## Inverse Limit Spaces

Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with my advisory committee. This thesis does not include proprietary or classified information.

## Scott Varagona

## Certificate of Approval:

Gary Gruenhage
Professor
Mathematics \& Statistics

Stewart Baldwin
Professor
Mathematics \& Statistics

Michel Smith, Chair
Professor
Mathematics \& Statistics

Thomas Pate
Professor
Mathematics \& Statistics

George T. Flowers
Dean
Graduate School

# Inverse Limit Spaces 

Scott Varagona

## A Thesis

Submitted to
the Graduate Faculty of

Auburn University
in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
December 19, 2008

## Inverse Limit Spaces

Scott Varagona

Permission is granted to Auburn University to make copies of this thesis at its discretion, upon the request of individuals or institutions and at their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation

> Vita

Scott Michael Varagona, son of Michael and Janet Varagona, was born in Birmingham, Alabama on August 15, 1983. After graduating from John Carroll Catholic High School in 2001, he entered Auburn University as a mathematics major. In 2005, he graduated with a dual degree in Mathematics and Philosophy. He maintained a 4.0 GPA throughout his entire undergraduate career, and also received the Andy Connor Award for Outstanding Creativity and Originality in Mathematics. He remained at Auburn to pursue a Master's Degree in Mathematics. In 2008, he received the Emily Haynsworth Fellowship and won the College of Science and Mathematics Dean's Master Research Award.

Scott is also an avid chessplayer and a successful chess tournament competitor. After winning the Alabama High School Chess Championship in the year 2000, he went on to become Alabama State Chess Champion in 2002, 2005, 2007, and 2008.

Thesis Abstract
Inverse Limit Spaces

Scott Varagona<br>Master of Science, December 19, 2008<br>(B.S., Auburn University, 2005)<br>64 Typed Pages<br>Directed by Michel Smith

This paper is a vast survey of inverse limit spaces. After defining an inverse limit on continuous bonding functions, we prove important theorems about inverse limits, provide examples, and explore various generalizations of traditional inverse limits. In particular, we present original proofs of theorems given by Ingram and Mahavier in "Inverse Limits of Upper Semi-Continuous Set Valued Functions." We then use this new sort of inverse limit to enliven the notion of a "two-sided" inverse limit; finally, we use inverse limits on u.s.c. functions to produce an indecomposable continuum.

## Acknowledgments

Many thanks to my advisor, Dr. Michel Smith, for guiding and encouraging me throughout my graduate career. I have been truly fortunate to have such a kind and patient advisor, not to mention one who shares my love for inverse limit spaces. I must also thank the rest of my committee members: Dr. Stewart Baldwin, whose insightful comments inspired Chapter 5 of this thesis; Dr. Gary Gruenhage, who first inspired me to become a topologist when I was still an undergraduate; and Dr. Thomas Pate, whose Matrices class taught me to persevere, even when I felt I couldn't prove a thing!

I would like to thank my family for their constant love and support. Thanks especially to my parents for convincing me to stay in mathematics when, as a young undergraduate, I felt uncertain about my choice of major. Were it not for their influence, I would have missed out on so much.

Finally, I would like to thank my fellow graduate students in the Math Department at Auburn University. They have been more than just colleagues: they have been the most wonderful friends I have ever had.

Style manual or journal used Journal of Approximation Theory (together with the style known as "aums"). Bibliography follows van Leunen's A Handbook for Scholars.

Computer software used The document preparation package $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ (specifically LATEX) together with the departmental style-file aums.sty.

## Table of Contents

1 Introduction ..... 1
2 Background Definitions and Theorems ..... 2
3 Inverse Limits with Continuous Bonding Maps ..... 14
4 Inverse Limits of Upper Semi-Continuous Set Valued Functions ..... 28
5 An Extension of the Inverse Limit with u.s.c. Bonding Functions ..... 47
6 An Indecomposable Continuum Produced by an Inverse Limit on u.s.c.Functions51
Bibliography ..... 55
Appendix ..... 56

## Chapter 1

## Introduction

An inverse limit space is a powerful topological tool. Inverse limits not only help us generate complicated continua with interesting properties, but also allow us to represent such continua in a simple and elegant way. Now, a new generalization of inverse limit spaces has opened up more possibilities for topologists to explore. As we will see, this new generalization even breathes new life into a different kind of inverse limit.

This paper provides a vast survey of inverse limits. In Chapter 2, we list basic definitions and theorems that will serve as background material. In Chapter 3, we begin by defining an inverse limit with continuous bonding maps and proving some important preliminary theorems. We demonstrate the power of inverse limits by using them to prove the formidable Tychonoff Theorem; then, we use inverse limits to represent some complicated continua in a simple, straightforward way. Next, in Chapter 4, we consider a generalization of inverse limits from Ingram and Mahavier's "Inverse Limits of Upper Semi-Continuous Set Valued Functions" [1]. After giving original proofs of the theorems from that paper, in Chapter 5 we show how this new notion of inverse limit can revitalize the formerly redundant notion of the "two-sided" inverse limit. Finally, in Chapter 6, we use inverse limits with upper semi-continuous bonding functions to produce an indecomposable continuum, and raise a few questions open for further research.

Chapter 2<br>Background Definitions<br>and Theorems

Let $X$ be a set and let $T$ be a collection of subsets of $X$ with the following properties:

1. $X \in T$;
2. $\emptyset \in T$;
3. If $\left\{O_{i}\right\}_{i \in \mu}$ is a collection of members of $T$, then $\bigcup_{i \in \mu} O_{i} \in T$;
4. If $\left\{O_{i}\right\}_{i=1}^{n}$ is a finite collection of members of $T$, then $\bigcap_{i=1}^{n} O_{i} \in T$.

Then the pair $(X, T)$ is called a topological space with topology $T$. Such a topological space will often be referred to simply as $X$ when the associated topology $T$ is understood. The members of $T$ are called open sets.

A subset $K$ of a topological space $X$ is closed if $X-K$ is open.

Suppose $M$ is a subset of a topological space $X$. A point $p \in X$ is a limit point of $M$ if every open set containing $p$ contains a point in $M$ different from $p$.

Suppose $M$ is a subset of a topological space $X$. The closure of $M(\operatorname{denoted} \bar{M})$ is the union of $M$ with the set of all limit points of $M$.

Suppose a collection $B$ of open sets of a space $X$ satisfies the following property:

If $x \in X$ and $O$ is an open set containing $x$, then there exists a member $b$ of $B$ such that $x \in b$ and $b \subseteq O$.

Then $B$ is a basis for the topology on $X$ and a member $b$ of $B$ is called a basic open set of $X$.

Suppose $B$ is a collection of subsets of a set $X$ such that

1. If $x \in X$, there exists some $b \in B$ with $x \in b$.
2. If $b_{1}$ and $b_{2}$ are members of $B$ with $x \in b_{1} \cap b_{2}$, then there exists some set $b_{3}$ in $B$ with $x \in b_{3} \subseteq\left(b_{1} \cap b_{2}\right)$.

Then the collection $T=\{\bigcup R \mid R \subset B\}$ is a topology for $X$, and $B$ is a basis for this topology. It is said that the topology $T$ is generated by the basis $B$.

A topological space $X$ is called Hausdorff if for every pair of distinct points $p, q \in X$, there exist disjoint open sets $O_{p}$ and $O_{q}$ containing $p$ and $q$ respectively.

A space $X$ is called regular if for every closed set $H \subset X$ and point $p \in X$ not in $H$, there exist disjoint open sets $O_{H}$ and $O_{p}$ containing $H$ and $p$, respectively.

A space $X$ is called normal if for every pair of disjoint closed sets $H$ and $K$ in $X$, there exist disjoint open sets $O_{H}$ and $O_{K}$ containing $H$ and $K$, respectively.

If $f: X \rightarrow Y$ is a function from the set $X$ to $Y$, and $U$ is a subset of $X$, we define $f(U)=\{f(u) \mid u \in U\}$.

Let $X$ and $Y$ be topological spaces and let $f: X \rightarrow Y$ be a function from $X$ to $Y$. Then $f$ is said to be continuous at the point $x$ if, whenever $V$ is an open set in $Y$ containing $f(x)$, there exists an open set $U$ in $X$ containing $x$ such that $f(U) \subseteq V$. If $f$ is continuous at each point $x \in X$, we say $f$ is continuous.

A function $f: X \rightarrow Y$ is said to be onto if for each $y \in Y$, there exists some $x \in X$ with $f(x)=y$.

A function $f: X \rightarrow Y$ is said to be 1-1 if for any pair of distinct points $p, q$ in $X$, $f(p) \neq f(q)$.

If $f: X \rightarrow Y$ is a function and $y \in Y$, then the preimage of $y$ (written as $f^{-1}(y)$ ) is $\{x \in X \mid f(x)=y\}$.

Suppose $f: X \rightarrow Y$ is a 1-1 onto function. Then the function $f^{-1}: Y \rightarrow X$ given by $f^{-1}(y)=x$ (where $x$ is the unique point in $X$ with the property that $f(x)=y$ ) is called the inverse of $f$.

If $X$ and $Y$ are topological spaces and $f: X \rightarrow Y$ is 1-1, onto, continous, and has a continous inverse, then $f$ is called a homeomorphism and the spaces $X$ and $Y$ are said to be homeomorphic.

Let $X$ be a topological space. A collection $B$ of open sets of $X$ is a local basis at the point $x \in X$ if

1. For each member $b \in B, x \in b$;
2. If $O$ is an open set in $X$ containing $x$, then there exists a member $b$ of $B$ with $x \in b \subseteq O$.

A space $X$ is called first countable if for each $x \in X$, there exists a countable local basis at $x$.

A space $X$ is called second countable if $X$ has a basis that is countable.

Let $X$ be a topological space and let $M \subseteq X$. A collection of sets $\left\{O_{i}\right\}_{i \in \mu}$ in $X$ is said to be an open cover of $M$ if each $O_{i}$ is open in $X$ and $M \subseteq \bigcup_{i \in \mu} O_{i}$.

If $\left\{O_{i}\right\}_{i \in \mu}$ is a cover of $X, \gamma \subseteq \mu$, and $\left\{O_{i}\right\}_{i \in \gamma}$ is also a cover of $X$, then $\left\{O_{i}\right\}_{i \in \gamma}$ is called a subcover of the original cover $\left\{O_{i}\right\}_{i \in \mu}$. A subcover consisting of only finitely many members is called a finite subcover.

A space $X$ is compact if for every open cover $\left\{O_{i}\right\}_{i \in \mu}$ of $X$, there exists a finite subcover of $X$. (I.e., $\left\{O_{i_{j}}\right\}_{j=1}^{n}$ for some natural number $n$.)

A collection of subsets $\left\{G_{i}\right\}_{i \in \mu}$ of a space $X$ is called a monotonic collection if for each pair of members $G_{j}, G_{k}$ in the collection, either $G_{j} \subseteq G_{k}$ or $G_{k} \subseteq G_{j}$.

A space $X$ is perfectly compact if whenever $\left\{G_{i}\right\}_{i \in \mu}$ is a monotonic collection of subsets of $X$, there exists a point $p$ in $X$ that is either a point or a limit point of each $G_{i}$.

For each $i, 1 \leq i \leq n$, let $X_{i}$ be a topological space. Define $X=\prod_{i=1}^{n} X_{i}=X_{1} \times X_{2} \times$ $\cdots \times X_{n}$ to be the set $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in X_{i}\right.$ for $\left.1 \leq i \leq n\right\}$. Define a topology on $X$ as follows: a basic open set containing $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is given by $\prod_{i=1}^{n} O_{i}$, where (for each $i$ ) $O_{i}$ is open in $X_{i}$ and $x_{i} \in O_{i}$.

Then $X$ together with the topology generated by this basis is called a (finite) product space.

For each positive integer $i$, let $X_{i}$ be a topological space. Define $X=\prod_{i=1}^{\infty} X_{i}$ to be the set $\left\{\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in X_{i}\right.$ for each positive integer $\left.i\right\}$. Define a topology on $X$ as follows: a basic open set containing $\left(x_{1}, x_{2}, \ldots\right)$ is given by $\prod_{i=1}^{\infty} O_{i}$, where (for each $i$ ) $O_{i}$ is open in $X_{i}, x_{i} \in O_{i}$, and for some positive integer $N, O_{n}=X_{n}$ if $n \geq N$.

Then $X$ together with the topology generated by this basis is called a (countably infinite) product space.

For each $i$ in some arbitrary index set $\mu$, let $X_{i}$ be a topological space. Define $X=$ $\prod_{i \in \mu} X_{i}$ to be the set $\left\{\left(x_{i}\right)_{i \in \mu} \mid x_{i} \in X_{i}\right.$ for each $\left.i\right\}$. Define a topology on $X$ as follows: a basic open set containing $\left(x_{i}\right)_{i \in \mu}$ is given by $\prod_{i \in \mu} O_{i}$, where (for each $i$ ) $O_{i}$ is open in $X_{i}$, $x_{i} \in O_{i}$, and for all but finitely many $i, O_{i}=X_{i}$.

Then $X$ together with the topology generated by this basis may be called a product space on the index set $\mu$.

Let $X=\prod_{i \in \mu} X_{i}$ be a product space (with index set $\mu$ either finite or infinite). Then the function $\pi_{j}: X \rightarrow X_{j}$ defined by $\pi_{j}\left(\left(x_{i}\right)_{i \in \mu}\right)=x_{j}$ is called the projection map on the $j$ th coordinate.

Suppose $X$ is a topological space with topology $T$ and $S \subset X$. Then the set $S$ together with the topology $\hat{T}=\{S \cap O \mid O \in T\}$ is called a subspace of $X$, where $\hat{T}$ is the subspace topology.

Let $X$ be a set. Then the relation $<$ on $X$ is a linear ordering on $X$ (and $X$ is said to be ordered with respect to $<$ ) if for any $a, b, c \in X$,

1. If $a \neq b$, either $a<b$ or $b<a$,
2. If $a<b$ then $b \nless a$,
3. If $a<b$ and $b<c$, then $a<c$.

Let $X$ be a set with a linear ordering $<$. Let $B$ be the collection of all subsets of $X$ of the following form:

1. $\{x \mid x<p\}$ for some $p \in X$,
2. $\{x \mid p<x\}$ for some $p \in X$,
3. $\{x \mid p<x<q\}$ for some $p, q \in X, p<q$.

Then the topology generated by $B$ is called the order topology on $X$.

Let $X$ and $Y$ be two spaces with linear orderings $<_{X}$ and $<_{Y}$, respectively, so that $X$ and $Y$ both have their own respective order topologies. Suppose there exists a function $\phi: X \rightarrow Y$ so that if $a, b \in X$, then $a<_{X} b$ iff $\phi(a)<_{Y} \phi(b)$. Then $\phi$ is an order isomorphism. If $\phi$ is onto, then $X$ and $Y$ are said to be order isomorphic.

Let $X$ be a set with a linear ordering $<$. Then a subset $S$ of $X$ is called an initial segment of $X$ if there exists some element $p \in X$ so that $S=\{x \in X \mid x<p\}$.

