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The Cartesian product of two spaces is called factorwise rigid if any self home-

omorphism is a product homeomorphism. In 1983, D. Bellamy and J. ÃLysko proved

that the Cartesian product of two pseudo-arcs is factorwise rigid. This argument

relies on the chainability of the pseudo-arc and therefore does not easily generalize

to the products involving pseudo-circles. In this paper the author proves that the

Cartesian product of the pseudo-arc and pseudo-circle is factorwise rigid.
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Chapter 1

Introduction

The following dissertation focuses primarily on two topological spaces. The first,

the pseudo-arc, was originally discovered by B. Knaster in [19] in 1922. In 1948, E.E.

Moise constructed a pseudo-arc as an indecomposable continuum homeomorphic to

each of its non-degenerate subcontinua [34]. He was the first person to use the term

pseudo-arc because the arc also has this property. Moise believed, but did not prove,

that the hereditarily indecomposable continuum given by B. Knaster in 1922 is a

pseudo-arc. In 1948, R.H. Bing [3] proved that Moises example is homogeneous. In

1951, Bing [4] proved that every hereditarily indecomposable chainable continuum is

a pseudo-arc and that all pseudo-arcs are homeomorphic. In an attempt to classify

homogeneous planar continua, Bing [5] gave another characterization of the pseudo-

arc in 1959 as a non-degenerate homogeneous chainable continuum. The pseudo-arc

has been the subject of many interesting research questions. The history of many

other aspects of the pseudo-arc can be found in survey papers by W. Lewis [30] and

[31].

The second space which will be discussed is the pseudo-circle. In 1951, Bing [4]

described the pseudo-circle as a planar hereditarily indecomposable circularly chain-

able continuum which separates the plane. From this definition, it is apparent that

every proper subcontinuum of the pseudo-circle is a pseudo-arc. Through a series of

papers, L. Fearnley also proved that the pseudo-circle is unique ([9], [10], [12], [13]).
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It has been shown by L. Fearnley in [11] and J. T. Rogers, Jr. in [40] that the pseudo-

circle is not homogeneous. This answered the question of whether a continuum in

which every subcontinuum was homogeneous must itself be homogeneous.

The purpose of the dissertation is to explore the factorwise rigidity on the Carte-

sian product of the pseudo-arc and pseudo-circle. Factorwise rigidity has also been

studied in spaces with a more well behaved local structure. In [25], K. Kuperberg,

W. Kuperberg, and W. Transue proved that the Cartesian product of two Menger

universal curves is factorwise rigid. This result was later extended to products whose

factors consisted of a combination of Menger universal curves and Sierpiński universal

curves by J. Phelps [37]. The question of whether pseudo-arcs have this property is

due to W. Lewis [27]. This was answered by D. Bellamy and J. ÃLysko in [8] and

extended to arbitrary products of pseudo-arcs in [7] by D. Bellamy and J. Kennedy.

As a result, it has been asked by W. Lewis in [29] if the Cartesian product of any

hereditarily indecomposable spaces has this property.

The second chapter of this dissertation contains the definitions and background

information required to understand the main result. This includes the definitions of a

pseudo-circle and a pseudo-arc. The author assume that the reader has a basic back-

ground in topology. For a more in depth introduction to topology and covering spaces

than that which is presented, the author recommends the introductory topology book

by J. Munkres [35].
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The third chapter discusses covering spaces of the pseudo-circle. Since the

pseudo-circle is neither path connected or locally path connected the usual theo-

rems regarding covering spaces do not apply. This chapter explores how a sequence

of circularly crooked chains lift to a connected covering space. This chapter offers an

alternative proof of a result due to J. Heath [16] which states that the k-fold con-

nected covering space of a pseudo-circle is a pseudo-circle. In [16], J. Heath focused

on properties of confluent maps and not crooked chains to prove this results. Using

the methods developed in the alternative proof one can also easily prove a result of D.

Bellamy and W. Lewis [6] which states that a Hausdorff two point compactification

of the infinite connected covering space of a pseudo-circle is a pseudo-arc.

The fourth chapter illustrates a creative use of the covering spaces developed in

Chapter 3. These covering spaces allow for a very short and accessible proof of a well

known result: the pseudo-circle is not homogeneous. The original proofs of this result

are due to L. Fearnley in [11] and J. T. Rogers, Jr. in [40]. The result also follows

from more general theorems by other authors in [15], [18], [28], and [38]. Chapter

4 is joint work with K. Kuperberg discovered while discussing the research involved

in this dissertation. It is originally published in the Proceedings of the American

Mathematical Society [23].

Chapter 5 contains the main result of this dissertation: the Cartesian product

of the pseudo-arc and pseudo-circle is factorwise rigid. It is known that the Carte-

sian product of two pseudo-arcs is factorwise rigid. As previously mentioned, this
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result is due to D. Bellamy and J. ÃLysko in [8]. Since the pseudo-arc and pseudo-

circle share many properties it was suspected that the result could be generalized to

include pseudo-circles. However, the proof developed by D. Bellamy and J. ÃLysko

relied on the fact that the pseudo-arc is chainable while the pseudo-circle does not

have this property. D. Bellamy and J. Kennedy later extended this result to the

arbitrary product of pseudo-arcs. This proof requires the fact that the pseudo-arc is

homogeneous. It is not known at this time if the main theorem in this chapter can

be extended to arbitrary products of pseudo-arcs and pseudo-circles.

In Chapter 6, the author includes other observations made during the research of

the main result. These observations include some results on factorwise rigidity where

one factor is hereditarily indecomposable. This chapter also includes a generalization

of a result due to K. Kuperberg in [21]. In this paper, K. Kuperberg creates homoge-

nous spaces by making certain identifications on the Menger Universal curve. These

spaces are topologically distinct from the Cartesian product of Menger manifolds.

The author explores this result using higher dimensional Menger manifolds. These

manifold are another example of how factorwise rigidity relates the study of homo-

geneous continua. The question whether every homogeneous space is bihomogeneous

was originally raised by B. Knaster approximately around 1921.

The question was restated to continua in 1930 by D. van Dantzig. The pre-

vious mentioned example by K. Kuperberg in [21] is locally connected. G. Kuper-

berg [20] constructed another in order to make an example of a homogeneous, non-

bihomogeneous Peano continuum which is both simpler and of lower dimension than
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that described by K. Kuperberg in [21]. The example constructed by G. Kuperberg

uses the notion developed in [25] that certain Cartesian products with the Menger

manifolds as one of the factors has a certain rigidity which must be preserved by home-

omorphisms. Several of these results depend on the characterization of the Menger

Curve developed by R.D. Anderson and k-dimensional Menger compacta developed

by M. Bestvina in [1] and [2], respectively. Another example was given by Minc in

[33] of a homogeneous, non-bihomogeneous continuum. However, this example is not

locally connected.
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Chapter 2

Definitions and preliminary information

All topological spaces in this dissertation will be metric spaces. It will also be

assumed that any sets are subsets of a metric space. A topological space is compact

provided that every open cover has a finite subcover. A space X is connected if X is

not the union of two disjoint sets which are both open and closed.

A continuum is a compact connected metric space. Unless specifically stated

otherwise, it will also be assumed that a continuum is non-degenerate. If A ⊂ X and

A is a continuum, A is called a subcontinuum of X. A continuum is indecomposable

if it is not the union of two proper subcontinua. A continuum is hereditarily inde-

composable if every subcontinuum is indecomposable. The following is a useful, well

known Lemma regarding hereditarily indecomposable continua:

Lemma 2.1. If X is hereditarily indecomposable and W,M are two subcontinua of

X such that W ∩M 6= ∅, then W ⊂ M or M ⊂ W .

