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This paper is a vast survey of inverse limit spaces. After defining an inverse limit on

continuous bonding functions, we prove important theorems about inverse limits, provide

examples, and explore various generalizations of traditional inverse limits. In particular,

we present original proofs of theorems given by Ingram and Mahavier in “Inverse Limits of

Upper Semi-Continuous Set Valued Functions.” We then use this new sort of inverse limit

to enliven the notion of a “two-sided” inverse limit; finally, we use inverse limits on u.s.c.

functions to produce an indecomposable continuum.
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Chapter 1

Introduction

An inverse limit space is a powerful topological tool. Inverse limits not only help us

generate complicated continua with interesting properties, but also allow us to represent

such continua in a simple and elegant way. Now, a new generalization of inverse limit

spaces has opened up more possibilities for topologists to explore. As we will see, this new

generalization even breathes new life into a different kind of inverse limit.

This paper provides a vast survey of inverse limits. In Chapter 2, we list basic def-

initions and theorems that will serve as background material. In Chapter 3, we begin by

defining an inverse limit with continuous bonding maps and proving some important pre-

liminary theorems. We demonstrate the power of inverse limits by using them to prove the

formidable Tychonoff Theorem; then, we use inverse limits to represent some complicated

continua in a simple, straightforward way. Next, in Chapter 4, we consider a generalization

of inverse limits from Ingram and Mahavier’s “Inverse Limits of Upper Semi-Continuous

Set Valued Functions” [1]. After giving original proofs of the theorems from that paper, in

Chapter 5 we show how this new notion of inverse limit can revitalize the formerly redun-

dant notion of the “two-sided” inverse limit. Finally, in Chapter 6, we use inverse limits

with upper semi-continuous bonding functions to produce an indecomposable continuum,

and raise a few questions open for further research.
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Chapter 2

Background Definitions

and Theorems

Let X be a set and let T be a collection of subsets of X with the following properties:

1. X ∈ T ;

2. ∅ ∈ T ;

3. If {Oi}i∈µ is a collection of members of T , then
⋃

i∈µ Oi ∈ T ;

4. If {Oi}n
i=1 is a finite collection of members of T , then

⋂n
i=1 Oi ∈ T .

Then the pair (X, T ) is called a topological space with topology T . Such a topological

space will often be referred to simply as X when the associated topology T is understood.

The members of T are called open sets.

A subset K of a topological space X is closed if X −K is open.

Suppose M is a subset of a topological space X. A point p ∈ X is a limit point of M

if every open set containing p contains a point in M different from p.

Suppose M is a subset of a topological space X. The closure of M (denoted M) is the

union of M with the set of all limit points of M .

Suppose a collection B of open sets of a space X satisfies the following property:
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If x ∈ X and O is an open set containing x, then there exists a member b of B such

that x ∈ b and b ⊆ O.

Then B is a basis for the topology on X and a member b of B is called a basic open

set of X.

Suppose B is a collection of subsets of a set X such that

1. If x ∈ X, there exists some b ∈ B with x ∈ b.

2. If b1 and b2 are members of B with x ∈ b1 ∩ b2, then there exists some set b3 in B

with x ∈ b3 ⊆ (b1 ∩ b2).

Then the collection T = {⋃ R|R ⊂ B} is a topology for X, and B is a basis for this

topology. It is said that the topology T is generated by the basis B.

A topological space X is called Hausdorff if for every pair of distinct points p, q ∈ X,

there exist disjoint open sets Op and Oq containing p and q respectively.

A space X is called regular if for every closed set H ⊂ X and point p ∈ X not in H,

there exist disjoint open sets OH and Op containing H and p, respectively.

A space X is called normal if for every pair of disjoint closed sets H and K in X, there

exist disjoint open sets OH and OK containing H and K, respectively.

If f : X → Y is a function from the set X to Y , and U is a subset of X, we define

f(U) = {f(u)| u ∈ U}.
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Let X and Y be topological spaces and let f : X → Y be a function from X to Y .

Then f is said to be continuous at the point x if, whenever V is an open set in Y containing

f(x), there exists an open set U in X containing x such that f(U) ⊆ V . If f is continuous

at each point x ∈ X, we say f is continuous.

A function f : X → Y is said to be onto if for each y ∈ Y , there exists some x ∈ X

with f(x) = y.

A function f : X → Y is said to be 1-1 if for any pair of distinct points p, q in X,

f(p) 6= f(q).

If f : X → Y is a function and y ∈ Y , then the preimage of y (written as f−1(y)) is

{x ∈ X| f(x) = y}.

Suppose f : X → Y is a 1-1 onto function. Then the function f−1 : Y → X given by

f−1(y) = x (where x is the unique point in X with the property that f(x) = y) is called

the inverse of f .

If X and Y are topological spaces and f : X → Y is 1-1, onto, continous, and has a

continous inverse, then f is called a homeomorphism and the spaces X and Y are said to

be homeomorphic.
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Let X be a topological space. A collection B of open sets of X is a local basis at the

point x ∈ X if

1. For each member b ∈ B, x ∈ b;

2. If O is an open set in X containing x, then there exists a member b of B with

x ∈ b ⊆ O.

A space X is called first countable if for each x ∈ X, there exists a countable local

basis at x.

A space X is called second countable if X has a basis that is countable.

Let X be a topological space and let M ⊆ X. A collection of sets {Oi}i∈µ in X is said

to be an open cover of M if each Oi is open in X and M ⊆ ⋃
i∈µ Oi.

If {Oi}i∈µ is a cover of X, γ ⊆ µ, and {Oi}i∈γ is also a cover of X, then {Oi}i∈γ is

called a subcover of the original cover {Oi}i∈µ. A subcover consisting of only finitely many

members is called a finite subcover.

A space X is compact if for every open cover {Oi}i∈µ of X, there exists a finite subcover

of X. (I.e., {Oij}n
j=1 for some natural number n.)

A collection of subsets {Gi}i∈µ of a space X is called a monotonic collection if for each

pair of members Gj , Gk in the collection, either Gj ⊆ Gk or Gk ⊆ Gj .
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A space X is perfectly compact if whenever {Gi}i∈µ is a monotonic collection of subsets

of X, there exists a point p in X that is either a point or a limit point of each Gi.

For each i, 1 ≤ i ≤ n, let Xi be a topological space. Define X =
∏n

i=1 Xi = X1×X2×

· · · ×Xn to be the set {(x1, x2, . . . , xn)| xi ∈ Xi for 1 ≤ i ≤ n}. Define a topology on X as

follows: a basic open set containing (x1, x2, . . . , xn) is given by
∏n

i=1 Oi, where (for each i)

Oi is open in Xi and xi ∈ Oi.

Then X together with the topology generated by this basis is called a (finite) product

space.

For each positive integer i, let Xi be a topological space. Define X =
∏∞

i=1 Xi to be

the set {(x1, x2, . . .)| xi ∈ Xi for each positive integer i}. Define a topology on X as follows:

a basic open set containing (x1, x2, . . .) is given by
∏∞

i=1 Oi, where (for each i) Oi is open

in Xi, xi ∈ Oi, and for some positive integer N , On = Xn if n ≥ N .

Then X together with the topology generated by this basis is called a (countably

infinite) product space.

For each i in some arbitrary index set µ, let Xi be a topological space. Define X =
∏

i∈µ Xi to be the set {(xi)i∈µ| xi ∈ Xi for each i}. Define a topology on X as follows: a

basic open set containing (xi)i∈µ is given by
∏

i∈µ Oi, where (for each i) Oi is open in Xi,

xi ∈ Oi, and for all but finitely many i, Oi = Xi.
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Then X together with the topology generated by this basis may be called a product

space on the index set µ.

Let X =
∏

i∈µ Xi be a product space (with index set µ either finite or infinite). Then

the function πj : X → Xj defined by πj((xi)i∈µ) = xj is called the projection map on the

jth coordinate.

Suppose X is a topological space with topology T and S ⊂ X. Then the set S together

with the topology T̂ = {S ∩ O| O ∈ T} is called a subspace of X, where T̂ is the subspace

topology.

Let X be a set. Then the relation < on X is a linear ordering on X (and X is said to

be ordered with respect to <) if for any a, b, c ∈ X,

1. If a 6= b, either a < b or b < a,

2. If a < b then b 6< a,

3. If a < b and b < c, then a < c.

Let X be a set with a linear ordering <. Let B be the collection of all subsets of X of

the following form:

1. {x| x < p} for some p ∈ X,

2. {x| p < x} for some p ∈ X,

3. {x| p < x < q} for some p,q ∈ X, p < q.

7



Then the topology generated by B is called the order topology on X.

Let X and Y be two spaces with linear orderings <X and <Y , respectively, so that

X and Y both have their own respective order topologies. Suppose there exists a function

φ : X → Y so that if a, b ∈ X, then a <X b iff φ(a) <Y φ(b). Then φ is an order

isomorphism. If φ is onto, then X and Y are said to be order isomorphic.

Let X be a set with a linear ordering <. Then a subset S of X is called an initial

segment of X if there exists some element p ∈ X so that S = {x ∈ X| x < p}.

Let X be a set with a linear ordering <. If S is a subset of X, then S is said to have

a least element p if p ∈ S and for each x ∈ S, if p 6= x, p < x.

Let X be a set with a linear ordering <. Then the set X is said to be well-ordered if

every subset of X has a least element.

Let µ be a well-ordered index set with h < k ∈ µ. Then the function f :
∏

i∈µ, i≤k Xi →
∏

i∈µ, i≤h Xi given by f((xi)i≤k) = (xi)i≤h is called a generalized projection.

Suppose X is a topological space and d : X × X → R is a function satisfying the

following properties (for all x, y, z ∈ X):

1. d(x, y) ≥ 0, and d(x, y) = 0 iff x = y.

2. d(x, y) = d(y, x).
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3. d(x, z) ≤ d(x, y) + d(y, z).

Then the function d is said to be a metric on X. For a given p ∈ X and ε > 0, let

B(p, ε) = {x ∈ X | d(x, p) < ε}. If the collection {B(p, ε) | p ∈ X, ε > 0} is a basis for the

space X, then X is said to be a metric space.

Let X be a topological space. Two subsets H and K of X are called mutually separated

if neither set contains a point or a limit point of the other.

