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Thesis Abstract
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Directed by Thomas H. Pate

In this thesis, we explore one of the most important numerical algorithms ever invented,

the QR algorithm for computing matrix eigenvalues. First, we describe out notations and

mathematical symbols used throughout the thesis in Chapter 1. Then we lay the ground

work by stating and proving some basic lemmas in Chapter 2. Then in Chapter 3, we prove

the convergence of the QR algorithm under the assumption of distinct magnitudes for all

eigenvalues. This constraint is relaxed in Chapter 4, where we prove the convergence of

the QR algorithm under the assumption of possibly equal magnitude eigenvalues. Finally,

in Chapter 5, we present some numerical experiments to validate the conclusions drawn in

this thesis.
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Chapter 1

Introduction

The eigenvalues of an n × n matrix A are the roots of its characteristic polynomial

det(A− λI). The famous Abel-Ruffini theorem states there is no algebraic formula for the

roots of a general polynomial of degree five or higher. This means that the best method

for computing the eigenvalues of a general n× n (n ≥ 5) matrix is likely to be iterative in

nature. The most famous eigenvalue algorithm is the QR algorithm discovered by Francis

[3, 4] and Kublanovskaya [5] independently. A convergence analysis of the QR algorithm

was given by Wilkinson [6]. A brief sketch of the early days history of the development of

the QR algorithm was given by Parlett [13].

In this thesis, we present a complete detailed proof of the convergence of the QR

algorithm under mild assumptions. First, the convergence is proved assuming that the

magnitudes of all eigenvalues are distinct. Then this assumption is loosened such that the

magnitudes of some eigenvalues may be equal, under which the convergence is re-defined and

proved. Huang and Tam [14] proved the convergence of the QR algorithm for real matrices

with non-real eigenvalues. Since the magnitudes of such matrices are distinct except for the

conjugate pairs, they fit the loosened assumption.

We employ certain standard notations throughout this thesis. We let Cm×n denote

the set of m × n complex matrices. Similarly, Rm×n denotes the set of all m × n real

matrices. Both A(i, j) and Aij refer to the (i, j)th element of matrix A. On the other hand,

A = [aij ] signifies that the (i, j)th element of A is aij . Given A ∈ Cm×n, we let AT denote

the transpose of A and we let A∗ denote the conjugate transpose of A. If A is square and

invertible, then A−1 denotes the inverse of A. The k×k identity matrix is denoted as Ik. In

circumstances where the dimension is unambiguous, the subscript of a matrix is dropped.

For example, if confusion seems unlikely, we may write I instead of Ik. The unit vectors
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representing the coordinate system of dimension n is denoted as ei, for all i = 1, 2, . . . , n.

Mathematically, ei = [0, . . . , 0, 1, 0, . . . , 0]T , where the number 1 is the i-th element of ei.

The notation diag ([d1, d2, · · · , dn]) represents the diagonal matrix with d1, d2, . . ., dn

on the diagonal in that order. Similarly, if x = [x1, x2, . . . , xn]T (or x = [x1, x2, . . . , xn])

is a vector, then the diagonal matrix with x on the diagonal is defined as diag (x) =

diag ([x1, x2, . . . , xn]). The notation Dg applied on an n×n matrix A is defined as Dg (A) =

diag ([A(1, 1), A(2, 2), . . . , A(n, n)]). The zero scalar, vectors and matrices are all repre-

sented by 0 for simplicity. The distinction should be clear in context. The Kronecker delta

function is denoted as δij and δij =





1, if i = j

0, otherwise
. The character λ is used exclusively

to represent an eigenvalue.

For a scalar a, |a| represents the absolute value of a and a denote the complex conjugate

of a. For a matrix A, |A| is the matrix whose elements are the absolute value of the

corresponding elements of A. In other words, (|A|)ij = |Aij |. The Euclidean norm of a

vector v in Cn or Rn is denoted by ‖v‖2. We reserve the notation |||·||| for matrix norms.

For example, |||·|||p is the induced p-norm of a square matrix for p ≥ 1 defined as |||A|||p =

maxx6=0
‖Ax‖p

‖x‖p
. As a known fact, square matrix p-norms are sub-multiplicative; that is,

if A,B ∈ Cn×n, then |||AB|||p ≤ |||A|||p|||B|||p. Specifically, the matrix 1-norm of a matrix

A ∈ Cn×n is

|||A|||1 = max
j=1,··· ,n

n∑

i=1

|A(i, j)|. (1.1)

The Frobenius norm of a matrix A ∈ Cn×n is defined as

|||A|||F =

√√√√
n∑

i=1

n∑

j=1

|A(i, j)|2. (1.2)
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The limit of a sequence of matrices is a matrix consisted of the component-wise limits of

the matrix elements. For example, if Ak, k = 1, 2, . . . are n × n complex matrices, then

limk→∞Ak = 0 means that limk→∞Ak(i, j) = 0, for all i, j = 1, 2, . . . , n.

The direct sum of matrices A ∈ Cm×m and B ∈ Cn×n is defined as A⊕B =




A 0

0 B


,

which is an (m + n)× (m + n) matrix.

Let a, b ∈ Cn×1, then the inner product between a and b denoted by 〈a, b〉 is b∗a.

The projection of a vector a on the vector subspace W with respect to 〈, 〉 is denoted

as PW(a).
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Chapter 2

Useful Lemmas and Theorems

Lemma 2.1. Suppose A ∈ Cn×n. If A is unitary and upper triangular, then A is diagonal.

Proof. Let A = [aij ]. Since A is unitary,





∑n
j=1 |aij |2 = 1, ∀i = 1, . . . , n

∑n
i=1 |aij |2 = 1, ∀j = 1, . . . , n.

(2.1)

We prove by induction. The lemma is obviously true when n = 1. Assume that the lemma

is true for n = k, k ≥ 1. For n = k + 1, write

A =




a11 c

0 Ak


 , (2.2)

where Ak is k × k and c is 1× k. Since A is unitary,

A∗A = Ik+1. (2.3)

Plugging (2.2) into (2.3) we obtain




a∗11 0

c∗ A∗k







a11 c

0 Ak


 =



|a11|2 a11c

a11c
∗ c∗c + A∗kAk


 = Ik+1 =




1 0

0 Ik


 .

From the above, we infer that |a11|2 = 1 and a11c = 0. Thus, a11 6= 0. Consequently c must

be 0. This means that Ak must be unitary and upper triangular. By induction hypothesis,

Ak is diagonal. We conclude that A is diagonal.
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Corollary 2.1. Suppose A ∈ Cn×n. If A is unitary and upper triangular with positive

diagonal elements, then A = In.

Proof. By Lemma 2.1, A is diagonal. Since A is also unitary, we must have |aii|2 = 1 for

each i. But aii > 0 for each i. Therefore aii = 1 for each i. So A must be In.

Lemma 2.2. If A ∈ Cn×n is upper triangular and invertible, then A−1 is upper triangular.

Proof. Let A = [a1, a2, . . . , an] and B = A−1 = [bT
1 , bT

2 , . . . , bT
n ]T , where ai, i = 1, . . . , n are

the columns of A, and bi, i = 1, . . . , n, are the rows of B. Since A is upper triangular and

invertible, aij = 0, for all i > j and aii 6= 0 for all i = 1, . . . , n. From BA = I, we get

biaj = δij . We use induction to show that bij = 0 when i > j.

For j = 1 and i > 1, (BA)i1 = bi1a11. Since a11 6= 0, we must have bi1 = 0, for all

i > 1. Now suppose that there exists a positive integer 1 ≤ k < n such that for all j ≤ k,

bij = 0 for all n ≥ i > j ≥ 1. For j = k + 1, and i > k + 1, (BA)ij = (BA)i,k+1 =

bi1a1,k+1 + bi2a2,k+1 + · · · + bi,k+1ak+1,k+1 = bi,k+1ak+1,k+1 = 0. But ak+1,k+1 6= 0, so

bi,k+1 = 0, for all i > k + 1.

Corollary 2.2. If A ∈ Cn×n is upper triangular with positive diagonal elements, then A−1

is also upper triangular with positive diagonal elements.

Proof. Let B = [bij ] = A−1 where A = [aij ]. By Lemma 2.2, B is upper triangular;

moreover, for each i, 1 ≤ i ≤ n, we have (BA)ii = biiaii = 1. Therefore, bii = 1/aii > 0.

Corollary 2.3. If A ∈ Cn×n is lower triangular and invertible, then A−1 is lower triangular.

Proof. Since A is lower triangular, AT is upper triangular. Thus
(
AT

)−1 is upper triangular.

But
(
AT

)−1 =
(
A−1

)T . Hence A−1 is lower triangular.

Lemma 2.3. If R1 and R2 are both upper triangular matrices, then R1R2 is upper trian-

gular.

