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Thesis Abstract
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Directed by Ming Liao

Using elementary probability theory, we establish limiting probabilities for the queue

length of a queuing system whose arrivals follow a nonhomogeneous Poisson process and

are served by a single server whose services also follow a nonhomogeneous Poisson process.

We uniformly accelerate the process and conclude, under a special stability condition, that

the queue length distribution is the same as a queue with constant rates. Extensions are

provided for queues with multiple homogeneous servers and those with a finite capacity.

Also included is a simulation of such a queuing system using the data from an Auburn

University web server to model the arrival process.
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Chapter 1

Introduction

This purpose of this thesis is to provide an intuitive probabilistic approach to time

dependent queuing systems. It is inspired by William A. Massey’s paper, ”Asymptotic

Analysis of the Time Dependent M/M/1 Queue”[3]. In his work, Massey takes an analytic

approach to such processes; which, while very precise and rigorous, is difficult for someone

not intimately familiar with higher mathematics to understand. But the main result is the

same: if we ε-accelerate the process, that is make the arrival and service rates arbitrarily

large, then the time dependent M(t)/M(t)/1 queue acts just like a constant rate M/M/1

queue as time goes to infinity, although with a different requirement for stability. Instead

of needing a larger service rate than arrival rate, the stability requirement for any time t is

ρ∗(t) < 1. This means, as we will discuss in Chapter 3, that the server, on average, has time

to catch up at time t. So we don’t necessarily always need the service rate larger than the

arrival rate, we just need the amount of possible service before time t to be able to handle

the possible arrivals before time t.

Since this paper was written for a broader audience, the next chapter is a summary of

some basic ideas in probability and queuing theory. It starts with a discussion of some of

the main ideas in probability, then moves on to discuss Poisson processes and constant rate

queuing systems. In Chapter 3, we present our main results about time-varying queuing

systems, Theorems 3 and 4. They show that the time dependent queue is very similar to

it’s constant rate counterpart. It will begin with a definition of an M(t)/M(t)/1 queue

and a description of the very special quantity, ρ∗, before moving on to the main proofs.
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Chapter 4 includes two extensions of the main result: time dependent queuing systems

with multiple servers and systems with a finite capacity. The last chapter is a simulation

of a time dependent queuing system, a model of an Auburn University web server.
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Chapter 2

Preliminary Information

This chapter is a collection of preliminary information necessary for the understanding

of the proofs in the later chapters. It is provided so that those with only very basic knowledge

of probability and stochastic processes can understand this paper. The bulk of this chapter

can be found in the works of Billingsley [1], Ross [4], and Gross and Harris [2].

2.1 Basic Probability Theory

Some basic notation and definitions:

P [A] is the probability that some event A will occur;

0 ≤ P [A] ≤ 1 for any event A.

Ac is the event that is everything in the sample space except for whatever is in A;

P [Ac] = 1− P [A].

P [A | B] is the probability that A will occur given B has occurred.

The Law of Total Probability: For any event A in some sample space Ω,

P [A] =
∑
n

P [A | Bn]P [Bn],

where {Bn} is a countable partition of Ω.
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E[X] is the expected value of a random variable X; it is the average value of X.

Convergence in Distribution [1]: A sequence of random variables Xn is said to

converge in distribution to a random variable X if

P [Xn > x]→ P [X > x] as n→∞ , whenever P [X = x] = 0.

We say Xn → X, in distribution.

Almost Sure Convergence [1]: A sequence of random variables Xn is said to converge

almost surely to a random variable X if

P [Xn → X] = 1.

The Strong Law of Large Numbers (SLLN)[1]: If Xn is an independently and

identically distributed (iid) sequence of random variables, each with a finite mean, then

∑n
i=1Xi

n
→ E[X1] , almost surely, as n→∞.

Poisson Distribution [1]: If X is a Poisson distributed random variable with mean

λ > 0, then

P [X = k] = e−λ
λk

k!
for k = 0, 1, 2... , and E[X] = λ.

Exponential Distribution [4]: If X is an exponentially distributed random variable

with rate λ > 0, then

P [X > x] =
∫ ∞
x

λe−λt dt = e−λx for x ≥ 0 , and E[X] =
1
λ
.
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Lack of Memory Property [4]: X is an exponentially distributed random variable if

and only if it does not assume negative values and

P [X > t+ s | X > t] = P [X > s].

2.2 Poisson Processes

A stochastic process is a collection of random variables indexed by time [4]. With a

stochastic process X, for every time index t, X(t) is a random variable that represents the

state of the process at time t.

A stochastic process N(t) is a counting process [4] if it represents the total number of

events that have occurred up to time t, and therefore must satisfy

(i) N(t) ≥ 0

(ii) N(t) is integer valued

(iii) If s < t, then N(s) ≤ N(t)

(iv) For s < t, N(t)−N(s) is the number of events that have occurred in the interval

(s, t].

A counting process is said to have independent increments if the numbers of events that

occur in disjoint time intervals are independent [4].

A counting process is said to have stationary increments if the distribution of the number

of events that occur in any interval of time depends only on the length of the time interval

[4].

A counting process N(t) is said to be a Poisson Process [4] with rate λ > 0 if
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(i) N(0) = 0

(ii) The process has stationary and independent increments

(iii) The number of events in any interval of length t is Poisson distributed with mean λt.

So for all s, t ≥ 0,

P [N(t+ s)−N(s) = n] = e−λt
(λt)n

n!
for n = 0, 1, . . .

The interarrival times, or the times between successive arrivals, of a Poisson process N(t)

with rate λ, are iid exponential random variables of rate λ [4].

The counting process N(t) is a nonhomogeneous Poisson Process [4] with rate function

λ(t) if

(i) N(0) = 0

(ii) The process has independent increments

(iii) For s < t, N(t)−N(s) is Poisson distributed of mean m(t)−m(s), where m(t) is the

process’s mean function

m(t) =
∫ t

0
λ(s) ds.

2.3 Basic Queueing Systems

An M/M/1 queue is a system where arrivals, considered customers, arrive according

to a homogeneous Poisson process and their required service times are iid exponentially

distributed random variables, therefore the number of completed services also follows a

Poisson process if the server is always busy [4]. If X(t) is an M/M/1 queue with arrival
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rate λ and service rate µ, then we call ρ := λ/µ the traffic intensity. We call X(t) stable if

ρ < 1, since then as t→∞ we have

P [X(t) = n]→ pn = ρn(1− ρ) for n = 1, 2, . . .

If ρ > 1, then the queue length tends to infinity as t → ∞ [2]. This probability is also

equal to the long run fraction of time that X is in state n, or that the queue is n customers

long, almost surely. The set of all these probabilities for n = 0, 1, . . . is called the stationary

distribution of X [2].

Note that since p0 > 0, then the queue length will be zero at some time as t → ∞,

almost surely. So if τ is the first time s that X(s) = 0, then P [τ < t]→ 1 as t→∞.

An M/M/k queue is similar to an M/M/1 queue, but with k homogeneous servers. If

X(t) is an M/M/k queue with arrival rate λ and k servers each with service rate µ, then

we call ρ := λ/(kµ) our traffic intensity. Again we call X(t) stable if ρ < 1, since then as

t→∞ we have, from [2],

P [X(t) = n]→ pn =


λn

n!µn
p0 for 1 ≤ n ≤ k

λn

kn−kk!µn
p0 for n ≥ k

where p0 =

[
1
k!

(
λ

µ

)k ( kµ

kµ− λ

)
+

k−1∑
n=0

1
n!

(
λ

µ

)n]−1

.

An M/M/k/N queue is an M/M/k queue with a finite capacity N . Let X(t) be an

M/M/k/N queue with arrival rate λ, k servers each with service rate µ, and capacity N .

If X(t) ≥ N , then the server is full and can’t accept any more arrivals, so the service rate
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at that point is zero. Since we have a finite number of states, then there is a steady state

distribution regardless of the arrival and service rates. So as t→∞ we have

P [X(t) = n]→ pn =


λn

n!µn
p0 for 0 ≤ n < k

λn

kn−kk!µn
p0 for k ≤ n ≤ N

where p0 =



[
1
k!

(
λ

µ

)k 1− (λ/kµ)N−k+1

1− λ/kµ
+

k−1∑
n=0

1
n!

(
λ

µ

)n]−1

for
λ

kµ
6= 1[

1
k!

(
λ

µ

)k
(N − k + 1) +

k−1∑
n=0

1
n!

(
λ

µ

)n]−1

for
λ

kµ
= 1

,

from [2].
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Chapter 3

M(t)/M(t)/1 Queues

3.1 Definition and ρ∗

Let X(t) be the queue length of an M(t)/M(t)/1 Queue with initial state X(t0) = X0.

Arrivals follow a non-homogeneous poisson process of rate λ(t), and requests by each arrival

are i.i.d. exponential random variables of mean 1. The single server works at a rate of µ(t),

so
∫ b
a µ(t) dt is the amount of work the server can do from time a to time b, or the expected

number of services the server can handle in (a, b). The traffic intensity is ρ(t) = λ(t)/µ(t).

