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Partial Least Squares (PLS) is a class of methods for modeling relations between sets

of observed variables by means of latent variables where the explanatory variables are

highly collinear and where they outnumber the observations. In general, PLS methods aim

to derive orthogonal components using the cross-covariance matrix between the response

variable(s) and the explanatory variables, a quantity that is known to be affected by unusual

observations (outliers) in the data set. In this study, robustified versions of PLS methods,

for regression and classification, are introduced.

For regression with quantitative response, a robust PLS regression method (RoPLS),

based on weights calculated by BACON or PCOUT algorithm, is proposed. A robust criteria

is suggested to determine the optimal number of PLS components which is an important

issue in building a PLS regression model. In addition, diagnostic plots are constructed to

visualize and classify outliers. Robustness of the proposed method, RoPLS, is studied in

detail. Influence function for the RoPLS estimator is derived for low dimensional data and

empirical robustness properties are provided for high dimensional data.
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PLS was originally designed for regression problems with quantitative response, how-

ever, it is also used as a classification technique where the response variable is qualitative.

Although several robust PLS methods have been proposed for regression problems, to our

knowledge, there has been no study on the robustness of the PLS classification methods. In

this study, the effect of outliers on existing PLS classification methods is investigated and

a new robust PLS algorithm (RoCPLS) for classification is introduced.

The performances of the proposed methods, RoPLS and RoCPLS, are being assessed

by employing several benchmark data sets and extensive simulation experiments.
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Chapter 1

Introduction

Most traditional statistical techniques are especially designed for low dimensional data

sets where the number of observations (n) is greater than the number of variables (p).

Application of the statistical methods for problems such as, survival time or tumor class

prediction of a patient, based on a high dimensional data (n << p), is a difficult and

challenging task. On the other hand, nowadays data sets in many scientific fields are

high dimensional because of the fact that advances in technology have made simultaneous

monitoring of thousands of features (variables) possible. Therefore, analyzing such data

sets has been a focus for many researchers in a wide range of scientific fields due to the

requirement of resolutions for various statistical problems that have emerged.

Recently, partial least squares (PLS) has become an important statistical tool for mod-

eling relations between sets of observed variables by means of latent variables especially for

statistical problems dealing with high dimensional data sets. PLS is a member of nonlinear

iterative least squares (NILES) procedures developed by Wold ([87], [88]). The use of PLS

methods for regression problems began in the early 80’s. The main idea in PLS regres-

sion (PLSR) is to summarize high dimensional and/or collinear explanatory variables into

a smaller set of uncorrelated, so called latent variables, which have the ”best” predictive

power.

Although PLSR was initially developed for social and economic science problems hav-

ing scarce information, it has received a great amount of attention in the chemometrics

literature. The main application of PLSR in chemometrics is the prediction of constituent
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concentrations of a sample based on its spectrum obtained by spectroscopic techniques, such

as near infrared (NIR) spectroscopy, energy-dispersive X-ray fluorescence spectroscopy, and

ultraviolet(UV) spectroscopy. Spectral data contain a large amount of information since a

spectrum typically ranges over a large number of wavelengths (variables) with limited num-

ber of concentrations (observations). The spectroscopic techniques, in combination with

PLSR analysis, have proved to be a powerful analytical tool for analyzing on-line industrial

processes. Its speed, relative good performance, and ability to handle data sets with more

variables than observations resulted in a lot of applications of PLSR in many other scientific

areas such as bioinformatics, food research, medicine, and pharmacology. For instance, in

the area of drug design, a large amount of chemicals need to be evaluated for their toxicity

and effectiveness before they are used by pharmacists. Quantitative Structure-Activity Re-

lationships (QSAR) analysis employs theoretical molecular descriptors for reliable estimates

of the toxic and therapeutic potential of chemicals. QSAR data sets contain some degree

of multicollinearity which can be handled by using PLSR. Beside this, because of the large

time scale of the data collection process, QSAR data often contain outliers.

Despite of the fact that PLSR handles the multicollinearity problem, it fails to deal

with data containing outliers since it is based on maximizing the sample covariance matrix

between the response(s) and a set of explanatory variables, a statistic that is known to be

sensitive to outliers. Existence of multicollinearity and outliers is no exception in real data

sets, and it leads to a requirement of robust PLSR methods ( [13], [35], [38], [48], [76], [83])

in chemometrics as well as other application areas.

The problem of classifying entities into one of several groups has been another impor-

tant goal in many scientific investigations. It is important that this activity is done in a
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manner that minimizes the misclassification error rate. High dimensionality and collinearity

make the application of most statistical classification methods difficult, or even impossible,

for some cases. The procedure for classification of high dimensional data often consists of

two steps: the first step is to construct a few components from a large number of explana-

tory variables by using dimension reduction techniques, and the second step is to employ

classical classification methods on the constructed components. Although PLS was origi-

nally designed for regression problems, it has started to be used frequently as a dimension

reduction tool for classification problems and recent studies have showed that classification

via PLS performs quite well ( [4], [8], [60], [65], [66]) especially for microarray data analy-

sis. An important application of microarray technology is tumor diagnosis. A reliable and

precise classification of tumors is potentially life-saving and hence is essential to physicians.

In the presence of outliers, e.g. tissue-specific genes whose expression profile is considerably

different (could be ”erroneous” or ”genuine”) in particular tissue(s) than in others, dimen-

sion reduction via PLS would yield unreliable results since PLS is known to be sensitive

to outliers. Although several robust PLS methods have been proposed when the response

variable is quantitative, to our knowledge, there has been no study on the robustness of

PLS when the response variable is qualitative.

The main contribution of this work is the construction of robust algorithms for partial

least squares methods. The chapters are organized as follows: in Chapter 2, a detailed

literature review on PLSR, that includes the existing PLS algorithms; asymptotic variance,

consistency, geometric and, peculiar shrinkage properties of PLSR estimator; and the rela-

tionship between PLSR and other biased estimation methods such as principal component

regression, ridge regression and continuum regression, is given. A robust PLSR method

3



(RoPLS) is introduced in Chapter 3 and its robustness properties are explored in Chap-

ter 4. The effect of outliers on existing PLS classification methods is investigated and a new

robust PLS algorithm for classification (RoCPLS) is proposed in Chapter 5. Finally, con-

clusions and proposed future work are given in Chapter 6. A recapitulation of the notations

that are used throughout the work can be found in Appendix.
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Chapter 2

An Overview on Partial Least Squares

2.1 Introduction

The standard multiple regression model defined by the equation

y = Xβ + ε (2.1)

where X is a n × p matrix of explanatory variables (predictors), y is a n × 1 vector of

response variable, β is a p × 1 vector of unknown parameters, and ε is a n × 1 vector of

error terms whose rows are identically and independently distributed.

In multivariate models, the response vector y in the model (2.1) is replaced by the n×g

response matrix, Y, where g ≥ 2. Throughout this study, although PLS algorithms are given

for multivariate models in general, only multiple univariate regression model is considered

and emphasized due to its simplicity. Furthermore, multiple univariate models always give

better results than multivariate models in terms of the variance explained ([9], [31], [34], [59])

as long as response variables are unrelated.

The outline of this chapter is as follows. In Section 2.2 most commonly used PLS

algorithms, NIPALS and SIMPLS, are described. Popular approaches for determining the

optimal number of components are discussed in Section 2.3. The relationship between PLSR

and other biased regression techniques is summarized in Section 2.4, followed by statistical

properties of PLSR estimator given in Section 2.5.
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2.2 Partial Least Squares Regression (PLSR)

The ordinary least squares (OLS) estimator of β, β̂OLS , in the model given by (2.1) is

the solution of the following optimization problem:

β̂OLS = argmax
b

corr{Xb, y}2. (2.2)

In many applications of multiple regression (e.g., spectral data analysis in chemomet-

rics), multicollinearity is inevitable as a result of large number of variables collected by

modern technologies of computers, networks, and sensors. Despite having desirable prop-

erties, the OLS estimator can have an extremely large variance and results in imprecise

prediction when the data are multicollinear. Moreover, solution of (2.2) is not unique when

n ≤ p.

One solution to deal with multicollinearity and/or dimensionality problem is regressing

the response variable y on a subset of the k orthogonal (latent) vectors stored in a score

matrix of size n× k by which important features of X have been retained. Score matrix is

formed by taking linear combinations of columns of X. PLS regression (PLSR) constructs

the columns of score matrix, T = [t1, t2, . . . , tk], by solving the following optimization

problem for h = 1, 2, . . . , k (k ≤ p):

rh = argmax
‖r‖=1

cov(Xr, y)2 = argmax
‖r‖=1

(r′X ′yy′Xr) (2.3)

subject to t′htj = r′hX ′Xrj = 0 for 1 ≤ j < h.

So, PLSR balances the maximal correlation criteria for OLS given in (2.2) with the require-

ment of explaining as much as variability in both X and y−space.
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Several iterative procedures have been proposed to solve nonlinear optimization prob-

lem in (2.3) such as PLS Mode A, PLS-SB, NIPALS and SIMPLS algorithms that differ

by the deflation theme required for the orthogonality of derived components. PLS Mode A

algorithm ([88]) aims to model existing relationships between variables rather than to model

for prediction. PLS-SB computes all eigenvectors at once, and the score vectors obtained by

this method are not necessarily orthogonal. The most commonly used methods, NIPALS

and SIMPLS, consist of two steps may be called calibration (deriving components) and

prediction. These algorithms, for both univariate and multivariate responses, are explained

in the following subsections. The extension of two-block PLS model, where X and y (or Y

for multivariate model) are block variables, to multi-block PLS model is also given in the

literature ([84], [88]) and is not discussed in this study.

2.2.1 NIPALS Algorithm

The NIPALS algorithm ( [87]) was developed as an alternative to principal component

algorithms. NIPALS employs sequential simple linear regressions instead of singular value

decomposition to calculate principal components. PLS algorithm can be considered as

carrying out two simultaneous NIPALS principal component analyses, one for X and one

for Y , while interchanging the results from X for analysis of Y and vice versa ([50], [34]) to

solve the following maximization problem

max‖r‖=‖s‖=1 cov(Xr, Y s)2

under the orthogonality constraint of derived components, where s = 1 and Y = y for

univariate model. Since both X and Y are used in the computation of the components,

PLS is presented as a member of the bilinear class of methods and the bilinear model can

7



be written as:
X = TP ′ + E, (2.4)

Y = UQ′ + F. (2.5)

The equations given in (2.4) and (2.5) are called outer relations where T and U are score

matrices derived from X and Y , respectively; P (x-loadings) represents the regression coef-

ficients of X on T ; Q (y-loadings) represents the regression coefficients of Y on U ; E and F

are the matrices of errors. It is assumed that the score matrix T is a good predictor for Y

and a linear, inner relationship between the score matrices T and U exists, i.e. U = TB+H

where B is a k × k diagonal matrix and H is a matrix of errors. The mixed relation then

becomes:

Y = UQ′ + F = (TB + H)Q′ + F = TA′ + F ∗ (2.6)

where A′ = BQ′ is a matrix of regression coefficients and F ∗ = HQ′+F is matrix of errors.

For the univariate case (g = 1), the matrix B in the model (2.6) becomes identity matrix,

so the equation (2.6) represents both outer and mixed relationships which can be rewritten

as
y = Ta + f∗ (2.7)

where a is a vector of regression coefficients and f∗ is a vector of errors. The NIPALS

algorithm for univariate response variable (y) based on mixed relationship in (2.7) is called

PLS1, whereas NIPALS algorithm for multivariate response variable (Y ) is called PLS2.

The calibration step of PLS2 algorithm for k component is described as follows:

8



Algorithm 2.1 (PLS2)

Step 1 : Let E0 and F0 be the copies of X and Y , respectively.

Step 2 : For h = 1, 2, . . . , k do steps 2.1− 2.4:

Step 2.1 : Let uh be a column of Fh−1, e.g., the one having maximum variance.

Step 2.2 : Repeat steps 2.2.1− 2.2.4 until the convergence of wh (or th).

Step 2.2.1 : Perform the regression Eh−1 = uhw′h + ε1, yielding the least squares

solution

wh =
E′

h−1uh

u′huh
(2.8)

and normalize wh := wh/||wh||.

Step 2.2.2 : Perform the regression of E′
h−1 = wht′h + ε2 yielding the least squares

solution

th = Eh−1wh.

Step 2.2.3 : Perform the regression of Fh−1 = thq′h +ε3 with the least squares solution

qh =
F ′

h−1th

t′hth
(2.9)

and normalize qh := qh/||qh||.

Step 2.2.4 : Perform the regression of F ′
h−1 = qhu′h +ε4 yielding the following solution

uh = Fh−1qh.

Step 2.3 : Perform the regression of Eh−1 and Fh−1 on th, separately to compute residuals

Eh = Eh−1 − thp′h

Fh = Fh−1 − bhthq′h

9



where p′h is the regression coefficient vector obtained by regressing Eh−1 on th (outer rela-

tion) and bh is the regression coefficient obtained by regressing uh on th (inner relation),

i.e.,

ph = E′
h−1th/t′hth

bh = u′hth/t′hth

Step 2.4 : Store vectors wh, th, and ph into matrices Wh = [w1,w2, . . . ,wh], Th =

[t1, t2, . . . , th], and Ph = [p1,p1, . . . ,ph], respectively. Set h =: h + 1

For univariate case (PLS1), y and f0 are used instead of Y and F0 in the first step

of Algorithm 2.1. Steps 2.1 and 2.2 are replaced by 2.2.1 (with uh = fh−1) and 2.2.2,

respectively while the steps 2.3 and 2.4 remain the same where bh = 1. In other words,

convergence of wh is obtained in the first iteration.

Score matrix, Tk, can be written in terms of linear combinations of the columns of

E0 = X, that is Tk = XRk, where the hth column of Rk is called hth PLS-weight vector.