Proof. Let R1 = [aij ] and R2 = [bij ]. Then for i > j, (R1R2)ij =
n∑

t=1
aitbtj = 0 because it is

always true that either i > t or t > j.
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Definition 1. A matrix B ∈ Cn×n is said to be similar to A ∈ Cn×n if there exists an

invertible matrix S ∈ Cn×n such that B = S−1AS. S is called the similarity matrix of the

similarity transformation A → S−1AS.

Definition 2. If the matrix A ∈ Cn×n is similar to a diagonal matrix, then A is said to

be diagonalizable. Furthermore, if the similarity matrix is unitary, then A is said to be

unitarily diagonalizable.

Lemma 2.4. If A ∈ Cn×n, then A is diagonalizable if and only if there is a set of n linearly

independent vectors, each of which is an eigenvector of A.

Proof. Please refer to page 46 of [1] for the proof of this Lemma.

Definition 3. The matrix A ∈ Cn×n is said to be normal if A∗A = AA∗.

Lemma 2.5. If A ∈ Cn×n is normal, then A is unitarily diagonalizable.

Proof. This is a result of Theorem 2.5.4 of [1].

Corollary 2.4. Suppose A ∈ Cn×n is normal and has n distinct eigenvalues. Let A =

XDX−1 be any diagonalization of A. Then the columns of X are mutually orthogonal.

Proof. Since A is normal, by Lemma 2.5, A is unitarily diagonalizable. Thus there exists

a unitary matrix U and a diagonal matrix D1 such that A = UD1U
−1. This is equivalent

to AU = UD1, or

A[u1, u2, . . . , un] = [u1, u2, . . . , un] diag ([d11, d22, . . . , dnn]) , (2.4)

where ui is the i-th column vector of U and dii is the i-th diagonal element of D1, for each

i = 1, 2, . . . , n. Since A has n distinct eigenvalues, dii 6= djj , for each i 6= j. Equation 2.4

means that ui is the corresponding eigenvector of the eigenvalue dii of A. Furthermore, ui,

for all i = 1, 2, . . . , n are mutually orthogonal since U is unitary.

For any matrix X such that A = XDX−1, all the columns of X have to be eigenvectors

of A corresponding to different eigenvalues of A listed on the diagonal of D. Without loss
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of generality, we assume that D = D1. Let the i-th column of X be xi. Then xi is an

eigenvector of A corresponding to the eigenvalue dii. Thus we have xi = ciui, where ci is a

non-zero constant for each i. Since ui, for all i = 1, 2 . . . , n are mutually orthogonal, xi, for

all i = 1, 2, . . . , n are also mutually orthogonal because

〈xi, xj〉 = 〈ciui, cjuj〉 = cic̄j〈ui, uj〉 = cic̄jδij .

Definition 4. A function |||·||| : Cn×n → R is called a matrix norm if for all A,B ∈ Cn×n

it satisfies the following axioms:

(1) |||A||| ≥ 0,

(2) |||A||| = 0 if and only if A = 0,

(3) |||cA||| = |c| |||A||| for all complex scalars c,

(4) |||A + B||| ≤ |||A|||+ |||B|||,

(5) |||AB||| ≤ |||A||||||B|||.

Lemma 2.6. The Frobenius norm |||·|||F is a matrix norm.

Proof. Please refer to page 291 of [1].

Lemma 2.7. If U ∈ Cn×n is unitary, and A ∈ Cn×n, then |||UA|||F = |||A|||F . In other

words, the Frobenius norm is invariant under unitary multiplication.

Proof. By definition (1.2), it is easy to see that

|||A|||2F = traceA∗A.

7



Thus,

|||UA|||2F = trace (UA)∗(UA)

= traceA∗U∗UA

= traceA∗A

= |||A|||2F .

Lemma 2.8. Suppose Ak ∈ Cn×n, k = 1, 2, . . . , is a sequence of matrices, then the following

two conditions are equivalent,

1. limk→∞|||Ak|||F = 0;

2. limk→∞Ak = 0.

Proof. Assume that limk→∞|||Ak|||F = 0, then ∀i, j ∈ {1, 2, . . . , n},

lim
k→∞

|Ak(i, j)| ≤ lim
k→∞

√√√√
n∑

i=1

n∑

j=1

|Ak(i, j)|2

= lim
k→∞

|||Ak|||F

= 0.

Therefore, limk→∞Ak = 0.

Now assuming that limk→∞Ak = 0, we have

lim
k→∞

|||Ak|||2F = lim
k→∞




n∑

i=1

n∑

j=1

|Ak(i, j)|2



=
n∑

i=1

n∑

j=1

(
lim

k→∞
|Ak(i, j)|2

)

= 0.
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Lemma 2.9. Let t and n be positive integers so that t ≤ n. Suppose Q1, Q2, Q3, . . . is a

sequence of n× n unitary matrices. Let

Qk =




Q
(k)
11 Q

(k)
12

Q
(k)
21 Q

(k)
22


 , (2.5)

where each Q
(k)
11 is a t × t matrix and each Q

(k)
22 is an (n − t) × (n − t) matrix. If

limk→∞|||Q(k)
12 |||F = 0, then limk→∞|||Q(k)

21 |||F = 0.

Proof. Note that for each k we have

(n− t) = |||Q(k)
21 |||2F + |||Q(k)

22 |||2F = |||Q(k)
12 |||2F + |||Q(k)

22 |||2F .

Thus, |||Q(k)
21 |||2F = |||Q(k)

12 |||2F for each positive integer k. That, limk→∞|||Q(k)
12 |||2F = 0, then

implies that limk→∞|||Q(k)
21 |||2F = 0.

Corollary 2.5. Suppose Q1, Q2, Q3, . . . is a sequence of n×n unitary matrices such that all

the elements above the diagonal have limit zero, i.e., limk→∞Qk(i, j) = 0 for all 1 ≤ i < j ≤
n. Then all the elements below the diagonal also have limit zero, i.e., limk→∞Qk(i, j) = 0

for all 1 ≤ j < i ≤ n.

Proof. For any i and j such that 1 ≤ j < i ≤ n, let Qk =




Q
(k)
11 Q

(k)
12

Q
(k)
21 Q

(k)
22


, for all k = 1, 2, . . .,

where each Q
(k)
11 is a j× j matrix and each Q

(k)
22 is an (n− j)× (n− j) matrix. Then Qk(i, j)

belongs to Q
(k)
21 . By Lemma 2.9, since Q

(k)
12 has limit zero, Q

(k)
21 also has limit zero, which

means that Qk(i, j) has limit zero for all 1 ≤ j < i ≤ n.

Lemma 2.10. If Ak ∈ Cn×n, for k = 1, 2, . . . and limk→∞Ak = 0, then for any B,C ∈
Cn×n, limk→∞BAkC = 0.

9



Proof. Since limk→∞Ak = 0, limk→∞Ak(i, j) = 0, for all i, j = 1, 2, . . . , n. Thus by the

definition of matrix 1-norm (1.1),

lim
k→∞

|||Ak|||1 = 0.

Using the sub-multiplicative property of the matrix 1-norm, we have

|||BAkC|||1 ≤ |||B|||1|||Ak|||1|||C|||1.

Taking the limit as k goes to infinity on both sides, we get that limk→∞|||BAkC|||1 = 0.

Lemma 2.11. Suppose A1, A2, A3, . . . and B1, B2, B3, . . . are sequences of n × n matrices

such that limk→∞Ak = Ã and limk→∞Bk = B̃. Then limk→∞AkBk = ÃB̃.

Proof. We use Frobenius norm to prove this lemma. First, |||Bk|||F = |||(Bk − B̃) + B̃|||F ≤
|||(Bk − B̃)|||F + |||B̃|||F . Thus, limk→∞|||Bk|||F = |||B̃|||F . Since the Frobenius norms of Bk

converge, they are bounded. In other words, there exists a positive number M , such that

|||Bk|||F < M for all k = 1, 2, . . ..

Now we have

|||AkBk − ÃB̃|||F = |||AkBk − ÃBk + ÃBk − ÃB̃|||F

≤ |||(Ak − Ã)Bk|||F + |||Ã(Bk − B̃)|||F

≤ |||(Ak − Ã)|||F |||Bk|||F + |||Ã|||F |||Bk − B̃|||F

≤ M |||(Ak − Ã)|||F + |||Ã|||F |||Bk − B̃|||F .

Thus, limk→∞|||AkBk − ÃB̃|||F = 0. According to Lemma 2.8, we have limk→∞(AkBk −
ÃB̃) = 0. Therefore, limk→∞AkBk = ÃB̃.

Lemma 2.12. Suppose Q1, Q2, . . . is a sequence of n× n unitary matrices, and R1, R2, . . .

is a sequence of n × n upper triangular matrices each of which has positive diagonal. If

limk→∞QkRk =I, then limk→∞Qk = I, and limk→∞Rk = I.

10



Proof. Let Qk = [q(k)
ij ], and let Rk = [r(k)

ij ] for each k. Note that limk→∞|||QkRk − I|||F = 0.