And define

ρ∗(t) := ρ∗(t;λ, µ) = sup
t∗∈(t0,t)

∫ t
t∗
λ(s) ds∫ t

t∗
µ(s) ds

.

ρ∗ represents whether the server, on average, can handle the arrivals or not. If ρ∗(t) < 1,

then for any time s < t the expected number of services the server can handle is more than

the expected number of arrivals on the interval (s, t]. So the server is always able to catch

up, even if the arrival rate is at some times much higher than the service rate. If ρ∗(t) > 1,

at some point the arrivals are so frequent that the server can’t catch up by time t. The case

where ρ∗(t) = 1 is beyond the scope of this paper, but is covered thoroughly by Massey [3].

Throughout this paper, we use the concept of uniform acceleration, as did Massey [3].

The idea of this acceleration, which we call ε-accelerating a process, is to divide both the

arrival rate and the service rate by some small ε > 0. Then as ε→ 0, the number of arrivals

and completed services in any time interval is arbitrarily large. This has the same effect

on a constant M/M/1 queue as letting time approach infinity. In our case, it allows us to
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consider the stability at time t, since we can see how the system reacts with an arbitrarily

large number of arrivals and services. If X(t) is an M(t)/M(t)/1 Queue with arrival rate

λ(t) and service rate µ(t), then the ε-accelerated process Xε(t) is an M(t)/M(t)/1 Queue

with arrival rate λ(t)/ε and service rate µ(t)/ε. Since this doesn’t change ρ∗(t), we can use

ρ∗(t) make judgements about the system’s stability.

3.2 The Principle of Stochastic Dominance

For M(t)/M(t)/1 Queues X(t) and Y (t) with arrival rates λX(t) and λY (t) and service

rates µX(t) and µY (t), if λX(t) ≤ λY (t) and µX(t) ≥ µY (t), then

P [Xε(t) ≥ n] ≤ P [Y ε(t) ≥ n].

A rigorous proof of this fact by a purely analytic method is included in Section 10 of

Massey’s paper [3]. Here, we provide an informal probabilistic argument.

Assume λX(t) ≤ λY (t) and µX(t) = µY (t), then we can consider the arrival process

of Y (t) to have rate function λY (t) = λX(t) + a(t), where a(t) = λY (t) − λX(t). We are

essentially adding an arrival stream to X(t) with a mean number of arrivals
∫ t
t0
a(s) ds;

while the server is working at the same rate, it has more requests to handle. We may allow

the server at Y (t) to handle arrivals to X(t) in the queue before additional arrivals due to

a(t). This will not change the queue length, so the queue whose length is represented by

Y (t) is at least as congested at any time t as the queue whose length is represented by X(t).

Thus P [Xε(t) ≥ n] ≤ P [Y ε(t) ≥ n].

Likewise, if µX(t) ≥ µY (t) and λX(t) = λY (t), we can consider the rate of the process

that represents the possible service of X(t) to be µX(t) = µY (t) + b(t), where
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b(t) = λX(t)− λY (t). Therefore the server whose queue length is represented by X(t) can

work at at faster rate. It can handle a mean number of requests
∫ t
t0
b(s) ds more than the

queue whose length is represented by Y (t). So the server in X(t) is at most as congested

as the server in Y (t) and we have P [Xε(t) ≥ n] ≤ P [Y ε(t) ≥ n].

3.3 Queue Length

In the following proofs, we will assume the functions are left-continuous. This is not as

much a requirement for correctness as it is an ease of notation. Without this assumption,

the proofs still hold; we would simply need to consider the left-hand limit of the function

or process wherever we consider the function or process at some time.

Theorem 1 Fix t > h > 0. If λ and µ are left-continuous piecewise-constant positive real

functions of time, with λ(s) < µ(s) for all s ∈ [t0, t], then if we consider the uniformly

accelerated M(t)/M(t)/1 Queue Xε(t) with initial state Xε(t0) = X0, arrival rate λ(t)/ε,

and service rate µ(t)/ε, we have

P [Xε(t) = n]→ (ρ(t))n(1− ρ(t)) as ε→ 0

and P [Ωε]→ 1 as ε→ 0,

where Ωε is the event that Xε(s) = 0 for some s ∈ (t− h, t), h > 0.

There exists a partition ∆ of [t0, t] with t0 < t1 < · · · < tN = t such that λ = λi and

µ = µi for constant λi and µi on the subinterval Ii = (ti−1, ti] for 1 ≤ i ≤ N . On each

subinterval Ii, X = Xi, an M/M/1 queue with constant arrival rate λi and service rate µi.

Now consider the ε-accelerated process Xε(t). On each subinterval Ii,
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Xi(u) = Xε(ti−1 + εu) is the queue length of a constant M/M/1 Queue with arrival rate

λi, service rate µi, and traffic intensity ρi = λi/µi. Since ρi < 1 for all 1 ≤ i ≤ N , then

each Xi(u) is a stable M/M/1 Queue.

Since X1(u) is a stable M/M/1 Queue with a finite initial value X0, it approaches a

steady state as u→∞, so X1(h1/ε) approaches a steady state as ε→ 0. Thus

P [X1(h1/ε) = n]→ ρn1 (1− ρ1) as ε→ 0.

By the Principle of Mathematical Induction, assume

P [Xi(hi/ε) = n]→ ρni (1− ρi) as ε→ 0 for 1 ≤ i ≤ k.

Then by the Law of Total Probability, we have

P [Xk+1(hk+1/ε) = n] =
∞∑
j=0

P [Xk+1(hk+1/ε) = n | Xk+1(0) = j]P [Xk+1(0) = j].

But Xk+1(0) = Xε(tk) = Xε(tk−1 + ε(hk/ε)) = Xk(hk/ε), so

P [Xk+1(hk+1/ε) = n] =
∞∑
j=0

P [Xk+1(hk+1/ε) = n | Xk(hk/ε) = j]P [Xk(hk/ε) = j].

Let Pj [A] = P [A | Xk(hk/ε) = j] for any event A, then

P [Xk+1(hk+1/ε) = n] =
m∑
j=0

Pj [Xk+1(hk+1/ε) = n]P [Xk(hk/ε) = j]

+
∞∑

j=m+1

Pj [Xk+1(hk+1/ε) = n]P [Xk(hk/ε) = j].
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If we consider ε→ 0, the partial sum formula of a geometric series implies,

lim sup
ε→0

P [Xk+1(hk+1/ε) = n] = lim sup
ε→0

( m∑
j=0

Pj [Xk+1(hk+1/ε) = n]P [Xk(hk/ε) = j]

+
∞∑

j=m+1

Pj [Xk+1(hk+1/ε) = n]P [Xk(hk/ε) = j]
)

= ρnk+1(1− ρk+1)(1− ρm+1
k )

+ lim sup
ε→0

( ∞∑
j=m+1

Pj [Xk+1(hk+1/ε) = n]P [Xk(hk/ε) = j]
)

And since 0 ≤ P [A] ≤ 1 for any event A,

lim sup
ε→0

P [Xk+1(hk+1/ε) = n] ≤ ρnk+1(1−ρk+1)(1−ρm+1
k )+lim sup

ε→0

( ∞∑
j=m+1

P [Xk(hk/ε) = j]
)

⇒ lim sup
ε→0

P [Xk+1(hk+1/ε) = n] ≤ ρnk+1(1−ρk+1)(1−ρm+1
k ) + lim sup

ε→0
P [Xk(hk/ε) ≥ m+ 1]

⇒ lim sup
ε→0

P [Xk+1(hk+1/ε) = n] ≤ ρnk+1(1−ρk+1)(1−ρm+1
k )+lim sup

ε→0
(1− P [Xk(hk/ε) ≤ m])

⇒ lim sup
ε→0

P [Xk+1(hk+1/ε) = n] ≤ ρnk+1(1− ρk+1)(1− ρm+1
k ) + ρm+1

k .

Let m→∞, then

lim sup
ε→0

P [Xk+1(hk+1/ε) = n] ≤ ρnk+1(1− ρk+1).
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Additionally, as ε→ 0, we have

lim inf
ε→0

P [Xk+1(hk+1/ε) = n] = lim inf
ε→0

( m∑
j=0

Pj [Xk+1(hk+1/ε) = n]P [Xk(hk/ε) = j]

+
∞∑

j=m+1

Pj [Xk+1(hk+1/ε) = n]P [Xk(hk/ε) = j]
)

⇒ lim inf
ε→0

P [Xk+1(hk+1/ε) = n] ≥ ρnk+1(1− ρk+1)(1− ρm+1
k ).

But as m→∞, ρm+1
k → 0. Thus as m→∞

⇒ lim sup
ε→0

P [Xk+1(hk+1/ε) = n] ≤ ρnk+1(1− ρk+1)

and

⇒ lim inf
ε→0

P [Xk+1(hk+1/ε) = n] ≥ ρnk+1(1− ρk+1).