If X is a continuum and x ∈ X, the composant of x in X is the union of all proper

subcontinua of X which contain the point x. The composant of x will be denoted by

K(x). Note that an indecomposable space has uncountably many pairwise disjoint

composants (see [26] Theorem 7, page 212.) In a indecomposable continuum, any two

points in the same composant are contained in a proper subcontinuum.
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A homeomorphism h : X × Y → X × Y is called a product homeomorphism if

h(x, y) can be written as

1. h(x, y) = (f(x), g(y)) where f : X → X and g : Y → Y are homeomorphisms

or

2. h(x, y) = (f(y), g(x)) where f : Y → X and g : X → Y are homeomorphisms.

If h is a product homeomorphism, such as Case 2, h will often be written as h = (f, g).

The Cartesian product X ×Y of two continua is called factorwise rigid provided

that if h : X×Y → X×Y is a homeomorphism, then h is a product homeomorphism.

A space is k-homogeneous for some integer k > 0 provided that given any two

collections consisting of k distinct points there is a self homeomorphism which maps

one collection onto the other. A homogeneous space is a 1-homogeneous space. The

study of k-homogeneity and factorwise rigidity are closely related. For example, a

Cartesian product which is factorwise rigid can not be k-homogeneous for any k > 1.

A chain is a finite collection of open sets U = {u1, u2, · · · um} such that uj∩uk 6= ∅

if and only if |i−j| ≤ 1. If U is a chain, then the subchain of U consisting of the links

{ui, · · · , uk} will be denoted by U(i, k). An ε-chain is a chain in which each link has

diameter less than ε. A continuum X is chainable if given any ε > 0, there exists a

ε-chain covering X. The following is a well known theorem (see, for example, section

2.5 and 12.5 of [36]).

Theorem 2.2. The following conditions are equivalent for a continuum X:

1. X is chainable.

7



2. X can be written as the inverse limit of arcs.

3. For every ε > 0, there exists an ε-map from X into an arc.

A space X is chainable between the points p and q provided that p and q are

elements of X and X is chainable in such a way that p is always in the first link and

q is always in the last link. The following is a well known Lemma:

Lemma 2.3. If X is chainable between p and q, then no proper subcontinuum of X

contains p and q.

X is said to be irreducible between the points p and q.

A chain E = {e1, e2, · · · , em} is crooked inside of the chain D = {d1, d2, · · · , dm}

if the following are true:

1. Every link of E is contained inside of a link of D and

2. If ej and ek are contained inside of dJ and dK , respectively, where |J −K| > 3

then the subchain E(j, k) can be written as the union of three proper subchains

E(j, r), E(r, s), and E(s, k) where (s − r)(k − j) > 0 and er is in the link of

D(J,K) adjacent to dK and es is in the link of D(J,K) adjacent to dJ .

This definition is due to R.H. Bing [3]. Figure 2.1 gives an example of two chains.

The first chain, D1, is the larger chain consisting of the large circular links. The

second chain, D2, is a finite covering of the arc drawn inside of D1 using connected

open sets so that D2 is contained inside of D1.
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Figure 2.1: An example of a crooked chain.

Let Z denote the integers. A circular chain U = {ui}i∈Z is a collection open sets

so that for some positive n ∈ Z, where ui = uj if and only if i mod n = j mod n

and ui ∩ uj 6= ∅ if and only if there exists a k ∈ Z so that ui = uk and |k − j| ≤ 1.

A circular ε-chain is a circular chain in which each link has diameter less than ε. A

continuum X is circularly chainable if given any ε > 0, there exists an circular ε-chain

covering X. The following theorem is well known. Again, the details can be found in

the reference book [36].

Theorem 2.4. The following conditions are equivalent for a continuum X:

1. X is circularly chainable.

2. X can be written as the inverse limit of simple closed curves.

3. For every ε > 0, there exists an ε-map from X into a simple closed curve.

The number of distinct links in a chain or circular chain U will be called the

length of U . If U is a chain or circular chain of length n, a proper subchain F of U is

a chain whose links are links of U and whose length is less than n.

Let F be a circular chain contained inside of the circular chain U where U

has length n. Suppose that F1 is a proper subchain of F so that for some fixed

9



j, F1 has a link that intersects uj and if F1 has a link which intersects um, then

j mod n ≤ m mod n. Next, suppose that F1 intersects a link uk such that if F1 has

a link which interests ul for some l this implies j mod n ≤ l mod n ≤ k mod n. If

k is the least such integer greater than j which satisfies these conditions, then F1 is

said to have span |k − j| inside of U .

The circular chain E is crooked inside the circular chain D if given any proper

subchain F of D, each chain of E contained inside of F is crooked inside of F . This

definition is also due to R.H. Bing [4]. The following illustration (Figure 2.2) gives an

example of two circular chains. The first chain, D, is represented by the large links

and the second chain, E, is a finite covering of the arc drawn inside of the picture

using connected open sets which are contained inside of the first circular chain. The

smaller chain is crooked inside of the larger chain.

In order to check that the E is crooked inside of the chain D, remove a link from

D (see Figure 2.3) to create a chain F . Then check each chain inside of E which is

contained inside of F to see if it is crooked inside of F . In the following picture, any

chain of E which passes through enough links of F to not be trivially crooked must

pass through the subchain emphasized by the red links. The chain emphasized by

the red links is crooked inside of F , therefore any subchain of E contained inside of

F is crooked inside of F .

A pseudo-arc is any non-degenerate hereditarily indecomposable chainable con-

tinuum. The reader should see Chapter 1 for more details on the history of the

10



Figure 2.2: A circular chain which is crooked inside another circular chain.

pseudo-arc. In [3], Bing described the pseudo-arc as the intersection of chains Di

between two points p and q satisfying the conditions that

1. Di+1 is crooked inside of Di

2. Di is an εi-chain

3. εi approaches zero as i increases without bound.

Through the remainder of this paper, P will be used to denote the pseudo-arc.

A pseudo-circle is a hereditarily indecomposable circularly chainable non-chainable

continuum which is emendable inside of the plane. The pseudo-circle was described

by R.H. Bing in [4] as a hereditarily indecomposable continuum which separates the
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Figure 2.3: Checking the conditions for a circular crooked chain.

plane. In terms of circular chain, Bing described this space as the intersection of

circular chains Di where

1. Di+1 is crooked inside of Di

2. Di+1 has winding number ±1

3. Di is an εi-chain

4. εi approaches zero as i increases without bound.

Throughout the paper, C will denote the pseudo-circle.

The finally chapter briefly explores Menger manifolds. Given n, let K be a PL-

manifold of dimension 2n + 1. Let X1 = K. For i > 1 define Xi to be a regular

12



neighborhood of the n-skeleton of a triangulation of Xi−1. Then µn
K = ∩iXi is called

a n-dimensional Menger manifold.

13



Chapter 3

Covering spaces of the pseudo-circle

It has been shown by J. Heath [16] that the connected k-fold covering space of a

pseudo-circle is itself a pseudo-circle. This proof involved using properties of confluent

mappings and did not focus on the lifting of circularly crooked chains. In this chapter

it will be shown that given a sequence of circular chains defining a pseudo-circle there

is a specific subsequence of circular chains such that the inverse image under a 2k-fold

covering map produces a pseudo-circle. This alternative technique used to prove the

result of J.Heath provides extra insight to covering spaces of pseudo-circles that can

be used in other applications.

3.1 The connected k-fold covering space of a pseudo-circle

Throughout this chapter, let {Di}i≥0 will be a collection of circular chains Di =

{di
j}j∈Z contained inside of a planar annulus which consists of connected open sets

satisfying the following conditions:

1. D0 contains at least 6 links

2. Di+1 is crooked inside of Di

3. Di+1 has winding number 1 inside of Di

4. d
(i+1)
0 is contained inside of di

0
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The first assumption is used to avoid trivialities. The second and third assump-

tions are typical when describing a pseudo-circle. The fourth assumption is used to

ease notation in the following proofs. The length of Di will be denoted by n(i).

