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This thesis considers the multiscale nature ofaserroughness in a new model
that predicts the real area of contact and suréegaration as functions of load. This
work is based upon a previous rough surface malgéscontact model which used
stacked elastic-plastic spheres to model the nielspales of roughness. Instead, this
work uses stacked 3-D sinusoids to represent therigies in contact at each scale of the
surface. By summing the distance between the wvfaces at all scales, a model of
surface separation as a function of dimensionlead s obtained. Since the model
makes predictions for the real area of contacts ilso able to make predictions for
thermal and electrical contact resistance. For dpecific case of thermal contact

resistance, scale-dependent surface charactersstictaken into account in this model.
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In the field of contact mechanics, concern has heaed that the iterative calculation of
the real contact area in multiscale methods dodscooverge. This issue has been
addressed with results not only confirming conveogebut also giving the conditions
necessary for the sinusoidal based multiscale rddthoonverge.

To further verify the results of this new methodl,rasults and calculations are
compared to previous works that were based upatstgtal mathematics to model
contact area and load. These comparisons haven gualitative support to the
sinusoidal multiscale technique featured here df agerevealing some possible short-
comings of the statistical techniques, particulanythe area of surface separation
calculations. Upon further investigation, a coti@t is proposed in this work that
alleviates this short-coming for statistical comtawdeling. The multiscale sinusoidal
based elastic-plastic modeling technique is caledlaand compared for a variety of
surfaces, each with a differing roughness with appate results. Finally, in an effort to
experimentally validate the electrical contact s&sice theoretical results, the initial

setup and outline behind an experimental tessraxplained.
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CHAPTER 1

INTRODUCTION

Each Line
Represents a
Different Scale of
Roughness

Figure 1.1: A schematic depicting the decompositiba surface into superimposed sine

waves.

There are many different methods to model the aminbf rough surfaces
including statistical [1-4], fractal [5-8], and ntigkale models [9-11]. Statistical
modeling techniques use mathematical parameteredfurface to generalize the surface

1



into a statistical probability to determine the ambof contact and force. The fractal
mathematics based methods were derived to accauntifferent scales of surface
features not accounted for by the statistical nsdelThe multiscale models were
developed to alleviate the assumptions imposedragtdl mathematics and to also
improve how the material deformation mechanics @mpsidered. This work uses a
Fourier transform to convert the data into a sesfestacked sinusoids, as shown in Fig.
1.1. In a previous work [11] a method to calculéte surface separation from the
multiscale model was not provided. It is in thareat work. In addition, this work
differs from a previous multiscale model [11] iratht uses sine shaped surfaces instead
of spherical shaped surfaces to model contact efagperities. The current work also
provides a methodology for calculating the eleelrand thermal contact resistance using
the multiscale methodology. This provides a metfawdncluding the effect of the scale
dependent thermal properties [12-16]. Also, thefase characteristics necessary to

obtain convergence of the iterative multiscale sahés examined.



CHAPTER 2
BACKGROUND

2.1  Introduction

This chapter is devoted to the background mateaakidered in the modeling of
rough surface contact, surface separation and corgsistances seen in this thesis. The
first task will be to give an overview to a few thfe many various contact mechanics
techniques available. The primary models discusszé will include the multiscale,
statistical, and fractal methods. Each of thesthats is unique in its assumptions and
mathematical techniques despite considerable gtimétagreement in their results. The
surface separation and electrical and thermal conésistance will be discussed later in

this thesis in the methodology section.

2.2  Statistical Methods

One of the earliest works in the field of contachanics has been credited to
Heinrich Hertz in his paper titled)n the contact of elastic solids, 1882. Based upon
finding of interference fringes between glass lenskis work displayed elastic
displacement in surfaces that were compatible with proposed elliptical pressure
distribution. This distribution is, in fact, cunty known as the Hertzian contact solution
[17]. Since this finding, many models have beemettgped to expand the Hertzian

contact solution from a single asperity or raisedtipn on a surface into a network of



related asperities that can more accurately des¢hié topography seen on engineering
surfaces. One of the very popular expansion teclkas is the statistical contact model.
One such statistical effort is given by Greenwaod Williamson [1]. In their
work, known throughout this thesis as the GW motthe interaction between two planes
is considered. One of these is a perfect flat evhile other is covered in spherically
shaped asperities. The primary assumptions ofntioidel are that all the asperities must
have the same radius of curvature, each aspelitgves independently of its neighbors,
and the substrate material is not allowed to defasnly the asperities. With these
assumptions, the contact area is determined thrat@fistical mathematics since the
asperity heights are presumed to fit a Gaussiatmitdiion. Therefore, the Gaussian
distribution gives the percentage of the surfaceantact at each from the flat to the
rough surface generally in terms of standard deviatThis work gives results for elastic
deformation because it uses a Hertzian contacttisnliat the spherical tips which
assumes that the surface returns to its exactnatigirofile and shape after a loading

cycle. The mathematical equations and resultshigrmodel will be given later in this

thesis.

I
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Figid S
Flat Surface T T

[a) (k] Ares of Contact (c) frea of Contact

Figure 2.1: Spherical contact model before conf@gtduring mostly elastic deformation

(b), and during mostly plastic deformation (c).
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In order to further refine the statistical modéie effects of elastic-plastic
deformation have been included by numerous reseexchOne such model is given by
Jackson and Green (JG) [18], which establishesth®tange for which the statistical
model remains perfectly elastic is limited to lowends. There are many differing
models that include the effects of plasticity iatstical modeling such as those offered
by Chang, Etsion, and Bogy [19] and Kogut and EtgR0] but these methods are not
considered in detail for this work. As the two fages increase contact pressure, the
internal stresses of the asperities will eventuallyse the material to yield and deform
plastically. The statistical models rely on theerference value between the two surfaces
which describes the amount of material that mugtrde for two surfaces to maintain a
given separation. In other words, this is the miate¢hat would overlap if the two
surfaces could pass into one another without def@rseen as the gray area in Fig. 2.1.
To determine the onset of plasticity, a criticatenfierence is calculated based upon
common surface material parameters that determimenwhe equation formulated by
GW must be altered from the Hertzian solution (@etff/ elastic) to JG solution which
gives elastic-plastic results. This model is bas@dn the assumption of the GW
statistical model and is limited to relatively sindéformations; the contact radius can

only be 41% of the radius of curvature.

2.3 Fractal Models
The statistical models have shown to be a reliabsld easily implemented
technique but do have some short comings. For pleanthe assumptions made are

essentially averaging an entire rough surface iatosingle radius of curvature.

5



Essentially, this means statistical models nedleeteffects of different scales of features
on a surface. Close examination of any surfacevsltthis to be quite inaccurate since
the topography of a surface in fact appears gaibeddam. However, it is very difficult to
calculate surface characteristics for a real emging surface due to its random nature.
This is the cause for the advent of the fractal eliad techniques.

The current research does not actually modeladréechnique but it is included
here simply to compare with the models and asswmptmade in this work. One such
fractal method is Majumdar and Bhushan (MB) [2Through the course of their work,
they found that a surface is multiscale in naturdghiat as a surface is viewed with a
higher magnification, each new “scale” will showo@ographical roughness. To assist in
modeling this phenomenon, the fractal methods asgdbhat a true rough surface appears
and behaves like a mathematical fractal equatiencé their name. In the case of MB,
the equation is the Weierstrass-Mandelbrot functidhe fractal equation assumes self-
affinity but not self-similarity. This means thedich scale of the surface is related by the
fractal equations but the relation is differenttie normal and lateral directions. The
parameters necessary for this equation are garrfesad a comparison of the power
spectrum fit of the rough surface data with the @owpectrum of the Weierstrass-
Mandelbrot function.