Then

ρnk+1(1−ρk+1) ≤ lim inf
ε→0

P [Xk+1(hk+1/ε) = n] ≤ lim sup
ε→0

P [Xk+1(hk+1/ε) = n] ≤ ρnk+1(1−ρk+1)

⇒ P [Xk+1(hk+1/ε) = n]→ ρnk+1(1− ρk+1) as ε→ 0

⇒ P [Xε(tk+1) = n]→ ρnk+1(1− ρk+1) as ε→ 0

⇒ P [Xε(t) = n] = P [Xε(tN ) = n]→ ρnN (1− ρN ) = (ρ(t))n(1− ρ(t)) as ε→ 0.
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Recall from Section 2.3 that for a stable M/M/1 Queue in steady state, P [τ < t]→ 1

as t→∞, where τ is the first time when the queue length is zero. Then we have

P [XN (u) = 0, for some u ∈ (0, hN/ε)] = P [τ < hN/ε]→ 1 as ε→ 0

⇒ P [Ωε] = P [Xε(u) = 0, for some u ∈ (t− hN , t)]→ 1 as ε→ 0.

Theorem 2 If λ and µ are left-continuous positive step functions and ρ∗(t) < 1, then

P [Xε(t) = n]→ (ρ(t))n(1− ρ(t)) , as ε→ 0.

There exists a partition ∆ of [t0, t] with t0 < t1 < · · · < tN = t such that λ = λi and

µ = µi for constant λi and µi on the subinterval Ii = (ti−1, ti] of width hi = ti − ti−1 for

1 ≤ i ≤ N . We can choose ∆ such that hN > 0 is small enough so that ρ∗(tN−1) < 1. Since

ρ∗(tN−1) < 1, then λN−1 < µN−1. Then there is some δ > 0 such that

ρ∗(tN−1) < 1− δ

⇔
∫ tN−1

v
λ(s) ds < (1− δ)

∫ tN−1

v
µ(s) ds , for all v ∈ [t0, tN−1)

⇔
N−1∑
j=i

λjhj < (1− δ)
N−1∑
j=i

µjhj , for all 1 ≤ i < N − 1. (3.1)

Now we will define a new arrival rate function λ̃(t) as follows:

First, let λ̃ = λ, and start at I1 = [t0, t1]. If λ̃1 < µ1, there is no change; move on to

I2. If λ̃1 ≥ µ1, then change λ̃1 to (1 − δ)µ1. So we reduced the area below λ̃ over I1 by

A1 = [λ1 − (1 − δ)µ1]h1. Now increase λ̃2 so the area below λ̃ over I2 is increased by A1.
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After this change, λ̃1 < µ1 and (3.1) still holds for i ≥ 2, since

(3.1)⇐⇒ [λ1 − (1− δ)µ1]h1 +
N−1∑
j=2

λjhj < (1− δ)
N−1∑
j=2

µjhj

In terms of the arrival process, what we have done is to take a Poisson number of arrivals

of mean A1 from I1 and delay them to I2. This could only possibly make the system more

congested at time t, since the server has less time to catch up when the arrivals come later.

Now move on to I2 and repeat what we have done for λ̃1 and λ̃2 with λ̃2 and λ̃3.

Continue in this way. When we reach IN−2, we have obtained a new system that has arrival

rate λ̃(t) and service rate µ(t), with λ̃i < µi for all 1 ≤ i ≤ n. Denote it’s queue length by

X̃(t). A simple example of this process is shown in Figure 3.1.

Now look at the ε-accelerated process X̃ε(t). By Theorem 1, P [Ω̃ε] → 1 as ε → 0

where Ω̃ε is the event that X̃ε(s) = 0 for some s ∈ (tN−1, t). Which means at some time in

the subinterval IN , as ε→ 0, X̃ε(t) = 0 and the queue is empty.

On Ω̃ε, the queue is empty at some time s ∈ (tN−1, t). We now reverse the process

that we used to create λ̃. At each step, we are advancing arrivals; giving the server more

time to serve them. So the queue is still empty at time s, therefore we still have Ω̃ε, and

we didn’t change the system after s. When we are finished with these steps, we obtain our

original arrival rate, λ. Thus we have our original queue length process ε-accelerated, and

we still have Ω̃ε; therefore

Xε(t) = X̃ε(t) on Ω̃ε.
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Some arrivals on the second interval must be delayed.
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Those arrivals are added onto the third interval
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Now the arrival rate is higher than the service rate on the third interval.
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So arrivals must be delayed from the third interval
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Figure 3.1: An Example of Delaying Arrivals
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We have

P [Xε(t) = n] = P [Xε(t) = n; Ω̃ε] + P [Xε(t) = n; Ω̃C
ε ]

= P [X̃ε(t) = n; Ω̃ε] + P [Xε(t) = n; Ω̃C
ε ]

= P [X̃ε(t) = n]− P [X̃ε(t) = n; Ω̃C
ε ] + P [Xε(t) = n; Ω̃C

ε ].

But by Theorem 1,

P [Ω̃C
ε ]→ 0 and P [X̃ε(t) = n]→ (ρ(t))n(1− ρ(t)) as ε→ 0.

Which implies that

P [Xε(t) = n]→ (ρ(t))n(1− ρ(t)) as ε→ 0.

Theorem 3 Let λ and µ be piecewise continuous on [t0, t], and assume ρ∗(t) < 1. Then

P [Xε(t) ≥ n]→ (ρ(t))n as ε→ 0 , and hence

P [Xε(t) = n]→ (ρ(t))n(1− ρ(t)) as ε→ 0.

First, we can approximate λ and µ arbitrarily closely by step functions λ+(t) and µ−(t)

such that λ+(s) ≥ λ(s) and µ−(s) ≤ µ(s) for all s ∈ [t0, t] and ρ∗(t;λ+, µ−) < 1.1 Consider

the M(t)/M(t)/1 Queue X+(t) with initial state X+(t0) = X0, arrival rate λ+(t), and

service rate µ−(t). Then ρ+(t) = λ+(t)/µ−(t) and ρ+∗(t) := ρ∗(t;λ+, µ−) < 1. Note that

1Proof in Appendix A
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by the Stochastic Dominance Principle and our choice of λ+ and µ−,

P [Xε(t) ≥ n] ≤ P [X+ε(t) ≥ n] for the ε-accelerated processes Xε and X+ε. By Theorem

2, we have

P [Xε(t) ≥ n] ≤ P [X+ε(t) ≥ n]→ (ρ+(t))n as ε→ 0.

Similarly, we can choose λ−(t) and µ+(t) such that λ−(s) ≤ λ(s) and µ+(s) ≥ µ(s) for

all s ∈ [t0, t] and ρ∗(t;λ−, µ+) < 1, and consider the M(t)/M(t)/1 Queue X−(t) with initial

state X−(t0) = X0, arrival rate λ−(t), and service rate µ+(t). Here, ρ−(t) = λ−(t)/µ+(t)

and ρ−∗(t) := ρ∗(t;λ−, µ+) < 1. Note that by the Stochastic Dominance Principle and our

choice of λ− and µ+, P [Xε(t) ≥ n] ≥ P [X−ε(t) ≥ n] for the ε-accelerated processes Xε and

X−ε. So, again by Theorem 2, we have

P [Xε(t) ≥ n] ≥ P [X−ε(t) ≥ n]→ (ρ−(t))n as ε→ 0.

Since we can choose λ+(t) and µ−(t) arbitrarily close to λ and µ, then ρ+(t) can be

made arbitrarily close to ρ(t). Similarly, ρ−(t) can be made arbitrarily close to ρ(t). Thus

(ρ−(t))n ← P [X−ε(t) ≥ n] ≤ P [Xε(t) ≥ n] ≤ P [X+ε(t) ≥ n]→ (ρ+(t))n as ε→ 0

=⇒ P [Xε(t) ≥ n]→ (ρ(t))n as ε→ 0

=⇒ P [Xε(t) = n] = P [Xε(t) ≥ n]− P [Xε(t) ≥ n+ 1]→ (ρ(t))n − (ρ(t))n+1

= (ρ(t))n(1− ρ(t)) as ε→ 0.
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Theorem 4 If ρ∗(t) > 1, then Xε(t)→∞ as ε→ 0, in distribution.

Assume ρ∗(t) > 1, then there exists v ∈ [t0, t) such that

∫ t

v
λ(s) ds >

∫ t

v
µ(s) ds.

Consider the ε-accelerated system Xε(t) with arrival rate λ(t)/ε and service rate µ(t)/ε,

and let ε = 1
n .

