
 

SURFACE SEPARATION AND CONTACT RESISTANCE CONSIDERING 

SINUSOIDAL ELASTIC-PLASTIC MULTISCALE ROUGH  

SURFACE CONTACT 

 
 
 

Except where reference is made to the work of others, the work described in this thesis is 
my own or was done in collaboration with my advisory committee. This thesis does not 

include proprietary or classified information. 
 
 
 

       
William Everett Wilson 

 
 
 
 

Certificate of Approval: 
 

 

             
George T. Flowers     Robert L. Jackson, Chair 
Professor      Assistant Professor 
Mechanical Engineering    Mechanical Engineering 
 
 
 
             
Dan B. Marghitu     George T. Flowers 
Professor      Dean 
Mechanical Engineering    Graduate School 



 

SURFACE SEPARATION AND CONTACT RESISTANCE CONSIDERING 

SINUSOIDAL ELASTIC-PLASTIC MULTISCALE ROUGH 

SURFACE CONTACT 

 

W. Everett Wilson 

 

A Thesis 

Submitted to 

the Graduate Faculty of 

Auburn University 

in Partial Fulfillment of the 

Requirements for the 

Degree of 

Master of Science 

 

Auburn, Alabama 
December 19, 2008 



 iii  

SURFACE SEPARATION AND CONTACT RESISTANCE CONSIDERING 

SINUSOIDAL ELASTIC-PLASTIC MULTISCALE ROUGH 

SURFACE CONTACT 

 

William Everett Wilson 

 

Permission is granted to Auburn University to make copies of this thesis at its 
discretion, upon the request of individuals or institutions and at 

their expense.  The author reserves all publication rights. 
 
 
 

      
Signature of Author    

 
 
 

      
       Date of Graduation    



 iv 

VITA 

 

 W. Everett Wilson, son of Jim and Betty Wilson was born on August 22, 1984, in 

Birmingham, Alabama.  He graduated high school from Gardendale High School, 

Gardendale, Alabama in May 2002.  He attended Troy University, Troy, Alabama and 

graduated in May 2006 with the degree of Bachelor of Science in Mathematics, minoring 

in Business Administration.  He joined the Masters program in the department of 

Mechanical Engineering at Auburn University in August 2006. 



 v 

THESIS ABSTRACT 

SURFACE SEPARATION AND CONTACT RESISTANCE CONSIDERING 

SINUSOIDAL ELASTIC-PLASTIC MULTISCALE ROUGH 

SURFACE CONTACT 

 

W. Everett Wilson 

Master of Science, December 19, 2008 
(B.S., Troy University, 2006) 

95 Typed Pages 

Directed by Robert L. Jackson 

 

 This thesis considers the multiscale nature of surface roughness in a new model 

that predicts the real area of contact and surface separation as functions of load.  This 

work is based upon a previous rough surface multiscale contact model which used 

stacked elastic-plastic spheres to model the multiple scales of roughness.  Instead, this 

work uses stacked 3-D sinusoids to represent the asperities in contact at each scale of the 

surface.  By summing the distance between the two surfaces at all scales, a model of 

surface separation as a function of dimensionless load is obtained.   Since the model 

makes predictions for the real area of contact, it is also able to make predictions for 

thermal and electrical contact resistance.  For the specific case of thermal contact 

resistance, scale-dependent surface characteristics are taken into account in this model.
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In the field of contact mechanics, concern has been voiced that the iterative calculation of 

the real contact area in multiscale methods does not converge.  This issue has been 

addressed with results not only confirming convergence but also giving the conditions 

necessary for the sinusoidal based multiscale method to converge. 

 To further verify the results of this new method, all results and calculations are 

compared to previous works that were based upon statistical mathematics to model 

contact area and load.  These comparisons have given qualitative support to the 

sinusoidal multiscale technique featured here as well as revealing some possible short-

comings of the statistical techniques, particularly in the area of surface separation 

calculations.  Upon further investigation, a correction is proposed in this work that 

alleviates this short-coming for statistical contact modeling.  The multiscale sinusoidal 

based elastic-plastic modeling technique is calculated and compared for a variety of 

surfaces, each with a differing roughness with appropriate results.  Finally, in an effort to 

experimentally validate the electrical contact resistance theoretical results, the initial 

setup and outline behind an experimental test rig is explained. 
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CHAPTER 1 

INTRODUCTION 

 

Figure 1.1: A schematic depicting the decomposition of a surface into superimposed sine 

waves. 

 

 There are many different methods to model the contact of rough surfaces 

including statistical [1-4], fractal [5-8], and multiscale models [9-11].  Statistical 

modeling techniques use mathematical parameters of the surface to generalize the surface 

Each Line 
Represents a 

Different Scale of 
Roughness 



2 

into a statistical probability to determine the amount of contact and force.  The fractal 

mathematics based methods were derived to account for different scales of surface 

features not accounted for by the statistical models.  The multiscale models were 

developed to alleviate the assumptions imposed by fractal mathematics and to also 

improve how the material deformation mechanics are considered.  This work uses a 

Fourier transform to convert the data into a series of stacked sinusoids, as shown in Fig. 

1.1.  In a previous work [11] a method to calculate the surface separation from the 

multiscale model was not provided.  It is in the current work. In addition, this work 

differs from a previous multiscale model [11] in that it uses sine shaped surfaces instead 

of spherical shaped surfaces to model contact of the asperities.  The current work also 

provides a methodology for calculating the electrical and thermal contact resistance using 

the multiscale methodology.  This provides a method for including the effect of the scale 

dependent thermal properties [12-16].  Also, the surface characteristics necessary to 

obtain convergence of the iterative multiscale scheme is examined.   



3 

CHAPTER 2 

BACKGROUND 

2.1 Introduction 

 This chapter is devoted to the background material considered in the modeling of 

rough surface contact, surface separation and contact resistances seen in this thesis.  The 

first task will be to give an overview to a few of the many various contact mechanics 

techniques available.  The primary models discussed here will include the multiscale, 

statistical, and fractal methods.  Each of these methods is unique in its assumptions and 

mathematical techniques despite considerable qualitative agreement in their results.  The 

surface separation and electrical and thermal contact resistance will be discussed later in 

this thesis in the methodology section.   

 

2.2 Statistical Methods 

 One of the earliest works in the field of contact mechanics has been credited to 

Heinrich Hertz in his paper titled, On the contact of elastic solids, 1882.  Based upon 

finding of interference fringes between glass lenses, his work displayed elastic 

displacement in surfaces that were compatible with his proposed elliptical pressure 

distribution.  This distribution is, in fact, currently known as the Hertzian contact solution 

[17].  Since this finding, many models have been developed to expand the Hertzian 

contact solution from a single asperity or raised portion on a surface into a network of 
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related asperities that can more accurately describe the topography seen on engineering 

surfaces.  One of the very popular expansion techniques is the statistical contact model.   

 One such statistical effort is given by Greenwood and Williamson [1].  In their 

work, known throughout this thesis as the GW model, the interaction between two planes 

is considered.  One of these is a perfect flat while the other is covered in spherically 

shaped asperities. The primary assumptions of this model are that all the asperities must 

have the same radius of curvature, each asperity behaves independently of its neighbors, 

and the substrate material is not allowed to deform, only the asperities.  With these 

assumptions, the contact area is determined through statistical mathematics since the 

asperity heights are presumed to fit a Gaussian distribution.  Therefore, the Gaussian 

distribution gives the percentage of the surface in contact at each from the flat to the 

rough surface generally in terms of standard deviation.  This work gives results for elastic 

deformation because it uses a Hertzian contact solution at the spherical tips which 

assumes that the surface returns to its exact original profile and shape after a loading 

cycle.  The mathematical equations and results for this model will be given later in this 

thesis. 