From this point MB calculate elastic-plastic caitamechanics through
mathematical relations to the Weierstrass-Mandeloraction and the power spectrum of
the surface. This does alleviate some of the ag8ons made in statistical models in
that the surface parameters, specifically radiuscofvature of asperities is now

dependent upon the size of contact. However, possible that a surface may not have
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an appropriate power spectrum and therefore cdmnatlated to the fractal equation and
this model is continually self-affine with no bowndo how small a scale can be
considered in this model. In addition, the MB fedenodels use a very primitive contact
mechanics model that basically assumes that theurea of contact can be calculated by

simply truncating a surface through the fractakdégd surface.

2.4 Multiscale Models

Although the fractal technique is technically altisaale modeling technique
since it recognizes surface geometry at every saastlable for contact, it has been
singled out from the multiscale models for the ogssof its primary assumptions. The
fractal models carry the self-affinity principleotdéar. The model has no stopping point
although the physical world does. At some schle surface is viewed so closely that the
only remaining topography is the individual molessul Logically the scale modeling
must stop around this point. There is no smallefase characteristic to view. Also, all
the scales of a surface will never be perfectlycdbed by a single fractal equation. The
multiscale models developed in this work are ideathis situation.

The multiscale modeling technique is initiatednirdArchard’s “protuberance
upon protuberance” modeling scheme [22]. In atyeaaultiscale non-fractal technique,
Archard expanded the Hertzian sphere against diattact to feature a sphere of a certain
radius coated with hemi-spheres of another radhistware all then coated with smaller
hemi-spheres of a third radius. This is the basia multiscale technique. Each set of
spheres with their own unique radius is a “scafed as load in increased the small scales

are pressed into complete contact where the nget lzegins to compress. Archard also
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proved experimentally that rougher surfaces reggiieater loads to flatten the asperities
and that the relationship between area and loabaphpes linearity.

One of the primary modeling techniques featurethis work is given by Jackson
and Streator [11]. Their work refines the multlscanodeling technique further by
developing a model more readily adaptable to reafih surfaces. This model uses a
series of stacked three dimensional sinusoidal svawedescribe the multiple scales of
contact. The necessary assumptions for this typaaalel require (1) that the smaller
asperities are stacked on top of larger asperig®sload is distributed equally over all
asperities at that level, (3) all levels carry slaene overall load, and (4) a smaller asperity
level is not capable of extending the contact &egond that capable of the larger scale
below. Other assumptions are required for eachipenodel based upon the desired
deformation technique such as Jackson and StrEHtpuse the Johnson, Greenwood,
and Higginson [23] asymptotic solutions for perfgcalastic deformation derived from
their work on 3-D wavy surfaces (JGH) [23]. TheHl@symptotic solutions are given
for high and low loads so Jackson and Streator fit H polynomial linking equation in
between to model the complete range of contact. tti® modeling technique, the areal
density of asperities and radius of curvature ddpgon the frequency of each level of
sine waves. This is done by converting the datia &nseries of sine waves through a
discrete Fourier transform which results in a seokfrequencies and amplitudes used to
calculate contact area for levels of load iterdyiveThe JGH asymptotes and linking
equation will be discussed in detail later in Cleagt

Finally, the above work by Jackson and Streat@} {fas modified to include

plasticity by Krithivasan and Jackson [24]. Thanfiework of the perfectly elastic
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sinusoidal model given by JGH [23] can be furthefined to more realistically model
rough surfaces by including the contact solutianstl by Krithivasan and Jackson [24]
in place of the asymptotes derived from Hertziantact. The elastic-plastic solutions
were found through analysis of the finite elemeonteling (FEM) of a three dimensional
sinusoidal asperity. Similar to the JG model fatistical elastic-plastic deformation, the
model remains in a perfectly elastic deformatiogimes until critical values are reached.
The current multiscale model doesn’t rely on thienierence of the two surfaces for
establishing contact area and load. Instead ratiteely calculates area for each load
level. Therefore, the model by Krithivasan andkdaa [24] are adjusted to include the
critical contact pressure or load at which theazet enter the elastic-plastic regime. The
equations used for this and the preceding moddiabniques are discussed in detail

later in this thesis work.



CHAPTER 3
OBJECTIVES

The thesis work presented here is focused on furtevelopment of the
sinusoidal based multiscale contact modeling teghnioriginally presented by Jackson
and Streator [11]. In their work, Jackson and $tredeveloped the necessary conditions
and equations to determine the theoretical reah ak contact for the sinusoidal
multiscale modeling method. The sinusoidal contaotk was further built upon by
Krithivasan and Jackson [24] to include the effaftplasticity in the individual asperity
contact model. For the thesis presented here, thetimodels mentioned above will be
employed to calculate the real area of contact,tambnpressure or load, surface
separation, both electrical and thermal contadstasces, and finally the effects of scale
dependent material properties will be evaluatedHermal contact resistance.

In the field of contact mechanics, there exists s@mncern as to the validity of
the multiscale modeling techniques due to the flaat, in some instances, they fail to
converge. This means that certain conditions prietlee contact area from reaching a
final non-zero contact area equal to the nominalapparent area of contact. The
convergence of both multiscale modeling technidpesfectly elastic and elastic-plastic)
will be examined and the necessary conditions émvergence will be compared for a
variety of surface roughness. The models themseli# also be compared for four

separate sets of data gathered from a stylus pnoditer, each with a varying roughness.
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In addition to calculating the previously mentiongatface interactions for the
sinusoidal based multiscale model, this work alsmgares all of the features mentioned
to the pre-existing and well known statistical @mttmodels. In the case of perfectly
elastic contact, the results of the sinusoidal isedle method will be compared to that of
the Greenwood and Wiliamson (GW) model [1]. Hoeevthe elastic-plastic
deformation will be compared to the Jackson andermodel (JG) [18]. Surface
separation, electrical contact resistance, theouoatact resistance, and scale dependent
thermal contact resistance will be calculated franpresented statistical technique as
well.

During the course of this work, a possible errorexposed for the statistical
models with respect to the prediction of surfaceasation. The surface separation of
both perfectly elastic (GW) and elastic-plastic Y 3@tistical techniques does not reach
zero when the calculated real area of contactits ataximum value at complete contact.
One would assume that at the maximum contact aeeeritire surface area available is
in contact so there cannot be any separating gapeba the two surfaces being forced
together. To alleviate the discrepancy, an adjuséparation model will be.

Finally, an attempt will be made to further valigldhe theoretical models above
by designing a test apparatus. The test apparitlde used for a comparison of
electrical contact resistance as a function of loat@ihis will be accomplished by
incrementally increasing the load while taking aasw@ement of the voltage drop across
the interacting faces of two metallic surfaces atheload step. The details of these

techniques are now illuminated in the following temts.
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CHAPTER 4
METHODOLOGY

4.1 Introduction

This chapter describes in detail the numerical eflodised to calculate rough
surface contact. The numerical techniques negedearreal area of contact, contact
pressure or load, and surface separation are Hedcfor the unique cases of perfectly
elastic and elastic-plastic deformation. Furtheenothe fundamental theory and
technigues of contact resistance are discussebdibr electrical and thermal contact

resistance.