If X is a topological space and M ⊆ X, then M is connected if M is not the union of

two mutually separated non-empty subsets of X.

A topological space X is a continuum if X is non-empty, compact, and connected.

A continuum that is Hausdorff (but not necessarily metric) is called a Hausdorff

continuum.

A continuum that is metric is called a metric continuum.

If X is a continuum and A, a subset of X, is also a continuum, then A is called a

subcontinuum of X. If A is a proper subset of X, then A is a proper subcontinuum.

A point p of a space X is called an isolated point if there exists an open set O ⊆ X

such that O = {p}.

Let X be a connected set. If X − {p} is not connected, then p is a cut point of X.
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A continuum with exactly 2 non-cut points is called an arc.

A triod is a union of three arcs whose intersection is exactly one point.

A fan is a union of infinitely many arcs, all of which have exactly one point in common.

Let X be a topological space. Suppose that A, a subset of X, is an arc with the

property that whenever O ⊆ X is an open set with O ∩ A 6= ∅, there exists some point

p ∈ O with p /∈ A. Then A is called a limit arc.

Background Theorems

Most of the following basic theorems may be found in [5]. The proofs of these theorems

are omitted, but may be found in one or more of [2], [3], and [4].

2.1. Let X be a topological space with M ⊆ X. If M is compact, M is perfectly

compact.

2.2. Let X be a topological space with M ⊆ X. If M is closed and perfectly compact,

M is compact.

2.3. A closed subset of a compact space is compact.

10



2.4. Projection maps are continuous.

2.5. The continuous image of a compact set is compact.

2.6. Any finite product of compact sets is compact.

2.7. Let B be a basis for a topological space X. Then every open set of X is a union

of members of B.

2.8. The following are equivalent:

i. f : X → Y is a continuous function from topological space X to topological space

Y .

ii. If O is a (basic) open set in Y , then f−1(O) is open in X.

2.9. Suppose X and Y are both well-ordered with respect to the order relations <X

and <Y , respectively. Then exactly one of the following is true:

i. X and Y are order isomorphic.

ii. X is order isomorphic to an initial segment of Y .

iii. Y is order isomorphic to an initial segment of X.

2.10. Suppose µ is a well-ordered index set with h < k ∈ µ. Then the generalized

projection f :
∏

i∈µ, i≤k Xi →
∏

i∈µ, i≤h Xi given by f((xi)i≤k) = (xi)i≤h is continuous.

11



2.11. If X is a compact Hausdorff space, then X is regular.

2.12. If X is a compact Hausdorff space, then X is normal.

2.13. If X is regular, then X is Hausdorff.

2.14. If X is normal, then X is regular.

2.15. The unit interval [0, 1] is a compact subset of the real line.

2.16. Suppose M is a subset of a topological space X. If M is closed and not connected,

then M is the union of two disjoint closed sets H and K.

2.17. The continuous image of a connected set is connected.

2.18. The continuous image of a continuum is a continuum.

2.19. Suppose Xi is a connected for each positive integer i. Then
∏n

i=1 Xi is connected

for each positive integer n. Moreover,
∏∞

i=1 Xi is connected.

2.20. If X = A ∪ B, a union of non-empty closed sets, and there exists a connected

subset of X that intersects both A and B, then A and B are not mutually separated.

12



2.21. The common part of a monotonic collection of continua is a continuum.
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Chapter 3

Inverse Limits with

Continuous Bonding Maps

Suppose that, for each natural number i, Xi is a topological space and fi is a continuous

function from Xi+1 to Xi. Let X = lim←−{Xi, fi}∞i=1 be the set of all sequences x = (xi)∞i=1,

where xi ∈ Xi and xi = fi(xi+1) for all i. If Oi is a subset of Xi, define
←−
Oi = {x ∈

X| xi ∈ Oi}. Then we say X is an inverse limit space and a basis for the topology on X

is {←−O | O is open in some Xi}. The Xi’s are called the factor spaces of X, and the fi’s are

continuous bonding maps.

In this section, after we prove a few preliminary results, we will use inverse limits to

give a straightforward proof of the formidable Tychonoff Theorem. Then we will see how

some complicated topological spaces may be represented easily as an inverse limit with a

single bonding map f .

We begin with some basic results about inverse limit spaces. First, it is of interest to

determine whether a given topological property is taken on by X if each factor space Xi

has that property.

Theorem 3.1. If X = lim←−{Xi, fi}∞i=1 is an inverse limit space and each Xi is Haus-

dorff, then X is Hausdorff.

14



Proof: Suppose Xi is Hausdorff for all i, where p = (pi)∞i=1 and q = (qi)∞i=1 are distinct

elements of X. Then for some i, pi 6= qi. Since Xi is Hausdorff, there exist disjoint open

subsets Op and Oq of Xi containing pi and qi, respectively. Thus,
←−
Op and

←−
Oq are disjoint

open sets in X containing p and q, respectively. So X is Hausdorff. •

It is also easily shown that

a) if each Xi is regular, X is regular;

b) if each Xi is first countable, X is first countable;

c) if each Xi is second countable, X is second countable.

However, X does not always inherit the topological properties possessed by each Xi.

For example, if each Xi is non-empty, it need not follow that X is non-empty. Consider

X = lim←−{Xi, fi}∞i=1 where Xi is the open interval (0, 1
i ) in the real line, and fi : Xi+1 → Xi

is the identity map. Each Xi is non-empty, but X = ∅.

Again suppose X = lim←−{Xi, fi}∞i=1 is an inverse limit space. If i, j are positive integers

with i < j, define f j
i : Xj → Xi by f j

i = fi ◦ fi+1 ◦ · · · ◦ fj−1.

Theorem 3.2. Suppose X = lim←−{Xi, fi}∞i=1 is an inverse limit space, {ni}∞i=1 is an

increasing sequence of positive numbers, gi = f
ni+1
ni for each i, and Y = lim←−{Xni , gi}∞i=1.

Then X is homeomorphic to Y .

15



Proof: Define h : X → Y by h((xi)∞i=1) = (xni)
∞
i=1. We need to show that h is a

homeomorphism.

h is easily seen to be onto. To show that h is 1-1, let p = (pi)∞i=1 and q = (qi)∞i=1

be distinct points in X. (So pj 6= qj for some positive integer j.) Suppose by way of

contradiction that h(p) = h(q), i.e., (pni)
∞
i=1 = (qni)

∞
i=1. If nk is the first ni with ni > j,

then pj = fnk
j (pnk

) = fnk
j (qnk

) = qj . This is a contradiction, so h is 1-1.

To show h is continuous, let
←−
O be basic open in Y . So O is open in some Xnj , where

nj ∈ {ni}∞i=1. Thus, h−1(
←−
O ) =

←−
O , which is open in X, so h is continuous.

To show h−1 is continuous, suppose
←−
O is basic open in X containing (xi)∞i=1. If O

is open in some Xni , then (h−1)−1(
←−
O ) = h(

←−
O ) =

←−
O is open in Y . On the other hand,

suppose O is open in some Xj , where j 6= ni for all i. Then if nk is the first ni with ni > j,

A = (fnk
j )−1(O) is an open set in Xnk

with
←−
A containing (xni)

∞
i=1; moreover, h−1(

←−
A ) ⊆ ←−

O .

So, in either case, h−1 is continuous.

Thus, h is a homeomorphism and the proof is complete. •

Theorem 3.3. Let X = lim←−{Xi, fi}∞i=1 be an inverse limit space. If there is a natural

number N so that fn is an onto homeomorphism for each n ≥ N , then X is homeomorphic

to XN .

Proof: Define a function h : X → XN by h((xi)∞i=1) = xN . We must show that h is a

homeomorphism.

i) h is onto:

16



Because fn is an onto homeomorphism for n ≥ N , for each xN ∈ XN and each n > N ,

(fn
N )−1(xN ) = xn for some xn ∈ Xn. Also, for each n < N , fN

n (xN ) = xn for some xn ∈ Xn.

It follows that for each xN ∈ XN , there exists a sequence x = (x1, x2, . . . , xN , xN+1, . . .) ∈ X

with h(x) = xN . So h is onto.

ii) h is 1-1:

Suppose h(x) = h(y); we must show that x = y. Since h(x) = h(y), we know xN = yN ,

so that xn = fN
n (xN ) = fN

n (yN ) = yn for all n < N . Moreover, since fn is a homeomorphism

for n ≥ N , xn = (fn
N )−1(xN ) = (fn

N )−1(yN ) = yn for all n > N .

So xn = yn for each positive integer n. That is, x = y, and h is 1-1.

iii) h is continuous:

Let O be open in XN . Then h−1(O) =
←−
O , which is open in X; thus, h is continuous.

iv) h−1 is continuous:

Let
←−
O be a basic open set in X containing x = (xi)∞i=1. We must show there exists

an open set G in XN containing h(x) = xN with h−1(G) ⊂ ←−
O . If O ⊂ XN , then clearly

h−1(O) ⊂ ←−
O , and xN ∈ O, so G = O. Similarly, if O ⊂ Xn with n > N , fn

N (O) = G is open

in XN containing xN , and h−1(G) ⊂ ←−
O . Finally, if O ⊂ Xn with n < N , then (since fN

n is

continuous, and O contains xn) there is an open G ⊂ XN containing xN with fN
n (G) ⊂ O,

so that
←−
G ⊆ ←−

O . It follows that h−1(G) ⊂ ←−
O .

All cases are accounted for, so h−1 is continuous.

17



Therefore, h is a homeomorphism and the proof is complete. •

It may be shown that, if each Xi is compact, the inverse limit space X = lim←−{Xi, fi}∞i=1

is a closed subspace of the product space
∏∞

i=1 Xi. Thus, by the Tychonoff Theorem, if each

Xi is compact, then X (a closed subspace of a compact space) is compact. However, we

will prove directly that an inverse limit on compact spaces is compact (Theorem 3.4); we

will then use this result to prove the Tychonoff Theorem for countable products
∏∞

i=1 Xi.

Finally, we will generalize the notion of inverse limit in order to prove the Tychonoff Theorem

in its full generality.

Theorem 3.4. Let X = lim←−{Xi, fi}∞i=1 be an inverse limit space with Xi non-empty

and compact for each i. Then X is non-empty and compact.

