > ny the value of α′  is an increasing function (but not 

monotonically) of F0 but when nx < ny, the value ofα′  is almost always a decreasing 

function of F0.  Thus, for fixed nx > ny, the maximum occurs at 
x y0.10,n 1,n 1F − − , and when 

nx < ny the maximum occurs at 
x y0.90,n 1,n 1F − − .  As nx and ny both increase at the same F0, 
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so does the value of α′ in (37c).  When one sample size is twice the other, the limiting 

value of α′ (in terms of nx and ny) is 0.006286690. When one sample size is three times 

the other, the limiting value of α′ is 0.00733793. When one sample size is four times the 

other, the limiting value of α′ is 0.008390775.  When one sample size is 5 times the other, 

the limiting value of α′ is 0.0093831123.  When one sample size is 10 times the other 

limiting value of α′ is 0.01336332.  Finally, as limit of  Rn = ny/nx → ∞ or 0, the Overlap 

type I Pr approaches that of an exact α-level test.  Table 20 gives the exact α′ from Eq. 

(37c) for different nx and ny combinations.  The values of F0 in Table 20 are  

restricted such that P-value of the pretest 0 :H x yσ σ=  exceeds 20%. 

 

 

6.2    The Case of H0:  x yσ σ=  Rejected Leading to the Two-Independent      

         Sample t-Test  

 Assuming that X~N( 2
,x xμ σ ) and Y~N( 2

,y yμ σ ), than X Y−  is also N( x yμ μ− , 

2 2/ /x x y yn nσ σ+ ), but now the null hypothesis of H0: x yσ σ=  is rejected at the 20% 

level leading to the assumption that the F-statistic F0 = 2 2
x yS S/ > 2 for all sample sizes 16 

≤ nx & ny.  Note that for larger sample sizes such as nx & ny = 41, F0 can be as small as 

1.510 and H0: x yσ σ=  can still be rejected at the 20% level because F0.10,40,40 = 1.5056, 

while for nx & ny = 11, an F0 as large as 2.323 is needed because F0.10,10,10 = 2.3226.  

Note that an F0 = 2 is significant at the level 20% once nx & ny ≥ 16 because F0.10,15,15 =  

1.9722.  It has been shown in statistical theory that if the assumption x yσ σ= is not  
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Table 20.  The Pooled α′  Values for Different nx, ny and F0 Combinations at α = 0.05      

xn  yn  
0F  α′  xn  yn  

0F  α′  
20 40 0.8 0.0071355 20 40 1.4 0.0039812 
20 60 0.8 0.0087831 20 60 1.4 0.0035984 
20 80 0.8 0.0103096 20 80 1.4 0.0035130 
30 10 0.8 0.0034279 30 10 1.4 0.0085406 
30 20 0.8 0.0047292 30 20 1.4 0.0068050 
30 30 0.8 0.0054425 30 30 1.4 0.0055284 
40 20 0.8 0.0044541 40 20 1.4 0.0080709 
40 40 0.8 0.0054943 40 40 1.4 0.0055823 
40 80 0.8 0.0075641 40 80 1.4 0.0042383 
40 100 1 0.0063762 40 100 1.4 0.0040584 
20 40 1 0.0056135 20 40 1.5 0.0037263 
20 60 1 0.0062056 20 60 1.5 0.0032137 
20 80 1 0.0068563 20 80 1.5 0.0030428 
30 10 1 0.0049815 30 10 1.5 0.0094908 
30 20 1 0.0053938 30 20 1.5 0.0071647 
30 30 1 0.0053753 30 30 1.5 0.0055980 
40 20 1 0.0056135 40 10 1.5 0.0111374 
40 40 1 0.0054254 40 20 1.5 0.0086996 
40 80 1 0.0059601 40 30 1.5 0.0067838 
40 100 1 0.0063762 40 40 1.5 0.0056536 
20 40 1.2 0.0046424 1000 2000 F0.90,νx, νy 0.0067706 
20 60 1.2 0.0046283 100000 200000 F0.90,νx, νy 0.0063436 
20 80 1.2 0.0048067 10000000 20000000 F0.90,νx, νy 0.0063019 
30 10 1.2 0.0067025 1000000000 2000000000 F0.90,νx, νy 0.0062871 
30 30 1.2 0.0054202 1000 3000 F0.90,νx, νy 0.0081935 
40 20 1.2 0.0068266 100000 300000 F0.90,νx, νy 0.0074960 
40 40 1.2 0.0054714 10000000 30000000 F0.90,νx, νy 0.0074280 
40 80 1.2 0.0049359 1000000000 3000000000 F0.90,νx, νy 0.0073386 
20 40 1.3 0.0042824 1000 4000 F0.90,νx, νy 0.0095652 
20 60 1.3 0.0040623 100000 400000 F0.90,νx, νy 0.0086485 
20 80 1.3 0.0040901 10000000 40000000 F0.90,νx, νy 0.0085592 
30 10 1.3 0.0076096 1000000000 4000000000 F0.90,νx, νy 0.0083917 
30 30 1.3 0.0054683 1000 5000 F0.90,νx, νy 0.0108398 
40 20 1.3 0.0074460 100000 500000 F0.90,νx, νy 0.0097352 
40 40 1.3 0.0055207 10000000 50000000 F0.90,νx, νy 0.0096277 
40 80 1.3 0.0045561 1000000000 5000000000 F0.90,νx, νy 0.0093842 

 

tenable, the statistic 2 2[( ) ( )] / ( / ) ( / )x y x x y yx y S n S nμ μ− − − +  has the approximate  

Student’s t-distribution with degrees of freedom  
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where 2( ) /x xV x S n= , Rn = ny/nx, k = ( / ) /( / )x x y yS n S n ,  and F0 = 2 2
x yS S/ .  Eq. (39b) 

shows that ν depends only on nx, ny, and the se ratio 0 nF R .  The formulas for degrees 

of freedom in (39a &b) rarely lead to an integer and ν is generally rounded down to make 

the test of H0: x yμ μ− = 0 conservative, i.e., rounding down ν increases the P-value of 

this last test.  However, programs like Matlab and Minitab will provide the cdf and 

percentage points of the t-distribution for non-integer values of ν in Eqs. (39).  It has 

been verified using a spreadsheet that Min(νx, νy) < ν < νx+ νy  is a certainty, and hence 

this t-test is less powerful than the pooled t-test.  In fact, it is easy to algebraically prove 

that for the case of nx = ny = n, the value of ν always exceeds (n − 1) and is always less 

than 2(n − 1).  It can also be verified that the maximum of ν in Eqs. (39) occurs when the 

larger sample also has much larger variance, but yet its value can never exceed the df, nx 

+ny −2, of the pooled t-test, as illustrated in Table 21.  

When H0: x yσ σ=  is rejected at the 20% level (i.e., P-value of the test < 0.20), the 

approximate (1−α)×100% CI for x yμ μ− is given by 

x y− / 2,tα ν− × 2 2/ /x x y yS n S n+ ≤ x yμ μ− ≤ x y−  + / 2,tα ν × 2 2/ /x x y yS n S n+   (40a)                    

resulting in the approximate CIL is 2 / 2,tα ν × 2 2/ /x x y yS n S n+ , and H0: x yμ μ− = 0 can  
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Table 21. Verifying the Inequality that min( νx, νy ) < ν < νx+ νy  for Different xν and    
                 yν  Combinations   

xν  yν  ( )Var x  

( )Var y  
(at 0F =  

0. 90, ,x y
F ν ν= ) ν  xν  yν  ( )Var x  

( )Var y  
(at 0F =  

0. 90, ,x y
F ν ν= ) ν  

1 11 20 6.201 1.106 11 1 20 0.331 11.992 
6 16 20 9.181 8.371 16 6 20 6.987 18.725 
11 21 20 10.550 17.483 21 11 20 9.449 30.068 
16 26 20 11.451 27.422 26 16 20 10.779 40.883 
26 31 20 12.364 49.013 31 26 20 12.174 56.686 
36 41 20 13.220 69.455 41 36 20 13.110 76.486 
46 51 20 13.830 89.823 51 46 20 13.758 96.317 
66 71 20 14.664 130.370 71 66 20 14.626 136.052 
86 91 20 15.222 170.752 91 86 20 15.198 175.855 

106 111 20 15.631 211.034 111 106 20 15.615 215.702 
126 131 20 15.947 251.252 131 126 20 15.935 255.579 
176 181 20 16.505 351.633 181 176 20 16.498 355.351 
226 231 20 16.878 451.882 231 226 20 16.874 455.192 
326 331 20 17.361 652.198 331 326 20 17.359 654.979 
426 431 20 17.669 852.395 431 426 20 17.668 854.840 
526 531 20 17.889 1052.532 531 526 20 17.888 1054.739 

1200 3000 20 18.811 2151.446 3000 1200 20 18.788 2275.082 
1500 3500 20 18.921 2768.370 3500 1500 20 18.903 2912.635 
2000 4000 20 19.037 3913.944 4000 2000 20 19.026 4090.453 
2500 4500 20 19.120 5067.119 4500 2500 20 19.112 5263.906 
2800 5000 20 19.166 5693.779 5000 2800 20 19.159 5901.618 

         

be rejected at LOS =α  if | |x y− > / 2,tα ν × 2 2/ /x x y yS n S n+  , i.e.,      

                   α  ≅ Pr( | |x y− > / 2,tα ν × 2 2/ /x x y yS n S n+ | x yμ μ− =δ = 0)      

                        ≅ Pr(F1,ν > 2
/2,tα ν | δ = 0) = Pr(F1,ν > ,1,Fα ν | δ = 0)                              (40b)                            

As in the case of pooled t-test, for the individual two t-CIs, the rejection 

requirement is either L( xμ ) > U( yμ ) or L( yμ ) > U( xμ ) leading to the same condition as 

before in Eq. (37a).  That is,  

α′= Pr(reject H0| δ = 0) = Pr[ | |x y− > / 2, /
x x xt S nα ν / 2, /

y y yt S nα ν+ ]              (37a)                            
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It is impossible to studentize the argument of Eq. (37a) because when x yσ σ≠ , the 

expression for tν = 2/ /Z
ν

χ ν   will show that | |x y− / 2 2/ /+x x y yS n S n   is not central t 

distributed with nx+ny − 2 df.  In other words, there does not exist a central 2
ν

χ  rv that 

reduces tν = 2/ /Z
ν

χ ν   to the form | |x y− / 2 2/ /+x x y yS n S n  iff x yσ σ≠ .  However, 

| |x y− / 2 2/ /+x x y yS n S n  is approximately t distributed with df  ν given in Eqs.(39).  

 Therefore, Eq. (37a) can approximately be written as 

            α′≈ Pr{| tν | > ( / 2, /
x x xt S nα ν / 2, /

y y yt S nα ν+ )/ 2 2/ /+x x y yS n S n  }           

                = Pr{F1,ν > ( / 2, /
x x xt S nα ν / 2, /

y y yt S nα ν+ )2/( 2 2/ /x x y yS n S n+ )} 

Or      α′≈ Pr{F1,ν >( /2, x x yt S nα ν /2,+
y y xt S nα ν )2/( 2 2

y x x yn S n S+ )}                        

               = Pr[F1,ν > ( / 2, x
k tα ν× + /2, y

tα ν )2/( 21 k+ )]                                                 (41a)             

Let /n y xR n n= (or y n xn R n= ) and 2 2
0 /= x yF S S .  Substituting nR = ny/nx and 0F  into Eq. 

(41a) results in  

                         α′≈ Pr[F1,ν > ( /2, 0x nt R Fα ν /2, y
tα ν+ )2/( 0 1nR F + )]                         (41b)  

α′  can be also represents as α′≈ Pr[F1,ν > ( / 2, x
k tα ν× + /2, y

tα ν )2/( 2 1k + )] , where k = 

( / ) /( / )x x y yS n S n .  When nx = ny = n, Rn = 1, and the above formula for α′  reduces 

to                    α′≈ Pr[F1,ν > Fα,1,n−1( 0F 1+ )2/( 0 1F + )]                                           (41c) 

which is similar to (37e) but ν is given by Eqs. (39) instead of nx+ny − 2 in the case of the 

pooled t-test, or instead of n − 1 as stated by Payton et al. (2000).  For equal sample sizes 
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Eq. (39b) simplify to ν = 2 2
0 0(n 1)(1 F ) /(1 F )− + +  and not (n −1) as reported  by Payton et 

al. (2000).  Note that this last formula for ν reduces to 2(n − 1) at F0 = 1, which is the df 

of the pooled t-test, as it should because the unlikely realization F0 = 1 is in perfect 

agreement with H0: 2 2=x yσ σ .   Further, Eq. (41b) shows that α′  does not depend on the 

specific values of  2 2
x yS and S  but only on their ratio k = 0F nR .  For Payton et al.′s 

(2000) reported example of n1 = n2 = 10, S1 = 0.80 and S2 = 1.60, Eq. (41c) shows that at 

n = 10 and F0 = 0.25, ν = 13.2353 resulting in the value of α′≈ 0.00940573, which is 

different from 0.0149 reported by Payton et al. (2000, p. 549).  The df used by them was 

9 which caused the % relative error in their reported α′= 0.0149 to be equal 54.414%.   

Payton et al. (2000, p. 549) also make the following statement about 1/3 of the 

way from the top of their p. 549: “If the samples are collected from the same normal 

population, the quantity 
2

1 2
2 2
1 2

( )n Y Y
S S

+
+

 is F-distributed with 1 and n−1 degrees of 

freedom.”  The statement should go as follows: If the samples are collected from the two 

normal populations with identical means and variances, [our Eq. (37e) shows that] the 

statistic 
2

1 2
2 2
1 2

( )n Y Y
S S

−
+

 is F-distributed with 1 and 2(n−1) degrees of freedom (not n −1 as 

stated).   

 Payton et al. (2000, p. 550) also make the following statement in the second 

paragraph leading to their Eq. [1]: “ If the researcher is willing to assume that S1 and S2 

are estimating the same parameter value (i.e., homogenous variances), then the above 

equation simplifies to 0.95 = Pr[F1,9 < 2Fα,1,9]                                                          [1]” 
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Their above quote should be stated as follows: In the unlikely event that F0 = 2 2
1 2/S S is 

realized to equal 1, then the above equation simplifies to 0.95 = Pr(F1,13.2353  < 2Fγ,1,9).   

Note that they are using (1 − α) also as the Overlap confidence level, and secondly just 

because two independent population variances are equal, it does not imply that the 

corresponding point estimates 2 2
1 2S and S  will be the same.  Further, Payton et al. limit 

their sample means, 1Y  and 2Y , originating from the same normal population on p. 548.  

Our work herein is not limited to the same normal population but to any two distinct 

normal populations. 

We now proceed to obtain the LUB (least upper bound) and the GLB (greatest 

lower bound) for α′  in Eq. (41b).  The LUB occurs when the argument on the RHS of 

the Pr in Eq. (41b) is smallest.  To this end, let ν2 = Max(νx, νy) and thus 

                      α′≥ Pr{F1,ν > [
2/2, 0nt R Fα ν 2/2,tα ν+ ]2/( 0 1nR F + )}  

                    LUB(α′ ) =  Pr{F1,ν  > 2,1, 0( nF R Fα ν 1+ )2/( 0 1nR F + )}               

Conversely, the greatest lower bound occurs when the argument on the RHS of 

(41b) is largest.  Letting ν1 = Min(νx, νy) in (41b) results in  

                    α′≤ Pr{F1,ν > [
1/2, 0nt R Fα ν 1/2,tα ν+ ]2/( 0 1nR F + )}  

                   GLB(α′ ) =  Pr{F1,ν  > 1,1, 0( nF R Fα ν 1+ )2/( 0 1nR F + )} , or          

Pr{F1,ν >
1,1, 0( nF R Fα ν 1+ )2/( 0 1nR F + )}<α′< Pr{F1,ν> 2,1, 0( nF R Fα ν 1+ )2/( 0 1nR F + )}, 

while the expression for exact type I Pr from (40b) is α  ≅ Pr(F1,ν > ,1,Fα ν | x yμ μ− = 0).  