4.2 Multiscale Perfectly Elastic Contact
The employed multiscale model [11] uses the samnectibn of thought as

Archard [22], but provides a method that can belyagpplied to real surfaces. First a
fast Fourier transform is performed on the surfacdile data to predict the terms for the
Fourier series describing the surface. This seléssribes the surface as a summation of
a series of sine and cosine waves. The complersfaf the sine and cosine terms at
each frequency are combined using a complex cotgugaprovide the amplitude of the
waveform at each scale for further calculationsichefrequency is considered a scale or
layer of asperities which are stacked iterativglpmi each other. In equation form these

relationships are given by:
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A[n Am}% @.1)

P=P7A, (4.2)
whereA is the real area of contact,s the areal asperity densiBs the contact load,

is the nominal contact area, and the subsdrigenotes a frequency level, withax

denoting the highest frequency level considered.

T T T T T T T

Wavelength)

0.8} Amplitude 4
A

0.6 n

0.2 n

-0.6 *

Frequency is the inverse of wavelength, =1/

0 2 4 6 8 10 12

Figure 4.1: Graphical explanation of common temasgd for the sinusoidal based

multiscale contact model.
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Each frequency level is modeled using a sinusaidatact model. Previously
derived [11] equations fit to the data and asympteblutions given by Johnson,

Greenwood, and Higginson (JGH) [23] are used. fireeequation is derived from Hertz
contact and is used for low loads whpre< p":
— 7%
— _2m 3 p
(AJGH )1 = ?[gﬁ} (4.3)
However, at higher loads where the contact is peannplete, p approachep”, and the

following equation must be implemented:

(A ), = %[1—3[1—%}] (4.4)

2 p

Fortunately, JGH provide experimental and numeéridata to support their
asymptotic solutions which Jackson and Streatdry&éd to fit a linking equation for the

asymptotes Eqg. (4.3) and Eqg. (4.4) as follows:

For j* <08
p
— 4151 — \ 104
A= (AJGH )1 1- {%} + (AJGH )2 [%J (4.5)
p p
For P >o08
p*
A= (AJGH )2 (4.6)

wherep* is the average pressure to cause complete cdmgtween the surfaces and is
given by [23] as:

p” = J27E'Af (4.7)
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The current work also fits a new equation to thdase separation results given by JGH
[23]. In previous works, the multiscale model wsed to relate area to load. However,
for many applications such as those requiring ttghgrances like sealing and lubricated

bearings, it is also important to be able to predigrface separation. JGH gave

asymptotic solutions for the surface separatiés. % approaches zero, the solution is:
1 — N\ 2/3 —
G =1-H 32 2| +[am{V2+1]g P (4.8)
2 p p
While as% approaches 1 the solution given by [23] is:
16 (3. p ™"
G, =—|— 1-— 4.9
21577 (2) { p” (4.9)

In the current work an equation is then fit to jdwese two solutions:

5= A(l— p—ﬂ] 0 {o.a%p-ﬂ + 0.158J (- 0.847) (4.10)

As seen in Fig. 4.29 appears to be a good fit to the asymptotic funstigiven by Eqs.

(4.8-4.9).
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Figure 4.2: Graphic depicting comparison of JGHw@stptic solutions with Eq. (4.10).

The separation heighy, between the two surfaces is calculated by sufigac
the 0 value from the amplitude), at each scale level and then summing them togethe

over all frequency scales as follows:

'max

H=Y) (a-0) (4.11)

i=1

4.3 Multiscale Elastic-Plastic Contact
As noted previously, many of the asperities at difeerent frequency levels

undergo plastic deformation. Therefore an elgsistic sinusoidal contact model is

16



needed to consider this effect. The equations usele current work to calculate the
elastic-plastic contact are derived from FEM resblg Krithivasan and Jackson [24] and
Jackson, Krithivasan and Wilson [25]. The methodyglis very similar to that of the
perfectly elastic case with the exception that feedint set of formulas is used once a
calculated critical pressure is reached. Thecalitaverage contact pressuRg)( critical

average pressure over the nominal arpg),(the critical load and critical aredc are

given by:
2 3
1( 1 C

P=—"|-—_||2@ 4.12
¢ 6n(Af2E' (2 yj (4.12)

o( cs, Y

=< 4.13
A ﬂ[BAfZE' (4.13)
o =2np.tte2ry S *2(2cs,) 1 [cs,f @10
Pe = 2APT = 8Af2E') m\ 3 ) 24m(nfE') '

where C =1.295[exp(0.736v).

At low loads,P<P., and consequently small areas of contact, it cepi@ble to
assume that any deformation of the asperities mawbd will behave perfectly elastically.
However, as load increases to the critical vall@stit deformation will begin to occur

within the asperities. To evaluate the plastiodeition we replace Eg. (4.3) with:

q

— —\:( 3p T+
Ap = 2{Ac Jis [iAZJ (4.15)

q=38 EEE ﬁ} (4.16)
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This replacement results in the following equatimncontact area:

— 151 — 104
Z:(ZP 1—{£} +(ZJGH ){ pj (4.17)

Ps Ps

The pressure to cause complete contact duringielaastic deformation is then given

by [25] as:
; 11 &
Pe _ VAP (4.18)
P4, +7
J2 (5, exp{zsvj
Where Ac = and is the critical amplitude, below which theusiaid will

37E" f
always deform in the elastic regime. Plastic defaion is caused by stress initially
below the surface and building as more pressuradded. To determine the critical
amplitude where plasticity begins, the maximum Wises stress is equated to yield
strength and the resulting formula solved for catiamplitude,Ac. Surface separation

is calculated exactly as before by using Eq. (4.8@¢ept the separation for pressures

greater thanp, must havep* replaced by, .

4.4  Statistical Perfectly Elastic Contact

To compare and contrast the results of the maliéssinusoidal models, statistical
contact models are also calculated using the samiace parameters and profilometer
results. For the perfectly elastic case, this warploys the Greenwood and Williamson
[1] approach for asperity contact. The GW metheduires that a few crucial

assumptions be made: (1) each asperity is assumeoehave independently of
18



neighboring asperities, (2) all asperities have shene radius of curvature, (3) the
asperity heights from the surface follow a Gaussialght distribution, and (4) only the
actual asperity may deform, all substrate matasaftigid as well as the contacting
surface.

Using the Greenwood and Williamson [1] type st method hinges upon
obtaining statistical parameters that describestivéace. The radius of curvatuf,and
the areal asperity density, are calculated by McCool [26] using the speatraments of

the surfaces:

N 2
:iz %j (4.19)
N =\dx)/,
N 2_\2
=iz d z (4.20)
N 45 dx .

WhereN is the total number of asperities on the surfawzais the distance from the

mean height of the surface to the asperity pedilenR andy are found from:

{2t

05
R= o.375tﬁl] (4.22)
M 4

The Gaussian distribution for the asperity heigdgiven as follows:

P 2 exp{— o.s[iJ } | (4.23)
0-5 0-5

McCool [26] defineso, to be the standard deviation of the asperity tsighThis is

calculated from the standard deviation of the erdurface (RMS roughness):
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o7 = g2 4 3TLTX10

< R (4.24)

For the GW case, the area and load are calculatied) an integral o and a
function relating thez value to a valual. d is defined as the value above which the
asperities will be in contact with the rigid flafThe compression distanced, is the
interference of the rigid flat with the asperityage and is known as for the remainder
of this work. The integrals used to find the cahtareaA, and the contact pressure or

load, P, for eachd value are given below:

Ad) = A | Alw) i(2) ez (4.25)

P(d) = Ay1| P(e) 90(2) Caiz (4.26)

For the perfectly elastic casé, and P are acquired from the Hertz solutions given as:

Ae = 7Rw (4.27)
Pe :gsm(w)w (4.28)

Furthermore, surface separation can be obtaineelating the distance from the mean
surface height to the rigid fla8}, tod.

o=d+y, (4.29)
The valuey, is defined by Front [27] as follows:

_ 0045944

R (4.30)

S
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4.5 Statistical Elastic-Plastic Contact

Similar to the multiscale model, some of the asiesr will undergo plastic
deformation as loads increase past the criticalegsl This work uses the methodology of
Jackson and Green [28] and [3], referred to asai@hie remainder, which replaces the
Hertzian contact solution in the GW model with etuss suited for elastic-plastic
deformation after critical values have been reach&tlie statistical method calculates
load and area as a function of separation instéaglea as a function of load as seen in
the multiscale methods. Therefore, instead ofgusie critical force to define the elastic-
plastic regime of contact, the critical interferens used. The critical interference value

is given by [28] as follows:

ncrs,)’

For interferencev<1.9w., spherical contact is considered to effectivelyeagwith the
perfectly elastic Hertzian contact model. Howevehen »>1.9w. the following

equations from JG are used in place of Egs. (4.28}4 This substitution will provide

the necessary values to calculate the elasticiplashavior of the asperities in contact.