Moreover, because each Rk is upper triangular we have

|||QkRk − I|||2F = |||Qk(Rk −Q∗
k)|||2F = |||Rk −Q∗

k|||2F ≥
n∑

i=2

i−1∑

j=1

|q(k)
ji |2.

where the second equality follows by Lemma 2.7. Since limk→∞|||QkRk − I|||2F = 0, we

must have limk→∞ q
(k)
ji = 0 whenever i > j. This means that the upper triangular part

excluding the diagonal of the Qk has limit zero. By Corollary 2.5, the lower triangular part

of Qk excluding the diagonal also has limit zero. Then for each i, 1 ≤ i ≤ n, we must have

limk→∞ |q(k)
ii | = 1, simply because each row and column of each Qk has 2-norm equal to 1.

We now consider Rk. Since limk→∞|||Rk −Q∗
k|||2F = 0, and

|||Rk −Q∗
k|||2F ≥

∑

i6=j

|r(k)
ij − q̄

(k)
ji |2,

we have limk→∞
∑

i6=j |r(k)
ij − q̄

(k)
ji |2 = 0. Thus, limk→∞ |r(k)

ij − q̄
(k)
ji | = 0 when i 6= j. But, we

have 0 ≤ |r(k)
ij | ≤ |r(k)

ij − q̄
(k)
ji |+ |q̄(k)

ji | by the triangle inequality. Moreover, limk→∞ q
(k)
ji = 0

when i 6= j. Therefore we must have limk→∞ r
(k)
ij = 0 for each i 6= j.

Since limk→∞QkRk = I, we have limk→∞(QkRk)ii = 1 for each i, 1 ≤ i ≤ n. But,

(QkRk)ii =
n∑

t=1

q
(k)
it r

(k)
ti = q

(k)
ii r

(k)
ii +

∑

t 6=i

q
(k)
it r

(k)
ti .

Since the off-diagonal parts of the Qk and Rk both tend to 0 as k goes to infinity, we have

lim
k→∞

(QkRk)ii = lim
k→∞

q
(k)
ii r

(k)
ii = 1.

But, we have already shown that limk→∞ |q(k)
ii | = 1 for each i. This and the fact that

limk→∞ q
(k)
ii r

(k)
ii = 1 together imply that limk→∞ |r(k)

ii | = 1 for each i. But, each of the Rk

has positive diagonal. Therefore, limk→∞ |r(k)
ii | = limk→∞ r

(k)
ii = 1. We have now shown
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that limk→∞Rk = I. The final step is to show that limk→∞ q
(k)
ii = 1 for each i. This follows

immediately from the fact that both limk→∞ q
(k)
ii r

(k)
ii = 1 and limk→∞ r

(k)
ii = 1.

Lemma 2.13. Let B1, B2, . . . be a sequence of n×n matrices whose elements are bounded.

Let Q1, Q2, . . . be a sequence of n × n unitary matrices such that limk→∞Qk = In. Let

Ak = Q∗
kBkQk, for all k = 1, 2, . . .. Then limk→∞ (Ak −Bk) = 0.

Proof. Since the elements of Bk, k = 1, 2, . . . are bounded, there exists an M > 0, such

that |Bk(i, j)| ≤ M , for all k = 1, 2, . . ., i = 1, 2, . . . , n and j = 1, 2, . . . , n. Let Qk =

[q(k)
1 , q

(k)
2 , . . . , q

(k)
n ], where q

(k)
i is the i-th column of Qk, for all i = 1, 2, . . . , n. Since

limk→∞Qk = In, we have

lim
k→∞

q
(k)
i = ei.

If we let δ
(k)
i = q

(k)
i − ei, for all k = 1, 2, . . . and i = 1, 2, . . . , n, then limk→∞ δ

(k)
i = 0. Thus,

|Ak(i, j)−Bk(i, j)| =
∣∣∣∣
(
q
(k)
i

)T
Bk

(
q
(k)
j

)
−Bk(i, j)

∣∣∣∣

=
∣∣∣∣
(
ei + δ

(k)
i

)T
Bk(ej + δ

(k)
j )−Bk(i, j)

∣∣∣∣

≤
∣∣∣∣
(
δ
(k)
i

)T
Bkej

∣∣∣∣ +
∣∣∣∣
(
δ
(k)
i

)T
Bkδ

(k)
j

∣∣∣∣ +
∣∣∣eT

i Bkδ
(k)
j

∣∣∣

≤
∣∣∣∣
(
δ
(k)
i

)T
∣∣∣∣ |Bk| ej +

∣∣∣∣
(
δ
(k)
i

)T
∣∣∣∣ |Bk|

∣∣∣δ(k)
j

∣∣∣ + eT
i |Bk|

∣∣∣δ(k)
j

∣∣∣

≤ M

(∣∣∣∣
(
δ
(k)
i

)T
∣∣∣∣ ej +

∣∣∣∣
(
δ
(k)
i

)T
∣∣∣∣Ξ

∣∣∣δ(k)
j

∣∣∣ + eT
i

∣∣∣δ(k)
j

∣∣∣
)

,

where Ξ is the n× n matrix of which all elements are 1. Since

lim
k→∞

M

(∣∣∣∣
(
δ
(k)
i

)T
∣∣∣∣ ej +

∣∣∣∣
(
δ
(k)
i

)T
∣∣∣∣Ξ

∣∣∣δ(k)
j

∣∣∣ + eT
i

∣∣∣δ(k)
j

∣∣∣
)

= 0,

we get

lim
k→∞

(Ak(i, j)−Bk(i, j)) = 0.
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Lemma 2.14. If A ∈ Cn×n is invertible, then A can be uniquely factorized as A = QR,

where Q ∈ Cn×n is unitary and R ∈ Cn×n is upper triangular with positive diagonal ele-

ments.

Proof. The proof is essentially a description of the Gram-Schmidt orthogonalization process.

We give a sketch of that procedure. Denote A = [a1, a2, . . . , an], where ai, i = 1, . . . , n

are columns of A. Since A is invertible, {a1, a2, . . . , an} are linearly independent. Let

β1 = a1/‖a1‖2, or a1 = ‖a1‖2β1. Then let β2 = (a2 − PW1(a2))/‖a2 − PW1(a2)‖2, where

W1 = span{β1}. Note since {a1, a2, . . . , an} are linearly independent, a2 − PW1(a2) 6= 0.

One gets a2 = PW1(a2) + ‖a2 − PW1(a2)‖2β2. Notice that PW1(a2) = 〈a2, β1〉β1. So a2 =

〈a2, β1〉β1 + ‖a2 − PW1(a2)‖2β2. In general, one gets βi+1 = (ai+1 − PWi(ai+1))/‖ai+1 −
PWi(ai+1)‖2, where Wi = span{β1, β2, . . . , βi}. Let r11 = ‖a11‖2, rii = ‖ai − PWi−1(ai)‖2,

rij = 0, when j < i and

rij = 〈aj , βi〉,mboxforallj > i. (2.6)

Then

A = [a1, a2, . . . , an] = [β1, β2, . . . , βn]




r11 r12 . . . r1n

r22 . . . r2n

. . .
...

rnn




.

Let Q = [β1, β2, . . . , βn] and R = [rij ]. We get A = QR, where Q is unitary by construction

and R is invertible because rii > 0, i = 1, 2, . . . , n.

Now suppose that there exist two different factorizations with Q1, Q2, R1 and R2,

where Q1 and Q2 are unitary and R1 and R2 are upper triangular with positive diagonal

elements, such that A = Q1R1 = Q2R2. Then Q−1
2 Q1 = R−1

2 R1. So R−1
2 R1 is upper

triangular, unitary and has positive diagonal elements. By Corollary 2.1, R−1
2 R1 = I.

13



Thus R1 = R2. Also, Q−1
2 Q1 = I leads to the conclusion that Q1 = Q2. This proves the

uniqueness of the factorization.

Lemma 2.15. If L is an n× n lower triangular matrix with unit diagonal, U is an upper

triangular matrix, and P1 and P2 are permutation matrices such that L = P1UP2, then

P2 = P T
1 .

Proof. Let li,j = L(i, j), ui,j = U(i, j), αi,j = P1(i, j) and βi,j = P2(i, j), for all i, j ∈
{1, 2, . . . , n}. Elementwise,

li,j = [αi,1, αi,2, . . . , αi,n]U




β1,j

β2,j

...

βn,j




= uti,sj ,

where ti, sj ∈ {1, 2, . . . , n} are the indices of element 1 in the i-th row of P1 and the j-th

column of P2, respectively, for all i, j ∈ {1, 2, . . . , n}. Note that s and t are permutations on

{1, 2, . . . , n}. We focus on the cases when i = j, i.e., 1 = li,i = uti,si . Immediately we get

that ti ≤ si since U is upper triangular. Since this has to be true for all i ∈ {1, 2, . . . , n},
we claim that si = ti for each i ∈ {1, 2, . . . , n}. Indeed, Let i1 be chosen such that ti1 = n.