The function ( 0nR F 1+ )2/( 0 1nR F + ) clearly always exceeds 1 because 0nR F =   
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2 2( / ) ( / )y x x yn n S S× = ( ) / ( )V x V y , which is also a se ratio, can never equal to zero and 

the function is bounded by 1 < ( 0nR F 1+ )2/( 0 1nR F + ) ≤ 2, the maximum occurring 

when 0nR F  = 1.  Because we are seeking to establish that α′  in (41b) is always smaller 

that α  ≅ Pr(F1,ν > ,1,Fα ν | x yμ μ− = 0), we consider the very worst-case scenario where the 

smallest sample has the largest variance.  For example, at νx = 1,  νy =11 (so that Rn = 

ny/nx = 12/2 = 6), 2
xS  = 8.00 , 2

yS = 2.4805, F0 = F0.10,1,11 = 3.2252, 0.025,1t = 12.7062, and 

0.025,11t  = 2.2010 the value of  ν = 1.105755.  Substituting these into (41b) results in α′= 

Pr{F1,1.105755 > 165.842616) = 0.0386 < 0.05.  It has also been verified that 2
yS  can be as 

small as 2
xS /F0.0001,νx,νy   and  stillα′  < α.  Note that if 

x y0.90,n 1,n 1F − − < 0F  = 2
xS / 2

yS  

<
x y0.10,n 1,n 1F − − , then we are recommending using the pooled t-test so that the value of 0F  

must lie outside the interval (
x y0.90,n 1,n 1F − − , 

x y0.10,n 1,n 1F − − ) in order to apply the two-

independent sample t-test.  This is consistent with statistical literature (see J. L. Devore, 

p.377 ) that suggests not to use the pooled t-test unless there is compelling evidence in 

favor of H0: σx = σy.   

Keeping F0 ≥ 0.10, 1, 1x yn nF − −  fixed, α′  in Eq. (41a) attains its minimum at Rn = ny/nx 

= 1, and the limit of α′ as Rn → 0 or ∞ is α; similarly, if  F0 ≤ 0.90, 1, 1x yn nF − −  is kept fixed, α′  

is minimum at Rn =  1 and its limit approaches α as Rn → 0 or ∞.  As F0 → ∞, α′  

approaches the value of α, i.e., the Overlap converges to an α-level test; however, the 

farther Rn is above 1, the faster is the limiting approach of α′  to α as F0 → ∞.  As F0 → 0, 
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α′  also approaches the value of α, and the farther Rn is below 1, the faster is the limiting 

approach of α′  to α as F0 → 0.   

For example, if nx =  ny = 50 (i.e., Rn =1), F0 = 106 then α′= 0.04978024 (nearly 

5%).  If nx = 50, ny = 100, Rn = 2, F0 = 106 , then α′= 0.04984645882.  However, If nx = 

50, ny = 25, Rn = 0.5, F0 = 106, α′= 0.0496811387 but if  F0 = 10−6 , thenα′= 

0.0498546652.   

Further, if Rn = 1, then the limiting value of α′  as nx → ∞ is equal to 0.0055751 as 

long as 0.10 0< <∞F F .  The limiting value of α′  as F0 → ∞ is equal to α.  If Rn = 2, the 

limiting value of α′  as nx → ∞ is equal to 0.00632067 and as F0 → ∞, α′→α; if If Rn = 3, 

the limit is equal to 0.0074346; if If Rn = 4, then α′  → 0.008555; if Rn = 5, the limiting 

value is 0.00962217; if Rn = 10, the value of the limit is 0.01391355, etc.  As Rn → ∞ (or 

0),α′→ α, where the rate of approach to α increases with increasing 0 0.10F F> (or 

decreasing 0 0.90<F F ), respectively.  This is in total agreement with Table 4 on p. 23 

where α′→ α as the SE ratio [= ( / ) /( / )x x y yn nσ σ ] became larger and larger.  Note 

that as nx and ny → ∞, 0F → the SE ratio.  

In conclusion, it is clear that the Overlap does reduce type I error Pr substantially 

and only the limiting value of α′  as Rn → ∞ (or 0) is close but always less than α . 

 

6.3  Comparing the Paired t-CI with Two Independent t-CIs 

Unlike, the independent t-CI for μx − μy for a completely randomized design 

(CRD), the paired t-CI must be formed for a randomized complete block design (RCBD), 
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where the rvs X and Y are paired observations or a bivariate random vector 
x
y

⎡ ⎤
⎢ ⎥
⎣ ⎦

 from a 

bivariate normal population.  The most common example is when a measurement X is 

made on a subject (such his/her weight) and a treatment (such as a diet plan) is applied 

and 3 months later the same subject’s weight Y is measured and the difference D = X − Y 

is formed for that subject to ascertain the effectiveness of the diet plan.  The paired t-test 

is sometimes misused when X and Y are independent random variables, i.e., they do not 

belong to the same block.  Assuming that the rv D = X − Y is N(μx − μy, σ2
D), then 

( ) / ( )dd se dμ− = [ ( )] /x y dd n Sμ μ− −  has the exact Student’s t-distribution with ν = n 

− 1 degrees of freedom.  Thus under the null hypothesis H0: x yμ μ− = 0, the statistic 

dd n S/ can be used to make a decision about the validity of H0 at the α- level, i.e., we 

reject H0: x yμ μ− = 0 at the α×100% level iff t0 = dd n S/ exceeds tα/2,n − 1.  Because X 

and Y are correlated, then the  

  V(D) = V(X −Y) = V(X) +V(Y)  − 2Covariance(X, Y)  (42)  

where the Covariance(X, Y) = COV(X, Y) = σxy = E[(X − μx)(Y − μy)].  Because the 

population correlation coefficient ρxy = σxy/(σxσy) always lies within the closed interval 

[−1, 1], then it follows that | |≥x y xyσ σ σ .  A point unbiased estimate of the V(D) is 

given by 2 2 2ˆ ˆ2d x y xyS Sσ σ= + − , where ˆxyσ = 
1

( )( ) /( 1)
n

i i
i

x x y y n
=

− − −∑ and 

2 2 ˆ2d x y xyS S S σ= + − .  The sample correlation coefficient r = ˆxyσ /(SxSy) is also 

constrained to the closed interval [−1, 1], implying that for certain that both ˆxyσ  and  
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⏐ ˆxyσ ⏐≤ SxSy.  Although, comparing the overlapping of two independent CIs (generally 

from a completely randomized design) with a CI where observations are related is not 

appropriate and clearly misused, we do such comparison here just to ascertain the impact 

of Overlap on type I probability when the two samples are correlated, as also done in 

Overlap literature. 

For paired observations, the (1−α)×100% CI for the expected difference in means 

is given by: x y− /2, 1ntα −− × dS n/ ≤ x yμ μ− ≤ x y− + /2, 1ntα − × dS n/                (43)                   

so that H0 is rejected at the α×100% level if d  = x y− > /2, 1ntα − × dS n/ , i.e., α = 

Pr( x y− dn S/ > /2, 1ntα − ) = Pr(|tn−1| ≥ /2, 1ntα − ).  For the two separate CIs, the rejection 

requirement is either L( xμ ) > U( yμ ) or L( yμ ) > U( xμ ) leading to the same condition as 

in Eq. (37a). 

     α′  = Pr[ | |x y− > /2, 1 /−n xt S nα /2, 1 /−+ n yt S nα ]                                                   

          = Pr[| d| n > /2, 1( )n x yt S Sα − + ]  = Pr[ | d| / dn S  > /2, 1( )n x yt S Sα − + /Sd]     (44a)          

Because the null SMD of d / dn S  is the Student’s t with (n − 1) df, then (44a) can be 

written as α′  = Pr[|tn −1|> /2, 1( )n x yt S Sα − + /Sd] = Pr[F1,n-1> 2
,1, 1( )n x yF S Sα − + / 2

dS ]              

                      = Pr[F1,n-1 > 2
,1, 1 0 0 0( 1) / ( 1 2 )− + + −nF F F r Fα ]                                (44b) 

        We now proceed to show that (Sx+Sy)2 ≥ 2
dS = 2 2 ˆ2x y xyS S σ+ −  for all values Sx and 

Sy.  There are two possibilities: (1) r > 0 →  ˆxyσ > 0, in which case it is obvious that 

(Sx+Sy)2 > 2
dS .  (2) r < 0 →  ˆxyσ < 0 and 2

dS  attains its maximum when r = −1 → Max( 2
dS ) 
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= 2 2 ˆ2 | |x y xyS S σ+ + .  In this worst-scenario case, it is clear that (Sx+Sy)2 = 

2 2 2x y x yS S S S+ + ≥  2 2 ˆ2 | |x y xyS S σ+ +  because  ˆ| |≤xy x yS Sσ .  Thus, as before,α′< α .  

How much smaller α′  is than α depends both on the sign and magnitude of the sample 

correlation coefficient r .  The glb occurs when (Sx+Sy)2 is largest relative to 2
dS , i.e., 

when 2
dS  attains its minimum value.  This minimum occurs when X and Y are highly 

positively correlated and in the limit ˆ
xyσ SxSy .  From Eq. (44b) we obtain 

α′  = Pr[F1,n-1> 2
,1, 1( )n x yF S Sα − + / 2

dS ] ≥  Pr[F1,n-1> 2
,1, 1( )n x yF S Sα − + /( 2 2 2x y x yS S S S+ − )]  

                      α′  > Pr[F1,n-1> 2
,1, 1( )n x yF S Sα − + / 2( )x yS S− ]  

                      GLB(α′ ) = Pr[F1,n-1> 2
,1, 1( )n x yF S Sα − + / 2( )x yS S− ]              

                     GLB(α′ ) = Pr[F1,n-1> 2
,1, 1 0( 1)− +nF Fα / 2

0( 1)−F ]                        (44c) 

There seems to exist a problem in the inequality (44c), i.e., when  Sx → Sy, the 

expression on the RHS of the Pr is not defined.  However, this occurs iff the correction 

coefficient r = 1 which occurs only if the values of the rv Y is precisely a linear function 

of X, i.e., Y must equal to ax + b +ε and the constant a > 0 and b can be any real number.  

Because a > 0, the variance of Y cannot equal to that of X. 

Secondly, the largest value of α′  occurs when 2
,1, 1( )n x yF S Sα − + / 2

dS  attains its 

minimum value which in turn occurs when Sd attains its maximum value of 2 2
x yS S+ +  

ˆ2 | |xyσ .  Thus,  

α′  = Pr[F1,n-1> 2
,1, 1( )n x yF S Sα − + / 2

dS ]  ≤ Pr[F1,n- 1> 2
,1, 1( )n x yF S Sα − + 2 2 ˆ/( 2 )x y xyS S σ+ + ]     
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The quantity 2 2 ˆ2 | |x y xyS S σ+ +  attains its maximum when the sample correlation 

coefficient r = −1, in which case | ˆxyσ | = SxSy so the maximum value of α′  reduces to  

α′  ≤ Pr[F1,n- 1> 2
,1, 1( )n x yF S Sα − + 2 2/( 2 )x y x yS S S S+ + ]  = Pr[F1,n- 1> ,1, 1nFα − ) = α.  

Hence, we have the result  

 Pr[F1,n-1> 2
,1, 1( )n x yF S Sα − + / 2( )x yS S− ] ≤ α′≤  Pr[ n-1T > / 2, 1ntα − ] = α 

For any r, the value of α′can never exceed α.  For example, for α = 0.05, F0 = 1, r 

=  − 0.25, the value of α′  ranges in the interval 0.01369406 (at n = 101) ≤α′≤ 0.0321416 

(at n = 3).  For α = 0.05, F0 = 1.5, r =  − 0.25, it ranges in the interval 0.013975172 (at n 

= 101) ≤ α′≤ 0.032328946 (at n = 3); at F0 = 2.0, 0.014512 (at n = 101) ≤α′≤ 

0.032681748 (at n =3).  As F0 → ∞, α′→ α. 

For α = 0.05, F0 =1, r =  − 0.5, the value of α′  ranges in the interval 

0.02406825415 (at n = 101) ≤α′≤ 0.03820582 (at n = 3).  For α = 0.05, F0 =1.5, r =  

 −0.5, it ranges in the interval 0.02430291 (at n = 101) ≤α′≤ 0.03832841 (at n = 3); at F0 

= 2.0, 0.0247473226 (at n = 101) ≤α′≤ 0.038559305 (at n =3). As F0 → ∞, α′→ α. 

For α = 0.05, F0 =1, r =  − 0.75, the value of α′  ranges in the interval 

0.0363984432 (at n = 101) ≤α′≤ 0.0441575 (at n = 3).  For α = 0.05, F0 =1.5, r =  −0.75, 

it ranges in the interval 0.03653187 (at n = 101) ≤α′≤ 0.04421765 (at n = 3); at F0 = 2.0, 

0.036783673 (at n = 101) ≤α′≤ 0.04433101 (at n =3). As F0 → ∞, α′→ α. 

Moreover, the effect of negative correlation is to increaseα′  toward α as  

n −1 goes toward 1.  For example, when n − 1 =1, F0 = 2 and r = − 0.90, then α′  = 

0.0487767; at n − 1 =1, F0 = 2 and r = − 0.95, then α′  =  0.0493921346 while at r = 
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 − 0.99 and  F0 = 2, α′  =  0.04987903.  For fixed F0 and −1 ≤ r < 0, the limiting behavior 

of α′  as n → ∞ is difficult to investigate because as n → ∞, then per force 0F  = 2
xS / 2

yS  → 

2 2
x y/σ σ ( an unknown parameter), and r → ρxy (the population correlation coefficient 

which is another unknown parameter).  Most importantly, Matlab loses accuracy in 

inverting F1,n-1 once n−1 far exceeds 1,000,000.  For example, Matlab gave α′ (at n = 

1,000,000, F0 =1, r = −0.50) = 0.0236254, α′ (at n = 10,000,000, F0 =1, r =  −0.50) = 

0.0237475, but α′ (at n = 100,000,000, F0 =1, r = -0.50) = 0.0938949.  We are fairly 

certain that α′ (as n → ∞ , F0 = 1, r =  −0.50) = 0.0236254 is the correct answer and the 

last one is inaccurate because Matlab gave finv(0.95,1,100000000) = 2.10472249984741 

instead of the correct value of 3.841458914.  For negative correlation we have verified 

that as F0 and n  → ∞,α′→ α. 

For α = 0.05, F0 = 1.00, and r = 0.25, the value of α′  ranges in the interval 

0.0016243942 (at n =101) ≤α′≤ 0.01966083 (at n = 3).  For α = 0.05, F0 = 1.5, and r = 

0.25, the value of α′  ranges in the interval 0.0017703 (at n = 101) ≤α′≤ 0.0199853 (at n 

= 3).  While, For α = 0.05, F0 = 2.00, and r = 0.25, the value of α′  ranges in the interval 

0.00206727 (at n = 101)  ≤α′≤ 0.02059583 (at n = 3).  