Let $X$ be a set with a linear ordering $<$. If $S$ is a subset of $X$, then $S$ is said to have a least element $p$ if $p \in S$ and for each $x \in S$, if $p \neq x, p<x$.

Let $X$ be a set with a linear ordering $<$. Then the set $X$ is said to be well-ordered if every subset of $X$ has a least element.

Let $\mu$ be a well-ordered index set with $h<k \in \mu$. Then the function $f: \prod_{i \in \mu, i \leq k} X_{i} \rightarrow$ $\prod_{i \in \mu, i \leq h} X_{i}$ given by $f\left(\left(x_{i}\right)_{i \leq k}\right)=\left(x_{i}\right)_{i \leq h}$ is called a generalized projection.

Suppose $X$ is a topological space and $d: X \times X \rightarrow \mathbb{R}$ is a function satisfying the following properties (for all $x, y, z \in X$ ):

1. $d(x, y) \geq 0$, and $d(x, y)=0$ iff $x=y$.
2. $d(x, y)=d(y, x)$.
3. $d(x, z) \leq d(x, y)+d(y, z)$.

Then the function $d$ is said to be a metric on $X$. For a given $p \in X$ and $\epsilon>0$, let $B(p, \epsilon)=\{x \in X \mid d(x, p)<\epsilon\}$. If the collection $\{B(p, \epsilon) \mid p \in X, \epsilon>0\}$ is a basis for the space $X$, then $X$ is said to be a metric space.

Let $X$ be a topological space. Two subsets $H$ and $K$ of $X$ are called mutually separated if neither set contains a point or a limit point of the other.

If $X$ is a topological space and $M \subseteq X$, then $M$ is connected if $M$ is not the union of two mutually separated non-empty subsets of $X$.

A topological space $X$ is a continuum if $X$ is non-empty, compact, and connected.
A continuum that is Hausdorff (but not necessarily metric) is called a Hausdorff continuum.

A continuum that is metric is called a metric continuum.

If $X$ is a continuum and $A$, a subset of $X$, is also a continuum, then $A$ is called a subcontinuum of $X$. If $A$ is a proper subset of $X$, then $A$ is a proper subcontinuum.

A point $p$ of a space $X$ is called an isolated point if there exists an open set $O \subseteq X$ such that $O=\{p\}$.

Let $X$ be a connected set. If $X-\{p\}$ is not connected, then $p$ is a cut point of $X$.

A continuum with exactly 2 non-cut points is called an arc.

A triod is a union of three arcs whose intersection is exactly one point.

A fan is a union of infinitely many arcs, all of which have exactly one point in common.

Let $X$ be a topological space. Suppose that $A$, a subset of $X$, is an arc with the property that whenever $O \subseteq X$ is an open set with $O \cap A \neq \emptyset$, there exists some point $p \in O$ with $p \notin A$. Then $A$ is called a limit arc.

## Background Theorems

Most of the following basic theorems may be found in [5]. The proofs of these theorems are omitted, but may be found in one or more of [2], [3], and [4].
2.1. Let $X$ be a topological space with $M \subseteq X$. If $M$ is compact, $M$ is perfectly compact.
2.2. Let $X$ be a topological space with $M \subseteq X$. If $M$ is closed and perfectly compact, $M$ is compact.
2.3. A closed subset of a compact space is compact.
2.4. Projection maps are continuous.
2.5. The continuous image of a compact set is compact.
2.6. Any finite product of compact sets is compact.
2.7. Let $B$ be a basis for a topological space $X$. Then every open set of $X$ is a union of members of $B$.
2.8. The following are equivalent:
i. $f: X \rightarrow Y$ is a continuous function from topological space $X$ to topological space $Y$.
ii. If $O$ is a (basic) open set in $Y$, then $f^{-1}(O)$ is open in $X$.
2.9. Suppose $X$ and $Y$ are both well-ordered with respect to the order relations $<_{X}$ and $<_{Y}$, respectively. Then exactly one of the following is true:
i. $X$ and $Y$ are order isomorphic.
ii. $X$ is order isomorphic to an initial segment of $Y$.
iii. $Y$ is order isomorphic to an initial segment of $X$.
2.10. Suppose $\mu$ is a well-ordered index set with $h<k \in \mu$. Then the generalized projection $f: \prod_{i \in \mu, i \leq k} X_{i} \rightarrow \prod_{i \in \mu, i \leq h} X_{i}$ given by $f\left(\left(x_{i}\right)_{i \leq k}\right)=\left(x_{i}\right)_{i \leq h}$ is continuous.
2.11. If $X$ is a compact Hausdorff space, then $X$ is regular.
2.12. If $X$ is a compact Hausdorff space, then $X$ is normal.
2.13. If $X$ is regular, then $X$ is Hausdorff.
2.14. If $X$ is normal, then $X$ is regular.
2.15. The unit interval $[0,1]$ is a compact subset of the real line.
2.16. Suppose $M$ is a subset of a topological space $X$. If $M$ is closed and not connected, then $M$ is the union of two disjoint closed sets $H$ and $K$.
2.17. The continuous image of a connected set is connected.
2.18. The continuous image of a continuum is a continuum.
2.19. Suppose $X_{i}$ is a connected for each positive integer $i$. Then $\prod_{i=1}^{n} X_{i}$ is connected for each positive integer $n$. Moreover, $\prod_{i=1}^{\infty} X_{i}$ is connected.
2.20. If $X=A \cup B$, a union of non-empty closed sets, and there exists a connected subset of $X$ that intersects both $A$ and $B$, then $A$ and $B$ are not mutually separated.
2.21. The common part of a monotonic collection of continua is a continuum.

Chapter 3
Inverse Limits with
Continuous Bonding Maps

Suppose that, for each natural number $i, X_{i}$ is a topological space and $f_{i}$ is a continuous function from $X_{i+1}$ to $X_{i}$. Let $X=\lim _{\leftrightarrows}\left\{X_{i}, f_{i}\right\}_{i=1}^{\infty}$ be the set of all sequences $x=\left(x_{i}\right)_{i=1}^{\infty}$, where $x_{i} \in X_{i}$ and $x_{i}=f_{i}\left(x_{i+1}\right)$ for all $i$. If $O_{i}$ is a subset of $X_{i}$, define $\overleftarrow{O_{i}}=\{x \in$ $\left.X \mid x_{i} \in O_{i}\right\}$. Then we say $X$ is an inverse limit space and a basis for the topology on $X$ is $\left\{\overleftarrow{O} \mid O\right.$ is open in some $\left.X_{i}\right\}$. The $X_{i}$ 's are called the factor spaces of $X$, and the $f_{i}$ 's are continuous bonding maps.

In this section, after we prove a few preliminary results, we will use inverse limits to give a straightforward proof of the formidable Tychonoff Theorem. Then we will see how some complicated topological spaces may be represented easily as an inverse limit with a single bonding map $f$.

We begin with some basic results about inverse limit spaces. First, it is of interest to determine whether a given topological property is taken on by $X$ if each factor space $X_{i}$ has that property.

Theorem 3.1. If $X=\lim _{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i=1}^{\infty}$ is an inverse limit space and each $X_{i}$ is Hausdorff, then $X$ is Hausdorff.

Proof: Suppose $X_{i}$ is Hausdorff for all $i$, where $p=\left(p_{i}\right)_{i=1}^{\infty}$ and $q=\left(q_{i}\right)_{i=1}^{\infty}$ are distinct elements of $X$. Then for some $i, p_{i} \neq q_{i}$. Since $X_{i}$ is Hausdorff, there exist disjoint open subsets $O_{p}$ and $O_{q}$ of $X_{i}$ containing $p_{i}$ and $q_{i}$, respectively. Thus, $\overleftarrow{O_{p}}$ and $\overleftarrow{O_{q}}$ are disjoint open sets in $X$ containing $p$ and $q$, respectively. So $X$ is Hausdorff.

It is also easily shown that
a) if each $X_{i}$ is regular, $X$ is regular;
b) if each $X_{i}$ is first countable, $X$ is first countable;
c) if each $X_{i}$ is second countable, $X$ is second countable.

However, $X$ does not always inherit the topological properties possessed by each $X_{i}$. For example, if each $X_{i}$ is non-empty, it need not follow that $X$ is non-empty. Consider $X=\lim _{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i=1}^{\infty}$ where $X_{i}$ is the open interval $\left(0, \frac{1}{i}\right)$ in the real line, and $f_{i}: X_{i+1} \rightarrow X_{i}$ is the identity map. Each $X_{i}$ is non-empty, but $X=\emptyset$.

Again suppose $X=\lim _{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i=1}^{\infty}$ is an inverse limit space. If $i, j$ are positive integers with $i<j$, define $f_{i}^{j}: X_{j} \rightarrow X_{i}$ by $f_{i}^{j}=f_{i} \circ f_{i+1} \circ \cdots \circ f_{j-1}$.

Theorem 3.2. Suppose $X=\varliminf_{\varliminf}\left\{X_{i}, f_{i}\right\}_{i=1}^{\infty}$ is an inverse limit space, $\left\{n_{i}\right\}_{i=1}^{\infty}$ is an increasing sequence of positive numbers, $g_{i}=f_{n_{i}}^{n_{i+1}}$ for each $i$, and $Y=\varliminf_{\longleftarrow}\left\{X_{n_{i}}, g_{i}\right\}_{i=1}^{\infty}$. Then $X$ is homeomorphic to $Y$.

Proof: Define $h: X \rightarrow Y$ by $h\left(\left(x_{i}\right)_{i=1}^{\infty}\right)=\left(x_{n_{i}}\right)_{i=1}^{\infty}$. We need to show that $h$ is a homeomorphism.
$h$ is easily seen to be onto. To show that $h$ is $1-1$, let $p=\left(p_{i}\right)_{i=1}^{\infty}$ and $q=\left(q_{i}\right)_{i=1}^{\infty}$ be distinct points in $X$. (So $p_{j} \neq q_{j}$ for some positive integer $j$.) Suppose by way of contradiction that $h(p)=h(q)$, i.e., $\left(p_{n_{i}}\right)_{i=1}^{\infty}=\left(q_{n_{i}}\right)_{i=1}^{\infty}$. If $n_{k}$ is the first $n_{i}$ with $n_{i}>j$, then $p_{j}=f_{j}^{n_{k}}\left(p_{n_{k}}\right)=f_{j}^{n_{k}}\left(q_{n_{k}}\right)=q_{j}$. This is a contradiction, so $h$ is 1-1.

To show $h$ is continuous, let $\overleftarrow{O}$ be basic open in $Y$. So $O$ is open in some $X_{n_{j}}$, where $n_{j} \in\left\{n_{i}\right\}_{i=1}^{\infty}$. Thus, $h^{-1}(\overleftarrow{O})=\overleftarrow{O}$, which is open in $X$, so $h$ is continuous.

To show $h^{-1}$ is continuous, suppose $\overleftarrow{O}$ is basic open in $X$ containing $\left(x_{i}\right)_{i=1}^{\infty}$. If $O$ is open in some $X_{n_{i}}$, then $\left(h^{-1}\right)^{-1}(\overleftarrow{O})=h(\overleftarrow{O})=\overleftarrow{O}$ is open in $Y$. On the other hand, suppose $O$ is open in some $X_{j}$, where $j \neq n_{i}$ for all $i$. Then if $n_{k}$ is the first $n_{i}$ with $n_{i}>j$, $A=\left(f_{j}^{n_{k}}\right)^{-1}(O)$ is an open set in $X_{n_{k}}$ with $\overleftarrow{A}$ containing $\left(x_{n_{i}}\right)_{i=1}^{\infty} ;$ moreover, $h^{-1}(\overleftarrow{A}) \subseteq \overleftarrow{O}$ So, in either case, $h^{-1}$ is continuous.

Thus, $h$ is a homeomorphism and the proof is complete.

Theorem 3.3. Let $X=\varliminf_{\leftrightarrows}\left\{X_{i}, f_{i}\right\}_{i=1}^{\infty}$ be an inverse limit space. If there is a natural number $N$ so that $f_{n}$ is an onto homeomorphism for each $n \geq N$, then $X$ is homeomorphic to $X_{N}$.

Proof: Define a function $h: X \rightarrow X_{N}$ by $h\left(\left(x_{i}\right)_{i=1}^{\infty}\right)=x_{N}$. We must show that $h$ is a homeomorphism.
i) $h$ is onto:

Because $f_{n}$ is an onto homeomorphism for $n \geq N$, for each $x_{N} \in X_{N}$ and each $n>N$, $\left(f_{N}^{n}\right)^{-1}\left(x_{N}\right)=x_{n}$ for some $x_{n} \in X_{n}$. Also, for each $n<N, f_{n}^{N}\left(x_{N}\right)=x_{n}$ for some $x_{n} \in X_{n}$. It follows that for each $x_{N} \in X_{N}$, there exists a sequence $x=\left(x_{1}, x_{2}, \ldots, x_{N}, x_{N+1}, \ldots\right) \in X$ with $h(x)=x_{N}$. So $h$ is onto.
ii) $h$ is $1-1$ :

Suppose $h(x)=h(y)$; we must show that $x=y$. Since $h(x)=h(y)$, we know $x_{N}=y_{N}$, so that $x_{n}=f_{n}^{N}\left(x_{N}\right)=f_{n}^{N}\left(y_{N}\right)=y_{n}$ for all $n<N$. Moreover, since $f_{n}$ is a homeomorphism for $n \geq N, x_{n}=\left(f_{N}^{n}\right)^{-1}\left(x_{N}\right)=\left(f_{N}^{n}\right)^{-1}\left(y_{N}\right)=y_{n}$ for all $n>N$.

So $x_{n}=y_{n}$ for each positive integer $n$. That is, $x=y$, and $h$ is $1-1$.
iii) $h$ is continuous:

Let $O$ be open in $X_{N}$. Then $h^{-1}(O)=\overleftarrow{O}$, which is open in $X$; thus, $h$ is continuous.
iv) $h^{-1}$ is continuous:

Let $\overleftarrow{O}$ be a basic open set in $X$ containing $x=\left(x_{i}\right)_{i=1}^{\infty}$. We must show there exists an open set $G$ in $X_{N}$ containing $h(x)=x_{N}$ with $h^{-1}(G) \subset \overleftarrow{O}$. If $O \subset X_{N}$, then clearly $h^{-1}(O) \subset \overleftarrow{O}$, and $x_{N} \in O$, so $G=O$. Similarly, if $O \subset X_{n}$ with $n>N, f_{N}^{n}(O)=G$ is open in $X_{N}$ containing $x_{N}$, and $h^{-1}(G) \subset \overleftarrow{O}$. Finally, if $O \subset X_{n}$ with $n<N$, then (since $f_{n}^{N}$ is continuous, and $O$ contains $x_{n}$ ) there is an open $G \subset X_{N}$ containing $x_{N}$ with $f_{n}^{N}(G) \subset O$, so that $\overleftarrow{G} \subseteq \overleftarrow{O}$. It follows that $h^{-1}(G) \subset \overleftarrow{O}$

All cases are accounted for, so $h^{-1}$ is continuous.