Then si1 = n. Otherwise the element in U corresponding to the position (i1, i1) would be

0. Now choose i2 such that ti2 = n− 1. Then, si2 cannot be n because s is a permutation

and si1 = n. Therefore, si2 = n−1. Proceed for tik = n−k, k = 3, 4, . . . , n−1, we get that

ti = si, for all i ∈ {1, 2, . . . , n}. Remembering the definitions of ti and si, we get that the

ti-th row of P1 and the ti-th column of P2 are identical vectors, except the transposition,

for all ti = 1, 2, . . . , n. In other words, P1(ti, j) = P2(j, ti), for all j = 1, 2, . . . , n. Thus,

P2 = P T
1 .

14



Lemma 2.16. If A ∈ Cn×n and A is invertible, then A can be factored as A = LPU where

L is a unit lower triangular matrix, P is a permutation matrix, and U is an invertible upper

triangular matrix. Furthermore, P is unique.

Proof. Let A = [aij ] ∈ Cn×n. Start from the first column of A, and find the first non-zero

element (such an element must exist since A is invertible). Suppose this element is ai,1,

where 1 ≤ i ≤ n. Let

L1 =




Ii 0

C In−i


 ,

where

C =




0 . . . 0 c1

0 . . . 0 c2

...

0 . . . 0 cn−i




and ct = −ai+t,1

ai,1
. Then the first column of L1A are all zeros except the i-th element, which

remains ai,1. This is essentially the Gaussian elimination applied on the first column of A.

Let

U1 =




a−1
i,1 b1 b2 . . . bn−1

0 1 0 . . . 0

0 0 1 . . . 0
...

. . .

0 0 . . . 0 1




,

where bt = −ai,t+1

ai,1
, for all t = 1, 2, . . . , n − 1. Then the i-th row of L1AU1 are all zero

except the first element, which is normalized to 1. Note that the only change to the first
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column of L1A by right multiplying U1 is that its i-th element is normalized to 1. This in

essence is the Gaussian elimination applied on the i-th row of L1A.

Assume that the a′j,2 is the first non-zero element in the second column of L1AU1. Let

L2 =




Ij 0

G In−j


 ,

where

G =




0 . . . 0 g1

0 . . . 0 g2

...

0 . . . 0 gn−j




and gt = −aj+t,2

aj,2
. Then the second column of L2L1AU1 are all zeros except the j-th

element, which remains aj,2. This is essentially the Gaussian elimination applied on the

second column of L1AU1.

Let

U2 =




1 0 0 . . . 0

0 a−1
j,2 h1 . . . hn−2

0 0 1 . . . 0
...

. . .

0 0 . . . 0 1




,

where ht = −aj,t+2

aj,2
, for all t = 1, 2, . . . , n − 2. Then the j-th row of L2L1AU1U2 are all

zero except the first element, which is normalized to 1. This in essence is the Gaussian

elimination applied on the j-th row of L2L1AU1.
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Repeat the above process for another (n − 2) times. Since A is invertible, we will get

a permutation matrix. Mathematically, we express the process as

LnLn−1 · · ·L2L1AU1U2 · · ·Un = P,

where Lk and Uk for any k = 1, 2, . . . , n are the unit lower triangular matrix and the upper

triangular matrix used in the k-th iteration and P is the final permutation matrix. Let

L = LnLn−1 · · ·L1 and U = U1U2 · · ·Un. Then L is unit lower triangular and U is upper

triangular. Thus we have LAU = P . Multiplying L−1 on the left and U−1 on the right

gives A = L−1PU−1. By Lemma 2.2 and Corollary 2.3, L−1 is unit lower triangular and

U−1 is upper triangular. The existence of the LPU decomposition is proved.

Now, since A is invertible, U is invertible, which means all the diagonal elements of

U are non-zero. Suppose there exist permutation matrices P1, P2 and lower and upper

triangular matrices L1, L2 and U1, U2, such that A = L1P1U1 = L2P2U2. Then, P1 =

L−1
1 L2P2U2U

−1
1 = LP2U , where L = L−1

1 L2 is unit lower-triangular and U2U
−1
1 is upper

triangular.

The condition P1 = LP2U is equivalent to L = P1U
−1P T

2 = P1V P T
2 , where V = U−1.

Since U is upper triangular, V is upper triangular. By Lemma 2.15, we get that P T
2 = P T

1 ,

i.e., P2 = P1.

This decomposition is called modified Bruhat decomposition [8].

Definition 5. A multiset of cardinality n is a collection of n members where multiple

presence of the same element is allowed and is counted as multiple members.

A multiset is like a set, whose members are not ordered, but some or all of its members

could be the same element. For example, the collection {1, 2, 1, 3} is a multiset of cardinality

4. Furthermore, it is the same multiset as {2, 1, 1, 3}.

Definition 6. The eigenvalues of A ∈ Cn×n, counting multiplicity, compose a multiset. We

call it the eigenvalue multiset of A.
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Definition 7. Let Φ = {φ1, φ2, . . . , φn} and Ψ = {ψ1, ψ2, . . . , ψn} be two multisets with

complex elements. Then we define the distance d(Φ, Ψ) between multisets Φ and Ψ as

d(Φ, Ψ) = min
σ

max
i=1,...,n

∣∣Φi −Ψσ(i)

∣∣ . (2.7)

where the minimum is taken over all permutations σ of 1, 2, . . . , n.

Theorem 2.1. Let n ≥ 1 and let

p(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0, an 6= 0

be a polynomial with complex coefficients. Then, for every ε > 0, there is a δ > 0 such that

for any polynomial

q(x) = bnxn + bn−1x
n−1 + · · ·+ b1x + b0

satisfying bn 6= 0 and

max
0≤i≤n

|ai − bi| < δ,

we have

d(Λ,M) ≤ ε,

where multiset Λ = {λ1, . . . , λn} contains all of the zeros of p(x), multiset M = {µ1, . . . , µn}
contains all of the zeros of q(x), both counting multiplicities.

Proof. Please see [1] and [2] for the proof of this theorem.

Theorem 2.2. Suppose n ≥ 1 and A,B ∈ Cn×n. Let λ = {λ1, λ2, . . . , λn} and µ =

{µ1, µ2, . . . , µn} be the eigenvalue multisets of A and B respectively. Then for every ε > 0,
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there exists a δ > 0, such that if maxi,j=1,2,...,n |A(i, j)−B(i, j)| < δ, then

d(λ, µ) ≤ ε. (2.8)

Proof. The eigenvalues of A and B are the zeros of the corresponding characteristic polyno-

mials pA(x) = det (λI −A) and pB(x) = det (λI −B). Let a = {an, an−1, . . . , a1, a0} and

b = {bn, bn−1, . . . , b1, b0} be the coefficient vectors for pA and pB, i.e.,

pA(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0

and

pB(x) = bnxn + bn−1x
n−1 + · · ·+ b1x + b0.

According to Theorem 2.1, there is a δ′ > 0, so that if ‖a− b‖∞ < δ′, then d(λ, µ) ≤ ε.

Since ai and bi are polynomial functions of elements of A and B, they are con-

tinuous functions of elements of A and B. Hence there exists a δ > 0, such that if

maxi,j=1,2,...,n |A(i, j)−B(i, j)| < δ, ‖a− b‖∞ < δ′. Combining the above arguments, we

finish the proof.

Remark 1. Theorem 2.2 illustrates the continuous dependence of the eigenvalues of a

matrix on its elements.

Definition 8. Let {Φk: Φk is a multiset of n complex elements, k = 1, 2, . . .}. Let Ψ be

a multiset of n complex elements. If limk→∞ d(Φk,Ψ) = 0, we say that the sequence of

multisets {Φk} converges to multiset Ψ.

Lemma 2.17. Suppose {Ak ∈ Cn×n : k = 1, 2, . . .} and B ∈ Cn×n. Let the eigenvalue

multiset of Ak be Γ(k) = {γ(k)
1 , γ

(k)
2 , . . . , γ

(k)
n }. Similarly, let the eigenvalue multiset of B be

Λ = {λ1, λ2, . . . , λn}. If limk→∞Ak = B, then {Γ(k)} converge to Λ.
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Proof. The proof follows directly from Theorem 2.2.

20



Chapter 3

Convergence of the QR Algorithm

If A ∈ Cn×n has n distinct eigenvalues {λi : i = 1, . . . , n} where |λi| > |λi+1| for each i

such that 1 ≤ i ≤ n− 1 and |λn| > 0. Then A has n linearly independent eigenvectors. By

Lemma 2.4, there exists an X such that A = XDX−1, where D = diag ([λ1, λ2, . . . , λn]).

Furthermore, by Lemma 2.16, X−1 can be factorized as X−1 = LPU , where L is a unit

lower triangular matrix, P is a unique permutation matrix, and U is an invertible upper

triangular matrix.