 For α = 0.05, F0 =1, r = 0.50, the value of α′ lies in the interval 0.000136523 (at n 

= 101) ≤α′≤ 0.0132366264 (at n = 3); at F0 =1.5, α′ lies in the interval 0.000169103 (at n 

= 101) ≤α′≤ 0.013633621 (at n = 3); while at F0 = 2.00, α′ lies in the interval 

0.0002456622 (at n = 101) ≤α′  ≤ 0.01438047707496 (at n = 3). 

 For α = 0.05, F0 =1, r = 0.75, the value of α′ lies in the interval 

0.0000001795166(at n = 101) ≤α′≤ 0.00668445233 (at n = 3);at F0 =1.5, α′  lies in the 
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interval 0.00000041140283 (at n = 101) ≤α′≤ 0.00715685 (at n = 3); while at F0 = 2.00, 

α′  lies in the interval 0.000001550553 (at n = 101) ≤ α′  ≤ 0.0080453 (at n = 3). 

The impact of positive correlation is to reduce α′  toward zero as n → ∞.  For 

example, at α = 0.05, F0 = 1.5, r = 0.75 and n = 500, α′  reduces to 0.00000012177 from 

its value of 0.00000041140283 at n = 101, and at n = 101,  r = 0.90, α′  reduces to 

1.25244259407×10−12. 

Because, we have coded Matlab functions (see Appendix B) to compute theα′  

values for all three above cases (pooled t-test, two-independent t-test, and the paired t-

test), no extra tables are provided. 
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7.0  The Percent Overlap that Leads to the Rejection of  H0:μx = μy   

 

7.1  The case of Unknown σx = σy = σ    

Throughout this section, it is understood that a pretest on H0:σx = σy = σ has 

yielded a P-value > 0.20 so that the null hypothesis H0:σx = σy = σ is tenable leading to a 

pooled t-test. 

As before, let Ο represent the amount of overlap length between the two 

individual CIs on process means.  Then Ο will be 0 either L(μx) > U(μy) or L(μy) > U(μx), 

in which case H0:μx = μy is rejected at the LOS < α.  Thus, the overlap amount Ο is larger 

than 0 when U(μx) > U(μy) > L(μx) or U(μy) > U(μx) > L(μy).  In these two cases, both 

U(μx) > U(μy) > L(μx)  and U(μy) > U(μx) > L(μy) will lead to the same result.  Therefore, 

only U(μx) > U(μy) > L(μx) is discussed here so that we are making the assumption that 

x y− ≥ 0   

                Ο = U(μy) −L(μx) = ( / 2, /
y y yy t S nα ν+ ) – ( / 2, /

x x xx t S nα ν− ) 

                   = ( / 2, / 2,/ /
x yx x y yt S n t S nα ν α ν+ ) − ( x y− )                                        (45a)                    

Further, the span of the two individual CIs is                           

            U(μx) − L(μy) = ( / 2, /
x x xx t S nα ν+ × ) − ( / 2, /

y y yy t S nα ν− × ) 

                                  = ( / 2, / 2,/ /
x yx x y yt S n t S nα ν α ν+ ) + ( x y− )                         (45b)
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From equations (45a &b) the % overlap is given by 

                  / 2, / 2,

/ 2, / 2,

( / / ) ( )
100%

( / / ) ( )
x y

x y

x x y y

x x y y

t S n t S n x y

t S n t S n x y
α ν α ν

α ν α ν
ω

+ − −
= ×

+ + −
                       (45c) 

As | |x y−  increases, the P-value of the test decreases (i.e., H0: μx = μy must be rejected 

more strongly) and ω in Eq. (45c) decreases.  Because H0: μx = μy must be rejected at the 

α- level if | |x y−  ≥ / 2,tα ν × 1/ 1/p x yS n n+ , where ν = nx + ny−2, then from (45c) H0 

must be barely rejected at α×100% level or less iff    

     
/ 2, / 2, / 2,

/ 2, / 2, / 2,

( / / ) ( 1/ 1/ )
100%

( / / ) ( 1/ 1/ )
x y

x y

x x y y p x y

x x y y p x y

t S n t S n t S n n

t S n t S n t S n n
α ν α ν α ν

α ν α ν α ν
ω

+ − × +
≤ ×

+ + × +
         (46a) 

Putting /n y xR n n=  into Eq. (46a) leads to the result    

            
/2, /2, /2,

/2, /2, /2,

( / ) ( 1 1/ )
100%

( / ) ( 1 1/ )
x y

x y

x y n p n

x y n p n

t S t S R t S R

t S t S R t S R
α ν α ν α ν

α ν α ν α ν
ω

+ − × +
≤ ×

+ + × +
    

            
/2, /2, /2,

/2, /2, /2,

( ) ( 1)
100%

( ) ( 1)
x y

x y

x n y p n

x n y p n

t S R t S t S R

t S R t S t S R
α ν α ν α ν

α ν α ν α ν
ω

+ − × +
≤ ×

+ + × +
                    (46b)                           

As defined before, letting 2 2
0 /x yF S S=  into Eq. (46b) and recalling ν = nx+ny−2 results in 

        
0 /2, /2, /2, 0

0 /2, /2, /2, 0

(1 )( ) /
100%

(1 )( ) /
x y

x y

n n x y

n n x y

F R t t t R F

F R t t t R F
α ν α ν α ν

α ν α ν α ν

ν ν ν
ω

ν ν ν

× + − + +
≤ ×

× + + + +
              (46c) 

where F0×Rn = ( 2 2/x yS S )× y

x

n
n

 = 
2

2
/
/

x x

y y

S n
S n

 = ( )
( )
x
y

v
v

 = (se ratio)2.   Thus, the percent overlap 

at which H0 should be rejected exactly at the α-level is given by      



 

94

        
0 /2, /2, /2, 0

0 /2, /2, /2, 0

(1 )( ) /
100%

(1 )( ) /
x y

x y

n n x y
r

n n x y

F R t t t R F

F R t t t R F
α ν α ν α ν

α ν α ν α ν

ν ν ν
ω

ν ν ν

× + − + +
= ×

× + + + +
              (46d) 

             = 
/ 2, / 2, / 2, 0

/ 2, / 2, / 2, 0

(1 )( ) /
100%

(1 )( ) /
x y

x y

n x y

n x y

k t t t R F

k t t t R F
α ν α ν α ν

α ν α ν α ν

ν ν ν

ν ν ν

× + − + +
×

× + + + +
                       (46e) 

Eq. (46d) shows that the % overlap at which H0 must be rejected at the α-level depends 

only on α, nx, ny and F0 and not on the specific values of Sx and Sy.  For larger values of 

nx and ny > 30, the dependency on α is negligible because / 2, x
tα ν , / 2, y

tα ν and / 2,tα ν  are 

close in values and are almost equal once nx and ny > 60 .   

For the case of balanced completely randomized design (i.e., n = nx = ny → Rn=1), 

the inequality in (46d) reduces to  

                             /2, 1 0 /2,2( 1) 0

/2, 1 0 /2,2( 1) 0

(1 ) 1
100%

(1 ) 1
n n

r
n n

t F t F

t F t F
α α

α α
ω − −

− −

+ − +
= ×

+ + +
                          (46e) 

We first discuss the limiting property of the Eq. (46e).  Because this is the case of pooled 

t-test, F0 = (Sx/Sy)2  (the ratio of the two sample variances) must lie within the acceptance 

interval ( 0.90, 1, 1n nF − − , 0.10, 1, 1n nF − − ); otherwise H0: σx = σy  must be rejected at the 20% 

level.  Further, the first derivative of ωr vanishes at F0 = 1 so that the maximum of ωr  

occurs at F0 = 1 and is equal to 0.613625686 at n = 2 and its maximum approaches 

(2 2) /(2 2)− + = 0.171573 as n → ∞.  Note that as n → ∞, the value of F0 that must 

lie within ( 0.90, 1, 1n nF − − ≤ F0 ≤ 0.10, 1, 1n nF − − ) must per force also go towards 1 because the 

limiting value of both 0.90, 1, 1n nF − − and 0.10, 1, 1n nF − − is nearly 1.  That is, for all F0 values 

where H0: x yσ σ= cannot be rejected, the limiting value of ωr in terms of n cannot be less 
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than 0.171573.  At n = 61, ωr = 0.17603 if F0 = 1.2 so that the approach of ωr toward 

0.171573 occurs fairly rapidly in terms of n as long as 0.90, 1, 1n nF − − ≤ F0 ≤ 0.10, 1, 1n nF − − .  At  

n = 31 and F0 =1.30, the value of ωr = 0.1806 so that H0: μx = μy must be rejected at 5% 

or less if the % overlap is less than or equal to 18.06%.   

 In the unbalanced case if Rn = 0.50 or 2, the limiting value of ωr at F0 =1 is equal 

to ( 2 1 3) / ( 2 1 3)+ − + +  = 0.164525.  Further, as Rn ≠ 1 deviates farther from 1, the 

limiting value of ωr decreases for a fixed F0 as long as 0.90, 1, 1n nF − − ≤ F0 ≤ 0.10, 1, 1n nF − − . For 

example, at Rn = 3 (or 1/3), the limiting value of ωr is 0.15470; at Rn = 4 (or 0.25), its 

limiting value is 0.14590; at Rn = 5 (or 0.20), its limiting value is 0.13835; at Rn = 0.10 

(or 10), the limiting value of ωr is 0.11307, while at Rn = 20 (or 0.05) the limiting value 

of ωr is equal to 0.088472.  Clearly, as Rn deviates farther from 1, the limiting value of ωr 

decreases, implying that the Overlap approaches an α-level test.  See the illustration in 

Table 22.  Finally, it must be noted that as nx and ny become very large, the limit of Eq. 

(46d) becomes identical to rω  =
2

2

(1 1 )
(1 1 )

k k
k k

+ − +

+ + +
100% given in Eq. (12e). 

Next, what should each individual confidence level 1 −γ  be so that the two 

independent CIs lead to the exact α×100%-level test on H0: μx = μy.  The expressions for 

the two 1−γ  independent CIs are given by        

             /2, /
x x xx t S nγ ν− × ≤ μx ≤ /2, /

x x xx t S nγ ν+ ×                               (47a) 

                        /2, /
y y yy t S nγ ν− ×  ≤ μy ≤ /2, /

y y yy t S nγ ν+ ×                              (47b) 

It is clear that H0: μx = μy must be rejected at the α-level iff the amount of overlap 
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Table 22.   The Value of rω for Different F0 and Rn Combinations      

F0 xν  yν  Rn rω  F0 xν  yν  Rn rω  

0.5 1 1 1 60.90835 0.8 11 5 0.5 24.33944 
0.5 11 11 1 19.33138 0.8 21 10 0.5 20.81321 
0.5 21 21 1 17.90985 0.8 51 25 0.5 18.92389 
0.5 31 31 1 17.42757 0.8 61 30 0.5 18.72412 
0.5 41 41 1 17.18504 0.8 1001 500 0.5 17.81175 
0.5 51 51 1 17.03911 0.8 11 23 2.0 17.54347 
0.5 100 100 1 16.74930 0.8 31 63 2.0 15.87565 
0.5 150 150 1 16.64982 0.8 51 103 2.0 15.53555 
0.5 200 200 1 16.60028 0.8 1001 2003 2.0 15.04753 
0.8 1 1 1 61.31421 1 11 5 0.5 22.76531 
0.8 11 11 1 19.95417 1 21 10 0.5 19.37801 
0.8 21 21 1 18.53612 1 41 20 0.5 17.85949 
0.8 31 31 1 18.05497 1 81 40 0.5 17.14235 
0.8 41 41 1 17.81299 1 151 75 0.5 16.81705 
0.8 51 51 1 17.66738 1 501 250 0.5 16.56104 
0.8 100 100 1 17.37823 1 1001 500 0.5 16.50667 
0.8 500 500 1 17.14089 1 10001 5000 0.5 16.45788 
0.8 1000 1000 1 17.11144 1 500 1001 2.0 16.50667 
1 1 1 1 61.36257 1 2 5 2.0 35.76007 
1 10 10 1 20.33789 1 10 21 2.0 19.37801 
1 50 50 1 17.75437 1 20 41 2.0 17.85949 
1 100 100 1 17.45340 1 50 101 2.0 17.00221 
1 10000 10000 1 17.16022 1 100 201 2.0 16.72519 
1 500000 500000 1 17.15735 1 10000 20001 2.0 16.45517 
1 10000000 10000000 1 17.15729 1 10000000 20000001 2.0 16.45247 

1.2 1 1 1 61.33025 1 100 302 3.0 15.77155 
1.2 10 10 1 20.28821 1 10000 30002 3.0 15.47304 
1.2 20 20 1 18.63655 1 1000000 3000002 3.0 15.47008 
1.2 60 60 1 17.60330 1 100 403 4.0 14.91845 
1.3 10 10 1 20.23527 1 10000 40003 4.0 14.59306 
1.3 20 20 1 18.58326 1 1000000 4000003 4.0 14.58984 
1.3 30 30 1 18.05974 1 10000 50004 5.0 13.83815 
1.6 5 5 1 23.67919 1 1000000 5000004 5.0 13.83471 
1.6 10 10 1 20.01202 1 10000 100009 10.0 11.31132 
1.6 13 13 1 19.23368 1 10000000 100000009 10.0 11.30718 

           

between  (47a) and  (47b) barely becomes zero or less.  Without loss of generality, the x-

sample will be denoted such that x y− ≥ 0.  Therefore, we deduce from (47a & b) that   
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          U'(μy) −L' (μx) = ( /2, /
y y yy t S nγ ν+ × ) − ( /2, /

x x xx t S nγ ν− ×  )              

                                  = /2, /
y y yt S nγ ν ×  /2, /

x x xt S nγ ν+ × − ( x y−  )                    (48a)                           

Because H0: μx = μy must be rejected at the α-level as soon as the RHS of Eq. (48a) 

becomes 0 or smaller, we impose the borderline rejection criterion | |x y−  = / 2,tα ν ×  

1/ 1/p x yS n n+  into Eq. (48a).  In short, we are rejecting H0:μx = μy as soon as the two 

independent CIs in (47a) and (47b) become disjoint.  This leads to rejecting H0:μx = μy iff     

                    /2, /
y y yt S nγ ν ×   /2, /

x x xt S nγ ν+ × − ( x y−  )  ≤ 0.                           (48b)      

At the borderline value, we set x y−  = / 2,tα ν × 1/ 1/p x yS n n+  and set the LHS of 

inequality (48b) to 0 in order to solve forγ . 

      /2, /
y y yt S nγ ν ×   /2, /

x x xt S nγ ν+ × − / 2,tα ν × 1/ 1/p x yS n n+  = 0 

        /2, ×
y yt Sγ ν   /2,+ ×

x xt Sγ ν nR − / 2,tα ν × 1+p nS R  = 0.                         

        /2, y
tγ ν   /2,+ ×

x
tγ ν 0 nF R − / 2,tα ν × 0( 1)( ) /+ +n x yR Fν ν ν  = 0.                   

    /2, y
tγ ν /2,+ ×

x
tγ ν 0 nF R  = / 2,tα ν × 0( 1)( ) /+ +n x yR Fν ν ν                               

   or /2, y
tγ ν /2,+ ×

x
k tγ ν  = / 2,tα ν × 0( 1)( ) /+ +n x yR Fν ν ν                                          (49a) 

where 2 2
0 /x yF S S= , Rn = ny/nx , ν = nx + ny−2 and k= 0 nF R  = se ratio of samples.  Eq. 