B

A = ar{%j (4.32)
1 5/12 3/2 4H 1 5/9

Pi =P{ exg -=| £ L1 s el ey - 2] |2l @a33)
4\ w, w, CS, 25\ w, .

where
2 3
P :%(gj (% nsyj (4.34)
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B = 014exp23, ) (4.35)

S
e =V (4.36)

Yy I

S = 2g4- 0.92(1—co{n%D (4.37)

2= ﬁ’( @ ] (4.38)
R |Rl190,

T

wn

These equations are then used in Egs. (4.25-402@)é single asperity area and load.

4.6 Contact Resistance

One of the concerns of this work is calculating #ifect of surface roughness on
electrical resistance. Therefore, the goal of fastion is to determine how the flow of
the current between surfaces is affected by the anea of contact for each load level.
Since only a few, scattered asperities are actimlbpntact for any given load level, the
current is restricted to very small contact patolueen compared to the area of the entire
surface. As the current flows through these aspgreaks, it will be effectively
“bottlenecked” resulting in some resistance todbeduction as seen in Fig. 4.3 on page

23.
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Figure 4.3: Schematic of “bottlenecked” curreniflthrough asperities.

Holm [29] gives a simple formula to calculate thkectrical resistance due to

asperity contact.

— IOLl + pLZ
Er, =——= 4.39
= 4a (4.39)

WhereEr refers to the contact resistance valaes the radius of contact, andis the

specific electrical resistance, or resistivity, the respective surfaces. However, this
equation is only good for a single asperity. la tase of both multiscale and statistical
techniques, additional equations are required lmutzae resistance for the entire surface,

(see the following sections).

4.6.1 Multiscale Electrical Contact Resistance

The multiscale sinusoidal method presented heranisterative method that
calculates area and resistance for each partifrdguency level. To predict electrical
contact resistance, the first step is to calculaeaverage radius of contact per frequency

level i:
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- A

Once the average contact radius is established,(£89) is implemented to
calculate resistance per asperity per level. Rersinusoidal case, it is assumed that the
tip of the asperity is similar to a hemisphere s tadius of curvature at the tip is used.
Oftentimes, an alleviation factor is used in thdrroantact resistance calculations to
account for the affect of a large contact radajsn relation to the asperity tip radiug,
Since electrical and thermal contact resistancevary mathematically similar, it stands
to reason that the alleviation factd¥, should also be included for electrical contact
resistance. Though there are various ways to leaécuhis factor [30], the simplified

version offered by Cooper et al. [31] is chosentlfiis work:

W, = [1— /%_J”’ (4.41)

The alleviation factory;, is combined with the resistance value and theltressummed
over all possible iteration levels to find the totasistance for the entire surface in

contact. In equation form this is given as:

'max

Erow =2 W ENM AL (4.42)
i1

It is important to note that this technique cadtes the resistance for each
frequency level and then sums them over all frequdevels to calculate the total.
Another technique exists that only evaluates tkestance for the highest frequency level
that still reduces contact area [32]. This altéweatechnique is not considered in this
work. Also, this methodology does not change ddpgnon the inclusion of plasticity

since all resistance calculations are done afte&imibg the contacting area.
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4.6.2 Statistical Electrical Contact Resistance

To continue comparing the multiscale results witat of the earlier statistical
method (see section 4.4 and 4.5), the electricatacd resistance is also obtained for
statistical perfectly elastic and elastic-plastietnods. Greenwood and Williamson [1]
include a solution for contact conductance in thrk. Resistance is simply the inverse
of conductance so the technique for calculatindegéy-elastic contact resistance is as

follows:

1
Er.(d)

= ZA]anpL_lR%Twyz w(2) (alz (4.43)

Note the inclusion of the alleviation factdf, The statistical method is not a multiscale

procedure so the alleviation factor is calculatedodiows:

W =(1—M TS (4.44)

Contact resistance from elastic-plastic statisttoatact is calculated in the same
manner except using a different elastic-plasticeesp contact model. One such
technique is given by Kogut and Etsion [33], whishused as an outline for this work.
However, there are dissimilarities since this wekes on the methodology of Jackson
and Green [28] for single asperity contact. Ed3}is still used but the contact radius,

a, has changed in accordance with the work of Jacksd Green:

a,, =VDaR (4.45)

B
where if 0<a/«, < 19 thenD =1, but ifa21.9coc,thenD=(1§) j .
w,
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By applying the contact radius in Eq. (4.45) to tesistance calculation in Eq. (4.43), the

elastic-plastic electrical contact resistance isioled.

L= Aw] 22 () e (4.46)

Similar to the multiscale model, the alleviatioetfar, v, is included here as well.

4.7  Thermal Contact Resistance

Thermal contact resistance refers to the builaupeat at the boundary between
the two surfaces due to the same “bottleneck” effeferred to in electrical resistance
seen in Fig. 4.3 on page 23. Technically, heatfloan across the gaps in the material as
well as through the contacting asperities. Howethex heat transfer across the gaps is
neglected since like electrical current, usually thajority of the heat flow will follow
the path of least resistance or in this case tperds in contact. Indeed, thermal and
electrical contact resistances are very similaea$f and are computed using very similar
methods as well.

The thermal resistance values for the multiscaletact methods are found by

modifying Egs. (4.41-4.42) as follows:

— IOTl + IOTZ
Tr,, =—"—= 4.47
= 4a (4.47)

Trow = 2 WA (4.48).

In this case,p; refers to the thermal resistivity or inverse oé tbonductivity of the

material.
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Similarly, thermal contact resistance for statmti methods is obtained by

substituting thermal resistivity for electrical igsvity in Eqs. (4.43-4.46).

1 _ -1 }éw 2

T (@) " Ao R ! ' (0(2) ez (4.49)
1 23,

Trep(d)_AﬂqJ-([ o BD(Z)mz (4.50)

4.8 Scale Dependent Thermal Contact Resistance

Scale dependency is an emerging topic in the fiéldontact resistance. The
concept behind scale dependency is that as a saaipk material is viewed at
increasingly higher magnification the material prdpes actually change according to
how small of a sample is viewed. The reason friththat at some point one is viewing
actual atoms pressed against each other instethe @bntinuous material. Therefore, at
this point the scale is below that where most irfgmdions and features are seen, such as
grain boundaries. This impacts the multiscale acimnodel because it takes into account
many different scales of asperities down to whare phenomenon is seen. To include
these effects, the thermal contact resistance, @g47-4.50), is replaced with a scale

dependent value found in the work of Prasher aredadpH34]:

W 8
Tre, =——|1+—Kn 451
SD 2ka( 3 j (4.51)

A :
Kn refers to the Knudsen numt{eiﬂjwhere/iwp is the phonon mean free path.
a

3K
/]MFP - (4.52)

PC,
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Here,p is the density of the material, refers to the solid speed of soud,is the heat

capacity, and is the thermal conductivity. Note also that tilevaation factor,¥, has
been included in the scale-dependent calculatitthewgh it is not part of the Prasher

and Phelan [34] solution.