 

Figure 2.1: Spherical contact model before contact (a), during mostly elastic deformation 

(b), and during mostly plastic deformation (c). 
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 In order to further refine the statistical model, the effects of elastic-plastic 

deformation have been included by numerous researchers.  One such model is given by 

Jackson and Green (JG) [18], which establishes that the range for which the statistical 

model remains perfectly elastic is limited to lower loads.  There are many differing 

models that include the effects of plasticity in statistical modeling such as those offered 

by Chang, Etsion, and Bogy [19] and Kogut and Etsion [20] but these methods are not 

considered in detail for this work.  As the two surfaces increase contact pressure, the 

internal stresses of the asperities will eventually cause the material to yield and deform 

plastically.  The statistical models rely on the interference value between the two surfaces 

which describes the amount of material that must deform for two surfaces to maintain a 

given separation.  In other words, this is the material that would overlap if the two 

surfaces could pass into one another without deforming seen as the gray area in Fig. 2.1.  

To determine the onset of plasticity, a critical interference is calculated based upon 

common surface material parameters that determine when the equation formulated by 

GW must be altered from the Hertzian solution (perfectly elastic) to JG solution which 

gives elastic-plastic results.  This model is based upon the assumption of the GW 

statistical model and is limited to relatively small deformations; the contact radius can 

only be 41% of the radius of curvature. 

 

2.3 Fractal Models 

 The statistical models have shown to be a reliable and easily implemented 

technique but do have some short comings.  For example, the assumptions made are 

essentially averaging an entire rough surface into a single radius of curvature.  
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Essentially, this means statistical models neglect the effects of different scales of features 

on a surface.  Close examination of any surface shows this to be quite inaccurate since 

the topography of a surface in fact appears quite random.  However, it is very difficult to 

calculate surface characteristics for a real engineering surface due to its random nature.  

This is the cause for the advent of the fractal modeling techniques. 

 The current research does not actually model a fractal technique but it is included 

here simply to compare with the models and assumptions made in this work.  One such 

fractal method is Majumdar and Bhushan (MB) [21].  Through the course of their work, 

they found that a surface is multiscale in nature in that as a surface is viewed with a 

higher magnification, each new “scale” will show a topographical roughness.  To assist in 

modeling this phenomenon, the fractal methods assume that a true rough surface appears 

and behaves like a mathematical fractal equation, hence their name.  In the case of MB, 

the equation is the Weierstrass-Mandelbrot function.  The fractal equation assumes self-

affinity but not self-similarity.  This means that each scale of the surface is related by the 

fractal equations but the relation is different in the normal and lateral directions.  The 

parameters necessary for this equation are garnered from a comparison of the power 

spectrum fit of the rough surface data with the power spectrum of the Weierstrass-

Mandelbrot function. 

 From this point MB calculate elastic-plastic contact mechanics through 

mathematical relations to the Weierstrass-Mandelbrot function and the power spectrum of 

the surface.  This does alleviate some of the assumptions made in statistical models in 

that the surface parameters, specifically radius of curvature of asperities is now 

dependent upon the size of contact.  However, it is possible that a surface may not have 
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an appropriate power spectrum and therefore cannot be related to the fractal equation and 

this model is continually self-affine with no bounds to how small a scale can be 

considered in this model.  In addition, the MB fractal models use a very primitive contact 

mechanics model that basically assumes that the real area of contact can be calculated by 

simply truncating a surface through the fractal described surface. 

 

2.4 Multiscale Models 

 Although the fractal technique is technically a multiscale modeling technique 

since it recognizes surface geometry at every scale available for contact, it has been 

singled out from the multiscale models for the reasons of its primary assumptions.  The 

fractal models carry the self-affinity principle too far.  The model has no stopping point 

although the physical world does.  At some scale, the surface is viewed so closely that the 

only remaining topography is the individual molecules.  Logically the scale modeling 

must stop around this point.  There is no smaller surface characteristic to view.  Also, all 

the scales of a surface will never be perfectly described by a single fractal equation.  The 

multiscale models developed in this work are ideal for this situation. 

 The multiscale modeling technique is initiated from Archard’s “protuberance 

upon protuberance” modeling scheme [22].  In an early multiscale non-fractal technique, 

Archard expanded the Hertzian sphere against flat contact to feature a sphere of a certain 

radius coated with hemi-spheres of another radius which are all then coated with smaller 

hemi-spheres of a third radius.  This is the basis of a multiscale technique.  Each set of 

spheres with their own unique radius is a “scale” and as load in increased the small scales 

are pressed into complete contact where the next layer begins to compress.  Archard also 
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proved experimentally that rougher surfaces require greater loads to flatten the asperities 

and that the relationship between area and load approaches linearity.   

 One of the primary modeling techniques featured in this work is given by Jackson 

and Streator [11].  Their work refines the multiscale modeling technique further by 

developing a model more readily adaptable to real rough surfaces.  This model uses a 

series of stacked three dimensional sinusoidal waves to describe the multiple scales of 

contact.  The necessary assumptions for this type of model require (1) that the smaller 

asperities are stacked on top of larger asperities, (2) load is distributed equally over all 

asperities at that level, (3) all levels carry the same overall load, and (4) a smaller asperity 

level is not capable of extending the contact area beyond that capable of the larger scale 

below.  Other assumptions are required for each specific model based upon the desired 

deformation technique such as Jackson and Streator [11] use the Johnson, Greenwood, 

and Higginson [23] asymptotic solutions for perfectly elastic deformation derived from 

their work on 3-D wavy surfaces (JGH) [23].  The JGH asymptotic solutions are given 

for high and low loads so Jackson and Streator [11] fit a polynomial linking equation in 

between to model the complete range of contact.  For this modeling technique, the areal 

density of asperities and radius of curvature depend upon the frequency of each level of 

sine waves.  This is done by converting the data into a series of sine waves through a 

discrete Fourier transform which results in a series of frequencies and amplitudes used to 

calculate contact area for levels of load iteratively.  The JGH asymptotes and linking 

equation will be discussed in detail later in Chapter 4. 

 Finally, the above work by Jackson and Streator [11] was modified to include 

plasticity by Krithivasan and Jackson [24].  The framework of the perfectly elastic 



 9 

sinusoidal model given by JGH [23] can be further refined to more realistically model 

rough surfaces by including the contact solutions found by Krithivasan and Jackson [24] 

in place of the asymptotes derived from Hertzian contact.  The elastic-plastic solutions 

were found through analysis of the finite element modeling (FEM) of a three dimensional 

sinusoidal asperity.  Similar to the JG model for statistical elastic-plastic deformation, the 

model remains in a perfectly elastic deformation regime until critical values are reached.  

The current multiscale model doesn’t rely on the interference of the two surfaces for 

establishing contact area and load.  Instead it iteratively calculates area for each load 

level.  Therefore, the model by Krithivasan and Jackson [24] are adjusted to include the 

critical contact pressure or load at which the surfaces enter the elastic-plastic regime.  The 

equations used for this and the preceding modeling techniques are discussed in detail 

later in this thesis work. 
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CHAPTER 3 

OBJECTIVES 

The thesis work presented here is focused on further development of the 

sinusoidal based multiscale contact modeling technique originally presented by Jackson 

and Streator [11]. In their work, Jackson and Streator developed the necessary conditions 

and equations to determine the theoretical real area of contact for the sinusoidal 

multiscale modeling method.  The sinusoidal contact work was further built upon by 

Krithivasan and Jackson [24] to include the effects of plasticity in the individual asperity 

contact model.  For the thesis presented here, both the models mentioned above will be 

employed to calculate the real area of contact, contact pressure or load, surface 

separation, both electrical and thermal contact resistances, and finally the effects of scale 

dependent material properties will be evaluated for thermal contact resistance.   

In the field of contact mechanics, there exists some concern as to the validity of 

the multiscale modeling techniques due to the fact that, in some instances, they fail to 

converge.  This means that certain conditions prevent the contact area from reaching a 

final non-zero contact area equal to the nominal or apparent area of contact.  The 

convergence of both multiscale modeling techniques (perfectly elastic and elastic-plastic) 

will be examined and the necessary conditions for convergence will be compared for a 

variety of surface roughness.  The models themselves will also be compared for four 

separate sets of data gathered from a stylus profilometer, each with a varying roughness.   
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In addition to calculating the previously mentioned surface interactions for the 

sinusoidal based multiscale model, this work also compares all of the features mentioned 

to the pre-existing and well known statistical contact models.  In the case of perfectly 

elastic contact, the results of the sinusoidal multiscale method will be compared to that of 

the Greenwood and Williamson (GW) model [1].  However, the elastic-plastic 

deformation will be compared to the Jackson and Green model (JG) [18].  Surface 

separation, electrical contact resistance, thermal contact resistance, and scale dependent 

thermal contact resistance will be calculated from a presented statistical technique as 

well. 