Let p denote the 2-fold covering map from the annulus A onto itself. Denote

p−1(Di) by Fi = {f i
j}j∈Z and assume that Fi is enumerated so that p(f i

j) = di
j. Then

Fi is a circular chain of length 2n(i) where p(f i
j) = p(f i

k) if and only if j mod n(i) =

k mod n(i). It will be shown that in the sequence {Di}i≥0, as n grows without bound,

the span of proper subchains of Di+n becomes so large inside of Di that for some N ,

the inverse image of Di+N must be crooked inside of the inverse image of Di.

When considering the inverse image of Di+1 inside of the inverse image of Di,

there is a minimum number of links in p−1(Di) that one subchain U ⊂ p−1(Di+1)

of length n(i + 1) must intersect. The following two lemmas find this number by

constructing a specific proper subchain of Di+1 which has a large span inside of Di.

Lemma 3.1. There is a subchain V = {v1, v2, · · · , vm} of Fi+1 such that

1. V contains the link f i+1
0

2. p(V ) = {p(v1), p(v2), · · · , p(vm)} is a proper subchain of Di+1.

3. p(vi) = p(vj) if and only if i = j.

4. V has span at least 2n(i)− 3 inside of Fi.

Proof. Since Di+1 has winding number 1 inside of Di, there exists a proper subchain

Fi+1(j,m) so that 0 < j < m < n(i+1)− 1, f i+1
m intersects f i

n(i)−1, f i+1
j intersects f i

1,
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and Fi+1(j,m) is contained inside of Fi(1, n(i)−1). Since the chain p(Fi(1, n(i)−1) is

a proper subchain of Di and Fi+1(j, m) is contained inside of Fi(1, n(i)−1), the chain

Fi+1(j,m) must be crooked inside of Fi(1, n(i)− 1). This implies that Fi+1(j, m) can

be written as the union of three subchains

1. Fi+1(j, k) where f i+1
j ∩ f i

1 6= ∅ and f i+1
k ⊂ f i

n(i)−2

2. Fi+1(k, l) where f i+1
k is as above and f i+1

l ⊂ f i
2

3. Fi+1(l,m) where f i+1
l is as above and f i+1

m ∩ f i
n(i)−1 6= ∅

where 0 < j < k < l < m. Let r be an integer such that −n(i + 1) < r < 0 and

r mod n(i + 1) = l mod n(i + 1) = l.

The chain V will consist of the links Fi+1(r, k). The chain p(V ) is proper because

it does not contain each link of p(Fi+1(k, l)).

A chain of Fi which contains Fi+1(r,−1) must contain at least n(i) − 2 links.

Likewise, a chain of Fi which contains Fi+1(0, k) must contain at least n(i)− 1 links.

Therefore, V intersects every link of a subchain of Fi which contain at least 2n(i)− 3

links.

The chain V mentioned in the above proof has an additional property that will

be used in subsequent proofs. As mentioned previously, the lift of p(V ) consist of two

distinct, disjoint chains. Each of which intersects all but at most three links of Fi.

Since Fi contains at least 12 distinct links, there must be at least 6 links which both

of these chains intersect. In particular, the following corollary is true:
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Lemma 3.2. Let V be the chain described in Lemma 3.1. Then there exists a subchain

G of Di consisting of three adjacent links so that for each link g of p−1(G), both chains

of p−1(p(V )) have a link contained inside of g.

Lemma 3.3. For any l ∈ Z, there is a proper subchain V = {v1, v2, · · · , vm} of Fi+1

such that

1. V contains the link f i+1
l

2. p(V ) = {p(v1), p(v2), · · · , p(vm)} is a proper subchain of Di+1.

3. p(vj) = p(vk) if and only if j = k.

4. V has span at least 2n(i)− 3 inside of Fi.

Proof. The chains Di, Di+1, Fi and Fi+1 may be renumbered so that Lemma 3.1 may

be applied.

The following two lemmas show that one proper subchain of length n(i + 2) in

the inverse image of Di+2 must intersect every link in the inverse image of Di. This

is done by applying the previous lemma to the circular chains Di+1 and Di+2.

Lemma 3.4. There is a subchain V of Fi+2 containing the link f i+2
0 such that

1. V intersects each element of Fi

2. p(V ) = {p(v1), p(v2), · · · , p(vm)} is a proper subchain of Di+2

3. p(vj) = p(vk) if and only if j = k.

17



Proof. Let V1 be a subchain of Fi+1 as described in Lemma 3.3 chosen in such a way

that di
0 is the middle link of a chain G as described in Corollary 3.2. Next, apply

Lemma 3.1 to the link f i+2
0 and the circular chain Fi+1 to obtain a chain V which

intersects all but at most three elements of Fi+1.

Notice that since d
(i+2)
0 ⊂ di

0 and di
0 is the middle link of the chain G, the three

links which V may not intersect in Fi+1 must be contained inside of p−1(G). However,

since V must intersect the other links of both chains of p−1(p(V1)), it follows that V

must still intersect every element of Fi.

Lemma 3.5. For l ∈ Z, there is a subchain V of Fi+2 containing the link f i+2
l such

that

1. V intersects each element of Fi

2. p(V ) = {p(v1), p(v2), · · · , p(vm)} is a proper subchain of Di+2

3. p(vj) = p(vk) if and only if j = k.

Proof. The circular chains Di+1, Di+2, Fi+1, and Fi+2 may be renumbered so that

Lemma 3.4 may be applied.

The following Theorem uses the large span of proper subchains in Di+2 to show

that the inverse image of Di+3 must be crooked inside of the inverse image of Di.

Theorem 3.6. Fi+3 is crooked inside of the circular chain Fi.

Proof. Let E be a proper subchain of Fi and let G be a subchain of Fi+3 which is

contained inside of E. Let H be a subchain of Fi+2 which contains G. From Lemma
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3.5, H is contained inside of a chain in the lift of a proper subchain of Di+2 which

intersects each element of Fi. Hence G must be crooked inside of H and therefore

also crooked inside of E.

Theorem 3.7. The sequence of circular chains {F3(i)}i≥0 defines a pseudo-circle. In

particular, the connected 2-fold cover of the pseudo-circle is a pseudo-circle.

Proof. This is a consequence of Theorem 3.6.

The remaining theorems in this section are used to extend the previous result to

n-fold covering spaces for n > 2.

Theorem 3.8. If p : A → A denotes the 2k-fold covering of the annulus onto itself,

then the sequence of circular chains {F3k(i)} defines a pseudo-circle. In particular,

the connected 2k-fold covering of the pseudo-circle is a pseudo-circle.

Proof. This follows from the fact that the 2k-fold covering space is a 2-fold covering

space of the 2(k−1)-fold covering space.

This leads to the following alternative proof of J. Heath’s result originally pre-

sented in [16]:

Corollary 3.9. Let p be j-fold covering map of the annulus to itself, where 2k < j ≤

2k+1 for some k. Then for each i, there exists a n such that 3k(i) < n ≤ 3k+1(i) and

Fn is crooked inside of Fi. In particular, the j-fold connected covering space of the

pseudo-circle is a pseudo-circle.
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3.2 Additional Remarks

As in the previous section, let p : A → A be the 2-fold covering map of the

annulus onto itself. A simple example shows that given a sequence of circular chains

{Di} defining a pseudo-circle, i+1 and i+2 will not necessarily produce circular chains

whose inverse image is crooked inside of p−1(Di). In Figure 1, D0 is represented by

large circular links and has length 6. D1 consists of the smaller links. The first link of

D1 is drawn as a solid black link to easily distinguish where the circular chain begins

to repeat. D2 is not entirely graphed. It consist of a chain which uses the minimal

number of connected links in order to be crooked inside of D1 with one additional

property:

Assume that D2 is enumerate so that increasing the index corresponds to a

positive orientation inside of D1. In the figure, the small dots labeled by p, q, r, and

s are links of D2. Let s be the first link by increasing index which intersects d0
3 and

let t be the first link which intersects d0
4. Let p be the last link between 1 and t which

intersects d0
1. By the minimality of D2, this implies that 0 < s < p. The context

in which the letter p is used will easily distinguish between the link p and the map

p. Consider removing the gray link of D1 in Figure 1. In order to be crooked, the a

subchain of D2 whose first link is labeled by p and last link is labeled by s must be

able to be written as the union of three subchains of D2: One that will go from the

link p to the link q, where q is a subset of d0
2, one from the link q to link r, where r is
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a subset of d0
2, and then from link r to link s. Denote this subchain by D2(p, s). The

additional property that D2 requires is that q does not intersect d0
3.