4.9 Convergence of Real Area of Contact

As mentioned previously, the data set used fas thodel is converted into a
series of stacked sine waves using the discretadroransform. All calculations for the
model are then made based off the amplitude aneheagth of these sine waves. The
multiscale model considered here assumes thatrdticped area converges as all scales
are included in the model. This is important beeaif the predictions do not converge
then the area will approach zero as smaller seatemcluded, as was predicted by [35].
In order to test convergence, a power fit is fofordthe nominal amplitude as a function
of wavelength.

A =all (4.53)

where 4 is the wavelength (inverse of frequency) and lsofimdy are constants derived

by fitting Eq. (4.17) to the Fourier series of thaface data. For a particular surface the
best fit was found withy=.085 andy=1.5. Starting with this “benchmark case”, the
valuesa and y are then varied individually to find any criticahlues at which point
convergence is not possible. This process isazhmout for both perfectly elastic and
elastic plastic cases. The results are providéthapter 6.2

4.10 Adjusted Statistical Surface Separation
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Through comparison to the sinusoidal multiscaldntégue, a potential error is
brought to light in the statistical methods. Whealculating surface separation, the
statistical models show a significant surface ssjpam despite the calculated real area of
contact reaching its maximum value. This resuhighly unexpected since there should
be no separating gap if the two surfaces are éniimecontact as seen in the multiscale
modeling results. The reasons for difference arsbrlge statistical and multiscale
methods are three-fold. First, in the multiscakthod, all asperities are loaded equally
so they may actually be over-compressed. Sechadstatistical model does not consider
the interactions between adjacent asperities.oAtesloads, the valleys neighboring each
peak may be rising as they fill in with the plaatig deformed material. Third, believed

to be the most important, the statistical methoélsdwot adjust the mean height based on

A B A
\ LA\

Figure 4.4: Graphical comparison of surface separand adjusted surface separation.

asperity deformation.

Ba

Tiog +o

Bef2

To improve agreement between the models, an adjusgparation is now
implemented. As shown schematically in Fig. 4, adjusted separatiofpp, is found

by assuming that the mean height when considergfgriohation will locate at the
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midpoint between the deformed tips of the aspeariaed the deepest valleys of the
asperities. Therefore, as the surface deformstdumontact, the mean surface height
actually changes frorfio/2 to a smaller value. Using this concept, theastgfseparation
predicted by the statistical model can be adjussag the following simple equation:

_0+05060

Oppy = > (4.54)

As seen in Fig. 4.4, Eg. (4.54) takes the avedcdgiee mean surface height at zero
deformation,fo/2, and the distance from the mean surface heighhdopeak of the
deformed surfacej. Thef value is found not to be constant and varies mby éor
different surfaces but also depends on whethetipiysis considered. As shown in Fig.
4, fo represents the peak to valley height of the surfa8mce statistically 68% of the
asperities are accounted for betweenad 2 and 99.7% are accounted for between -6

and @, one could make an approximationgdietweerd and 12
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CHAPTER 5
EXPERIMENTAL DESIGN

One of the many issues in the field of contact meas is the validation of the
many different contact models. Problems arisexpeamental validation because the
surface features and behaviors mentioned in woflihis type are often at extremely
small scales. An additional dilemma is that typycenetals are the material of choice for
studying contact mechanics. These and other isega#t in no efficient and reliable way
to “view” the real area of contact to compare teditetical results. Therefore, the
experimental test apparatus for this work is desiigno measure electrical contact
resistance. This surface characteristic is mudieedo accurately calculate and the
choice of metals actually aids the process sincet metals are very good conductors.

To compare with the theoretical calculations flectical contact resistance, the
testing procedure must be able to alter the loadaal upon the test samples and measure
the change in resistance at the interface of thiesterfaces. In this case, the test is also
designed to garner measurements for a varietyugflnoess. The samples used are all as
close to identical as possible. The roughnestasiged by sanding each surface with a
different grit of sandpaper to altering the rougdskeft from machining and selecting one
surface to be the common base to use against itiader. After selecting and altering

the samples, a stylus profilometer is used to meathe exact roughness and profile for
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each sample. Then a copper wire is attached to ssople which will be the connection

for a multi-meter set up to measure the voltag® dwoss the contacting surfaces.

———

TEST SURFACE A
RUBBER
ISOLATOR

CONTROL BASE SURFACE

—'_

|

|

|

|

|

|
@]
C

MULTIMETER =)

Figure 5.1: Schematic of electrical contact resise test apparatus.

Finally, a modified drill press is used to preks two surfaces together for the
desired loads as seen in Fig. 5.1. A load celsed to ensure accurate readings through
Labview™ software. In this test, weights are aggblio the drill press to increase the
pressure upon the two surfaces in increments.aglh éoad increment, the multi-meter is

used to calculate the electrical resistance ofsdwmples in contact. This value is a
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measure of the voltage drop across the surfaceadueomplete contact and is expected
to correspond to the theoretical results for tteellapplied.

Unfortunately, only a few initial runs were attetegh with this test apparatus
which proved to be unsuccessful. The results werg inconsistent in that for the first
few increments of load, the resistance would inddreg but as greater and greater loads
were added the resistance would increase, sometionés original value. Also, the
resistance values would not reach a consistenevalastead the resistance would rise
and fall within a range that furthered the inaccyraf the results. One issue in setting up
this experiment, which most likely led to the rémnee issues, was the sample material
available at the time of testing was a steel tahdopressed against a polished stainless
steel block. Getting a consistent connection ftbm copper wires of the multimeter to
these steel samples was very difficult since tillesodoes not hold on steel. Therefore,
any connection made turned out to be extremelyildaglo remedy these issues, this
experiment will be attempted later using sampledifiérent materials which should be

easier to manipulate and measure.
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CHAPTER 6
RESULTS

6.1 Introduction

This chapter is devoted to the calculated redtdta the theoretical models. The
first section reveals the results of a convergemtalysis for the sinusoidal multiscale
model. For the second section, a single surfacasexd so the roughness remains
constant. This is done to compare the resulthefsinusoidal based multiscale model
with that of the statistical technique for both fpetly elastic and elastic-plastic
deformations cases with the intention of validating new multiscale technique with the
familiar statistical model. Third and final is acsion that gives a direct view of the

effects roughness has upon the calculated thearettues.
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6.2  Convergence of Real Contact Area
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Figure 6.1. Contact area ratio as a function ofelength for perfectly elastic multiscale

method where is varied in Eq. (4.53).
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Figure 6.2: Contact area ratio as a function o¥elength for elastic-plastic multiscale

method where is varied in Eg. (4.53).

The first test of convergence is to charactereerble thatx plays in Eq. (4.53).
For this test case, is varied from 10 to 10’ by an order of magnitude at each step. The
fit value fora was found to be 0.085, which falls within the rargf values tested. As
seen in Fig. 6.1-6.2; does not appear to play a significant role in @gence since all
the lines show a flattening trend at the smallevelengths. This result is independent of

plasticity since nearly the same trend is seeroth Bigs. 6.1-6.2.
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Figure 6.3. Contact area ratio as a function ofelength for perfectly elastic multiscale

method where is varied in Eq. (4.53).
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method where is varied in Eq. (4.53).