Therefore, $h$ is a homeomorphism and the proof is complete.

It may be shown that, if each $X_{i}$ is compact, the inverse limit space $X=\underset{\varliminf}{\lim }\left\{X_{i}, f_{i}\right\}_{i=1}^{\infty}$ is a closed subspace of the product space $\prod_{i=1}^{\infty} X_{i}$. Thus, by the Tychonoff Theorem, if each $X_{i}$ is compact, then $X$ (a closed subspace of a compact space) is compact. However, we will prove directly that an inverse limit on compact spaces is compact (Theorem 3.4); we will then use this result to prove the Tychonoff Theorem for countable products $\prod_{i=1}^{\infty} X_{i}$. Finally, we will generalize the notion of inverse limit in order to prove the Tychonoff Theorem in its full generality.

Theorem 3.4. Let $X=\lim _{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i=1}^{\infty}$ be an inverse limit space with $X_{i}$ non-empty and compact for each $i$. Then $X$ is non-empty and compact.

Proof: Since each $X_{i}$ is compact, each $X_{i}$ is perfectly compact. We intend to show that $X$ is perfectly compact.

Let $\left\{G_{i}\right\}_{i \in \mu}$ be a monotonic collection of non-empty subsets of $X$. (Need to show: there is a point $p=\left(p_{i}\right)_{i=1}^{\infty}$ in $X$ such that $p$ is either a point or limit point of every $G_{i}$.)

Define $G_{i j}=\pi_{j}\left(G_{i}\right)$.

Since $\left\{G_{i 1}\right\}_{i \in \mu}$ is a monotonic collection of non-empty subsets in $X_{1}$, a perfectly compact space, there exists $p_{1} \in \bigcap_{i \in \mu} \overline{G_{i 1}}$, i.e., a point $p_{1}$ in $X_{1}$ that is a point or limit point of every $G_{i 1}$. For convenience, let us say $f_{1}=f$.
(We need to show that there exists some element in $f^{-1}\left(p_{1}\right)$ that is also in $\bigcap_{i \in \mu} \overline{G_{i 2}}$.)

Because $\pi_{1}\left(G_{i}\right)=f \circ \pi_{2}\left(G_{i}\right)$, clearly $G_{i 1}=f\left(G_{i 2}\right)$ for each $i$. Thus,

$$
p_{1} \in \bigcap_{i \in \mu} \overline{G_{i 1}}=\bigcap_{i \in \mu} \overline{f\left(G_{i 2}\right)} \subseteq \bigcap_{i \in \mu} \overline{f\left(\overline{G_{i 2}}\right)} .
$$

But the continuous image of $\overline{G_{i 2}}$, a compact set, is compact (and hence, closed); therefore:

$$
p_{1} \in \bigcap_{i \in \mu} \overline{G_{i 1}}=\bigcap_{i \in \mu} \overline{f\left(G_{i 2}\right)} \subseteq \bigcap_{i \in \mu} \overline{f\left(\overline{G_{i 2}}\right)}=\bigcap_{i \in \mu} f\left(\overline{G_{i 2}}\right)
$$

(We need to show that $\bigcap_{i \in \mu} f\left(\overline{G_{i 2}}\right) \subseteq f\left(\bigcap_{i \in \mu} \overline{G_{i 2}}\right)$.)

Let $a \in \bigcap_{i \in \mu} f\left(\overline{G_{i 2}}\right)$. Since $f\left(\bigcap_{i \in \mu} \overline{G_{i 2}}\right)$ is closed, it will suffice to show that $a$ is a point or limit point of $f\left(\bigcap_{i \in \mu} \overline{G_{i 2}}\right)$.

Proof by Contradiction: Suppose $O \subseteq X_{1}$ is an open set containing $a$ but missing $f\left(\bigcap_{i \in \mu} \overline{G_{i 2}}\right)$. Then $f^{-1}(O)$ is open, contains $f^{-1}(a)$, and misses $\bigcap_{i \in \mu} \overline{G_{i 2}}$. In particular, $f^{-1}(a)$ misses $\bigcap_{i \in \mu} \overline{G_{i 2}}$, i.e., $f^{-1}(a) \cap\left(\bigcap_{i \in \mu} \overline{G_{i 2}}\right)=\emptyset$.

Claim: There exists some $\overline{G_{j 2}}$ for which $f^{-1}(a) \cap \overline{G_{j 2}}=\emptyset$.

Justification: Suppose not. Then $f^{-1}(a) \cap \overline{G_{i 2}} \neq \emptyset$ for all $i$.

Thus, since $\left\{f^{-1}(a) \cap \overline{G_{i 2}}\right\}_{i \in \mu}$ is a monotonic collection of non-empty closed sets, by perfect compactness, we have that $\bigcap_{i \in \mu}\left(f^{-1}(a) \cap \overline{G_{i 2}}\right) \neq \emptyset$. However, by set theory, we have $\bigcap_{i \in \mu}\left(f^{-1}(a) \cap \overline{G_{i 2}}\right)=f^{-1}(a) \cap\left(\bigcap_{i \in \mu} \overline{G_{i 2}}\right)$, so that $f^{-1}(a) \cap\left(\bigcap_{i \in \mu} \overline{G_{i 2}}\right) \neq \emptyset$. This is a contradiction.

So, there exists some $\overline{G_{j 2}}$ for which $f^{-1}(a) \cap \overline{G_{j 2}}=\emptyset$. But $a \in \bigcap_{i \in \mu} f\left(\overline{G_{i 2}}\right)$, so $a \in f\left(\overline{G_{i 2}}\right)$ for all $i$. That means for each $i$, there exists $y_{i} \in f^{-1}(a)$ such that $y_{i} \in \overline{G_{i 2}}$.

In particular, for $j$, there exists some $y_{j} \in f^{-1}(a)$ such that $y_{j} \in \overline{G_{j 2}}$. But $f\left(y_{j}\right)=a$, so $f^{-1}(a) \cap \overline{G_{j 2}} \neq \emptyset$. (Contradiction.)

Thus, if $a \in \bigcap_{i \in \mu} f\left(\overline{G_{i 2}}\right)$, then $a \in f\left(\bigcap_{i \in \mu} \overline{G_{i 2}}\right)$. That is, $\bigcap_{i \in \mu} f\left(\overline{G_{i 2}}\right) \subseteq f\left(\bigcap_{i \in \mu} \overline{G_{i 2}}\right)$, and that means $\bigcap_{i \in \mu} \overline{G_{i 1}} \subseteq f\left(\bigcap_{i \in \mu} \overline{G_{i 2}}\right)$.

So, since there exists some point $p_{1} \in \bigcap_{i \in \mu} \overline{G_{i 1}}$, there exists some $p_{2} \in \bigcap_{i \in \mu} \overline{G_{i 2}}$ with $f\left(p_{2}\right)=f_{1}\left(p_{2}\right)=p_{1}$. The same argument shows that there is a point $p_{3} \in \bigcap_{i \in \mu} \overline{G_{i 3}}$ with $f_{2}\left(p_{3}\right)=p_{2}$, etc.

It is therefore easy to see that $\left(p_{1}, p_{2}, p_{3}, \ldots\right)$ is a point in $X$ that is a point or limit point of each $G_{i}$. Thus, $X$ is non-empty and perfectly compact. Since $X$ is closed in itself and perfectly compact, $X$ is compact. This completes the proof.

Theorem 3.5. Suppose $X=\prod_{i=1}^{\infty} X_{i}$ is a product space, $Y_{n}=\prod_{i=1}^{n} X_{i}$, and $f_{n}$ : $Y_{n+1} \rightarrow Y_{n}$ is the continuous function defined by $f_{n}\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Then $Y=\varliminf_{\rightleftarrows}\left\{Y_{i}, f_{i}\right\}_{i=1}^{\infty}$ is homeomorphic to $X$.

Proof: Let $F: Y \rightarrow X$ be defined by
$F\left(\left(x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}, x_{3}\right), \ldots,\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right), \ldots\right)=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \ldots\right)$.

Clearly $F$ is 1-1 and onto; now we must show $F$ is continuous. Let $O=\prod_{i=1}^{\infty} O_{i}$ be basic open in $X$, so that for some positive integer $k, O_{i}=X_{i}$ for all $i>k$. Then $F^{-1}(O)=\left\{\left(\left(x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}, x_{3}\right), \ldots\right) \in Y \mid x_{i} \in O_{i}\right.$ for $\left.1 \leq i \leq k\right\}$, i.e., the set of all points in $Y$ whose $k$ th coordinate $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ lies in $\prod_{i=1}^{k} O_{i}$. Since $\prod_{i=1}^{k} O_{i}$ is open in $Y_{k}, F^{-1}(O)=\overleftarrow{\prod_{i=1}^{k} O_{i}}$ is open in $Y$, and $F$ is continuous.

To show $F^{-1}$ is continuous at a given point $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ in $X$, let $\overleftarrow{O}$ be basic open in $Y$ (where $O$ is open in some $Y_{k}$ ) so that $F^{-1}(x) \in \overleftarrow{O}$. Since $O$ is open in $Y_{k}$, there exists a basic open set $\prod_{i=1}^{k} O_{i}$ in $Y_{k}$ that is a subset of $O$ and contains the point $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$. It follows that $\left(\prod_{i=1}^{k} O_{i}\right) \times\left(\prod_{i=k+1}^{\infty} X_{i}\right)$, which is open in $X$, contains $x$. However, $F^{-1}\left[\left(\prod_{i=1}^{k} O_{i}\right) \times\left(\prod_{i=k+1}^{\infty} X_{i}\right)\right] \subset \overleftarrow{O} ; F^{-1}$ is therefore continuous

So $F$ is a homeomorphism.

Tychonoff Theorem for Countable Products. Let $X=\prod_{i=1}^{\infty} X_{i}$ be a topological product space with $X_{i}$ compact for each $i$. Then $X$ is compact.

Proof: By Theorem 3.5, if $Y_{n}=\prod_{i=1}^{n} X_{i}, Y=\varliminf_{\rightleftarrows}^{\varliminf_{i}}\left\{Y_{i}, f_{i}\right\}_{i=1}^{\infty}$ is homeomorphic to $X$. Any finite product of compact spaces is compact, so each $Y_{i}$ is compact; thus, by Theorem 3.4, $Y$ is compact. It follows that $X$ is compact also.

Thus, we have used inverse limits to prove the Tychonoff Theorem for countable products, i.e., that a product of countably many compact spaces is compact. We will now introduce a more general form of inverse limit that, among other things, will allow us to prove the general Tychonoff Theorem, i.e., that any product of compact spaces is compact.

A directed set $I$ is a set with a partial order $<$ such that for each pair $\alpha, \beta \in I$, there exists some $\gamma \in I$ such that $\alpha<\gamma$ and $\beta<\gamma$. Suppose that for each $i \in I, X_{i}$ is a topological space; also suppose there exists a collection of functions $\left\{f_{i}^{j}\right\}_{i<j}$ such that if $i<j<k$ then $f_{i}^{j} \circ f_{j}^{k}=f_{i}^{k}$. Define $X=\varliminf_{\rightleftarrows}\left\{X_{i}, f_{i}^{j}\right\}_{i<j \in I}$ to be the collection of all points $\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} X_{i}$ that satisfy $f_{j}^{k}\left(x_{k}\right)=x_{j}$ for all $j, k$ (with $j<k$ ) in $I$. As before, if $O_{i}$ is a subset of $X_{i}$, define $\overleftarrow{O_{i}}=\left\{x \in X \mid x_{i} \in O_{i}\right\}$. Then $X=\lim _{\leftrightarrows}\left\{X_{i}, f_{i}^{j}\right\}_{i<j \in I}$ is an inverse limit space on the directed set $I$, and a basis for the topology on $X$ is $\left\{\overleftarrow{O} \mid O\right.$ is open in some $\left.X_{i}\right\}$.

Theorem 3.6. Let $X=\varliminf_{\longleftarrow}^{\lim }\left\{X_{i}, f_{j}^{k}\right\}_{i \in I,}{ }_{j<k \in I}$ be an inverse limit space on the directed set $I$, with $f_{j}^{k}$ continuous for all $j, k \in I, j<k$. If each $X_{i}$ is compact, then $X$ is compact.

Proof: Following the strategy of Theorem 3.4, we will show that $X$ is perfectly compact: Let $\left\{G_{\alpha}\right\}_{\alpha \in \mu}$ be a monotonic collection of non-empty subsets of $X$. We must show that $\bigcap_{\alpha \in \mu} \overline{G_{\alpha}} \neq \emptyset$.

If the directed set $I$ is order isomorphic with the natural numbers, then the proof of Theorem 3.4 shows how to obtain a point $\left(p_{i}\right)_{i \in I} \in \bigcap_{\alpha \in \mu} \overline{G_{\alpha}}$. However, if $I$ is order isomorphic to some subset $\Phi$ of the ordinals containing (at least) one limit ordinal, we must use transfinite induction. Assume that all entries of the point $\left(p_{i}\right)_{i \in I}$ have been defined up to but not including the $k$ th entry, so that, if $i, j<k, p_{i} \in \bigcap_{\alpha \in \mu} \overline{\pi_{i}\left(G_{\alpha}\right)}$ and $f_{i}^{j}\left(p_{j}\right)=p_{i}$. Now we must show how to find a $k$ th entry $p_{k}$ with the needed properties, namely, $p_{k} \in \bigcap_{\alpha \in \mu} \overline{\pi_{k}\left(G_{\alpha}\right)}$ and $f_{i}^{k}\left(p_{k}\right)=p_{i}$ for all $i<k$.

If the $k$ th entry of $I$ corresponds to a non-limit ordinal in $\Phi$, then $k$ has an immediate predecessor $j$ in $I$, and $p_{j}$ has already been defined. Clearly the same argument given in the proof of Theorem 3.4 (i.e., the argument that finds $p_{2}$ given $p_{1}$ ) suffices here to find $p_{k}$ given $p_{j}$.

However, suppose the $k$ th entry of $I$ corresponds to a limit ordinal $\beta$ in $\Phi$. By the argument given in Theorem 3.4, for each $i<k \in I$, the set $\left(f_{i}^{k}\right)^{-1}\left(p_{i}\right) \cap \bigcap_{\alpha \in \mu} \overline{\pi_{k}\left(G_{\alpha}\right)} \neq \emptyset$.