The matrix, Rk is related to Pk and Wk stored in NIPALS algorithm, via the formula

Rk = Wk(P ′
kWk)−1 (2.10)

which follows from the fact that Rk and Wk share the same column space and that P ′
kRk

is equal to the identity matrix ( [41], [45], [55]).

In the prediction step, ordinary least squares estimate for a in the univariate mixed

model given in (2.7) is obtained by regressing the response vector y onto these k components

which yields

10



â(k) = (T ′kTk)
−1T ′ky = (R′

kX
′XRk)

−1R′
kX

′y.

Therefore, the PLS estimate of β in the model given in (2.1) is

β̂
(k)
PLS = Rkâ

(k).

Alternative formulations of the PLS1 are suggested by Helland ([41]) and Garthwaite

([33]). An extensive simulation study by Breiman and Friedman ([9]) on the comparison

of univariate and multivariate regression methods including PLS1, PLS2, OLS, and other

biased regression methods demonstrated that performing separate PLS1 regressions on each

individual response would be a better strategy than employing PLS2 (see also [31], [34], and

[59]).

The major drawback of NIPALS algorithm (PLS1 and PLS2) is that the columns of

score matrix, T , are obtained as linear combinations of deflated data matrix X. Since

one looses sight of what is in the depleted data, the interpretation of the components gets

complicated. SIMPLS algorithm, given in the next subsection, resolves this drawback by

using a different deflating scheme.

2.2.2 SIMPLS Algorithm

SIMPLS algorithm ([15]) is an alternative to NIPALS algorithm that aims to derive

PLS components directly in terms of the original data which results in faster computation

with less memory requirements and interpretation easiness. SIMPLS deflates the cross-

covariance matrix, Sxy ∝ X ′Y , whereas NIPALS deflates the original data matrix X to

obtain orthogonal components.
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SIMPLS algorithm can be summarized as follows:

Algorithm 2.2 (SIMPLS)

Step 1 : Compute cross-product matrix: S0
xy = X ′Y (X and Y are centered),

Step 2 : Repeat steps 2.1− 2.6 for h = 1, 2, . . . , k:

Step 2.1 : Compute first left singular vector of Sh−1
xy as hth PLS weight vector rh,

Step 2.2 : Compute hth score, th = Xrh, and normalize th =: th/‖th‖,

Step 2.3 : Update hth PLS weight, rh =: rh/
√

r′hX ′Xrh,

Step 2.4 : Compute hth x-loading by regressing X on th: ph = X ′th ,

Step 2.5 : Store vectors rh, th, and ph into matrices Rh = [r1, r2, . . . , rh],

Th = [t1, t2, . . . , th], and Ph = [p1,p1, . . . ,ph], respectively.

Step 2.6 : h =: h + 1 and Sh−1
xy = (Ip − Vh−1V

′
h−1)X

′y where columns of Vh−1 form

an orthonormal basis for Ph−1.

The orthogonality constraint of components is fulfilled when the PLS weight vector rh

is orthogonal to all previous x-loadings Ph−1 = [p1,p2, . . . ,ph−1]. As a result of this, the

hth pair of SIMPLS weight vector rh for h = 2, . . . , k is obtained as the first left singular

vector of Sxy
h−1 which is projection of Sxy

h−2 on a subspace orthogonal to Ph−1. Therefore,

if the columns of Vh−1 = [v1,v2, . . . ,vh−1] form an orthonormal basis of Ph−1 obtained by

GramSchmidt method, then

Sxy
h−1 = (Ip − vh−1v

′
h−1)Sxy

h−2 = (Ip − Vh−1V
′
h−1)X

′Y. (2.11)
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Once k components are derived, PLS estimate is obtained by using score matrix as explana-

tory variables as in the prediction step described in NIPALS algorithm.

After h components are derived, the data matrix is reduced implicitly to X(Ip−VhV ′
h)

with SIMPLS algorithm which can be seen from (2.11). In PLS1 algorithm, the hth derived

component, th, is equal to Eh−1wh, where wh is the normalized form of:

E′
h−1fh−1 = X ′(In − Th−1(T ′h−1Th−1)

−1
T ′h−1)

2y = X ′(In − Th−1(T ′h−1Th−1)
−1

T ′h−1)y.

(2.12)

Therefore, data matrix is reduced explicitly to (In−Th(T ′hTh)−1T ′h)X with PLS1. Although

residual matrices differ, application of both algorithms on data sets demonstrated that

SIMPLS and NIPALS algorithms are equivalent for univariate case which is also stated in

the next proposition.

Proposition 2.1 (De Jong, [15]) SIMPLS is equivalent to PLS1.

Proposition 2.1 can be proven by induction. However, when applied to multivariate set of

response variables (g > 1), the SIMPLS results are different from the results of PLS2 ([15]).

In this study, SIMPLS algorithm is employed because of its speed and efficiency.

2.3 Determining the Optimal Number of Components in PLSR

The decision on the optimal number of components, k, is a very important issue in

building the PLSR model. Although, it is possible to calculate as many components as

the rank of the X, it does not make sense in practice. Because data are never noise-free

and some of the smaller components will only describe noise. Due to uncertain statistical

behavior of PLSR, explained in Section 2.5, it is difficult to perform inferential tasks such
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as assessing the number of components. Consequently, developing as well as comparing

PLS component selection rules have been and apparently continue to be subjects of active

research in chemometrics. Cross validation, adjusted Wold’s criterion and randomization

test are leading methods that are proposed to seek out the optimum dimensionality of PLS

models.

Among the many approaches proposed in the past, the cross-validation (CV) scheme

stands out in particular. In M -fold cross-validation, the original sample is partitioned into

M sub-samples. Of the M subsamples, a single sub-sample is retained as the validation set

for testing the model, and the remaining M − 1 sub-samples are used as learning set for

estimating the model. The cross-validation process is then repeated M times (number of

folds), with each of M sub-samples used exactly once as the validation set. The M results

from the folds then can be combined to produce a single estimate for the optimal number of

components. Particularly, the n-fold cross validation (M = n), where only one observation

is deleted and the process is repeated as many times as samples, is called leave-one-out cross

validation. The resulting residual sum of squares, PRESS, is a measure of the predictive

power of the components in the model. The PRESS value for h component univariate PLSR

using leave-one-out cross validation is:

PRESS(h) =
n∑

i=1

(
yi − ŷ−i(h)

)2
(2.13)

where the predicted values ŷ−i(h) are based on the parameter estimates that are obtained

from the data set which does not include observation i using a PLSR model with h compo-

nents. The optimal number of components is the one that yields the minimum PRESS or
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root mean square error, RMSE,

k = argmin
h

{PRESS(h)} = argmin
h

{RMSE(h)} (2.14)

where

RMSE(h) =

√√√√ 1
n

n∑

i=1

(
yi − ŷ−i(h)

)2
=

√
1
n

PRESS(h). (2.15)

A simple and classical method is the Wold’s R criterion ([89]) which compares two

successive values of PRESS via their proportion, that is

R =
PRESS(h+1)

PRESS(h)
(2.16)

where PRESS(h) is given in equation (2.13). When R is greater than 1, it is considered

that the optimal number of components is h. Instead of comparing this ratio to unity, it

was proposed by ([89]) to fix it at 0.90 or 0.95 which is named Adjusted Wold’s Criteria.

The randomization test ([85]) is a recent method that assesses the statistical significance

of each individual component that enters the model. Theoretical approaches to achieve this

goal (using a t- or F-test) have been put forth, but they are all based on some assumptions.

Randomization test is a data-driven approach and therefore ideally suited for avoiding

assumptions.

Denham ([19]) evaluated performances of several mean squared error (MSE) estimation

approaches in terms of their accuracy and usefulness in determining the optimal number

of components to include PLSR model. It is concluded that all methods perform very

compatible for data sets with few variables, while the cross-validation method results in

better MSE estimates for the data sets with large number of variables. One area where the
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method of cross-validation works poorly is design of experiments, where the randomization

test should have merit ([85]).

2.4 PLS Regression Among Other Biased Methods

In the multiple linear regression, the OLS estimator of the regression coefficient vector

has minimum variance in the class of unbiased estimators. Existence of multicollinearity

problem results in large variances of the coefficient estimators. Therefore, several biased esti-

mation methods have been proposed as alternatives to OLS estimator when multicollinearity

is present. The main goal of biased methods is to decrease the mean squared error of predic-

tion by introducing a reasonable amount of bias into the model. This is done by shrinking

the solution coefficient vector away from the OLS solution toward directions in which the

projected data have larger spread. PLSR regression is a biased regression method and it

is related to other biased methods such as principal component regression (PCR, [62]) and

ridge regression (RR, [44]).

Most of these methods can be unified under a generalized approach called continuum

regression. The continuum regression (CR) is a technique that can generate a range of

models including OLS, PLSR and PCR. CR weight vectors rh for h = 1, 2, . . . , k are defined

as proposed by Stone and Brooks ([80]), according to the criterion:

rh = argmax
‖r‖=1

cov(Xr, y)2[V ar(Xr)]
δ

1−δ
−1 = argmax

‖r‖=1
(r′X ′y)2(r′X ′Xr)

δ
1−δ

−1 (2.17)

under the constraint that cov(Xrh, Xrj) = 0 for h > j. The parameter δ (0 ≤ δ ≤ 1) adjusts

the amount of information of the regressors to be considered for predicting the response

variable.
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The single vector (h = 1) that maximizes the squared sample correlation between the

response and the corresponding linear combination of the predictor variables is the OLS

solution which is obtained by taking δ = 0 in equation (2.17). Similarly, for h = k, δ=0.5

and δ=1 yield PLSR and PCR based solutions on k components, respectively.

Alternatively, the OLS estimator can be obtained as the solution of the normal equa-

tions

X ′Xb = X ′y. (2.18)

Through this section, it is assumed that n > p and X has full-column rank, i.e. rank(X) = p,

however, with some minor modifications, the results given in this section can be established

for other cases, as well. Then, the OLS estimator of β is

β̂OLS = (X ′X)−1X ′y. (2.19)

If rank(X) < p, then (X ′X)−1 in (2.19) is replaced by (X ′X)+ which yields unique mini-

mum length least squares (MLLS) solution.

The idea of PCR is to replace the original regressors by h ≤ p principal components

(PCs), stored in the score matrix, Zh = XVh, where the first h eigenvectors of X ′X form

Vh. These eigenvectors are the solutions of (2.17) for δ=1. Therefore, the PCR estimator

of β in (2.1) based on h components is:

β̂
(h)
PCR = (Z ′hZh)−1Z ′hy = VhV ′

hβ̂OLS . (2.20)

It can be seen from (2.20) that the PCR estimator based on h components is the

orthogonal projection of OLS estimator onto the space spanned by the first h eigenvectors
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of X ′X, since VhV ′
h = Vh(V ′

hVh)−1Vh. On the other hand, the PLSR estimator of β for h

components is given by

β̂
(h)
PLS = RhP ′

hβ̂OLS = Wh(P ′
hWh)−1P ′

hβ̂OLS . (2.21)

The matrix Wh(P ′
hWh)−1P ′

h is an idempotent matrix, hence it is a projection matrix. How-

ever, it is not a symmetric matrix, so it is called oblique projector. Therefore, the PLSR

estimator for h components is the oblique projection of β̂OLS onto Wh along to the space

P⊥
h ([69]). In PCR, as well as in PLSR, the degree of bias is controlled by the dimension of

the space , h, on which orthogonal projection of β̂OLS is taken. The smaller the value of h,

the larger the bias.

In PCR, the columns of score matrix are derived without the reference to the response

variables so that the derived components are optimal in the sense of maximizing the amount

of explained variation in X. On the other hand, in PLSR, a set of linear combinations for

X and another set of linear combination for y are derived and they are optimally related in

yet another sense. This is an advantage of PLSR over PCR especially in the cases, where

components obtained by maximizing variation in X, may have no relevance for modeling y

which is demonstrated in the next example.
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Example 2.1

Hald’s data set ([23]), consists of four standardized regressors and one response variable, is

used to demonstrate this drawback of PCR. The original response variable is replaced by

y = 2Xv4 + ε, where ε ∼ N(0, 1) and v4 is the eigenvector corresponding to the smallest

eigenvalue of X ′X, as suggested by Hadi et al. ([39]). It can be seen from Figure 2.1 that

scatter plots of y versus each of the first three PCs display completely random pattern,

while the relationship between y and the last PC is perfectly linear. PCR and PLSR based

on k = 2 components resulted in mean squared errors 5.3228 and 0.2277, respectively which

also can be concluded from Figure 2.2. In general, if the true regression coefficient is in the

direction of ith eigenvector of X ′X, then ith component alone will contribute everything to

fit, while the remaining PCs contribute nothing ([39]). In such cases, PLSR is expected to

perform better than PCR since optimal directions are determined by considering y.

Another advantage of PLSR over PCR is that the vector of fitted values from PLSR is

closer to fitted values from OLS and hence to y than its PCR counterpart. The PLS model

always gives a closer fit, in terms of coefficient determination, R2, than a PCR model with

the same number of components ([16], [31], [70]).

Ridge regression (RR) is another well-known biased regression method. The method

replaces the covariance matrix, X ′X, by a better conditioned matrix, X ′X + ξIp for a value

of ξ called ridge constant that lies between 0 and 1. The aim is stabilizing the inverse of

the possibly ill-conditioned covariance matrix by adding a multiple of Ip. As in OLS, the

solution is defined by a single vector

β̂RR = argmax
‖w‖=1

corr(Xw, y)2
V ar(Xw)

V ar(Xw) + ξ
= (X ′X + ξIp)−1X ′y. (2.22)
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Figure 2.1: Scatter plots of y versus PC1, PC2, PC3, PC4.
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Figure 2.2: Scatter plots of ŷ versus y using PCR with k=2 (left) and PLSR with k=2
(right).
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Setting the ξ = 0 yields the unbiased OLS solution, while the larger values of ξ introduces

bias into the model. The relationship between the first factor of CR and RR is described

in [81] and it is concluded that there is one-to-one correspondence between the δ (CR

parameter) and ξ ([81]).