Then we have a nonhomogeneous poisson arrival process on the interval (v, t], say

Aε(t), of rate λ(t)/ε = nλ(t). And the number of services the server can complete is a

nonhomogeneous poisson process, say Sε(t) of rate µ(t)/ε = nµ(t). Note that this is not

necessarily the actual amount of service done, just the amount possible; the queue may be

empty at some point, in which case the server isn’t actually doing the work that it could

be. This means that in the sense of distribution we can think of these processes at time t

as the sum of n i.i.d Poisson random variables, Aε(t) = A1 + A2 + · · · + An−1 + An and

Sε(t) = S1 +S2 + · · ·+Sn−1 +Sn, where Ai(t) has a mean of
∫ t
v λ(s) ds and Si(t) has mean∫ t

v µ(t) ds for 1 ≤ i ≤ n. Since Sε(t) is the number of services that can be completed, the

queue length is at least Aε(t)− Sε(t). So we have

Xε(t) ≥
n∑
i=0

Ai(t)−
n∑
i=0

Si(t)

⇒ Xε(t)
n
≥
∑n

i=0Ai(t)
n

−
∑n

i=0 Si(t)
n

.
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By the Strong Law of Large Numbers,

1
n

n∑
i=0

Ai(t)→ E[A1(t)] and
1
n

n∑
i=0

Si(t)→ E[S1(t)] as n→∞.

Therefore

lim
n→∞

Xε(t)
n
≥ E[A1(t)]− E[S1(t)] =

∫ t

v
λ(s) ds−

∫ t

v
µ(t) ds > 0

and

Xε(t)→∞ as ε =
1
n
→ 0.
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Chapter 4

Extensions

4.1 M(t)/M(t)/k(t) Queues

Now consider a queuing system with multiple homogeneous servers, where the number

of available servers at any time t is given by a positive integer-valued step function k(t). Let

X(t) be the queue length process with arrival rate λ(t) and with k(t) servers each working

at a rate of µ(t); where λ(t) and µ(t) are piecewise continuous functions of time. The

traffic intensity is now ρ(t) = λ(t)/(k(t)µ(t)). For the multiple server case, we redefine our

stability function as

ρ∗(t) := ρ∗(t;λ, µ, k) = sup
t∗∈(t0,t)

∫ t
t∗
λ(s) ds∫ t

t∗
k(s)µ(s) ds

If ρ∗(t) > 1, we again have Xε(t) → ∞ as ε → 0, in distribution. The proof of this is

exactly like that of Theorem 4, but using our new ρ∗.

If ρ∗(t) < 1, then the limiting probability in the multiple server case is once again the

same as it’s constant counterpart; the proof only requires a few simple changes. First, we

can still approximate λ and µ with step functions to make new processes X+(t) and X−(t),

each with ρ∗(t) < 1, such that P [X−ε(t) = n] ≤ P [Xε(t) = n] ≤ P [X+ε(t) = n] as in

Theorem 3. Then for each of these processes, as in Theorem 2, we partition the interval

[t0, t] making λ, µ, and k constant on each subinterval Ii. So we have

∫ tN−1

v
λ(s) ds < (1− δ)

∫ tN−1

v
k(s)µ(s) ds , for all v ∈ [t0, tN−1)
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⇔
N−1∑
j=i

λjhj < (1− δ)
N−1∑
j=i

kjµjhj , for all 1 ≤ i < N − 1

We then delay arrivals so that λi < kiµi on each interval Ii. After ε-accelerating these new

processes, on each interval we have an M/M/k queue approaching steady state as ε → 0.

So P [X−ε(tN−1) < ∞] → 1 as ε → 0, and the queue is empty at some time in the last

interval with probability approaching 1 as ε → 0; and the same is true for X+ε. Now if

we advance arrivals it won’t affect the system at time t. Note that this is why we need

homogeneous servers; if the servers were different, when advancing arrivals we could end up

moving an arrival to a slower server that might not be finished at time t, therefore affecting

the distribution of Xε(t). With homogeneous servers, the distribution of the service times

is the same, so we can advance arrivals safely. We then limit the probabilities of X−ε(t)

and X+ε(t) as in Theorem 3, squeezing them to the probabilities of Xε(t). So after all this,

we get the same limiting probability as the M/M/k queue on the last interval; as ε→ 0

P [Xε(t) = n]→ pn =


1
n!

(
λ(t)
µ(t)

)n
p0 for 1 ≤ n ≤ k(t)

1
(k(t))n−k(t)k(t)!

(
λ(t)
µ(t)

)n
p0 for n ≥ k(t),

where

p0 =

 1
k(t)!

(
λ(t)
µ(t)

)k(t)( k(t)µ(t)
k(t)µ(t)− λ(t)

)
+
k(t)−1∑
n=0

1
n!

(
λ(t)
µ(t)

)n−1

.

4.2 Finite Capacity

For the finite capacity case, there is always a limiting probability, since there are only

finitely many states. We don’t even need a concept of stability, though ρ∗ is still a helpful

quantity for the analysis of the queue; if ρ∗ > 1, then the queue will spend much more time
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at capacity or near it. Once again, the limiting probabilities are the same as in the finite

case, and the proof consists of simple changes to the previous analysis.

Let X(t) be the length of a queue with a maximum capacity of N , arrival rate λ(t),

and k(t) servers each working at a rate of µ(t); where λ(t) and µ(t) are piecewise continuous

functions of time and k(t) is a positive integer-valued step function. Then we call X(t) an

M(t)/M(t)/k(t)/N queue. To find the steady state distribution of X(t), we once again

ε-accelerate the process. While it may seem problematic to let the arrival rate approach

infinity when we have a finite capacity, it is not, since we also let the service rate approach

infinity at the same pace. As in Theorem 3, approximate λ and µ with step functions to make

the processes X+(t) and X−(t) such that P [X−ε(t) = n] ≤ P [Xε(t) = n] ≤ P [X+ε(t) = n].

Then on each interval Ii these processes are a constant M/M/k/N queue with arrival rate

λi, service rate µi, ki servers, and capacity N . As we ε-accelerate these processes, the

constant M/M/k/N queues approach steady state. We then limit our approximations of

λ and µ and squeeze their probabilities to the M/M/k/N queue on the last interval, with

arrival rate λ(t)/ε, k(t) servers with rate rate µ(t)/ε, and capacity N . So as ε→ 0,

P [Xε(t) = n]→ pn =


1
n!

(
λ(t)
µ(t)

)n
p0 for 1 ≤ n ≤ k(t)

1
k(t)n−k(t)k(t)!

(
λ(t)
µ(t)

)n
p0 for k(t) ≤ n ≤ N,

where

p0 =



 1
k(t)!

(
λ(t)
µ(t)

)k(t) 1−
(

λ(t)
k(t)µ(t)

)N−k+1

1− λ(t)
k(t)µ(t)

+
k(t)−1∑
n=0

1
n!

(
λ(t)
µ(t)

)n
−1

for
λ(t)

k(t)µ(t)
6= 1

 1
k(t)!

(
λ(t)
µ(t)

)k(t)
(N − k(t) + 1) +

k(t)−1∑
n=0

1
n!

(
λ(t)
µ(t)

)n−1

for
λ(t)

k(t)µ(t)
= 1.
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Chapter 5

Simulation

In this final chapter, we model a time dependent queuing system using data from an

Auburn University web server. The arrival process for our model is taken from the server’s

logs. The number of requests per hour from five consecutive Wednesdays was averaged

and used to make an arrival process for our queue. For an M/M/1 Queue in steady state,

the distribution of the departure process is the same as the arrival process, so we assume

this approximation will be a valid model of the arrival process whether the logs record the

request at the time of arrival or after the request has been completed. The service rate in

our model is kept constant for a more controlled analysis of the data, which is reasonable

since a computer can usually work at a close to steady rate. The service rate of the actual

web server will most likely be much higher, and therefore avoid huge backups, but then

we could not show what happens when ρ∗ ≥ 1. The reason this approach to studying an

M(t)/M(t)/1 queue is so applicable to a web server is that such a server already has a

very high arrival and service rate, and can essentially be considered ε-accelerated without

actually changing the rates. In this model, we assume that individual arrivals to a server

are independent exponential random variables, as is each request made by those arrivals.

We also assume the server has some way of keeping arrivals in a queue, that it does not

simply reject another arrival when it is busy. This analysis will show the importance of ρ∗

as a stability condition. Figure 5.1 illustrates the service and arrival rates of this system

and ρ∗(t) at every time t.
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Figure 5.1: Arrival and Service rates and ρ∗(t)

In order to simulate the queue, we use step functions for the arrival and service rate

function. Then on each interval, we simulate an M/M/1 queue by simulating exponential

random variables for the interarrival times and required services. One can simulate any

continuous random variable X with distribution function F (x) by generating a random

number U , which is uniformly distributed on (0, 1), and setting X = F−1(U), as shown in

Chapter 7 of Solomon [5]. Thus, we simulate our exponential random variables by letting

X =
1
β

lnU, where β is the rate parameter of the random variable and U is a random

number uniformly distributed on (0, 1).