Theorem 3.1. Suppose A ∈ Cn×n has n distinct eigenvalues {λi : i = 1, . . . , n} where

|λi| > |λi+1| for each i such that 1 ≤ i ≤ n−1 and |λn| > 0. There exists an invertible matrix

X such that A = XDX−1, where D = diag ([λ1, λ2, . . . , λn]). Let X−1 = LPU , where L

is unit lower-triangular, P is a unique permutation matrix and U is upper triangular. Let

A = Q1R1 be the unique QR factorization of A with R1 having positive diagonal elements.

Let A2 = R1Q1 = Q2R2, where Q2R2 is the unique QR factorization of A2. Repeat the

above process so that for k ≥ 2, Ak = Rk−1Qk−1 = QkRk, where QkRk is the unique QR

factorization of Ak with Rk having positive diagonal elements. Then Dg (Ak) converges to

P T diag ([λ1, λ2, . . . , λn])P . Furthermore, as k goes to infinity, the elements in the lower

triangular part of Ak go to zero and the elements in the upper triangular part of Ak converge

in magnitude.

Proof. By description, Ak = Rk−1Qk−1 = Q∗
k−1Qk−1Rk−1Qk−1 = Q∗

k−1Ak−1Qk−1, which

means that Ak is similar to Ak−1, for each k > 1. As a result of this similarity, the matrices

Ak all have the same characteristic polynomial and, hence, the same eigenvalues.
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For each positive integer k, let

Pk = Q1Q2 · · ·Qk (3.1)

and

Uk = RkRk−1 · · ·R1. (3.2)

Note that by Lemma 2.3, Uk is upper triangular with positive diagonal elements. Also

notice that

Qk−1Ak = Qk−1Rk−1Qk−1 = Ak−1Qk−1. (3.3)

Using (3.3), we compute the product PkUk as

PkUk = Q1Q2 · · ·QkRk · · ·R1

= Q1 · · ·Qk−1AkUk−1

= Q1 · · ·Qk−2Ak−1Qk−1Uk−1

= Q1 · · ·Qk−3Ak−2Qk−2Qk−1Uk−1

= · · ·

= AQ1Q2 · · ·Qk−2Qk−1Uk−1

= APk−1Uk−1. (3.4)
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Since (3.4) is true for each k ≥ 2, we have

PkUk = APk−1Uk−1

= A(APk−2Uk−2)

= · · ·

= Ak−1P1U1

= Ak.

Since QkRk is the unique QR-factorization of Ak as guaranteed by Lemma 2.14, PkUk is

the unique QR-factorization of Ak with Uk having positive diagonal elements.

Let XP = QR be the unique QR factorization of XP such that R has positive diagonal

elements. Thus, X = QRP T . Now we have

Ak = XDkX−1 = QRP T DkLPU

= QR
(
P T (DkLD−k)P

)
P T DkPU

= QR
(
P T (DkLD−k)P

)
Dk

pU, (3.5)

where Dp = P T DP . Since D is an invertible diagonal matrix, DkLD−k is still a unit lower-

triangular matrix. Thus, when 1 ≤ i < j ≤ n,
(
DkLD−k

)
ij

= 0. When 1 ≤ j < i ≤ n,
(
DkLD−k

)
ij

= lijλ
k
i /λk

j goes to zero as k →∞ since |λi| < |λj |. Since the diagonal elements

of P T (DkLD−k)P are the diagonal elements of DkLD−k, only rearranged by P , we have

limk→∞DkLD−k = I and

lim
k→∞

P T DkLD−kP = I.

Write P T DkLD−kP = I +Ek, where limk→∞Ek = 0. Plugging into Equation (3.5), we get

Ak = QR(I + Ek)Dk
pU = Q(I + REkR

−1)RDk
pU . By Lemma 2.10, limk→∞REkR

−1 = 0

and so limk→∞(I + REkR
−1) = I. For each k, let Q̃kR̃k be the unique QR factorization
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of I + REkR
−1 such that R has positive diagonal elements. Notice that by Lemma 2.12,

limk→∞ Q̃k = limk→∞ R̃k = I. We get

Ak = (QQ̃k)(R̃kRDk
pU).

Now we focus on the diagonal elements of R̃kRDk
pU . Note that the diagonal elements of Dp

are those of D rearranged by permutation P . Let λp,i = Dp(i, i). Also let U = [uij ]. The

i-th diagonal element of R̃kRDk
pU can be written as (R̃k)ii(R)iiλ

k
p,iuii. By construction,

(R̃k)ii > 0 and (R)ii > 0 for each i = 1, . . . , n. Let

Λk = diag





 λk

p,1u11∣∣∣λk
p,1

∣∣∣ |u11|
,

λk
p,2u22∣∣∣λk

p,2

∣∣∣ |u22|
, . . . ,

λk
p,nunn∣∣λk

p,n

∣∣ |unn|





 . (3.6)

Note that Λk is a unitary diagonal matrix. Moreover, ΛkR̃kRDk
pU has positive diagonal

elements, for its i-th diagonal element is (R̃k)ii(R)ii |λp,i|k |uii|. Since QQ̃kΛ∗k is unitary,

Ak = (QQ̃kΛ∗k)(ΛkR̃kRDk
pU) (3.7)

is the unique QR factorization of Ak. But we have already shown that PkUk is the unique

QR factorization of Ak for each k; therefore,

Pk = QQ̃kΛ∗k, (3.8)

and

Uk = ΛkR̃kRDk
pU. (3.9)
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From (3.1) and (3.8),

Qk = P ∗
k−1Pk = (QQ̃k−1Λ∗k−1)

∗(QQ̃kΛ∗k)

= Λk−1Q̃
∗
k−1Q̃kΛ∗k

= Λk−1Λ∗k(ΛkQ̃
∗
k−1Q̃kΛ∗k).

By Lemma 2.11, (Q̃∗
k−1Q̃k) → I, as k →∞ since each of the Q̃k converges to I. Now,

|||(ΛkQ̃
∗
k−1Q̃kΛ∗k)− I|||F = |||

(
Λk

(
Q̃∗

k−1Q̃k − I
)

Λ∗k
)
|||F

= |||Q̃∗
k−1Q̃k − I|||F .

Thus, limk→∞|||(ΛkQ̃
∗
k−1Q̃kΛ∗k)− I|||F = 0. By Lemma 2.8, we get

lim
k→∞

(ΛkQ̃
∗
k−1Q̃kΛ∗k) = I.

Furthermore,

(Λk−1Λ∗k)ii =
λk−1

p,i uii∣∣∣λk−1
p,i

∣∣∣ |uii|
λk

p,iuii∣∣∣λk
p,i

∣∣∣ |uii|

=
λp,i

|λp,i| .

Thus,

lim
k→∞

Qk = diag
([

λp,1

|λp,1| ,
λp,2

|λp,2| , . . . ,
λp,n

|λp,n|
])

. (3.10)

In other words, Qk converge to a unitary diagonal matrix.

Similarly, plugging (3.9) into Rk = UkU
−1
k−1, we get

Rk = (ΛkR̃kRDk
pU)(Λk−1R̃k−1RDk−1

p U)−1 = ΛkR̃kRDpR
−1R̃−1

k−1Λ
−1
k−1.
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Again, focusing on the i-th diagonal elements, we have

(Rk)ii =
λk

p,iuii

|λp,i|k
(R̃k)iiRiiλp,iR

−1
ii (R̃k−1)−1

ii


 λk−1

p,i uii

|λp,i|k−1



−1

= (R̃k)ii(R̃k−1)−1
ii |λp,i| ,

Hence,

lim
k→∞

(Rk)ii = lim
k→∞

(R̃k)ii |λp,i| /(R̃k−1)ii = |λp,i| . (3.11)

This shows that the diagonal elements of the matrices Rk, k = 1, 2, . . ., converge to the

magnitudes of the eigenvalues of A.

Note that

Ak+1 = P ∗
k APk =

(
QQ̃kΛ∗k

)∗
A

(
QQ̃kΛ∗k

)

= ΛkQ̃
∗
kQ

∗XDX−1QQ̃kΛ∗k

= ΛkQ̃
∗
kQ

∗QRP T DPR−1Q∗QQ̃kΛ∗k

= ΛkQ̃
∗
kRDpR

−1Q̃kΛ∗k

= ΛkQ̃
∗
kΛ

∗
k(ΛkRDpR

−1Λ∗k)ΛkQ̃kΛ∗k

= Q̂k(ΛkRDpR
−1Λ∗k)Q̂

∗
k, (3.12)

where Q̂k = ΛkQ̃
∗
kΛ

∗
k. Since limk→∞ Q̃k = I and |(Λk)ii| = 1, limk→∞ Q̂k = I. Obviously

the elements in the various ΛkRDpR
−1Λ∗k are uniformly bounded, by Lemma 2.13 , we

have

lim
k→∞

(
Ak+1 − ΛkRDpR

−1Λ∗k
)

= 0. (3.13)
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Hence, as k goes to infinity, the elements in the lower triangular part of Ak+1 have limit

zero, that is, limk→∞Ak+1(i, j) = 0 for 1 ≤ j < i ≤ n; and on the diagonal,

lim
k→∞

Ak+1(i, i) = (ΛkRDpR
−1Λ∗k)ii = λp,i, (3.14)

which proves the convergence of the QR algorithm on the lower triangular and the diagonal.