0 1 2 3 4

4 5 6 7 8

q
s

r
p

Figure 3.1: Circular chains in the construction of a pseudo-circle
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Figure 2 shows the lift of the circular chains D0 and D1 to the 2-fold covering

space of the annulus.

0 1 2 3 4

4 5 6 7 8

8 9 10 11 12

12 13 14

p r

q

q
s

Figure 3.2: The lift of circular chains
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Notice that removing link number 11 in Figure 2 provides a proper subchain, F ,

of p−1(D0). Let G be a subchain of p−1(D2) containing the indicated lift of D2(1, s)

which also contains a link which intersects the link 10 of p−1(D0). In order to be

crooked inside of F , G would first have to travel to the 9th link of p−1(D0), then back

to the link 2, and then to the link 10. However, since D2 was chosen to used the least

amount of links possible in order to be crooked inside of D1 and q does not intersect

d0
3, it is only possible to reach the 8th link and still be able to return to link 2. This

can be done by considering the lift of D2(p, s).

Therefore, G can no be crooked inside of F and p−1(D2) is not crooked inside of

p−1(D0). This also implies that p−1(D1) is not crooked inside of p−1(D0).

3.3 The infinite, connected covering space of a pseudo-circle

The methods of this proof can also be used to provide more insight into a re-

sult due to D. Bellamy and W. Lewis in [6] which states that the Hausdorff two

point compactification of the infinite, connected covering space of the pseudo-circle

is a pseudo-arc. The proof provided by D. Bellamy and W. Lewis uses a specific

construction of the pseudo-circle which controls the span of the proper subchains of

Di+1 inside of Di. While the underlying idea of the following proof is the similar to

the original proof in [6], the author utilizes the methods developed in section 2 to

avoid a specific construction of the pseudo-circle and provide more detail to the proof

developed by Bellamy and Lewis.
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In the following, let Ã denote the universal covering space of the annulus with

covering map p and Â the two points compactification of Ã obtained by adding points

a and b. Then Ã contains an infinite, connected covering space of the pseudo-circle.

Let {Di}i≥0 be a sequence of circular chains defining a pseudo-circle satisfying the

four conditions listed in Section 2.

Theorem 3.10. The two points compactification of the infinite, connected covering

space of the pseudo-circle is a pseudo-arc.

Proof. For each i, p−1(Di) is an infinite chain consisting of infinitely many copies of

Di. Assume, without loss of generality, that proceeding through the links of p−1(Di)

in the direction of a corresponds to traveling through D(i) with a negative orientation.

Arbitrarily select a point x ∈ p−1(C) such that d0
1 contains p(x) and select a copy

of D0 in p−1(D0) which contains x in the first link. Denote this copy by E0
0 . Then

E0
−1 will consist of the copy of D0 that intersect E0

0 and travels towards a and E0
1 will

consist of the copy of D0 that intersect E0
0 and travels towards b. In general, number

the copies of D0 inductively by subtracting one while moving towards the point a and

adding one while moving towards the point b.

Let F0 be the chain from a to b whose links consist of the links of E0
0 except the

first link and E0
1 except the last two links (See Figure 3). The neighborhood of a will

consist of the union of the elements of those chains Ei where i < 0 and the first link

of E0
0 . The neighborhood of b will consist of the union of those copies of Ei where

i > 1 and the last two links of E1. Then this chain has length 2n(0)− 1, which is one

less than the length of the 2-fold cover of D0.
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a b
x

Figure 3.3: First approximation of the infinite covering space

In a similar fashion, let E1
0 be a copy of D3 contained inside of p−1(D3) whose first

link is contained inside of the first link of E0
0 . The copies of D3 will be enumerated

inductively similar to the copies of D0. Let F1 be a chain from a to b whose links

consist of the links of E1
−1 except the first link, the links of E1

0 , the links of E1
1 , and

the links of E2 except the last two links. The links of containing a and b are defined

in a similar fashion to those in F0. Applying the proof of Theorem 2, F1 is crooked

inside of the chain F0. Notice that F1 has length 4n(3)− 1 which is one less than the

length of the 4-fold covering of D3.

a b
x

Figure 3.4: Second approximation of the infinite covering space

In general, if Fi has already been constructed using p−1(Dj) for some j, then

Fi+1 will consist of 2i+1 copies of D(3i+j) selected in a similar fashion as those in F1.

Neighborhoods of a and b are also constructed in a similar fashion. Again, by the

proof of Theorem 2, Fi+1 is crooked inside of the chain Fi. Notice that Fi+1 will have

length 2(i+1)n(3i + j)− 1 which is one less than the length of the 2(i+1)-fold cover of

D(3i+j).

Since the mesh of the links of Fi goes to zero as i increases without bound, if

follows that ∩Fi is a pseudo-arc.
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Chapter 4

An application of the covering spaces of the pseudo-circle

The following work is joint work with K. Kuperberg and is originally published in

the Proceedings of the American Mathematical Society [23]. It provides an interesting

application of the infinite covering space of the pseudo-circle described in the previous

chapter. The author would like to thank D. Bellamy, W. Lewis, and J. T. Rogers for

their useful comments on the results presented in this chapter.

Let A be an annulus and Ã be the universal covering space of A with projection

p. Let Â be the two-point compactification of Ã and denote the two added points of

the compactification by a and b. Throughout this chapter, consider the pseudo-circle

C to be essentially embedded inside of the annulus A. As in the previous Chapter,

the infinite connected covering space of C contained in Ã will be denoted by C̃.

4.1 Lifting homeomorphisms to the covering space

Since the pseudo-circle is neither path connected nor locally path connected, the

usually Theorems regarding liftings of continuous maps to covering spaces do not

apply. In this section we will show how using covering spaces of nice spaces such as

the annulus can be used to derive similar lifting lemmas for complicated spaces. This

idea will also be used in the following Chapter.
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Lemma 4.1. Let f : C → C be a homeomorphism. For any x̃ ∈ C̃ and ỹ ∈

p−1(f(p(x̃))) there is a map f̃ such that the diagram

f̃

C̃ −→ C̃

p ↓ ↓ p

C −→ C

f

commutes and f̃(x) = y.

Proof. Since the annulus is an Absolute Neighborhood Retract, f can be extended to

a continuous map F : U → A, where U is a closed, connected annular neighborhood

of the pseudo-circle. Let r be a retraction of the annulus onto U . Then F ◦ r is a

map from the annulus into itself. Since F ◦ r agrees with f on the pseudo-circle C,

the map F ◦ r induces an isomorphism of the fundamental group of A. Therefore,

a lift of F ◦ r exists which maps Ã into Ã (see Theorem 16.3 in [17].) Denote the

restriction of F ◦ r to p−1(C) by f̃ . The commutativity of the diagram holds because

F ◦ r agrees with f on the pseudo-circle.

Let P = C̃ ∪ {a, b}, a two-point compactification p−1(C). As mentioned in

Theorem 3.10, this compactification is a pseudo-arc. Then f̃ extends uniquely to a

map H from P to P .