The second test of convergence is conducted byingathe value ofy in Eq.
(4.53). The results from this test, shown in F§8-6.4, show that this exponent is the
deciding factor for convergence in both perfectlgséc and elastic-plastic cases.
this testy is varied from O to 2 at intervals of 0.25. Fagaod fit to the FFT data,was
found to be 1.5, which is within the range of valtested.y values lower than 1 show a
continual slope despite the wavelength size suggeghat convergence is not possible
for these cases. This result is shown to be sirfolaboth perfectly elastic and elastic-

plastic cases.
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The results of these tests have shown that coemeegis dependent upon the
exponent,y, in the power function fit to the FFT data in E4.53). As the scales are
iteratively included, the contact area reduceserétore, the average pressure continues
to increase and may eventually become larger thepressure to cause complete contact
(p). If this pressure stays above the pressureusecaomplete contagy | the area will
no longer reduce and convergence is obtained. efdrer, for convergence to occyr,
must stay constant or decreaseladecreases. This suggests that the requirement for

convergence depends upon the following relationship

p O % =gl (4.55)

As long asA/A stays constant or decreases\akecreases then the multiscale sinusoidal
method will converge. This condition is met asga@s they value in Egs. (4.53 & 4.55)

are greater than or equal to 1, as shown by EB5)4.

S, =14[10° Pa E = 41.369(1L0° Pa
p, =115010°Q n V=036

Table 6.1: Material Properties of Tin

6.3  Contact Resistance Model Comparison

This part of the work assumes realistic matenapprties for all results gathered
(see Table 1). Since this work includes an exanwnaof electrical resistance, the
material of choice is Tin due to its common uselettrical connectors and circuits. The
surface profile is measured from machined metalpdasrusing a stylus profilometer. To
ensure an accurate comparison of the contact matielsnaterial properties and surface
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geometry are kept constant for all calculationsr &ctual calculations, Matlab™ is used
for evaluating mathematical results.

Once the data is gathered, a Fast Fourier Transi®mperformed as mentioned
before. The result is then converted to amplitude the complex conjugate. Then
multiscale models can be calculated as describedeabFor the GW and JG models, the
statistical parameters are acquired using McCdaB$ methods by finding the spectral
moments about the surface (see Appendix IlI). Fiere, the GW model is fairly
straightforward except for the integrals. To sdivese, numerical integration techniques
are employed. Simpson’s Method is used by firsaking the integral into 1000 sub-

intervals and performing the Simpson’s interpolatm each subinterval.
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6.3.1 Calculated Real Area of Contact
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Figure 6.5: Non-dimensional area vs. load.

As seen in Fig. 6.5, higher loads result in a fgrearea of contact for the two

surfaces. The comparison of the two modeling tegles resulted in good qualitative

agreement but poor quantitative agreement.

inclusion of plastic deformation. This is causetdtiie behavior of the solid asperities to
flow and flatten when plastic deformation is inahadd The asperity material tends to
“flow” resulting in greater deformation as well d8ling in” the low spots around each

asperity. This combines with the higher loads todpce larger amounts of contact.

These two techniques are calculated in very differeanners using almost no common
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equations. However, all the methods displayed kleosv the linear relation between real
contact area and load. Therefore, this qualitabgeeement serves to confirm the

accuracy of the trends of both methods for modelyegcontact of rough surfaces.

6.3.2 Surface Separation
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Figure 6.6: Area compared to Surface Separatioludinty the adjusted separation for

Statistical Contact Methods.

The surface separation as a function of the catledlreal area of contact is shown
in Fig. 6.4. Although the overall trends of theotmodels are similar, the calculations for

the statistical methods both show the surfaceslirtbntact before the surface separation
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has reached zero. Logically, when contact is cetepkhe real area of contact should be
at its maximum and surface separation should be. z&o alleviate this possible error,
Eq. (4.54) is used in the adjusted results seeweafiwld lines in Figs. 6.6 and 6.7). For
the surface data considered in the current analysialue off=5.2 was found to work
well for the perfectly elastic case. However, &astic-plastic deformationj=10.02
produced the appropriate results. These adjustmeilitsbe different for each case
because the amount of compression and deformatibrevdifferent for the perfectly
elastic and elastic-plastic cases. The resultipgséed statistical model results are shown
in Fig. 6.6.

As expected, greater loads as well as plasticraeftion serve to decrease the gap
between the surfaces as shown in Fig. 6.7. Thiggisally correct since greater loads
increase the area of contact through deformingaiyerities. One would expect the
flattening of the asperities to allow the surfadescome closer to each other and
eventually contact completely when the calculated as equal to the nominal area. The
adjustment given by Eq. (4.54) once again imprakiesagreement between the statistical

and multiscale methods.
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Figure 6.7: Non-dimensional surface separatioozsl.

Perhaps surprisingly, the models predict simiksutts on the same order of
magnitude. Once again the overall trends of bleghstatistical and multiscale methods
are confirmed by one another. In this case though, estimated behavior of the
separation is fairly different. Both methods shihve decreasing gap with greater loads
but they follow significantly different curves.

Without strong experimental confirmation, it idfidult to ascertain the accuracy
of either model. However, the current multiscaledel will result in larger contact

stiffness than predicted by the statistical mode®tiffness is defined as the change in
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contact force per change in surface separations dppears to agree with experimental

findings by Drinkwater et. al. [36] using acoustiethods.

6.3.3 Electrical Contact Resistance
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Figure 6.8: Electrical contact resistance as atfanof non-dimensional load.

For the particular case of modeling the contacawfelectrical connector, one
concern was the amount of electrical resistance wue¢he “bottleneck” effect of
contacting asperities. Fig. 6.8 shows the caledlaesults for this effect and compares
the results for the multiscale and statistical n®dkescribed in Chapter 4. Since the

electrical resistance is due to the gaps betweersunfaces, it follows naturally that the
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electrical resistance decreases with load whicbxpgected is inverse to the behavior of
contact area. Yet again, when compared to theepidyfelastic cases, the elastic plastic
cases require a lower load for all resistance waigich implies a greater contact area at
each load. The multiscale and statistical models agree surprisingly well even though

they make different predictions for contact arddis suggests that it can be difficult to

validate these models based on contact resistasasurements alone. Interestingly, the
ECR appears to decrease rapidly as complete comstaapproached (as seen by the

elbows at the end of each curve).
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6.3.4 Thermal Contact Resistance
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Figure 6.9: Thermal contact resistance as a fumationon-dimensional load including

scale-dependent results.

Thermal contact resistance is very similar to ER#tause it is a measure of
resistance to heat flow due to a reduced areamfico Figure 6.9 displays the model
results concerning thermal contact resistance. c#s be seen, higher loads result in
lower resistance values. This is due to the irsgdaamount of material in contact thus
reducing the impedance to heat flow. The valugsctied are extremely similar to that of
electrical resistance and this is to be expectgdngthat they are calculated in similar

manners and the flow of heat and flow of electyiaite mathematically equivalent.
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The bold lines shown represent the scale-depentientnal contact resistance
(see Eqg. (4.51)). Scale dependency results ingigitly higher resistance values and in
some cases does not appear to have any affedt dii@tle that in the cases where scale
dependency has no effect, the bold line in Fig.i$®erlapping the non-scale dependent
line preventing it from being seen. The currentkvbnds that the inclusion of scale
dependant single asperity thermal contact resistdoes not affect the predicted overall
thermal contact resistance significantly for theusbidal based multiscale rough surface
contact model. This is also confirmed for thealdéint spherical based multiscale contact

model by Jackson, Bhavnani, and Ferguson [32].