(49a) clearly shows that the value of γ depends on the LOS α of testing H0: μx = μy, also 

on 2 2
0 /x yF S S= , and the sample sizes nx, ny.  For the case of balanced design (nx = ny = n), 

(49a) reduces to  

                   /2, 1n yt Sγ − ×   /2, 1n xt Sγ −+ × − /2,2( 1)ntα − × 2pS  = 0  



 

98

      /2, 1( )n x yt S Sγ − +  − /2,2( 1)ntα − × 2 2
x yS S+  = 0  

                 /2, 1ntγ −  = /2,2( 1)ntα − × 2 2
x yS S+ / ( )x yS S+                                      

                  /2, 1ntγ −  = /2,2( 1)ntα − × 0 1F + / 0( 1)F +                     

                ,1, 1nFγ −  = ,1,2( 1)nFα − × ( 01 F+ )/(1+ 0F )2                                               (49b)          

For example, when α = 0.05, nx & ny = 21,  Eq. (49b) gives γ = 0.16807 so that the two 

independent CIs have to be set at the confidence level 1−γ = 0.83193 in order for the 

Overlap to provide an exact 5% level test.  The values of 1−γ range from 0.2020062 at 

n−1 = 1 down to 0.16596 at n−1 = 100.  In order to obtain the limiting value of γ, we let 

n→ ∞ in (49b)  resulting in Lim /2, 1ntγ − ( n→ ∞) = 1.96× 1 1+ / ( 1 1)+ =1.96/ 2 = 

1.38593   Limit γ (as n→ ∞) = Pr(|Z| ≥ 1.38593) = 0.16578, which is identical to the 

know-&-equal-variances case from Eq. (13) at K =1.  

 

7.2  The Case of H0: x yσ σ=  Rejected Leading to the Two-Independent Sample  

        t-Test 

Assuming that X~N( 2
,x xμ σ ) and Y~N( 2

,y yμ σ ) and X Y−  is N( x yμ μ− , 

22
yx

x yn n
σσ

+ ), where now the null hypothesis of H0: x yσ σ=  is rejected at the 20% level 

(i.e., the P-value of the pre-test is less than 20%) leading to the assumption that the F-

statistic F0 = 2 2
x yS S/  is outside the interval (

x y0.90,n 1,n 1F − − , 
x y0.10,n 1,n 1F − − ), where without 

loss of generality the sample with the larger mean will be called X.  It has been shown in 
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statistical theory that if the assumption x yσ σ= is not tenable, the statistic 

2 2[( ) ( )] / ( / ) ( / )x y x x y yx y S n S nμ μ− − − +  has approximately the Student’s t-distribution 

with degrees of freedom given by Eq. (39). 

 
2 2 2

2 22 2

( / / )
( / )( / )

1 1

x x y y

y yx x

x y

S n S n
S nS n

n n

ν
+

=

+
− −

 =   
2

2 2
[ ( ) ( )]

( ( )) ( ( ))

x y

V x V y
V x V y

ν ν

+

+
 = 

2

2 2

[ ( ) ( )]
( ( )) ( ( ))
x y

y x

V x V y
V x V y

ν ν

ν ν

+

+
        (39a)  

                     =ν
2

0
2

0

( 1)
( )

+

+
x y n

y n x

F R
F R

ν ν

ν ν
 = 

2 2

4

( 1)+

+
x y

y x

k
k

ν ν
ν ν

                          (39b) 

As before, the amount of overlap between the two individual CIs is given by    

              Ο = U(μy) − L(μx) = ( / 2, /
y y yy t S nα ν+ ) – ( / 2, /

x x xx t S nα ν− ) 

                  = ( / 2, / 2,/ /
x yx x y yt S n t S nα ν α ν+ ) − ( x y− )                                         (50a)                    

Further, the span of the two individual CIs is                           

                 U(μx) − L(μy) = ( / 2, /
x x xx t S nα ν+ × ) − ( / 2, /

y y yy t S nα ν− × ) 

                       = ( / 2, / 2,/ /
x yx x y yt S n t S nα ν α ν+ ) + ( x y− )              (50b) 

From equations (50 a &b) the % overlap is given by 

                  / 2, / 2,

/ 2, / 2,

( / / ) ( )
100%

( / / ) ( )
x y

x y

x x y y

x x y y

t S n t S n x y

t S n t S n x y
α ν α ν

α ν α ν
ω

+ − −
= ×

+ + −
                       (50c) 

As | |x y−  increases, the P-value of the test decreases (i.e., H0: μx = μy must rejected 

more strongly) and ω in Eq. (50c) decreases.  Because H0: μx = μy must be barely rejected 

at the α- level if | |x y−  = / 2,tα ν × 2 2/ /+x x y yS n S n , where ν is given in Eq. (39), then 

from (50c) 



 

100

       
2 2

/2, /2, /2,

2 2
/2, /2, /2,

( / / ) / /
100%

( / / ) / /

+ − × +
= ×

+ + × +

x y

x y

x x y y x x y y
r

x x y y x x y y

t S n t S n t S n S n

t S n t S n t S n S n

α ν α ν α ν

α ν α ν α ν

ω       (51a)     

In order to simplify (51a), we multiply throughout by yn , divide throughout by Sy and 

replace ny/nx by Rn and 2 2
x yS S/  by F0 resulting in  

       /2, 0 /2, /2, 0

/2, 0 /2, /2, 0

( ) 1
100%

( ) 1

+ − × +
= ×

+ + × +
x y

x y

n n
r

n n

t R F t t R F

t R F t t R F
α ν α ν α ν

α ν α ν α ν
ω                                    

            = 
2

/ 2, / 2, / 2,

2
/ 2, / 2, / 2,

( ) 1
100%

( ) 1
x y

x y

k t t t k

k t t t k

α ν α ν α ν

α ν α ν α ν

+ − × +
×

+ + × +
                                            (51b)            

where F0 lies outside the 20% acceptance interval (
x y0.90,n 1,n 1F − − , 

x y0.10,n 1,n 1F − − ).  The % 

overlap in Eq. (51b) changes very little as α changes, increasing a bit as α decreases 

while other parameters nx, ny and F0 are kept fixed.  As F0 increases, the value of ωr 

decreases such that as F0 → ∞, ωr → 0 so that the overlap becomes an exact α-level test.  

The limiting (in terms of nx and ny) values of ωr at Rn = 2, 3, 4, 5, 10 and 20 are 

independent of α (because for large nx and ny all 3 t inverse functions in (51b) are almost 

equal) and are almost identical to those of the pooled t-test, namely 0.164509, 0.154679, 

0.1458744, 0.138322, 0.11305, and 0.08845, respectively. 

When the design is balanced (nx = ny = n), the % overlap in Eq.(51b) that still 

leads to the rejection of H0: μx = μy at the α-level reduces to  

                     /2, 1 0 /2, 0

/2, 1 0 /2, 0

( 1) 1
100%

( 1) 1
−

−

+ − × +
= ×

+ + × +
n

r
n

t F t F
t F t F
α α ν

α α ν
ω                              (51c) 



 

101

where in the balanced case ν = 
2 2 2

4 4

( 1)( )− +

+
x y

x y

n S S

S S
= 

2
0

2
0

( 1)( 1)
1

n F
F

− +

+
.  If the % overlap 

exceeds Eq.(51c), then H0: μx = μy can no longer be rejected at the α×100% level of 

significance.  For values of F0 outside the range (
x y0.90,n 1,n 1F ,− − x y0.10,n 1,n 1F − − ), the limiting 

value of  ωr (at any α ) as F0 → 1 from Eq. (51c) is, as before, equal to (2 2) / (2 2)− +  

= 0.171573.  Again, as F0 → ∞, ωr → 0, which is consistent with the results in Chapter 3 

with known but unequal sample case of the SE ratio k → ∞. 

Now, what should each individual confidence level 1 −γ  be so that the two 

independent CIs lead to the exact α×100%-level test on H0: μx = μy.  As before, the 

expressions for the two 1−γ  independent CIs are given by              

                        /2, /
x x xx t S nγ ν− × ≤ μx ≤ /2, /

x x xx t S nγ ν+ ×                                  (52a) 

                       /2, /
y y yy t S nγ ν− ×  ≤ μy ≤ /2, /

y y yy t S nγ ν+ ×                                (52b) 

It is clear that H0: μx = μy must be rejected at the α-level iff the amount of overlap  

between  (52a) and  (52b) barely becomes zero or less.  Without loss of generality, the x-

sample will be denoted such that x y− ≥ 0.  Therefore, we deduce from (52a &b) that   

      U'(μy) −L' (μx) = ( /2, /
y y yy t S nγ ν+ × ) − ( /2, /

x x xx t S nγ ν− ×  )              

                              = /2, /
y y yt S nγ ν ×  /2, /

x x xt S nγ ν+ ×  − ( x y−  )                      (53a)                           

Because H0: μx = μy must be rejected at the α-level as soon as the RHS of (53a) 

becomes 0 or smaller, we impose the critical limit of rejection  | |x y−  = / 2,tα ν ×  

2 2/ /+x x y yS n S n  into Eq. (53a), where ν is given in Eq. (39).  In short, we are rejecting 
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H0:μx = μy as soon as the two independent CIs in Eq.(52a) and Eq.(52b) become disjoint.  

This leads to rejecting H0:μx = μy  iff  

                     /2, /
y y yt S nγ ν ×  /2, /

x x xt S nγ ν+ × − ( x y−  )  ≤ 0.                           (53b)                           

At the borderline value, we set x y−  = / 2,tα ν × 2 2/ /+x x y yS n S n  and set the LHS of 

inequality (53b) to 0 in order to solve for γ . 

        /2, /
y y yt S nγ ν ×   /2, /

x x xt S nγ ν+ × − / 2,tα ν × 2 2/ /+x x y yS n S n  = 0.        

           /2, ×
y yt Sγ ν   /2,+ ×

x xt Sγ ν nR − / 2,tα ν × 2 2
x n yS R S+  = 0.                         

           /2, y
tγ ν   /2,+ ×

x
tγ ν 0 nF R − / 2,tα ν × 0 1nF R +  = 0.                   

       Or:   /2, y
tγ ν   /2,+ ×

x
tγ ν 0 nF R  = / 2,tα ν × 0 1nF R +                                           

           /2, y
tγ ν + k× /2, x

tγ ν  = /2,tα ν × 2 1+k                                                               (54a) 

where 2 2
0 /x yF S S= , Rn = ny/nx and  ν is given in Eq. (39).  Eq. (54a) clearly shows that 

the value of γ depends on the LOS α of testing H0:μx = μy, F0, and  the sample sizes nx 

and ny.  For the case of balanced design (nx = ny = n), (54a) reduces to  

                                  /2, 1ntγ − = / 2,tα ν × 0 1F + /(1+ 0F )                             

                             or  ,1, 1nFγ − = ,1,Fα ν × ( 01 F+ )/(1+ 0F )2                                        (54b)                         

where ν = 
2

0
2

0

( 1)( 1)
1

n F
F

− +

+
.  The limiting value of γ in Eq. (54b), as n→ ∞, can easily be 

obtained from /2Zγ = /2Zα × 0 1F + /(1+ 0F ).  The results will be the same for Eq. (54a). 

For example, using (54b) at α = 0.05, n = 10, F0 = 4.0, ν = 13.2353 resulting in γ = 
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0.1424.  Payton et al. (2000) report this value as 0.1262 because the denominator df of 

,1,Fγ ν  in the formula atop their page 550 is inaccurate.   For nx & ny > 100, as F0 → ∞, γ 

→ α so that the Overlap approaches an α-level test.  See the illustration in Table 23. 

 

7.3  Comparing the Paired t-CI with Two Independent t-CIs 

         As before, let O represent the amount of overlap length between the two individual  

CIs.  Then, O will be 0 either L(μx) > U(μy) or L(μy) > U(μx), in which case H0: μx = μy is 

rejected at the LOS < α.  Thus, Ο is larger than 0 when U(μx) >U(μy) > L(μx) or 

U(μy)>U(μx) > L(μy).  In these two cases, both U(μx) >U(μy) > L(μx)  and U(μy) > U(μx) 

> L(μy) will lead to the same result. Therefore, only U(μx) >U(μy) > L(μx) is discussed 

here so that we are making the assumption that x y− ≥ 0.  

   O = U(μy)  −  L(μx) = ( /2, 1 /n yy t S nα −+ ) – ( /2, 1 /n xx t S nα −− ) 

                  = ( /2, 1 /2, 1/ /n x n yt S n t S nα α− −+ ) − ( x y− )                                           (55a)       

Further, the span of the two individual CIs is  

U(μx) − L(μy) = ( /2, 1 /n xx t S nα −+ × ) − ( /2, 1 /n yy t S nα −− × ) 

                       = ( /2, 1 /2, 1/ /n x n yt S n t S nα α− −+ ) + ( x y− )                          (55b) 

From equations (55a &b) the % overlap is given by      

                 /2, 1 /2, 1

/2, 1 /2, 1

( / / ) ( )
100%

( / / ) ( )
n x n y

n x n y

t S n t S n x y

t S n t S n x y
α α

α α
ω − −

− −

+ − −
= ×

+ + −
                          (55c)     

As | |x y−  increases, the P-value of the test decreases (i.e., H0: μx = μy must rejected 

more strongly) and ω in Eq. (55c) decreases.  Because H0: μx = μy must be rejected at the               
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    Table 23.    Theγ  Value for Different Combinations of xn , yn and nR  at Either    
                        0F = 0.90, ,x y

F ν ν or 0F = 0.05, ,x y
F ν ν     

xn  yn  
nR  

0F =  
0.90, ,x y

F ν ν  γ  
0F =  

0.05, ,x y
F ν ν  γ  

5 5 1 0.24347 0.13970 4.10725 0.08485 
20 20 1 0.54873 0.16301 1.82240 0.13999 
60 60 1 0.71470 0.16510 1.39918 0.15333 

500 500 1 0.89152 0.16571 1.12168 0.16206 
1000 1000 1 0.92208 0.16574 1.08451 0.16320 

100000 100000 1 0.99193 0.16762 1.00814 0.16553 
5 6 1.2 0.24688 0.15190 3.52020 0.08565 
20 24 1.2 0.55765 0.16613 1.75251 0.13711 
60 72 1.2 0.72272 0.16635 1.37397 0.15122 

500 600 1.2 0.89554 0.16580 1.11574 0.16098 
1000 1200 1.2 0.92509 0.16568 1.08054 0.16231 

100000 120000 1.2 0.99227 0.16537 1.00779 0.16505 
10 15 1.5 0.42534 0.16860 2.12195 0.11484 
20 30 1.5 0.56715 0.16794 1.68491 0.13282 
80 120 1.5 0.76388 0.16603 1.29555 0.15011 

500 750 1.5 0.89977 0.16466 1.10959 0.15858 
1000 1500 1.5 0.92825 0.16437 1.07642 0.16011 

100000 150000 1.5 0.99262 0.16371 1.00742 0.16329 
5 10 2 0.25409 0.17390 2.69268 0.08157 
20 40 2 0.57733 0.16722 1.61932 0.12632 
80 160 2 0.77239 0.16349 1.27469 0.14452 

500 1000 2 0.90426 0.16127 1.10318 0.15392 
1000 2000 2 0.93160 0.16082 1.07212 0.15564 

100000 200000 2 0.99300 0.15980 1.00704 0.15928 
10 50 5 0.45063 0.15367 1.76252 0.08712 
50 250 5 0.73697 0.14463 1.30352 0.11609 

500 2500 5 0.91313 0.14027 1.09087 0.13122 
1000 5000 5 0.93819 0.13961 1.06381 0.13320 

100000 500000 5 0.99373 0.13810 1.00629 0.13746 
10 100 10 0.45673 0.13019 1.69556 0.07319 
50 500 10 0.74397 0.12427 1.28494 0.09796 