Proof: Since each Xi is compact, each Xi is perfectly compact. We intend to show that

X is perfectly compact.

Let {Gi}i∈µ be a monotonic collection of non-empty subsets of X. (Need to show:

there is a point p = (pi)∞i=1 in X such that p is either a point or limit point of every Gi.)

Define Gij = πj(Gi).

18



Since {Gi1}i∈µ is a monotonic collection of non-empty subsets in X1, a perfectly com-

pact space, there exists p1 ∈
⋂

i∈µ Gi1, i.e., a point p1 in X1 that is a point or limit point of

every Gi1. For convenience, let us say f1 = f .

(We need to show that there exists some element in f−1(p1) that is also in
⋂

i∈µ Gi2.)

Because π1(Gi) = f ◦ π2(Gi), clearly Gi1 = f(Gi2) for each i. Thus,

p1 ∈
⋂

i∈µ Gi1 =
⋂

i∈µ f(Gi2) ⊆
⋂

i∈µ f(Gi2).

But the continuous image of Gi2, a compact set, is compact (and hence, closed); there-

fore:

p1 ∈
⋂

i∈µ Gi1 =
⋂

i∈µ f(Gi2) ⊆
⋂

i∈µ f(Gi2) =
⋂

i∈µ f(Gi2).

(We need to show that
⋂

i∈µ f(Gi2) ⊆ f(
⋂

i∈µ Gi2).)

Let a ∈ ⋂
i∈µ f(Gi2). Since f(

⋂
i∈µ Gi2) is closed, it will suffice to show that a is a

point or limit point of f(
⋂

i∈µ Gi2).

Proof by Contradiction: Suppose O ⊆ X1 is an open set containing a but missing

f(
⋂

i∈µ Gi2). Then f−1(O) is open, contains f−1(a), and misses
⋂

i∈µ Gi2. In particular,

f−1(a) misses
⋂

i∈µ Gi2, i.e., f−1(a) ∩ (
⋂

i∈µ Gi2) = ∅.
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Claim: There exists some Gj2 for which f−1(a) ∩Gj2 = ∅.

Justification: Suppose not. Then f−1(a) ∩Gi2 6= ∅ for all i.

Thus, since {f−1(a) ∩ Gi2}i∈µ is a monotonic collection of non-empty closed sets, by

perfect compactness, we have that
⋂

i∈µ(f−1(a) ∩ Gi2) 6= ∅. However, by set theory, we

have
⋂

i∈µ(f−1(a) ∩Gi2) = f−1(a) ∩ (
⋂

i∈µ Gi2), so that f−1(a) ∩ (
⋂

i∈µ Gi2) 6= ∅. This is a

contradiction.

So, there exists some Gj2 for which f−1(a) ∩ Gj2 = ∅. But a ∈ ⋂
i∈µ f(Gi2), so

a ∈ f(Gi2) for all i. That means for each i, there exists yi ∈ f−1(a) such that yi ∈ Gi2.

In particular, for j, there exists some yj ∈ f−1(a) such that yj ∈ Gj2. But f(yj) = a,

so f−1(a) ∩Gj2 6= ∅. (Contradiction.)

Thus, if a ∈ ⋂
i∈µ f(Gi2), then a ∈ f(

⋂
i∈µ Gi2). That is,

⋂
i∈µ f(Gi2) ⊆ f(

⋂
i∈µ Gi2),

and that means
⋂

i∈µ Gi1 ⊆ f(
⋂

i∈µ Gi2).

So, since there exists some point p1 ∈
⋂

i∈µ Gi1, there exists some p2 ∈
⋂

i∈µ Gi2 with

f(p2) = f1(p2) = p1. The same argument shows that there is a point p3 ∈
⋂

i∈µ Gi3 with

f2(p3) = p2, etc.
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It is therefore easy to see that (p1, p2, p3, . . .) is a point in X that is a point or limit

point of each Gi. Thus, X is non-empty and perfectly compact. Since X is closed in itself

and perfectly compact, X is compact. This completes the proof. •

Theorem 3.5. Suppose X =
∏∞

i=1 Xi is a product space, Yn =
∏n

i=1 Xi, and fn :

Yn+1 → Yn is the continuous function defined by fn(x1, x2, . . . , xn+1) = (x1, x2, . . . , xn).

Then Y = lim←−{Yi, fi}∞i=1 is homeomorphic to X.

Proof: Let F : Y → X be defined by

F ((x1), (x1, x2), (x1, x2, x3), . . . , (x1, x2, x3, . . . , xn), . . .) = (x1, x2, x3, . . . , xn, . . .).

Clearly F is 1-1 and onto; now we must show F is continuous. Let O =
∏∞

i=1 Oi

be basic open in X, so that for some positive integer k, Oi = Xi for all i > k. Then

F−1(O) = {((x1), (x1, x2), (x1, x2, x3), . . .) ∈ Y | xi ∈ Oi for 1 ≤ i ≤ k}, i.e., the set of all

points in Y whose kth coordinate (x1, x2, . . . , xk) lies in
∏k

i=1 Oi. Since
∏k

i=1 Oi is open in

Yk, F−1(O) =
←−−−−−∏k

i=1 Oi is open in Y , and F is continuous.

To show F−1 is continuous at a given point x = (x1, x2, x3, . . .) in X, let
←−
O be basic

open in Y (where O is open in some Yk) so that F−1(x) ∈ ←−
O . Since O is open in Yk,

there exists a basic open set
∏k

i=1 Oi in Yk that is a subset of O and contains the point

(x1, x2, . . . , xk). It follows that (
∏k

i=1 Oi) × (
∏∞

i=k+1 Xi), which is open in X, contains x.

However, F−1[(
∏k

i=1 Oi)× (
∏∞

i=k+1 Xi)] ⊂ ←−
O ; F−1 is therefore continuous.
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So F is a homeomorphism. •

Tychonoff Theorem for Countable Products. Let X =
∏∞

i=1 Xi be a topological

product space with Xi compact for each i. Then X is compact.

Proof: By Theorem 3.5, if Yn =
∏n

i=1 Xi, Y = lim←−{Yi, fi}∞i=1 is homeomorphic to X.

Any finite product of compact spaces is compact, so each Yi is compact; thus, by Theorem

3.4, Y is compact. It follows that X is compact also. •

Thus, we have used inverse limits to prove the Tychonoff Theorem for countable prod-

ucts, i.e., that a product of countably many compact spaces is compact. We will now

introduce a more general form of inverse limit that, among other things, will allow us to

prove the general Tychonoff Theorem, i.e., that any product of compact spaces is compact.

A directed set I is a set with a partial order < such that for each pair α, β ∈ I, there

exists some γ ∈ I such that α < γ and β < γ. Suppose that for each i ∈ I, Xi is a

topological space; also suppose there exists a collection of functions {f j
i }i<j such that if

i < j < k then f j
i ◦ fk

j = fk
i . Define X = lim←−{Xi, f

j
i }i<j∈I to be the collection of all points

(xi)i∈I ∈
∏

i∈I Xi that satisfy fk
j (xk) = xj for all j, k (with j < k) in I. As before, if Oi is a

subset of Xi, define
←−
Oi = {x ∈ X| xi ∈ Oi}. Then X = lim←−{Xi, f

j
i }i<j∈I is an inverse limit

space on the directed set I, and a basis for the topology on X is {←−O | O is open in some Xi}.
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Theorem 3.6. Let X = lim←−{Xi, f
k
j }i∈I, j<k∈I be an inverse limit space on the directed

set I, with fk
j continuous for all j, k ∈ I, j < k. If each Xi is compact, then X is compact.

Proof: Following the strategy of Theorem 3.4, we will show that X is perfectly compact:

Let {Gα}α∈µ be a monotonic collection of non-empty subsets of X. We must show that
⋂

α∈µ Gα 6= ∅.

If the directed set I is order isomorphic with the natural numbers, then the proof

of Theorem 3.4 shows how to obtain a point (pi)i∈I ∈
⋂

α∈µ Gα. However, if I is order

isomorphic to some subset Φ of the ordinals containing (at least) one limit ordinal, we

must use transfinite induction. Assume that all entries of the point (pi)i∈I have been

defined up to but not including the kth entry, so that, if i, j < k, pi ∈
⋂

α∈µ πi(Gα) and

f j
i (pj) = pi. Now we must show how to find a kth entry pk with the needed properties,

namely, pk ∈
⋂

α∈µ πk(Gα) and fk
i (pk) = pi for all i < k.

If the kth entry of I corresponds to a non-limit ordinal in Φ, then k has an immediate

predecessor j in I, and pj has already been defined. Clearly the same argument given in

the proof of Theorem 3.4 (i.e., the argument that finds p2 given p1) suffices here to find pk

given pj .

However, suppose the kth entry of I corresponds to a limit ordinal β in Φ. By the

argument given in Theorem 3.4, for each i < k ∈ I, the set (fk
i )−1(pi) ∩

⋂
α∈µ πk(Gα) 6= ∅.
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We note that, if i < j, (fk
j )−1(pj) ⊆ (fk

i )−1(pi). Thus, {(fk
i )−1(pi)}i<k is a monotonic

collection of non-empty closed subsets of Xk. Moreover, for each i < k, fk
i (

⋂
α∈µ πk(Gα))

contains pi, so that (fk
i )−1(pi)∩

⋂
α∈µ πk(Gα) is closed and non-empty. Thus, {(fk

i )−1(pi)∩
⋂

α∈µ πk(Gα)}i<k is a monotonic collection of non-empty closed subsets of Xk. Since Xk is

perfectly compact, there is a point pk ∈ Xk that lies in each set in this collection. Thus,

the kth entry of (pi)i∈I has been defined, and (by transfinite induction) the needed point

(pi)i∈I exists. That means X is perfectly compact and hence, compact. •

It follows from Theorem 3.6 that such an inverse limit (with continuous bonding maps)

on a directed set I of any size is compact, provided that each factor space Xi is compact.

Now, after a few more lemmas, we will be ready to prove the general Tychonoff Theorem.

Lemma 3.7. Let I be a well-ordered directed set. For each i ∈ I, define Yi =
∏

j≤i Xj.