RR differs in two respects from the PLSR. First of all, it does not derive orthogonal

components, it applies explicit shrinkage to the coefficient vector. Secondly, RR is usu-

ally applied to univariate regression models, although the generalized RR for multivariate

response model is proposed. One of the disadvantages of RR is its heavier computation

especially for high dimensional problems.

The comparison of OLS, PLSR, PCR, and RR is given by Frank and Friedman ([31])

and Almåy ([1]). Simulation studies indicated that none of the methods is uniformly better

than the others. Frank and Friedman concluded that RR, PLSR and PCR provided sub-

stantial improvement over OLS when multicollinearity exists. In all settings, PLSR usually

performed very compatible with RR and it was closely followed by PCR. The main result

of Almåy’s study was that PLSR performs better when the irrelevant eigenvalues are large,

whereas PCR performs better when the irrelevant eigenvalues are small.

2.5 Statistical Properties of the PLSR Estimator

Since the PLSR estimator of β is a non-linear function of y, it is very difficult to derive

the exact distribution of the estimator which leads difficulties in terms of inference based

tasks. Although PLSR is a very popular tool for chemometricians, it is used to be overlooked

by statisticians. However, more recently statisticians have attempted to shed some light on

the method and its properties. In this section, shrinkage structure of the PLSR estimator
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([17], [31], [53], [70]), its asymptotic variance ([18], [71], [75]) and consistency ([42],[64])

properties are conveyed.

2.5.1 Shrinkage Properties of the PLSR Estimator

Characterization of the PLSR estimator in terms of shrinkage properties is useful for

providing a link between PLSR and other shrinkage estimators.

In general, if the singular value decomposition of X is given by X = UΛ
1
2 V ′, where

the columns of U , uj , and the columns of V , vj , are left and right singular vectors of X,

respectively and Λ is diagonal matrix with ordered eigenvalues of X ′X, λ1 ≥ λ2 ≥ . . . ≥ λp,

on the diagonal; then the shrinkage estimator of β is

β̂ =
p∑

j=1

f(λj)
u′jy√

λj
vj =

p∑

j=1

f(λj)αjvj (2.23)

where αj =
u′jy√

λj
, f(λj) are shrinkage factors and u′jy are called Fourier coefficients ([53]).

Since the OLS estimator in (2.19) can be rewritten as
∑p

j=1 αjvj , all shrinkage factors,

f(λj), are set to be 1 for the OLS estimator. Setting f(λj) to values other than 1 introduces

bias into the estimation process which is beneficial since the increase in bias results in a

decrease in mean-squared error. Shrinkage factors less than 1 lead a reduction in the

variance of the estimator, whereas factors greater than 1 result in simultaneous increase in

both variance and bias.

The shrinkage factors for the RR estimator are

f(λj) =
λj

λj + ξ
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for j = 1, 2, . . . , p while factors of the PCR estimator for h ≤ p components are:

f(λj) =





0 j > h

1 j ≤ h

It can be easily seen that the shrinkage factors for PCR and RR are between 0 and 1.

Therefore, they are regarded as shrinkage methods since they shrink β̂ by shrinking some

of the αj .

Frank and Friedman ([31]) were the first statisticians who stated the shrinkage property

of the PLSR estimator using simulation studies, but they did not provide theoretical proof.

The shrinkage properties of the PLSR estimator can be investigated theoretically through

its relationship with Krylov space and conjugate gradient method (CG) ([70]). Therefore,

initially, a brief information on these concepts would be appropriate. The space spanned

by the columns of z, Az, A2z, . . . , Am−1z is called m dimensional Krylov space of a square

matrix A and a vector z and denoted by Km(A, z). An alternative form of PLSR estimator

with h components can be given in terms of h dimensional Krylov space of Kh(X ′X,X ′y).

Wh, obtained from NIPALS algorithm, is an orthonormal basis for the space Km(X ′X,X ′y)

([41]) and it is central to connection between PLSR and conjugate gradient (CG) method.

CG method aims to solve a system of linear equations Cb = c arising out of the

minimization of the quadratic function Ψ(b) = 1
2b′Cb − c′b for a positive semi-definite

matrix C. The solution by CG algorithm for h iterations can be obtained from the following

algorithm:

Algorithm 2.3 (CG)
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Step 1 : Let b0 = 0 and d0 = e0 = c − Cb0 = c. Repeat the Step 2− Step 5 for

j = 0, . . . , h− 1:

Step 2 : Calculate zj

zj =
d′jej

d′jCdj
. (2.24)

Step 3 : Calculate bj+1

bj+1 = bj + zjdj . (2.25)

Step 4 : Calculate residual: ej+1

ej+1 = c− Cbj+1 = c− C(bj + zjdj) = ej − zjCdj . (2.26)

Step 5 : Calculate dj+1

dj+1 = ej+1 −
(

e′j+1Cdj

d′jCdj

)
dj , (2.27)

and set j := j + 1.

When C = X ′X and c = X ′y, the normal equations given in (2.18) is obtained and

for any arbitrary initial solution, bp converges (in exact arithmetic) to (X ′X)+X ′y which

is equal to β̂OLS if X is full rank matrix ([70]).

There are important properties of the vectors generated during the CG algorithm ([36]).

For instance, the space spanned by vectors {d0,d1, . . . ,dh−1} is Kh(C, c) and the residual

vectors {e0, e1, . . . , eh−1} span the same Krylov space. Beside this, since the residuals are

orthogonal, these vectors are actually the wj ’s from NIPALS algorithm when C = X ′X and
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c = X ′y for j = 1, 2, . . . , h except for a scale factor. Therefore, the CG estimator, bj , for

j = 1, 2, . . . , h, is identical to the PLSR estimator for j components, β̂
(j)
PLS , and the PLSR

estimator for h = p components yields the OLS estimator. Another important property of

CG estimator, bj , is that it minimizes (b − bj)′C(b − bj) over Kj(C, c) j = 1, 2, . . . , h.

Therefore, the PLSR estimator based on h components is given by

β̂
(h)
PLS = argmin

b∈Kh(X′X,X′y)
(y −Xb)′(y −Xb). (2.28)

Furthermore, the relationship between CG and PLSR can be used to prove the following

proposition.

Proposition 2.2 (De Jong, [17]) The norm of β̂
(h)
PLS is strictly non-decreasing function of

the number of components, h, i.e. PLSR estimator of β shrinks.

This result was proven algebraically by De Jong ([17]). Another proof by Phatak and De

Hoog ([70]) given below is more compact which uses relationship between CG method and

PLSR estimator.

Proof:

It is necessary to prove that the norms of CG estimators for normal equations, bh = β̂
(h)
PLS ,

increase as h increases, that is ‖b1‖ < ‖b2‖ < . . . < ‖bp‖ = ‖β̂OLS‖. In general, (2.25) gives

‖bj+1‖2 = ‖bj‖2 + zj
2‖dj‖2 + 2zjd

′
jbj .

Hence, to prove that ‖bj+1‖2 > ‖bj‖2, it is sufficient to show that zjd
′
jbj > 0 since zj

2‖dj‖2 ≥

0. By multiplying both sides of (2.27) by e′j+1, the following equality is obtained:

e′j+1dj+1 = e′j+1ej+1 −
(

e′j+1X
′Xdj

d′jX ′Xdj

)
e′j+1dj . (2.29)

25



Since residuals are orthogonal and span{e0, e1, . . . , ej+1}=span{d0,d1, . . . ,dj+1}, ej+1 is

orthogonal to dj . Therefore e′j+1dj = 0 in (2.29) and e′j+1dj+1 = e′j+1ej+1 for j =

1, 2, . . . , p− 1 from which it follows that

zj =
d′jej

d′jX ′Xdj
=

e′jej

d′jX ′Xdj
> 0. (2.30)

From (2.25), bj =
∑j−1

i=0 zidi so d′jbj =
∑j−1

i=0 zid
′
jdi. Therefore, it is sufficient to prove

that d′jdi > 0 for i 6= j to show that d′jbj > 0. The statement d′jdi > 0 can be proven by

expressing dj vectors in terms of the residuals. If lj = − e′j+1X′Xdj

d′jX′Xdj
, then (2.27) gives

dj = ej +
j−1∑

i=0




j−1∏

k=i

lk


 ei. (2.31)

So, d′jdi > 0 only if lj > 0. Again, utilizing the (2.26), we get

ej+1 = ej − zjX
′Xdj =⇒ X ′Xdj = z−1

j (ej − ej+1).

Therefore, lj can be rewritten as

lj = −e′j+1X
′Xdj

d′jX ′Xdj
= −e′j+1(ej − ej+1)

zjd′jX ′Xdj
=

‖ej+1‖2

zjd′jX ′Xdj
> 0 (2.32)

which completes the proof 2.

Expressing shrinkage factors of the PLSR estimator, in terms of eigenvalues of the

matrices X ′X and W ′
hX ′XWh, is also possible and this expression, given in the next propo-

sition ([53]), provides valuable information on how the shrinkage behavior of the PLSR

estimator is.
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Proposition 2.3 (Lindjæerde and Christophersen, [53]) The shrinkage factors, from (2.23),

for the PLSR estimator for h components are given by

f(λj)(h) = 1−
h∏

i=1

(
1− λj

θ
(h)
i

)
(2.33)

for j = 1, 2, . . . , p, where λ1 ≥ λ2 ≥ . . . ≥ λp and θ
(h)
1 ≥ θ

(h)
2 ≥ . . . ≥ θ

(h)
h are the eigenvalues

of X ′X and W ′
hX ′XWh, respectively.

Shrinkage factors of the PLSR estimator are determined using the relationship between

PLSR and Lanchoz method ([41], [55]). Lanchoz method transforms an original symmetric

matrix, C, into a symmetric tridiagonal matrix. Therefore, after applying Lanchoz method

on C = X ′X and obtaining a tridiagonal matrix, eigenvalues and corresponding eigenvectors

of C = X ′X can be easily calculated due to the nature of being a tridiagonal matrix. Given

some starting vector c = X ′y, the procedure constructs tridiagonal matrices W ′
hX ′XWh

for h = 1, 2, . . . , p, where the columns of Wh form an orthonormal basis for Kh(C, c) =

Kh(X ′X, X ′y). If θ
(h)
i and τ

(h)
i , i = 1, 2 . . . , h are the eigenvalues and unit-norm eigenvectors

respectively of W ′
hX ′XWh, then (θ(h)

i ,Whτ
(h)
i ) are called Ritz pairs.

Although it is known that the PLSR estimator shrinks relative to the OLS estimator

(Proposition 2.2), it may expand some of the αj , that is f(λj) > 1. It is determined

that eigenvalues of X ′X and Fourier coefficients play an important role on the shrinkage

properties of the PLSR estimator ([53]). Especially the cases where the corresponding

singular value is large and the corresponding Fourier coefficient is small are the ones that

anti-shrinkage property is observed. On the other hand, since the contribution of such terms

to the PLSR estimator will be small, anti-shrinkage may not be seriously effective.
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2.5.2 The Asymptotic Variance of the PLSR Estimator

Unlike the OLS estimator, the PLSR estimator of β in (2.1) is a non-linear function

of the response variable. Thus, the covariance matrix of the PLSR estimator cannot be

determined easily. This leads to difficulties in inference based tasks such as choosing opti-

mal number of components, testing significance of coefficients and constructing confidence

intervals for the regression coefficients.

Methods based on re-sampling techniques, such as bootstrapping and cross-validation,

utilize the original data to gain information about the variability of the estimator. However,

these methods are computationally intensive. Furthermore, their applications to typical

chemometrics problems are not practical since there are often very few observations.

Another approach is linearizing the non-linear estimator to estimate its variance. Den-

ham ([18]) provided a locally linear approximation to the covariance matrix based on the

first derivative of the PLSR vector. More compact expression for the asymptotic covariance

matrix is given by Phatak et al. ([71]). In their approach, the approximate covariance

matrix for the β̂
(h)
PLS is calculated using the delta method stated below.

Theorem 2.1 Let {Yn} be a sequence of random vectors. Assume that
√

n[Yn − µ] con-

verges in distribution to N(0,Ψ) and g(.) is a vector function whose derivatives exist in

a neighborhood of z = µ, then
√

n[g(Yn) − g(µ)] converges in distribution to N(0, JΨJ ′),

where J = ∂g(z)
∂z′ |z=µ.

Therefore, assuming that var(ε) = σ2In, the approximate covariance matrix of β̂
(h)
PLS can

be written as

var(β̂(h)
PLS) = JoJ

′
oσ

2 (2.34)
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where Jo is the Jacobian matrix that consists of derivatives of each element of β̂
(h)
PLS with

respect to elements of y evaluated at given data (Xo, yo). Jacobian matrix, Jo, is derived

by using the matrix differential calculus and given as

Jo =
∂β̂

(h)
PLS

∂y′
|y=yo= {[y′XWhGh ⊗ L] + [WhGh ⊗ y′XL]}(M−1′ ⊗ Ip)Uh

′ + HhX ′ (2.35)

where Gh = (W ′
hX ′XWh)−1, Hh = WhGhW ′

h, L = (Ip −HhX ′X), M is a matrix such that

Kh = WhM with

Kh = [X ′y, (X ′X)X ′y, . . . , (X ′X)h−1X ′y].

and Uh = [X, X(X ′X), . . . , X(X ′X)h−1] is n × hp matrix ([71]). A reasonable estimate of

σ2 in (2.34) can be calculated by dividing residual sum of squares to an appropriate degrees

of freedom. Although n − p has been suggested as degrees of freedom, due to non-linear

form of PLSR estimator it is suggested the use of the trace of (In−XJo)′(In−XJo) ([18]).

The results of simulation studies indicated that the covariance matrix estimate based

on Jacobian matrix, Jo, provides a useful approximation to the true covariance matrix ([71]).