Let RDpR
−1 = W . Then W = [wij ] is an upper triangular matrix. That is, wij = 0

when 1 ≤ j < i ≤ n. Also let λp,i = |λp,i| eθi and uii = |uii| eαi , for each i = 1, . . . , n. Thus

(ΛkRDpR
−1Λ∗k)st =

λk
p,suss∣∣λk

p,s

∣∣ |uss|
wst

λk
p,tutt∣∣λk

p,t

∣∣ |utt|

= wste
jk(θt−θs)+αt−αs ..

From Equation (3.13), for s < t,

lim
k→∞

(
(Ak+1)st − wste

jk(θt−θs)+αt−αs

)
= 0. (3.15)

So limk→∞(Ak+1)st may not exist for 1 ≤ s < t ≤ n. However, from Equation (3.15), we

conclude that limk→∞ |(Ak+1)st| exists and is equal to |wst|.
Notice that if X−1 has LU decomposition, then P = I. In this case Dg

(
Ak

)
converges

to diag ([λ1, λ2, . . . , λn]).

Corollary 3.1. Given that A satisfies all the assumptions described in Theorem 3.1, sup-

pose that A is also normal. Then not only the convergence of the QR algorithm described in

Theorem 3.1 holds, but also the elements in the upper triangular part of Ak off the diagonal

converge to zero.

Proof. Since A is normal and has n distinct eigenvalues, by Lemma 2.4, for any diagonal-

ization of A in the form of A = XDX−1, the columns of X are mutually orthogonal. Hence

(XP )∗(XP ) = P T (X∗X)P is diagonal. This means that the columns of XP are mutually
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orthogonal as well. Recall that XP = QR is the unique QR factorization of XP where R

has positive diagonal elements. According to the Gram-Schmidt orthogonalization process

described in the proof of Lemma 2.14, any element in the upper triangular part of R off

the diagonal is described by Equation (2.6). The mutual orthogonality of column vectors

of XP then means rij = 0, for all j > i. So R is diagonal.

From Equation 3.13, we have

lim
k→∞

|Ak+1| = lim
k→∞

∣∣ΛkRDpR
−1Λ∗k

∣∣

= lim
k→∞

∣∣RDpR
−1

∣∣

=
∣∣RDpR

−1
∣∣ . (3.16)

Because R is diagonal, RDpR
−1 is diagonal, which is equivalent as saying that the upper

triangular part of RDpR
−1 is zero. Hence

lim
k→∞

|Ak+1(i, j)| = 0, for all 1 ≤ i < j ≤ n,

which means that

lim
k→∞

Ak+1(i, j) = 0, for all 1 ≤ i < j ≤ n. (3.17)
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Chapter 4

Generalization: Equal-magnitude eigenvalues

In the proof given in Chapters 3, we assumed that the eigenvalues λ1, λ2, . . . , λn of

our n × n matrix A satisfy |λi+1| > |λi|, for each i ∈ {1, 2, . . . , n − 1}. In this section, we

relax that assumption a bit and assume only that

|λ1| ≥ |λ2| ≥ · · · ≥ |λr| > |λr+1| ≥ · · · ≥ |λn| .

In Chapter 3, in the expression A = XDX−1 where D is a diagonal matrix with eigenval-

ues of A on the diagonal, no constraints on X−1 were imposed to guarantee convergence.

However, in this chapter, extra constraints have to be assumed to guarantee convergence in

general, as stated in the following theorem.

Theorem 4.1. Suppose A ∈ Cn×n. Let {λi : i = 1, . . . , n} be the eigenvalues of A, counting

multiplicity. Suppose |λ1| ≥ |λ2| ≥ · · · ≥ |λr| > |λr+1| ≥ · · · ≥ |λn| > 0. Let D =

diag ([λ1, λ2, . . . , λn]). Suppose there exists invertible X ∈ Cn×n such that A = XDX−1.

Let X−1 = LPU be the modified Bruhat decomposition of X−1, where L is unit lower-

triangular, P is a unique permutation matrix and U is upper triangular. Assume that

P = Pr ⊕ Pn−r, (4.1)

where Pr and Pn−r are permutation matrices of sizes r × r and (n − r) × (n − r). Let

λp,i = (P T DP )i,i. Then in the QR algorithm iteration, the sequence of eigenvalue multisets

of the top-left r × r blocks converge to {λp,1, λp,2, . . . , λp,r} and the sequence of eigenvalue

multisets of the bottorm-right (n− r)× (n− r) blocks converge to {λp,r+1, . . . , λp,n}.
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Proof. We define Pk and Uk as in Chapter 3. See (3.1) and (3.2). Thus Ak = PkUk is the

unique QR-factorization of Ak where Uk has positive diagonal elements.

Let XP = QR be the unique QR factorization of XP such that R has positive diagonal

elements. Thus X = QRP T . Similar to equation (3.5), we have

Ak = Q(RP T DkLD−kPR−1)RDk
pU.

where Dp = P T DP . Let

Hk = RP T DkLD−kPR−1 (4.2)

and let Hk = Q̃kR̃k be the unique QR factorization of Hk such that R̃k has positive diagonal

elements. Let

Q̃k =




Q̃r
k Q̃12

k

Q̃21
k Q̃n−r

k


 ,

R̃k =




R̃r
k R̃12

k

0 R̃n−r
k


 ,

and

Hk =




Hr
k H12

k

H21
k Hn−r

k


 ,

where Hr
k , Q̃r

k and R̃r
k are of size r× r, Hn−r

k , Q̃n−r
k and R̃n−r

k are of size (n− r)× (n− r).

Since R̃k is upper triangular, its inverse R̃−1
k is also upper triangular according to Lemma
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2.2. Given R̃k in the above block form, we can easily show that

R̃−1
k =




(R̃r
k)
−1 Wk

0 (R̃n−r
k )−1


 (4.3)

where Wk = −
(
R̃r

k

)−1
R̃12

k

(
R̃n−r

k

)−1
.

Let Fk = DkLD−k and write Fk in block form as

Fk =




F
(k)
11 0

F
(k)
21 F

(k)
22


 , (4.4)

where F
(k)
11 is of size r × r and F

(k)
22 is of size (n − r) × (n − r). Since |λ1| ≥ |λ2| ≥

· · · ≥ |λr| > |λr+1| ≥ · · · ≥ |λn|, we have limk→∞ Fk(i, j) = limk→∞ lijλ
k
i /λk

j = 0, for all

i ≥ r + 1 > r ≥ j. That is to say limk→∞ F
(k)
21 = 0. Now let

P T DkLD−kP =




Z
(k)
11 Z

(k)
12

Z
(k)
21 Z

(k)
22


 , (4.5)

where Z
(k)
11 are of size r × r and Z

(k)
22 are of size (n− r)× (n− r). Plugging (4.1) and (4.4)

into (4.5) and expand the multiplications, we get Z
(k)
21 = P T

n−rF
(k)
21 Pr. Taking the limit as

k goes to infinity, we get limk→∞ Z
(k)
21 = limk→∞ P T

n−rF
(k)
21 Pr = 0. Furthermore, let

Rk =




R
(k)
11 R

(k)
12

0 R
(k)
22




where R
(k)
11 are of size r × r and R

(k)
22 are of size (n− r)× (n− r). Then we can write

R−1
k =




(
R

(k)
11

)−1
R′

12

0
(
R

(k)
22

)−1


 ,
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where R′
12 = −

(
R

(k)
11

)−1
R

(k)
12

(
R

(k)
22

)−1
. From (4.2), we get

lim
k→∞

H21
k = lim

k→∞
R

(k)
22 Z

(k)
21

(
R

(k)
11

)−1
= 0. (4.6)

However, here limk→∞Hk = I may not be true.