If k > h, let fk
h : Yk → Yh be the continuous function defined by fk

h ((xi)i≤k) = (xi)i≤h.

Then the inverse limit Y = lim←−{Yi, f
k
j }i∈I, j<k∈I is homeomorphic to X =

∏
i∈I Xi.

Proof: Let F : Y → X be defined by F (
∏

α∈I(xi)i≤α) = (xi)i∈I . We need to show that

F is a homeomorphism.

Clearly F is onto and 1-1; we must show F is continuous.
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Let O be basic open in X, so that O =
∏

i∈I Oi where Oi is open in Xi for each

i, and Oi = Xi for all but finitely many i. Rename those finitely many open sets as

Oi1 , Oi2 , . . . , Oin ; thus, for j = 1, 2, . . . , n, Oij ( Xij .

Then F−1(O) =
⋂n

j=1

←−−−−−−−−−−−−−−−−−−−{x ∈ Yij |xij ∈ Oij ( Xij} is an open set in Y . So F is continuous.

To show F−1 is continuous, let
←−
O be basic open in Y (so that O is open in Yα for some

α ∈ I). Since O is open in Yα, there exists a basic open set
∏

i≤α Oi in Yα that is a subset

of O. It follows that F−1[(
∏

i≤α Oi)× (
∏

i>α Xi)] ⊂ ←−
O , and F−1 is continuous. Thus, F−1

is a homeomorphism. •

Lemma 3.8. Let I be an arbitrary index set, and let Ĩ be the set I with a well-ordering

placed upon it. Then X =
∏

i∈I Xi is homeomorphic to X̃ =
∏

i∈Ĩ Xi.

Proof: Let F : X → X̃ be defined by F ((xi)i∈I) = (xi)i∈Ĩ . Clearly F is onto and 1-1;

it remains to show that F and F−1 are continuous.

Let O be basic open in X̃, so that O =
∏

i∈Ĩ Oi where Oi = Xi for all but finitely many

i. Then F−1(O) =
∏

i∈I Oi, which is open in X. So F is continuous, and the argument is

easily altered to show that F−1 is also continuous. So F is a homeomorphism. •

With these two lemmas in hand, we are finally prepared to prove the general Tychonoff

Theorem.
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Tychonoff Theorem: Suppose for each i in some index set I, Xi is a compact topo-

logical space. Then
∏

i∈I Xi is compact.

Proof: The result is already known if the index set I is finite, so assume I is infinite.

By Lemma 3.8, without loss of generality we may assume that the index set I is well-

ordered. Since I is easily re-ordered in a way that keeps I well-ordered without having a

last element, we may also assume without loss of generality that I is a directed set. We will

use transfinite induction: Suppose that, for any given α ∈ I,
∏

i≤α Xi is compact. We will

show that X =
∏

i∈I Xi is compact.

For each i ∈ I, let Yi =
∏

j≤i Xj . Define fk
h for h < k ∈ I as in Lemma 3.7. Then

Y = lim←−{Yi, f
k
h}i∈I, h<k∈I is homeomorphic to X, by Lemma 3.7. Since, by the induction

hypothesis, Yi is compact for each i ∈ I, by Theorem 3.6, Y is compact. Thus, X is also

compact and the proof is complete. •.

We conclude Chapter 3 with two examples of complex topological spaces that may be

easily characterized using an inverse limit.

1) For each i, let Xi = [0, 1]. Suppose f : [0, 1] → [0, 1] is given by

f(t) =





3
2 t, 0 ≤ t ≤ 2

3

5
3 − t, 2

3 ≤ t ≤ 1




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Let fi = f for each i. Then lim←−{Xi, fi}∞i=1 = lim←−{[0, 1], f}∞i=1 is homeomorphic to the

topologist’s sine curve, i.e., {(x, sin( 1
x)) | x ∈ [−1, 0)} ∪ {(0, x) | x ∈ [−1, 1]}.

2) For each i, let Xi = [0, 1]. Suppose f : [0, 1] → [0, 1] is given by

f(t) =





2t, 0 ≤ t ≤ 1
2

2− 2t, 1
2 ≤ t ≤ 1





Let fi = f for each i. Then lim←−{Xi, fi}∞i=1 = lim←−{[0, 1], f}∞i=1 is homeomorphic to the

Knaster continuum, a.k.a., “the bucket handle.”
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Chapter 4

Inverse Limits of Upper Semi-Continuous

Set Valued Functions

Suppose X and Y are compact Hausdorff spaces, and define 2Y to be the set of all

non-empty compact subsets of Y . A function f : X → 2Y is called upper semi-continuous

(u.s.c.) if for any x ∈ X and open V in Y containing f(x), there exists an open U in X

containing x so that f(u) ⊂ V for all u ∈ U . Upper semi-continuity is a generalization

of continuity; hence, using upper semi-continuous bonding functions instead of continuous

bonding maps provides us with a more generalized notion of an inverse limit.

Suppose that, for each positive integer i, Xi is a compact Hausdorff space and fi :

Xi+1 → 2Xi is an upper semi-continuous function. We define lim←−{Xi, fi}∞i=1 to be the set

of all points in
∏∞

i=1 Xi with xi ∈ fi(xi+1) for all i. (For convenience, we shall abbreviate

lim←−{Xi, fi}∞i=1 by lim←− f.) Then we say lim←− f is an inverse limit space with u.s.c. bonding

functions, and a basis for the topology on lim←− f is {O ∩ lim←− f | O is basic open in
∏∞

i=1 Xi}.

As in Chapter 3, if Oi is a subset of Xi, we define
←−
Oi = {x ∈ lim←− f | xi ∈ Oi}; if Oi is open

in Xi, then
←−
Oi is open in lim←− f.

Remark: However, unlike the inverse limit spaces seen in Chapter 3, in general, the

collection {←−O | O is open in some Xi} is not a basis for lim←− f. An example is given in the

appendix to explain why this is so.∗
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In [1], Ingram and Mahavier not only prove generalizations of the sorts of theorems

already seen in Chapter 3, but also provide examples to show when such results do not

generalize. In this chapter, I give my own proofs of their theorems and explain their coun-

terexamples in detail. (Note that the theorems are numbered here in a way that is consistent

with the original numbering in [1]; for example, Theorem 2.1 from [1] has been relabeled

4.2.1, etc.)

First, Ingram and Mahavier introduce the useful notion of the graph of an upper semi-

continuous function. If X and Y are compact Hausdorff spaces and f : X → 2Y is u.s.c.,

the graph of f (abbreviated G(f)) is the set {(x, y) ∈ X × Y | y ∈ f(x)}.

Theorem 4.2.1. Suppose each of X and Y is a compact Hausdorff space and M is a

subset of X × Y such that if x is in X then there is a point y in Y such that (x, y) is in

M . Then M is closed if and only if there is an upper semi-continuous function f : X → 2Y

such that M = G(f).

Proof: Assume the hypothesis.

(⇐) Suppose there is an upper semi-continuous function f : X → 2Y such that M =

G(f). We need to show that M is closed.
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Proof by contradiction: Let (x, y) be a limit point of M with (x, y) /∈ M . We know

the set f(x) is compact, and hence closed; moreover, {x} × f(x) is a subset of M . Because

(x, y) /∈ M , we have y /∈ f(x).

Y is a compact Hausdorff space, so Y is regular. Thus, there exist disjoint open O1,

O2 in Y with f(x) ⊂ O1 and y ∈ O2. O1 contains f(x), so by u.s.c. there exists an open U

in X containing x so that f(U) ⊂ O1.

U × O2 is open in X × Y and contains (x, y), a limit point of M , so U × O2 must

contain some other point (x0, y0) ∈ M . We note that not every point in U ×O2 can have x

as its first coordinate, for otherwise, U × O2 would have no points in M . (For, each point

would be of form (x, z) where z /∈ f(x), so that (x, z) /∈ G(f) = M .) Thus, there is some

(x0, y0) ∈ U ×O2 with x0 6= x.

However, x0 ∈ U , so f(x0) ⊆ O1. But (x0, y0) ∈ M , so y0 ∈ f(x0). It follows that a

point in f(x0) (namely, y0) lies in O2, which was disjoint from O1. This is a contradiction,

so M is closed.

(⇒) Suppose that M is closed. We must show that there is an upper semi-continuous

function f : X → 2Y such that M = G(f).

For each x ∈ X, consider {x} × Y . This set is closed in X × Y , so that Kx =

({x}× Y ) ∩ M is also closed and non-empty. A closed subset of X × Y is compact, so Kx

is compact. Thus, π2(Kx) is compact in Y .

30



Define f : X → 2Y by f(x) = π2(Kx); we must show f is an upper semi-continuous

function.

Let V be open in Y with π2(Kx) = f(x) ⊆ V . We need to show there exists an open

set U in X with x ∈ U such that f(U) ⊂ V .

Proof by contradiction: Suppose no such U exists. Let {uα}α∈µ be the set of all points

uα in X with f(uα) 6⊂ V . Then every open set in X containing x must contain infinitely

many uα’s. (For, suppose not. Then some open O containing x contains only finitely

many uα’s, say, uα1 , uα2 , . . . , uαk
. Thus, because X is regular, there exists an open set R

containing x that misses (X −O) ∪ {uαi}k
i=1, and hence, misses all uα’s.)

Claim: the collection of points W = {(uα, yα)|α ∈ µ, yα ∈ f(uα), yα /∈ V } has a limit

point (x, z) with z /∈ V .

For, suppose not. Then {x} × (Y − V ) and W are disjoint closed sets in X × Y . So,

since X×Y is normal, there exist disjoint open O1 and O2 containing {x}× (Y −V ) and W

respectively. Hence, for each (x, z) ∈ {x}×(Y −V ), we may find a basic open set (A×B)(x,z)

about (x, z) lying in O1. By the compactness of X × Y , a finite number (say, n) of these

open sets covers {x}× (Y −V ), so that {(⋂n
i=1 Ai)×Bj}n

j=1 also covers {x}× (Y −V ). We

note that W misses the union of the members of this finite open cover.
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⋂n
i=1 Ai is open in X, contains x, and contains no uα such that f(uα) 6⊂ V . This

means there does exist an open set (namely,
⋂n

i=1 Ai) in X with f(
⋂n

i=1 Ai) ⊂ V . This is a

contradiction, so there does exist a point (x, z) ∈ {x}×Y , with z /∈ V , that is a limit point

of W . But W ⊆ M , which is closed, so any limit point of W is an element of M . That is,

(x, z) ∈ M , and z ∈ f(x). But f(x) ⊂ V , and z /∈ V . A contradiction has been reached, so

the proof is complete. •

For the next two theorems, let the following be a standing hypothesis: suppose that for

each positive integer n, Xn is a non-empty compact Hausdorff space and fn : Xn+1 → 2Xn is

an upper semi-continous bonding function. If
∏

=
∏∞

i=1 Xi, let Gn = {x ∈ ∏ | xi ∈ fi(xi+1)

for i ≤ n}.