First consider Figure 5.2, the case where ρ∗(t) < 1 and the queue is stable. Notice

where the queue length climbs to a point that makes the length of the queue at earlier

times seem insignificant. This is when ρ∗(t) > 1; but when ρ∗(t) < 1, the server catches up

and brings the queue back down to manageable size. You can even notice that the queue

seems to jump around quite a bit right before time 10. This is where ρ∗(t) = 1, or close

enough so that we can consider it 1.
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Figure 5.2: ρ∗(t) < 1 without ε-acceleration
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With e p s i l o n = 1.0000000 , the system c l e a r e d out
at 21.00155 a f t e r having a maximum queue l ength
o f 43555 . Ran 200 t imes without a c c e l e r a t i o n .

Ca lcu lated Long Run Frac t i ons o f Time / P r o b a b i l i t i e s
That i s , P [X = n ] f o r each s t a t e below .
n Theo r e t i c a l Acce l e ra ted Mult ip l e Runs
0 0.20213661 0.19759187 0.24000000
1 0.16127740 0.15603091 0.15500000
2 0.12867733 0.12492567 0.10000000
3 0.10266693 0.10043291 0.10500000
4 0.08191419 0.08225265 0.08500000
5 0.06535633 0.06666348 0.07500000
6 0.05214542 0.05503601 0.04500000
7 0.04160493 0.04583023 0.03500000
8 0.03319505 0.03707380 0.00500000
9 0.02648511 0.02673086 0.02500000
10 0.02113150 0.01998091 0.03000000
11 0.01686005 0.01477285 0.01000000
12 0.01345202 0.01334929 0.01500000
13 0.01073287 0.01170998 0.02500000
14 0.00856337 0.00924480 0.01000000
15 0.00683240 0.00708840 0.01000000
16 0.00545132 0.00567585 0.01000000
17 0.00434941 0.00510566 0.00000000
18 0.00347023 0.00446735 0.00000000
19 0.00276877 0.00395070 0.00000000

Figure 5.3: Calculated Probabilities without ε-acceleration

Figure 5.3 shows the theoretical probability lim
ε→0

P [Xε(t) = n] for n = 0 to n = 19, the

fraction of time the simulated queue is in these first 20 states after clearing itself out on

the last interval, and the fraction of times these states occurred when the system was run

multiple times.

We can now see in Figures 5.4 and 5.5 that the ε-acceleration does not drastically

change the calculated probabilities nor the shape of the graph.
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Figure 5.4: ε-accelerated with ρ∗(t) < 1
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With e p s i l o n = 0.0077808 , the system c l e a r e d out
at 21.00002 a f t e r having a maximum queue l ength
o f 5617345. Ran 200 t imes without a c c e l e r a t i o n .

Ca lcu lated Long Run Frac t i ons o f Time / P r o b a b i l i t i e s
That i s , P [X = n ] f o r each s t a t e below .
n Theo r e t i c a l Acce l e ra ted Mult ip l e Runs
0 0.20213661 0.20254598 0.21500000
1 0.16127740 0.16204405 0.15000000
2 0.12867733 0.12932871 0.11500000
3 0.10266693 0.10298326 0.13500000
4 0.08191419 0.08213674 0.04500000
5 0.06535633 0.06534474 0.07500000
6 0.05214542 0.05210977 0.07000000
7 0.04160493 0.04149426 0.03500000
8 0.03319505 0.03288973 0.03000000
9 0.02648511 0.02620844 0.02500000
10 0.02113150 0.02083914 0.02000000
11 0.01686005 0.01665043 0.01500000
12 0.01345202 0.01322316 0.01500000
13 0.01073287 0.01064279 0.01500000
14 0.00856337 0.00850770 0.00000000
15 0.00683240 0.00668275 0.01000000
16 0.00545132 0.00532815 0.00500000
17 0.00434941 0.00431330 0.00000000
18 0.00347023 0.00340835 0.00500000
19 0.00276877 0.00270998 0.00000000

Figure 5.5: Calculated Probabilities with ε-acceleration
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Figure 5.6: ρ∗(t) > 1

For ρ∗(t) > 1 we can see that the queue length is getting arbitrarily large. In Figure

5.6, once again the ε-accelerated version looks the same as the original system, due to it’s

high arrival and service rates. You can also see that on the interval from 9 to 10, where

ρ∗(t) = 1, the queue is very erratic.

When ρ∗(t) = 1, or as close as we can get it numerically, the queue length varies wildly.

It is very erratic and unpredictable, as evidenced by the four graphs in Figure 5.7. In Figure

5.8, we see the same phenomenon for the ε-accelerated case.
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Figure 5.7: ρ∗(t) = 1 without ε-acceleration
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Figure 5.8: ε-accelerated with ρ∗(t) = 1
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Chapter 6

Conclusion

We have shown that under the special stability function ρ∗(t), the distribution of the

queue length of a ε-accelerated M(t)/M(t)/1 queue is the same as a queue length of a

constant rate M/M/1 queue in a steady state. That is, when ρ∗(t) < 1,

P [Xε(t) = n]→ (ρ(t))n(1− ρ(t)) as ε→ 0;

and when ρ∗(t) > 1,

Xε(t)→∞ as ε→ 0.

We did not consider the case when ρ∗(t) = 1, though an analysis of it can be found in

Massey’s work [3]. We were able to extend our results to time dependent queueing systems

with multiple homogeneous servers and finite capacities, which is not presented by Massey.

Our simulation clearly supports our theory, shows an applied use of this paper, and even

gives some empirical insight into the case with ρ∗(t) = 1.
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Appendix A

Approximating Rates with Step Functions

Let λ(t) and µ(t) be left-continuous positive piecewise functions of time on the interval [t0, t]

with ρ∗(t;λ, µ) < 1. Then there exists positive step functions λ+, λ−, µ+, and µ− such that

λ−(s) ≤ λ(s) ≤ λ+(s) and µ−(s) ≤ µ(s) ≤ µ+(s) for all s ∈ [t0, t], and ρ∗(t;λ−, µ+) < 1

and ρ∗(t;λ−, µ+) < 1.

This is obviously true for λ− and µ+, since then ρ∗(t;λ−, µ+) ≤ ρ∗(t;λ, µ) < 1.

The other case requires a bit more work. Since µ is positive, then its average value is

positive. Hence there is some δ0 > 0 such that

1
t− t∗

∫ t

t∗

µ(s) ds > δ0 , for all t∗ ∈ [t0, t).

Note that

ρ∗(t;λ, µ) = sup
t∗∈(t0,t)

∫ t
t∗
λ(s) ds∫ t

t∗
µ(s) ds

= sup
t∗∈(t0,t)

1
t−t∗

∫ t
t∗
λ(s) ds

1
t−t∗

∫ t
t∗
µ(s) ds

.

Since ρ∗(t;λ, µ) < 1, we can choose 0 < δ1 < δ0 such that

ρ∗(t;λ, µ) +
δ1
δ0
< 1,

and pick λ+ such that

sup
t∗∈(t0,t)

(λ+(t∗)− λ(t∗)) < δ1.
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Then

ρ∗(t;λ+, µ) = sup
t∗∈(t0,t)

1
t−t∗

∫ t
t∗
λ+(s) ds

1
t−t∗

∫ t
t∗
µ(s) ds

≤ sup
t∗∈(t0,t)

1
t−t∗

∫ t
t∗
λ(s) ds+ δ1

1
t−t∗

∫ t
t∗
µ(s) ds

≤ sup
t∗∈(t0,t)

1
t−t∗

∫ t
t∗
λ(s) ds

1
t−t∗

∫ t
t∗
µ(s) ds

+
δ1

1
t−t∗

∫ t
t∗
µ(s) ds

≤ sup
t∗∈(t0,t)

1
t−t∗

∫ t
t∗
λ(s) ds

1
t−t∗

∫ t
t∗
µ(s) ds

+
δ1
δ0

≤ ρ∗(t;λ, µ) +
δ1
δ0
< 1.

Now choose δ2 > 0 so that

ρ∗(t;λ+, µ) < 1− δ2
δ0
,

then

ρ∗(t;λ+, µ)

(
1

1− δ2
δ0

)
< 1;

so choose µ− so that

sup
t∗∈(t0,t)

(µ(t∗)− µ−(t∗)) < δ2.