During the course of this work, a possible error is exposed for the statistical 

models with respect to the prediction of surface separation.  The surface separation of 

both perfectly elastic (GW) and elastic-plastic (JG) statistical techniques does not reach 

zero when the calculated real area of contact is at its maximum value at complete contact.  

One would assume that at the maximum contact area the entire surface area available is 

in contact so there cannot be any separating gap between the two surfaces being forced 

together.  To alleviate the discrepancy, an adjusted separation model will be. 

Finally, an attempt will be made to further validate the theoretical models above 

by designing a test apparatus.  The test apparatus will be used for a comparison of 

electrical contact resistance as a function of load.  This will be accomplished by 

incrementally increasing the load while taking a measurement of the voltage drop across 

the interacting faces of two metallic surfaces at each load step.  The details of these 

techniques are now illuminated in the following sections. 
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CHAPTER 4 

METHODOLOGY 

4.1 Introduction 

 This chapter describes in detail the numerical models used to calculate rough 

surface contact.  The numerical techniques necessary for real area of contact, contact 

pressure or load, and surface separation are described for the unique cases of perfectly 

elastic and elastic-plastic deformation.  Furthermore, the fundamental theory and 

techniques of contact resistance are discusses for both electrical and thermal contact 

resistance. 

 

4.2 Multiscale Perfectly Elastic Contact 

 The employed multiscale model [11] uses the same direction of thought as 

Archard [22], but provides a method that can be easily applied to real surfaces.  First a 

fast Fourier transform is performed on the surface profile data to predict the terms for the 

Fourier series describing the surface.  This series describes the surface as a summation of 

a series of sine and cosine waves.  The complex forms of the sine and cosine terms at 

each frequency are combined using a complex conjugate to provide the amplitude of the 

waveform at each scale for further calculations.  Each frequency is considered a scale or 

layer of asperities which are stacked iteratively upon each other.  In equation form these 

relationships are given by: 
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Figure 4.1:  Graphical explanation of common terms used for the sinusoidal based 

multiscale contact model. 
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 Each frequency level is modeled using a sinusoidal contact model.  Previously 

derived [11] equations fit to the data and asymptotic solutions given by Johnson, 

Greenwood, and Higginson (JGH) [23] are used.  The first equation is derived from Hertz 

contact and is used for low loads where ∗<< pp : 

( ) 3
2

21 8

32








= ∗p

p

f
A JGH

π
π

       (4.3) 

However, at higher loads where the contact is nearly complete, p approaches ∗p , and the 

following equation must be implemented: 

( )





















−−= ∗p

p

f
A JGH 1

2

3
1

1
22 π

      (4.4) 

 Fortunately, JGH provide experimental and numerical data to support their 

asymptotic solutions which Jackson and Streator [11] used to fit a linking equation for the 

asymptotes Eq. (4.3) and Eq. (4.4) as follows: 

For   

( ) ( )
04.1

2

51.1

1 1 









+





















−= ∗∗ p

p
A

p

p
AA JGHJGH      (4.5) 

For  

( )2JGHAA =              (4.6) 

where p* is the average pressure to cause complete contact between the surfaces and is 

given by [23] as: 

fEp ∆′=∗ π2         (4.7) 

8.0
*

<
p

p

8.0
*

≥
p

p
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The current work also fits a new equation to the surface separation results given by JGH 

[23].  In previous works, the multiscale model was used to relate area to load.  However, 

for many applications such as those requiring tight tolerances like sealing and lubricated 

bearings, it is also important to be able to predict surface separation.  JGH gave 

asymptotic solutions for the surface separation.   As ∗p

p
 approaches zero, the solution is: 

( )[ ] 









⋅++










−= ∗∗ p

p

p

p
G 12ln43

2

1
1

3/2

2
1 π      (4.8) 

While as ∗p

p
 approaches 1 the solution given by [23] is: 

2/52/3

22 1
2

3

15

16








−







= ∗p

p
G

π
      (4.9) 

In the current work an equation is then fit to join these two solutions: 

( )847.0158.0
*

696.0
*

1 −∧








+∧









−∆=

p

p

p

pδ      (4.10) 

As seen in Fig. 4.2, δ  appears to be a good fit to the asymptotic functions given by Eqs. 

(4.8-4.9). 
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Figure 4.2: Graphic depicting comparison of JGH asymptotic solutions with Eq. (4.10). 

 

 The separation height, H, between the two surfaces is calculated by subtracting 

the δ value from the amplitude, ∆, at each scale level and then summing them together 

over all frequency scales as follows: 

( )∑
=

−∆=
max

1

i

i
iH δ         (4.11) 

 

4.3 Multiscale Elastic-Plastic Contact 

 As noted previously, many of the asperities at the different frequency levels 

undergo plastic deformation.  Therefore an elastic-plastic sinusoidal contact model is 
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needed to consider this effect.  The equations used in the current work to calculate the 

elastic-plastic contact are derived from FEM results by Krithivasan and Jackson [24] and 

Jackson, Krithivasan and Wilson [25].  The methodology is very similar to that of the 

perfectly elastic case with the exception that a different set of formulas is used once a 

calculated critical pressure is reached.  The critical average contact pressure (Pc), critical 

average pressure over the nominal area (cp ), the critical load and critical area (Ac) are 

given by:     

32

2 2

1

6

1







 ⋅




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

′∆
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       (4.12) 
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
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

′∆
==

ππ
   (4.14) 

where ( )vC 736.0exp295.1 ⋅= . 

 At low loads, P<Pc, and consequently small areas of contact, it is acceptable to 

assume that any deformation of the asperities in contact will behave perfectly elastically.  

However, as load increases to the critical value, plastic deformation will begin to occur 

within the asperities.  To evaluate the plastic deformation we replace Eq. (4.3) with: 

( ) q

q

y

qcp
CS

p
AA

+
+














=

1
21

1

4

3
2 λ        (4.15) 
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This replacement results in the following equation for contact area: 

( ) ( )
04.1

2

51.1

1 




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
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The pressure to cause complete contact during elastic-plastic deformation is then given 

by [25] as: 

5
3

*
74

11















+∆
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∗
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Where 
fE

v
S

c
y

'3
3

2
exp2

π








⋅
=∆  and is the critical amplitude, below which the sinusoid will 

always deform in the elastic regime.  Plastic deformation is caused by stress initially 

below the surface and building as more pressure is added.  To determine the critical 

amplitude where plasticity begins, the maximum von Mises stress is equated to yield 

strength and the resulting formula solved for critical amplitude, c∆ .  Surface separation 

is calculated exactly as before by using Eq. (4.10), except the separation for pressures 

greater than cp  must have *p  replaced by ∗
Pp . 

 

4.4 Statistical Perfectly Elastic Contact 

 To compare and contrast the results of the multiscale sinusoidal models, statistical 

contact models are also calculated using the same surface parameters and profilometer 

results.  For the perfectly elastic case, this work employs the Greenwood and Williamson 

[1] approach for asperity contact.  The GW method requires that a few crucial 

assumptions be made:  (1) each asperity is assumed to behave independently of 
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neighboring asperities, (2) all asperities have the same radius of curvature, (3) the 

asperity heights from the surface follow a Gaussian height distribution, and (4) only the 

actual asperity may deform, all substrate material is rigid as well as the contacting 

surface.   