Theorem 4.3.1. For each positive integer n, Gn is a non-empty compact set.

Proof: We first show that Gn is non-empty for each positive integer n. Pick any

point xn+1 ∈ Xn+1. fn(xn+1) is compact (and non-empty) in Xn; we may pick a point

xn ∈ fn(xn+1), so that fn−1(xn) is compact (and non-empty) in Xn−1; next, pick a point

xn−1 ∈ fn−1(xn), and so forth. By finishing this process at x1 and then (for i > n + 1)

choosing xi from Xi arbitrarily, we find that {x1, x2, . . . , xn, xn+1, xn+2, . . .} ∈ Gn. So

Gn 6= ∅.

Now we must show that Gn is compact. Since Gn is a subspace of
∏

, which is compact,

it will suffice to show that Gn is closed.
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Proof by contradiction: Let p = {p1, p2, . . . , pn, pn+1, pn+2, . . .} be a limit point of Gn

in
∏

, with p /∈ Gn. Since p /∈ Gn, it follows that pi /∈ fi(pi+1) for some i, 1 ≤ i ≤ n.

Xi is regular, so (in Xi) there exist disjoint open sets Opi and Ofi(pi+1) containing pi

and fi(pi+1) respectively. By the upper semi-continuity of fi, there exists an open U in

Xi+1 containing pi+1 so that f(U) ⊂ Ofi(pi+1). That is, pi /∈ f(U). Hence, for all u ∈ U ,

f(U) ⊂ Ofi(pi+1) and f(u) ∩Opi = ∅.

Thus, X1×X2×· · ·×Xi−1×Opi ×U ×Xi+2×· · · is open in
∏

, contains p, but misses

Gn. However, p was a limit point of Gn, so this is a contradiction.

So Gn is closed in
∏

, and therefore, Gn is compact. •

Theorem 4.3.2. K = lim←− f is non-empty and compact.

Proof: K = lim←− f =
⋂∞

n=1 Gn. But {Gn}∞n=1 is a monotonic collection of non-empty

closed (compact) subsets of
∏

; so, since
∏

is perfectly compact,
⋂∞

n=1 Gn is non-empty.

Moreover, any intersection of closed sets is closed, so
⋂∞

n=1 Gn is also closed, and therefore

compact. •

Having dealt with the issue of compactness, we now turn to theorems about connect-

edness.
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Theorem 4.4.1. Suppose X, Y are compact Hausdorff spaces, X is connected, f :

X → 2Y is u.s.c., and for each x in X, f(x) is connected. Then the graph G(f) is connected.

Proof: Suppose by way of contradiction that G(f) is not connected. Then, since

G(f) is closed, G(f) = H ∪ K, a union of disjoint closed sets. For a given x, define

(x, f(x)) = {(x, y)| y ∈ f(x)}. We note that K ∩ (x, f(x)) and H ∩ (x, f(x)) cannot both

be non-empty. (For, if they were, then (x, f(x)) = [K ∩ (x, f(x))] ∪ [H ∩ (x, f(x))],

a union of two disjoint closed point sets. But f(x) was connected.) Thus, for all x ∈ X,

either K ∩ (x, f(x)) = ∅ or H ∩ (x, f(x)) = ∅. That is, for each x, (x, f(x)) must lie

either in H or K but not both.

Because X×Y is compact and Hausdorff, X×Y is normal. So there exist disjoint open

sets OH and OK containing H and K respectively. Without loss of generality, consider a

given set (x, f(x)) that is a subset of K. We may find a union of basic open sets of form

Bi = Aij × Rij in X × Y that contains (x, f(x)) and lies in OK . By the compactness of

(x, f(x)), only finitely many (say, n) Bi’s cover (x, f(x)). Thus, {(⋂n
j=1 Aij )×Rit}n

t=1 is an

open cover of (x, f(x)).

Since R =
⋃n

t=1 Rit is open in Y and contains f(x), by u.s.c. there exists an open U

in X containing x so that f(U) ⊂ R. Then V = U ∩⋂n
j=1 Aij is also open in X, contains

x, and clearly f(V ) ⊂ R. (Indeed, {(x, f(x)) | x ∈ V } ⊂ ⋃n
t=1((

⋂n
j=1 Aij )×Rit).).
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Hence, no points z in V can be such that (z, f(z)) ⊂ H. (For that would contradict

the fact that (z, f(z)) ⊂ OK , where OK ∩H = ∅.) So, we have found an open set V = Vx

in X containing x so that Vx ∩ π1(H) = ∅. Such an open Vx can be found for each x

with (x, f(x)) ⊂ K, so that the union of all such Vx’s is open in X and contains the set

{x | (x, f(x)) ⊂ K}.

But such an open set (disjoint from the union of the Vx’s) can also be found containing

the set {x | (x, f(x)) ⊂ H}. So, we have disjoint (non-empty) open sets in X whose union

equals X itself, and this contradicts the fact that X was connected. •

Theorem 4.4.2. Suppose that X and Y are compact Hausdorff spaces, Y is connected,

and f is an upper semi-continuous function from X into 2Y such that for each y in Y ,

{x ∈ X | y ∈ f(x)} is a non-empty, connected set. Then G(f) is connected.

Proof: Suppose by way of contradiction that G(f) = H ∪K, a union of disjoint closed

sets. For each y ∈ Y , let Ay = {x ∈ X | y ∈ f(x)}, and let (Ay, y) = {Ay} × {y}. Each

Ay is connected, so for each y, either (Ay, y) ⊂ H or (Ay, y) ⊂ K but not both. We

know that H =
⋃

(Ay,y)⊂H{(Ay, y)} and K =
⋃

(Ay,y)⊂K{(Ay, y)}; thus, the sets π2(H) =

{y | (Ay, y) ⊂ H} and π2(K) = {y | (Ay, y) ⊂ K} are disjoint closed sets whose union is Y .

However, Y is connected, so this is a contradiction. •

Next, it will be useful to extend the notion of the graph of one function, G(f), to

the graph of a finite sequence of functions. If for 1 ≤ i ≤ n, Xi is a compact Hausdorff
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space and fi : Xi+1 → 2Xi is u.s.c., we define G(f1, f2, . . . , fn) = {(x1, x2, . . . , xn, xn+1) ∈
∏n+1

i=1 Xi | xi ∈ fi(xi+1) for 1 ≤ i ≤ n}.

Theorem 4.4.3. Suppose X1, X2, . . . , Xn+1 is a finite collection of Hausdorff continua

and f1, f2, . . . , fn is a finite collection of upper semi-continuous functions such that fi :

Xi+1 → 2Xi for 1 ≤ i ≤ n. If fi(x) is connected for each x in Xi+1 and each i, 1 ≤ i ≤ n,

then G(f1, f2, . . . , fn) is connected.

Proof: We will use induction on the number of spaces, n. For the base case, suppose

X1, X2 are Hausdorff continua, f1 : X2 → 2X1 is an upper-semi continuous function, and

f1(x) is connected for each x in X2. Then G(f1) is connected by Theorem 4.4.2.

Now suppose the theorem is true for a graph on n spaces; we must show that the

theorem also holds for n + 1 spaces. That is, we must show G(f1, f2, . . . , fn) is connected.

By the inductive hypothesis, the graph G(f2, f3, . . . , fn) is connected. Define an upper

semi-continuous function f∗ : G(f2, f3, . . . , fn) → 2X1 by f∗(x2, x3, . . . , xn+1) = f1(x2). To

show that f∗ is indeed upper semi-continuous, let (x2, x3, . . . , xn+1) be in G(f2, f3, . . . , fn),

so that f∗(x2, x3, . . . , xn+1) = f1(x2). Let V be an open set in X1 that contains f1(x2).

We need to find an open set in G(f2, f3, . . . , fn) containing x whose image lies in V . Since

f1 is u.s.c., there exists some open U in X2 (with x2 ∈ V ) so that f1(U) is a subset of V .

Thus, O = (U ×X3×X4× . . .×Xn+1)∩G(f2, f3, . . . , fn) is an open set in G(f2, f3, . . . , fn)

containing (x2, x3, . . . , xn+1) such that f∗(O) ⊆ V .
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Thus, f∗ is u.s.c. Moreover, f∗(x2, x3, . . . , xn+1) is connected for all (x2, x3, . . . , xn+1) ∈

G(f2, f3, . . . , fn). (For, f∗(x2, x3, . . . , xn+1) = f1(x2), which was assumed to be connected.)

Thus, by Theorem 4.4.2, the graph of f∗ is connected. However, the graph of f∗ is precisely

the set of all ordered pairs (x1, x2, x3, . . . , xn+1) with xi ∈ fi(xi+1) for each i. This set is in

fact G(f1, f2, . . . , fn), so G(f1, f2, . . . , fn) has been shown to be connected and the proof is

complete. •

Theorem 4.4.4. Suppose that Xi is a Hausdorff continuum for each i and fi(x) is

connected for each x ∈ Xi+1. Then Gn is connected for each positive integer n.

Proof: We note that Gn = G(f1, f2, ..., fn) × ∏∞
i=n+2 Xi. Since G(f1, f2, ..., fn) is

connected (by Theorem 4.4.3) and
∏∞

i=n+2 Xi is connected as well, Gn is connected. •

Theorem 4.4.5. Suppose X1, X2, . . . , Xn+1 is a finite collection of Hausdorff continua

and f1, f2, . . . , fn is a finite collection of u.s.c. functions such that fi : Xi+1 → 2Xi for

1 ≤ i ≤ n. If for each i, 1 ≤ i ≤ n and each y ∈ Xi, {x ∈ Xi+1|y ∈ fi(x)} is a non-empty,

connected set, then G(f1, f2, ..., fn) is connected.