However, since Jo is evaluated using the data from a single experiment, how well JoJ
′
oσ̂

2

approximates the actual covariance matrix is directly related to the optimality of number

of components, h.

The covariance matrix for the β̂
(h)
PLS can also be calculated from the influence function

([75]). This approach has advantages over the methods based on linearization approaches

such as independence of model assumption and computational easiness. The relationship

between influence function of an estimator and its variance is given in Chapter 4.
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2.5.3 Consistency of the PLSR Estimator

A consistent estimator is an estimator that converges in probability to the parameter

being estimated as the sample size grows without bound. In this section, it is shown that

β̂
(h)
PLS is consistent estimator of β in the model (2.1), when specific assumptions are held.

Linear model given in (2.1) can be rewritten as

yi = x′iβ + εi (2.36)

where xi is the ith row of X for i = 1, 2, . . . , n. Assuming that xi’s are independently

identically distributed random variables with positive definite covariance matrix Σxx and

are independent of εi , then

Σxy = cov(xi, yi) = cov(xi, x
′
iβ) = Σxxβ. (2.37)

Therefore,

β = Σ−1
xx Σxy =

∑p
h=1

vhv′h
λh

Σxy

where λh and vh are the hth eigenvalue and the corresponding eigenvector of Σxx for h =

1, 2 . . . , p. In general, eigenvectors with v′hΣxy 6= 0, one for each λh, are called the relevant

eigenvectors of Σxx for prediction of y ([42], [59]), i.e., eigenvectors of Σxx with non-zero

components along Σxy.

Helland ([41]) provided a general form of the β̂
(h)
PLS as

β̂
(h)
PLS = D̂h(D̂′

hSxxD̂h)−1D̂′
hSxy (2.38)
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where Sxx is the sample covariance estimator of Σxx, Sxy is the sample estimator of Σxy,

and D̂h is p × h matrix with columns that span Kh(Sxx, Sxy). Helland ([42]) also proved

that if m is the number of relevant eigenvectors of Σxx for prediction of y, then m is the

least integer h such that β = Σ−1
xx Σxy belongs to Kh(Σxx,Σxy). These facts are used to

prove the consistency of the PLSR estimator given in the next lemma.

Lemma 2.1 Assume that Sxx and Sxy converge to Σxx and Σxy in probability, respectively.

If h = m is the number of the relevant eigenvectors of Σxx for prediction of y, then β̂
(h)
PLS

is consistent estimator of β.

Proof: Since Sxx and Sxy converge to Σxx and Σxy in probability, respectively, h component

PLSR estimator in (2.38), β̂
(h)
PLS , converges in probability to

Dh(D′
hΣxxDh)−1D′

hΣxy = Dh(D′
hΣxxDh)−1D′

hΣxxβ

where columns of Dh span Kh(Σxx, Σxy). If h = m, then, as proved by Helland ([42]),

β ∈ Kh(Σxx, Σxy). Consequently, the space spanned by D∗
h = Σ1/2

xx Dh contains Σ1/2
xx β,

which implies

D∗
h(D∗′

h D∗
h)−1D∗′

h Σ1/2
xx β = Σ1/2

xx β.

Multiplying each side by Σ−1/2
xx from left, we obtain

Dh(D∗′
h D∗

h)−1D
′
hΣxxβ = Dh(D′

hΣxxDh)−1D
′
hΣxxβ = β.

So, β̂
(h)
PLS converges in probability to β 2.
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Chapter 3

RoPLS: Robust Partial Least Squares Regression

3.1 Introduction

Although PLS regression handles the multicollinearity problem, it fails to deal with data

containing outliers since PLS algorithms are based on the empirical cross-covariance matrix

between the response variable(s) and the regressors. Existence of multicollinearity and

outliers in the data sets leads to a requirement of robust PLS methods in many application

areas. Consequently, several robust PLS regression methods have been proposed in the

literature. In general, these methods can be classified in two groups: those which use

iteratively reweighting technique and those which use the idea of robustication of covariance

matrix.

The methods utilizing iteratively reweighting idea, assign a weight between 0 and 1 to

the each data point in a way that outliers, points which are sufficiently far away from the

bulk of the data, gain less weights than inliers, points which are the bulk of the data. The

first robust PLS method in this group, proposed by Wakeling and Macfie ([83]), is based

on the idea of replacing a set of ordinary regression steps in NIPALS algorithm by robust

counterparts. The main drawback of the method is the large amount of the computation

time. Therefore, Griep et al. ([38]) suggested a semi-robust method by replacing only the

first ordinary regression step by a robust regression method for the sake of computation.

However, the method looked at outliers onto planes [y,Xj ] where j = 1, 2, . . . , p, while

ignoring the multivariate nature of the data. Cummins and Andrews ([13]) gave a slightly

different version of iteratively reweighting method by calculating weights after performing
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an ordinal PLS algorithm and using these weights for the next PLS algorithm. Since the two

aforementioned methods employ a robust method within the PLS algorithm they are called

”internal iteratively reweighting” methods whereas the method by Cummins and Andrews

is called ”external iteratively reweighting” method ([35]). Although the latter method has

advantages over the internal reweighting methods, it suffers from the lack of resistance to

outliers in X space. Only recently, another external iterative method, called ”Partial Robust

M Regression” (PRM), proposed by Serneels et al. ([76]) which is robust to outliers in X

space.

The second group of robust methods, introduced by Gil and Romera ([35]) estimate

the regression coefficients with the help of a robust covariance matrix instead of applying

robust regression method in PLS algorithms. Gil and Romera estimated covariance matrix

using Stahel-Donoho estimator ([22], [78]). However, this method can not be applied to

high dimensional data sets since it uses a resampling scheme by drawing subsets of size

p + 2. Hubert and Branden ([48]) proposed another two step algorithm (RSIMPLS), that

can be used for both low and high dimensional data, by estimating covariance matrix using

MCD (minimum covariance determinant, [74]) and the idea of projection pursuit. Once the

score matrix is obtained, robust regression is used to estimate a in (2.7), so the β in the

equation (2.1).

In this chapter, robustified versions of the SIMPLS algorithm, RoPLS1 and RoPLS2,

are introduced. The proposed methods are external iteratively reweighting algorithms based

on the idea of reweighted least squares method given by Billor et al. ([6]). RoPLS1 uses

weights calculated from BACON (blocked adaptive computationally-efficient outlier nomi-

nators) algorithm ([5]), whereas RoPLS2 uses weights calculated from PCOUT algorithm
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([26]). RoPLS2 is the first method that incorporates PCOUT algorithm as an integral com-

ponent in a robust estimation procedure rather than just as an outlier detection method.

Both RoPLS1 and RoPLS2 have computational advantages over recent robust methods

PRM and RSIMPLS and they are resistant to masking problem.

The rest of the chapter is organized as follows: Outlier identification algorithms, BA-

CON and PCOUT, are reviewed in Section 3.2. The detailed algorithm for the proposed

algorithm, RoPLS, including a robust method to determine the number of components and

two graphical methods to diagnose outliers, are given in Section 3.3. Real and simulated

data sets are utilized to demonstrate the performance of the proposed method in Section 3.4.

3.2 Outlier Detection Methods

The outlier challenge is one of the earliest of statistical interests, and since data sets

often contain outliers, it continues to be one of the most important. The outlier detection

problem has important applications in the fields of fraud detection, astronomy, bioinfor-

matics (e.g., microarray experiments), and many other countless areas. For instance, the

great interest of astronomers is to discover unusual, rare or unknown types of astronomical

objects or phenomena. The outlier detection approaches in multiple terabyte, and even

larger, multi petabyte data sets, correctly meet the need of astronomers.

Outlier detection algorithms fall into two broad classes: those which employ the distance-

based methods, such as MULTOUT ([90]), MCD ([74]), BACON ([5]); and those which rely

upon projection pursuit ideas such as Kurtosis1 ([68]) and Stahel-Donoho estimator ([56]).

Distance-based methods classify outliers as points which are sufficiently far away from the

bulk of the data; whereas projection-pursuit methods use lower dimensional projection of
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data that enables the user to detect outliers. Primary goals in all of these algorithms are

explicit outlier detection and/or robust estimation. Most of the distance-based methods

are especially designed for low dimensional data sets, that is, the number of observations is

greater than the number of variables, and identification of outliers in higher dimensions be-

comes more complicated as the dimension increases. On the other hand, nowadays data sets

in many scientific fields are high dimensional. Although projection pursuit based methods

can be applied to such situations, their computational difficulties make them impracti-

cal to use. Recent outlier detection method, PCOUT ([26]), which detects outliers very

efficiently in high dimensional data sets, combines the advantages of distance-based and

projection pursuit methods. In the following subsections, detailed information on BACON

and PCOUT methods is provided, since these algorithms are used to build new robust PLS

algorithms in Section 3.3.

3.2.1 BACON

BACON ([5]) algorithm is a distance-based method that starts with an outlier-free

subset of data (initial basic subset), from which robust distances can be calculated. The

initial basic subset can be found algorithmically in one of two ways: Mahalanobis distances

based on classical mean and covariance estimates (Version1) or Euclidian distances from

medians (Version2). The advantages of Version1 are its affine equivariance and its low com-

putational cost. Then, based on the mean and covariance matrix of the basic subsetof size

m, discrepancies are computed and all observations with discrepancy less than correction

factor, Cnprχp,α/n, form the new basic subset, where χp,α/n is the 1 − α percentile of the
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chi-square distribution with p degrees of freedom and,

Cnpr = Cnp + Chr = max[0, (h− r)/(h + r)] + 1 +
p + 1
n− p

+
1

n− h− p

where h = [(n+p+1)/2)] and r is the size of current basic subset. This iterative method is

repeated until the size of basic subset, r, no longer changes. The observations excluded by

the final basic subset are nominated as outliers. BACON estimators of the location vector

(µ̃) and the covariance matrix (Σ̃), based on this final subset, are employed to calculate

robust Mahalanobis distance vector dB with ith row for i = 1, 2, . . . , n given as

di
B = d(xi, µ̃, Σ̃) =

√
(xi − µ̃)′Σ̃−1(xi − µ̃) (3.1)

where xi ∈ Rp is the ith row of data matrix, X, for i = 1, 2, . . . , n. Simulation studies

demonstrate that BACON is a robust technique with 40% breakdown point. The method

is fast, easy to implement and thus practical for data sets of even million of cases.

Although BACON algorithm is originally designed for low dimensional data, an exten-

sion of BACON algorithm to high dimensional data is also possible. A simple solution to

this problem is to run the BACON algorithm on the reduced data set, X̃, of size n × p∗,

where X̃ is the score matrix based on the spectral decomposition of covariance matrix es-

timate and p∗ denotes the number of such score vectors in the reduced data set. Robust

distance vector, dB, is calculated based on X̃.
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3.2.2 PCOUT

PCOUT is a recent outlier identification algorithm that is particularly effective in high

dimensions([26]). PCOUT is based on the idea of outlier detection on principal component

space which does not require matrix inversion. The method starts by robustly sphering the

original data by columnwise median of absolute deviances for j = 1, 2, . . . , p:

x∗ij =
xij −mediani(xij)
(1.4826)madi(xij)

(3.2)

where

madi(xij) = mediani(|xij −mediani(xij)|). (3.3)

Then, PCA is applied to sphered data matrix, X∗ = [x∗ij ], and p∗ < p semi-robust compo-

nents, Z = [z1, z2, . . . , zp∗ ], that contribute to at least 99% of the total variance are retained

in the analysis. The semi-robust component matrix, Z, is sphered similar to (3.2) as

z∗ij =
zij −mediani(zij)
(1.4826)madi(zij)

. (3.4)

The rest of the algorithm uses the sphered component matrix, Z∗ = [z∗ij ], to detect location

and scatter outliers. The location outlier detection is initiated by calculating the absolute

value of a robust kurtosis measure for each component:

kj = | 1
n

n∑

i=1

z∗ij
4 − 3| (3.5)

where j = 1, 2, . . . , p∗. Kurtosis coefficient measures ”heaviness” of distribution tails. Small

value of kurtosis is an indicator of large amount of asymmetric contamination, whereas
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large value of kurtosis is an indicator of either symmetric contamination or small amount

of asymmetric contamination. Since the presence of location outliers is likely to cause the

kurtosis to become different from zero, the relative weight vj = kj/
∑p∗

j=1 kj for each of the

sphered component, z∗j , is used to reveal outliers. Robust distances, for detecting location

outliers, are calculated based on the weighted component matrix:

RDL
i =

√√√√√
p∗∑

j=1

v2
j z
∗
ij

2 (3.6)

and then the following equation:

dL
i = RDL

i

√
(χ2

p∗ , 0.5)

mediani(RDL
i )

, (3.7)

suggested by Maronna and Zamar ([57]), is used to transform distances.

To detect scatter outliers, sphered component matrix, Z∗, is directly used to calculate

robust distances, RDS
i , by plugging vj = 1 for all components in (3.6). Similarly, dS

i is

calculated using the transformation given in equation (3.7) by replacing RDL
i by RDS

i .

After calculating robust distances, the translated biweight function ([72]),

w(d; c,M) =





0 d≥c
(

1−
(

d−M
c−M

)2
)2

M<d<c,

1 d≤M

is used to assign weights to each observation and take these weights as a measure of out-

lyingness. Weights for the location and the scatter outliers are calculated using different

choices of c and M . Since it is assumed that squared dS
i is distributed with χ2

p∗ , the weights
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for the scatter outliers are given by

wS
i = w(dS

i ;
√

q99(χ2
p∗),

√
q25(χ2

p∗)) (3.8)

where M = q25(χ2
p∗) is the 25th and c = q99(χ2

p∗) is the 99th quantiles of χ2
p∗ , respectively.

However, the kurtosis weighting scheme destroys any resemblance of squared dL
i to a χ2

distribution. Therefore, the weights for the location outliers are given as:

wL
i = w(dL

i ;mediani(dL
i ) + (2.5)madi(dL

i ), q33.3(d
L
i )) (3.9)

where M = q33.3(d
L
i ) is 331

3

rd sample quantile of dL = [dL
1 , dL

2 , . . . , dL
n ]′.