We note that, if $i<j,\left(f_{j}^{k}\right)^{-1}\left(p_{j}\right) \subseteq\left(f_{i}^{k}\right)^{-1}\left(p_{i}\right)$. Thus, $\left\{\left(f_{i}^{k}\right)^{-1}\left(p_{i}\right)\right\}_{i<k}$ is a monotonic collection of non-empty closed subsets of $X_{k}$. Moreover, for each $i<k, f_{i}^{k}\left(\bigcap_{\alpha \in \mu} \overline{\pi_{k}\left(G_{\alpha}\right)}\right)$ contains $p_{i}$, so that $\left(f_{i}^{k}\right)^{-1}\left(p_{i}\right) \cap \bigcap_{\alpha \in \mu} \overline{\pi_{k}\left(G_{\alpha}\right)}$ is closed and non-empty. Thus, $\left\{\left(f_{i}^{k}\right)^{-1}\left(p_{i}\right) \cap\right.$ $\left.\bigcap_{\alpha \in \mu} \overline{\pi_{k}\left(G_{\alpha}\right)}\right\}_{i<k}$ is a monotonic collection of non-empty closed subsets of $X_{k}$. Since $X_{k}$ is perfectly compact, there is a point $p_{k} \in X_{k}$ that lies in each set in this collection. Thus, the $k$ th entry of $\left(p_{i}\right)_{i \in I}$ has been defined, and (by transfinite induction) the needed point $\left(p_{i}\right)_{i \in I}$ exists. That means $X$ is perfectly compact and hence, compact. •

It follows from Theorem 3.6 that such an inverse limit (with continuous bonding maps) on a directed set $I$ of any size is compact, provided that each factor space $X_{i}$ is compact. Now, after a few more lemmas, we will be ready to prove the general Tychonoff Theorem.

Lemma 3.7. Let $I$ be a well-ordered directed set. For each $i \in I$, define $Y_{i}=\prod_{j \leq i} X_{j}$. If $k>h$, let $f_{h}^{k}: Y_{k} \rightarrow Y_{h}$ be the continuous function defined by $f_{h}^{k}\left(\left(x_{i}\right)_{i \leq k}\right)=\left(x_{i}\right)_{i \leq h}$. Then the inverse limit $Y=\varliminf_{\rightleftarrows}\left\{Y_{i}, f_{j}^{k}\right\}_{i \in I, j<k \in I}$ is homeomorphic to $X=\prod_{i \in I} X_{i}$.

Proof: Let $F: Y \rightarrow X$ be defined by $F\left(\prod_{\alpha \in I}\left(x_{i}\right)_{i \leq \alpha}\right)=\left(x_{i}\right)_{i \in I}$. We need to show that $F$ is a homeomorphism.

Clearly $F$ is onto and $1-1$; we must show $F$ is continuous.

Let $O$ be basic open in $X$, so that $O=\prod_{i \in I} O_{i}$ where $O_{i}$ is open in $X_{i}$ for each $i$, and $O_{i}=X_{i}$ for all but finitely many $i$. Rename those finitely many open sets as $O_{i_{1}}, O_{i_{2}}, \ldots, O_{i_{n}}$; thus, for $j=1,2, \ldots, n, O_{i_{j}} \subsetneq X_{i_{j}}$.

Then $F^{-1}(O)=\bigcap_{j=1}^{n} \overleftarrow{\left\{x \in Y_{i_{j}} \mid x_{i_{j}} \in O_{i_{j}} \subsetneq X_{i_{j}}\right\}}$ is an open set in $Y$. So $F$ is continuous.

To show $F^{-1}$ is continuous, let $\overleftarrow{O}$ be basic open in $Y$ (so that $O$ is open in $Y_{\alpha}$ for some $\alpha \in I)$. Since $O$ is open in $Y_{\alpha}$, there exists a basic open set $\prod_{i \leq \alpha} O_{i}$ in $Y_{\alpha}$ that is a subset of $O$. It follows that $F^{-1}\left[\left(\prod_{i \leq \alpha} O_{i}\right) \times\left(\prod_{i>\alpha} X_{i}\right)\right] \subset \overleftarrow{O}$, and $F^{-1}$ is continuous. Thus, $F^{-1}$ is a homeomorphism.

Lemma 3.8. Let $I$ be an arbitrary index set, and let $\tilde{I}$ be the set $I$ with a well-ordering placed upon it. Then $X=\prod_{i \in I} X_{i}$ is homeomorphic to $\tilde{X}=\prod_{i \in \tilde{I}} X_{i}$.

Proof: Let $F: X \rightarrow \tilde{X}$ be defined by $F\left(\left(x_{i}\right)_{i \in I}\right)=\left(x_{i}\right)_{i \in \tilde{I}}$. Clearly $F$ is onto and 1-1; it remains to show that $F$ and $F^{-1}$ are continuous.

Let $O$ be basic open in $\tilde{X}$, so that $O=\prod_{i \in \tilde{I}} O_{i}$ where $O_{i}=X_{i}$ for all but finitely many $i$. Then $F^{-1}(O)=\prod_{i \in I} O_{i}$, which is open in $X$. So $F$ is continuous, and the argument is easily altered to show that $F^{-1}$ is also continuous. So $F$ is a homeomorphism.

With these two lemmas in hand, we are finally prepared to prove the general Tychonoff Theorem.

Tychonoff Theorem: Suppose for each $i$ in some index set $I, X_{i}$ is a compact topological space. Then $\prod_{i \in I} X_{i}$ is compact.

Proof: The result is already known if the index set $I$ is finite, so assume $I$ is infinite. By Lemma 3.8, without loss of generality we may assume that the index set $I$ is wellordered. Since $I$ is easily re-ordered in a way that keeps $I$ well-ordered without having a last element, we may also assume without loss of generality that $I$ is a directed set. We will use transfinite induction: Suppose that, for any given $\alpha \in I, \prod_{i \leq \alpha} X_{i}$ is compact. We will show that $X=\prod_{i \in I} X_{i}$ is compact.

For each $i \in I$, let $Y_{i}=\prod_{j \leq i} X_{j}$. Define $f_{h}^{k}$ for $h<k \in I$ as in Lemma 3.7. Then $Y=\lim _{\rightleftarrows}\left\{Y_{i}, f_{h}^{k}\right\}_{i \in I, h<k \in I}$ is homeomorphic to $X$, by Lemma 3.7. Since, by the induction hypothesis, $Y_{i}$ is compact for each $i \in I$, by Theorem 3.6, $Y$ is compact. Thus, $X$ is also compact and the proof is complete.

We conclude Chapter 3 with two examples of complex topological spaces that may be easily characterized using an inverse limit.

1) For each $i$, let $X_{i}=[0,1]$. Suppose $f:[0,1] \rightarrow[0,1]$ is given by

$$
f(t)=\left\{\begin{array}{c}
\frac{3}{2} t, 0 \leq t \leq \frac{2}{3} \\
\frac{5}{3}-t, \frac{2}{3} \leq t \leq 1
\end{array}\right\}
$$

Let $f_{i}=f$ for each $i$. Then $\varliminf_{\varliminf}\left\{X_{i}, f_{i}\right\}_{i=1}^{\infty}=\lim _{\leftrightarrows}\{[0,1], f\}_{i=1}^{\infty}$ is homeomorphic to the topologist's sine curve, i.e., $\left\{\left.\left(x, \sin \left(\frac{1}{x}\right)\right) \right\rvert\, x \in[-1,0)\right\} \cup\{(0, x) \mid x \in[-1,1]\}$.
2) For each $i$, let $X_{i}=[0,1]$. Suppose $f:[0,1] \rightarrow[0,1]$ is given by

$$
f(t)=\left\{\begin{array}{c}
2 t, 0 \leq t \leq \frac{1}{2} \\
2-2 t, \frac{1}{2} \leq t \leq 1
\end{array}\right\}
$$

Let $f_{i}=f$ for each $i$. Then $\underset{\leftrightarrows}{\lim }\left\{X_{i}, f_{i}\right\}_{i=1}^{\infty}=\underset{\rightleftarrows}{\lim }\{[0,1], f\}_{i=1}^{\infty}$ is homeomorphic to the Knaster continuum, a.k.a., "the bucket handle."

## Chapter 4

Inverse Limits of Upper Semi-Continuous<br>Set Valued Functions

Suppose $X$ and $Y$ are compact Hausdorff spaces, and define $2^{Y}$ to be the set of all non-empty compact subsets of $Y$. A function $f: X \rightarrow 2^{Y}$ is called upper semi-continuous (u.s.c.) if for any $x \in X$ and open $V$ in $Y$ containing $f(x)$, there exists an open $U$ in $X$ containing $x$ so that $f(u) \subset V$ for all $u \in U$. Upper semi-continuity is a generalization of continuity; hence, using upper semi-continuous bonding functions instead of continuous bonding maps provides us with a more generalized notion of an inverse limit.

Suppose that, for each positive integer $i, X_{i}$ is a compact Hausdorff space and $f_{i}$ : $X_{i+1} \rightarrow 2^{X_{i}}$ is an upper semi-continuous function. We define $\varliminf_{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i=1}^{\infty}$ to be the set of all points in $\prod_{i=1}^{\infty} X_{i}$ with $x_{i} \in f_{i}\left(x_{i+1}\right)$ for all $i$. (For convenience, we shall abbreviate $\underset{\rightleftarrows}{\lim }\left\{X_{i}, f_{i}\right\}_{i=1}^{\infty}$ by $\underset{\rightleftarrows}{\lim \mathbf{f} \text {.) Then we say } \underset{\rightleftarrows}{\lim } \mathbf{f} \text { is an inverse limit space with u.s.c. bonding }}$ functions, and a basis for the topology on $\varliminf_{\rightleftarrows} \mathbf{f}$ is $\left\{O \cap \varliminf_{\rightleftarrows} \mathbf{f} \mid O\right.$ is basic open in $\left.\prod_{i=1}^{\infty} X_{i}\right\}$. As in Chapter 3, if $O_{i}$ is a subset of $X_{i}$, we define $\overleftarrow{O_{i}}=\left\{x \in \lim _{\rightleftarrows} \mathbf{f} \mid x_{i} \in O_{i}\right\}$; if $O_{i}$ is open in $X_{i}$, then ${\overleftarrow{O_{i}}}$ is open in $\lim _{\leftrightarrows} \mathbf{f}$

Remark: However, unlike the inverse limit spaces seen in Chapter 3, in general, the collection $\left\{\overleftarrow{O} \mid O\right.$ is open in some $\left.X_{i}\right\}$ is not a basis for $\lim \mathbf{f}$. An example is given in the appendix to explain why this is so.*

In [1], Ingram and Mahavier not only prove generalizations of the sorts of theorems already seen in Chapter 3, but also provide examples to show when such results do not generalize. In this chapter, I give my own proofs of their theorems and explain their counterexamples in detail. (Note that the theorems are numbered here in a way that is consistent with the original numbering in [1]; for example, Theorem 2.1 from [1] has been relabeled 4.2.1, etc.)

First, Ingram and Mahavier introduce the useful notion of the graph of an upper semicontinuous function. If $X$ and $Y$ are compact Hausdorff spaces and $f: X \rightarrow 2^{Y}$ is u.s.c., the graph of $f$ (abbreviated $G(f))$ is the set $\{(x, y) \in X \times Y \mid y \in f(x)\}$.

Theorem 4.2.1. Suppose each of $X$ and $Y$ is a compact Hausdorff space and $M$ is a subset of $X \times Y$ such that if $x$ is in $X$ then there is a point $y$ in $Y$ such that $(x, y)$ is in M. Then $M$ is closed if and only if there is an upper semi-continuous function $f: X \rightarrow 2^{Y}$ such that $M=G(f)$.

Proof: Assume the hypothesis.
$(\Leftarrow)$ Suppose there is an upper semi-continuous function $f: X \rightarrow 2^{Y}$ such that $M=$ $G(f)$. We need to show that $M$ is closed.

Proof by contradiction: Let $(x, y)$ be a limit point of $M$ with $(x, y) \notin M$. We know the set $f(x)$ is compact, and hence closed; moreover, $\{x\} \times f(x)$ is a subset of $M$. Because $(x, y) \notin M$, we have $y \notin f(x)$.
$Y$ is a compact Hausdorff space, so $Y$ is regular. Thus, there exist disjoint open $O_{1}$, $O_{2}$ in $Y$ with $f(x) \subset O_{1}$ and $y \in O_{2} . O_{1}$ contains $f(x)$, so by u.s.c. there exists an open $U$ in $X$ containing $x$ so that $f(U) \subset O_{1}$.
$U \times O_{2}$ is open in $X \times Y$ and contains ( $x, y$ ), a limit point of $M$, so $U \times O_{2}$ must contain some other point $\left(x_{0}, y_{0}\right) \in M$. We note that not every point in $U \times O_{2}$ can have $x$ as its first coordinate, for otherwise, $U \times O_{2}$ would have no points in $M$. (For, each point would be of form $(x, z)$ where $z \notin f(x)$, so that $(x, z) \notin G(f)=M$.) Thus, there is some $\left(x_{0}, y_{0}\right) \in U \times O_{2}$ with $x_{0} \neq x$.

However, $x_{0} \in U$, so $f\left(x_{0}\right) \subseteq O_{1}$. But $\left(x_{0}, y_{0}\right) \in M$, so $y_{0} \in f\left(x_{0}\right)$. It follows that a point in $f\left(x_{0}\right)$ (namely, $y_{0}$ ) lies in $O_{2}$, which was disjoint from $O_{1}$. This is a contradiction, so $M$ is closed.
$(\Rightarrow)$ Suppose that $M$ is closed. We must show that there is an upper semi-continuous function $f: X \rightarrow 2^{Y}$ such that $M=G(f)$.

For each $x \in X$, consider $\{x\} \times Y$. This set is closed in $X \times Y$, so that $K_{x}=$ $(\{x\} \times Y) \cap M$ is also closed and non-empty. A closed subset of $X \times Y$ is compact, so $K_{x}$ is compact. Thus, $\pi_{2}\left(K_{x}\right)$ is compact in $Y$.

Define $f: X \rightarrow 2^{Y}$ by $f(x)=\pi_{2}\left(K_{x}\right)$; we must show $f$ is an upper semi-continuous function.

Let $V$ be open in $Y$ with $\pi_{2}\left(K_{x}\right)=f(x) \subseteq V$. We need to show there exists an open set $U$ in $X$ with $x \in U$ such that $f(U) \subset V$.

Proof by contradiction: Suppose no such $U$ exists. Let $\left\{u_{\alpha}\right\}_{\alpha \in \mu}$ be the set of all points $u_{\alpha}$ in $X$ with $f\left(u_{\alpha}\right) \not \subset V$. Then every open set in $X$ containing $x$ must contain infinitely many $u_{\alpha}$ 's. (For, suppose not. Then some open $O$ containing $x$ contains only finitely many $u_{\alpha}$ 's, say, $u_{\alpha_{1}}, u_{\alpha_{2}}, \ldots, u_{\alpha_{k}}$. Thus, because $X$ is regular, there exists an open set $R$ containing $x$ that misses $(X-O) \cup\left\{u_{\alpha_{i}}\right\}_{i=1}^{k}$, and hence, misses all $u_{\alpha}$ 's.)

Claim: the collection of points $W=\left\{\left(u_{\alpha}, y_{\alpha}\right) \mid \alpha \in \mu, y_{\alpha} \in f\left(u_{\alpha}\right), y_{\alpha} \notin V\right\}$ has a limit point $(x, z)$ with $z \notin V$.