Proof: To get this result, we shall adjust Mahavier’s proof of Theorem 4.4.3. By

Theorem 4.4.2, the theorem is true for only one bonding function f1.
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Assume the inductive hypothesis. That is, assume that if for all i and for all y ∈ Xi,

{x ∈ Xi+1 | y ∈ fi(x)} is a non-empty, connected set, then the graph on < n + 1 u.s.c.

functions is connected.

Need: G(f1, f2, ..., fn, fn+1) is connected.

By hypothesis, G(f1, f2, ..., fn) is connected. Assume by way of contradiction that H

and K are mutually separated non-empty point sets with H ∪K = G(f1, f2, ..., fn, fn+1).

Since the graph is closed, we know that H and K are in fact disjoint closed sets.

Let h : G(f1, f2, ..., fn, fn+1) → G(f1, f2, ..., fn) be the continuous map defined by

h(x1, x2, . . . , xn, xn+1) = (x1, x2, . . . , xn). Since h(G(f1, f2, ..., fn, fn+1)) = h(H ∪ K) =

G(f1, f2, ..., fn) is connected, there is a point p = (p1, p2, . . . , pn, pn+1) belonging to h(H)

and h(K). Note that both h(H) and h(K) are compact and hence, closed.

Thus, {(x1, x2, . . . , xn, xn+1, xn+2) ∈ G(f1, f2, ..., fn, fn+1)| xi = pi for 1 ≤ i ≤ n +

1, xn+2 ∈ {z ∈ Xn+2 | pn+1 ∈ fn+2(z)}} is a connected set, because it is a product of

connected sets. But this set intersects both H and K, so H and K could not have been

mutually separated. So, we have a contradiction and the proof is complete. •

Theorem 4.4.6. Let Xi be a Hausdorff continuum for each positive integer i. Suppose

fi : Xi+1 → 2Xi is u.s.c. and for each xi ∈ Xi, {y ∈ Xi+1 | xi ∈ fi(y)} is a non-empty,

connected set. Then for each positive integer n, Gn is connected.
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Proof: By Theorem 4.4.5, G(f1, f2, . . . , fn+1) is connected. We note that Gn =

G(f1, f2, . . . , fn+1) ×
∏∞

i=n+2 Xi. Since Xi is a continuum for each integer i ≥ n + 2,

we have that
∏∞

i=n+2 Xi is a continuum. Thus, Gn is a product of two connected sets, and

hence, is connected. •

Theorem 4.4.7. Suppose that for each positive integer i, Xi is a Hausdorff continuum,

fi : Xi+1 → 2Xi is an upper semi-continuous function, and for each x in Xi+1, fi(x) is

connected. Then lim←− f is a Hausdorff continuum.

Proof: By Theorems 4.3.1 and 4.4.4, for each positive integer n, Gn is a non-empty,

compact, connected set; that is, each Gn is a (Hausdorff) continuum. Moreover, since

Gn+1 ⊆ Gn for each n, {Gn}∞n=1 is a monotonic collection of Hausdorff continua. That

means
⋂∞

n=1 Gn is a Hausdorff continuum. But lim←− f =
⋂∞

n=1 Gn, so the result is proven. •

Theorem 4.4.8. Suppose that for each positive integer i, Xi is a Hausdorff continuum,

fi : Xi+1 → 2Xi is an upper semi-continuous function, and for each x ∈ Xi, {y ∈ Xi+1 | x ∈

fi(y)} is a non-empty, connected set. Then lim←− f is a Hausdorff continuum.

Proof: By Theorems 4.3.1 and 4.4.6, for each positive integer n, Gn is a Hausdorff

continuum. The rest of the proof is the same as the proof of Theorem 4.4.7. •
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Next, Mahavier and Ingram give a generalized version of the “space-skipping” theo-

rem seen in Chapter 3. However, we must first define the notion of composition of u.s.c.

functions. Let X, Y , and Z be compact Hausdorff spaces, and suppose f : X → 2Y and

g : Y → 2Z are u.s.c. functions. Then g ◦ f : X → 2Z is defined by (g ◦ f)(x) = {z ∈ Z|

there exists y ∈ Y such that y ∈ f(x) and z ∈ g(y)}.

Theorem 4.5.1. Suppose X1, X2, . . . , is a sequence of compact Hausdorff spaces and

fi : Xi+1 → 2Xi is u.s.c. for each positive integer i. If n1, n2, . . . , is an increasing sequence

of positive integers, let g1, g2, . . . be the sequence of functions with the property that gi =

fni◦fni+1◦· · ·◦fni+1−1 for each i. If F :
∏

i>0 Xi →
∏

i>0 Xni is given by F (x1, x2, x3, . . .) =

(xn1 , xn2 , xn3 , . . .), then F | lim←− f is a continuous transformation from lim←− f onto lim←−g.

Proof: Let O = (
∏∞

i=1 Oni)∩lim←−g be basic open in lim←−g (where Oni is open in Xni , and

for some positive integer k, Oni = Xni for i ≥ k). Then (F | lim←− f)−1(O) = (
∏∞

j=1 Oj)∩ lim←− f,

where if j = ni for some i, Oj = Oni , and for all other j, Oj = Xj . Since (F | lim←− f)−1(O) is

open in lim←− f, F | lim←− f is continuous. The fact that F | lim←− f maps onto lim←−g is clear. •

Theorem 4.5.2. Let X1, X2, . . . and Y1, Y2, . . . be sequences of compact Hausdorff

spaces and, for each positive integer i, let fi : Xi+1 → 2Xi and gi : Yi+1 → 2Yi be

u.s.c. functions. Suppose further that, for each positive integer i, ϕi : Xi → Yi is a

mapping such that ϕi ◦ fi = gi ◦ ϕi+1. Then the function ϕ : lim←− f → lim←−g given by

ϕ(x) = (ϕ1(x1), ϕ2(x2), ϕ3(x3), . . .) is continuous. Moreover, ϕ is 1-1 (and surjective) if

each ϕi is 1-1 (and surjective).
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Proof: First, we must show that ϕ maps into lim←−g. Let p = (p1, p2, . . .) ∈ lim←− f;

we need to show that ϕ(p) ∈ lim←−g. That is, we need to show that for any i, ϕi(pi) ∈

gi(ϕi+1(pi+1)). By hypothesis, gi(ϕi+1(pi+1)) = ϕi(fi(pi+1)); however, pi ∈ fi(pi+1), so

ϕi(pi) ∈ ϕi(fi(pi+1)) = gi(ϕi+1(pi+1)). Thus, ϕ does map into lim←−g; it remains to show

that ϕ is continuous.

Let x = (x1, x2, . . .) ∈ lim←− f, and let O = (
∏∞

i=1 Oi)∩ lim←−g be basic open in lim←−g, with

O containing ϕ(x) = (ϕ1(x1), ϕ2(x2), . . .). We need to show there exists an open set U in

lim←− f containing x so that ϕ(U) ⊆ O.

We note that, since
∏∞

i=1 Oi is basic open in
∏∞

i=1 Yi, Oi is open in Yi for each i; also,

for some positive integer k, if i > k, Oi = Yi. Now, since each ϕi is continuous, for all i the

set Ui = ϕ−1
i (Oi) is open in Xi and contains xi. Hence, the open set U =

⋂k
i=1

←−
Ui contains

(x1, x2, . . .). To show that ϕ(U) ⊆ O, let us assume p = (p1, p2, . . .) ∈ U and show that

ϕ(p) ∈ O. For i ≤ k, pi ∈ Ui = ϕ−1
i (Oi), so we have that ϕi(pi) ∈ Oi. For i > k, since

Oi = Yi, ϕi(pi) ∈ Oi automatically. So, since p ∈ lim←− f, ϕ(p) ∈ lim←−g and ϕ(p) ∈ O. Thus,

ϕ(U) ⊆ O, and we have shown that ϕ is continuous.

Finally, we will show that if each ϕi is 1-1 (and surjective), then ϕ is 1-1 (and surjective).

First, suppose ϕ(x) = ϕ(y), so that ϕi(xi) = ϕi(yi) for each i. Since each ϕi is 1-1, xi = yi

for each i. Thus, x = y and ϕ is 1-1. Now suppose that each ϕi is also surjective, and let

y = (y1, y2, y3, . . .) ∈ lim←−g. Again, because ϕi is surjective for each i, it follows that (for
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each i) there exists some xi ∈ Xi with ϕi(xi) = yi. Then ϕ(x1, x2, x3, . . .) = (y1, y2, y3, . . .),

but we must verify that (x1, x2, x3, . . .) ∈ lim←− f; i.e., we must show that xi ∈ fi(xi+1) for

each i.

We note that yi ∈ gi(yi+1) = gi(ϕi+1(xi+1)) = ϕi(fi(xi+1)); thus, ϕ−1
i (yi) ∈ fi(xi+1).

However, since ϕi was 1-1, ϕ−1
i (yi) = xi, so xi ∈ fi(xi+1), as desired. Thus, x ∈ lim←− f and

ϕ is surjective. •

Given that X is a compact Hausdorff space and f : X → 2X and g : X → 2X are u.s.c.

functions, we say f and g are topologically conjugate if there exists a homeomorphism h

with h(X) = X and h ◦ f = g ◦ h.

Theorem 4.5.3. Suppose X is a compact Hausdorff space. If f : X → 2X and

g : X → 2X are topologically conjugate u.s.c. functions, then lim←− f is homeomorphic to

lim←−g.

Proof: Since f and g are topologically conjugate, there is a homeomorphism h with

h(X) = X and h ◦ f = g ◦ h. Let ϕ : lim←− f → lim←−g be defined by ϕ(x1, x2, . . .) =

(ϕ1(x1), ϕ2(x2), . . .), where ϕi = h for all i. Because h ◦ f = g ◦ h, each ϕi satisfies the

hypothesis of Theorem 4.5.2; thus, ϕ is continuous. Moreover, since h is 1-1 and surjective,

ϕ is 1-1 and surjective. Therefore, lim←− f is homeomorphic to lim←−g. •
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Examples and Counterexamples

According to Theorem 4.4.7, if (1) each Xi is a Hausdorff continuum, (2) fi : Xi+1 →

2Xi is an upper semi-continuous function, and (3) for each x in Xi+1, fi(x) is connected,

then lim←− f is a Hausdorff continuum. However, the following example shows that if condition

(3) is omitted, lim←− f need not be connected.