Now

ρ∗(t;λ+, µ−) = sup
t∗∈(t0,t)

1
t−t∗

∫ t
t∗
λ+(s) ds

1
t−t∗

∫ t
t∗
µ−(s) ds

≤ sup
t∗∈(t0,t)

1
t−t∗

∫ t
t∗
λ+(s) ds

1
t−t∗

∫ t
t∗
µ(s) ds− δ2

≤ sup
t∗∈(t0,t)

1
t−t∗

∫ t
t∗
λ+(s) ds(

1
t−t∗

∫ t
t∗
µ(s) ds

)[
1− δ2

1
t−t∗

∫ t
t∗
µ(s) ds

]

≤ sup
t∗∈(t0,t)

1
t−t∗

∫ t
t∗
λ+(s) ds(

1
t−t∗

∫ t
t∗
µ(s) ds

)[
1− δ2

δ0

]
≤

(
sup

t∗∈(t0,t)

1
t−t∗

∫ t
t∗
λ+(s) ds

1
t−t∗

∫ t
t∗
µ(s) ds

)
1

1− δ2
δ0

= ρ∗(t;λ+, µ)

(
1

1− δ2
δ0

)
< 1.
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Appendix B

Simulation Code

% queuingsystemgraph .m

% Al len F l i c k Master ’ s Thesis Queuing System Simulat ion

% Simula tes and P lo t s a Queuing system as f o l l o w s :

% Customers a r r i v e accord ing to a non−homogeneous po i s son process

% of ra t e ’ arate ’ , and are served wi th ra t e ’ s ra te ’ , both o f which

% are p i e c ew i s e cons tant f unc t i on s o f time .

function queuingsystemgraph ( i n i t i a l S i z e , arate , s ra te , t imeint , . . .

startTime , endTime , e p s i l o n )

%de f a u l t v a l u e s

i f nargin < 1

arate = [ 7 . 5 , 3 ] ;

s r a t e = [ 5 , 6 ] ;

t ime int = [ 0 , 1 , 2 ] ;

startTime=t ime int ( 1 ) ;

endTime=t ime int (end ) ;

i n i t i a l S i z e =5;

e p s i l o n =1;

end

e t o l =.0000001;

j =1;
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while ( t ime int ( j )<startTime−e t o l ) , j=j +1; end

i f t ime int ( j )−startTime>e to l , j=j −1; end

l a s t I n t=length ( t ime int )−1;

while ( t ime int ( l a s t I n t )>endTime+e t o l )

l a s t I n t=l a s t I n t −1;

end

f i r s t e p s i l o n = e p s i l o n ;

%ca l c u l a t e rho s t a r

expArr iva l s =0;

expServ i ce =0;

rho s ta r =0;

expArr iva l s= arate ( l a s t I n t )∗ ( endTime−t ime int ( l a s t I n t ) ) ;

expServ i ce= s r a t e ( l a s t I n t )∗ ( endTime−t ime int ( l a s t I n t ) ) ;

i f expServ ice >0, rho s ta r = expArr iva l s / expServ i ce ; end

for m=l a s t I n t −1:−1: j+1

expArr iva l s= expArr iva l s + arate (m)∗ ( t ime int (m+1)− t ime int (m) ) ;

expServ i ce= expServ i ce + s r a t e (m)∗ ( t ime int (m+1)− t ime int (m) ) ;

i f expArr iva l s / expServ i ce > rho s ta r

rho s ta r = expArr iva l s / expServ i ce ;

end

end

expArr iva l s=expArr iva l s + arate ( j )∗ ( t ime int ( j +1)−startTime ) ;

expServ i ce=expServ i ce + s r a t e ( j )∗ ( t ime int ( j +1)−startTime ) ;
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i f expArr iva l s / expServ i ce > rho s ta r

rho s ta r = expArr iva l s / expServ i ce ;

end

% simple memory check ing

syscheck = memory ;

f i r s t = syscheck . MaxPossibleArrayBytes /8 − 10000 ;

maxmem = syscheck . MemAvailableAllArrays /8−1000000;

i f 8∗ f i r s t > maxmem, f i r s t = maxmem/8 ; end

i f f i r s t < ( expArr iva l s+expServ i ce )/ e p s i l o n

e p s i l o n =( expArr iva l s+expServ i ce )/ f i r s t ;

end

timeData=zeros (1 , ce i l ( ( expArr iva l s+expServ i ce )/ e p s i l o n ) ) ;

s i zeData=zeros (1 , ce i l ( ( expArr iva l s+expServ i ce )/ e p s i l o n ) ) ;

i f eps i l on> f i r s t e p s i l o n

sprintf ( ’Memory l i m i t s r e q u i r e e p s i l o n to change to %d ’ . . .

, e p s i l o n ) ; end

top=i n i t i a l S i z e ;

time=startTime ;

f u l l t i m e =0;

timeData (1 ) = time ;

s i zeData (1 ) = i n i t i a l S i z e ;

n e x t s e r v i c e=−e p s i l o n / s r a t e ( j )∗ log (rand ) ;

% i f the s e r v i c e doesn ’ t f i n i s h b e f o r e the i n t e r v a l
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k=j +1;

while ( t ime int ( k)<endTime−e t o l )&&( next s e rv i c e>t ime int ( k)−time )

n e x t s e r v i c e=t ime int ( k)−time + . . .

( ( t ime in t ( k)−time )/ nex t s e rv i c e −1)∗ e p s i l o n / s r a t e ( k ) . . .

∗ log (rand ) ;

k=k+1;

end

n e x t a r r i v a l=−e p s i l o n / arate ( j )∗ log (rand ) ;

i =2;

%the s imu la t i on runs u n t i l the maximum time s p e c i f i e d

while ( time < endTime−e t o l )

%case : the curren t s e r v i c e f i n i s h e s b e f o r e the next a r r i v a l

i f n e x t s e r v i c e < n e x t a r r i v a l

%i f no customers are in the queue , no s e r v i c e can happen

i f s i zeData ( i−1)<1− e t o l

%so ins tead , c a l c u l a t e the a r r i v a l

time=time+n e x t a r r i v a l ;

timeData ( i )=time ;

s i zeData ( i )=1;

n e x t a r r i v a l=−e p s i l o n / arate ( j )∗ log (rand ) ;

%ca l c u l a t e a new s e r v i c e time

n e x t s e r v i c e=−e p s i l o n / s r a t e ( j )∗ log (rand ) ;

% i f the s e r v i c e doesn ’ t f i n i s h b e f o r e the i n t e r v a l ,
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% l e t the s e r v e r run at the ra t e o f the i n t e r v a l , then

% r e c a l c u l a t e the ra t e f o r any a f t e r t ha t

k=j +1;

while ( t ime int ( k)< endTime−e t o l ) &&.. .

( n e x t s e r v i c e > t ime int ( k)−time )

n e x t s e r v i c e = t ime int ( k)−time + . . .

( ( t ime int ( k)−time )/ nex t s e rv i c e − 1 ) . . .

∗ e p s i l o n / s r a t e ( k )∗ log (rand ) ;

k=k+1;

end

else

%ca l c u l a t e the s e r v i c e

%increa se the time

time=time+n e x t s e r v i c e ;

%se t the data to be ( time s e r v i c e d f i n i s h ed , queue−1)

timeData ( i )=time ;

s i zeData ( i )=s izeData ( i −1)−1;

%r e c a l c u l a t e the next a r r i v a l and s e r v i c e t imes

%the a r r i v a l time i s the d i f f e r e n c e between what i t

%l a s t was and the time i t took the curren t s e r v i c e

n e x t a r r i v a l=n e x t a r r i v a l−n e x t s e r v i c e ;

%the next s e r v i c e time i s e x p on en t i a l l y d i s t r i b u t e d

n e x t s e r v i c e=−e p s i l o n / s r a t e ( j )∗ log (rand ) ;
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% i f the s e r v i c e doesn ’ t f i n i s h b e f o r e the i n t e r v a l ,

% l e t the s e r v e r run at the ra t e o f the i n t e r v a l , then

% r e c a l c u l a t e the ra t e f o r any a f t e r t ha t

k=j +1;

while ( t ime int ( k)< endTime−e t o l ) &&.. .

( n e x t s e r v i c e > t ime int ( k)−time )

n e x t s e r v i c e = t ime int ( k)−time + . . .

( ( t ime int ( k)−time )/ nex t s e rv i c e − 1 ) . . .

∗ e p s i l o n / s r a t e ( k )∗ log (rand ) ;

k=k+1;

end

end

%other case : the next a r r i v a l happens b e f o r e the curren t

%s e r v i c e f i n i s h e s

else

%se t the time

time=time+n e x t a r r i v a l ;

% ca l c u l a t e empty time

timeData ( i )=time ;

s i zeData ( i )=s izeData ( i −1)+1;

%f ind the top o f the graph

i f s i zeData ( i )>top+eto l , top=top +1; end

%r e c a l c u l a t e the next s e r v i c e and a r r i v a l t imes
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n e x t s e r v i c e=next s e rv i c e−n e x t a r r i v a l ;

n e x t a r r i v a l=−e p s i l o n / arate ( j )∗ log (rand ) ;

end

%move to the next i n t e r v a l i f necessary

while ( t ime int ( j )< endTime−e t o l ) && ( t ime int ( j +1)<time )

j=j +1; end

i=i +1;

end

figure

plot ( timeData ( 1 : i −1) , s i zeData ( 1 : i −1)) ;

axis ( [ startTime endTime 0 top ] ) ;

t i t l e ( [ ’ Queue Length with rho∗ = ’ num2str( rhostar , ’ %1.4 f ’ ) . . .