For, suppose not. Then $\{x\} \times(Y-V)$ and $\bar{W}$ are disjoint closed sets in $X \times Y$. So, since $X \times Y$ is normal, there exist disjoint open $O_{1}$ and $O_{2}$ containing $\{x\} \times(Y-V)$ and $\bar{W}$ respectively. Hence, for each $(x, z) \in\{x\} \times(Y-V)$, we may find a basic open set $(A \times B)_{(x, z)}$ about ( $x, z$ ) lying in $O_{1}$. By the compactness of $X \times Y$, a finite number (say, $n$ ) of these open sets covers $\{x\} \times(Y-V)$, so that $\left\{\left(\bigcap_{i=1}^{n} A_{i}\right) \times B_{j}\right\}_{j=1}^{n}$ also covers $\{x\} \times(Y-V)$. We note that $\bar{W}$ misses the union of the members of this finite open cover.
$\bigcap_{i=1}^{n} A_{i}$ is open in $X$, contains $x$, and contains no $u_{\alpha}$ such that $f\left(u_{\alpha}\right) \not \subset V$. This means there does exist an open set (namely, $\left.\bigcap_{i=1}^{n} A_{i}\right)$ in $X$ with $f\left(\bigcap_{i=1}^{n} A_{i}\right) \subset V$. This is a contradiction, so there does exist a point $(x, z) \in\{x\} \times Y$, with $z \notin V$, that is a limit point of $W$. But $W \subseteq M$, which is closed, so any limit point of $W$ is an element of $M$. That is, $(x, z) \in M$, and $z \in f(x)$. But $f(x) \subset V$, and $z \notin V$. A contradiction has been reached, so the proof is complete. •

For the next two theorems, let the following be a standing hypothesis: suppose that for each positive integer $n, X_{n}$ is a non-empty compact Hausdorff space and $f_{n}: X_{n+1} \rightarrow 2^{X_{n}}$ is an upper semi-continous bonding function. If $\prod=\prod_{i=1}^{\infty} X_{i}$, let $G_{n}=\left\{x \in \prod \mid x_{i} \in f_{i}\left(x_{i+1}\right)\right.$ for $i \leq n\}$.

Theorem 4.3.1. For each positive integer $n, G_{n}$ is a non-empty compact set.

Proof: We first show that $G_{n}$ is non-empty for each positive integer $n$. Pick any point $x_{n+1} \in X_{n+1} \cdot f_{n}\left(x_{n+1}\right)$ is compact (and non-empty) in $X_{n}$; we may pick a point $x_{n} \in f_{n}\left(x_{n+1}\right)$, so that $f_{n-1}\left(x_{n}\right)$ is compact (and non-empty) in $X_{n-1}$; next, pick a point $x_{n-1} \in f_{n-1}\left(x_{n}\right)$, and so forth. By finishing this process at $x_{1}$ and then (for $i>n+1$ ) choosing $x_{i}$ from $X_{i}$ arbitrarily, we find that $\left\{x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, x_{n+2}, \ldots\right\} \in G_{n}$. So $G_{n} \neq \emptyset$.

Now we must show that $G_{n}$ is compact. Since $G_{n}$ is a subspace of $\Pi$, which is compact, it will suffice to show that $G_{n}$ is closed.

Proof by contradiction: Let $p=\left\{p_{1}, p_{2}, \ldots, p_{n}, p_{n+1}, p_{n+2}, \ldots\right\}$ be a limit point of $G_{n}$ in $\prod$, with $p \notin G_{n}$. Since $p \notin G_{n}$, it follows that $p_{i} \notin f_{i}\left(p_{i+1}\right)$ for some $i, 1 \leq i \leq n$.
$X_{i}$ is regular, so (in $X_{i}$ ) there exist disjoint open sets $O_{p_{i}}$ and $O_{f_{i}\left(p_{i+1}\right)}$ containing $p_{i}$ and $f_{i}\left(p_{i+1}\right)$ respectively. By the upper semi-continuity of $f_{i}$, there exists an open $U$ in $X_{i+1}$ containing $p_{i+1}$ so that $f(U) \subset O_{f_{i}\left(p_{i+1}\right)}$. That is, $p_{i} \notin f(U)$. Hence, for all $u \in U$, $f(U) \subset O_{f_{i}\left(p_{i+1}\right)}$ and $f(u) \cap O_{p_{i}}=\emptyset$.

Thus, $X_{1} \times X_{2} \times \cdots \times X_{i-1} \times O_{p_{i}} \times U \times X_{i+2} \times \cdots$ is open in $\prod$, contains $p$, but misses $G_{n}$. However, $p$ was a limit point of $G_{n}$, so this is a contradiction.

So $G_{n}$ is closed in $\Pi$, and therefore, $G_{n}$ is compact. •

Theorem 4.3.2. $K=\lim _{\leftrightarrows} \mathbf{f}$ is non-empty and compact.

Proof: $K=\lim _{\leftrightarrows} \mathbf{f}=\bigcap_{n=1}^{\infty} G_{n}$. But $\left\{G_{n}\right\}_{n=1}^{\infty}$ is a monotonic collection of non-empty closed (compact) subsets of $\Pi$; so, since $\Pi$ is perfectly compact, $\bigcap_{n=1}^{\infty} G_{n}$ is non-empty. Moreover, any intersection of closed sets is closed, so $\bigcap_{n=1}^{\infty} G_{n}$ is also closed, and therefore compact. •

Having dealt with the issue of compactness, we now turn to theorems about connectedness.

Theorem 4.4.1. Suppose $X, Y$ are compact Hausdorff spaces, $X$ is connected, $f$ : $X \rightarrow 2^{Y}$ is u.s.c., and for each $x$ in $X, f(x)$ is connected. Then the graph $G(f)$ is connected.

Proof: Suppose by way of contradiction that $G(f)$ is not connected. Then, since $G(f)$ is closed, $G(f)=H \cup K$, a union of disjoint closed sets. For a given $x$, define $(x, f(x))=\{(x, y) \mid y \in f(x)\}$. We note that $K \cap(x, f(x))$ and $H \cap(x, f(x))$ cannot both be non-empty. (For, if they were, then $(x, f(x))=[K \cap(x, f(x))] \cup[H \cap(x, f(x))]$, a union of two disjoint closed point sets. But $f(x)$ was connected.) Thus, for all $x \in X$, either $K \cap(x, f(x))=\emptyset$ or $H \cap(x, f(x))=\emptyset$. That is, for each $x,(x, f(x))$ must lie either in $H$ or $K$ but not both.

Because $X \times Y$ is compact and Hausdorff, $X \times Y$ is normal. So there exist disjoint open sets $O_{H}$ and $O_{K}$ containing $H$ and $K$ respectively. Without loss of generality, consider a given set $(x, f(x))$ that is a subset of $K$. We may find a union of basic open sets of form $B_{i}=A_{i_{j}} \times R_{i_{j}}$ in $X \times Y$ that contains $(x, f(x))$ and lies in $O_{K}$. By the compactness of $(x, f(x))$, only finitely many (say, $n) B_{i}$ 's cover $(x, f(x))$. Thus, $\left\{\left(\bigcap_{j=1}^{n} A_{i_{j}}\right) \times R_{i_{t}}\right\}_{t=1}^{n}$ is an open cover of $(x, f(x))$.

Since $R=\bigcup_{t=1}^{n} R_{i_{t}}$ is open in $Y$ and contains $f(x)$, by u.s.c. there exists an open $U$ in $X$ containing $x$ so that $f(U) \subset R$. Then $V=U \cap \bigcap_{j=1}^{n} A_{i_{j}}$ is also open in $X$, contains $x$, and clearly $f(V) \subset R$. (Indeed, $\left.\{(x, f(x)) \mid x \in V\} \subset \bigcup_{t=1}^{n}\left(\left(\bigcap_{j=1}^{n} A_{i_{j}}\right) \times R_{i_{t}}\right).\right)$.

Hence, no points $z$ in $V$ can be such that $(z, f(z)) \subset H$. (For that would contradict the fact that $(z, f(z)) \subset O_{K}$, where $O_{K} \cap H=\emptyset$.) So, we have found an open set $V=V_{x}$ in $X$ containing $x$ so that $V_{x} \cap \pi_{1}(H)=\emptyset$. Such an open $V_{x}$ can be found for each $x$ with $(x, f(x)) \subset K$, so that the union of all such $V_{x}$ 's is open in $X$ and contains the set $\{x \mid(x, f(x)) \subset K\}$.

But such an open set (disjoint from the union of the $V_{x}$ 's) can also be found containing the set $\{x \mid(x, f(x)) \subset H\}$. So, we have disjoint (non-empty) open sets in $X$ whose union equals $X$ itself, and this contradicts the fact that $X$ was connected. •

Theorem 4.4.2. Suppose that $X$ and $Y$ are compact Hausdorff spaces, $Y$ is connected, and $f$ is an upper semi-continuous function from $X$ into $2^{Y}$ such that for each $y$ in $Y$, $\{x \in X \mid y \in f(x)\}$ is a non-empty, connected set. Then $G(f)$ is connected.

Proof: Suppose by way of contradiction that $G(f)=H \cup K$, a union of disjoint closed sets. For each $y \in Y$, let $A_{y}=\{x \in X \mid y \in f(x)\}$, and let $\left(A_{y}, y\right)=\left\{A_{y}\right\} \times\{y\}$. Each $A_{y}$ is connected, so for each $y$, either $\left(A_{y}, y\right) \subset H$ or $\left(A_{y}, y\right) \subset K$ but not both. We know that $H=\bigcup_{\left(A_{y}, y\right) \subset H}\left\{\left(A_{y}, y\right)\right\}$ and $K=\bigcup_{\left(A_{y}, y\right) \subset K}\left\{\left(A_{y}, y\right)\right\}$; thus, the sets $\pi_{2}(H)=$ $\left\{y \mid\left(A_{y}, y\right) \subset H\right\}$ and $\pi_{2}(K)=\left\{y \mid\left(A_{y}, y\right) \subset K\right\}$ are disjoint closed sets whose union is $Y$. However, $Y$ is connected, so this is a contradiction.

Next, it will be useful to extend the notion of the graph of one function, $G(f)$, to the graph of a finite sequence of functions. If for $1 \leq i \leq n, X_{i}$ is a compact Hausdorff
space and $f_{i}: X_{i+1} \rightarrow 2^{X_{i}}$ is u.s.c., we define $G\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right) \in\right.$ $\prod_{i=1}^{n+1} X_{i} \mid x_{i} \in f_{i}\left(x_{i+1}\right)$ for $\left.1 \leq i \leq n\right\}$.

Theorem 4.4.3. Suppose $X_{1}, X_{2}, \ldots, X_{n+1}$ is a finite collection of Hausdorff continua and $f_{1}, f_{2}, \ldots, f_{n}$ is a finite collection of upper semi-continuous functions such that $f_{i}$ : $X_{i+1} \rightarrow 2^{X_{i}}$ for $1 \leq i \leq n$. If $f_{i}(x)$ is connected for each $x$ in $X_{i+1}$ and each $i, 1 \leq i \leq n$, then $G\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ is connected.

Proof: We will use induction on the number of spaces, $n$. For the base case, suppose $X_{1}, X_{2}$ are Hausdorff continua, $f_{1}: X_{2} \rightarrow 2^{X_{1}}$ is an upper-semi continuous function, and $f_{1}(x)$ is connected for each $x$ in $X_{2}$. Then $G\left(f_{1}\right)$ is connected by Theorem 4.4.2.

Now suppose the theorem is true for a graph on $n$ spaces; we must show that the theorem also holds for $n+1$ spaces. That is, we must show $G\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ is connected.

By the inductive hypothesis, the graph $G\left(f_{2}, f_{3}, \ldots, f_{n}\right)$ is connected. Define an upper semi-continuous function $f^{*}: G\left(f_{2}, f_{3}, \ldots, f_{n}\right) \rightarrow 2^{X_{1}}$ by $f^{*}\left(x_{2}, x_{3}, \ldots, x_{n+1}\right)=f_{1}\left(x_{2}\right)$. To show that $f^{*}$ is indeed upper semi-continuous, let $\left(x_{2}, x_{3}, \ldots, x_{n+1}\right)$ be in $G\left(f_{2}, f_{3}, \ldots, f_{n}\right)$, so that $f^{*}\left(x_{2}, x_{3}, \ldots, x_{n+1}\right)=f_{1}\left(x_{2}\right)$. Let $V$ be an open set in $X_{1}$ that contains $f_{1}\left(x_{2}\right)$. We need to find an open set in $G\left(f_{2}, f_{3}, \ldots, f_{n}\right)$ containing $x$ whose image lies in $V$. Since $f_{1}$ is u.s.c., there exists some open $U$ in $X_{2}$ (with $x_{2} \in V$ ) so that $f_{1}(U)$ is a subset of $V$. Thus, $O=\left(U \times X_{3} \times X_{4} \times \ldots \times X_{n+1}\right) \cap G\left(f_{2}, f_{3}, \ldots, f_{n}\right)$ is an open set in $G\left(f_{2}, f_{3}, \ldots, f_{n}\right)$ containing $\left(x_{2}, x_{3}, \ldots, x_{n+1}\right)$ such that $f^{*}(O) \subseteq V$.

Thus, $f^{*}$ is u.s.c. Moreover, $f^{*}\left(x_{2}, x_{3}, \ldots, x_{n+1}\right)$ is connected for all $\left(x_{2}, x_{3}, \ldots, x_{n+1}\right) \in$ $G\left(f_{2}, f_{3}, \ldots, f_{n}\right)$. (For, $f^{*}\left(x_{2}, x_{3}, \ldots, x_{n+1}\right)=f_{1}\left(x_{2}\right)$, which was assumed to be connected.) Thus, by Theorem 4.4.2, the graph of $f^{*}$ is connected. However, the graph of $f^{*}$ is precisely the set of all ordered pairs $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n+1}\right)$ with $x_{i} \in f_{i}\left(x_{i+1}\right)$ for each $i$. This set is in fact $G\left(f_{1}, f_{2}, \ldots, f_{n}\right)$, so $G\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ has been shown to be connected and the proof is complete.

Theorem 4.4.4. Suppose that $X_{i}$ is a Hausdorff continuum for each $i$ and $f_{i}(x)$ is connected for each $x \in X_{i+1}$. Then $G_{n}$ is connected for each positive integer $n$.

Proof: We note that $G_{n}=G\left(f_{1}, f_{2}, \ldots, f_{n}\right) \times \prod_{i=n+2}^{\infty} X_{i}$. Since $G\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ is connected (by Theorem 4.4.3) and $\prod_{i=n+2}^{\infty} X_{i}$ is connected as well, $G_{n}$ is connected.

Theorem 4.4.5. Suppose $X_{1}, X_{2}, \ldots, X_{n+1}$ is a finite collection of Hausdorff continua and $f_{1}, f_{2}, \ldots, f_{n}$ is a finite collection of u.s.c. functions such that $f_{i}: X_{i+1} \rightarrow 2^{X_{i}}$ for $1 \leq i \leq n$. If for each $i, 1 \leq i \leq n$ and each $y \in X_{i},\left\{x \in X_{i+1} \mid y \in f_{i}(x)\right\}$ is a non-empty, connected set, then $G\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ is connected.