500 5000 10 0.91637 0.12052 1.08649 0.11195 
1000 10000 10 0.94059 0.11992 1.06084 0.11383 

100000 1000000 10 0.99400 0.11851 1.00602 0.11790 
100000 2000000 20 0.99413 0.10086 1.00588 0.10032 
100000 3000000 30 0.99418 0.09215 1.00583 0.09166 
100000 5000000 50 0.99422 0.08297 1.00579 0.08254 
100000 10000000 100 0.99424 0.07341 1.00576 0.07305 
100000 20000000 200 0.99426 0.06654 1.00575 0.06622 
100000 50000000 500 0.99427 0.06042 1.00574 0.06015 
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α- level if | |x y−  ≥ /2, 1 /n dt S nα − × , then from (55c) H0 must be barely rejected at 

α×100% or less iff  

          /2, 1 /2, 1 /2, 1

/2, 1 /2, 1 /2, 1

( / / ) /
100%

( / / ) /
n x n y n d

n x n y n d

t S n t S n t S n

t S n t S n t S n
α α α

α α α
ω − − −

− − −

+ − ×
≤ ×

+ + ×
                        

            100%x y d

x y d

S S S
S S S

ω
+ −

≤ ×
+ +

  
2 2

2 2

2
100%

2

x y x y x y

x y x y x y

S S S S rS S

S S S S rS S
ω

+ − + −
≤ ×

+ + + −
                               

            0 0 0

0 0 0

1 1 2
100%

1 1 2

F F r F

F F r F
ω

+ − + −
≤ ×

+ + + −
                                                      (56a) 

        Or   0 0 0

0 0 0

1 1 2
100%

1 1 2
r

F F r F

F F r F
ω

+ − + −
= ×

+ + + −
                                                     (56b)   

where F0 = 2 2
x yS S/ ,  2 2 2 ˆ2d x y xyS S S σ= + −  and ˆxyσ = 

n

i i
i=1

(x - x)(y y) n -1)/ (−∑ .  Just like  

the case of known variances, the % overlap rω in (56b) depends only on the correlation 

coefficient r and the ratio of the two sample variances, i.e., it does not depend on α and 

specific values of Sx and Sy.  It is interesting to note that when r = 0 (i.e., the two samples 

are independent) and F0 = 1, then Eq. (56b) reduces to  2 2
2 2

−
+

×100%  = 17.1573%, 

which was the % overlap for the case of independent samples and equal variances given 

in Eq. (3f).  When r = 1 and F0 ≥ 1, ωr in Eq. (56b) reduces to 1/ 0F , while if r = 1 and 

F0 ≤ 1, ωr in Eq. (51) reduces to 0F .  On the other hand, when r = −1, as expected ωr in 

Eq. (56b) reduces to zero regardless of values of F0 so that the Overlap becomes an exact 

α-level test. 
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Finally, what should the individual confidence levels 1−γ  be so that the two 

independent CIs lead to the exact α-level test on H0: μx = μy.  As before, the expressions 

for the two 1−γ  independent CIs are given by              

                        /2, 1 /γ −− ×n xx t S n ≤ μx ≤ /2, 1 /γ −+ ×n xx t S n                                  (52c) 

                       /2, 1 /γ −− ×n yy t S n  ≤ μy ≤ /2, 1 /γ −+ ×n yy t S n                                  (52d) 

It is clear that H0: μx = μy must be rejected at the α-level iff the amount of overlap  

between  (52c) and  (52d) barely becomes zero or less. Without loss of generality, the x-

sample will be denoted such that x y− ≥ 0.  Therefore, we deduce from (52c & d) that   

      U'(μy) −L' (μx) = ( /2, 1 /γ −+ ×n yy t S n ) − ( /2, 1 /γ −− ×n xx t S n  )              

                              = /2, 1 /γ − ×n yt S n  /2, 1 /γ −+ ×n xt S n  − ( x y−  )                       (53c)                           

Because H0: μx = μy must be rejected at the α-level as soon as the RHS of (53d) becomes 

0 or smaller, we impose the rejection criterion | |x y−  ≥ /2, 1α − ×nt /dS n  into Eq. (53c).   

This leads to rejecting H0:μx = μy  iff  

               /2, 1 /γ − ×n yt S n  /2, 1 /γ −+ ×n xt S n −  /2, 1α − ×nt /dS n  ≤ 0.                    (53d)                            

At the borderline value, we set the LHS of inequality (53d) equal to 0 in order to solve 

forγ . 

          /2, 1γ − ×n yt S   /2, 1γ −+ ×n xt S − /2, 1α − ×nt dS  = 0.        

          /2, 1 ( )γ − × +n y xt S S  = /2, 1α − ×nt dS                     

           /2, 1γ −nt  = /2, 1α − ×nt
2 2 2+ −

+
x y x y

x y

S S rS S

S S
                                      



 

107

           /2, 1γ −nt  = /2, 1α − ×nt 0 0

0

1 2

1

+ −

+

F r F

F
                                                           (54c)                            

where 2 2
0 /x yF S S= .  Eq. (54c) clearly shows that the value of γ depends on the LOS α of 

testing H0: :μx = μy , F0, and  the sample size n.   When r = −1, Eq. (54c) shows that γ ≡α 

so that the Overlap becomes an exact α-level test; while if r = 1 the RHS attains its 

minimum value leading to maximum value for γ.   When r = 0 (i.e., uncorrelated X & Y), 

Eq. (54c) shows that for very large or very small values of F0, the Overlap in the limit 

becomes an α-level test. 
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8.0  The Impact of Overlap on Type II Error Probability for the Case of Unknown     

        Process Variances 2
xσ , 2

yσ  and Small to Moderate Sample Sizes 

Since the population variances 2
xσ  and 2

yσ are unknown, then their point unbiased 

estimators 2
xS  and 2

yS , respectively, must be used for the purpose of statistical inference.  

As mentioned in Chapter 6 the rv ( )
/

x

x x

x
S n

μ−  is not normally distributed but its sampling 

follows that of  W. S. Gosset’s t-distribution with ( xn −1) degrees of freedom.  As a result, 

the acceptance interval of the test statistic 0( )
/

x

x x

x
S n

μ−  at the LOS α is (
1/2, /2, 1,

− −−
x xn nt tα α ), 

where / 2,tα ν > 0 for all 0 < α < 0.50, and it also follows that  

                 Pr( / 2, 1 /
xn x xx t S nα −− xμ≤ ≤ / 2, 1 /

xn x xx t S nα −+ ) = 1 α−                  (57a)          

Hence, the lower (1 α− )% CI for xμ  is L( xμ ) = / 2, 1 /
xn x xx t S nα −− , the corresponding 

upper limit is U( xμ ) = / 2, 1 /
xn x xx t S nα −+ , and the       

                                CIL( xμ ) =2× / 2, 1 /
xn x xt S nα −                                                   (57b)   

Similarly, L( yμ ) = / 2, 1 /
yn y yy t S nα −− , U( yμ ) = / 2, 1 /

yn y yy t S nα −+  and  

                               CIL ( yμ ) = 2× / 2, 1 /
yn y yt S nα − .                                                 (57c)  
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8.1  The Case of H0: = =x yσ σ σ  Not Rejected Leading to the Pooled t-Test 

Assuming that X ~ N( 2
,xμ σ ) and Y~N( 2

,yμ σ ), then X Y−  has the N( x yμ μ− , 

2 2/ /x yn nσ σ+ ) distribution, where it is assumed that 2σ is the common value of the 

unknown 2 2 2
x yσ σ σ= = .  With the above assumptions, x y−  is an unbiased estimator of 

x yμ μ−  with Var( x y− ) = 2(1/ 1/ )x yn nσ + .  In practice a pretest on H0: 2 2 2
x yσ σ σ= =  is 

required before deciding to use either the pooled t-test or the two-independent-sample t-test.  

If the assumption x yσ σ σ= =  is tenable and because statistical theory dictates that the 

total resources be allocated according to nx = / ( )+x x yNσ σ σ = N/2 = ny, then the most 

common application of the pooled t-test occurs under equal sample sizes.  Henceforth, the 

pooled t-test will be used iff the P-value of the pretest 0 : x yH σ σ σ= =  exceeds 20%, and 

for very small sample sizes nx & ny < 10, a P-value of at least 40% for the pretest is 

recommended.  Since the common value of the process variances 2σ is unknown, its 

unbiased estimators 2
xS  and 2

yS  should be pooled to obtain one unbiased estimator of 2σ , 

which as before is given by their weighted average based on their degrees of freedom, i.e.,     

                 2
pS =

2 2
x x y y

x y

S Sν ν
ν ν

+

+
 =

2 2( 1) ( 1)
2

x x y y

x y

n S n S
n n

− + −

+ −
                                 (35)                             

Note that E( 2
pS ) = 2σ .  Therefore, the se( x y− ) = 1/ 1/p x yS n n+  and as a 

result the rv [( ) ( )] /( 1/ 1/ )x y P x yx y S n nμ μ− − − +  has a central “Student’s” sampling 

distribution with ν  = 2x yn n+ − .  Accordingly, the AI (acceptance interval) for a 5%-

level test of H0: x yμ μ− = 0 is given by      
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               0.025,− ×t ν 1/ 1/p x yS n n+ ≤ x y− ≤ 0.025, ×t ν 1/ 1/p x yS n n+               (58a)  

where ν = νx+ νy = 2x yn n+ − .  Henceforth, in this section we let 0.025t  represent  

0.025, 2+ −x yn nt  only for notational convenience.  Thus the AI in (58a) reduces to 

                 0.025− ×t 1/ 1/p x yS n n+ ≤ x y− ≤ 0.025 ×t 1/ 1/p x yS n n+                  (58b) 

Under the null hypothesis H0: x yμ μ− = 0, the SMD of t0 = ( x y− )/ 1/ 1/p x yS n n+  is 

that of the central t with ν = νx+ νy = 2x yn n+ − .  Put differently, the null distribution of 

( x y− )/ 1/ 1/p x yS n n+  is 2x yn nT + − .  Thus, the AI for in (58b) reduces to                              

                                       AI: 0.025−t  ≤  t0 ≤ 0.025t                                                       (58c)                           

where t0 = ( x y− )/ 1/ 1/p x yS n n+  and 0.025t = 0.025, 2+ −x yn nt .  However, if H0: x yμ μ− = 

0 is false (so that a type II error can occur), the SMD of ( x y− )/ 1/ 1/p x yS n n+  is no 

longer the central 2+ −x yn nT .  Thus, we next derive the SMD of the test statistic t0 = 

( x y− )/ 1/ 1/p x yS n n+  under the alternative H1: x yμ μ− = δ ≠ 0. 

         From statistical theory, the SMD of the rv 2U / /
ν

χ ν  is that of the central 

Student’s t with df equal to that of 2
ν

χ ,  where U ~ N(0,1), i.e., U is a unit normal rv, and 

2
ν

χ  is chi-squared distributed rv with ν df and independent of U.  However, if E(U) ≠ 0, 

then 2U / /
ν

χ ν  is no longer central t distributed, but the rv 2(Z ) / /
ν

+ ξ χ ν , where Z ~ 

N(0,1), has the noncentral t distribution with ν df and noncentrality parameter ξ and the 

distribution is almost universally denoted by t ( )ν′ ξ , i.e., 2(Z ) / /
ν

+ ξ χ ν  ~ t ( )ν′ ξ .  We 
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will now illustrate how the above noncentral t distribution is used to compute type II 

error Pr when testing equality of two normal means with unknown but equal process 

variances. (This result has already been known in statistical literature for over 35 years.)  

By definition 

       β  = Pr (Accepting H0: x yμ μ− = 0 if H0 is false)   

            = Pr( 0.025−t  ≤   t0 ≤ 0.025t | μx  − μy = δ)  

            = Pr( 0.025−t  ≤ t0 = ( x y− )/ 1/ 1/p x yS n n+  ≤ 0.025t ⏐μx  − μy = δ)             (59)                  

If H0 is assumed false so that E( x y− ) = x yμ μ− ≠ 0, the SMD of 

( x y− )/ 1/ 1/p x yS n n+ is no longer the t ( 0)ν′ ξ = , which is the central t with ν = νx+ νy 

= 2x yn n+ −  degrees of freedom. Thus, we first standardize x y− in Eq.(59) as shown 

below, assuming σx = σy = σ. 

β  = Pr( 0.025−t  ≤   
2 2

2 2

[( ) ( ) ( )] / /

1/ 1/ / /

/− − − + − +

+ +

x y x y x y

p x y x y

x y n n

S n n n n

μ μ μ μ σ σ

σ σ/
 ≤  0.025t  

                                                                                                       ⏐μx  − μy = δ)            

   = Pr( 0.025−t  ≤   
2 2

2 2

[( ) / / ]

/

/x y x y

p

Z n n

S

μ μ σ σ

σ

+ − +
 ≤ 0.025t ⏐μx  − μy = δ)             

  = Pr( 0.025−t  ≤   
2 2

2 2

( ) / / /

[( 2) / ] / ( 2)

[ ]+ − +

+ − + −

x y x y

x y p x y

Z n n

n n S n n

μ μ σ σ

σ
 ≤ 0.025t ⏐μx  − μy = δ)      

  = Pr( 0.025−t  ≤   
2

2 2

2

/ / /

/ ( 2)

[ ]

+ −

+ +

+ −
n nx y

x y

x y

Z n n

n n

σ σ

χ

δ
 ≤ 0.025t )   



 

112

   = Pr( 0.025−t  ≤   
2 /

+Z

ν

ξ

χ ν
 ≤ 0.025t )                                                                          (60a)            

where 2 2( ) / / /= − +x y x yn nξ μ μ σ σ = 2 2/ / /+x yn nδ σ σ  and ν = nx+ny−2.   

However, as stated above, the SMD of 
2 /

+Z

ν

ξ

χ ν
 is the noncentral t with ν = nx+ny−2 and 

noncentrality parameter ξ = 2 2/ / /+x yn nδ σ σ = / ( )δ −SE x y , i.e.,  

              
2 /

+Z

ν

ξ

χ ν
 ~ 

x yn n 2
x y

t ( )
1/ n 1/ n+ −

δ′
σ +

 = 
x y

x y
n n 2

x y

n n
t ( )

n n+ −
δ′
σ +

.   

Thus, β  = Pr( 0.025−t  ≤   
2 /

+Z

ν

ξ

χ ν
 ≤ 0.025t )  

           = Pr( 0.025−t  ≤  
x y

x y
n n 2

x y

n n
t ( )

n n+ −
δ′
σ +

≤ 0.025t )                                       (60b) 

Note that when δ = 0, the argument in (60b) becomes the central t and β becomes equal 

to 1−α.                                                                                                                                                     

When the design is balanced, the SMD of the test statistic t0 under H1 reduces to 

2(n 1)
nt ( )
2−

δ′
σ

, i.e., when nx = ny = n  

β = Pr( 0.025−t  ≤  
2 /

+Z

ν

ξ

χ ν
 ≤ 0.025t ) = Pr( 0.025−t ≤ 2(n 1)

nt ( )
2−

δ′
σ

≤ 0.025t )         (60c) 

As an example, suppose we draw  a random sample nx = 7 from a N(μx, σ2) and 

one of size ny = 11 from another N(μy, σ2) with the objective of testing H0: x yμ μ− = 0 at 

the nominal significance level of α = 5% versus the 2-sided alternative H1: x yμ μ− ≠ 0.  
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We wish to answer the question as to what is the Pr of accepting H0 if the true mean 

difference x yμ μ− were not zero but were equal to 0.50σ, i.e., we wish to compute the 

type II error Pr at δ = 0.50σ .  Then the corresponding value of the noncentrality parameter 

is equal toξ  = x y x y( / ) n n / (n n )δ σ +  = (0.50 / ) 77 /18σ σ  = 1.03414 and type II error 

Pr from Eq. (60b) is equal to  

   β  = Pr( 0.025,16−t ≤ 16t (1.03414)′ ≤ 0.025,16t ) = Pr(−2.119905 ≤ 16t (1.03414)′ ≤  2.119905)     

    = cdf[of 16t (1.03414)′ at 2.119905] − cdf[of 16t (1.03414)′ at (−2.119905)].     