’ , e p s i l o n = ’ num2str( ep s i l on , ’ %1.3 f ’ ) ] , ’ FontSize ’ ,12)

xlabel ( ’Time − t ’ )

ylabel ( ’# o f Requests in Server − X( t ) ’ )
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% queu ingsys t emca lc .m

% Al len F l i c k Master ’ s Thesis Queuing System Simulat ion

% Simula tes a Queuing system and c a l c u l a t e s p r o b a b i l i t i e s

% Customers a r r i v e accord ing to a non−homogeneous po i s son process

% of ra t e ’ arate ’ , and are served wi th ra t e ’ s ra te ’ , both o f which

% are p i e c ew i s e cons tant f unc t i on s o f time . I f no customers

% are present , the f i r s t customer ’ s s e r v i c e beg in s immediate ly

% when he a r r i v e s .

function queuingsystemcalc ( i n i t i a l S i z e , arate , s ra te , t imeint , . . .

startTime , endTime , ep s i l on , runTimes , outputF i l e )

%de f a u l t v a l u e s

i f nargin < 1

ara te = [ 7 , 3 ] ;

s r a t e = [ 3 , 9 ] ;

t ime int = [ 0 , 2 , 5 0 ] ;

startTime=t ime int ( 1 ) ;

endTime=t ime int (end ) ;

i n i t i a l S i z e =2;

e p s i l o n =0.00001;

runTimes =200000;

outputF i l e=’ comparison . txt ’ ;

end

%i n i t i a l i z e v a r i a b l e s
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e t o l =.0000001;

c l e a r t i m e =0;

j =1;

while ( t ime int ( j )<startTime−e t o l )

j=j +1;

end

i f t ime int ( j )−startTime>e t o l

j=j −1;

end

f i r s t I n t=j ;

l a s t o p =0;

f i r s t e p s i l o n = e p s i l o n +0;

l a s t I n t=length ( t ime int )−1;

while ( t ime int ( l a s t I n t )>endTime+e t o l )

l a s t I n t=l a s t I n t −1;

end

%ca l c u l a t e rho∗

expArr iva l s =0;

expServ i ce =0;

rho s ta r =0;

expArr iva l s= arate ( l a s t I n t )∗ ( endTime−t ime int ( l a s t I n t ) ) ;

expServ i ce= s r a t e ( l a s t I n t )∗ ( endTime−t ime int ( l a s t I n t ) ) ;

i f expServ ice>0
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rho s ta r = expArr iva l s / expServ i ce ;

end

for m=l a s t I n t −1:−1: j+1

expArr iva l s=expArr iva l s+arate (m)∗ ( t ime int (m+1)− t ime int (m) ) ;

expServ i ce=expServ i ce+s r a t e (m)∗ ( t ime int (m+1)− t ime int (m) ) ;

i f expArr iva l s / expServ i ce > rho s ta r

rho s ta r = expArr iva l s / expServ i ce ;

end

end

expArr iva l s=expArr iva l s + arate ( j )∗ ( t ime int ( j +1)−startTime )

expServ i ce=expServ i ce + s r a t e ( j )∗ ( t ime int ( j +1)−startTime )

i f expArr iva l s / expServ i ce > rho s ta r

rho s ta r = expArr iva l s / expServ i ce ;

end

% simple memory check ing

syscheck = memory ;

f i r s t = syscheck . MaxPossibleArrayBytes /8 − 10000 ;

maxmem = syscheck . MemAvailableAllArrays /8−1000000;

i f 3∗ f i r s t > maxmem

f i r s t = maxmem/3 ;

end

i f f i r s t < expArr iva l s / e p s i l o n

e p s i l o n=expArr iva l s / f i r s t ;
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end

i f eps i l on> f i r s t e p s i l o n

sprintf ( ’Memory l i m i t s r e q u i r e e p s i l o n to change to %d ’ . . .

, e p s i l o n )

end

s izeTime=zeros (1 , ce i l ( expArr iva l s / e p s i l o n ) ) ;

runFrac=zeros (1 , ce i l (max(100 , i n i t i a l S i z e+expArr iva l s / . 0 1 ) ) ) ;

time=startTime ;

top=i n i t i a l S i z e ;

queueSize=i n i t i a l S i z e ;

n e x t s e r v i c e=−e p s i l o n / s r a t e ( j )∗ log (rand ) ;

% i f the s e r v i c e doesn ’ t f i n i s h b e f o r e the i n t e r v a l

k=j +1;

while ( t ime int ( k)<endTime−e t o l )&&( next s e rv i c e>t ime int ( k)−time )

n e x t s e r v i c e = t ime int ( k)−time . . .

+(( t ime int ( k)−time )/ nex t s e rv i c e − 1 ) . . .

∗ e p s i l o n / s r a t e ( k )∗ log (rand ) ;

k=k+1;

end

n e x t a r r i v a l=−e p s i l o n / arate ( j )∗ log (rand ) ;

i =2;

%run the s imu la t i on on a l l but the l a s t i n t e r v a l

while ( time < t ime int ( l a s t I n t )− e t o l )
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%case : the curren t s e r v i c e f i n i s h e s b e f o r e the next a r r i v a l

i f n e x t s e r v i c e < n e x t a r r i v a l

%i f no customers are in the queue , no s e r v i c e can happen

i f queueSize<1−e t o l

%so ins tead , c a l c u l a t e the a r r i v a l

time=time+n e x t a r r i v a l ;

queueSize =1;

n e x t a r r i v a l=−e p s i l o n / arate ( j )∗ log (rand ) ;

% ca l c u l a t e a new s e r v i c e time

n e x t s e r v i c e=−e p s i l o n / s r a t e ( j )∗ log (rand ) ;

% i f the s e r v i c e doesn ’ t f i n i s h b e f o r e the i n t e r v a l ,

% l e t the s e r v e r run at the ra t e o f the i n t e r v a l , then

% r e c a l c u l a t e the ra t e f o r any a f t e r t ha t

% be c a r e f u l wi th the s e r v i c e jumping i n t e r v a l s

k=j +1;

while ( t ime int ( k)< endTime−e t o l ) &&.. .

( n e x t s e r v i c e > t ime int ( k)−time )

n e x t s e r v i c e = t ime int ( k)−time + . . .

( ( t ime int ( k)−time )/ nex t s e rv i c e − 1 ) . . .

∗ e p s i l o n / s r a t e ( k )∗ log (rand ) ;

k=k+1;

end

else
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% ca l c u l a t e the s e r v i c e

%increa se the time

time=time+n e x t s e r v i c e ;

queueSize=queueSize −1;

%r e c a l c u l a t e the next a r r i v a l and s e r v i c e t imes

%the a r r i v a l time i s the d i f f e r e n c e between what i t

%l a s t was and the time i t took the curren t s e r v i c e

n e x t a r r i v a l=n e x t a r r i v a l−n e x t s e r v i c e ;

%the next s e r v i c e time i s e x p on en t i a l l y d i s t r i b u t e d

n e x t s e r v i c e=−e p s i l o n / s r a t e ( j )∗ log (rand ) ;

% i f the s e r v i c e doesn ’ t f i n i s h b e f o r e the i n t e r v a l ,

% l e t the s e r v e r run at the ra t e o f the i n t e r v a l , then

% r e c a l c u l a t e the ra t e f o r any a f t e r t ha t

% be c a r e f u l wi th the s e r v i c e jumping i n t e r v a l s

k=j +1;

while ( t ime int ( k)< endTime−e t o l ) &&.. .

( n e x t s e r v i c e > t ime int ( k)−time )

n e x t s e r v i c e = t ime int ( k)−time + . . .

( ( t ime int ( k)−time )/ nex t s e rv i c e − 1 ) . . .

∗ e p s i l o n / s r a t e ( k )∗ log (rand ) ;

k=k+1;

end

end
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%other case : the next a r r i v a l happens b e f o r e the curren t

%s e r v i c e f i n i s h e s

else

%se t the time

time=time+n e x t a r r i v a l ;

queueSize=queueSize +1;

%f ind the max queue s i z e

i f queueSize>top+e t o l

top=top +1;

end

%r e c a l c u l a t e the next s e r v i c e and a r r i v a l t imes

n e x t s e r v i c e=next s e rv i c e−n e x t a r r i v a l ;

n e x t a r r i v a l=−e p s i l o n / arate ( j )∗ log (rand ) ;

end

%move to the next i n t e r v a l i f necessary

while ( t ime int ( j )< endTime−e t o l ) && ( t ime int ( j +1)<time )

j=j +1;

end

i=i +1;

end

j=l a s t I n t ;

%ca l c u l a t e the l a s t i n t e r v a l , u n t i l t he queue i s empty

%the s imu la t i on runs u n t i l the maximum time s p e c i f i e d
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while ( time < endTime−e t o l )

i f n e x t s e r v i c e < n e x t a r r i v a l

i f queueSize<1−e t o l

time=time+n e x t a r r i v a l ;

queueSize =1;

n e x t a r r i v a l=−e p s i l o n / arate ( j )∗ log (rand ) ;

n e x t s e r v i c e=−e p s i l o n / s r a t e ( j )∗ log (rand ) ;

c l e a r t i m e=time ;

break

else

time=time+n e x t s e r v i c e ;

queueSize=queueSize −1;

n e x t a r r i v a l=n e x t a r r i v a l−n e x t s e r v i c e ;

n e x t s e r v i c e=−e p s i l o n / s r a t e ( j )∗ log (rand ) ;

end

else

time=time+n e x t a r r i v a l ;

queueSize=queueSize +1;

i f queueSize>top+e t o l

top=top +1;

end

n e x t s e r v i c e=next s e rv i c e−n e x t a r r i v a l ;

n e x t a r r i v a l=−e p s i l o n / arate ( j )∗ log (rand ) ;
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end

i=i +1;

end

%now c a l c u l a t e the r e s t o f the l a s t i n t e r v a l , where we ge t our

%data f o r the p r o b a b i l i t i e s

%the s imu la t i on runs u n t i l the maximum time s p e c i f i e d

while ( time < endTime−e t o l )

i f n e x t s e r v i c e < n e x t a r r i v a l

i f queueSize<1−e t o l

time=time+n e x t a r r i v a l ;

s izeTime (1)= sizeTime (1)+ n e x t a r r i v a l ;

queueSize =1;

n e x t a r r i v a l=−e p s i l o n / arate ( j )∗ log (rand ) ;

n e x t s e r v i c e=−e p s i l o n / s r a t e ( j )∗ log (rand ) ;

else

time=time+n e x t s e r v i c e ;

s izeTime ( queueSize+1)=sizeTime ( queueSize + 1 ) . . .