6.4  Comparison between Multiple Surfaces

The next concern is what effect real multiscalagimess plays in the contact
area, separation, and resistance for differentasad. To measure this effect, multiple
surface profiles were obtained using a stylus fmofeter on four surfaces with
roughness varying from 0.24m up to 5.82um. Fig. 6.10 shows that the smoother
profiles are relatively flat where the roughest wharather large changes in surface

heights.
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Figure 6.10: Surface profile data with differenighness values.

Surface| Roughnessxin Eq. 4.53 | yin Eq. 4.53| RMS Error of FFT to Fit
1 0.24um | 0.13 1.60 0.3322
2 0.34pm 0.085 15 0.4134
3 1.05um | .037 1.4 0.4053
4 5.82um .006 1.0 0.0678

Table 6.2: Rough Surface Characteristics and Ggewee Variables.

Table 6.2 provides a comparison between roughaedsthe coefficients of the

power equation, Eq. (4.53), fit to the Fourier gfamm for each of the four surfaces
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examined in this work. The root-mean-square dyetween the fit and FFT data is given
as well. Some of the error values are quite high tb the scattering of the FFT data
which does not allow for a precise fit. In applioa, this could result in large differences
in the model predictions when a power equationssduversus the actual data. In the
current work the actual data is used in the mwdtesenodel. It is important to note that
the values fon vary seemingly independent of roughness wherdehaves inversely of

roughness. Therefore, the roughest surfacg$h® which is at the limit of convergence
as seen in Figs. 6.3-6.4. Therefore there maybe sery rough surfaces for which the
multiscale technique will not converge. This ist @oconcern for relatively smooth

surfaces however.

6.4.1 Calculated Real Area of Contact

The following section describes the effects offae roughness on each of the
four modeling techniques, sinusoidal based muligsekastic-plastic and perfectly elastic
as well as the statistical elastic-plastic (JG) padectly elastic (GW). Each model is
compared for four surfaces of greatly varying rauggs. The values of the roughness
can be seen above in Table 6.2. In this casegdllts are non-dimensional. The y-axis
features the calculated real area of contact diviole the apparent or nominal area of
contact. The nominal area is the maximum possitda that can come into contact. The
x-axis is the range of normalized loads over whiah calculations are made. The load is

normalized by dividing by nominal area of contaatl éhe elastic modulus (E).
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Figure 6.11: Real area of contact as a functioriofensionless load for surfaces of
different roughness modeled using the sinusoidakthamultiscale method for elastic-

plastic material deformation.
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Figure 6.12: Real area of contact as a functioiofensionless load for surfaces of
different roughness modeled using the sinusoidsétanultiscale method for perfectly

elastic material deformation.
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Figure 6.13: Real area of contact as a functioiofensionless load for surfaces of
different roughness modeled using the JG statlstiegthod for elastic-plastic material

deformation.

53



10 T T T

s
Surface 1 Rg=0.24 pm P ; 7
————— Surface 2 Rg=0.34 pm A
— — — Surface 3 Rq=1.05 um = 7
1072H] Surface 4 Rg=5.82 pm 7 -
Ve

10 10 10° 10 10
F/(A*E)

Figure 6.14: Real area of contact as a functioiofensionless load for surfaces of
different roughness modeled using the GW statistioathod for perfectly elastic

material deformation.

As seen in Fig. 6.11-6.14, the real area of canthanges, but remains in the
same orders of magnitude despite the differenthnags values of the four profiles. This
results in the predicted real area of contact bextgemely similar despite the change in
roughness between surfaces. However, as is exhetie graph does show that the
results are ranked in order of decreasing roughnéts smoother surfaces showing a
greater contact area for each load level. It ter@sting to note that the inclusion of

plasticity (Figs. 6.11 & 6.13) do not show as graaeparation between each surface as
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the perfectly elastic models (Figs. 6.12 & 6.148lso, the models vary when viewing
what force is required to reach full contaét/A=1) although, in general, the elastic-
plastic models require less force to reach fulltaonthan the perfectly elastic models for

either sinusoidal based multiscale or statistieahhiques.

6.4.2 Surface Separation

The results seen in this section show the effeC®urface roughness on surface
separation. As described previously, this is thier@nce between the mean heights of
the two surfaces as they are pressed togetherfirfhéur graphs, Figs. 6.15-6.18, give
results for surface separation as compared to moefgsional load. For these four the
units of the y-axis are for dimensionless surfagpasation by dividing the calculated
separation with the standard deviatien, The remaining graphs of this section, Figs.
6.19-6.22, display the same dimensionless surfagaration but as a function of
dimensionless ared(A). It is important to note that the statistical debng results
(Figs. 6.17, 6.18, 6.21, & 6.22) are all calculatsthg the adjusted method suggested by

Eq. (4.54).
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Figure 6.15: Surface Separation as a function afedsionless load for surfaces of
different roughness modeled using the sinusoidakthamultiscale method for elastic-

plastic material deformation.
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Figure 6.16: Surface Separation as a function afedsionless load for surfaces of
different roughness modeled using the sinusoidaétanultiscale method for perfectly

elastic material deformation.
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Figure 6.17: Surface Separation as a function afedsionless load for surfaces of
different roughness modeled using the JG statlstiegthod for elastic-plastic material

deformation.