Fortunately, both Minitab and Matlab provide the cdf of the noncentral t distribution.  

Using Minitab, we obtain cdf[of 16t (1.03414)′ at 2.119905] = 0.838156 and cdf[of 

16t (1.03414)′ at −2.119905] = 0.0016652; thus, β = 0.838156−0.0016652 = 0.836491 so 

that the power of the test at δ = 0.50σ is equal to 1−β = 1−0.836491 = 0.163509.  Clearly 

as δ = x yμ μ−  departs further from zero, the power of the test must increase, which is 

illustrated next.  Suppose now δ = 0.80σ; then ξ  = (0.80 / ) 77 /18σ σ  = 1.65462315 

and (atβ δ = 0.80σ, 7, 11x yn n= = )  

            = Pr(−2.119905 ≤ 16t (1.65462315)′ ≤  2.119905)  

            = cdf[of 16t (1.65462315)′ at 2.119905] − cdf[of 16t (1.65462315)′ at −2.119905] 

            = 0.656987 − 0.0002142 = 0.656733, 

and hence the power of the test increases from 0.163509  to 1−0.656773 = 0.343227.  It is 

interesting to note that if the design is balanced, then the power of the test always 

increases for the same parameter values.  For example, if nx = ny = 9 so that ν = 16 stays 

in tact, then at δ = 0.80σ, the noncentrality parameter ξ  = (0.80 / ) 81/18σ σ  =  
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1.6970563 and  

β (at δ = 0.80σ, 9, 9x yn n= = ) = Pr(−2.119905 ≤ 16t (1.6970563)′ ≤  2.119905)  

            = cdf[of 16t (1.6970563)′ at 2.119905] − cdf[of 16t (1.6970563)′ at −2.119905]  

            = 0.642235 − 0.0001839 = 0.6420511, 

so that Power(at δ = 0.80σ) = 0.357949, which exceeds the value of 0.343227 for the 

unbalanced case. The syntax for Matlab noncentral t cdf  is nctcdf(t, ν, ξ). 

As in the case of known variances, the type II error Pr from the Overlap is 

computed similar to Eqs. (7) shown below.  

′β = Pr(Overlap⎢δ > 0) = Pr{[ ( ) ( )x yL Uμ μ≤ ] ∩ [ ( ) ( )y xL Uμ μ≤ ]| − =x yμ μ δ }  

 = Pr{[ x − /2, x
tα ν /x xS n  ≤ y + /2, y

tα ν /y yS n ] ∩   

                                                [ y − /2, y
tα ν /y yS n ≤ x + /2, x

tα ν /x xS n ]|δ }  

= Pr{[ x − y ≤ /2, x
tα ν /x xS n + /2, y

tα ν /y yS n ] ∩   

                                                             [− /2, y
tα ν /y yS n − /2, x

tα ν /x xS n ≤ x − y ]|δ }  

= Pr{[− /2, y
tα ν /y yS n − /2, x

tα ν /x xS n ≤ x − y ≤ /2, x
tα ν /x xS n + /2, y

tα ν /y yS n ]|δ } 

= Pr{[−A ≤ x − y ≤ +A]|δ }                                                                                       (61)   

where A = /2, x
tα ν /x xS n  + /2, y

tα ν /y yS n .                                                                                                

In order to apply the noncentral t-distribution to compute the Pr in Eq. (61), not 

available in statistical literature, we must first inside brackets divide throughout by 

1/ 1/p x yS n n+  and then standardize x − y as illustrated below. 

β ′ = Pr{[−A/ 1/ 1/p x yS n n+ ≤ ( x − y )/ 1/ 1/p x yS n n+ ≤ A/ 1/ 1/p x yS n n+  ]| δ}                               
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   = Pr[−Ap ≤
x y

x y
n n 2

x y

n n
t ( )

n n+ −
δ′
σ +

 ≤ Ap]                                                                   (62a) 

where Ap = 
/ 2, / 2,/ /

1/ 1/
x yx x y y

p x y

t S n t S n

S n n
α ν α ν+

+
.  Note that if δ = 0, Eq. (62a) reduces to 1−α′ 

as was shown in Eq. (37a).  In the case of balanced design, Eq. (62a) reduces to  

      β ′ = Pr[− /2,n 1 x y

2 2
x y

t (S S )

S S
α − +

+
≤ 2(n 1)

nt ( )
2−

δ′
σ

 ≤ /2,n 1 x y

2 2
x y

t (S S )

S S
α − +

+
]                  

           = Pr[− /2,n 1 0

0

t ( F 1)
F 1

α − +

+
≤ 2(n 1)

nt ( )
2−

δ′
σ

 ≤ /2,n 1 0

0

t ( F 1)
F 1

α − +

+
]                          (62b) 

As an example, suppose samples of sizes nx = ny = 9 are drawn from two independent 

normal universes with unknown but equal variances.  We wish to compute the Pr of 

accepting H0: x yμ μ− = 0 at α = 0.05 if x yμ μ− = 0.80σ and the sample statistics are Sx= 

0.65 and Sy = 0.54.  Note that it is sufficient to provide the ratio F0 = 2 2
x yS / S  instead of the 

specific values of Sx and Sy.  Because 0.025,8/ 2,n 1t tα − = = 2.306004, ξ  = 

(0.80 / ) 81/18σ σ  = 1.6970563, Eq. (62b) yields β′(at δ = x yμ μ− = 0.80σ, 9, 9x yn n= = ) 

= Pr[−3.247338 ≤ 16t (1.6970563)′  ≤ 3.247338] = 0.904239−0.0000078 = 0.904231. 

 The above value of β′ is much larger than β = 0.6420511 using the Standard method.  It 

can easily be verified that the random function  x y

2 2
x y

S S

S S

+

+
 lies within the interval  

1 < x y

2 2
x y

S S

S S

+

+
= 0

0

F 1
F 1

+

+
 ≤ 2 .  However, we are using the pooled t-test only if  
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0.90,n 1,n 1F − − ≤ 2 2
0 /x yF S S=  ≤ 0.10,n 1,n 1F − − and hence 0.90,n 1,n 1

0.90,n 1,n 1

F 1

F 1
− −

− −

+

+
 = 0.10,n 1,n 1

0.10,n 1,n 1

F 1

F 1
− −

− −

+

+
 

≤ x y

2 2
x y

S S

S S

+

+
= 0

0

F 1
F 1

+

+
 ≤ 2  .  Note that the equality on the most LHS of this last equation 

follows from the fact that F0.10,n−1,n−1 = 1/ F0.90,n−1,n−1 for all n.  Therefore, for a balanced 

design the GLB of  β′ for a 5%-level test is given by 

GLB(β′) = Pr[− 0.025,n 1t −
0.10

0.10

F 1
F 1

+

+
≤ 2(n 1)

nt ( )
2−

δ′
σ

 ≤ 0.025,n 1t −
0.10

0.10

F 1
F 1

+

+
]     (63a)       

where F0.10  = F0.10,n−1,n−1, and the LUB is given by 

LUB(β′) = Pr[− 0.025,n 1t 2− ≤ 2(n 1)
nt ( )
2−

δ′
σ

 ≤ 0.025,n 1t 2− ]                           (63b)                            

i.e.,  

    Pr[− 0.025,n 1t −
0.10

0.10

F 1
F 1

+

+
≤ 2(n 1)

nt ( )
2−

δ′
σ

≤ 0.10

0.10

F 1
F 1

+

+ 0.025,n 1t − ]  ≤ β′ ≤  

                                        Pr[− 0.025,n 1t 2− ≤ 2(n 1)
nt ( )
2−

δ′
σ

 ≤ 0.025,n 1t 2− ]                 (63c)                            

Thus, for the example with nx = ny = 9, the GLB that the overlap type II error Pr can 

attain is given by Eq. (63a) and is computed below. 

    GLB (β′ at δ = x yμ μ− = 0.80σ)  

              = Pr[−2.306004 2.589349 1
2.589349 1

+
+

≤ 16t (1.6970563)′  ≤  3.175781]  

              =  Pr[−3.175781 ≤ 16t (1.6970563)′ ≤ 3.175781]  

              =  0.89451811− 0.00000954 = 0.89450857.  
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Thus, the smallest % relative error for the power of the test from Overlap is  

             [(0.357949− 0.105492)/ 0.357949]×100% = 70.53%. 

Furthermore, the LUB that the overlap type II error Pr can become is given by Eq.(63b) 

and is calculated as following: 

  LUB (β′at δ = x yμ μ− = 0.80σ)  

            = Pr[ 2.306004− 2× ≤ 16t (1.6970563)′ ≤ 3.26118232 ] 

            = Pr [ 3.26118232− ≤ 16t (1.6970563)′ ≤ 3.26118232 ] 

            = 0.90602841−0.00000756 = 0.90602085 

Therefore, the worst % relative error for the power of the test from Overlap is  

            [(0.357949− 0.093979)/ 0.357949]×100 %= 73.75%. 

        

8.2 The Case of  H0: x yσ σ=  Rejected Leading to the Two-Independent Sample t-   

Test (or the t-Prime Test) 

Assuming that X~N( 2
,x xμ σ ) and Y~N( 2

,y yμ σ ), then X Y−  is N( x yμ μ− , 

2 2/ /x x y yn nσ σ+ ), but now the null hypothesis of  H0: x yσ σ=  is rejected at the 20% 

level leading to the assumption that the F-statistic F0 = 2 2
x yS S/ > 2 for all sample sizes 16 

≤ nx & ny.   

It has been shown in statistical theory that if the assumption x yσ σ=  is not  

tenable, the statistic 2 2[( ) ( )] / ( / ) ( / )x y x x y yx y S n S nμ μ− − − +  has the approximate  

central Student’s t-distribution with degrees of freedom  
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   ν =   
2

2 2
[ ( ) ( )]

( ( )) ( ( ))
x y

x y
x y

ν ν

+

+

v v
v v

  = 
2

2 2
[ ( ) ( )]

( ( )) ( ( ))
x y

y x

x y

x y

ν ν

ν ν

+

+

v v
v v

= 
2

0
2

0

( 1)
( )

+

+
x y n

y n x

F R
F R

ν ν

ν ν
                (39)             

where 2( ) /= x xx S nv  and F0 = 2 2/x yS S .  The formula for degrees of freedom in (39) rarely 

leads to an integer and is generally rounded down to make the test of 0 : x yH μ μ− = 0 

conservative, i.e., the rounding down ν increases the P-value of the test.  However, 

programs like Matlab and Minitab will provide probabilities of the t-distribution for non-

integer values of ν in Eq. (39).  It has been verified by the authors that ν in Eq. (39) 

attains its maximum when the larger sample also has much larger variance than the 

sample whose size is much smaller.  Even then, it is for certain that Min( νx, νy ) < ν < 

νx+ νy, and hence the two-sample t-test is less powerful than the pooled t-test.  When 

0 : x yH σ σ=  is rejected at the 20% level (i.e., P-value < 0.20), the type II error Pr of a 

5%-level test is given by β = Pr (Accepting H0: x yμ μ− = 0 if H0 is false) → 

                        β  Pr( 0.025,−t ν  ≤   t0 ≤ 0.025,t ν | μx  − μy = δ)                                   (64) 

where t0 = 2 2( ) / ( / ) ( / )x x y yx y S n S n− +  is approximately central t distributed when H0 is 

true with df, ν, given in Eq. (39).  Henceforth in this section we let t0.025 represent 0.025,t ν  

only for notational convenience.  When H0 is false, the authors have also verified that the 

exact SMD of the statistic t0 = 2 2( ) / ( / ) ( / )x x y yx y S n S n− +  under the alternative H1: μx  

− μy = δ ≠ 0, unlike the case of x yσ σ= , is intractable using central χ2.  As far as we 

know, the exact power of the t-Prime (or the two-sample independent t-test) test has not 

yet been obtained in statistical literature.  That is, the SMD of t0 is not the noncentral t 
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with some noncentrality parameter ξ.  The development that follows, the results already 

existing in statistical literature, is only an approximation because there does not exist an 

exact solution for type II error Pr of testing H0: x yμ μ− = 0 when the variances are 

unknown and unequal.  We first approximately studentize the expression for β in Eq.(64). 

β  Pr( 0.025,−t ν ≤  t0 ≤ 0.025,t ν | μx− μy = δ)  

    Pr( 0.025,−t ν  ≤  2 2( ) / ( / ) ( / )x x y yx y S n S n− + ≤  0.025,t ν | μx− μy = δ)    

    Pr{ 0.025−t 2 2( / ) ( / )/ x x y yS n S nδ− +  ≤  2 2[( ) ] ( / ) ( / )/ x x y yx y S n S nδ− − +   

                                                                   ≤  0.025t 2 2( / ) ( / )/ x x y yS n S nδ− + } 

   Pr{ 0.025−t 2 2( / ) ( / )/ x x y yS n S nδ− + ≤   tν ≤ 0.025t 2 2( / ) ( / )/ x x y yS n S nδ− + }  

   Pr{ 0.025−t − Δ ≤   tν ≤ 0.025t − Δ }                                                                          (65) 

where the studentized mean difference Δ = 2 2( / ) ( / )( ) /x y x x y yS n S nμ μ +−  

= 2 2( / ) ( / )/ x x y yS n S nδ + .  Unfortunately, the approximate expression for β in Eq.(65) 

still depends on the sample se( −x y ) = 2 2( / ) ( / )x x y yS n S n+ , and therefore, the 

approximation in Eq.(65) can be carried out iff  δ is specified in units of the se( −x y ), or 

in units of μx  − μy, in which case the realized values of 2 2
x yS and S  have to be used 

posteriori in order to approximate a priori type II error probability.  

For example, suppose samples of sizes nx = ny = 9 are drawn from two 

independent normal populations with unknown but unequal variances.  We wish to 

compute the Pr of accepting H0: x yμ μ− = 0 at α = 0.05 if x yμ μ− = δ = 0.4 and the 
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sample statistics are Sx= 0.65 and Sy = 0.54.  Eq.(39) gives ν = 
2

2 2
[ ( ) ( )]

( ( )) ( ( ))
x y

y x

x y

x y

ν ν

ν ν

+

+

v v
v v

 = 

15.48, t0.025 = t0.025,15.48 = 2.1257, Δ = 2 2( / ) ( / )( ) /x y x x y yS n S nμ μ +−  = 0.40/0.281681 

= 1.420044 so that  − 0.025t −Δ = − 3.545744, 0.025t −Δ = 2.1257−1.420044 = 0.7057, and 

β(at δ = 0.40)  Pr(−3.5457 ≤  t15.48 ≤ 0.7056) =  0.75454016−0.00140620 = 0.75313396.  