 Using the Greenwood and Williamson [1] type statistical method hinges upon 

obtaining statistical parameters that describe the surface.  The radius of curvature, R, and 

the areal asperity density, η, are calculated by McCool [26] using the spectral moments of 

the surfaces: 

∑
=








=
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n ndx
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2
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
=         (4.20) 

Where N is the total number of asperities on the surface and z is the distance from the 

mean height of the surface to the asperity peak.  Then R and η are found from: 


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The Gaussian distribution for the asperity heights is given as follows: 

( )
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
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− 22/1
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ss

z

σσ
π

.      (4.23) 

McCool [26] defines sσ  to be the standard deviation of the asperity heights.  This is 

calculated from the standard deviation of the entire surface (RMS roughness): 
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22

4
22 10717.3

R
s η

σσ
−×+=         (4.24) 

 For the GW case, the area and load are calculated using an integral of Φ and a 

function relating the z value to a value d.  d is defined as the value above which the 

asperities will be in contact with the rigid flat.  The compression distance, z-d, is the 

interference of the rigid flat with the asperity peaks and is known as ω for the remainder 

of this work.  The integrals used to find the contact area, A, and the contact pressure or 

load, P, for each d value are given below: 

( ) ( ) ( ) dzzAAdA
d

n ⋅Φ⋅= ∫
∞

ωη        (4.25) 

( ) ( ) ( ) dzzPAdP
d

n ⋅Φ⋅= ∫
∞

ωη        (4.26) 

For the perfectly elastic case, A  and P  are acquired from the Hertz solutions given as: 

ωπRAE =          (4.27) 

( ) 2/3

3

4 ωREP E ′=         (4.28) 

Furthermore, surface separation can be obtained by relating the distance from the mean 

surface height to the rigid flat, δ , to d.  

syd +=δ          (4.29) 

The value sy  is defined by Front [27] as follows: 

R
ys η

045944.0=         (4.30) 
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4.5 Statistical Elastic-Plastic Contact 

 Similar to the multiscale model, some of the asperities will undergo plastic 

deformation as loads increase past the critical values.  This work uses the methodology of 

Jackson and Green [28] and [3], referred to as JG for the remainder, which replaces the 

Hertzian contact solution in the GW model with equations suited for elastic-plastic 

deformation after critical values have been reached.  The statistical method calculates 

load and area as a function of separation instead of area as a function of load as seen in 

the multiscale methods.  Therefore, instead of using the critical force to define the elastic-

plastic regime of contact, the critical interference is used.  The critical interference value 

is given by [28] as follows: 

R
E

SC y
c ⋅









′
⋅⋅
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2

2

π
ω         (4.31) 

For interference ω<1.9ωc, spherical contact is considered to effectively agree with the 

perfectly elastic Hertzian contact model.  However, when ω≥1.9ωc the following 

equations from JG are used in place of Eqs. (4.27-4.28).  This substitution will provide 

the necessary values to calculate the elastic-plastic behavior of the asperities in contact. 
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These equations are then used in Eqs. (4.25-4.26) for the single asperity area and load. 

 

4.6 Contact Resistance 

 One of the concerns of this work is calculating the effect of surface roughness on 

electrical resistance.  Therefore, the goal of this section is to determine how the flow of 

the current between surfaces is affected by the true area of contact for each load level.  

Since only a few, scattered asperities are actually in contact for any given load level, the 

current is restricted to very small contact patches when compared to the area of the entire 

surface.  As the current flows through these asperity peaks, it will be effectively 

“bottlenecked” resulting in some resistance to the conduction as seen in Fig. 4.3 on page 

23. 
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Figure 4.3:  Schematic of “bottlenecked” current flow through asperities. 

 

 Holm [29] gives a simple formula to calculate the electrical resistance due to 

asperity contact. 

a
Er LL

asp 4
21 ρρ +

=         (4.39) 

Where Er refers to the contact resistance value, a is the radius of contact, and ρ is the 

specific electrical resistance, or resistivity, of the respective surfaces.  However, this 

equation is only good for a single asperity.  In the case of both multiscale and statistical 

techniques, additional equations are required to calculate resistance for the entire surface, 

(see the following sections). 

 

4.6.1 Multiscale Electrical Contact Resistance 

 The multiscale sinusoidal method presented here is an iterative method that 

calculates area and resistance for each particular frequency level.  To predict electrical 

contact resistance, the first step is to calculate the average radius of contact per frequency 

level i: 
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−π

        (4.40) 

 Once the average contact radius is established, Eq. (4.39) is implemented to 

calculate resistance per asperity per level.  For the sinusoidal case, it is assumed that the 

tip of the asperity is similar to a hemisphere so the radius of curvature at the tip is used.    

Oftentimes, an alleviation factor is used in thermal contact resistance calculations to 

account for the affect of a large contact radius, a, in relation to the asperity tip radius, R.  

Since electrical and thermal contact resistances are very mathematically similar, it stands 

to reason that the alleviation factor, Ψ, should also be included for electrical contact 

resistance.  Though there are various ways to calculate this factor [30], the simplified 

version offered by Cooper et al. [31] is chosen for this work: 

5.1

1
1 







 −=Ψ
−i

i
i A

A        (4.41) 

The alleviation factor, Ψi, is combined with the resistance value and the result is summed 

over all possible iteration levels to find the total resistance for the entire surface in 

contact.  In equation form this is given as: 

∑
=

−Ψ=
max

1
1

i

i
iiiitotal AErEr η         (4.42) 

 It is important to note that this technique calculates the resistance for each 

frequency level and then sums them over all frequency levels to calculate the total.  

Another technique exists that only evaluates the resistance for the highest frequency level 

that still reduces contact area [32].  This alternative technique is not considered in this 

work.  Also, this methodology does not change depending on the inclusion of plasticity 

since all resistance calculations are done after obtaining the contacting area. 
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4.6.2 Statistical Electrical Contact Resistance 

 To continue comparing the multiscale results with that of the earlier statistical 

method (see section 4.4 and 4.5), the electrical contact resistance is also obtained for 

statistical perfectly elastic and elastic-plastic methods.  Greenwood and Williamson [1] 

include a solution for contact conductance in their work.  Resistance is simply the inverse 

of conductance so the technique for calculating perfectly-elastic contact resistance is as 

follows: 

( ) ( )∫
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112

1 ωρη       (4.43) 

Note the inclusion of the alleviation factor, Ψ.  The statistical method is not a multiscale 

procedure so the alleviation factor is calculated as follows: 
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A         (4.44) 

 Contact resistance from elastic-plastic statistical contact is calculated in the same 

manner except using a different elastic-plastic asperity contact model.  One such 

technique is given by Kogut and Etsion [33], which is used as an outline for this work.  

However, there are dissimilarities since this work relies on the methodology of Jackson 

and Green [28] for single asperity contact.  Eq. (4.43) is still used but the contact radius, 

a, has changed in accordance with the work of Jackson and Green: 

RDaep ω=           (4.45) 
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By applying the contact radius in Eq. (4.45) to the resistance calculation in Eq. (4.43), the 

elastic-plastic electrical contact resistance is obtained. 

( ) ( )∫
∞

⋅Φ⋅Ψ=
d L

ep
n

ep

dzz
a

A
dEr ρ

η
21

      (4.46) 

Similar to the multiscale model, the alleviation factor, ψ, is included here as well.   

 

4.7 Thermal Contact Resistance 

 Thermal contact resistance refers to the build-up of heat at the boundary between 

the two surfaces due to the same “bottleneck” effect referred to in electrical resistance 

seen in Fig. 4.3 on page 23.  Technically, heat can flow across the gaps in the material as 

well as through the contacting asperities.  However, the heat transfer across the gaps is 

neglected since like electrical current, usually the majority of the heat flow will follow 

the path of least resistance or in this case the asperities in contact. Indeed, thermal and 

electrical contact resistances are very similar effects and are computed using very similar 

methods as well.   

 The thermal resistance values for the multiscale contact methods are found by 

modifying Eqs. (4.41-4.42) as follows: 

a
Tr TT

asp 4
21 ρρ +

=         (4.47) 

∑Ψ=
maxi

i
iiiitotal ATrTr η         (4.48). 