Final weights are calculated as a function of scatter and location weights:

wLS
i =

(wL
i + s)(wS

i + s)
(1 + s)2

(3.10)

where scaling constant s=0.25. Any observation with final weight less than 0.25 is assigned

as an outlier. PCOUT is shown to be very fast algorithm which has good performance for

high-dimensional data and a comparable performance to standard outlier detection methods

in low dimensions.

3.3 Description of the Proposed Algorithm: RoPLS

3.3.1 RoPLS Algorithm

RoPLS is a new iterative robust ”external reweighting algorithm” which gives low

weight to points with high leverage and/or large residuals where the weights change from
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iteration to iteration. RoPLS consists of two algorithms. In the first algorithm, robust

distances and initial weights are calculated using either BACON algorithm (RoPLS1) or

modified PCOUT algorithm (RoPLS2). In the second algorithm, iteratively reweighted PLS

regression based on SIMPLS algorithm is performed using the initial weights and normalized

robust distances. The detailed explanation of these two algorithms is given below:

Algorithm I:

Input: n× p data matrix, X, and n× 1 vector of response variable, y

Output: Initial weight vector, w0 = [w0
1, w

0
2, . . . , w

0
n]′, and normalized distance vector,

d = [d1, d2, . . . , dn]′

i. RoPLS1: Let Γ = [X : y].

Apply BACON algorithm to Γ to obtain robust BACON (Version1) estimators of cen-

ter, µ̃, and scatter matrix, Σ̃, so the robust distance vector, dB with ith row dB
i = d(γi, µ̃, Σ̃)

where d(:) is the distance function defined in (3.1). After calculating the robust distances

using BACON algorithm, initial weights can be obtained as w0
i = w∗

(
dB

i

)
where

w∗ (ai) = min

(
1,

1
max (|ai|,mediani(|ai|))

)
= min


1,

ψH
( |ai|

mediani(|ai|)
)

|ai|


 (3.11)

and ψH(:) in equation (3.11) is Huber’s function ([47]) defined as

ψH(v) = v min
(

1,
1
|v|

)
(3.12)

for any non-zero v. The idea is to give low weights to the observations with large robust

distances. w0 = [w0
1, w

0
2, . . . , w

0
n]′ will be used as initial weight vector in the second part of

the algorithm.
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Since normalized distances are between 0 and 1, normalized robust distances in X space,

dx
B, can be used as robust measure of leverage. Normalized distances, di, for i = 1, 2 . . . , n

are calculated by

di =
dB

x(i)
2

∑n
i=1 dB

x(i)
2 (3.13)

where dB
x(i) = d(xi, µ̃x, Σ̃x) with µ̃x is first p rows of µ̃ and Σ̃x is the upper pxp matrix in

Σ̃. Normalized distance vector, d, will also be used in the second part of the algorithm to

update weights.

If the data matrix X is high dimensional (n << p) or rank deficient, then BACON

algorithm is applied separately to Γ and X to calculate dB and dB
x , respectively.

ii. RoPLS2:

After applying PCA to the robustly sphered matrix, Γ∗ = [X∗ : y∗], p∗ semi-robust

components, Z = [z1, z2, . . . , zp∗ ] are obtained. Then, the robust distance vectors dL and

dS are calculated using p∗ = rank(X) components for low dimensional data and p∗ = n− 1

components for high dimensional data as described in subsection 3.2.2. The initial weights

are obtained as:

w0
i = w∗

(
dL

i

)
w∗

(
dS

i

)
. (3.14)

dL
x and dS

x are calculated same as above where Γ∗ is taken as X∗, that is robustly

sphered data matrix, X. Normalized distances, di, are then calculated by

di =
dPC

x(i)
2

∑n
i=1 dPC

x(i)
2 (3.15)

41



where

dPC
x(i) = max

(
dL

x(i)

madi(dL
x(i))

,
dS

x(i)

madi(dS
x(i))

)
. (3.16)

Algorithm II:

Input: n × p data matrix, X, n × 1 vector of response variable, y, initial weight vector,

w0, and normalized robust distance vector, d, from Algorithm I:

Output: Coefficient vector, β, score matrix, T , and p× k PLS weight matrix, R

Step 0 : Let W = W0 = diag{√w0
1,
√

w0
2, . . . ,

√
w0

n}.

Step 1 : Weight data matrices X and y by multiplying with W :

Xw = WX

yw = Wy

Perform SIMPLS regression of Xw on yw to obtain β̂, T and R.

Step 2 : Calculate the residual vector, r = y − Xβ̂, and update the weights using the

following equation:

wi = (1− di)w∗
(

ri

madi(ri)

)
(3.17)

where di is normalized distances obtained in Algorithm I. Redefine W = diag{√w1,
√

w2, . . . ,
√

wn}.

Step 3 : Return Step 1 until the convergence of β̂.

This algorithm is inspired by the weighted least squares regression method by Billor,

et al.([6]). They suggested to use normalized robust distance, di, as an alternative to the

diagonal element of hat matrix, pii, since it is known that pii values can be distorted by the

presence of masking problem. We extended this approach to weighted partial least squares

regression.
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3.3.2 Selecting Number of Components

The decision on the optimal number of components, k, is very important issue in

building the PLS regression model. In most of the cases the leave-one-out cross-validated

root mean squared error, RMSE, is used to choose the appropriate number of components:

k = argmin
h

(
RMSE(h)

)
(3.18)

where

RMSE(h) =

√√√√ 1
n

n∑

i=1

(
yi − ŷ−i(h)

)2
=

√√√√ 1
n

n∑

i=1

(
r−i(h)

)2
. (3.19)

Here, the predicted values ŷ−i(h) and residuals r−i(h) are based on the parameter estimates

obtained from the data set without the ith observation using a PLS regression model with h

components. However if a data set contains outliers, RMSE(h) can attain unreliable values,

which results in the wrong decision of k. Therefore, we propose to calculate RMSE(h)

robustly using the BACON algorithm. If an n×h matrix of residuals, [r−(1), r−(2) . . . , r−(h)],

is constructed, the observations with large residuals can be detected by applying BACON

algorithm to the constructed residual matrix. If I is the final subset of clean observations

with size nI , the robust version of RMSE(h) is defined as

RRMSE(h) (I) =
√

1
nI

∑

iεI

(
yi − ŷ−i(h)

)2
=

√
1
nI

∑

iεI

(
r−i(h)

)2
. (3.20)

43



It is also possible to use robust cross-validated coefficient of determination, R2 to select

optimal number of components:

RR2(h) = 1−
∑

iεI

(
r−i(h)

)2

∑
iεI (yi − yI)

2 (3.21)

with yI = 1
nI

∑
iεI yi. The value of k which makes (3.21) the maximum can be taken as the

optimal value.

Once the value of k is determined, the model can be validated by calculating RRMSE(k)

based on the final subset obtained by applying BACON algorithm to the residual vector

r−k instead of n × h residual matrix. Applications of the RRMSE and RR2 on the real

data sets to determine value of k are given in Section 3.4.

3.3.3 Diagnostic Plots

In PLS regression analysis; orthogonal, score and residual distances can be used to

measure degree of outlyingness of observations as in PCR ([48]). The orthogonal distance

measures the distance between an observation , xi, and its projection in the k−dimensional

PLS-subspace, x̂i, and it is defined as

odi =‖ xi − x̂i ‖ . (3.22)

Score distance measures the outlyingness of a point in the PLS-subspace. The score distance,

sdi, is calculated using the sphered score matrix, T ∗, as

sdi = t∗
′

i t∗i (3.23)
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where t∗i is the ith row of T ∗. Residual distance can be regarded as the distance of scaled

residuals from 0, that is

rdi =
∣∣∣∣

ri

madi(ri)

∣∣∣∣ (3.24)

and vertical outliers are known to have large residual distances.

The outcomes of PLS regression analysis on a real data set can be visualized via several

graphical displays of these distances. One crucial point here is to determine how large these

distances should be to classify an observation as an outlier. Instead of using distribution

based threshold points, we use classical nonparametric threshold. For any vector v with

positive entries, v ≥ 0, the cutoff point can be given as;

tr (v) = mediani(vi) + (2.5)madi(vi). (3.25)

Two graphs will be used to distinguish regular observations from outliers:

i. Residual-Score Plot:

This is a scatter plot of the residual distance, rdi, versus the score distance, sdi. The vertical

(x = tr(sd)) and horizontal (y = tr(rd)) threshold lines, calculated from (3.25), are also

displayed on the scatter plot which help us to flag outliers and determine their types. We

can distinguish four types of observations using this plot. Observations in the

1. lower left corner are ”regular” (i.e., homogeneous),

2. lower right corner, that are far from the PLS-space, but lying in the direction of fitted

line or space, are ”good leverage” points,

3. upper left corner, that are far away from the y space, are ”vertical” outliers,
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4. upper right corner, that have large residual and large score distances, are ”bad lever-

age” points.

Especially vertical and bad leverage outliers are known to be very influential for the classical

least squares regression fit.

ii. Orthogonal-Score Distance Plot:

This is a scatter plot of the orthogonal distance, od, versus the score distance, sd. The

vertical (x = tr(sd)) and horizontal (y = tr(od)) threshold lines , calculated from (3.25),

are also displayed on the scatter plot which help us to flag outliers in PLS-subspace and

determine their type. We can also distinguish four types of observations using this plot.

Observations in the

1. lower left corner are ”regular” (i.e., homogeneous),

2. lower right corner, that have large score but small orthogonal distances, are ”good

PLS-leverage”,

3. left corner, that have large orthogonal distances, are ”orthogonal” outliers,

4. upper right corner, that have large score and orthogonal distances, ”bad PLS-leverage”

observations.

In Figure 3.1 ([49]), four types of observations, described above, can be detected. The regu-

lar observations are the homogeneous ones that are close to the PLS-subspace. Observations

1 and 4 in Figure 3.1 are good PLS-leverage points that lie close to the PLS-subspace but far

from the regular data. Observation 5 in Figure 3.1 is an orthogonal outlier and it can not be

distinguished from the regular observations once it is projected onto the PLS-subspace. Bad

leverage points, such as observations 2 and 3 in Figure 3.1, lie far outside the PLS-subspace
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Figure 3.1: Types of outliers when 3 dimensional data set X is projected on 2 dimensional
PLS-subspace (left) and corresponding Orthogonal-Score distance plot (right).

and after projection far from the regular data. These graphical displays are constructed for

the real data sets to identify outliers in Section 3.4.

3.4 Numerical Examples

In this section, two benchmark data sets and two simulation settings are given to

demonstrate the goodness of the proposed algorithms, RoPLS1 and RoPLS2.

3.4.1 Simulation

Two simulation configurations are conducted. The first setting aims to assess the

robustness of the proposed algorithms under the different error distributions. The second

setting is constructed to assess the robustness of the proposed algorithms to the outliers in

X−space.
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Simulation Setting 1

A similar simulation setting described by Serneels et al. ([76]) is employed in this

section. Elements of n × k score matrix, T , and p × k x-loadings matrix P are generated

from the standard normal distribution. The data matrix X and the response vector y are

generated based on the following two models. The first model is

X = TP ′ + E (3.26)

where the error matrix E is filled with numbers from normal distribution with mean 0, and

standard deviation 0.01. The second model for i = 1, 2, . . . , n is

yi = x′iβ + εi (3.27)

where components of β are randomly generated from normal distribution with mean 0 and

standard deviation 0.01. Model error term, εi, is generated from standard normal, Student

t with 2 and 5 degrees of freedom, the Laplace distribution and heavy tailed distributions

Cauchy and Slash. The values that have been chosen for the different parameters for this

simulation study are the following: the number of iterations, for each fixed value of n, p is

N = 1000; the size of the data matrices are 30×6 (n/p=5), 25×125 (n/5=0.2), and 20×200

(n/p=0.1). The optimal number of components, k, is fixed as 2 for each setting. The mean

square error of β̂ given below is utilized as a quantitative measure of the goodness of the

estimator:

MSE =
1
N

N∑

i=1

‖β̂i − β‖2
(3.28)
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Low Dimension: n=30, p=6
Method \ Error N(0,1) t5 Laplace t2 Cauchy Slash

RoPLS1 0.0287 0.0381 0.0356 0.0474 0.0799 0.1739
RoPLS2 0.0288 0.0382 0.0354 0.0475 0.0799 0.1735
PRM 0.0276 0.0386 0.0379 0.0504 0.0885 0.1810

RSIMPLS 0.0466 0.0883 0.0644 0.0985 0.1318 0.2369
SIMPLS 0.0246 0.0438 0.0497 0.3110 67.7 153600

High Dimension: n=25, p=125
RoPLS1 0.0132 0.0135 0.0134 0.0138 0.0153 0.0176
RoPLS2 0.0132 0.0135 0.0134 0.0138 0.0153 0.0176
PRM 0.0132 0.0135 0.0134 0.0139 0.0154 0.0179

RSIMPLS 0.0140 0.0144 0.0142 0.0148 0.0177 0.0204
SIMPLS 0.0131 0.0184 0.0140 0.0261 20 47

High Dimension: n=20, p=200
RoPLS1 0.0206 0.0207 0.0208 0.0211 0.0223 0.0247
RoPLS2 0.0206 0.0207 0.0208 0.0212 0.0224 0.0248
PRM 0.0206 0.0207 0.0208 0.0212 0.0224 0.0247

RSIMPLS 0.0211 0.0219 0.0219 0.0635 0.0239 0.0275
SIMPLS 0.0205 0.0208 0.0213 0.9080 64.3 3.59

Table 3.1: Simulation results based on MSE for low and high dimensional cases.

where β̂i is the estimate of β at the ith iteration. The results are summarized in Table 3.1.