+n e x t s e r v i c e ;

queueSize=queueSize −1;

n e x t a r r i v a l=n e x t a r r i v a l−n e x t s e r v i c e ;

n e x t s e r v i c e=−e p s i l o n / s r a t e ( j )∗ log (rand ) ;

end

else
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time=time+n e x t a r r i v a l ;

s izeTime ( queueSize+1)=sizeTime ( queueSize+1)+ n e x t a r r i v a l ;

queueSize=queueSize +1;

i f queueSize>top+e t o l

top=top +1;

end

n e x t s e r v i c e=next s e rv i c e−n e x t a r r i v a l ;

n e x t a r r i v a l=−e p s i l o n / arate ( j )∗ log (rand ) ;

end

i=i +1;

end

%ca l c u l a t e the long run f r a c t i o n s o f time in each s t a t e

t o t a l t i m e =0;

for m=1: length ( s izeTime )

t o t a l t i m e=t o t a l t i m e+sizeTime (m) ;

end

for m=1: length ( s izeTime )

s izeTime (m)=sizeTime (m)/ t o t a l t i m e ;

end

% run a number o f non−a c c e l e r a t e d s imu la t i on s f o r comparison

for t r i a l =1: runTimes

j=f i r s t I n t ;

time=startTime ;
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queueSize=i n i t i a l S i z e ;

n e x t s e r v i c e=−1/s r a t e ( j )∗ log (rand ) ;

% i f the s e r v i c e doesn ’ t f i n i s h b e f o r e the i n t e r v a l

k=j +1;

while ( t ime int ( k)<endTime−e t o l )&&( next s e rv i c e>t ime int ( k)−time )

n e x t s e r v i c e = t ime int ( k)−time . . .

+(( t ime int ( k)−time )/ nex t s e rv i c e − 1 ) . . .

∗1/ s r a t e ( k )∗ log (rand ) ;

k=k+1;

end

n e x t a r r i v a l=−1/arate ( j )∗ log (rand ) ;

i =2;

%run the s imu la t i on wi thout e p s i l o n a c c e l e r a t i o n

while ( time < endTime−e t o l )

%case : the curren t s e r v i c e f i n i s h e s b e f o r e the next a r r i v a l

i f n e x t s e r v i c e < n e x t a r r i v a l

%i f no customers are in the queue , no s e r v i c e can happen

i f queueSize<1−e t o l

%so ins tead , c a l c u l a t e the a r r i v a l

time=time+n e x t a r r i v a l ;

queueSize =1;

l a s t o p =−1;

n e x t a r r i v a l=−1/arate ( j )∗ log (rand ) ;
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% ca l c u l a t e a new s e r v i c e time

n e x t s e r v i c e=−1/s r a t e ( j )∗ log (rand ) ;

% i f the s e r v i c e doesn ’ t f i n i s h b e f o r e the i n t e r v a l ,

% l e t the s e r v e r run at the ra t e o f the i n t e r v a l , then

% r e c a l c u l a t e the ra t e f o r any a f t e r t ha t

% be c a r e f u l wi th the s e r v i c e jumping i n t e r v a l s

k=j +1;

while ( t ime int ( k)< endTime−e t o l ) &&.. .

( n e x t s e r v i c e > t ime int ( k)−time )

n e x t s e r v i c e = t ime int ( k)−time + . . .

( ( t ime int ( k)−time )/ nex t s e rv i c e − 1 ) . . .

∗1/ s r a t e ( k )∗ log (rand ) ;

k=k+1;

end

else % ca l c u l a t e the s e r v i c e

%increa se the time

time=time+n e x t s e r v i c e ;

queueSize=queueSize −1;

l a s t o p =1;

%r e c a l c u l a t e the next a r r i v a l and s e r v i c e t imes

%the a r r i v a l time i s the d i f f e r e n c e between what i t

%l a s t was and the time i t took the curren t s e r v i c e

n e x t a r r i v a l=n e x t a r r i v a l−n e x t s e r v i c e ;
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%the next s e r v i c e time i s e x p on en t i a l l y d i s t r i b u t e d

n e x t s e r v i c e=−1/s r a t e ( j )∗ log (rand ) ;

% i f the s e r v i c e doesn ’ t f i n i s h b e f o r e the i n t e r v a l ,

% l e t the s e r v e r run at the ra t e o f the i n t e r v a l , then

% r e c a l c u l a t e the ra t e f o r any a f t e r t ha t

% be c a r e f u l wi th the s e r v i c e jumping i n t e r v a l s

k=j +1;

while ( t ime int ( k)< endTime−e t o l ) &&.. .

( n e x t s e r v i c e > t ime int ( k)−time )

n e x t s e r v i c e = t ime int ( k)−time + . . .

( ( t ime int ( k)−time )/ nex t s e rv i c e − 1 ) . . .

∗1/ s r a t e ( k )∗ log (rand ) ;

k=k+1;

end

end

%other case : the next a r r i v a l happens b e f o r e the curren t

%s e r v i c e f i n i s h e s

else

%se t the time

time=time+n e x t a r r i v a l ;

queueSize=queueSize +1;

l a s t o p =−1;

%r e c a l c u l a t e the next s e r v i c e and a r r i v a l t imes
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n e x t s e r v i c e=next s e rv i c e−n e x t a r r i v a l ;

n e x t a r r i v a l=−1/arate ( j )∗ log (rand ) ;

%maybe use l a c k o f memory here

end

%move to the next i n t e r v a l i f necessary

while ( t ime int ( j )< endTime−e t o l ) && ( t ime int ( j +1)<time )

j=j +1;

end

i=i +1;

end

runFrac ( queueSize+1+l a s t o p )=runFrac ( queueSize+1+l a s t o p )+1;

end %end fo r runTimes s e c t i on

%c a l c u l a t e the r a t i o o f t imes in each s t a t e .

for m=1: length ( runFrac )

runFrac (m)=runFrac (m)/ runTimes ;

end

% wr i t e data to a f i l e

f i d = fopen ( outputFi le , ’wt ’ ) ;

fpr intf ( f i d , ’ \ t With e p s i l o n = %1.7 f , ’ , e p s i l o n ) ;

fpr intf ( f i d , ’ the system c l e a r e d out\n ’ ) ;

fpr intf ( f i d , ’ \ t at %2.5 f a f t e r having ’ , c l e a r t i m e ) ;

fpr intf ( f i d , ’ a maximum queue l ength \n ’ ) ;

fpr intf ( f i d , ’ \ t o f %d . Ran %d times ’ , top , runTimes ) ;
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fpr intf ( f i d , ’ without a c c e l e r a t i o n .\n\n ’ ) ;

fpr intf ( f i d , ’ \ tCa l cu la ted Long Run Frac t i ons ’ ) ;

fpr intf ( f i d , ’ o f Time / P r o b a b i l i t i e s \n ’ ) ;

fpr intf ( f i d , ’ \ tThat i s , P [X = n ] f o r each s t a t e below .\n ’ ) ;

fpr intf ( f i d , ’ \ tn\ t T h e o r e t i c a l \ t Acce l e ra ted \ tMul t ip l e Runs ’ ) ;

for m=1:20%min(100 , l e n g t h ( runFrac ))

fpr intf ( f i d , ’ \n\ t%d\ t %1.8 f \ t %1.8 f \ t %1.8 f ’ ,m− 1 , . . .

( a ra te ( l a s t I n t )/ s r a t e ( l a s t I n t ) ) ˆ (m− 1 ) . . .

∗(1− ara te ( l a s t I n t )/ s r a t e ( l a s t I n t ) ) , . . .

s izeTime (m) , runFrac (m) ) ;

end

fc lose ( f i d )
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