Proof: To get this result, we shall adjust Mahavier's proof of Theorem 4.4.3. By Theorem 4.4.2, the theorem is true for only one bonding function $f_{1}$.

Assume the inductive hypothesis. That is, assume that if for all $i$ and for all $y \in X_{i}$, $\left\{x \in X_{i+1} \mid y \in f_{i}(x)\right\}$ is a non-empty, connected set, then the graph on $<n+1$ u.s.c. functions is connected.

Need: $G\left(f_{1}, f_{2}, \ldots, f_{n}, f_{n+1}\right)$ is connected.

By hypothesis, $G\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ is connected. Assume by way of contradiction that $H$ and $K$ are mutually separated non-empty point sets with $H \cup K=G\left(f_{1}, f_{2}, \ldots, f_{n}, f_{n+1}\right)$. Since the graph is closed, we know that $H$ and $K$ are in fact disjoint closed sets.

Let $h: G\left(f_{1}, f_{2}, \ldots, f_{n}, f_{n+1}\right) \rightarrow G\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ be the continuous map defined by $h\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Since $h\left(G\left(f_{1}, f_{2}, \ldots, f_{n}, f_{n+1}\right)\right)=h(H \cup K)=$ $G\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ is connected, there is a point $p=\left(p_{1}, p_{2}, \ldots, p_{n}, p_{n+1}\right)$ belonging to $h(H)$ and $h(K)$. Note that both $h(H)$ and $h(K)$ are compact and hence, closed.

Thus, $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, x_{n+2}\right) \in G\left(f_{1}, f_{2}, \ldots, f_{n}, f_{n+1}\right) \mid x_{i}=p_{i}\right.$ for $1 \leq i \leq n+$ $\left.1, x_{n+2} \in\left\{z \in X_{n+2} \mid p_{n+1} \in f_{n+2}(z)\right\}\right\}$ is a connected set, because it is a product of connected sets. But this set intersects both $H$ and $K$, so $H$ and $K$ could not have been mutually separated. So, we have a contradiction and the proof is complete.

Theorem 4.4.6. Let $X_{i}$ be a Hausdorff continuum for each positive integer i. Suppose $f_{i}: X_{i+1} \rightarrow 2^{X_{i}}$ is u.s.c. and for each $x_{i} \in X_{i},\left\{y \in X_{i+1} \mid x_{i} \in f_{i}(y)\right\}$ is a non-empty, connected set. Then for each positive integer $n, G_{n}$ is connected.

Proof: By Theorem 4.4.5, $G\left(f_{1}, f_{2}, \ldots, f_{n+1}\right)$ is connected. We note that $G_{n}=$ $G\left(f_{1}, f_{2}, \ldots, f_{n+1}\right) \times \prod_{i=n+2}^{\infty} X_{i}$. Since $X_{i}$ is a continuum for each integer $i \geq n+2$, we have that $\prod_{i=n+2}^{\infty} X_{i}$ is a continuum. Thus, $G_{n}$ is a product of two connected sets, and hence, is connected.

Theorem 4.4.7. Suppose that for each positive integer $i, X_{i}$ is a Hausdorff continuum, $f_{i}: X_{i+1} \rightarrow 2^{X_{i}}$ is an upper semi-continuous function, and for each $x$ in $X_{i+1}, f_{i}(x)$ is connected. Then $\lim \mathbf{f}$ is a Hausdorff continuum.

Proof: By Theorems 4.3.1 and 4.4.4, for each positive integer $n, G_{n}$ is a non-empty, compact, connected set; that is, each $G_{n}$ is a (Hausdorff) continuum. Moreover, since $G_{n+1} \subseteq G_{n}$ for each $n,\left\{G_{n}\right\}_{n=1}^{\infty}$ is a monotonic collection of Hausdorff continua. That means $\bigcap_{n=1}^{\infty} G_{n}$ is a Hausdorff continuum. But $\lim _{\leftrightarrows} \mathbf{f}=\bigcap_{n=1}^{\infty} G_{n}$, so the result is proven.

Theorem 4.4.8. Suppose that for each positive integer $i, X_{i}$ is a Hausdorff continuum, $f_{i}: X_{i+1} \rightarrow 2^{X_{i}}$ is an upper semi-continuous function, and for each $x \in X_{i},\left\{y \in X_{i+1} \mid x \in\right.$ $\left.f_{i}(y)\right\}$ is a non-empty, connected set. Then $\underset{\rightleftarrows}{ } \mathbf{f}$ is a Hausdorff continuum.

Proof: By Theorems 4.3.1 and 4.4.6, for each positive integer $n, G_{n}$ is a Hausdorff continuum. The rest of the proof is the same as the proof of Theorem 4.4.7. -

Next, Mahavier and Ingram give a generalized version of the "space-skipping" theorem seen in Chapter 3. However, we must first define the notion of composition of u.s.c. functions. Let $X, Y$, and $Z$ be compact Hausdorff spaces, and suppose $f: X \rightarrow 2^{Y}$ and $g: Y \rightarrow 2^{Z}$ are u.s.c. functions. Then $g \circ f: X \rightarrow 2^{Z}$ is defined by $(g \circ f)(x)=\{z \in Z \mid$ there exists $y \in Y$ such that $y \in f(x)$ and $z \in g(y)\}$.

Theorem 4.5.1. Suppose $X_{1}, X_{2}, \ldots$, is a sequence of compact Hausdorff spaces and $f_{i}: X_{i+1} \rightarrow 2^{X_{i}}$ is u.s.c. for each positive integer $i$. If $n_{1}, n_{2}, \ldots$, is an increasing sequence of positive integers, let $g_{1}, g_{2}, \ldots$ be the sequence of functions with the property that $g_{i}=$ $f_{n_{i}} \circ f_{n_{i}+1} \circ \cdots \circ f_{n_{i+1}-1}$ for each $i$. If $F: \prod_{i>0} X_{i} \rightarrow \prod_{i>0} X_{n_{i}}$ is given by $F\left(x_{1}, x_{2}, x_{3}, \ldots\right)=$ $\left(x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, \ldots\right)$, then $F \mid \underset{\rightleftarrows}{l} \mathbf{f}$ is a continuous transformation from $\underset{\rightleftarrows}{\lim } \mathbf{f}$ onto $\underset{\leftrightarrows}{\lim } \mathbf{g}$.

Proof: Let $O=\left(\prod_{i=1}^{\infty} O_{n_{i}}\right) \cap \lim _{\leftrightarrows} \mathbf{g}$ be basic open in $\lim _{\leftrightarrows} \mathbf{g}$ (where $O_{n_{i}}$ is open in $X_{n_{i}}$, and for some positive integer $k, O_{n_{i}}=X_{n_{i}}$ for $\left.i \geq k\right)$. Then $\left(F \mid \varliminf_{\leftrightarrows} \mathbf{f}\right)^{-1}(O)=\left(\prod_{j=1}^{\infty} O_{j}\right) \cap \varliminf_{\rightleftarrows} \mathbf{f}$, where if $j=n_{i}$ for some $i, O_{j}=O_{n_{i}}$, and for all other $j, O_{j}=X_{j}$. Since $\left(F \mid \varliminf_{\leftrightharpoons} \mathbf{f}\right)^{-1}(O)$ is open in $\varliminf_{\rightleftarrows} \mathbf{f}, F \mid \varliminf_{\leftrightarrows} \mathbf{f}$ is continuous. The fact that $F \mid \varliminf_{\rightleftarrows} \mathbf{f}$ maps onto $\underset{\leftrightarrows}{ } \mathbf{g}$ is clear.

Theorem 4.5.2. Let $X_{1}, X_{2}, \ldots$ and $Y_{1}, Y_{2}, \ldots$ be sequences of compact Hausdorff spaces and, for each positive integer $i$, let $f_{i}: X_{i+1} \rightarrow 2^{X_{i}}$ and $g_{i}: Y_{i+1} \rightarrow 2^{Y_{i}}$ be u.s.c. functions. Suppose further that, for each positive integer $i, \varphi_{i}: X_{i} \rightarrow Y_{i}$ is a mapping such that $\varphi_{i} \circ f_{i}=g_{i} \circ \varphi_{i+1}$. Then the function $\varphi: \underset{\leftrightarrows}{\lim } \mathbf{f} \rightarrow \underset{\leftrightarrows}{\lim } \mathbf{g}$ given by $\varphi(x)=\left(\varphi_{1}\left(x_{1}\right), \varphi_{2}\left(x_{2}\right), \varphi_{3}\left(x_{3}\right), \ldots\right)$ is continuous. Moreover, $\varphi$ is 1-1 (and surjective) if each $\varphi_{i}$ is 1-1 (and surjective).

Proof: First, we must show that $\varphi$ maps into $\underset{\rightleftarrows}{\lim } \mathbf{g}$. Let $p=\left(p_{1}, p_{2}, \ldots\right) \in \underset{\rightleftarrows}{\lim } \mathbf{f}$; we need to show that $\varphi(p) \in \underset{\varliminf}{\lim } \mathbf{g}$. That is, we need to show that for any $i, \varphi_{i}\left(p_{i}\right) \in$ $g_{i}\left(\varphi_{i+1}\left(p_{i+1}\right)\right)$. By hypothesis, $g_{i}\left(\varphi_{i+1}\left(p_{i+1}\right)\right)=\varphi_{i}\left(f_{i}\left(p_{i+1}\right)\right)$; however, $p_{i} \in f_{i}\left(p_{i+1}\right)$, so $\varphi_{i}\left(p_{i}\right) \in \varphi_{i}\left(f_{i}\left(p_{i+1}\right)\right)=g_{i}\left(\varphi_{i+1}\left(p_{i+1}\right)\right)$. Thus, $\varphi$ does map into $\varliminf_{\rightleftarrows} \mathbf{g}$; it remains to show that $\varphi$ is continuous.

Let $x=\left(x_{1}, x_{2}, \ldots\right) \in \lim _{\leftrightarrows} \mathbf{f}$, and let $O=\left(\prod_{i=1}^{\infty} O_{i}\right) \cap \varliminf_{\leftrightarrows} \mathbf{g}$ be basic open in $\varliminf_{\leftrightarrows} \mathbf{g}$, with $O$ containing $\varphi(x)=\left(\varphi_{1}\left(x_{1}\right), \varphi_{2}\left(x_{2}\right), \ldots\right)$. We need to show there exists an open set $U$ in $\lim _{〔} \mathbf{f}$ containing $x$ so that $\varphi(U) \subseteq O$.

We note that, since $\prod_{i=1}^{\infty} O_{i}$ is basic open in $\prod_{i=1}^{\infty} Y_{i}, O_{i}$ is open in $Y_{i}$ for each $i$; also, for some positive integer $k$, if $i>k, O_{i}=Y_{i}$. Now, since each $\varphi_{i}$ is continuous, for all $i$ the set $U_{i}=\varphi_{i}^{-1}\left(O_{i}\right)$ is open in $X_{i}$ and contains $x_{i}$. Hence, the open set $U=\bigcap_{i=1}^{k} \overleftarrow{U_{i}}$ contains $\left(x_{1}, x_{2}, \ldots\right)$. To show that $\varphi(U) \subseteq O$, let us assume $p=\left(p_{1}, p_{2}, \ldots\right) \in U$ and show that $\varphi(p) \in O$. For $i \leq k, p_{i} \in U_{i}=\varphi_{i}^{-1}\left(O_{i}\right)$, so we have that $\varphi_{i}\left(p_{i}\right) \in O_{i}$. For $i>k$, since $O_{i}=Y_{i}, \varphi_{i}\left(p_{i}\right) \in O_{i}$ automatically. So, since $p \in \lim \mathbf{f}, \varphi(p) \in \lim \mathbf{g}$ and $\varphi(p) \in O$. Thus, $\varphi(U) \subseteq O$, and we have shown that $\varphi$ is continuous.

Finally, we will show that if each $\varphi_{i}$ is 1-1 (and surjective), then $\varphi$ is 1-1 (and surjective). First, suppose $\varphi(x)=\varphi(y)$, so that $\varphi_{i}\left(x_{i}\right)=\varphi_{i}\left(y_{i}\right)$ for each $i$. Since each $\varphi_{i}$ is $1-1, x_{i}=y_{i}$ for each $i$. Thus, $x=y$ and $\varphi$ is 1-1. Now suppose that each $\varphi_{i}$ is also surjective, and let $y=\left(y_{1}, y_{2}, y_{3}, \ldots\right) \in \lim \mathbf{g}$. Again, because $\varphi_{i}$ is surjective for each $i$, it follows that (for
each $i$ ) there exists some $x_{i} \in X_{i}$ with $\varphi_{i}\left(x_{i}\right)=y_{i}$. Then $\varphi\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$, but we must verify that $\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \lim _{\rightleftarrows} \mathbf{f}$; i.e., we must show that $x_{i} \in f_{i}\left(x_{i+1}\right)$ for each $i$.

We note that $y_{i} \in g_{i}\left(y_{i+1}\right)=g_{i}\left(\varphi_{i+1}\left(x_{i+1}\right)\right)=\varphi_{i}\left(f_{i}\left(x_{i+1}\right)\right)$; thus, $\varphi_{i}^{-1}\left(y_{i}\right) \in f_{i}\left(x_{i+1}\right)$. However, since $\varphi_{i}$ was 1-1, $\varphi_{i}^{-1}\left(y_{i}\right)=x_{i}$, so $x_{i} \in f_{i}\left(x_{i+1}\right)$, as desired. Thus, $x \in \varliminf_{\rightleftarrows} \mathbf{f}$ and $\varphi$ is surjective.

Given that $X$ is a compact Hausdorff space and $f: X \rightarrow 2^{X}$ and $g: X \rightarrow 2^{X}$ are u.s.c. functions, we say $f$ and $g$ are topologically conjugate if there exists a homeomorphism $h$ with $h(X)=X$ and $h \circ f=g \circ h$.

Theorem 4.5.3. Suppose $X$ is a compact Hausdorff space. If $f: X \rightarrow 2^{X}$ and $g: X \rightarrow 2^{X}$ are topologically conjugate u.s.c. functions, then $\lim _{\rightleftarrows} \mathbf{f}$ is homeomorphic to $\lim _{\mathrm{g}}$.

Proof: Since $f$ and $g$ are topologically conjugate, there is a homeomorphism $h$ with $h(X)=X$ and $h \circ f=g \circ h$. Let $\varphi: \lim \mathbf{f} \rightarrow \lim \mathbf{g}$ be defined by $\varphi\left(x_{1}, x_{2}, \ldots\right)=$ $\left(\varphi_{1}\left(x_{1}\right), \varphi_{2}\left(x_{2}\right), \ldots\right)$, where $\varphi_{i}=h$ for all $i$. Because $h \circ f=g \circ h$, each $\varphi_{i}$ satisfies the hypothesis of Theorem 4.5.2; thus, $\varphi$ is continuous. Moreover, since $h$ is $1-1$ and surjective, $\varphi$ is 1-1 and surjective. Therefore, $\underset{\rightleftarrows}{\lim } \mathbf{f}$ is homeomorphic to $\underset{\rightleftarrows}{\lim } \mathbf{g}$ • •

## Examples and Counterexamples

According to Theorem 4.4.7, if (1) each $X_{i}$ is a Hausdorff continuum, (2) $f_{i}: X_{i+1} \rightarrow$ $2^{X_{i}}$ is an upper semi-continuous function, and (3) for each $x$ in $X_{i+1}, f_{i}(x)$ is connected, then $\varliminf_{\leftrightarrows} \mathbf{f}$ is a Hausdorff continuum. However, the following example shows that if condition (3) is omitted, $\lim _{〔} \mathbf{f}$ need not be connected.