In this case, Tρ  refers to the thermal resistivity or inverse of the conductivity of the 

material. 
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 Similarly, thermal contact resistance for statistical methods is obtained by 

substituting thermal resistivity for electrical resistivity in Eqs. (4.43-4.46). 
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4.8 Scale Dependent Thermal Contact Resistance 

 Scale dependency is an emerging topic in the field of contact resistance.  The 

concept behind scale dependency is that as a sample of a material is viewed at 

increasingly higher magnification the material properties actually change according to 

how small of a sample is viewed.  The reason for this is that at some point one is viewing 

actual atoms pressed against each other instead of the continuous material.  Therefore, at 

this point the scale is below that where most imperfections and features are seen, such as 

grain boundaries.  This impacts the multiscale contact model because it takes into account 

many different scales of asperities down to where this phenomenon is seen.  To include 

these effects, the thermal contact resistance, Eqs. (4.47-4.50), is replaced with a scale 

dependent value found in the work of Prasher and Phelan [34]: 
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Kn refers to the Knudsen number 








a
MFPλ

where MFPλ  is the phonon mean free path. 
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Here, ρ is the density of the material, sv  refers to the solid speed of sound, Cp is the heat 

capacity, and k is the thermal conductivity.  Note also that the alleviation factor, Ψ, has 

been included in the scale-dependent calculations although it is not part of the Prasher 

and Phelan [34] solution. 

 

4.9 Convergence of Real Area of Contact 

 As mentioned previously, the data set used for this model is converted into a 

series of stacked sine waves using the discrete Fourier Transform.  All calculations for the 

model are then made based off the amplitude and wavelength of these sine waves.  The 

multiscale model considered here assumes that the predicted area converges as all scales 

are included in the model.  This is important because if the predictions do not converge 

then the area will approach zero as smaller scales are included, as was predicted by [35].  

In order to test convergence, a power fit is found for the nominal amplitude as a function 

of wavelength.   

γαλii =∆          (4.53) 

where iλ  is the wavelength (inverse of frequency) and both α and γ are constants derived 

by fitting Eq. (4.17) to the Fourier series of the surface data.  For a particular surface the 

best fit was found with α=.085 and γ=1.5.  Starting with this “benchmark case”, the 

values α and  γ are then varied individually to find any critical values at which point 

convergence is not possible.  This process is carried out for both perfectly elastic and 

elastic plastic cases.  The results are provided in Chapter 6.2 

4.10 Adjusted Statistical Surface Separation 
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Through comparison to the sinusoidal multiscale technique, a potential error is 

brought to light in the statistical methods.  When calculating surface separation, the 

statistical models show a significant surface separation despite the calculated real area of 

contact reaching its maximum value.  This result is highly unexpected since there should 

be no separating gap if the two surfaces are entirely in contact as seen in the multiscale 

modeling results.  The reasons for difference amongst the statistical and multiscale 

methods are three-fold.  First, in the multiscale method, all asperities are loaded equally 

so they may actually be over-compressed.  Second, the statistical model does not consider 

the interactions between adjacent asperities.  At some loads, the valleys neighboring each 

peak may be rising as they fill in with the plastically deformed material. Third, believed 

to be the most important, the statistical method does not adjust the mean height based on 

asperity deformation. 

  

 

Figure 4.4: Graphical comparison of surface separation and adjusted surface separation. 

 

To improve agreement between the models, an adjusted separation is now 

implemented.  As shown schematically in Fig. 4.4, the adjusted separation, δADJ, is found 

by assuming that the mean height when considering deformation will locate at the 
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midpoint between the deformed tips of the asperities and the deepest valleys of the 

asperities.  Therefore, as the surface deforms due to contact, the mean surface height 

actually changes from βσ/2 to a smaller value. Using this concept, the surface separation 

predicted by the statistical model can be adjusted using the following simple equation: 

2

5.0 βσδδ +=ADJ         (4.54) 

 As seen in Fig. 4.4, Eq. (4.54) takes the average of the mean surface height at zero 

deformation, βσ/2, and the distance from the mean surface height to the peak of the 

deformed surface, δ.  The β value is found not to be constant and varies not only for 

different surfaces but also depends on whether plasticity is considered.  As shown in Fig. 

4, βσ represents the peak to valley height of the surface.  Since statistically 68% of the 

asperities are accounted for between -2σ and 2σ and 99.7% are accounted for between -6σ 

and 6σ, one could make an approximation of β between 4 and 12. 
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CHAPTER 5 

EXPERIMENTAL DESIGN 

 One of the many issues in the field of contact mechanics is the validation of the 

many different contact models.  Problems arise in experimental validation because the 

surface features and behaviors mentioned in works of this type are often at extremely 

small scales.  An additional dilemma is that typically metals are the material of choice for 

studying contact mechanics.  These and other issues result in no efficient and reliable way 

to “view” the real area of contact to compare to theoretical results.  Therefore, the 

experimental test apparatus for this work is designed to measure electrical contact 

resistance.  This surface characteristic is much easier to accurately calculate and the 

choice of metals actually aids the process since most metals are very good conductors.   

 To compare with the theoretical calculations for electrical contact resistance, the 

testing procedure must be able to alter the load placed upon the test samples and measure 

the change in resistance at the interface of the test surfaces.  In this case, the test is also 

designed to garner measurements for a variety of roughness.  The samples used are all as 

close to identical as possible.  The roughness is changed by sanding each surface with a 

different grit of sandpaper to altering the roughness left from machining and selecting one 

surface to be the common base to use against the remainder.  After selecting and altering 

the samples, a stylus profilometer is used to measure the exact roughness and profile for 
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each sample.  Then a copper wire is attached to each sample which will be the connection 

for a multi-meter set up to measure the voltage drop across the contacting surfaces. 

 

Figure 5.1:  Schematic of electrical contact resistance test apparatus. 

 

 Finally, a modified drill press is used to press the two surfaces together for the 

desired loads as seen in Fig. 5.1.  A load cell is used to ensure accurate readings through 

Labview™ software.  In this test, weights are applied to the drill press to increase the 

pressure upon the two surfaces in increments.  At each load increment, the multi-meter is 

used to calculate the electrical resistance of the samples in contact.  This value is a 
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measure of the voltage drop across the surface due to incomplete contact and is expected 

to correspond to the theoretical results for the load applied.   

 Unfortunately, only a few initial runs were attempted with this test apparatus 

which proved to be unsuccessful.  The results were very inconsistent in that for the first 

few increments of load, the resistance would indeed drop but as greater and greater loads 

were added the resistance would increase, sometimes to its original value.  Also, the 

resistance values would not reach a consistent value.  Instead the resistance would rise 

and fall within a range that furthered the inaccuracy of the results.  One issue in setting up 

this experiment, which most likely led to the resistance issues, was the sample material 

available at the time of testing was a steel tab being pressed against a polished stainless 

steel block.  Getting a consistent connection from the copper wires of the multimeter to 

these steel samples was very difficult since tin solder does not hold on steel. Therefore, 

any connection made turned out to be extremely fragile.  To remedy these issues, this 

experiment will be attempted later using samples of different materials which should be 

easier to manipulate and measure. 
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CHAPTER 6 

RESULTS 

6.1 Introduction 

 This chapter is devoted to the calculated results from the theoretical models.  The 

first section reveals the results of a convergence analysis for the sinusoidal multiscale 

model.  For the second section, a single surface is used so the roughness remains 

constant.  This is done to compare the results of the sinusoidal based multiscale model 

with that of the statistical technique for both perfectly elastic and elastic-plastic 

deformations cases with the intention of validating the new multiscale technique with the 

familiar statistical model.  Third and final is a section that gives a direct view of the 

effects roughness has upon the calculated theoretical values.   

 



35 

 

 

 

 

6.2 Convergence of Real Contact Area 
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Figure 6.1:  Contact area ratio as a function of wavelength for perfectly elastic multiscale 

method where α is varied in Eq. (4.53). 
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Figure 6.2:  Contact area ratio as a function of wavelength for elastic-plastic multiscale 

method where α is varied in Eq. (4.53). 

 

 The first test of convergence is to characterize the role that α plays in Eq. (4.53).  

For this test case, α is varied from 10-3 to 103 by an order of magnitude at each step.  The 

fit value for α was found to be 0.085, which falls within the range of values tested.  As 

seen in Fig. 6.1-6.2, α does not appear to play a significant role in convergence since all 

the lines show a flattening trend at the smaller wavelengths.  This result is independent of 

plasticity since nearly the same trend is seen in both Figs. 6.1-6.2. 
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Figure 6.3:  Contact area ratio as a function of wavelength for perfectly elastic multiscale 

method where γ is varied in Eq. (4.53). 
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Figure 6.4:  Contact area ratio as a function of wavelength for elastic-plastic multiscale 

method where γ is varied in Eq. (4.53). 