As expected, SIMPLS yields the minimum MSE when error terms are normally dis-

tributed in both low and high dimensional settings. However, when the error distribution

is not normal, SIMPLS clearly breaks down which can be seen from the MSE values in

Table 3.1. Especially, at error distributions with heavy tails (Cauchy and Slash), the SIM-

PLS estimator breaks down drastically and the MSE values go beyond any bound. For

low dimensional setting; PRM is slightly more efficient at normal model than RoPLS1 and

RoPLS2. RSIMPLS is the least efficient estimator which is not surprising due to the fact

that it is based on MCD estimator known to have low efficiency. For all other error dis-

tributions that are not normal, RoPLS1 and RoPLS2 perform better than SIMPLS, PRM

and RSIMPLS.
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For high dimensional settings; PRM, RoPLS1 and RoPLS2 have comparable efficiencies

for the normal case and RSIMPLS is the least efficient estimator as in low dimensional

setting. RoPLS1 and RoPLS2 perform very well comparing the SIMPLS and RSIMPLS for

the models with error terms following non-normal distributions.

As a summary, RoPLS1 and RoPLS2 are very comparable across all possible settings.

They beat the robust alternative, RSIMPLS, for all considered error distributions. They

yield smaller MSE than SIMPLS does for any non-normal distribution. Overall perfor-

mances of RoPLS1 and RoPLS2 at non-normal error distributions are slightly better than

that of PRM.

Simulation Setting 2

The results of the previous simulation study indicates that proposed methods, RoPLS1

and RoPLS2, are promising robust estimators. However, since the design matrix X is kept

fixed across all considered configurations, the simulation setting described above can only

be used to show resistance to outliers in y space. In this section, another setting that allows

us to demonstrate the robustness of proposed methods to high leverage points is discussed.

Tobacco data set ([3]), that consists of n = 25 observations on 6 explanatory variables,

is used for this setting. Although original data have three response variables, only one of

them (the percentage of total nitrogen) is used here. The data set is known to be free of

bad leverage points ([48]). It was shown that k = 1 component is satisfactory to explain

multivariate model. For univariate case, we also observed that adding more components into

the model does not provide significant decrease in the RRMSE(h) and decided to take the

model with k = 1. Figure 3.2 displays the diagnostic plots obtained by RoPLS1 (RoPLS2
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Figure 3.2: Diagnostic plots for original Tobacco data.

yields very similar results). Diagnostic plots indicate that there are no bad leverage points

in the data set.

In this section, X will be used to denote 25 × 6 data matrix and y is the 25 × 1

response vector. Simulation procedure consists of replacing m randomly chosen observa-

tions of the data matrix, X, by m values from multivariate normal distribution with mean

316 + mean(X) and covariance matrix 2cov(X) where 16 is 6 × 1 vector of ones. In this

setting, three different contamination levels are considered by taking m equal to 3, 5 and

13 which correspond to 12%, 20% and 52% of the data, respectively. The setting intro-

duces bad leverage points into the data set. For instance, the diagnostic plots based on

the contaminated Tobacco data obtained by replacing observations 6, 13, 17, 20, 21 in X

by five observations generated as described earlier can be seen in Figure 3.3. The replaced

observations are clearly determined as bad leverage points by RoPLS1.

Standard SIMPLS algorithm and robust methods (RoPLS1, RoPLS2, RSIMPLS and

PRM) are implemented on original and contaminated data. The comparison measures are
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Figure 3.3: Diagnostic plots for contaminated Tobacco data.

the angle (degree) and the norm of the differences between regression estimators for the SIM-

PLS, RoPLS1, RoPLS2, PRM and RSIMPLS before and after contamination. The results

of N=100 iterations for 12%, 20% and 52% contamination levels are given in Figure 3.4.

In the first place, as contamination level increases, the norms and angles corresponding

to SIMPLS estimator get larger. Although RSIMPLS provide better results than SIMPLS

does, it can not beat any other robust method employed in the setting. RoPLS1, RoPLS2

and PRM are not seriously affected by increasing contamination level as RSIMPLS is.

Several preprocessing methods have been commonly used to eliminate extreme high

leverage points before the statistical analysis is applied. However, the vertical outliers are

the ones that should be given special attention due to difficulty of detecting distributional

assumptions in advance which makes the previous setting more considerable.

Although RoPLS1 and RoPLS2 give very comparable results, one main difference be-

tween these two algorithms is that RoPLS1 estimator is orthogonally equivariant (see chap-

ter 4), but RoPLS2 estimator is not since it is calculated based on an algorithm that uses
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after 12%, 20% and 52% contamination.
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Figure 3.5: The scatter plot of first two columns of Fish data.

column-wise medians. Because of that, only analysis based on RoPLS1 is considered for

the real data examples. RoPLS2 yielded very similar results which are not provided here.

3.4.2 Data Sets

Low dimension: Fish Data

In this section, we will illustrate the performance of RoPLS1 algorithm on Fish data

that was primarily introduced by Naes ([63]). Data matrix consist of p = 9 highly collinear

spectra on n = 45 measurements of fish (rainbow trout), while the response variable is cor-

responding to fat concentration. The pairwise correlation coefficients between the columns

of X are greater than 0.9. Observations 39 to 45 are reported as outliers ([63]). The scatter

plot of the first two columns of the data matrix in Figure 3.5 demonstrates a strong positive

relationship between the columns as well as the existence of outlying observations. The

aim of the analysis is to determine a model that explains the relationship between these

collinear spectra and fat concentration.
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Figure 3.6: RRMSE (left) and RR2 (right) index plot for Fish data.

In order to select the number of components, RRMSE and RR2 criteria (Figure 3.6)

introduced in Section 3.3 are used and they both indicate that k = 3 components are suffi-

cient to perform PLS analysis which coincides the optimal number of components obtained

in previous studies. The RoPLS1 analysis for k = 3 components gives the diagnostic plots in

Figure 3.7. Here, bad leverage points (41, 43, 44), good leverage points (39, 40, 45), vertical

outliers (1, 3, 10) and orthogonal outliers (2, 10 and 42) can be identified. Diagnostic plots

based on SIMPLS method (Figure 3.8) does not detect all of the outliers effectively because

it is not resistant to outlying observations.

High dimension: Biscuit-Dough Data

In this section, SIMPLS and RoPLS1 are applied on the well known chemometrics

example from Osborne et al.([67]). Data set consists of four response variables (percentages

of fat, sucrose, flour and water) of 40 biscuit dough samples. Although the original spectra

had a wider range of 1100nm to 2498nm in steps of 2nm, i.e p = 700, only p = 601 (1200nm
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Figure 3.7: Diagnostic plots for Fish data (RoPLS1).
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Figure 3.8: Diagnostic plots for Fish data (SIMPLS).
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Figure 3.9: (a) Original Biscuit-dough data (b)Preprocessed Biscuit-dough data.

to 2400nm in steps of 2 nm) wavelengths are used since the channels at the ends are known

to be less reliable. The purpose of our analysis is to predict percentage of water, based on

the 40 NIR spectra with p = 601 predictors. In Figure 3.9 (a), there are n = 40 curves and

each curve represents p = 601 predictors and the spectra have clearly shifted due to unequal

particle sizes. Therefore, the preprocessing suggested by Marx and Eilers ([61]) is performed

by differencing the columns of data matrix to eliminate sudden shifts, Figure 3.9(b), so the

dimension of data is reduced to 600. Since observation 23 appears to be an outlier in most

analyses, it is suggested to exclude this observation. To show robustness of RoPLS1, we

carry out the analysis on the data matrix including observation 23.

Figure 3.10 displays the RRMSE (left) and RR2 (right) curves based on RoPLS1 and

SIMPLS. k = 3 components are retained in the analysis and which yields an RRMSE(3)
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Figure 3.10: RRMSE (left) and RR2 (right) index plot for Biscuit-dough data.

value of 0.1626, whereas the optimal RMSE value for SIMPLS equals to 0.2322. Diagnostic

plots of the data based on RoPLS revealed bad leverage points 7, 21, 23 and 24.
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Figure 3.11: Diagnostic plots for Biscuit-dough data.
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Chapter 4

Robustness Properties of RoPLS Estimator

4.1 Introduction

Robust statistical methods have emerged as a family of theories and techniques for

estimating parameters of a parametric model while dealing with deviations from idealized

assumptions. The deviations from strict parametric models include contamination of data

by gross errors (outliers), rounding and grouping errors, and departure from an assumed

sample distribution. Robust procedures aim to describe the structure best fitting to the

bulk of the data and to identify deviating and highly influential data points by producing

estimators that are not unduly affected by small departures from model assumptions. To

enable the comparison of different robust methods in various situations, measures of per-

formance are required. In general, three basic tools are utilized to determine the robustness

of an estimator: qualitative, infinitesimal, and quantitative robustness ([40], [58], [73], [79],

[86]).

The intuitive idea of robustness is that ”modifying a small proportion of observations

causes only a small amount of change in the estimate” and it is related to some form of

continuity. The first tool, qualitative robustness is associated with continuity of the statistic

(estimator) viewed by a functional, T , from F , a set of all cumulative distribution functions

for which T is defined, to parameter space Θ. Therefore an estimate, θ̂n, of θ ∈ Θ based

on a sample, x=[x1, x2, . . . , xn]> can be written as a functional, i.e., T (Fn) = θ̂n. In this

section, notation A> is used for transpose of matrix A, while the notation (′) is used as

60



derivative operator. Here Fn is the empirical distribution function given by:

Fx,n(t) =
1
n

n∑

i=1

I(−∞,t](xi)

where IA(x) = 1 for x ∈ A and 0 otherwise. Thus, if the purpose is to obtain an estimator

that is relatively unaffected by small shifts in the cumulative distribution function, this

can be achieved by choosing an estimator represented by a continuous functional and an

estimator with this property is said to have ”qualitative robustness”.

The second tool for robustness arises when the two other restrictions, existence and

boundedness of the functional derivative, are imposed so that small changes in the cumu-

lative distribution do not result in large changes in the value of the functional, T . In order

to theoretically assess the influence that an observation z∗ has on the value of a statistical

functional, the derivative of the functional called influence function is used ([40]).

Definition 4.1 The influence function (IF) of a functional T at F ∈ F is given by

IF (z∗; T, F ) =
d

dε
T (Fε)

ε=0
= lim

ε↓0
T (Fε)− T (F )

ε
= lim

ε↓0
T ((1− ε)F + εδz∗)− T (F )

ε
(4.1)

in those z∗ where this limit exists. Here δz∗ is point mass distribution at z∗ and ↓ denotes

the limit from the right.

Influence function given in (4.1) corresponds to the directional (Gateaux) derivative of T

at F in the direction of H = δz∗ − F and can also be written as:

IF (z∗; T, F ) = T ′(H) =
d

dε
T (F + εH) |ε=0 . (4.2)
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The functional, so the estimator, is said to have ”infinitesimal robustness” if IF (z∗;T, F )

is a bounded function of z∗. The influence function of T can also be used to determine an

explicit formula for the asymptotic variance of T ([47]) since

V ar(T, F ) ≈
∫

IF (x; T, F )>IF (x; T, F )dF (x)
n

(4.3)

which can be estimated by

V̂ ar(T, F ) =
∑n

i=1 IF (xi; T, Fx,n)>IF (xi; T, Fx,n)
n2

. (4.4)

The third tool, breakdown point, addresses the notion of quantitative robustness and

it can loosely be defined as the smallest fraction of samples (with respect to n) that can

render the estimator useless. It describes how greatly a small change in the underlying

distribution F changes the distribution of an estimator. The higher the breakdown point of

an estimator, the more robust it is. In this chapter, finite-sample version of the breakdown

point given in Definition 4.2 is preferred because of the simplicity.

Definition 4.2 The finite-sample breakdown point, ε∗(x, T ), of an estimator T at a sample

x=[x1, x2, . . . , xn]> is given by

ε∗(x, T ) =
1
n

min
m
{m : supx̃ ‖ T (x)− T (x̃) ‖= ∞} (4.5)

where x̃ is obtained by replacing m (1 ≤ m ≤ n) observations of x by arbitrary observations.

The outline of this chapter is as follows. In Section 4.2 influence functions for classical PLSR

estimator of β is given. Robustness properties of RoPLS estimator of β: influence function
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for low dimension, empirical influence curve for high dimensional case and finite-sample

breakdown properties, are discussed in Section 4.3.

4.2 Influence Function for the SIMPLS Based Regression Estimator

In this section, influence function for the SIMPLS estimator of β is given. Assume

that x ∈ Rp and y ∈ R are centered random variables. Let F be a cumulative distribution

function for a random vector γ = (x>, y)> and d = p + 1. Then the covariance matrix of γ

is given by

Σ =




Σxx Σxy

Σyx σyy


 .

A functional, S, can be defined on a suitable class of probability distributions, F ,

which maps an arbitrary distribution G ∈ F into a positive definite symmetric matrix,

S(G) = EG(γγ>), under the assumption that S(F ) = EF (γγ>) = Σ, that is; S is Fisher-

consistent for Σ at F . Using functional S, other functionals can also be defined as:

Sxx(G) = EG(xx>) = [Ip : 0]S(G)[Ip : 0]>

Sxy(G) = EG(xy) = [Ip : 0]S(G)ed

where 0 is p× 1 vector of zeros and ed is the dth standard basis vector of Rd. Fisher consis-

tency of S at F implies Fisher-consistency of Sxy at F for Σxy, that is Sxy(F ) = EF (xy) =

Σxy. Similarly, Syx(G) = EG(yx>) = Sxy(G)> and Syx is also Fisher-consistent for Σyx at

F . Since the existence of second moments guarantees the existence of the functional S, it

is assumed that F consists of probability functions, G, at where positive definite matrix

EG(γγ>) exists which requires the existence of second moments.
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Throughout this section, functional for an estimator is denoted by the parameter being

estimated unless stated otherwise. λh = ρ2
h and τh stand for eigenvalues and eigenvectors

of Σh−1
yx Σh−1

xy , respectively, satisfying Σh−1
xy τh = ρhrh for h = 1, 2, . . . , k. Since S(F ) = Σ,

λh(F ) = λh, ρh(F ) = ρh and rh(F ) = rh.