Example 1 : For each positive integer i, let Xi = [0, 1] and let fi : [0, 1] → 2[0,1] be

defined by the graph consisting of straight line segments connecting the points (0, 0) to

(1
4 , 1

4), (0, 0) to (1, 0), (1, 0) to (1, 1), and (3
4 , 1

4) to (1, 1).

Then lim←− f is not connected because the space contains an isolated point, namely,

p = (1
4 , 1

4 , 3
4 , 1, 1, 1, . . .). To see that p is isolated, we will find an open set containing p and

no other point in lim←− f. Let O1 ⊂ X1 be (1
4 − ε, 1

4 + ε), let O2 ⊂ X2 be (1
4 − ε, 1

4 + ε), let

O3 ⊂ X3 be (3
4 − ε, 3

4 + ε), and let O4 ⊂ X4 be (1− ε, 1], where ε is chosen small enough so

that 0 /∈ O1 or O2, 3
4 /∈ O1 or O2, 1

4 /∈ O3, 11
12 /∈ O3, and 11

12 /∈ O4. Then p =
←−
O1∩←−O2∩←−O3∩←−O4,

which is open. •

Next, it is worth noting that the conclusion of Theorem 4.5.2 is only that the function

F | lim←− f be a continuous transformation, rather than a full-fledged homeomorphism. Indeed,

the following example shows that even if the hypotheses of Theorem 4.5.1 apply, F | lim←− f

need not be a homeomorphism.
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Example 2 : For each i, let Xi = [0, 1] and let fi : [0, 1] → 2[0,1] be defined by the graph

consisting of the straight line segments joining the points (0, 1) to (1
2 , 1

2), (0, 1
2) to (1, 1

2),

and (1, 0) to (1, 1
2). Then it follows that f ◦ f : [0, 1] → 2[0,1] is the graph consisting of the

straight line segments joining (0, 0) to (0, 1
2), (0, 1

2) to (1, 1
2), and (1, 1

2) to (1, 1). (We will

abbreviate f ◦ f by f2.)

lim←− f is not homeomorphic to lim←− f2 because one space contains a triod while the other

space is an arc.

Justification: lim←− f contains a triod. For, let A1 be the subset of lim←− f consisting of

all points of form (x, 1 − x, 1, 0, 1, 0, . . .), where x ∈ (1
2 , 1]. Let A2 be the subset of lim←− f

consisting of all points of form (1
2 , 1

2 , x, 1 − x, 1, 0, 1, . . .), where x ∈ (1
2 , 1]. Finally, let A3

be the subset of lim←− f consisting of all points of form (1
2 , x, 1, 0, 1, 0, . . .), where x ∈ [0, 1

2).

Because Ā1, Ā2 and Ā3 are all arcs with exactly one point, (1
2 , 1

2 , 1, 0, 1, 0, . . .), in common,

Ā1 ∪ Ā2 ∪ Ā3 is a triod.

However, lim←− f2 is an arc. For, by Theorem 4.4.7, lim←− f2 is a Hausdorff continuum, and

it is easily seen that every point in this space is a cut point except for (0, 0, 0, . . .) and

(1, 1, 1, . . .). So, this continuum has exactly two cut points and is therefore an arc. •

Ingram and Mahavier give the following example to show “the variety of continua that

can be produced” using inverse limits with u.s.c. bonding functions.
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Example 3 : For each positive integer i, let Xi = [0, 1] and let fi : [0, 1] → 2[0,1] be

the graph consisting of the straight line segments joining (0, 0) to (1, 0) and (0, 0) to (1, 1).

Then lim←− f is a fan.

Justification: For each positive integer n, let Kn be the set of all points of form

(0, 0, . . . , 0, x, x, x, . . .), where the first n − 1 entries are 0, and x ∈ [0, 1]. Then each Kn is

an arc,
⋃∞

n=1 Kn = lim←− f, and
⋂∞

n=1 Kn = (0, 0, 0, . . .), a single point. So lim←− f is indeed a

fan. •

Finally, in the case where Xi = [0, 1] and fi : [0, 1] → 2[0,1] is the same u.s.c. bond-

ing function for all positive integers i, lim←− f may be not only 1-dimensional or infinite-

dimensional, but n-dimensional for any positive integer n. Mahavier and Ingram give a

two-dimensional example that is easily generalized:

Example 4 : Again, for each positive integer i let Xi = [0, 1] and let fi : [0, 1] → 2[0,1]

be the graph consisting of the straight line segments joining (0, 0) to (0, 1
2), (0, 1

2) to (1
2 , 1

2),

(1
2 , 1

2) to (1
2 , 1), and (1

2 , 1) to (1, 1). Then lim←− f consists precisely of all points of form

i) (1, . . . , 1, 1, x, 1
2 , 1

2 , . . . , 1
2 , y, 0, 0, . . .), where x ∈ [12 , 1] and y ∈ [0, 1

2 ],

ii) (1, . . . , 1, 1, x, 1
2 , 1

2 , . . .), where x ∈ [12 , 1],

iii) (1
2 , . . . , 1

2 , 1
2 , y, 0, 0, . . .), where y ∈ [0, 1

2 ],

iv) (1, . . . , 1, 1, 1, . . .),

v) (1
2 , . . . , 1

2 , 1
2 , 1

2 , . . .),

vi) (0, . . . , 0, 0, 0, . . .).
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Thus, lim←− f is the union of countably many 2-cells, 1-cells, and single points. It follows

that lim←− f is 2-dimensional.

The bonding function with two “stair-steps” gives rise to a two-dimensional inverse

limit; an argument similar to the one given in Example 4 shows that a bonding function

with n “stair-steps” gives rise to an n-dimensional inverse limit. For each positive integer i

let Xi = [0, 1] and let fi : [0, 1] → 2[0,1] be the graph consisting of the straight line segments

joining ( j
n , j

n) to ( j
n , j+1

n ) and joining ( j
n , j+1

n ) to ( j+1
n , j+1

n ) for 0 ≤ j ≤ n − 1. Then lim←− f

contains all points of form

(1, . . . , 1, xn, n−1
n , . . . , n−1

n , . . . , xn−1,
n−2

n , . . . . . . ,

i
n , xi,

i−1
n , . . . , xi−1,

i−2
n , . . . . . . , 1

n , x1, 0, . . .)

where xi ∈ [ i−1
n , i

n ] for 1 ≤ i ≤ n. Thus, lim←− f contains countably many n-cells. Since lim←− f in

fact consists of these countably many n-cells and also countably many j-cells where j < n,

it follows that lim←− f is n-dimensional.
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Chapter 5

An Extension of the Inverse Limit with

u.s.c. Bonding Functions

We now expand on the results of Ingram and Mahavier by introducing yet another

generalization of an inverse limit. Suppose that for each integer i, Xi is a compact Hausdorff

space and fi : Xi+1 → 2Xi is u.s.c. Then we define lim←−{Xi, fi}i∈Z to be the inverse limit

space consisting of all points of form (. . . , x−2, x−1, x0, x1, x2, . . . , xk, xk+1, . . .), where xi ∈

fi(xi+1) for each integer i, and a basis for the topology on the space is

{O ∩ lim←−{Xi, fi}i∈Z| O is basic open in
∏

i∈ZXi}.

We will often call this space a “two-sided” inverse limit.

If each fi is a continuous function, then the two-sided inverse limit is clearly home-

omorphic to the standard one. However, if each fi is u.s.c., the two-sided inverse limit,

lim←−{Xi, fi}i∈Z, may be different from lim←−{Xi, fi}i>0.∗∗ We will provide some examples be-

low, but first we prove some basic theorems analogous to the theorems seen in Chapter

4.

Theorem 4̂.3.2. Suppose that, for each integer i, Xi is a compact Hausdorff space and

fi : Xi+1 → 2Xi is u.s.c. Then lim←−{Xi, fi}i∈Z is non-empty and compact.
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Proof: For each integer z = 0,−1,−2, . . ., the space lim←−{Xi, fi}i>z is non-empty and

compact, by Theorem 4.3.2. Thus, for each such integer z, the set · · · × Xz−2 × Xz−1 ×

Xz × lim←−{Xi, fi}i>z is a compact subset of
∏

i∈ZXi. (For convenience, let Kz = · · · ×

Xz−2×Xz−1×Xz× lim←−{Xi, fi}i>z.) We note that if w and z are both integers with w < z,

Kw ⊆ Kz. That means that {Kz}z≤0 is a monotonic collection of compact (hence, closed)

subsets of
∏

i∈ZXi, a compact space. Thus,
⋂

z≤0 Kz is non-empty and compact. But
⋂

z≤0 Kz = lim←−{Xi, fi}i∈Z, so the proof is complete. •

Theorem 4̂.4.7. Suppose that for each integer i, Xi is a Hausdorff continuum, fi :

Xi+1 → 2Xi is an upper semi-continuous function, and for each x in Xi+1, fi(x) is con-

nected. Then lim←−{Xi, fi}i∈Z is a Hausdorff continuum.

Proof: For each integer z = 0,−1,−2, . . ., the space lim←−{Xi, fi}i>z is a Hausdorff

continuum, by Theorem 4.4.7. Again, we define Kz = · · ·×Xz−2×Xz−1×Xz×lim←−{Xi, fi}i>z.