 

 The second test of convergence is conducted by varying the value of γ in Eq. 

(4.53).  The results from this test, shown in Figs. 6.3-6.4, show that this exponent is the 

deciding factor for convergence in both perfectly elastic and elastic-plastic cases.  For 

this test γ is varied from 0 to 2 at intervals of 0.25.  For a good fit to the FFT data, γ was 

found to be 1.5, which is within the range of values tested.  γ values lower than 1 show a 

continual slope despite the wavelength size suggesting that convergence is not possible 

for these cases.  This result is shown to be similar for both perfectly elastic and elastic-

plastic cases. 
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 The results of these tests have shown that convergence is dependent upon the 

exponent, γ, in the power function fit to the FFT data in Eq. (4.53).  As the scales are 

iteratively included, the contact area reduces.  Therefore, the average pressure continues 

to increase and may eventually become larger then the pressure to cause complete contact 

(p*).  If this pressure stays above the pressure to cause complete contact (p*) the area will 

no longer reduce and convergence is obtained.  Therefore, for convergence to occur, p* 

must stay constant or decrease as λ decreases. This suggests that the requirement for 

convergence depends upon the following relationship: 

1* −=∆∝ γαλ
λ

p         (4.55) 

As long as ∆/λ stays constant or decreases as λ decreases then the multiscale sinusoidal 

method will converge.  This condition is met as long as the γ value in Eqs. (4.53 & 4.55) 

are greater than or equal to 1, as shown by Eq. (4.55). 

 

PaS y
61014∗=   

mL ⋅Ω∗= −8105.11ρ  

PaE 910369.41 ∗=  
36.0=v  

 
Table 6.1:  Material Properties of Tin 
 

6.3 Contact Resistance Model Comparison 

 This part of the work assumes realistic material properties for all results gathered 

(see Table 1).  Since this work includes an examination of electrical resistance, the 

material of choice is Tin due to its common use in electrical connectors and circuits.  The 

surface profile is measured from machined metal samples using a stylus profilometer.  To 

ensure an accurate comparison of the contact models, the material properties and surface 
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geometry are kept constant for all calculations.  For actual calculations, Matlab™ is used 

for evaluating mathematical results. 

 Once the data is gathered, a Fast Fourier Transform is performed as mentioned 

before.  The result is then converted to amplitude via the complex conjugate.  Then 

multiscale models can be calculated as described above.  For the GW and JG models, the 

statistical parameters are acquired using McCool’s [26] methods by finding the spectral 

moments about the surface (see Appendix II).  From here, the GW model is fairly 

straightforward except for the integrals.  To solve these, numerical integration techniques 

are employed.  Simpson’s Method is used by first breaking the integral into 1000 sub-

intervals and performing the Simpson’s interpolation on each subinterval. 
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6.3.1 Calculated Real Area of Contact  
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Figure 6.5: Non-dimensional area vs. load. 

 

 As seen in Fig. 6.5, higher loads result in a greater area of contact for the two 

surfaces.  The comparison of the two modeling techniques resulted in good qualitative 

agreement but poor quantitative agreement.  Greater contact area also results from the 

inclusion of plastic deformation.  This is caused by the behavior of the solid asperities to 

flow and flatten when plastic deformation is included.  The asperity material tends to 

“flow” resulting in greater deformation as well as “filling in” the low spots around each 

asperity.  This combines with the higher loads to produce larger amounts of contact.  

These two techniques are calculated in very different manners using almost no common 
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equations.  However, all the methods displayed here show the linear relation between real 

contact area and load.  Therefore, this qualitative agreement serves to confirm the 

accuracy of the trends of both methods for modeling the contact of rough surfaces.  

 

6.3.2 Surface Separation 
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Figure 6.6: Area compared to Surface Separation including the adjusted separation for 

Statistical Contact Methods. 

 

 The surface separation as a function of the calculated real area of contact is shown 

in Fig. 6.4.  Although the overall trends of the two models are similar, the calculations for 

the statistical methods both show the surfaces in full contact before the surface separation 
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has reached zero.  Logically, when contact is complete, the real area of contact should be 

at its maximum and surface separation should be zero.  To alleviate this possible error, 

Eq. (4.54) is used in the adjusted results seen above (bold lines in Figs. 6.6 and 6.7).  For 

the surface data considered in the current analysis a value of β=5.2 was found to work 

well for the perfectly elastic case.  However, for elastic-plastic deformation, β=10.02 

produced the appropriate results. These adjustments will be different for each case 

because the amount of compression and deformation will be different for the perfectly 

elastic and elastic-plastic cases. The resulting adjusted statistical model results are shown 

in Fig. 6.6.  

 As expected, greater loads as well as plastic deformation serve to decrease the gap 

between the surfaces as shown in Fig. 6.7.  This is logically correct since greater loads 

increase the area of contact through deforming the asperities.  One would expect the 

flattening of the asperities to allow the surfaces to come closer to each other and 

eventually contact completely when the calculated area is equal to the nominal area.  The 

adjustment given by Eq. (4.54) once again improves the agreement between the statistical 

and multiscale methods.   
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Figure 6.7: Non-dimensional surface separation vs. load. 

 

 Perhaps surprisingly, the models predict similar results on the same order of 

magnitude.  Once again the overall trends of both the statistical and multiscale methods 

are confirmed by one another.  In this case though, the estimated behavior of the 

separation is fairly different.  Both methods show the decreasing gap with greater loads 

but they follow significantly different curves.   

 Without strong experimental confirmation, it is difficult to ascertain the accuracy 

of either model.  However, the current multiscale model will result in larger contact 

stiffness than predicted by the statistical models.  Stiffness is defined as the change in 
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contact force per change in surface separation.  This appears to agree with experimental 

findings by Drinkwater et. al. [36] using acoustic methods. 

 

6.3.3 Electrical Contact Resistance 
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Figure 6.8: Electrical contact resistance as a function of non-dimensional load. 

 

 For the particular case of modeling the contact of an electrical connector, one 

concern was the amount of electrical resistance due to the “bottleneck” effect of 

contacting asperities.  Fig. 6.8 shows the calculated results for this effect and compares 

the results for the multiscale and statistical models described in Chapter 4.  Since the 

electrical resistance is due to the gaps between the surfaces, it follows naturally that the 
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electrical resistance decreases with load which as expected is inverse to the behavior of 

contact area.  Yet again, when compared to the perfectly elastic cases, the elastic plastic 

cases require a lower load for all resistance values which implies a greater contact area at 

each load.  The multiscale and statistical models also agree surprisingly well even though 

they make different predictions for contact area.  This suggests that it can be difficult to 

validate these models based on contact resistance measurements alone.  Interestingly, the 

ECR appears to decrease rapidly as complete contact is approached (as seen by the 

elbows at the end of each curve). 
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6.3.4 Thermal Contact Resistance 
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Figure 6.9: Thermal contact resistance as a function of non-dimensional load including 

scale-dependent results. 

 

 Thermal contact resistance is very similar to ECR because it is a measure of 

resistance to heat flow due to a reduced area of contact.  Figure 6.9 displays the model 

results concerning thermal contact resistance.  As can be seen, higher loads result in 

lower resistance values.  This is due to the increased amount of material in contact thus 

reducing the impedance to heat flow.  The values depicted are extremely similar to that of 

electrical resistance and this is to be expected given that they are calculated in similar 

manners and the flow of heat and flow of electricity are mathematically equivalent.   
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 The bold lines shown represent the scale-dependent thermal contact resistance 

(see Eq. (4.51)).  Scale dependency results in only slightly higher resistance values and in 

some cases does not appear to have any affect at all.  Note that in the cases where scale 

dependency has no effect, the bold line in Fig. 6.9 is overlapping the non-scale dependent 

line preventing it from being seen.  The current work finds that the inclusion of scale 

dependant single asperity thermal contact resistance does not affect the predicted overall 

thermal contact resistance significantly for the sinusoidal based multiscale rough surface 

contact model.  This is also confirmed for the different spherical based multiscale contact 

model by Jackson, Bhavnani, and Ferguson [32]. 