Let

Λk = diag





 λk

p,1u11∣∣λp,1k

∣∣ |u11|
,

λk
p,2u22∣∣∣λk

p,2

∣∣∣ |u22|
, . . . ,

λk
p,nunn∣∣λk

p,n

∣∣ |unn|





 ,

and we get the following equation (in the same form as equation (3.7)),

Ak = (QQ̃kΛ∗k)(ΛkR̃kRDk
pU). (4.7)

Again, since QQ̃kΛ∗k is unitary and ΛkR̃kRDk
pU is upper triangular with positive diagonal

elements, we recognize that (4.7) is the unique QR factorization of Ak. Thus,

Pk = QQ̃kΛ∗k, (4.8)

and

Uk = ΛkR̃kRDk
pU. (4.9)
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From Hk = Q̃kR̃k, we get R̃−1
k = H−1

k Q̃k. Applying the Frobenius norm,

|||R̃−1
k |||F = |||H−1

k Q̃k|||F

= |||H−1
k |||F , by Lemma 2.7

= |||
(
RP T DkLD−kPR−1

)−1
|||F

= |||RP T DkL−1D−kPR−1|||F

≤ |||RP T |||F |||DkL−1D−k|||F |||PR−1|||F

= CR,P |||DkL−1D−k|||F

≤ CR,P |||L−1|||F (4.10)

where CR,P = |||RP T |||F |||PR−1|||F is a constant. The last inequality holds because

∣∣∣∣
(
DkL−1D−k

)
i,j

∣∣∣∣ ≤
∣∣L−1(i, j)

∣∣ , for all i, j = 1, 2, . . . , n.

On account of (4.10), we have,

|||(R̃r
k)
−1|||F ≤ |||R̃−1

k |||F ≤ CR,P |||L−1|||F . (4.11)

Thus,

|||Q̃21
k |||F ≤ |||H21

k |||F |||(R̃r
k)
−1|||F ≤ CR,P |||L−1|||F |||H21

k |||F → 0, as k →∞ (4.12)

since |||H21
k |||F → 0 by (4.6). Therefore, limk→∞ Q̃21

k = 0.

Furthermore, by Lemma 2.9, we get limk→∞ Q̃12
k = 0. Consequently, limk→∞ Q̃r

kQ̃
r∗
k =

Ir and limk→∞ Q̃n−r
k Q̃n−r∗

k = In−r. In conclusion, we showed that

lim
k→∞


Q̃k −




Q̃r
k 0

0 Q̃n−r
k





 = 0.
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Notice that the same computation in (3.12) applies to the factorization shown in (4.7).

We get

Ak+1 = Q̂k(ΛkRDpR
−1Λ∗k)Q̂

∗
k

where Q̂k = ΛkQ̃
∗
kΛ

∗
k. If we denote Λk =




Λr
k 0

0 Λn−r
k


 and Q̂k =




Q̂r
k Q̂12

k

Q̂21
k Q̂n−r

k


, then

Q̂k =




Λr
k 0

0 Λn−r
k







Q̃r
k Q̃12

k

Q̃21
k Q̃n−r

k







Λr∗
k 0

0 Λn−r∗
k




=




Λr
kQ̃

r
kΛ

r∗
k Λr

kQ̃
12
k Λn−r∗

k

Λn−r
k Q̃21

k Λr∗
k Λn−r

k Q̃n−r
k Λn−r∗

k


 .

From above, we get Q̂12
k = Λr

kQ̃
12
k Λn−r∗

k → 0 and Q̂21
k = Λn−r

k Q̃21
k Λr∗

k → 0, as k → ∞.

Moreover,

lim
k→∞

Q̂r
k = Ir, (4.13)

and

lim
k→∞

Q̂n−r
k = In−r. (4.14)

Let

Jk = ΛkRDpR
−1Λ∗k. (4.15)
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Then Jk is upper triangular with Jk(i, i) = λp,i, i = 1, . . . , n. If we write Jk =




Jr
k J12

k

0 Jn−r
k


,

then,

Ak+1

=Q̂kJkQ̂
∗
k

=




Q̂r
k Q̂12

k

Q̂21
k Q̂n−r

k







Jr
k J12

k

0 Jn−r
k







Q̂r∗
k Q̂21∗

k

Q̂12∗
k Q̂n−r∗

k




=




Q̂r
kJ

r
kQ̂r∗

k +(Q̂r
kJ

12
k +Q̂12

k Jn−r
k )Q̂12∗

k Q̂r
kJ

r
kQ̂21∗

k +(Q̂r
kJ

12
k +Q̂12

k Jn−r
k )Q̂n−r∗

k

Q̂21
k Jr

kQ̂r∗
k +(Q̂21

k J12
k +Q̂n−r

k Jn−r
k )Q̂12∗

k Q̂21
k (Jr

kQ̂21∗
k +J12

k Q̂n−r∗
k )+Q̂n−r

k Jn−r
k Q̂n−r∗

k


.

If we write Ak+1 =




Ar
k+1 A12

k+1

A21
k+1 An−r

k+1


, then as k →∞, for the lower left block A21

k+1, we

have

lim
k→∞

A21
k+1 = lim

k→∞
Q̂21

k Jr
kQ̂r∗

k + (Q̂21
k J12

k + Q̂n−r
k Jn−r

k )Q̂12∗
k

= 0

for the following reasons. By (4.15), Jk is uniformly bounded, hence Jr
k , J12

k and Jn−r
k are

all uniformly bounded. Furthermore, both Q̂r∗
k and Q̂n−r

k are uniformly bounded because

they are part of a unitary matrix. Finally both Q̂21
k and Q̂12

k go to zero as k goes to infinity.

For the top right block A12
k+1, we have

lim
k→∞

(
A12

k+1 − Q̂r
kJ

12
k Q̂n−r∗

k

)

= lim
k→∞

((
Q̂r

kJ
r
kQ̂21∗

k + (Q̂r
kJ

12
k + Q̂12

k Jn−r
k )Q̂n−r∗

k

)
− Q̂r

kJ
12
k Q̂n−r∗

k

)

= 0, (4.16)
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for the same reasons stated above for A21
k+1. Furthermore, by (4.13), (4.14) and (4.15), we

get

lim
k→∞

∣∣A12
k+1

∣∣ = lim
k→∞

∣∣∣Q̂r
kJ

12
k Q̂n−r∗

k

∣∣∣

= lim
k→∞

∣∣J12
k

∣∣

= lim
k→∞

∣∣∣
(
ΛkRDpR

−1Λ∗k
)12

∣∣∣

= lim
k→∞

∣∣∣
(
RDpR

−1
)12

∣∣∣ , (4.17)

where
(
ΛkRDpR

−1Λ∗k
)12 and

(
RDpR

−1
)12 represent the top right r × (n − r) blocks of

ΛkRDpR
−1Λ∗k and RDpR

−1, respectively. Equation 4.17 shows that the elements of A12
k+1

converge in magnitude to those of the corresponding top right block of RDpR
−1, which is

a fixed matrix. Note that this is a similar result of (3.15), except that (3.15) applies to

all the upper triangular elements of Ak+1 off the diagonal while (4.17) only applies to the

upper right block off the diagonal blocks of Ak+1.

We also want to point out that a similar result to Corollary 3.1 exists for the equal-

magnitude eigenvalue case. If all the eigenvalues of A are distinct and A is normal, then

by the same reasoning presented in Corollary 3.1, R is diagonal. Hence
(
RDpR

−1
)12 = 0.

Thus, limk→∞
∣∣A12

k+1

∣∣ = 0, which means that

lim
k→∞

A12
k+1 = 0. (4.18)

For the two diagonal blocks, we have

lim
k→∞

(
Ar

k+1 − Q̂r
kJ

r
kQ̂r∗

k

)
= lim

k→∞

(
(Q̂r

kJ
12
k + Q̂12

k Jn−r
k )Q̂12∗

k

)
= 0 (4.19)

and

lim
k→∞

(
An−r

k+1 − Q̂n−r
k Jn−r

k Q̂n−r∗
k

)
= lim

k→∞

(
Q̂21

k Jr
kQ̂21∗

k + Q̂21
k J12

k Q̂n−r∗
k

)
= 0. (4.20)
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Remember that in Chapter 3, the whole lower triangular block excluding the diagonal

goes to zero as k goes to infinity. Here for the equal eigenvalue magnitude case, under the

assumption of (4.1), only the lower left block of size (n − r) × r goes to zero as k goes

to infinity. The two diagonal blocks Ar
k+1 and An−r

k+1 does not converge in a conventional

sense. However, using Lemma 2.17, we conclude that the sequence of eigenvalue multisets

of {Ar
k : k = 1, 2, . . . , } converge to the multiset {λp,1, λp,2, . . . , λp,r} and the sequence of

eigenvalue multisets of {An−r
k : k = 1, 2, . . . , } converge to the multiset {λp,r+1, . . . , λp,n}.

Note that in (4.1), if Pr = Ir and Pn−r = In−r, then P = I. This means that X−1 has

LU decomposition X−1 = LU .
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Chapter 5

Experiments

To show the convergence of the QR algorithm that we have proved in Chapters 3

and 4, we have designed several experiments which we performed using MATLAB (The

Mathworks, Natick, MA). The symbols used in this chapter will be the same symbols used

in Chapters 3 and 4.

We choose the dimension of the matrices to be n = 5. First, we construct a random

unit lower triangular matrix L and a random upper triangular matrix U . To guarantee

numerical stability, we constrained the 2-norm condition numbers of both L and U to be

no more than 100.