Example 1: For each positive integer $i$, let $X_{i}=[0,1]$ and let $f_{i}:[0,1] \rightarrow 2^{[0,1]}$ be defined by the graph consisting of straight line segments connecting the points $(0,0)$ to $\left(\frac{1}{4}, \frac{1}{4}\right),(0,0)$ to $(1,0),(1,0)$ to $(1,1)$, and $\left(\frac{3}{4}, \frac{1}{4}\right)$ to $(1,1)$.

Then $\underset{\rightleftarrows}{\varliminf} \mathbf{f}$ is not connected because the space contains an isolated point, namely, $p=\left(\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, 1,1,1, \ldots\right)$. To see that $p$ is isolated, we will find an open set containing $p$ and no other point in $\lim _{\rightleftarrows} \mathbf{f}$. Let $O_{1} \subset X_{1}$ be $\left(\frac{1}{4}-\epsilon, \frac{1}{4}+\epsilon\right)$, let $O_{2} \subset X_{2}$ be $\left(\frac{1}{4}-\epsilon, \frac{1}{4}+\epsilon\right)$, let $O_{3} \subset X_{3}$ be $\left(\frac{3}{4}-\epsilon, \frac{3}{4}+\epsilon\right)$, and let $O_{4} \subset X_{4}$ be $(1-\epsilon, 1]$, where $\epsilon$ is chosen small enough so that $0 \notin O_{1}$ or $O_{2}, \frac{3}{4} \notin O_{1}$ or $O_{2}, \frac{1}{4} \notin O_{3}, \frac{11}{12} \notin O_{3}$, and $\frac{11}{12} \notin O_{4}$. Then $p=\overleftarrow{O_{1}} \cap \overleftarrow{O_{2}} \cap \overleftarrow{O_{3}} \cap \overleftarrow{O_{4}}$, which is open.

Next, it is worth noting that the conclusion of Theorem 4.5.2 is only that the function $F \mid \lim \mathbf{f}$ be a continuous transformation, rather than a full-fledged homeomorphism. Indeed, the following example shows that even if the hypotheses of Theorem 4.5.1 apply, $F \mid \varliminf_{\rightleftarrows} \mathbf{f}$ need not be a homeomorphism.

Example 2: For each $i$, let $X_{i}=[0,1]$ and let $f_{i}:[0,1] \rightarrow 2^{[0,1]}$ be defined by the graph consisting of the straight line segments joining the points $(0,1)$ to $\left(\frac{1}{2}, \frac{1}{2}\right),\left(0, \frac{1}{2}\right)$ to $\left(1, \frac{1}{2}\right)$, and $(1,0)$ to $\left(1, \frac{1}{2}\right)$. Then it follows that $f \circ f:[0,1] \rightarrow 2^{[0,1]}$ is the graph consisting of the straight line segments joining $(0,0)$ to $\left(0, \frac{1}{2}\right),\left(0, \frac{1}{2}\right)$ to $\left(1, \frac{1}{2}\right)$, and $\left(1, \frac{1}{2}\right)$ to $(1,1)$. (We will abbreviate $f \circ f$ by $f^{2}$.)
$\varliminf_{\rightleftarrows} \mathbf{f}$ is not homeomorphic to $\varliminf_{\rightleftarrows} \mathbf{f}^{2}$ because one space contains a triod while the other space is an arc.

Justification: $\lim _{\mathbf{f}}$ contains a triod. For, let $A_{1}$ be the subset of $\lim _{〔} \mathbf{f}$ consisting of all points of form $(x, 1-x, 1,0,1,0, \ldots)$, where $x \in\left(\frac{1}{2}, 1\right]$. Let $A_{2}$ be the subset of $\lim \mathbf{f}$ consisting of all points of form $\left(\frac{1}{2}, \frac{1}{2}, x, 1-x, 1,0,1, \ldots\right)$, where $x \in\left(\frac{1}{2}, 1\right]$. Finally, let $A_{3}$ be the subset of $\lim \mathbf{f}$ consisting of all points of form $\left(\frac{1}{2}, x, 1,0,1,0, \ldots\right)$, where $x \in\left[0, \frac{1}{2}\right)$. Because $\bar{A}_{1}, \bar{A}_{2}$ and $\bar{A}_{3}$ are all arcs with exactly one point, $\left(\frac{1}{2}, \frac{1}{2}, 1,0,1,0, \ldots\right)$, in common, $\overline{A_{1}} \cup \bar{A}_{2} \cup \bar{A}_{3}$ is a triod.

However, $\lim _{\rightleftarrows} \mathbf{f}^{2}$ is an arc. For, by Theorem 4.4.7, $\lim _{\rightleftarrows} \mathbf{f}^{2}$ is a Hausdorff continuum, and it is easily seen that every point in this space is a cut point except for $(0,0,0, \ldots)$ and $(1,1,1, \ldots)$. So, this continuum has exactly two cut points and is therefore an arc. -

Ingram and Mahavier give the following example to show "the variety of continua that can be produced" using inverse limits with u.s.c. bonding functions.

Example 3: For each positive integer $i$, let $X_{i}=[0,1]$ and let $f_{i}:[0,1] \rightarrow 2^{[0,1]}$ be the graph consisting of the straight line segments joining $(0,0)$ to $(1,0)$ and $(0,0)$ to $(1,1)$. Then $\lim _{\leftrightarrows} \mathbf{f}$ is a fan.

Justification: For each positive integer $n$, let $K_{n}$ be the set of all points of form $(0,0, \ldots, 0, x, x, x, \ldots)$, where the first $n-1$ entries are 0 , and $x \in[0,1]$. Then each $K_{n}$ is an arc, $\bigcup_{n=1}^{\infty} K_{n}=\lim _{\rightleftarrows} \mathbf{f}$, and $\bigcap_{n=1}^{\infty} K_{n}=(0,0,0, \ldots)$, a single point. So $\varliminf_{\rightleftarrows} \mathbf{f}$ is indeed a fan. •

Finally, in the case where $X_{i}=[0,1]$ and $f_{i}:[0,1] \rightarrow 2^{[0,1]}$ is the same u.s.c. bonding function for all positive integers $i, \underset{\rightleftarrows}{\leftrightarrows} \mathbf{f}$ may be not only 1 -dimensional or infinitedimensional, but $n$-dimensional for any positive integer $n$. Mahavier and Ingram give a two-dimensional example that is easily generalized:

Example 4: Again, for each positive integer $i$ let $X_{i}=[0,1]$ and let $f_{i}:[0,1] \rightarrow 2^{[0,1]}$ be the graph consisting of the straight line segments joining $(0,0)$ to $\left(0, \frac{1}{2}\right),\left(0, \frac{1}{2}\right)$ to $\left(\frac{1}{2}, \frac{1}{2}\right)$, $\left(\frac{1}{2}, \frac{1}{2}\right)$ to $\left(\frac{1}{2}, 1\right)$, and $\left(\frac{1}{2}, 1\right)$ to $(1,1)$. Then $\varliminf_{\leftrightarrows} \mathbf{f}$ consists precisely of all points of form
i) $\left(1, \ldots, 1,1, x, \frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}, y, 0,0, \ldots\right)$, where $x \in\left[\frac{1}{2}, 1\right]$ and $y \in\left[0, \frac{1}{2}\right]$,
ii) $\left(1, \ldots, 1,1, x, \frac{1}{2}, \frac{1}{2}, \ldots\right)$, where $x \in\left[\frac{1}{2}, 1\right]$,
iii) $\left(\frac{1}{2}, \ldots, \frac{1}{2}, \frac{1}{2}, y, 0,0, \ldots\right)$, where $y \in\left[0, \frac{1}{2}\right]$,
iv) $(1, \ldots, 1,1,1, \ldots)$,
v) $\left(\frac{1}{2}, \ldots, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \ldots\right)$,
vi) $(0, \ldots, 0,0,0, \ldots)$.

Thus, $\underset{\rightleftarrows}{ } \mathbf{f} \mathbf{f}$ is the union of countably many 2 -cells, 1 -cells, and single points. It follows that $\lim _{\leftrightarrows} \mathbf{f}$ is 2-dimensional.

The bonding function with two "stair-steps" gives rise to a two-dimensional inverse limit; an argument similar to the one given in Example 4 shows that a bonding function with $n$ "stair-steps" gives rise to an $n$-dimensional inverse limit. For each positive integer $i$ let $X_{i}=[0,1]$ and let $f_{i}:[0,1] \rightarrow 2^{[0,1]}$ be the graph consisting of the straight line segments joining $\left(\frac{j}{n}, \frac{j}{n}\right)$ to $\left(\frac{j}{n}, \frac{j+1}{n}\right)$ and joining $\left(\frac{j}{n}, \frac{j+1}{n}\right)$ to $\left(\frac{j+1}{n}, \frac{j+1}{n}\right)$ for $0 \leq j \leq n-1$. Then $\underset{\rightleftarrows}{\rightleftarrows} \mathbf{f}$ contains all points of form

$$
\begin{aligned}
& \left(1, \ldots, 1, x_{n}, \frac{n-1}{n}, \ldots, \frac{n-1}{n}, \ldots, x_{n-1}, \frac{n-2}{n}, \ldots \ldots,\right. \\
& \left.\quad \frac{i}{n}, x_{i}, \frac{i-1}{n}, \ldots, x_{i-1}, \frac{i-2}{n}, \ldots \ldots, \frac{1}{n}, x_{1}, 0, \ldots\right)
\end{aligned}
$$

where $x_{i} \in\left[\frac{i-1}{n}, \frac{i}{n}\right]$ for $1 \leq i \leq n$. Thus, $\lim \mathbf{f}$ contains countably many $n$-cells. Since $\underset{\rightleftarrows}{\lim } \mathbf{f}$ in fact consists of these countably many $n$-cells and also countably many $j$-cells where $j<n$, it follows that $\varliminf_{\mathrm{m}} \mathbf{f}$ is $n$-dimensional.

## Chapter 5

An Extension of the Inverse Limit with<br>u.s.c. Bonding Functions

We now expand on the results of Ingram and Mahavier by introducing yet another generalization of an inverse limit. Suppose that for each integer $i, X_{i}$ is a compact Hausdorff space and $f_{i}: X_{i+1} \rightarrow 2^{X_{i}}$ is u.s.c. Then we define $\varliminf_{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i \in \mathbb{Z}}$ to be the inverse limit space consisting of all points of form $\left(\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}, \ldots\right)$, where $x_{i} \in$ $f_{i}\left(x_{i+1}\right)$ for each integer $i$, and a basis for the topology on the space is
$\left\{O \cap \varliminf_{\rightleftarrows}^{\lim }\left\{X_{i}, f_{i}\right\}_{i \in \mathbb{Z}} \mid O\right.$ is basic open in $\left.\prod_{i \in \mathbb{Z}} X_{i}\right\}$.
We will often call this space a "two-sided" inverse limit.

If each $f_{i}$ is a continuous function, then the two-sided inverse limit is clearly homeomorphic to the standard one. However, if each $f_{i}$ is u.s.c., the two-sided inverse limit, $\varliminf_{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i \in \mathbb{Z}}$, may be different from $\varliminf_{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i>0}{ }^{* *}$ We will provide some examples below, but first we prove some basic theorems analogous to the theorems seen in Chapter 4.

Theorem $\widehat{4.3 .2}$. Suppose that, for each integer $i, X_{i}$ is a compact Hausdorff space and


Proof: For each integer $z=0,-1,-2, \ldots$, the space $\varliminf_{\rightleftarrows}^{\lim }\left\{X_{i}, f_{i}\right\}_{i>z}$ is non-empty and compact, by Theorem 4.3.2. Thus, for each such integer $z$, the set $\cdots \times X_{z-2} \times X_{z-1} \times$ $X_{z} \times \lim _{\leftrightarrows}\left\{X_{i}, f_{i}\right\}_{i>z}$ is a compact subset of $\prod_{i \in \mathbb{Z}} X_{i}$. (For convenience, let $K_{z}=\cdots \times$ $\left.X_{z-2} \times X_{z-1} \times X_{z} \times \varliminf_{\varliminf}\left\{X_{i}, f_{i}\right\}_{i>z}.\right)$ We note that if $w$ and $z$ are both integers with $w<z$, $K_{w} \subseteq K_{z}$. That means that $\left\{K_{z}\right\}_{z \leq 0}$ is a monotonic collection of compact (hence, closed) subsets of $\prod_{i \in \mathbb{Z}} X_{i}$, a compact space. Thus, $\bigcap_{z \leq 0} K_{z}$ is non-empty and compact. But $\bigcap_{z \leq 0} K_{z}=\varliminf_{\rightleftarrows}^{\lim }\left\{X_{i}, f_{i}\right\}_{i \in \mathbb{Z}}$, so the proof is complete.

Theorem 4.4.7. Suppose that for each integer $i, X_{i}$ is a Hausdorff continuum, $f_{i}$ : $X_{i+1} \rightarrow 2^{X_{i}}$ is an upper semi-continuous function, and for each $x$ in $X_{i+1}, f_{i}(x)$ is connected. Then $\lim _{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i \in \mathbb{Z}}$ is a Hausdorff continuum.

Proof: For each integer $z=0,-1,-2, \ldots$, the space $\varliminf_{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i>z}$ is a Hausdorff continuum, by Theorem 4.4.7. Again, we define $K_{z}=\cdots \times X_{z-2} \times X_{z-1} \times X_{z} \times \underset{\leftrightarrows}{\lim }\left\{X_{i}, f_{i}\right\}_{i>z}$. Since each $X_{i}$ is a Hausdorff continuum, as is $\underset{\leftrightarrows}{\lim }\left\{X_{i}, f_{i}\right\}_{i>z}$ for each $z$, it follows that $K_{z}$ is a Hausdorff continuum for $z=0,-1,-2, \ldots$ As before, if $w<z$, then $K_{w} \subseteq K_{z}$, so that $\left\{K_{z}\right\}_{z \leq 0}$ is a monotonic collection of Hausdorff continua. It follows that $\bigcap_{z \leq 0} K_{z}$ is a Hausdorff continuum. Since $\bigcap_{z \leq 0} K_{z}=\lim _{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i \in \mathbb{Z}}$, the proof is complete.

We now present an example to demonstrate how the two-sided inverse limit, $\underset{\leftrightarrows}{\lim }\left\{X_{i}, f_{i}\right\}_{i \in \mathbb{Z}}$, may be different from the standard inverse limit, $\lim _{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i>0}$.