The functional for the SIMPLS estimator of β for h component is given by

β̂h(G) = Rh(G)R>
h (G)Sxy (4.6)

where Rh(G) = [r1(G), r2(G), . . . , rh(G)] and G ∈ F . So, for the sake of clarity, influence

function of β̂h is studied in three steps. In the first step, influence functions of S0
yxS0

xy

and the first PLS-weight vector, r1, are derived. In the second step, similar approach is

followed to find the influence function of hth PLS-weight vector, rh. Finally, in the third

step, influence functions for scaled PLS-weight vector, r̃h and PLS slope estimator, β̂h, are

given.

Step 1: Influence functions for SyxSxy and r1

Since S0
xyτ1 = ρ1r1, to determine the influence function of r1, it is necessary to deter-

mine the influence functions of τ1 and ρ1 that require influence function of S0
yxS0

xy. The

following lemmas are used to obtain influence function for S0
yxS0

xy = SyxSxy.

Lemma 4.1 The influence function of S at F ∈ F is

IF (γ∗; S, F ) = γ∗γ∗> − Σ. (4.7)
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Corollary 4.1 Let γ∗ = (u>, v)> be an arbitrary d-dimensional point. Then,

i. IF (γ∗; Sxy, F ) = uv − Σxy = IF (γ∗; Syx, F )>,

ii. IF (γ∗; Sxx, F ) = uu> − Σxx,

iii. IF (γ∗;SyxSxy, F ) = 2[vu>Σxy − ΣyxΣxy].

Proof:

i. IF (γ∗; Sxy, F ) = [Ip : 0]IF (γ∗; S, F )ed = uv − Σxy,

IF (γ∗; Syx, F ) = e>d S(F )[Ip : 0]> = vu> − Σyx = IF (γ∗; Sxy, F )>,

ii. IF (γ∗; Sxx, F ) = [Ip : 0]IF (γ∗; S, F )[Ip : 0]> = uu> − Σxx,

iii. IF (γ∗;SyxSxy, F ) = IF (γ∗; Syx, F )Σxy + ΣyxIF (γ∗;Sxy, F ),

= {vu> − Σyx}Σxy + Σyx{uv − Σxy} = 2[vu>Σxy − ΣyxΣxy] 2.

For the influence functions of the eigenvalue and the eigenvector of SyxSxy (ρ1 and τ1),

the following lemmas are used.

Lemma 4.2 (Sibson, [77]) Let A and B be two symmetric matrices, λi be the ith simple

eigenvalue of A and vi be the associated eigenvector of unit length. Let A be perturbed to

A(ε) = A + εB + o(ε2)

and assume that the corresponding perturbations of λi and vi are

λi(ε) = λi + ελ̃i + o(ε2)

vi(ε) = vi + εṽi + o(ε2).

Then, λ̃i = v>i Bvi and ṽi = −(A− λiI)+Bvi = −[
∑

j 6=i(
vjv>j
λj−λi

)]Bvi.

The following lemma mimics Lemma 4.2 and provides the influence functions of eigen-

values and corresponding eigenvectors of a positive definite symmetric (PDS) matrix, Λ.
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Lemma 4.3 (Croux and Haesbroeck, [12]) Let C : F → PDS(m) be a statistical func-

tional, F a m-dimensional distribution and γ ∼ F . Suppose that IF (γ∗;C,F ) exists and

C(F )=Λ. Denote the ith simple eigenvalue and eigenvector of Λ by λi and τi, respectively.

Then influence functions of functionals λi and τi at F ∈ F are given by

IF (γ∗; λi, F ) = τ>i IF (γ∗; C, F )τi (4.8)

IF (γ∗; τi, F ) =


∑

j 6=i

(
τjτ

>
j

λi − λj
)


 IF (γ∗; C,F )τi (4.9)

Proof: The perturbation of Λ, Λ(ε) = C(Fε), can be approximated as:

C(Fε) ≈ C(F ) +
∫

IF (γ∗; C,F )d(Fε − F ) + o(ε2) = Λ + εIF (γ∗; C, F ) + o(ε2)

([47] and [54]). Similarly λi and τi can be written as

λi(Fε) = λi + ελ̃i + o(ε2) = λi + εIF (γ∗; λi, F ) + o(ε2)

τi(Fε) = τi + ετ̃i + o(ε2) = τi + εIF (γ∗; τi, F ) + o(ε2),

where λ̃i and τ̃i are obtained from Lemma 4.2 as,

λ̃i = IF (γ∗;λi, F ) = τ>i IF (γ∗; C, F )τi

τ̃i = IF (γ∗; τi, F ) = −
[∑

j 6=i(
τjτ>j
λj−λi

)
]
IF (γ∗; C, F )τi =

[∑
j 6=i(

τjτ>j
λi−λj

)
]
IF (γ∗; C,F )τi

2.

Lemma 4.3 demonstrates that once IF (γ∗;SyxSxy, F ) is known, influence functions for all

PLS-weight vectors, and as a result of this, influence function of the PLS slope estimator

can be determined. Using Lemma 4.3, it can be easily seen that influence function for τ1,
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the eigenvector of SyxSxy, is 0. Since τ1 = 1, influence function for λ1 can be given as

IF (γ∗; λ1, F ) = IF (γ∗; SyxSxy, F ). (4.10)

Using IF (γ∗; SyxSxy, F ) given in Corollary 4.1 and using Σxy =
√

λ1r1, (4.10) can be

rewritten as

IF (γ∗;λ1, F ) = 2[vu>Σxy − ΣyxΣxy] = 2
√

λ1[vu>r1 −
√

λ1]. (4.11)

Furthermore, ρ1 =
√

λ1 so (4.11) can be written in terms of ρ1 as

IF (γ∗; λ1, F ) = IF (γ∗; ρ2
1, F ) = [

d

dρ1
ρ2
1]IF (γ∗; ρ1, F ) = 2ρ1[vu>r1 − ρ1] (4.12)

which implies

IF (γ∗; ρ1, F ) = vu>r1 − ρ1 = vr>1 u− ρ1. (4.13)

The functional for the first PLS weight vector, r1, satisfies Sxy(F )τ1(F ) = ρ1(F )r1(F ),

because it is the left singular vector of Sxy. Hence, influence function for r1, given next,

follows immediately from IF (γ∗;Sxy, F ) = IF (γ∗; ρ1, F )r1 + ρ1IF (γ∗; r1, F ).

Corollary 4.2 The influence function for the first weight vector, r1 at F ∈ F is

IF (γ∗; r1, F ) =
v

ρ1
[Ip − r1r1

>]u. (4.14)

It can be seen from (4.14) that IF (γ∗; r1, F ) is unbounded since it is a function of arbitrary

values of u and v.
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Step 2: Influence functions for Sh−1
yx Sh−1

xy and rh

In general, for h > 1 components, the hth PLS weight vector is obtained as the left

singular vector of Σxy
h−1. Thus, the functional for the hth PLS weight vector, rh, satisfies

Sh−1
xy (F )τh(F ) = ρh(F )rh(F ) where Sh−1

xy = [Ip − Vh−1V
>
h−1]Sxy with S0

xy = Sxy. Here, the

columns of Vh−1 = [v1, v2, . . . , vh−1] form an orthonormal basis for the space spanned by

[p1,p2, . . . ,ph−1] where pi ∝ Σxxri for i = 1, 2 . . . , h− 1.

Influence function for Sh−1
yx Sh−1

xy , which is same as the influence function for λh, is:

IF (γ∗;Sh−1
yx Sh−1

xy , F ) = IF (γ∗; λh, F ) = IF (γ∗; Syx[Ip −Υh−1]Sxy, F ) (4.15)

where Υh−1 = Vh−1V
>
h−1 =

∑h−1
i=1 viv

>
i . Using multiplication rule, (4.15) can be rewritten

as

IF (γ∗;λh, F ) = 2IF (γ∗;Syx, F )[Ip −Υh−1]Σxy − ΣyxIF (γ∗; Υh−1, F )Σxy. (4.16)

Since 2ρhIF (γ∗; ρh, F ) = IF (γ∗;λh, F ), after plugging IF (γ∗; Syx, F ) in (4.16), influence

function for ρh can be derived as

IF (γ∗; ρh, F ) = vr>h u− ρh − 1
2ρh

ΣyxIF (γ∗; Υh−1, F )Σxy.

The next corollary entails the influence function for rh that requires the use of IF (γ∗; Sh−1
xy , F )

and IF (γ∗; ρh, F ).

Corollary 4.3 The influence function for the hth (h > 1) weight vector, rh, at F ∈ F is

IF (γ∗; rh, F ) =
1
ρh

{
[Ip − rhrh

>]vu− [Ip − rh

2ρh
Σyx]IF (γ∗; Υh−1, F )Σxy −Υh−1uv

}
.

(4.17)
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Here, IF (γ∗; Υh−1, F ) can be calculated recursively.

This function is obtained directly by using the equality

IF (γ∗;Sh−1
xy , F ) = IF (γ∗; ρh, F )rh + IF (γ∗; rh, F )ρh.

Therefore, influence function for rh given in (4.17) depends on explicitly to arbitrary point

(u>, v)> as well as implicitly to the influence functions for all previous PLS-weight vectors.

So, IF (γ∗; rh, F ) in (4.17) is unbounded.

Step 3: Influence functions for r̃h and β̂h

The PLS weight vectors, rh, for h ≥ 1 should be scaled by functional
√

r>h Sxxrh to

be able make the hth component unit norm. The scaled version of the PLS-weight vector,

denoted by r̃h, has the influence function in the form of

IF (γ∗; r̃h, F ) =
[Ψ(h)Ip − rhrh

>Σxx]IF (γ∗; rh, F )
Ψ(h)3/2

− rhrh
>IF (γ∗;Sxx, F )rh

2Ψ(h)3/2
(4.18)

where Ψ(h) = rh
>Σxxrh for h ≥ 1.

Corollary 4.4 Influence function for the PLS slope estimator, represented by functional

β̂h = R̃hR̃h
>
Sxy with R̃h = [r̃1, r̃2, . . . , r̃h] for h components at F ∈ F is

IF (γ∗; β̂h, F ) = IF (γ∗; R̃h, F )R̃h
>
Σxy + R̃hIF (γ∗; R̃h, F )>Σxy + R̃hR̃h

>
IF (γ∗;Sxy, F )

(4.19)

where ith column of IF (γ∗; R̃h, F ) is IF (γ∗; r̃i, F ) for h ≥ 1.
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Similarly, r̃h in (4.18) is unbounded because it depends on the influence function for rh

which is unbounded. Finally, β̂h has unbounded influence function. The following example

([82]) demonstrates the unboundedness of the influence functions of SIMPLS estimators.

Example 4.1

Assume that γ ∼ N3(µ,Σ) where µ = (0 0 0)> and

Σ =




5 0.5 3

0.5 2 0.33̄

3 0.33̄ 2




.

The norms of the theoretical influence functions for r1 given in (4.14) and β̂1 = [β̂11, β̂12]>

given in (4.19) are calculated for γ∗ = (u>, v)> where u> = (i, 0) and v = j with i and

j take values between −10 to 10. The unbounded shapes of the influence functions, can

be seen in Figure (4.1). Hence, it can be concluded that the SIMPLS estimator of slope is

non-robust towards outlying observations.

4.3 Robustness of the RoPLS Estimator of β

SIMPLS regression is scale and orthogonal equivariant method ([43]). The first version

of BACON algorithm is scale and affine equivariant, therefore orthogonal equivariant ([5]).

Equivariance properties of BACON and SIMPLS guarantee the scale and orthogonal equiv-

ariance of the entire RoPLS1 , BACON based RoPLS, estimator of β. Therefore, RoPLS1

estimator, β̃, that is computed from a transformed response vector ỹ = αy (α ∈ R − {0})

and data matrix X̃ = XA (A: p× p orthogonal matrix), is given by

β̃ = αA>β̂ (4.20)
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Figure 4.1: (a) The norm of IF of the r1 (b) The norm of IF of the β̂1 (c) The IF of the β̂11

(d) The IF of the β̂12.
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where β̂ is RoPLS1 estimator that is computed from original data matrix, X, and response

vector, y. However, (4.20) does not hold for RoPLS2, PCOUT based RoPLS, estimator

since the coordinatewise median is not orthogonal equivariant. Because of its equivariance

advantage over RoPLS2, only robustness properties of RoPLS1 estimator are explored in

this section.

4.3.1 Influence functions for Low Dimension

RoPLS1 algorithm, introduced in Chapter 3, is an iterative algorithm that starts with

an initial estimator. This section is presented into two parts. In the first part, influence

functions for the initial estimators of PLS-weight vector and slope are derived for h ≥ 1

components. Then, in the second part, after deriving influence functions for the estimators

of PLS-weight vector and slope obtained in ith iteration, it is demonstrated that influence

functions in the following iterations are directly related to influence function of the initial

estimators where 0 ≤ i ≤ a and a is the number at which iteration converges.

In general, functional for the h component RoPLS1 estimator of β obtained in the

ith iteration is denoted by β̂
(i)
h , while the estimators of rh, λh and ρh are represented by

functionals r
(i)
h , λ

(i)
h , and ρ

(i)
h , respectively.

Part I: Influence Function for the Initial Estimator, β̂
(0)
h

Influence function of the initial estimator β̂
(0)
h is derived in three steps similar as in

Section 4.2.
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Figure 4.2: (a) Graph of w∗ for robust distances (b) Graph of w∗ for scaled errors, ε.