Lemma 4.2. H is a homeomorphism from P to P .
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Proof. Since Ã is the universal covering of A and F ◦ r induces an isomorphism of

the fundamental group, the lift of F ◦ r maps fibers bijectively onto fibers (see for

example Theorem 54.4 of [35]). Therefore f̃ maps fibers bijectively onto fibers. Since

f is a homeomorphism and the diagram in Lemma 4.1 commutes, it follows that f̃ is a

bijection. Therefore, the unique extension is also a bijection. Since H is a continuous

bijection between continua, H is a homeomorphism.

It is important to note that the homeomorphism in Lemma 4.2 has the property

that the set {a, b} is invariant.

4.2 Proof of non-homogeneity of the pseudo-circle

Theorem 4.3. The pseudo-circle is not homogeneous.

Proof. Let K(a) and K(b) be the composants of a and b, respectively, in the pseudo-

arc P . Let x̃ and ỹ be two points in P such that x̃ ∈ (K(a) ∪ K(b)) − {a, b} and

ỹ ∈ P−(K(a)∪K(b)). If C were homogeneous, then there would be a homeomorphism

h of the pseudo-circle such that h(x) = y. Therefore, the induced map H as described

in Lemma 4.2 maps the set p−1(x) onto p−1(y) and leaves the set {a, b} invariant.

Since C̃ is contained inside of the universal covering of the annulus, given any two

points in p−1(y) there exists a deck transformation which maps one onto the other.

This deck transformation extends uniquely to a homeomorphism of P onto P and

leaves the set {a, b} invariant. In particular, there is a homeomorphism which maps

x̃ onto ỹ and leaves the set {a, b} invariant.
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However, if the set {a, b} is invariant under the homeomorphism, then K(a) ∪

K(b) would also be invariant. Therefore, this is a contradiction.

The use of a deck transformation induced by the universal covering space of the

annulus can be used to show another interesting result related to the structure of the

fibers of the covering space of the pseudo-circle.

Theorem 4.4. If for some x ∈ C, the composant K(a) intersects the fiber p−1(x),

then it contains p−1(x).

Proof. If y ∈ p−1(x) ∩K(a), then by the definition of a composant, there is a proper

subcontinuum W of P that contains both a and y. Let f be a deck transformation such

that p−1(x) = {fn(y)}n∈Z, Z being the set of integers. Denote by F the extension

of f to P . The set Wn = F n(W ) is a continuum containing a and fn(y). Thus

p−1(x) ⊂ K(a).
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Chapter 5

The cartesian product of the pseudo-arc and pseudo-circle is

factorwise rigid

In the following, the projection from a Cartesian product A×B to the first factor

space will be denoted by π1. Likewise, π2 will denote the projection to the second

factor space. Ȟ1(Y ) will denote the first Čech homology group of the space Y .

Let G be a relation on P ×P which collapses the fiber P ×{α} to a single point

and P×{β} to a single point and consider the quotient space (P×P )/G with quotient

map q. It is useful to notice that if W ⊂ (P × P )/G such that q−1(W ) intersects

P × {α} (or P × {β}), then q−1(W ) contains P × {α} (or P × {β}.)

Lemma 5.1. If B ⊂ (P × P )/G is a continuum, then q−1(B) is a continuum.

Proof. If B does not intersect {q(P×{α}), q(P×{β})}, then q−1(B) is homeomorphic

to B and hence a continuum.

Suppose that B contains q(P ×{α}) and assume that q−1(B) is not a continuum.

In particular, since q is continuous, this means that q−1(B) is not connected. Then

q−1(B) can be written as two disjoint sets which are both closed and open in q−1(B).

Let q−1(B) = U ∪ V where U ∩ V = ∅. Assume that P × {α} is contained inside of

U . Then, since V does not intersect P × {α}, the sets q(U) and q(V ) are disjoint so

that B is not connected.

A similar argument hold if q−1(B) contains P × {β} or both of the fibers.
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Let X = P × C. Then X can be essentially embedded inside of the cartesian

product, Y , of an annulus A and the disk D2. Let Ỹ denote the universal covering

space of Y , which contains an infinite, connected covering space X̃ of X. Ŷ will

denote the two points compactification of Ỹ by adding points ā and b̄. Likewise, X̂

will denote the two points compactification of X̃ contained inside of Ŷ .

Lemma 5.2. (P × P )/G is homeomorphic to X̂.

Proof. In [6], D. Bellamy and W. Lewis have shown that two point compactification

of the infinite covering space, C̃, of the pseudo-circle obtained by unwrapping the

pseudo-circle is a pseudo-arc. This implies that there is a homeomorphism f1 from the

covering space C̃ to P−{α, β}. Then the map h1(x, y) = (f1(x), idP (y)), where idP is

the identity map on P , is a homeomorphism from X̃ to (P×P )−(P×{α}∪P×{β}).

Then this map extends uniquely to a homeomorphism H : X̂ → (P × P )/G.

Let g : X → X be a homeomorphism. Then there exists a lift g̃ such that the

following diagram commutes:

g̃

X̃ → X̃

↓ p ↓ p

X → X

g

The argument that such a lift exists is similar the lifting argument used by

K. Kuperberg and the author in the [23]. First note that since A is an absolute
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neighborhood retract, g extends to a continuous map f from a closed, connected

neighborhood of X homeomorphic to A × D2 into A × D2. Then A × D2 can be

retracted to this neighborhood of X. The composition of these maps has a lift, the

appropriate restriction of this lift provides the lift of g.

Then g̃ extends uniquely to a map H : X̂ → X̂. This map is a continuous

bijection and hence a homeomorphism. Any such homeomorphism has the property

that the set {a, b} is invariant. In particular, since X̂ is homeomorphic to (P ×P )/G,

the homeomorphism g : X → X uniquely induces a self homeomorphism of (P×P )/G.

In this section, it will be shown that if h : (P × P )/G → (P × P )/G is such

an induced homeomorphism then h has the additional properties that for any points

a ∈ P

1. [q−1 ◦ h ◦ q](P × {a}) = P × {b} for some b ∈ P and

2. [q−1 ◦ h ◦ q]({a} × P ) = (P × {α}) ∪ (P × {β}) ∪ ({b} × P ) for some b ∈ P .

Throughout this section Φ will denote the set (P × {α}) ∪ (P × {β}). Notice

that q(Φ) is an invariant set under the induced homeomorphism h.

The following Lemma in [8] will be needed:

Lemma 5.3. [Bellamy and ÃLysko, [8], Lemma 6] Suppose X and Y are indecompos-

able continua, and a ∈ X and h : X×Y → X×Y is a homeomorphism. Then either

π1(h({a} × Y )) = X or π2(h({a} × Y ) = Y .

The following Theorem of J. T. Rogers, Jr. will also be used:
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Theorem 5.4. [Rogers, [39], Theorem 14] The pseudo-circle is not the continuous

image of the pseudo-arc.

Lemma 5.5. Let a ∈ C. Then π1(g(P × {a})) = P .

Proof. Notice that π2 ◦ g(P × {a})) is a continuous mapping of a pseudo-arc into a

pseudo-circle. From Theorem 5.4, the pseudo-circle cannot be the continuous image

of a pseudo-arc. Therefore that π2 ◦ g(P ×{a})) cannot be onto. Thus, from Lemma

5.3, it follows that π1(g(P × {a})) = P .

Lemma 5.6. Let a ∈ P . Then π1(g({a} × C)) = C.

Proof. Since Ȟ1(P ) is trivial, the restriction g|{a}×C : {a} × C → P × C induces

an isomorphism between the groups Ȟ1({a} × C) and Ȟ1(P × C). Likewise, since

Ȟ1(P ) is trivial, π2 : P × C → C induces an isomorphism between Ȟ1(P × C)

and Ȟ1(C). Therefore, the composition of these two maps induces an isomorphism

between Ȟ1({a}×C) and Ȟ1(C). In particular, this implies that π2 ◦g({a}×C must

be onto.