Since each Xi is a Hausdorff continuum, as is lim←−{Xi, fi}i>z for each z, it follows that Kz

is a Hausdorff continuum for z = 0,−1,−2, . . . As before, if w < z, then Kw ⊆ Kz, so

that {Kz}z≤0 is a monotonic collection of Hausdorff continua. It follows that
⋂

z≤0 Kz is a

Hausdorff continuum. Since
⋂

z≤0 Kz = lim←−{Xi, fi}i∈Z, the proof is complete. •

We now present an example to demonstrate how the two-sided inverse limit, lim←−{Xi, fi}i∈Z,

may be different from the standard inverse limit, lim←−{Xi, fi}i>0.
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For each integer i, let Xi = [0, 1] and let fi : [0, 1] → 2[0,1] be the graph consisting of

the straight line segments joining (0, 0) to (1, 0) and (0, 0) to (1, 1). (This bonding function

is the same as in Example 3 in Chapter 4.) If we let Az be the set of all points of form

(. . . , 0, 0, x, x, . . .), with 0’s up to the (z − 1)th slot and x ∈ [0, 1], then Az is an arc for

each integer z. Let A = {(. . . , x, x, x, . . .)| x ∈ [0, 1]}, so that A is also an arc. Thus,

(
⋃

z∈ZAz) ∪ (A) = lim←−{Xi, fi}i∈Z, and (
⋂

z∈ZAz) ∩ (A) = (. . . , 0, 0, 0, . . .), a single point.

Thus, lim←−{Xi, fi}i∈Z is a fan.

However, this fan is not homeomorphic to the fan given by lim←−{Xi, fi}i>0 in Example

3. For, as we will show, lim←−{Xi, fi}i∈Z contains a limit arc while lim←−{Xi, fi}i>0 does not.

Consider the arc A in lim←−{Xi, fi}i∈Z given by {(. . . , x, x, x, . . .)| x ∈ [0, 1]}. We will

prove that A consists entirely of limit points of (lim←−{Xi, fi}i∈Z) \ A. To that end, let

O = (
∏

i∈ZOi) ∩ lim←−{Xi, fi}i∈Z be a basic open set containing some point (. . . , x, x, x, . . .),

where x ∈ [0, 1]. If for each i, Oi = Xi, then clearly O contains points not in A. So suppose

O is a proper subset of the space. Since O is open, there must be some least integer i for

which Oi ( Xi, and some greatest integer j for which Oj ( Xj . If x 6= 0, and x̄ lies in the

ith slot, clearly (. . . , 0, 0, . . . , 0, x̄, x, x, . . .) ∈ O. If x = 0, and 0̄ lies in the jth slot, then

(. . . , 0, 0, . . . , 0̄, 1, 1, . . .) ∈ O. Either way, O must contain a point in (lim←−{Xi, fi}i∈Z) \ A,

and thus, A is a limit arc.

On the other hand, the space lim←−{Xi, fi}i>0 has no limit arc. To see this, consider a

general point (0, 0, . . . , 0, x̄, x, x, . . .) lying in an arc Â = {(0, 0, . . . , 0, x̄, x, x, . . .)| x ∈ [0, 1]},
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where x̄ lies in the ith slot. If x 6= 0, the point (0, 0, . . . , 0, x̄, x, x, . . .) cannot be a limit

point of (lim←−{Xi, fi}i>0) \ Â for the following reason:

Let O1 = [0, x
2 ) ⊂ X1, O2 = [0, x

2 ) ⊂ X2, · · · , Oi−1 = [0, x
2 ) ⊂ Xi−1, and Oi =

(x
2 , 1] ⊂ Xi. Then

←−
O1 ∩ ←−

O2 ∩ · · · ∩ ←−−
Oi−1 ∩ ←−

Oi is open in lim←−{Xi, fi}i>0, contains

(0, 0, . . . , 0, x̄, x, x, . . .), but misses (lim←−{Xi, fi}i>0) \ Â entirely. •
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Chapter 6

An Indecomposable Continuum Produced

by an Inverse Limit on u.s.c. Functions

The Knaster continuum described in example 2 at the end of Chapter 3 is a famous

example of an indecomposable continuum, i.e., a continuum that is not the union of two

proper subcontinua. We conclude this paper with an original example of an inverse limit

on u.s.c. bonding functions that turns out to be an indecomposable continuum.

Example: For each positive integer i, let Xi = [0, 1] and let fi : Xi+1 → 2Xi be defined

by the graph consisting of the following straight line segments:

1. For each even integer n ≥ 0, the segment joining the points ( 1
2n+1 , 1

2n+1 ) and ( 1
2n , 1).

2. For each odd integer n ≥ 1, the segment joining the points ( 1
2n , 1

2n ) and ( 1
2n+1 , 1).

3. The vertical line segment joining the points (0, 0) and (0, 1).

Then lim←− f is an indecomposable continuum.

Proof: By Theorem 4.4.7, lim←− f is a continuum. It remains to show that lim←− f is inde-

composable.

Claim: If H is a proper subcontinuum of lim←− f, then there exists some positive integer

N so that if n ≥ N , πn(H) 6= Xn.
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Justification: Suppose not, i.e., suppose H is proper but for every positive integer

N , there exists some n > N such that πn(H) = Xn. By the way the graph of f is

defined, it is clear that if πi(H) = Xi, then πi−1(H) = Xi−1; thus, we may as well assume

that πn(H) = Xn for each positive integer n. Since H is proper, there is some point

p = (pi)∞i=1 = (p1, p2, p3, . . .) such that p ∈ lim←− f \H. We will show that p is in fact a point

of H.

Case 1: Suppose pi 6= 0 for all positive integers i. Since, for a given positive integer k,

pk ∈ πk(H), there exists some point in H of form

(x1, x2, . . . , xk−1, pk, . . .).

However, since pk 6= 0, by the way the graph of f is defined, fk−1(pk) is a unique

non-zero number in Xk−1. That means fk−1(pk) = pk−1. In a similar way, each of

x1, . . . , xk−1 is uniquely determined, and that forces xi = pi for 1 ≤ i ≤ k. Thus, a

point of form (p1, p2, . . . , pk, . . .) is in H. Indeed, for each positive integer j, a point of form

(p1, p2, . . . , pj , . . .) is in H. The point (pi)∞i=1 is therefore a limit point of the sequence of

points in H that we just described; hence, because H is closed, (pi)∞i=1 ∈ H.

Case 2: Suppose for some least integer i, pi = 0. Then, since the only possible preimage

of 0 via fi is 0, pn = 0 for each integer n ≥ i.

Suppose p1 = 0. By the above argument, since f−1
1 (p1) = p2 = 0, and f−1

i (pi) = pi+1 =

0 for i ≥ 1, the only way that p1 = 0 ∈ π1(H) is possible is if (0, 0, 0, . . .) = (pi)∞i=1 ∈ H.

That would be a contradiction.
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So, suppose instead that pi = 0 for some least integer i > 1. Because H is compact,

the projection of H onto the graph of fi−1 is closed. Thus, since πi(H) = Xi, by the way

the graph is defined, each ordered pair (0, x) in G(fi−1) is a limit point of the projection of

H onto G(fi−1). Thus, the ordered pair (0, pi−1) is in that projection. Since pi−1 6= 0 by

assumption, the image of pi−1 via fi−2 is the unique non-zero number pi−2; the image of

pi−2 via fi−3 is the unique non-zero number pi−3, and so forth. Now because πi(H) = Xi,

we know pi = 0 ∈ πi(H); since the only possible preimage of 0 is 0, H must therefore

contain a point of form (h1, h2, . . . , hi−1, 0, 0, . . .). However, as we noted, the projection

of H onto G(fi−1) contains the ordered pair (0, pi−1). That is, H contains some point

(h1, h2, . . . , hi−1, 0, 0, . . .) where hi−1 = pi−1. But, as previously argued, hi−1 = pi−1 would

force hk = pk for k ≤ i− 1. That is, (p1, p2, . . . , pi−1, 0, 0, . . .) = (pi)∞i=1 ∈ H.

In either case, a contradiction has been reached. Thus, if H is a proper subcontinuum,

there exists some positive integer N so that if n ≥ N , πn(H) 6= Xn.

Now, suppose by way of contradiction that lim←− f = H ∪ K, a union of two proper

subcontinua. By the above argument, there exists some least positive integer N so that for

all n ≥ N , πn(H) 6= Xn and πn(K) 6= Xn. So, we may assume without loss of generality

that 0 ∈ πN (H) and 0 /∈ πN (K). Since the unique preimage of 0 via fN is 0, πN+1(H) must

contain 0. Thus, because πN+1(H) is a proper subcontinuum of [0, 1] containing 0, but

πN+1(K) 6= [0, 1], it follows that πN+1(H) is some interval of form [0, a] where 0 < a < 1.

However, by the way the graph of fN is defined, there is some x ∈ (0, a] (indeed, infinitely

many such x) with fN (x) = 1. That means 1 ∈ πN (H). Since πN (H) is a subcontinuum
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of [0, 1] that contains both 0 and 1, it follows that πN (H) = [0, 1] = XN . This is a

contradiction, for we assumed πN (H) 6= XN . So lim←− f is indecomposable. •

We note that the continuum in this example (lim←− f) contains the proper subcontinuum

{(x, y, 0, 0, . . .)| y ∈ [0, 1], x ∈ f1(y)}, a copy of the topologist’s sine curve. Therefore, lim←− f

is clearly not homeomorphic to the Knaster continuum (whose proper subcontinua are all

arcs). However, if lim←− f is homeomorphic to any known space, it remains an open question

what that space is.

Another open question is the following: if for each positive integer i, Xi = [0, 1] and

f = fi : Xi+1 → 2Xi is u.s.c., are there some necessary conditions the graph of f must

satisfy in order for lim←− f to be indecomposable? Are there sufficient conditions?
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Appendix

* In general, for an inverse limit space lim←− f with upper semi-continuous bonding functions,

the collection B = {←−O | O is open in some Xi} is not a basis for lim←− f. Consider the case
where for all positive integers i, Xi = [0, 1] and fi : Xi+1 → 2Xi is given by the graph in
[0, 1]× [0, 1] consisting of the line segments joining (0, 0) to (1, 0) and joining (0, 1) to (1, 1).
Then the open set G = (1

2 , 1]× [0, 1
2)× [0, 1]× [0, 1]× . . . does not contain a member of B

containing (1, 0, 0, 0, . . .). For, any such member b of B would have to contain an open set
of form (i)

←−−−
[0, a), a < 1 or (ii)

←−−−
(a, 1], a > 0. In case (i), b would contain (0, 0, . . .); in case

(ii), b would contain (1, 1, . . .). In either case, b would fail to be a subset of G, so B cannot
be a basis.

** Thanks to Dr. Stewart Baldwin for suggesting this possibility and encouraging me to
explore it.
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