If x yμ μ− = 0.60, similar calculations will show that β(at x yμ μ− = 0.6)  Pr(−4.25577 ≤  

t15.48 ≤  − 0.00437) = 0.4982845− 0.0003233 = 0.4979612.  Note that the above 

approximate type II error Prs would be in exact agreement with what UCLA’s Statistics 

Department Power Calculator lists on their website (www.stat.ucla.edu).  If nx = 7, Sx = 

0.65, ny =11 and Sy = 0.54 the type II error Pr increases a bit from 0.7532 to 

β(at x yμ μ− = 0.4) = 0.79083377 ─ 0.0022143 = 0.7886. 

Again, the type II error Pr from the Overlap is computed similar to Eq. (7), just 

like the case of the pooled t-test, as shown below.  

    ′β = Pr(Overlap ⎢δ > 0) = Pr{[ ( ) ( )x yL Uμ μ≤ ] ∩ [ ( ) ( )y xL Uμ μ≤ ]| μx − μy =δ} 

Note that the event [ ( ) ( )x yL Uμ μ≤ ] ∩ [ ( ) ( )y xL Uμ μ≤ ] is equivalent to either ( )xL μ ≤  

( )yU μ ( )xU μ≤ or ( ) ( ) ( )y x yL U Uμ μ μ≤ ≤ .  Thus,  

      ′β = Pr{[ x − /2, x
tα ν /x xS n  ≤ y + /2, y

tα ν /y yS n ] ∩   

                                                          [ y − /2, y
tα ν /y yS n ≤ x + /2, x

tα ν /x xS n ]| δ}         

          = Pr{[ x − y ≤ /2, x
tα ν /x xS n  + /2, y

tα ν /y yS n ] ∩   

                                                         [− /2, y
tα ν /y yS n − /2, x

tα ν /x xS n ≤ x − y ]| δ} 
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         = Pr{[− /2, y
tα ν /y yS n − /2, x

tα ν /x xS n ≤ x − y ≤ /2, x
tα ν /x xS n  +  

                                                                                             /2, y
tα ν /y yS n ]| δ} 

         = Pr{[−A ≤ x − y ≤ +A]| δ}                                                                               (66)   

where A = /2, x
tα ν /x xS n + /2, y

tα ν /y yS n .  Studentizing inside the brackets of Eq.(66) 

results in:  

β′= Pr{[−A−(μx−μy) ≤ ( x − y ) −(μx−μy) ≤ +A−(μx−μy)]| δ}  

   = Pr{[−A−(μx−μy)]/ se( −x y ) ≤ [( x − y ) −(μx−μy)] /se( −x y ) ≤ (A−δ )/ se( −x y )}  

where se( −x y ) = 2 2( / ) ( / )x x y yS n S n+ .  Thus,                                                                                       

              β′  Pr{(−A−δ )/ se( −x y ) ≤  tν ≤ (A−δ )/ se( −x y )}                               (67) 

 For the example, if nx = ny = 9, Sx= 0.65 and Sy = 0.54, A = 0.914715, ν  = 

2

2 2
[ ( ) ( )]

( ( )) ( ( ))
x y

y x

x y

x y

ν ν

ν ν

+

+

v v
v v

 = 15.48 as before, Eq. (67) now gives β′(δ = 0.40)  

Pr[−4.66738 ≤  15.48t ≤ 1.827295] = 0.95650-0.00014 = 0.9564 as compared to exact value 

of β(at δ =0.40) = 0.7532 and a % relative error in power 

([( ) / (1 )] 100% / (1 )′ − − × −β β β β ) equal to 82.33%. 

 

8.3 The Impact of Overlap on Type II Error Probability for the Paired t-Test (i.e.,  

the Randomized Block Design) when Process Variances are Unknown  

Consider the 5%-level test of H0: x yμ μ− = μd = 0 versus the 2-sided alternative  H1: 

μd  ≠ 0, where the paired response (x, y) comes from a bivariate normal universe so that 

X and Y are correlated random variables with unknown correlation coefficient ρ.  The 
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appropriate test statistic for testing H0: μd = 0 is t0 = dd n S/ , where Sd 

= 2 2 ˆ2x y xyS S σ+ −  and  ˆxyσ = 
n

i i
i=1

(x x)(y y) / (n 1)− − −∑ .  The decision rule is to reject 

H0 at the 0.05-level iff | dd n S/ | > 0.025, 1nt − . Thus, for a 5%-level test by definition 

                 β = Pr(Accepting H0: x yμ μ− = 0 if H0 is false)  

                    = Pr( 0.025, 1−− nt ≤  t0 ≤ 0.025, 1−nt | μd = δ)                      

Fortunately, just like in the case of the pooled t-test, the exact SMD of t0 under the 

alternative H1: μd  ≠ 0 has been known for well over 35 years.  That is to say, an exact 

expression for the OC curve of the paired t-test already exists in statistical literature as 

illustrated below. 

                β  = Pr( 0.025, 1−− nt  ≤  dd n S/  ≤ 0.025, 1−nt | μd = δ)                              (68)              

where for notational convenience we will let 0.025t = 0.025, 1−nt  in this section.  

Standardizing dd n S/  in Eq. (68) under the alternative H1: μd  ≠ 0 leads to                                               

               β  = Pr( 0.025, 1−− nt  ≤  dd n S/  ≤ 0.025, 1−nt | μd = δ)   

                      = Pr( 0.025, 1−− nt  ≤
[( ) ] /

/
d d d

d d

d n
S

μ μ σ
σ

− +  ≤ 0.025, 1−nt | μd = δ)    

                  = Pr( 0.025, 1−− nt  ≤  
2 2

Z n

S

/
/

d d

d d

μ σ

σ

+  ≤ 0.025, 1−nt | μd = δ)                   

                   = Pr( 0.025, 1−− nt  ≤  
2 2

Z

(n 1)S
(n 1)

/
+

−
−

d d

ξ

σ
 ≤ 0.025, 1−nt | μd = δ)                   
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                  = Pr( 0.025, 1−− nt  ≤  
1

2

Z

/ (n 1)
−

+

−
n

ξ

χ
 ≤ 0.025, 1−nt | μd = δ)                         

                  = Pr( 0.025, 1−− nt  ≤  1( )nt ξ−′  ≤ 0.025, 1−nt )                                                     (69)   

Eq. (69) shows that the exact SMD of t0 = dd n S/ under the alternative H1: μd  ≠ 0 is the 

noncentral t with noncentrality parameter ξ = n /d dμ σ and ν = n−1 df, while the null 

SMD of t0 is the central tn−1 = 1(0)nt −′ .  For example, suppose we wish to compute the 

type II error Pr when testing H0: x yμ μ− = μd = 0 at the 5% level with a random sample of 

size n = 10 blocks from a bivariate normal distribution versus the alternative H1: μd = 

0.50σd .  Thus from Eq. (69), β(at μd = 0.50σd) = Pr( 0.025,9t−  ≤  1( )nt ξ−′  ≤ 0.025,9t ), 

where ξ = 0.50 10 /d dσ σ  =  1.581139.  Consequently using Matlab we obtain  

              β(at μd = 0.50σd, n=10) = Pr(−2.262157 ≤  9(1.581139)t′  ≤  2.262157)  

                      = nctcdf(2.262157, 9, 1.581139) − nctcdf(−2.262157, 9, 1.581139)  

                          = 0.7071714−0.00034704 = 0.70682435,  

so that the power of the test is given by PWF(at 0.50σd, n =10) = 0.29317565.  It is 

common knowledge in the field of Statistics that the power of a test should increase with 

increasing sample size; a statistical test for which the limit of its PWF does not approach 

1 as n → ∞, is said to be inconsistent.  It is also estimated that in order to double the 

power of a test, roughly more than twice the sample size is needed.  For this reason, 

consider this last example where the PWF(at 0.50σd) was equal to 0.29317565 with n = 

10 but now we set the value of n at 20. Then, at n = 20, β(at μd = 0.50σd , n = 20) = 

Pr( 0.025,19−t  ≤  1( )nt ξ−′ ≤ 0.025,19t ), where ξ = 0.50 20 /d dσ σ  = 2.236068  and 
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0.025,19t = 2.093024  

     β(at μd = 0.50σd, n = 20)  

                     = nctcdf(2.0930240,19, 2.236068) − nctcdf( −2.0930240,19, 2.236068)   

                     =  0.43551707475811− 2.152176224301527×10 −5  

                     =  0.43549555299587 

    PWF(at 0.50σd , n =20)  

                     = 0.564504447 < 2× PWF(at 0.50σd, n =10).   

On the other hand, in order to have the same value of PWF at μd = (1/2)×0.50σd, roughly 

four times the sample size is needed. 

        As in sections 8.1 and 8.2, the type II error Pr using the Overlap is given by 

            β′= Pr{[− /2, y
tα ν /y yS n − /2, x

tα ν /x xS n ≤ x − y ≤  

                                                            /2, x
tα ν /x xS n  + /2, y

tα ν /y yS n ]| 0≠δ } 

               = Pr{[−A ≤ d ≤ +A]| 0≠δ }                                                              (70a)   

where as before A =  /2, x
tα ν /x xS n + /2, y

tα ν /y yS n  and d = x − y .  However, because 

this is a block design, then per force nx = ny = n, and as a result A = /2, 1ntα − (Sx+Sy)/ n .  

Following the exact same development that leads to Eq. (69), we obtain 

           β′ = Pr[− /2, 1ntα − (Sx+Sy)/ n ≤  d ≤ /2, 1ntα − (Sx+Sy)/ n ]                                                                    

              = Pr[− /2, 1ntα − (Sx+Sy)/Sd ≤  d n /Sd ≤ /2, 1ntα − (Sx+Sy)/Sd]                                                              

             = Pr[− /2, 1ntα − (Sx+Sy)/Sd ≤  
(d ) /

/
− +d d d

d d

n
S

μ μ σ
σ

 ≤ /2, 1ntα − (Sx+Sy)/Sd]       
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             = Pr[− /2, 1ntα − (Sx+Sy)/Sd ≤  
2 2

(d ) /

( 1) /
1

− +

−
−

d d d

d d

n

n S
n

μ μ σ

σ
 ≤ /2, 1ntα − (Sx+Sy)/Sd]  

            = Pr[− /2, 1ntα − (Sx+Sy)/Sd ≤  1( )nt ξ−′  ≤ /2, 1ntα − (Sx+Sy)/Sd]                               (70b)                   

where ξ= n /d dμ σ .  Because Sd = 2 2 2x y x yS S rS S+ − , it follows that Sd ≤ Sx+Sy, and  

equality occurring iff the sample correlation coefficient r =  −1.  On comparing the  

expression for β in Eq. (69) with that of β′ in (70b), it is clear that β ≤ β′ because   

/2, 1ntα − (Sx+Sy)/Sd ≥ /2, 1ntα − .  Further, dividing the numerator and denominator of 

(Sx+Sy)/Sd by Sy, we obtain (Sx+Sy)/Sd = 0 0 0( F 1) / F 1 2r F+ + − .  Substituting this 

last into (70b) results in 

β′ = Pr[− /2, 1ntα − ( 0

0 0

F 1

F 1 2r F

+

+ −
) ≤  1( )nt ξ−′  ≤ /2, 1ntα − ( 0

0 0

F 1

F 1 2r F

+

+ −
)]              (70c)     

The final expression for Overlap type II error Pr in Eq. (70c) clearly shows that the value 

of β′ depends only on the sample size n, noncentrality parameter ξ = n /d dμ σ , the 

sample correlation coefficient r, and the sample variance ratio F0 = 2 2
x yS / S  but does not 

depend on the specific values of  2 2
x yS and S .  Only when r =  −1, the value of  β′ equals 

to β; otherwise β′ > β. Further, the limit of β′ as F0 → 0 or as F0 → ∞ is also equal to β.   

It can easily be shown using calculus that the function 0 0 0( F 1) / F 1 2r F+ + −  in the 

argument of  β′ in Eq. (70c) attains its maximum at F0 = 1 with its value equal to 

2 / (1 r)− .   Thus for a 5%-level test, the least upper bound for β′ is given by 
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 LUB(β′) = Pr[− 0.025, 1−nt 2 / (1 r)− ≤  1( )nt ξ−′  ≤ 0.025, 1−nt 2 / (1 r)− ]           (71) 

As r→ −1, the LUB(β′)→ β, but as r→ +1, LUB(β′) → +1.  Thus the impact of negative 

correlation is to reduce the Overlap type II error Pr while the impact of positive 

correlation is to increase β′.  As an example, for a random bivariate pair of size n = 10, a 

5%-level test, and r = − 0.50, Eq. (71) at μd = 0.50σd yields 

           LUB(β′) = Pr[− 0.025,9t 2 /1.5 ≤  9 (1.581139 )′t  ≤ 2.262157 2 /1.5 ]         

                          = Pr[−2.612114 ≤  9 (1.581139)′t  ≤ 2.612114]  

                          = 0.793446 − 0.0001628 = 0.79328344     

as compared to β = 0.70682435 from the Standard method.  However, if r were equal to 

+0.50, then 

           LUB(β′) = Pr[− 0.025,9t 2 / 0.5 ≤  9 (1.581139)′t  ≤ 2.262157×2]    

                         =  Pr[−4.524314 ≤ 9(1.581139)′t ≤  4.524314] = 0.976860.        
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9.0    Conclusions and Future Research 

Chapter 3 used the normal theory with known variances to prove results that 

already existed in Overlap literature, some of which were obtained through simulation.  It 

was proved that for a nominal significance level α = 0.05, the corresponding 95% 

overlapping CIs provide a much smaller LOS α′ = 0.0055746, which fully agrees with 

the value computed from Eq. (7) on p. 184 of Schenker et al. (2001).  Schenker et al. 

provide their results without any proof.  Further, Chapter 3 proved that for a LOS of 0.01, 

the corresponding Overlap LOS was α′ = 0.0002697, while the literature provides results 

only for the nominal LOS of 5%.  Further the smaller the LOS of the Standard method 

becomes, the larger is the % relative error of the Overlap LOS.  Although, the Overlap 

literature has never considered the one-sided alternative, Chapter 3 showed that the 

Overlap LOS is ½ of the corresponding two-sided alternative (i.e., the Overlap procedure 

becomes even more conservative for a one-sided alternative).   

Second, a concept that has not been discussed in Overlap literature is the 

maximum % overlap that the two independent CIs can have and H0: μx = μy cannot still 

be rejected at a pre-assigned LOS α.  It was proven that this maximum % overlap 

depends only on the SE ratio [k = y y x x( / n ) /( / n )σ σ or k = 

x x y y( / n ) / ( / n )σ σ ] and is equal to 17.1573% at k = 1 and diminishes to zero as k 

→∞ or zero.  At k = 10, it was shown that the maximum % overlap reduces to 4.5137%  
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so that the Overlap procedure converges to an exact α-level test for limiting values of k.   

            Third, the chapter showed that the two independent CIs must each have a 

confidence level of 1 − γ =1 − /22 ( Z / 2)αΦ −  in order to provide an exact α-level test.  

This last formula gives a confidence levels of 0.931452 for both independent intervals at 

α = 0.01, and 1− γ = 0.83422373 at α = 0.05.   This latter value is in perfect agreement 

with Overlap literature while the former value of 1− γ = 0.931452 has not been reported. 

Finally, the Overlap procedure leads to less statistical power compared to the 

Standard method and its RELEFF for small sample sizes is poor and heavily depends on 

δ/σ, but its asymptotic RELEFF is 100% as n →∞.  For the simplest case of σx = σy and 

nx = ny an exact formula (15e) was obtained for the RELEFF of Overlap to the Standard 

method. 

 Chapter 4 investigated the Bonferroni Overlap CIs against the Standard procedure 

and determined that the Bonferroni concept makes the Overlap even more conservative 

and loses more statistical power. 