 

6.4 Comparison between Multiple Surfaces 

 The next concern is what effect real multiscale roughness plays in the contact 

area, separation, and resistance for different surfaces.  To measure this effect, multiple 

surface profiles were obtained using a stylus profilometer on four surfaces with 

roughness varying from 0.24 µm up to 5.82 µm.  Fig. 6.10 shows that the smoother 

profiles are relatively flat where the roughest shows rather large changes in surface 

heights. 
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Figure 6.10: Surface profile data with different roughness values. 

 

Surface Roughness α in Eq. 4.53 γ in Eq. 4.53 RMS Error of FFT to Fit 

1 0.24 µm 0.13 1.60 0.3322 

2 0.34 µm 0.085 1.5 0.4134 

3 1.05 µm .037 1.4 0.4053 

4 5.82 µm .006 1.0 0.0678 

 
Table 6.2:  Rough Surface Characteristics and Convergence Variables. 

 

 Table 6.2 provides a comparison between roughness and the coefficients of the 

power equation, Eq. (4.53), fit to the Fourier transform for each of the four surfaces 
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examined in this work.  The root-mean-square error between the fit and FFT data is given 

as well.  Some of the error values are quite high due to the scattering of the FFT data 

which does not allow for a precise fit.  In application, this could result in large differences 

in the model predictions when a power equation is used versus the actual data.  In the 

current work the actual data is used in the multiscale model.  It is important to note that 

the values for α vary seemingly independent of roughness whereas γ behaves inversely of 

roughness.  Therefore, the roughest surface has γ=1.0 which is at the limit of convergence 

as seen in Figs. 6.3-6.4.  Therefore there may be some very rough surfaces for which the 

multiscale technique will not converge.  This is not a concern for relatively smooth 

surfaces however. 

 

6.4.1 Calculated Real Area of Contact 

 The following section describes the effects of surface roughness on each of the 

four modeling techniques, sinusoidal based multiscale elastic-plastic and perfectly elastic 

as well as the statistical elastic-plastic (JG) and perfectly elastic (GW).  Each model is 

compared for four surfaces of greatly varying roughness.  The values of the roughness 

can be seen above in Table 6.2.  In this case, all results are non-dimensional.  The y-axis 

features the calculated real area of contact divided by the apparent or nominal area of 

contact.  The nominal area is the maximum possible area that can come into contact.  The 

x-axis is the range of normalized loads over which the calculations are made. The load is 

normalized by dividing by nominal area of contact and the elastic modulus (E`). 
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Figure 6.11: Real area of contact as a function of dimensionless load for surfaces of 

different roughness modeled using the sinusoidal based multiscale method for elastic-

plastic material deformation. 
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Figure 6.12: Real area of contact as a function of dimensionless load for surfaces of 

different roughness modeled using the sinusoidal based multiscale method for perfectly 

elastic material deformation. 
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Figure 6.13: Real area of contact as a function of dimensionless load for surfaces of 

different roughness modeled using the JG statistical method for elastic-plastic material 

deformation. 
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Figure 6.14: Real area of contact as a function of dimensionless load for surfaces of 

different roughness modeled using the GW statistical method for perfectly elastic 

material deformation. 

 

 As seen in Fig. 6.11-6.14, the real area of contact changes, but remains in the 

same orders of magnitude despite the different roughness values of the four profiles.  This 

results in the predicted real area of contact being extremely similar despite the change in 

roughness between surfaces.  However, as is expected, the graph does show that the 

results are ranked in order of decreasing roughness with smoother surfaces showing a 

greater contact area for each load level.  It is interesting to note that the inclusion of 

plasticity (Figs. 6.11 & 6.13) do not show as great a separation between each surface as 
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the perfectly elastic models (Figs. 6.12 & 6.14).  Also, the models vary when viewing 

what force is required to reach full contact (Ar/A=1) although, in general, the elastic-

plastic models require less force to reach full contact than the perfectly elastic models for 

either sinusoidal based multiscale or statistical techniques.  

 

6.4.2 Surface Separation 

 The results seen in this section show the effects of surface roughness on surface 

separation.  As described previously, this is the difference between the mean heights of 

the two surfaces as they are pressed together.  The first four graphs, Figs. 6.15-6.18, give 

results for surface separation as compared to non-dimensional load.  For these four the 

units of the y-axis are for dimensionless surface separation by dividing the calculated 

separation with the standard deviation, σ.  The remaining graphs of this section, Figs. 

6.19-6.22, display the same dimensionless surface separation but as a function of 

dimensionless area (Ar/A).  It is important to note that the statistical modeling results 

(Figs. 6.17, 6.18, 6.21, & 6.22) are all calculated using the adjusted method suggested by 

Eq. (4.54).   

 

 

 

 

 

 

 



 56 

 

 

 

 

10
−8

10
−6

10
−4

10
−2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F / (A * E‘)

H
 / 

σ

Surface 1 Rq=0.24 µm
Surface 2 Rq=0.34 µm
Surface 3 Rq=1.05 µm
Surface 4 Rq=5.82 µm

 

Figure 6.15: Surface Separation as a function of dimensionless load for surfaces of 

different roughness modeled using the sinusoidal based multiscale method for elastic-

plastic material deformation. 
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Figure 6.16: Surface Separation as a function of dimensionless load for surfaces of 

different roughness modeled using the sinusoidal based multiscale method for perfectly 

elastic material deformation. 
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Figure 6.17: Surface Separation as a function of dimensionless load for surfaces of 

different roughness modeled using the JG statistical method for elastic-plastic material 

deformation. 
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Figure 6.18: Surface Separation as a function of dimensionless load for surfaces of 

different roughness modeled using the GW statistical method for perfectly elastic 

material deformation. 

 

 Figs. 6.15-6.18 show some interesting results when considering different surface 

roughness values.  All of the models show the ranking behavior seen in the area 

calculations above but only for very high loads when the surfaces reach zero separation.  

Aside from this phenomenon, there appears to be very little definitive effect of roughness 

on separation since the separation models appear to be fairly random.  The qualitative 

trends are the same for all the modeling techniques and roughness but there seems to be 

little order due to roughness.  This is especially true for the multiscale model results 
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shown in Figs. 6.15-6.16.  However, the statistical models, whose results are shown in 

Figs. 6.17-6.18, do display the ranking behavior with the smoother surfaces having a 

decreased surface separation except for the smoothest surfaces which behaves 

independently of the others including a unique slope.  When recalling the similarities 

among the area calculations this seems to be quite strange behavior.  Also note that each 

modeling technique requires a unique load range to reach full contact or zero separation. 
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Figure 6.19: Surface separation as a function of real area of contact for surfaces of 

different roughness modeled using the sinusoidal based multiscale method for elastic-

plastic material deformation. 

 



 61 

 

 

 

 

10
−8

10
−6

10
−4

10
−2

10
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
r
 / A

H
 / 

σ

Surface 1 Rq=0.24 µm
Surface 2 Rq=0.34 µm
Surface 3 Rq=1.05 µm
Surface 4 Rq=5.82 µm

 

Figure 6.20: Surface separation as a function of real area of contact for surfaces of 

different roughness modeled using the sinusoidal based multiscale method for perfectly 

elastic material deformation. 
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Figure 6.21: Surface separation as a function of real area of contact for surfaces of 

different roughness modeled using the JG statistical method for elastic-plastic material 

deformation. 
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gure 6.22: Surface separation as a function of real area of contact for surfaces of different 

roughness modeled using the GW statistical method for perfectly elastic material 

deformation. 