58



Surface 1 Rq=0.24 um RN
05F| — —- Surface 2 Rg=0.34 pm N o« l
— — — Surface 3 Rg=1.05 pm NN
~~~~~~~ Surface 4 Rgq=5.82 um h N
0 i 1
10 10° 107 10” 10°
F/(A*E)

Figure 6.18: Surface Separation as a function afedsionless load for surfaces of
different roughness modeled using the GW statistioathod for perfectly elastic

material deformation.

Figs. 6.15-6.18 show some interesting results wdmrsidering different surface
roughness values. All of the models show the ramkbehavior seen in the area
calculations above but only for very high loads wilee surfaces reach zero separation.
Aside from this phenomenon, there appears to belitde definitive effect of roughness
on separation since the separation models appeae fairly random. The qualitative
trends are the same for all the modeling techniguesroughness but there seems to be

little order due to roughness. This is especiailye for the multiscale model results
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shown in Figs. 6.15-6.16. However, the statistivaldels, whose results are shown in
Figs. 6.17-6.18, do display the ranking behaviothwhe smoother surfaces having a
decreased surface separation except for the snsioth@rfaces which behaves
independently of the others including a unique slopVhen recalling the similarities

among the area calculations this seems to be gu#age behavior. Also note that each

modeling technique requires a unique load rangedaoh full contact or zero separation.
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Figure 6.19: Surface separation as a function af aeea of contact for surfaces of
different roughness modeled using the sinusoidakthamultiscale method for elastic-

plastic material deformation.
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Figure 6.20: Surface separation as a function af aeea of contact for surfaces of
different roughness modeled using the sinusoidaéthanultiscale method for perfectly

elastic material deformation.
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Figure 6.21: Surface separation as a function af aeea of contact for surfaces of
different roughness modeled using the JG statlstiegthod for elastic-plastic material

deformation.
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Surface 1 2 3 4
Roughness 0.2dm 0.34pm 1.05um 5.82um
B for GW model | 153.7 5.2 8.8 6.8

B for JG model 159.9 10.02 14.2 12.8

Table 6.3: Rough Surface Characteristics and AeljuSeparation Values (Eq. 4.54).
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Figures 6.19-6.22 also have no ranking behaviecall that the statistical results
(Figs. 6.17, 6.18, 6.21, & 6.22) all feature th@uatkéd surface separation technique with
great success since all the cases show zero swépegation when the contact area has
reached one which is equivalent to full contact fee non-dimensional techniques
displayed in Figs. 6.21-6.22. The valuespoh Eq. 4.54 are vastly different for each
roughness with no apparent correlation betweerethakies and the roughness itself as
seen in Table 6.3. Thgvalues are all reasonable with the exception efdmoothest
surface. As mentioned previously, a presumableptablep-value lies between 4 and
12. If B equals 12, then the adjustment seen in Eq. 4|8teseto 60. Statistical analysis
will show that this value will include 99.7% of tlasperities. Therefore, the values for
the smoothest surface seem quite extreme with nme$ explanation. Future work in

this area will be necessary to explain this disaney.

6.4.3 Electrical Contact Resistance

In this section, the results for the electricattemt resistance (ECR) are compared
for the four different rough surfaces used in th@k. As before, the results are given
with the units of Ohmst¥) for the ECR along the y-axis and non-dimensidoadl along

the x-axis.
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Figure 6.23: Electrical contact resistance (ECRadsnction of dimensionless load for

surfaces of different roughness modeled usingithessidal based multiscale method for

elastic-plastic material deformation.
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gure 6.24: Electrical contact resistance (ECR) dsnation of dimensionless load for
surfaces of different roughness modeled usingithessidal based multiscale method for

perfectly elastic material deformation.
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gure 6.25: Electrical contact resistance (ECR) dsnation of dimensionless load for
surfaces of different roughness modeled using @etatistical method for elastic-plastic

material deformation.
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gure 6.26: Electrical contact resistance (ECR) dsnation of dimensionless load for
surfaces of different roughness modeled using thé atistical method for elastic-

plastic material deformation.

In accordance with the real area of contact, tadtcontact resistance is very
similar for the four surfaces and is also rankezbeding to roughness with the smoothest
surface having the least resistance values, seeRigs. 6.23-6.26. The different
modeling techniques have already been establishetiadw qualitatively similar trends
for a common surface. However, the behavior offtlue different models for the various
roughnesses is strikingly dissimilar. The ovedatreasing trend with a sudden drop is

common, but the multiscale models (Figs. 6.23-6/&8ct to each roughness with a
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nearly equidistant gap. In comparison, the twtistteal models (Figs. 6.25-6.26) show
no gap for all but high loads for the smoothesfas@s but rather large gaps for the
higher roughness values. There is also a strahgelder in the multiscale perfectly
elastic solution (Fig. 6.24) which is not presemtthe other models. However, the
shoulder seems to be at nearly the same locaticenwhe multiscale elastic-plastic
model (Fig. 6.23) shows the sudden drop in reststdor the very high loads. This may
be due to the discrete scales flattening out atdrigoads. Since the perfectly elastic
contact cannot behave in this manner the nexttiteraequires the surface to return to

nearly linear behavior till much higher loads.

6.4.4 Thermal Contact Resistance

This section will display the results for the timat contact resistance calculations
when considering varied surface roughness. Thspaoison is done for each model in
order to show further distinction among their umgmathematical methods. It is
important to note that the following results are thiermal contact resistance without the
scale-dependent surface characteristics includéd.is seen in the earlier thermal
conductivity comparison that scale-dependency legigible effects on most models,
loads, and deformation characteristics and hasefine been omitted from these
comparisons. The units used for these compariamngelvin meters squared per Watt

along the y-axis (TCR) and non-dimensional loadhglthe x-axis.
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Figure 6.27: Thermal contact resistance (TCR) &snation of dimensionless load for
surfaces of different roughness modeled usingithessidal based multiscale method for

elastic-plastic material deformation.
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gure 6.28: Thermal contact resistance (TCR) asnatifan of dimensionless load for
surfaces of different roughness modeled usingithessidal based multiscale method for

perfectly elastic material deformation.
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gure 6.29: Thermal contact resistance (TCR) asnatifan of dimensionless load for
surfaces of different roughness modeled using @etatistical method for elastic-plastic

material deformation.

72



10 T T T T

N o

RN Surface 1 Rg=0.24 pm

I Surface 2 Rg=0.34 ym
§ 4 O — — — Surface 3 Rg=1.05 um
S 10 ~ O L Surface 4 Rq=5.82 um | |
k .
E
8 . 2
E 10" ¢ 7
1%
n
(&)
o
g 10° :
c
o
@)
©
£
2 107%t :
'_

o
10_4 I—8 I—6 I—4 I—Z — 0
10 10 10 10 10
F/(A*E)

Fi
gure 6.30: Thermal contact resistance (TCR) asnatifan of dimensionless load for
surfaces of different roughness modeled using tié sEatistical method for perfectly

elastic material deformation.

Figures 6.27-6.30 display the results of thernomitact resistance (TCR) for each
different model with the intent of comparing howckamodel reacts to a change of
surface roughness. At first glance, all the modglpear to give the same or at least
extremely similar results. Indeed, all the mod#lew a steady, nearly linear, decreasing
trend for the majority of loads with a sudden dfopthe higher loads. However, upon
closer inspection, TCR for the elastic-plastic mMsd€&igs. 6.27 & 6.29, terminates at

significantly lower loads than the perfectly elasmodels, Figs. 6.28 & 6.30. Also, the
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TCR models show shoulders for only the multiscaéqxtly elastic case very near the
values at which the multiscale elastic-plastic mableps suddenly for the higher loads.
This correlates well with the electrical contactisgance since the calculations for both
effects are very similar. The same ranking behaisoseen here as in the previous
calculations but the multiscale models show an atmaniform change from one

roughness to another. Specifically, the multiseddestic-plastic model, Fig. 6.27, shows,
for the most part, equal but small gaps betweeridhesurfaces. The statistical models
seem to be much more sensitive to roughness chamgesthese models show almost no
gap between the two very smooth surfaces (surfad&, 0.24 and 0.34m roughness

respectively) with a considerably larger jump ire thetween the remaining surfaces.
Note that the results for ECR and TCR are all gtetitely similar for both models and

all surface roughnesses.
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CHAPTER 7
CONCLUSIONS

The results from a multiscale model based on sthdtnusoidal surfaces have
shown to be qualitatively similar in comparison lwexisting statistical contact models.
When viewing surface separation as a function ofedisionless load, it seems that the
multiscale models offer a differing description lmdw the surface behaves. At high
loads, the multiscale methods predict no separdttween the surfaces which correlates
exactly with the area of contact equaling the appiaarea of contact (complete contact).
However, even though the statistical methods shewndar trend as the maximum area
is reached, there appears to still be some separb@tween the two surfaces. This is
most likely a result of the statistical methodsnigedesigned more for lightly loaded
contacts and ignoring the change in overall peakaltey height between asperities at
higher loads. The adjusted statistical model sejmar calculation offered in this work
takes this effect into account and does show zgparation at the maximum contact area.
Electrical contact resistance predictions seenmoredse based on the similarity between
statistical and multiscale methods. Actually, stetistical and multiscale models predict
very similar values, while the predicted contaaaar are not as similar. This suggests
that using contact resistance measurements mapenan effective way of evaluating

rough surface contact models.
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In response to concerns about the convergendeeamultiscale techniques, this
work relates a power fit to the FFT data which sedgethat the sinusoidal multiscale
technique will converge as long as the averagespreqproportional to amplitude) stays
constant or decreases as the wavelength decreaB@s. situation requires that the
exponent in the power fit remain 1 or greater fog multiscale sinusoidal technique to
converge.

Finally, the multiscale sinusoidal method is usedy¢nerate results for a variety
of real surfaces shows the overall expected trémdarea, electrical contact resistance
and surface separation. As is expected, the seRrltthe surfaces are ranked according
to roughness yet produce extremely similar resultpon first inspection, it appears that
surface separation does not match the ranking hbamhder the various surfaces.

However, at greater loads, lower roughness valoatedrease surface separation.
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