Since the homeomorphism h : (P×P )/G → (P×P )/G is uniquely determined by

the homeomorphism g : P ×C → P ×C, the following two corollaries are immediate

from the previous two lemmas:

Corollary 5.7. [π1 ◦ q−1 ◦ h ◦ q](P × {a}) = P for every a ∈ P .

Corollary 5.8. For every point a ∈ P , [πi ◦ q−1 ◦ h ◦ q]({a} × P ) = P for i ∈ {1, 2}.
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For the following proofs it will be necessary to adapt a Lemma of Bellamy and

ÃLysko in [8]:

Lemma 5.9. [Bellamy and ÃLysko, [8], Corollary 3] Let X and Y be chainable continua

and suppose W and M are subcontinua of X × Y such that π1(W ) ⊂ π1(M) while

π2(M) ⊂ π2(W ). Then W ∩M 6= ∅.

Lemma 5.10. Suppose that W and M are subcontinua of (P × P )/G such that

π1 ◦ q−1(W ) ⊂ π1 ◦ q−1(M) and π2 ◦ q−1(M) ⊂ π2 ◦ q−1(W ), then M ∩N 6= ∅.

Proof. Since the inverses image under q of a continuum is a continuum, the inverse

image satisfies the conditions of Lemma 5.9.

With the previous Lemmas in mind, it will now be proven that the induced

homeomorphism h : (P × P )/G → (P × P )/G has the additional properties that for

any points p ∈ P

1. [q−1 ◦ h ◦ q](P × {p}) = P × {a} for some a ∈ P and

2. [q−1 ◦ h ◦ q]({p} × P ) = Φ ∪ ({b} × P ) for some b ∈ P .

Theorem 5.11. For every p ∈ P , [q−1 ◦ h ◦ q](P × {p}) = P × {b} for some b ∈ P .

Proof. If p ∈ {α, β}, the result follows because the set q(Φ) is invariant under the

homeomorphism h.

If p /∈ {α, β}, then the observations of the previous Lemmas allow the use of the

proof of the main Theorem in [8] developed by Bellamy and ÃLysko. Suppose that
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π2(q
−1 ◦ h ◦ q(P × {p})) is non-degenerate. Let Z denote the set of non-negative

integers and let < Wn >n∈Z be a sequence of non-degenerate, decreasing subcontinua

of P such that ∩Wn = {p}. Since this is a decreasing sequence, assume without loss

of generality that Wn ∩ {α, β} = ∅ for each n. Let a ∈ P and notice that

⋂
({a} ×Wn) = {(a, p)} ⊂ P × {p}

therefore

⋂
[π2 ◦ q−1 ◦ h ◦ q]({a} ×Wn) =

[π2 ◦ q−1 ◦ h ◦ q](a, p) ∈ [π2 ◦ q−1 ◦ h ◦ q](P × {p})

In particular, [π2 ◦ q−1 ◦ h ◦ q](a, p) is an element of

[π2 ◦ q−1 ◦ h ◦ q](P × {p}) ∩ [π2 ◦ q−1 ◦ h ◦ q]({a} ×Wn)

for each n. Since P is hereditarily indecomposable, this implies that for each n either

1. [π2 ◦ q−1 ◦ h ◦ q]({a} ×Wn) ⊂ [π2 ◦ q−1 ◦ h ◦ q](P × {p}) or

2. [π2 ◦ q−1 ◦ h ◦ q](P × {p}) ⊂ [π2 ◦ q−1 ◦ h ◦ q]({a} ×Wn).
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Since ∩([π2 ◦ q−1 ◦ h ◦ q]({a}×Wn)) is degenerate, condition (1) can not be true

for each n. Therefore, there exists some N such that [π2 ◦ q−1 ◦ h ◦ q]({a} ×WN) ⊂

[π2 ◦ q−1 ◦ h ◦ q](P × {p}).

Let x1 ∈ WN such that x1 6= p. From the above remarks, [π2 ◦ q−1 ◦ h ◦ q](P ×

{x1}) ∩ [π2 ◦ q−1 ◦ h ◦ q](P × {p}) 6= ∅.

This implies that either

1. [π2 ◦ q−1 ◦ h ◦ q](P × {x1}) ⊂ [π2 ◦ q−1 ◦ h ◦ q](P × {p}) or

2. [π2 ◦ q−1 ◦ h ◦ q](P × {p}) ⊂ [π2 ◦ q−1 ◦ h ◦ q](P × {x1})

We will prove the first case, the proof of the second case is similar. Notice from

Lemma 5.7, [π1 ◦ q−1 ◦h ◦ q](P ×{x1}) = P = [π1 ◦ q−1 ◦h ◦ q](P ×{p}), therefore the

conditions of Lemma 5.10 are satisfied. Hence [h◦ q](P ×{x1})∩ [h◦ q](P ×{p}) 6= ∅.

However, this is a contradiction since [q−1 ◦ h ◦ q] restricted to (P × P ) − Φ is a

homeomorphism.

Theorem 5.12. [q−1 ◦ h ◦ q]({a} × P ) = Φ ∪ ({b} × P ) for some b ∈ P .

Proof. Let x ∈ P such that K(x) does not contain the set {α, β}. Such a point

exists because an indecomposable continuum has uncountably many pairwise disjoint

composants (see, for example, K. Kuratowski, [26], Theorems 5 and 7, p. 212). It

will first be shown that [q−1 ◦ h ◦ q]({a} ×K(x)) ⊂ {b} × P for some b ∈ P .

Let P1 be a non-degenerate subcontinuum of K(x). Note that P1 is a pseudo-

arc and consider the subcontinuum of P × P1 of P × P . From Lemma 5.11, for
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every point x1 ∈ P1, the map [q−1 ◦ h ◦ q](P × {x1}) is mapped homeomorphically

onto P × {x2} for some x2 ∈ P . Note that x2 can not equal α or β. In particular,

[q−1 ◦ h ◦ q](P × P1) is mapped bijectively onto P × P2 where P2 is a proper, non-

degenerate subcontinuum of P and therefore a pseudo-arc. Similar to the proof of

Theorem 5.11, the proof of the main result by Bellamy and ÃLysko in [8] can be

applied to show that [q−1 ◦ h ◦ q] restricted to P ×P1 also preserves horizontal fibers.

In particular, [q−1 ◦ h ◦ q]({a} × P1) ⊂ {b} × P for some b ∈ P .

Let p ∈ P and consider {p} × P1. Let < Wn >n∈Z be sequence of decreasing,

non-degenerate subcontinua of P such that ∩Wn = {p}. Next, Let a ∈ P1 and notice

that

∩(Wn × {a}) = {(p, a)} ∈ {p} × P1

In particular, ∩[π1 ◦ q−1 ◦ h ◦ q](Wn × {a}) = [π1 ◦ q−1 ◦ h ◦ q](p, a) is an element

of [π1 ◦ q−1 ◦ h ◦ q]({p} × P1).

Therefore,

[π1 ◦ q−1 ◦ h ◦ q](Wn × {a}) ∩ [π1 ◦ q−1 ◦ h ◦ q]({p} × P1) 6= ∅

for each n. This implies that for each n, either

1. [π1 ◦ q−1 ◦ h ◦ q](Wn × {a}) ⊂ [π1 ◦ q−1 ◦ h ◦ q]({p} × P1) or

2. [π1 ◦ q−1 ◦ h ◦ q]({p} × P1) ⊂ [π1 ◦ q−1 ◦ h ◦ q](Wn × {a}).
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However, since ∩([π1 ◦ q−1 ◦ h ◦ q](Wn × {a})) is degenerate, condition 2 cannot

hold for every n. Thus, there exists some N so that [π1 ◦ q−1 ◦ h ◦ q](WN × {a}) ⊂

[π1 ◦ q−1 ◦ h ◦ q]({p} × P1).