For each integer $i$, let $X_{i}=[0,1]$ and let $f_{i}:[0,1] \rightarrow 2^{[0,1]}$ be the graph consisting of the straight line segments joining $(0,0)$ to $(1,0)$ and $(0,0)$ to $(1,1)$. (This bonding function is the same as in Example 3 in Chapter 4.) If we let $A_{z}$ be the set of all points of form $(\ldots, 0,0, x, x, \ldots)$, with 0 's up to the $(z-1)$ th slot and $x \in[0,1]$, then $A_{z}$ is an arc for each integer $z$. Let $A=\{(\ldots, x, x, x, \ldots) \mid x \in[0,1]\}$, so that $A$ is also an arc. Thus, $\left(\bigcup_{z \in \mathbb{Z}} A_{z}\right) \cup(A)=\lim _{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i \in \mathbb{Z}}$, and $\left(\bigcap_{z \in \mathbb{Z}} A_{z}\right) \cap(A)=(\ldots, 0,0,0, \ldots)$, a single point. Thus, $\underset{\varliminf}{\lim }\left\{X_{i}, f_{i}\right\}_{i \in \mathbb{Z}}$ is a fan.

However, this fan is not homeomorphic to the fan given by $\varliminf_{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i>0}$ in Example 3. For, as we will show, $\lim _{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i \in \mathbb{Z}}$ contains a limit arc while $\lim _{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i>0}$ does not.

Consider the $\operatorname{arc} A$ in $\underset{\rightleftarrows}{\lim }\left\{X_{i}, f_{i}\right\}_{i \in \mathbb{Z}}$ given by $\{(\ldots, x, x, x, \ldots) \mid x \in[0,1]\}$. We will prove that $A$ consists entirely of limit points of $\left(\underset{\leftrightarrows}{\lim }\left\{X_{i}, f_{i}\right\}_{i \in \mathbb{Z}}\right) \backslash A$. To that end, let $O=\left(\prod_{i \in \mathbb{Z}} O_{i}\right) \cap \varliminf_{\longleftarrow}\left\{X_{i}, f_{i}\right\}_{i \in \mathbb{Z}}$ be a basic open set containing some point $(\ldots, x, x, x, \ldots)$, where $x \in[0,1]$. If for each $i, O_{i}=X_{i}$, then clearly $O$ contains points not in $A$. So suppose $O$ is a proper subset of the space. Since $O$ is open, there must be some least integer $i$ for which $O_{i} \subsetneq X_{i}$, and some greatest integer $j$ for which $O_{j} \subsetneq X_{j}$. If $x \neq 0$, and $\bar{x}$ lies in the $i$ th slot, clearly $(\ldots, 0,0, \ldots, 0, \bar{x}, x, x, \ldots) \in O$. If $x=0$, and $\overline{0}$ lies in the $j$ th slot, then $(\ldots, 0,0, \ldots, \overline{0}, 1,1, \ldots) \in O$. Either way, $O$ must contain a point in $\left(\lim _{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i \in \mathbb{Z}}\right) \backslash A$, and thus, $A$ is a limit arc.

On the other hand, the space $\varliminf_{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i>0}$ has no limit arc. To see this, consider a general point $(0,0, \ldots, 0, \bar{x}, x, x, \ldots)$ lying in an $\operatorname{arc} \widehat{A}=\{(0,0, \ldots, 0, \bar{x}, x, x, \ldots) \mid x \in[0,1]\}$,
where $\bar{x}$ lies in the $i$ th slot. If $x \neq 0$, the point $(0,0, \ldots, 0, \bar{x}, x, x, \ldots)$ cannot be a limit point of $\left(\lim _{\rightleftarrows}\left\{X_{i}, f_{i}\right\}_{i>0}\right) \backslash \widehat{A}$ for the following reason:

Let $O_{1}=\left[0, \frac{x}{2}\right) \subset X_{1}, O_{2}=\left[0, \frac{x}{2}\right) \subset X_{2}, \cdots, O_{i-1}=\left[0, \frac{x}{2}\right) \subset X_{i-1}$, and $O_{i}=$ $\left(\frac{x}{2}, 1\right] \subset X_{i}$. Then $\overleftarrow{O_{1}} \cap \overleftarrow{O_{2}} \cap \cdots \cap \overleftarrow{O_{i-1}} \cap \overleftarrow{O_{i}}$ is open in $\underset{\leftrightarrows}{\lim }\left\{X_{i}, f_{i}\right\}_{i>0}$, contains $(0,0, \ldots, 0, \bar{x}, x, x, \ldots)$, but misses $\left(\lim _{\leftrightarrows}\left\{X_{i}, f_{i}\right\}_{i>0}\right) \backslash \widehat{A}$ entirely. •

## Chapter 6

An Indecomposable Continuum Produced

by an Inverse Limit on u.s.c. Functions

The Knaster continuum described in example 2 at the end of Chapter 3 is a famous example of an indecomposable continuum, i.e., a continuum that is not the union of two proper subcontinua. We conclude this paper with an original example of an inverse limit on u.s.c. bonding functions that turns out to be an indecomposable continuum.

Example: For each positive integer $i$, let $X_{i}=[0,1]$ and let $f_{i}: X_{i+1} \rightarrow 2^{X_{i}}$ be defined by the graph consisting of the following straight line segments:

1. For each even integer $n \geq 0$, the segment joining the points $\left(\frac{1}{2^{n+1}}, \frac{1}{2^{n+1}}\right)$ and $\left(\frac{1}{2^{n}}, 1\right)$.
2. For each odd integer $n \geq 1$, the segment joining the points $\left(\frac{1}{2^{n}}, \frac{1}{2^{n}}\right)$ and $\left(\frac{1}{2^{n+1}}, 1\right)$.
3. The vertical line segment joining the points $(0,0)$ and $(0,1)$.

Then $\lim _{\rightleftarrows} \mathbf{f}$ is an indecomposable continuum.

Proof: By Theorem 4.4.7, $\underset{\rightleftarrows}{\lim } \mathbf{f}$ is a continuum. It remains to show that $\underset{\rightleftarrows}{\lim } \mathbf{f}$ is indecomposable.

Claim: If $H$ is a proper subcontinuum of $\underset{\rightleftarrows}{\lim } \mathbf{f}$, then there exists some positive integer $N$ so that if $n \geq N, \pi_{n}(H) \neq X_{n}$.

Justification: Suppose not, i.e., suppose $H$ is proper but for every positive integer $N$, there exists some $n>N$ such that $\pi_{n}(H)=X_{n}$. By the way the graph of $f$ is defined, it is clear that if $\pi_{i}(H)=X_{i}$, then $\pi_{i-1}(H)=X_{i-1}$; thus, we may as well assume that $\pi_{n}(H)=X_{n}$ for each positive integer $n$. Since $H$ is proper, there is some point $p=\left(p_{i}\right)_{i=1}^{\infty}=\left(p_{1}, p_{2}, p_{3}, \ldots\right)$ such that $p \in \varliminf_{\rightleftarrows} \mathbf{f} \backslash H$. We will show that $p$ is in fact a point of $H$.

Case 1: Suppose $p_{i} \neq 0$ for all positive integers $i$. Since, for a given positive integer $k$, $p_{k} \in \pi_{k}(H)$, there exists some point in $H$ of form

$$
\left(x_{1}, x_{2}, \ldots, x_{k-1}, p_{k}, \ldots\right)
$$

However, since $p_{k} \neq 0$, by the way the graph of $f$ is defined, $f_{k-1}\left(p_{k}\right)$ is a unique non-zero number in $X_{k-1}$. That means $f_{k-1}\left(p_{k}\right)=p_{k-1}$. In a similar way, each of $x_{1}, \ldots, x_{k-1}$ is uniquely determined, and that forces $x_{i}=p_{i}$ for $1 \leq i \leq k$. Thus, a point of form $\left(p_{1}, p_{2}, \ldots, p_{k}, \ldots\right)$ is in $H$. Indeed, for each positive integer $j$, a point of form $\left(p_{1}, p_{2}, \ldots, p_{j}, \ldots\right)$ is in $H$. The point $\left(p_{i}\right)_{i=1}^{\infty}$ is therefore a limit point of the sequence of points in $H$ that we just described; hence, because $H$ is closed, $\left(p_{i}\right)_{i=1}^{\infty} \in H$.

Case 2: Suppose for some least integer $i, p_{i}=0$. Then, since the only possible preimage of 0 via $f_{i}$ is $0, p_{n}=0$ for each integer $n \geq i$.

Suppose $p_{1}=0$. By the above argument, since $f_{1}^{-1}\left(p_{1}\right)=p_{2}=0$, and $f_{i}^{-1}\left(p_{i}\right)=p_{i+1}=$ 0 for $i \geq 1$, the only way that $p_{1}=0 \in \pi_{1}(H)$ is possible is if $(0,0,0, \ldots)=\left(p_{i}\right)_{i=1}^{\infty} \in H$. That would be a contradiction.

So, suppose instead that $p_{i}=0$ for some least integer $i>1$. Because $H$ is compact, the projection of $H$ onto the graph of $f_{i-1}$ is closed. Thus, since $\pi_{i}(H)=X_{i}$, by the way the graph is defined, each ordered pair $(0, x)$ in $G\left(f_{i-1}\right)$ is a limit point of the projection of $H$ onto $G\left(f_{i-1}\right)$. Thus, the ordered pair $\left(0, p_{i-1}\right)$ is in that projection. Since $p_{i-1} \neq 0$ by assumption, the image of $p_{i-1}$ via $f_{i-2}$ is the unique non-zero number $p_{i-2}$; the image of $p_{i-2}$ via $f_{i-3}$ is the unique non-zero number $p_{i-3}$, and so forth. Now because $\pi_{i}(H)=X_{i}$, we know $p_{i}=0 \in \pi_{i}(H)$; since the only possible preimage of 0 is $0, H$ must therefore contain a point of form $\left(h_{1}, h_{2}, \ldots, h_{i-1}, 0,0, \ldots\right)$. However, as we noted, the projection of $H$ onto $G\left(f_{i-1}\right)$ contains the ordered pair $\left(0, p_{i-1}\right)$. That is, $H$ contains some point $\left(h_{1}, h_{2}, \ldots, h_{i-1}, 0,0, \ldots\right)$ where $h_{i-1}=p_{i-1}$. But, as previously argued, $h_{i-1}=p_{i-1}$ would force $h_{k}=p_{k}$ for $k \leq i-1$. That is, $\left(p_{1}, p_{2}, \ldots, p_{i-1}, 0,0, \ldots\right)=\left(p_{i}\right)_{i=1}^{\infty} \in H$.

In either case, a contradiction has been reached. Thus, if $H$ is a proper subcontinuum, there exists some positive integer $N$ so that if $n \geq N, \pi_{n}(H) \neq X_{n}$.

Now, suppose by way of contradiction that $\underset{\leftrightarrows}{ } \mathbf{f}=H \cup K$, a union of two proper subcontinua. By the above argument, there exists some least positive integer $N$ so that for all $n \geq N, \pi_{n}(H) \neq X_{n}$ and $\pi_{n}(K) \neq X_{n}$. So, we may assume without loss of generality that $0 \in \pi_{N}(H)$ and $0 \notin \pi_{N}(K)$. Since the unique preimage of 0 via $f_{N}$ is $0, \pi_{N+1}(H)$ must contain 0 . Thus, because $\pi_{N+1}(H)$ is a proper subcontinuum of $[0,1]$ containing 0 , but $\pi_{N+1}(K) \neq[0,1]$, it follows that $\pi_{N+1}(H)$ is some interval of form $[0, a]$ where $0<a<1$. However, by the way the graph of $f_{N}$ is defined, there is some $x \in(0, a]$ (indeed, infinitely many such $x$ ) with $f_{N}(x)=1$. That means $1 \in \pi_{N}(H)$. Since $\pi_{N}(H)$ is a subcontinuum
of $[0,1]$ that contains both 0 and 1 , it follows that $\pi_{N}(H)=[0,1]=X_{N}$. This is a contradiction, for we assumed $\pi_{N}(H) \neq X_{N}$. So $\lim ^{\mathrm{f}} \mathbf{f}$ is indecomposable.

We note that the continuum in this example ( $\lim _{\rightleftarrows} \mathbf{f}$ ) contains the proper subcontinuum $\left\{(x, y, 0,0, \ldots) \mid y \in[0,1], x \in f_{1}(y)\right\}$, a copy of the topologist's sine curve. Therefore, $\lim _{\rightleftarrows} \mathbf{f}$ is clearly not homeomorphic to the Knaster continuum (whose proper subcontinua are all arcs). However, if $\lim _{\leftrightarrows} \mathbf{f}$ is homeomorphic to any known space, it remains an open question what that space is.

Another open question is the following: if for each positive integer $i, X_{i}=[0,1]$ and $f=f_{i}: X_{i+1} \rightarrow 2^{X_{i}}$ is u.s.c., are there some necessary conditions the graph of $f$ must satisfy in order for $\lim ^{\mathbf{f}} \mathbf{f}$ to be indecomposable? Are there sufficient conditions?

## Bibliography

[1] W.T. Ingram, William S. Mahavier, "Inverse Limits of Upper Semi-Continuous Set Valued Functions," Houston Journal of Mathematics, vol. 32 (1) (2006) 119-130.
[2] K. Kuratowski, Topology, vol. II, Academic Press, New York, 1968.
[3] James R. Munkres, Topology: a first course, Prentice-Hall, Englewood Cliffs, N.J., 1975.
[4] R.L. Moore, "Foundations of Point Set Theory," Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math Soc., Providence, RI, 1962.
[5] Michel Smith, Notes on Topology, http://www.auburn.edu/~smith01/math7500/ and http://www.auburn.edu/~smith01/math7510/.

## Appendix

* In general, for an inverse limit space $\lim _{\leftrightarrows} \mathbf{f}$ with upper semi-continuous bonding functions, the collection $B=\left\{\overleftarrow{O} \mid O\right.$ is open in some $\left.X_{i}\right\}$ is not a basis for $\lim _{\leftrightarrows} \mathbf{f}$. Consider the case where for all positive integers $i, X_{i}=[0,1]$ and $f_{i}: X_{i+1} \rightarrow 2^{X_{i}}$ is given by the graph in $[0,1] \times[0,1]$ consisting of the line segments joining $(0,0)$ to $(1,0)$ and joining $(0,1)$ to $(1,1)$. Then the open set $G=\left(\frac{1}{2}, 1\right] \times\left[0, \frac{1}{2}\right) \times[0,1] \times[0,1] \times \ldots$ does not contain a member of $B$ containing $(1,0,0,0, \ldots)$. For, any such member $b$ of $B$ would have to contain an open set of form (i) $\overleftarrow{[0, a)}, a<1$ or (ii) $\overleftarrow{(a, 1]}, a>0$. In case (i), $b$ would contain $(0,0, \ldots)$; in case (ii), $b$ would contain ( $1,1, \ldots$ ). In either case, $b$ would fail to be a subset of $G$, so $B$ cannot be a basis.
** Thanks to Dr. Stewart Baldwin for suggesting this possibility and encouraging me to explore it.