To illustrate Theorem 3.1, we choose the magnitude of the eigenvalues of the the matrix

A to be λi = 2n+1−i, for all i = 1, 2, ...n. Their phases are generated randomly in the range

of 0 to 2π. Using these eigenvalues, we form the diagonal matrix D = diag ([λ1, λ2, . . . , λn]).

In the first experiment, we form the matrix X−1 by letting X−1 = LU . The matrix A

is formed by A = XAX−1. Then we performed the QR algorithm on A for 800 iterations.

The results are shown in Figures 5.1, 5.2 and 5.3.

Figure 5.1 shows the convergence of the lower triangular part of Ak off the diagonal.

The curve represents the evolution of the maximum absolute value of all the lower triangular

off diagonal elements of Ak with the iterations.

Figure 5.2 shows the convergence of the diagonal elements of Ak in the complex plane.

The trajectory of the diagonal elements were plotted with the iterations. The triangles

represent the starting point of each diagonal element (Note that the diagonal elements in

the first several iterations tend to be far from the final converging value. In order to show

more detail, we chose to start the plot from the 7-th iteration). The circles represent the
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Figure 5.1: Lower triangular (off diagonal) part of Ak converge to zero

ending points of the trajectories. The “+” signs mark the real eigenvalues of A. From this

figure, we can see that the diagonal elements of Ak converge to the eigenvalues of A.

The evolution of four randomly selected upper triangular elements of Ak are shown in

Fig. 5.3. On the top row, the magnitudes of these elements are shown against iterations.

On the bottom row, their trajectories in the complex plane are plotted. Again triangles and

circles represent beginning and ending points of the trajectories. One can see that these

upper triangular elements of Ak converge in magnitude (top row) but do not converge in

value (bottom row).

In the second experiment, we generate a random permutation matrix P . We relax

the constraint such that X−1 = LPU . The results are shown in Figures 5.4, 5.5 and 5.6.

These figures show similar convergence results of the lower triangular, diagonal and upper

triangular parts of Ak. Compared to the Figs. 5.1, 5.2 and 5.3, one can see that there are

some more oscillations presented in the LPU case than the LP case. Also, notice that in

Fig. 5.5, the trajectories of Ak(1, 1) and Ak(2, 2) trade places with each other during the
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Figure 5.2: Diagonal elements of Ak converge to eigenvalues of A
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Figure 5.3: Upper triangular (off diagonal) part of Ak converge in magnitude
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iterations. This actually reflects the permutation matrix P . In this case,

P =




0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




.
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Figure 5.4: Lower triangular (off diagonal) part of A converge to zero

The above experiments validate the QR algorithm that we presented in Chapter 3.

Then we changed the eigenvalues to validate Theorem 4.1 presented in Chapter 4. The

new eigenvalues are divided into two groups, the first group of 2 eigenvalues λ1 and λ2 have

the same magnitude of 2, but with random phases. The second group of 3 eigenvalues λ3,

λ4 and λ5 have the same magnitude of 1, again with random phases. The diagonal matrix

D is then formed by D = diag ([λ1, λ2, . . . , λ5]).

We constructed two random permutation matrices Pr and Pn−r of sizes 2 and 3 respec-

tively. We let P = Pr⊕Pn−r and X−1 is constructed as X−1 = LPU . Then A is formed by

A = XDX−1. The QR algorithm iteration results are shown in Figures 5.7, 5.9 and 5.10.
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Figure 5.5: Diagonal elements of Ak converge to eigenvalues of A
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Figure 5.6: Upper triangular (off diagonal) part of A converge in magnitude
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In Fig. 5.7, the convergence of several blocks of the lower triangular part of Ak off the

diagonal are shown. Here, T-L is the set whose only member is Ak(2, 1); B-L is the set

containing Ak(i, j), i = 3, 4, 5 and j = 1, 2; B-R is the set that contains Ak(4, 3), Ak(5, 3)

and Ak(5, 4). A schematic illustration of the different blocks are shown in Fig. 5.8. From

Fig. 5.7, we can see that the B-L block converge to zero while the other two blocks do not.
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Figure 5.7: Lower triangular (off diagonal) part of A converge to zero

Figure 5.8: Schematic illustration of the lower triangular off diagonal blocks of Ak

Figure 5.9 shows the non-convergence of the diagonal elements of Ak. However, the

eigenvalue multisets of the two blocks (top-left 2× 2 block and bottom-right 3× 3 block) of

Ak converge to the eigenvalue multisets of the corresponding blocks of A, as shown in Fig.

5.10.
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Figure 5.9: Diagonal elements of Ak do NOT converge to eigenvalues of A
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Although we do not explore QR algorithms with shift [7, 9, 10, 11], we are aware of

these advanced algorithms. The most simple shift algorithm for QR is the single shift QR

algorithm. As shown above, when some eigenvalues of A share the same magnitude, then

the diagonal elements of Ak would not converge to these eigenvalues. In the extreme case, if

all the eigenvalues of A have the same magnitude, then the QR algorithm fails totally. Shift

algorithms are proposed to solve this problem. Here we provide one example illustrating

the single shift QR algorithm.

Let

A =




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0




.

Then all 5 eigenvalues of A have the same magnitude 1. In fact, the 5 eigenvalues of A

are the fifth complex roots of 1 listed as follows, 1, cos
(

2π

5

)
+ i sin

(
2π

5

)
, cos

(
4π

5

)
+

i sin
(

4π

5

)
, cos

(
6π

5

)
+ i sin

(
6π

5

)
, cos

(
8π

5

)
+ i sin

(
8π

5

)
. The original QR algorithm

fails to converge at all for this matrix. However, if we let

As = A + I,

then the eigenvalues of As are those of A plus 1. Indeed, if we let λ be an eigenvalue of A

and x be a corresponding eigenvector of A, then

Asx = (A + I)x = λx + x = (λ + 1)x.
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The eigenvalues of As are now

[λs,1, . . . , λs,5] =
[
2, 1 + cos

(
2π

5

)
+ i sin

(
2π

5

)
,

1 + cos
(

4π

5

)
+ i sin

(
4π

5

)
,

1 + cos
(

6π

5

)
+ i sin

(
6π

5

)
,

1 + cos
(

8π

5

)
+ i sin

(
8π

5

)]
.

Obviously they do not all have the same magnitude. But still |λs,2| = |λs,5| and |λs,3| =

|λs,4|. So after shift, we have 3 multisets of eigenvalues composed respectively of λs,1, λs,2

and λs,5, and λs,3 and λs,4. According to our proof in Chapter 4, the QR iterations should

produce convergence at λs,1 on the diagonal. It should also produce two 2×2 block matrices

along the diagonal that converge in terms of eigenvalue multisets.

We implemented the QR algorithm on As for 200 iterations. The iteration result A200

is shown below,

A200 =




2.0000 −1.7000× 10−16 −3.2641× 10−16 −3.1697× 10−16 −1.5618× 10−17

−2.4792× 10−19 1.3090 9.5106× 10−1 −1.0435× 10−16 4.6808× 10−17

7.6303× 10−19 −9.5106× 10−1 1.3090 2.3168× 10−16 2.0064× 10−16

1.5620× 10−101 −1.9469× 10−83 6.3259× 10−84 1.9098× 10−1 −5.8779× 10−1

−1.1349× 10−101 1.4145× 10−83 −4.5961× 10−84 5.8779× 10−1 1.9098× 10−1




.

(5.1)

As seen in (5.1), Ak(1, 1) converges to λs,1 = 2. Also we see that there are two diagonal

blocks that do not converge to zero. All other elements under these diagonal blocks converge

to zero.

Also notice that the all the elements above the diagonal blocks also converge to zero.

This is not by accident. In this case A is normal because A∗A = AA∗ = I. By Equation

4.18, all the elements above the diagonal blocks converge to zero.

The diagonal block of


 1.3090 9.5106× 10−1

−9.5106× 10−1 1.3090


 has two eigenvalues: 1.3090 +

0.9511i and 1.3090−0.9511i, which are approximately equal to λs,2 and λs,5. The eigenvalues

46



of the diagonal block of


1.9098× 10−1 −5.8779× 10−1

5.8779× 10−1 1.9098× 10−1


 are 0.1910 + 0.5878i and 0.1910 +

0.5878i, which are approximately equal to λs,3 and λs,4. This result not only validates our

proof in Chapter 4, but also illustrates that the single shift is effective as to enable the

convergence to one eigenvalue of A.

Figure 5.11 shows the QR iterations of A + (2 + i) ∗ I. In each iteration, the constant

(2 + i) is subtracted from the diagonal elements of Ak before they are plotted. One can see

that all 5 eigenvalues converge with this shift. This is because the complex shift resulted in

all 5 eigenvalues having 5 different magnitudes.
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Figure 5.11: Convergence of QR: A is shifted by (2 + i) in the complex plane
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