Let x1 ∈ WN such that x1 6= p. From the above remarks, [π1 ◦ q−1 ◦h ◦ q]({x1}×

P1)∩[π1◦q−1◦h◦q]({p}×P1) 6= ∅. Since the pseudo-arc is hereditarily indecomposable

this implies that either

1. [π1 ◦ q−1 ◦ h ◦ q]({x1} × P1) ⊂ [π1 ◦ q−1 ◦ h ◦ q]({p} × P1) or

2. [π1 ◦ q−1 ◦ h ◦ q]({p} × P1) ⊂ [π1 ◦ q−1 ◦ h ◦ q]({x1} × P1).

The first case will be proven, the second case is similar. Since [π2 ◦ q−1 ◦ h ◦

q]({x1} × P1) = P2 = [π2 ◦ q−1 ◦ h ◦ q]({p} × P1), the conditions of Lemma 5.10

are satisfied. Therefore, [h ◦ q]({x1} × P1) ∩ [h ◦ q]({p} × P1) 6= ∅. This contradicts

the fact that [q−1 ◦ h ◦ q] restricted to (P × P )− Φ is a homeomorphism. Therefore

[q−1 ◦ h ◦ q]({a} × P1) ⊂ {b} × P for some b ∈ P .

Next, notice that since P is hereditarily indecomposable any two points in K(x)

can be joined by a proper subcontinuum. Therefore, [q−1◦h◦q]({a}×K(x)) ⊂ {b}×P .

However, note that h ◦ q({a} × P ) = h ◦ q(cl({a} × K(x)), since composants

in an indecomposable space are dense. From the previous paragraphs, this implies

that h ◦ q({a} × P ) = q({b} × P ). Therefore it follows that [q−1 ◦ h ◦ q]({a} × P ) =

({b} × P ) ∪ Φ.
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5.1 Factorwise rigidity of P × C

As in the previous section, let X = P × C and let X̂ will denote the two points

compactification of the infinite covering space X̃ of X.

Theorem 5.13. The Cartesian product P × C is factorwise rigid.

Proof. Let h : X → X be a homeomorphism. Then there exists a lift h̃ such that the

following diagram commutes:

h̃

X̃ → X̃

↓ p ↓ p

X → X

h

Then h̃ extends uniquely to a map H : X̂ → X̂. This map is a continuous

bijection and hence a homeomorphism. Any such homeomorphism has the property

that the set {a, b} is invariant. Note that X̂ is homeomorphic to (P × P )/G and

therefore the results of the previous section apply. In particular, for x ∈ C, h(P ×

{x}) = p ◦ H ◦ p−1(P × {x}). However, from Theorem 5.11, H ◦ p−1(P × {x}) =

p−1(P × {y}) for some y ∈ C. Hence h(P × {x}) = P × {y}.

Likewise, from Theorem 5.12, it follows that h({r}×C) = p◦H ◦p−1({r}×C) =

{s} × C for some s ∈ P .

Therefore, the cartesian product P × C is factorwise rigid.
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Chapter 6

Other notes on factorwise rigidity

The following chapter consist of observations made during the research of the

main result in this dissertation. As in the previous chapter, if X × Y is the cartesian

product of two spaces, π1 : X×Y → X will denote the projection onto the first factor

space. Likewise, π2 will denote the projection onto the second factor space.

6.1 Factorwise rigidity of a cartesian product with one factor space hered-

itarily indecomposable

This sections deals with the Cartesian product where one factor is hereditarily

indecomposable and the other factor space contains arc components. For example,

this section shows that if S is the solenoid and C is the pseudo-circle, the S × C is

factorwise rigid with respect to S.

Theorem 6.1. If X is arcwise connected and Y is hereditarily indecomposable, then

any homeomorphism h : X × Y → X × Y preserves X-fibers (i.e. is factorwise rigid

with respect to X).

Proof. Let b ∈ Y and let (m1, b) ∈ X × {b}. Let b1 be the second coordinate of

h(m1, b). Suppose that there exists a point (m2, b) ∈ X × {b} such that the second

coordinate of h(m2, b) is b2 and that b1 6= b2. Since X is arcwise connected, there

exists an arc Am1,m2 from (m1, b) to (m2, b), so that h(Am1,m2) is an arc from h(m1, b)
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to h(m2, b). By assumption π2(h(Am1,m2)) is a non-trivial continuous image of an arc,

and hence contains an arc. However, since Y is hereditarily indecomposable, this is

a contradiction.

Remark 6.2. The same proof shows that if X contains any arc A and b ∈ Y , then

h(A× {b}) ⊂ X × {c} for some c ∈ Y .

Theorem 6.3. If a space X has a dense arc component and Y is hereditarily inde-

composable, then X × Y is factorwise rigid with respect to X.

Proof. Let h : X × Y → X × Y be a homeomorphism and let a ∈ Y . Let R ⊂ X be

a dense arc component of X. Then R is arcwise connected, hence by Theorem 6.1, it

follows that h(R×{a}) = R×{b} ⊂ X×{b} for some b ∈ X2. Since X×{b} is closed

and h a homeomorphism, it follows that h(X × {a}) = h(cl(R× {a}) ⊂ X × {b}.

Applying the result to h−1(X × {b}), it follows that h−1(X × {b}) ⊂ X × {a}.

Therefore, h maps X × {a} one-to-one and onto X × {b}.

6.2 Homogeneous fiber bundles of Menger Manifolds

The following section is another application of how factorwise rigidity relates to

the study of homogeneous continua. Let n ≥ 1 be an integer. A point of µn
(S2n×I) will

be denoted (x1, x2, . . . , x2n+1, y) where (x1, x2, . . . , x2n+1) ∈ S2n and y ∈ I.

Let α ≥ 1 be an integer and let W be a compact, connected manifold of dimension

2α + 1. A point of µα
W × µn

(S2n×I) will be denoted (a, (x1, x2, . . . , x2n+1, y)), where
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a ∈ µα
W and (x1, x2, . . . , x2n+1, y) ∈ µn

(S2n×I). For c ∈ [0, 1], let Ac be the subset of

µn
(S2n×I) consisting of the collection of points of the form (x1, x2, . . . , x2n+1, c).

Let G denote the quotient space obtained from µn
(S2n×I) by identifying the points

(x1, x2, . . . , x2n+1, 0) ∈ A0 with (x1, x2, . . . , x2n+1, 1) ∈ A1. The point in G correspond-

ing to (x1, x2, . . . , x2n+1, y) ∈ µn
(S2n×I)−A1 will be denoted (x1, x2, . . . , x2n+1, y)G. The

space G is homeomorphic to µn
S2n+1 . The subsets of G corresponding to Ac will be

denoted Ãc.

Let h : µα
W → µα

W be a fixed point free action of period k > 1. The quotient

space obtained from µα
W×µn

(S2n×I) by identifying a point (a, (x1, x2, . . . , x2n+1, 0)) with

(h(a), (x1, x2, . . . , x2n+1, 1)) is a fiber bundle determined by the monodromy h whose

base space is homeomorphic to µn
S2n+1 and whose fiber is µα

W . Denote this space by

µα
W ×h µn

S2n+1 . A point of µα
W ×h µn

S2n+1 will be denoted (a, (x1, x2, . . . , x2n+1, y)).

6.2.1 Homogeneity of the fiber bundles

For each c ∈ [0, 1), define an embedding ψc : µα
W × (G− Ãc) → µα

W ×h µn
S2n+1 by

ψc(a, (x1, x2, . . . , x2n+1, y)G) =





(a, (x1, x2, . . . , x2n+1, y)) if y < c

(h−1(a), (x1, x2, . . . , x2n+1, y)) if y > c

Denote the image of ψc by Im(ψc).
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Theorem 6.4. The space µα
W ×h µn

S2n+1 is homogeneous.