 Chapter 5 examined the overlapping CIs for two process variances against the 

Standard method that uses the Fisher’s F distribution; the Overlap literature has not 

investigated the Overlap procedure for variance ratios.  As in the case of process means, 

the Overlap reduces the LOS of the test and the limiting value of α′ at α = 0.05 and k = 1 

is roughly 0.0055746, while as k → ∞ or zero, the Overlap approaches an exact α-level 

test. 

Second, the limiting value of maximum % overlap that does not reject H0: σx = σy  

is exactly 17.15726% as was in the case of two process means. 

Third, the individual confidence levels have to be set at γ obtained from Eq. (31b)  
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 2 2
/2, 1 /2,/ −x yγ ν γ νχ χ = /2, , /

x yx yFα ν νν ν , where the limiting value of γ is 0.165766 at k =1  

just like the case of means; further, as k → ∞ or zero, γ → 0. 

Last, the power of Overlap procedure is always less than Standard but approaches 

that of the Standard as k → ∞ or zero.  The asymptotic RELEFF of Overlap to the 

Standard method is 100% as nx & ny →∞.      

Chapter 6 examined the impact of Overlap on type I error Pr, in the normal case 

with unknown variances but samples sizes ≤ 50, using the pooled t and two-independent 

sample t statistics, and also the effect of positive and negative correlations on the Overlap 

procedure.   Specific formulas for α′of the pooled t-test (37c), the two-independent sample 

t-test (41b), and the paired t-test (44a) were derived and documented.  The Overlap 

literature has not considered the pooled t-test. 

Chapter 7 used the pooled t-statistic to derive an expression for the % overlap, ωr, 

below which H0: μx = μy cannot be rejected at the α level.  Unlike the simple case of 

known variances where ωr depends only on the SE ratio k, when the process variances 

are unknown and sample sizes are not large,  ωr depends on nx, ny, F0 = 2 2
x yS /S , and α. 

For the case of two-independent t-statistic, ωr depends on nx, ny, k, and α, while for the 

paired t-test, it depends only on the correlation coefficient between X and Y and F0 = 

2 2
x yS /S .  For all 3 cases, Chapter 7 also derived expressions for the individual confidence 

levels, 1−γ, that provide an α-level test by the Overlap method.  In the case of pooled t-

test, γ depends only on nx, ny, and F0.  For the two-independent sample t-test γ depends on 

nx, ny and F0.  While for the paired t-test, it depends only on n, r and F0. 
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Chapter 8 used the noncentral t-distribution to derive formulas for the OC curves 

(and also power functions) for the case of underlying normal distribution with unknown 

variances and moderate to small sample sizes  n ≤ 50, the results of which have been 

available in statistical literature for more than 35 years.  However, the chapter also 

derived formulas for type II error Pr of Overlap (β′) using the noncentral t.  The exact 

results obtained for this latter case have not been available in statistical literature.  

As further research, one could consider the Overlap problem for other normal 

parameters, such as the coefficient of variation σ/μ [see Vangel (1996) and Payton (1996)] 

and quantiles μ + Zασ, 0 < α < 1.  Further, we suspect that the SMD of  S (= the standard 

deviation for a sample) from a non-normal population approaches normality, toward N[σ, 

σ2/(2n)], but very agonizingly slowly (n > 100).  The exact SMD of S from a N(μ, σ2) has 

been documented in statistical literature more than 50 years ago. For an underlying 

normal population, it is also widely known that an n > 75 is needed in order for S to be 

roughly normally distributed according to N[c4σ, (1 − 2
4c )σ2], where c4 = ( / 2) 2 /nΓ  

[( 1) / 2] 1{ }n nΓ − × −  < 1 is a well-known QC constant.  Note that the approximate 

V(S) generally reported in statistical literature is σ2/(2n), but we know for fact that 

σ2/[2(n − 0.745)] is a better approximation to the exact variance of S from a N(μ, σ2), 

which is given by V(S) = (1 − 2
4c )σ2.  Unfortunately, the farther the skewness and 

kurtosis of an underlying non-normal distribution are from zero, the much larger sample 

size is needed for the SMD of S to exhibit normality.  Thus, if the underlying distribution 

is non-normal, only the limiting comparison of Standard CI to Overlap may be 

accomplished based on CIs of σx and σy.  Also, we have not yet seen the impact of 
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overlapping CIs on parameters of other underlying distributions such as Uniform, 

Weibull, and Beta.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

132

10.0  References 

[ 1 ]  Brownlee, K. A. (1965),  Statistical Theory and Methodology in Science and   

        Engineering, Wiley, NY. 

 

[ 2 ]  Cole, S. R. and Blair, R.C. (1999), Overlapping Confidence Intervals. Journal  

of the American Academy of Dermatology, 41(6), pp.1051-1052.   

 

[ 3 ]  Devore, J. L. (2008), Probability and Statistics, Thomson Brooks/Cole, Canada. 

 

[ 4 ]  Djordjevic, M. V., Stellman, S. D. and Zang, E.(2000), Doses of Nicotine and Lung 

Carcinogens Delivered to Cigarette Smokers. Journal of the National Cancer 

Institute, 92(2), pp.106-111. 

 

[ 5 ]  Goldstein H. Healy MJR. (1995),  The Graphical Presentation of a Collection of    

         Means. Journal of the Royal Statistical Society A,158: pp.175-177. 

 

[ 6 ]  Hool, J. N. and Maghsoodloo, S. (1980),  Normal Approximation to Linear      

         Combinations of Independently Distributed Random Variables. AIIE Transactions,  

         12, pp.140-144. 

 



 

133

[ 7 ]  Johnson, N. L., Kotz, S., and Balakrishnan, N. (1995), Continuous Univariate     

        Distributions, 2nd edition, John Wiley & Sons, Inc.  

 

[ 8 ]  Kelton, W. D., Sadowski, R. P. and Sturrock, D. T. (2004) Simulation with Arena,   

            pp. 265-268, McGraw-Hill Companies, Inc., NY. 

 

[ 9 ]  Kendall, M. G. and Stuart, A. (1963) The Advanced Theory of Statistics, Charles   

        Griffin & Company Limited, London.  

 

[ 9 ]  Maghsoodloo S., and Hool, J. N. (1981),  On Normal Approximation of Simple     

         Linear Combinations. The Journal of the ALABAMA ACADEMY of SCIENCES, 52,  

         October 1981, No. 4, pp.207-219. 

 

[10 ]  Mancuso, C. A., Peterson, M.G. E. and Charlson, M. E. (2001) Comparing   

          Discriminative Validity Between a Disease-Specific and a General Health Scale in   

          Patients with Moderate Asthma. Journal of Clinical Epidemiology, 54, pp.263-274. 

 

[ 11]  Montgomery D. C. and Runger G. C. (1994), Applied Statistics and Probability for   

         Engineers, John Wiley & sons, Inc., p. 411. 

 

[ 12]  Payton, M. E., (1996), “ Confidence intervals for the coefficient of variation,”  Proc.    

          Kansas State Univ. Conf. Appl. Statistical Agriculture, 8, pp. 82-87. 

 



 

134

[ 13]  Payton, M. E., Miller, A. E. and Raun, W. R. (2000) Testing Statistical    

          Hypotheses Using Standard Error Bars and Confidence Intervals. Communication   

          in Soil Science and Plant Analysis, 31, pp.547-552. 

 

[ 14]  Payton, M. E., Greenstone, M. H. and Schenker, N. (2003) Overlapping confidence     

          intervals or standard error intervals: What do they mean in terms of statistical  

          significance? The Journal of Insect Science, 3, pp.34-39 

 

[ 15]  Schenker, N. and Gentleman, J. E. (2001) On Judging the Significance of     

          Differences by Examining the Overlap Between Confidence Intervals. The   

          American Statistician, 55, pp.182-186. 

 

[ 16]  Sont, W. N., Zielinski, J. M., Ashmore, J. P., Jiang, H., Krewski, D., Fair, M. E.,    

          Band, P. R. and Letourneau, E. G. (2001) First Analysis of Cancer Incidence and   

         Occupation Radiation Exposure Based on the National Dose Registry of Canada.   

         American Journal of Epidemiology, 153(4), pp.309-318. 

 

[ 17]  Tersmette, A. C., Petersen, G. M., Offerhaus, G.J.A., Falatko, F. C., Brune, K. A.,   

          Goggins, M., Rozenblum, E., Wilentz, R. E., Yeo, C.J., Cameron, J. L., Kern, S. E.  

          and Hruban, H. (2001) Increased Risk of Incident Pancreatic Cancer Among First-   

          degree Relatives of Patients with Familial Pancreatic Cancer. Clinical Cancer  

          Research, 7, pp.738-744. 

 



 

135

[ 18]  Vangel, M.G. (1996), “ Confidence intervals for a normal coefficient of variation,”      

          The American Statistician, 50, pp. 21-26.   

 

 

 

 

 

 



 

136

APPENDICES 

 

Appendix A:  The Kurtosis of the sum of n independent Uniform, U(0, 1), distributions. 

 

Appendix B:  Matlab functions 
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Appendix A:  The Kurtosis of the sum of n independent uniform, U(0, 1), distributions 

  

Suppose x1, x2, …, xn are independently and each uniformly distributed over the 

real interval [0, 1].  It is well known that the 1st four moments of each xi is given by μi = 

1/2, μ2 = V(Xi) = 1/12 = σ2, μ3 = 0 (by symmetry), and μ4 = 1/80 so that α4 = μ4/σ4 = 

144/80 = 1.80 and the kurtosis of each xi is equal to β4 = α4 −3 = −1.20. 

 Now consider the sum Yn = 
1

n

i
i

x
=
∑ ; our objective is to compute the 1st four  

moments of Yn from the known moment of each xi, i =1,2,…, n.  Clearly, the mean of Yn 

is given by E(Yn) = n/2, the variance is given by V(Yn) = nV(Xi) = n/12, μ3(Yn) = 0 by 

symmetry, and μ4(Yn) is computed below. 

                  μ4(Yn) =  E[
1

n

i
i

x
=
∑ − (n/2)]4 =  E[

n

i
i 1

(x 1 / 2)
=

−∑ ]4   

                             =  E[
n

4
i

i 1
(x 1 / 2)

=

−∑ + 4C2×
1

2 2

1 1
( 1/ 2) ( 1/ 2)

n n

i j
i j

x x
−

= >
− −∑∑ ] 

                             =  nμ4(xi) + 6×nC2× i jV(X ) V(X )×  

Note that in the binomial expansion of [
n

i
i 1

(x 1 / 2)
=

−∑ ]4 the expectation of odd products 

such as E[(x1-1/2)(x2 − 1/2)3] vanish due to mutual independence of xi and xj for all i ≠ j.  

Hence, μ4(Yn) = n/80 + 3n(n − 1)σ4 = n/80 + 3n(n − 1)/144 = n/80 + n(n − 1)/48  

Thus, α4(Yn) = 4 n

n

(Y )
V(Y )
μ  = 2

n / 80 n(n  1) / 48
(n /12)
+ −  = 144 / 80 144(n  1) / 48

n
+ −     

                     = 1.80 3(n  1)
n

+ −  →  α4(Yn) = 3 − 1.20/n 
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                   → β4(Yn) = α4(Yn) − 3 = −1.20/n 

Thus for a 2-fold convolution of U(0, 1), the kurtosis is −1.20/n = − 0.60 while for a 6-

fold convolution the kurtosis of 
6

1
i

i
x

=
∑  is equal to −1.20/n = −0.20.   
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Appendix B:  Matlab functions 

 

(a)  The following Three Matlab functions compute the Overlap significance level, α′, for     

       a pooled t-test, two-independent t-test, and the paired t-test, respectively, at a given   

       significance level α = a, sample sizes nx & ny and sample variance ratio F0 = 2 2
x yS / S .  

 

      1.  function y = aprP(a,nx,ny,F0); 

           tx=tinv(1-a/2,nx-1);ty=tinv(1-a/2,ny-1);nu = nx+ny-2; 

           RHS=nu*(tx*sqrt(F0*ny)+ty*sqrt(nx))^2/((ny-1+F0*(nx-1))*(nx+ny)); 

            y=1-fcdf(RHS,1,nu); 

 

      2.  function y = apr(a,nx,ny,F0); 

           tx=tinv(1/a/2,nx-1); ty=tinv(1-a/2,ny-1);Rn=ny/nx; nu= 

           (nx-1)*(ny-1)*(1+F0*Rn)^2/(nx-1+(ny-1)*(F0*Rn)^2); 

          RHS=(tx*sqrt(F0*Rn)+ty)^2/(1+F0*Rn); 

          y=1-fcdf(RHS,1,nu); 

 

     3.  function y = aprc(a,n,F0,r); 

          F1=finv(1-a,1,n-1);  

          RHS=F1*(sqrt(F0)+1)^2/(1+F0-2*r*sqrt(F0)); 

          y=1-fcdf(RHS,1,n-1); 

 

 

(b)  The following Matlab functions compute the overlap proportion for a pooled t-test,  

        two-independent sample t-test, and the paired test, respectively at a given     

        significance level α = a, sample sizes nx & ny and sample variance ratio F0 = 2 2
x yS / S .  
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      1.  function y = OmegaP(a,nx,ny,F0);  

           Rn = ny/nx;nu=nx+ny-2;n1=nx-1; n2=ny-1; 

           NUM = tinv(1-a/2,n1)*sqrt(F0*Rn)+tinv(1-a/2,n2)- 

           tinv(1- a/2,nu)*sqrt((1+Rn)*(n1*F0+n2)/nu); 

           DEN = tinv(1-a/2,n1)*sqrt(F0*Rn)+tinv(1-a/2,n2)+tinv(1-   

           a/2,nu)*sqrt((1+Rn)*(n1*F0+n2)/nu); 

           y= NUM./DEN;  

 

      2.  function y = Omega(a,nx,ny,F0);  

           Rn= ny/nx;n1= nx-1; n2=ny-1; 

           nu=(n1*n2*(F0*Rn+1)^2)/(n2*(Rn*F0)^2+n1); 

          NUM=tinv(1-a/2,n1)*sqrt(Rn*F0)+tinv(1-a/2,n2)-tinv(1-a/2,nu)*sqrt(F0*Rn +1); 

          DEN = tinv(1-a/2,n1)*sqrt(Rn*F0)+tinv(1-a/2,n2)+tinv(1-a/2,nu)*sqrt(F0*Rn +1); 

          y= NUM./DEN; 

       

     3.  function y = OmegaC(F0, r);  

          NUM = sqrt(F0)+1-sqrt(1+F0-2*r*sqrt(F0)); 

          DEN = sqrt(F0)+1+sqrt(1+F0-2*r*sqrt(F0)); 

          y= NUM./DEN;  

  

 

(c)  The following Matlab codes compute the value of γ that provides an α-level test for     

       the two-independent t-test.  

      a=0.05; 

      nx=4; 

      ny=8;  

      F0=1.5;  

      Rn= ny/nx;n1=nx-1; 

      n2=ny-1; 

      nu=(n1*n2*(F0*Rn+1)^2)/(n2*(Rn*F0)^2+n1); 

      RHS =tinv(1-a/2,nu)*sqrt(Rn*F0+1);  
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       c(1)=a;  

       for i= 2:25  

       c(i)= c(i-1)+0.005 

       LHS(i) = tinv(1-c(i)/2,n2)+tinv(1-c(i)/2,n1)*sqrt(Rn*F0); 

       end 

       for i = 2: 25  

       if RHS-0.005<=LHS(i) & LHS(i) <= RHS + 0.005 

       break 

       g=c(i) 

              end    

       end 

 

 

 

 

 

 

 

 

 

 

 