 

Surface 1 2 3 4 

Roughness 0.24 µm 0.34 µm 1.05 µm 5.82 µm 

β for GW model 153.7 5.2 8.8 6.8 

β for JG model 159.9 10.02 14.2 12.8 

 
Table 6.3:  Rough Surface Characteristics and Adjusted Separation Values (Eq. 4.54). 
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 Figures 6.19-6.22 also have no ranking behavior.  Recall that the statistical results 

(Figs. 6.17, 6.18, 6.21, & 6.22) all feature the adjusted surface separation technique with 

great success since all the cases show zero surface separation when the contact area has 

reached one which is equivalent to full contact for the non-dimensional techniques 

displayed in Figs. 6.21-6.22.  The values of β in Eq. 4.54 are vastly different for each 

roughness with no apparent correlation between these values and the roughness itself as 

seen in Table 6.3.  The β-values are all reasonable with the exception of the smoothest 

surface.  As mentioned previously, a presumably acceptable β-value lies between 4 and 

12. If β equals 12, then the adjustment seen in Eq. 4.54 relates to +6σ.  Statistical analysis 

will show that this value will include 99.7% of the asperities.  Therefore, the values for 

the smoothest surface seem quite extreme with no obvious explanation.  Future work in 

this area will be necessary to explain this discrepancy.  

 

6.4.3 Electrical Contact Resistance 

 In this section, the results for the electrical contact resistance (ECR) are compared 

for the four different rough surfaces used in this work.  As before, the results are given 

with the units of Ohms (Ω) for the ECR along the y-axis and non-dimensional load along 

the x-axis. 
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Figure 6.23: Electrical contact resistance (ECR) as a function of dimensionless load for 

surfaces of different roughness modeled using the sinusoidal based multiscale method for 

elastic-plastic material deformation. 
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gure 6.24: Electrical contact resistance (ECR) as a function of dimensionless load for 

surfaces of different roughness modeled using the sinusoidal based multiscale method for 

perfectly elastic material deformation. 
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gure 6.25: Electrical contact resistance (ECR) as a function of dimensionless load for 

surfaces of different roughness modeled using the JG statistical method for elastic-plastic 

material deformation. 

 

 



 68 

10
−8

10
−6

10
−4

10
−2

10
0

10
−8

10
−6

10
−4

10
−2

10
0

E
le

ct
ric

al
 C

on
ta

ct
 R

es
is

ta
nc

e 
(Ω

)

F / (A * E‘)

Surface 1 Rq=0.24 µm
Surface 2 Rq=0.34 µm
Surface 3 Rq=1.05 µm
Surface 4 Rq=5.82 µm

Fi

gure 6.26: Electrical contact resistance (ECR) as a function of dimensionless load for 

surfaces of different roughness modeled using the GW statistical method for elastic-

plastic material deformation. 

 

 In accordance with the real area of contact, electrical contact resistance is very 

similar for the four surfaces and is also ranked according to roughness with the smoothest 

surface having the least resistance values, seen in Figs. 6.23-6.26.  The different 

modeling techniques have already been established to show qualitatively similar trends 

for a common surface.  However, the behavior of the four different models for the various 

roughnesses is strikingly dissimilar.  The overall decreasing trend with a sudden drop is 

common, but the multiscale models (Figs. 6.23-6.24) react to each roughness with a 
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nearly equidistant gap.  In comparison, the two statistical models (Figs. 6.25-6.26) show 

no gap for all but high loads for the smoothest surfaces but rather large gaps for the 

higher roughness values.  There is also a strange shoulder in the multiscale perfectly 

elastic solution (Fig. 6.24) which is not present in the other models.  However, the 

shoulder seems to be at nearly the same location when the multiscale elastic-plastic 

model (Fig. 6.23) shows the sudden drop in resistance for the very high loads.  This may 

be due to the discrete scales flattening out at higher loads.  Since the perfectly elastic 

contact cannot behave in this manner the next iteration requires the surface to return to 

nearly linear behavior till much higher loads. 

 

6.4.4 Thermal Contact Resistance 

 This section will display the results for the thermal contact resistance calculations 

when considering varied surface roughness.  This comparison is done for each model in 

order to show further distinction among their unique mathematical methods.  It is 

important to note that the following results are for thermal contact resistance without the 

scale-dependent surface characteristics included.  It is seen in the earlier thermal 

conductivity comparison that scale-dependency has negligible effects on most models, 

loads, and deformation characteristics and has therefore been omitted from these 

comparisons.  The units used for these comparisons are Kelvin meters squared per Watt 

along the y-axis (TCR) and non-dimensional load along the x-axis. 
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Figure 6.27: Thermal contact resistance (TCR) as a function of dimensionless load for 

surfaces of different roughness modeled using the sinusoidal based multiscale method for 

elastic-plastic material deformation. 
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gure 6.28: Thermal contact resistance (TCR) as a function of dimensionless load for 

surfaces of different roughness modeled using the sinusoidal based multiscale method for 

perfectly elastic material deformation. 
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gure 6.29: Thermal contact resistance (TCR) as a function of dimensionless load for 

surfaces of different roughness modeled using the JG statistical method for elastic-plastic 

material deformation. 
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gure 6.30: Thermal contact resistance (TCR) as a function of dimensionless load for 

surfaces of different roughness modeled using the GW statistical method for perfectly 

elastic material deformation. 

 

 Figures 6.27-6.30 display the results of thermal contact resistance (TCR) for each 

different model with the intent of comparing how each model reacts to a change of 

surface roughness.  At first glance, all the models appear to give the same or at least 

extremely similar results.  Indeed, all the models show a steady, nearly linear, decreasing 

trend for the majority of loads with a sudden drop for the higher loads.  However, upon 

closer inspection, TCR for the elastic-plastic models, Figs. 6.27 & 6.29, terminates at 

significantly lower loads than the perfectly elastic models, Figs. 6.28 & 6.30.  Also, the 
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TCR models show shoulders for only the multiscale perfectly elastic case very near the 

values at which the multiscale elastic-plastic model drops suddenly for the higher loads.  

This correlates well with the electrical contact resistance since the calculations for both 

effects are very similar.  The same ranking behavior is seen here as in the previous 

calculations but the multiscale models show an almost uniform change from one 

roughness to another.  Specifically, the multiscale elastic-plastic model, Fig. 6.27, shows, 

for the most part, equal but small gaps between the four surfaces.  The statistical models 

seem to be much more sensitive to roughness changes since these models show almost no 

gap between the two very smooth surfaces (surfaces 1 & 2, 0.24 and 0.34 µm roughness 

respectively) with a considerably larger jump in the between the remaining surfaces.  

Note that the results for ECR and TCR are all quantitatively similar for both models and 

all surface roughnesses. 
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CHAPTER 7 

CONCLUSIONS 

 The results from a multiscale model based on stacked sinusoidal surfaces have 

shown to be qualitatively similar in comparison with existing statistical contact models.  

When viewing surface separation as a function of dimensionless load, it seems that the 

multiscale models offer a differing description of how the surface behaves.  At high 

loads, the multiscale methods predict no separation between the surfaces which correlates 

exactly with the area of contact equaling the apparent area of contact (complete contact).  

However, even though the statistical methods show a similar trend as the maximum area 

is reached, there appears to still be some separation between the two surfaces.  This is 

most likely a result of the statistical methods being designed more for lightly loaded 

contacts and ignoring the change in overall peak to valley height between asperities at 

higher loads.  The adjusted statistical model separation calculation offered in this work 

takes this effect into account and does show zero separation at the maximum contact area.  

Electrical contact resistance predictions seem reasonable based on the similarity between 

statistical and multiscale methods.  Actually, the statistical and multiscale models predict 

very similar values, while the predicted contact areas are not as similar.  This suggests 

that using contact resistance measurements may not be an effective way of evaluating 

rough surface contact models.  
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 In response to concerns about the convergence of the multiscale techniques, this 

work relates a power fit to the FFT data which reveals that the sinusoidal multiscale 

technique will converge as long as the average pressure (proportional to amplitude) stays 

constant or decreases as the wavelength decreases.  This situation requires that the 

exponent in the power fit remain 1 or greater for the multiscale sinusoidal technique to 

converge.    

Finally, the multiscale sinusoidal method is used to generate results for a variety 

of real surfaces shows the overall expected trends for area, electrical contact resistance 

and surface separation.  As is expected, the results for the surfaces are ranked according 

to roughness yet produce extremely similar results.  Upon first inspection, it appears that 

surface separation does not match the ranking behavior for the various surfaces.  

However, at greater loads, lower roughness values do decrease surface separation. 
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