Proof. Suppose that

p = ( pa, p(x1, x2, . . . , x2n+1, yp)) and

q = ( qa, q(x1, x2, . . . , x2n+1, yq))

are two distinct points of µα
W ×h µn

S2n+1 . Then there exists a point c ∈ [0, 1) such that

yp and yq are both less than c. In particular, both p and q are in Im(ψc).

Then G− Ãc is connected. Since G is strongly locally homogeneous, there exists

a homeomorphism g : G → G such that

g( p(x1, x2, . . . , x2n+1, yp)G) = q(x1, x2, . . . , x2n+1, yq)G and

g((x1, x2, . . . , x2n+1, y)G) = (x1, x2, . . . , x2n+1, y)G

for (x1, x2, . . . , x2n+1, y)G ∈ Ãc.

Define ϕ : µα
W ×G → µα

W ×G by

ϕ(a, (x1, x2, . . . , x2n+1, y)G) = (a, g((x1, x2, . . . , x2n, y)G)).

Let h1 : µα
W ×h µn

S2n+1 → µα
W ×h µn

S2n+1 be define by
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h1(x) =





x if y < c

ψc ◦ ϕ ◦ ψ−1
c (x) if y > c

Then h1(p) is equal to

1. ( pa, q(x1, x2, . . . , x2n+1, yq)) or

2. ( h( pa), q(x1, x2, . . . , x2n+1, yq)) or

3. (h−1( pa), q(x1, x2, . . . , x2n+1, yq)).

Let U be a finite open over of connected sets such that if U ∈ U , then the

collection {hi(U)}i=1,2,..k is pairwise disjoint. For each U ∈ U , the set

{(a, (x1, x2, . . . , x2n+1, y)) : a ∈
k⋃

i=1

hi(U)}

is homeomorphic to U × µn
S2n+1 .

It is sufficient to show that for any U ∈ U and any two points s and t in

U , that there is a homeomorphism h2 : µα
W ×h µn

S2n+1 → µα
W ×h µn

S2n+1 such that

h2(s, q(x1, x2, . . . , x2n+1, yq)) = (t, q(x1, x2, . . . , x2n+1, yq)).

Let ϕ2 : µα
W → µα

W be a homeomorphism such that ϕ2(s) = t and ϕ2(x) = x for

all x /∈ U . Next, define

h2(a, (x1, x2, . . . , x2n+1, y)) =
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(a, (x1, x2, . . . , x2n+1, y)) if a /∈ ∪k
i=1 hi(U)

(hi ◦ ϕ2 ◦ h−i(a), (x1, x2, . . . , x2n+1, y)) if a ∈ hi(U)

Then h2 has the desired properties.

It will now be shown that the fiber bundles created using the above method are

not homeomorphic to the trivial fiber bundle. The following lemma of K. Kuperberg

appears in [21] as Lemma 1 and will be useful for the proof.

Lemma 6.5. Let X = X1 × X2, where Xi is homeomorphic to µn for some n and

i = 1, 2. Let Ui ⊂ Xi be a connected open set for i = 1, 2. If φ : U1 × U2 → X is an

open embedding, then

1. φ(x, y) = (φ1(x), φ2(y)), where φ1 : U1 → X1 and φ2 : U2 → X2, or

2. φ(x, y) = (φ1(y), φ2(x)), where φ1 : U2 → X1 and φ2 : U1 → X2.

Let p = ( pa, p(x1, x2, . . . , x2n+1, y)) be a point of µα
W ×h µn

S2n+1 . Define the sets

Mp = {(a, (x1, x2, . . . , x2n+1, y)) ∈ µα
W ×h µn

S2n+1 : a = hi( pa) for i = 1, .., k}

Np =
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{(a, (x1, x2, . . . , x2n+1, y)) ∈ µα
W ×h µn

S2n+1 : (x1, x2, . . . , x2n+1, y) =

p(x1, x2, . . . , x2n+1, y)}

Op = Mp ∩Np

Note that Op contains k elements.

The following Lemma appears in [21] as Lemma 1 where the outline for a proof

is mentioned. For completeness, a detailed proof is provided and follows the proof

given of Lemma 5 in [22], in which K. Kuperberg proved the result for the specific

case α = n = 1.

Lemma 6.6. If φ : µα
W ×h µn

S2n+1 → µα
W ×h µn

S2n+1 is a homeomorphism, then either

1. φ(Mp) = Mφ(p) and φ(Np) = Nφ(p) for all p ∈ µα
W ×h µn

S2n+1, or

2. φ(Mp) = Nφ(p) and φ(Np) = Mφ(p) for all p ∈ µα
W ×h µn

S2n+1.

Proof. Since every point of µα
W ×h µn

S2n+1 has a neighborhood homeomorphic to an

open subset of µα
W × µn

S2n+1 , every point of µα
W ×h µn

S2n+1 has a closed neighborhood

homeomorphic to a set of the form X1 × X2 where X1 is homeomorphic to µα and

46



X2 is homeomorphic to µn. Moreover, for every x1 ∈ X1 and x2 ∈ X2, if follows that

{x1} ×X2 and X1 × {x2} are in some set Mp or Np.

Since µα
W ×h µn

S2n+1 is compact, there exists a finite collection {V1, . . . , Vk} of

neighborhoods of the above form such that µα
W ×h µn

S2n+1 ⊂ ∪k
i=1int(Vi).

Likewise, there exists a finite collection of connected open subsets {W1, . . . , Wl}

such that for each j ∈ {1, . . . , l}, there exists an i where h(Wj) ⊂ Vi.

By 6.5, if p ∈ µα
W ×h µn

S2n+1 , for every j ∈ {1, . . . , l} there exists an i such that

φ(Np ∩Wj) ⊂ Nφ(p) ∩ Vi ⊂ Nφ(p) or φ(Np ∩Wj) ⊂ Mφ(p) ∩ Vi ⊂ Mφ(p).

Therefore, φ(Np) ⊂ Nφ(p) or φ(Np) ⊂ Mφ(p). In either case, equality is obtained

by applying the result to φ−1.

Since µα
W ×h µn

S2n+1 is connected, if the above holds for one point it must hold

for each point in the space. A similar argument holds for Mp. Therefore, since the

map is one-to-one, the result follows.

The following is a corollary of the above lemma:

Corollary 6.7. If φ : µα
W ×h µn

S2n+1 → µα
W ×h µn

S2n+1 is a homeomorphism, then

φ(Op) = Op or φ(Op) ∩Op = ∅.

Theorem 6.8. If h is a fixed action free homeomorphism of period k > 1, then

µα
W ×h µn

S2n+1 is not homeomorphic to µα
W × µn

S2n+1.

Proof. Let {xj : j = 1, . . . , k} be a finite collection of distinct points in µα
W × µn

S2n+1 .

Let pi, i = 1, 2 denote the projection from µα
W × µn

S2n+1 to the first and second factor

space, respectively. By assumption, at least one of the sets {p1(xj) : j = 1, . . . , k} and
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{p2(xj) : j = 1, . . . , k} contains more than one element. Without loss of generality,

assume that it is {p1(xj) : j = 1, . . . , k}. Let p1(xn) and p1(xm) be two distinct

element, and let U be an open set about p1(xn) which does not contain p1(xm) or

any other distinct elements of {p1(xj) : j = 1, . . . , k}. Let y be a point of U other

than p1(xn) and let h : µα
W → µα

W be a homeomorphism such that h(p1(xm)) = y and

h(x) = x for all x /∈ U . Define H : µα
W ×µn

S2n+1 → µα
W ×µn

S2n+1 by H(x, y) = (h(x), y).

Then {H(xj) : j = 1, . . . , k} 6= {xj : j = 1, . . . , k} and {H(xj) : j = 1, . . . , k} ∩ {xj :

j = 1, . . . , k} 6= ∅. Therefore, by 6.7, µα
W × µn

S2n+1 can not be homeomorphic to

µα
W ×h µn

S2n+1 .
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