Step 1: Influence functions for SwyxSwxy and r
(0)
1

A functional, Sw(0), can be defined as Sw(0)(G) = EG(w(0)
G (γ)γγ>) for a random vector

γ=(x>, y)> and G ∈ F , where F is the same class of d-variate probability distributions

defined in Section 4.2. The weight functional, w
(0)
G (γ), is

w
(0)
G (γ) = w∗

(
dγ

B(G)
)

= w∗
(√

γ>SB(G)−1γ

)
(4.21)

where SB is the functional representative of the BACON estimator of covariance matrix of

γ (Σ) with range of positive definite matrices and w∗(:) is the function given in (3.11).

The weight function, w
(0)
G , is decreasing function of the distance which can be seen from

Figure 4.2 (a) with md(G) = max
{
1, median(dγ

B(G))
}
. Furthermore, 0 ≤ w

(0)
G (γ) ≤ 1 for

any G ∈ F . Existence of S(G) = EG(γγ>) implies existence of Sw(0)(G), since w
(0)
G (γ) is

bounded for G ∈ F . Therefore, functionals Swxy(0)(G) = EG

(
w

(0)
G (γ)xy

)
and Swxx(0)(G) =
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EG

(
w

(0)
G (γ)xx>

)
exist, and for h > 0, Sh−1

wxy(0)(G) = ρ
(0)
h (G)r(0)

h (G). Moreover, Sw(0)(G) is

a non-negative matrix because of the fact that 0 ≤ w
(0)
G (γ).

Throughout this section, the following are assumed to be held for i ≥ 0:

1. Sw(i)(F ) = Σ,

2. SB(F ) = Σ and IF (γ∗; SB
−1, F ) exists with a boundary,

3. PF {γ : q>γ 6= 0 and w
(i)
F (γ) > 0} > 0,

4. PF {γ :
√

γ>Σ−1γ = md(F )} = 0.

Assumption (1 ) implies Swxy(i)(F ) = Σxy, Swxx(i)(F ) = Σxx, r
(i)
h (F ) = rh, λ

(i)
h (F ) =

λh, ρ
(i)
h (F ) = ρh. When assumption (2 ) holds, dγ

B ′(H) exists with boundary. If for

every q ∈ Rd, the probability of {γ : q>γ 6= 0 and w
(i)
G (γ) > 0} is positive under G,

then q>Sw(i)(G)q > 0 implying that Sw(i)(G) is positive definite. Therefore, assumption

(3 ) is needed for positive definiteness of Sw(i)(G). The last assumption is required for

differentiability of w
(0)
G over the support of the random vector γ.

Similar to Section 4.2, the influence functions of SwyxSwxy = S0
wyx(0)S

0
wxy(0) and the

influence function for ρ1
(0) are used to obtain influence function of r

(0)
1 . The notation M ′(H)

is used to denote IF (γ∗; M, F ) where H = δγ∗ − F .

Lemma 4.4 Influence function of SwyxSwxy at F ∈ F is

IF (γ∗;SwyxSwxy, F ) = 2w
(0)
F (γ∗)u>vΣxy − 2ΣyxΣxy + 2C>Σxy (4.22)

where C = EF

(
∂w∗

∂dγ
B(F )

dγ
B ′(H)xy

)
.

Proof:

The influence function for Swxy is:
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Swxy
′(H) = ∂

∂tEF+tH

(
w

(0)
F+tH(γ)xy

)
|t=0= EF

(
w(0)′(H)xy

)
+

{
w

(0)
F (γ∗)uv − Σxy

}

where

w(0)′(H) = ∂
∂tw

(0)
F+tH(γ) |t=0= ∂

∂tw
∗
(
dγ

B(F + tH)
)
|t=0= ∂w∗

∂dγ
B(F+tH)

∂dγ
B(F+tH)

∂t |t=0.

Therefore,

Swxy
′(H) =

{
w

(0)
F (γ∗)uv − Σxy

}
+ EF

(
∂w∗

∂dγ
B(F )

dγ
B ′(H)xy

)

with the derivative

∂w∗(d)
∂dγ

B(F )
=





0; d < md(F )

−(d−2); d > md(F )}.

The derivative exists everywhere except d = md(F ) and it is bounded. Assumption (4 )

guarantees the existence of the derivative over the support of γ, whereas the assumption

(2 ) guarantees the boundedness of dγ
B ′(H). Therefore EF

(
∂w∗

∂dγ
B(F )

dγ
B ′(H)xy

)
exists. Let

C = EF

(
∂w∗

∂dγ
B(F )

dγ
B ′(H)xy

)
then;

SwyxSwxy
′(H) = Swyx

′(H)Swxy(F ) + Swyx(F )Swxy
′(H)

which is equal to

{
w

(0)
F (γ∗)u>v − Σyx

}
Σxy + C>Σxy + Σyx {wF (γ∗)uv − Σxy}+ ΣyxC

and this can be simplified as

SwyxSwxy
′(H) = 2w

(0)
F (γ∗)u>vΣxy − 2ΣyxΣxy + 2C>Σxy 2.

By Lemma 4.3, the influence function of λ1
(0) = ρ

(0)
1

2
is the same as the influence function

of SwyxSwxy and Σxy = ρ1r1, thus the influence function of λ
(0)
1 is given as

λ
(0)
1

′
(H) = 2ρ1ρ

(0)
1

′
(H) = 2ρ1

{
w

(0)
F (γ∗)u>vr1 − ρ1 + C>r1

}
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and this yields the following

ρ
(0)
1

′
(H) = w

(0)
F (γ∗)u>vr1 − ρ1 + C>r1 = w

(0)
F (γ∗)vr1

>u− ρ1 + r1
>C.

The following lemma gives the influence function for r
(0)
1 .

Lemma 4.5 The influence function of r
(0)
1 at F ∈ F is

IF (γ∗; r(0)
1 , F ) =

1
ρ1

[1− r1r1
>][w(0)

F (γ∗)vu + C] (4.23)

Proof:

Using the equality that Swxy(F +tH) = ρ
(0)
1 (F +tH)r(0)

1 (F +tH) and taking the derivatives

with respect to t for both sides, the following is obtained

S′wxy(H) = ρ
(0)
1

′
(H)r1 + ρ1r

(0)
1

′
(H). (4.24)

After plugging S′wxy(H) and ρ
(0)
1

′
(H) in (4.24), r

(0)
1

′
(H) can be written as

r
(0)
1

′
(H) =

1
ρ1

{
w

(0)
F (γ∗)uv − Σxy + C −

{
w

(0)
F (γ∗)vr1

>u− ρ1 + r1
>C

}
r1

}

and after simplifications, the influence function for r
(0)
1 is obtained as

r
(0)
1

′
(H) =

1
ρ1

[Ip − r1r1
>][w(0)

F (γ∗)vu + C]

2.

The influence function of r
(0)
1 , given in (4.23), consists of two parts. The first part,

1
ρ1

[Ip−r1r1
>]w(0)

F (γ∗)vu, is directly related to the influence function of classical PLS weight
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vector given in (4.14). The main difference between (4.14) and (4.23) is the presence of

additional weight vector, w
(0)
F (γ∗), in (4.23) which allows the first term of (4.23) to be

bounded. The second term, 1
ρ1

[Ip−r1r1
>]C, is obviously independent of γ∗. Since C exists,

the second term is a finite valued vector for given F . The following example demonstrates

how wF (γ∗) gets smaller for extreme observations, so that it makes the first part of the

r
(0)
1

′
(H) bounded.

Example 4.2

Consider the same setting given in Example 4.1. γ ∼ N3(µ,Σ) where µ = (0 0 0)>. In this

example, it is going to be shown that w
(0)
F (γ∗) is small for extreme γ∗ = (u>, v)>. Since,

γ>Σ−1γ is distributed with χ2 distribution with degrees of freedom rank(ΣΣ−1) = 3, the
√

γ>Σ−1γ has chi-distribution with degrees of freedom 3 and median is approximately

1.15, i.e., md = median(
√

γ′Σ−1γ) ≈ 1.15. The weight function is calculated for γ∗ where

u> = (i, 0) and v = j with i and j take values between −10 to 10. Figure 4.3 shows the

behavior of weights for different γ∗ values. Obviously, w
(0)
F (γ∗) takes values close to zero

for extreme values of γ∗.

Step 2: Influence functions for Sh−1
wyx(0)S

h−1
wxy(0) and r

(0)
h

The functional for the hth PLS weight vector, r
(0)
h , satisfies Sh−1

wxy(0)(F ) = ρ
(0)
h (F )r(0)

h (F )

where Sh−1
wxy(0) = [Ip − V h−1

w(0)V
h−1
w(0)

>
]Swxy. Here, the columns of V h−1

w(0) form an orthonormal

basis for the space spanned by {p(0)
1 , p

(0)
2 , . . . , p

(0)
h−1}. Therefore, the influence function for

Sh−1
wxy(0) is:

Sh−1
wxy(0)

′
(H) = −Υh−1

w(0)

′
(H)Σxy + [Ip −Υh−1]Swxy

′(H) (4.25)
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Figure 4.3: (a) Graph of w
(0)
F (γ∗) versus (u1,v) (b) Graph of w

(0)
F (γ∗)

versus robust distances.

with Υh−1
w(0) = V h−1

w(0)V
h−1
w(0)

>
and Υw(0)

h−1(F ) = Υh−1. Similarly, using multiplication rule,

the influence function for Sh−1
wyx(0)S

(h−1)
wxy(0) = Swyx[Ip −Υh−1

w(0)]Swxy is obtained as

2ρh

{
w

(0)
F (γ∗)vrh

>u− ρh + C>rh − 1
2ρh

ΣyxΥh−1
w(0)

′
(H)Σxy

}

which yields the influence function of ρ
(0)
h as

ρ
(0)′
h (H) =

{
w

(0)
F (γ∗)vrh

>u− ρh + C>rh − 1
2ρh

ΣyxΥh−1
w(0)

′
(H)Σxy

}
. (4.26)

So, the general form for the influence functions of r
(0)
h is given in the next lemma.

Lemma 4.6 The influence function of r
(0)
h at F ∈ F is

r
(0)
h

′
(H) = 1

ρh

{
[Ip − rhrh

>][vw
(0)
F (γ∗)u + C]− [Ip − rh

2ρh
Σyx]Υh−1

w(0)

′
(H)Σxy

}

− 1
ρh

{
Υh−1[w(0)

F (γ∗)uv + C]
}

where Υh−1
w(0)

′
(H) is calculated recursively.
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Proof:

Using Sh−1
wxy(0) = ρ

(0)
h r

(0)
h , taking derivatives of both sides and plugging (4.25) and (4.26), we

obtain;

r
(0)
h

′
(H) = 1

ρh

{
[Ip − rhrh

>][vw
(0)
F (γ∗)u + C]− [Ip − rh

2ρh
Σyx]Υw(h−1)

′(H)Σxy

}

− 1
ρh

{
Υh−1[w(0)

F (γ∗)uv + C]
}
.

2.

Step 3: Influence functions for r̃
(0)
h and β̂

(0)
h

r̃h
(0) is the scaled version of rh

(0) that is

r̃h
(0) =

rh
(0)

√
rh

(0)>Swxxrh
(0)

and using the quotient rule, the influence function of r̃h
(0) is

[Ψ(h)Ip − rhrh
>Σxx]r(0)

h

′
(H)

Ψ(h)3/2
− rhrh

>Swxx
′(H)rh

2Ψ(h)3/2

where Ψ(h) = rh
>Σxxrh and Swxx

′(H) = [w(0)
F (γ∗)uu> − Σxx + Cx] with

Cx = EF

(
∂w∗

∂dγ
B(F )

dγ
B ′(H)xx>

)
.

Cx exists under the same conditions that C exists. Similar to r
(0)
1 , the influence function of

r
(0)
h is comparable to the influence function of the classical PLS weight function, rh, in (4.17).

It consists of two parts: weighted version of equation (4.17) and the part depending on C

and Cx which are assumed to be finite valued vector and matrix, respectively. r
(0)
h

′
(H)

is bounded, so is influence function of r̃h
(0), as long as r

(0)
j

′
(H) for j = 1, 2, . . . , h − 1
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and Swxx
′(H) are bounded. These conditions also imply the boundedness of the influence

function for β̂
(0)
h given in the next lemma.

Lemma 4.7 Influence function for the initial RoPLS1 slope estimator for h (h ≥ 1) compo-

nent, represented by functional β̂
(0)
h = R̃h

(0)
R̃h

(0)>Swxy with R̃h
(0)

= [r̃1
(0), r̃2

(0), . . . , r̃h
(0)],

at F ∈ F is

β̂
(0)′
h (H) = R̃h

(0)′
(H)R̃h

>
Σxy + R̃hR̃h

(0)′
(H)

>
Σxy + R̃hR̃h

>
[w(0)

F (γ∗)uv − Σxy + C] (4.27)

where jth column of R̃h
(0)′

(H) is r̃j
(0)′(H) for 1 ≤ j ≤ h.

Part II: Influence Function for β̂
(i)
h

Assume that the slope estimator for h component model at iteration i − 1, β̂
(i−1)
h , is

given where i ≥ 1. In this part, influence function for β̂
(i)
h , is derived as in Part I.

Step 1: Influence functions for Swyx(i)Swxy(i) and r
(i)
1

A functional, Sw(i), can be defined as Sw(i)(G) = EG(w(i)
G (γ)γγ>) for a random vector

γ=(x>, y)> and G ∈ F , where F is the same class of d-variate probability distributions

defined in Section 4.2. The weight functional, w
(i)
G (γ), for i ≥ 1 is

w
(i)
G (γ) =

(
1− dB(G)

)
w∗

(
εh

(i)(G)
mad(εh

(i)(G))

)
=

(
1− dB(G)

)
w∗

(
εh

(i)(G)
)

(4.28)

where εh
(i)(G) = y − Xβ̂

(i−1)
h (G) and dB(G) is the normalized version of dx

B(G) =
√

x> ([Ip : 0]SB(G)[Ip : 0]>)−1
x that lies between 0 and 1.

w∗(εh
(i)(G)) is decreasing function of the |εh

(i)(G)| and lie between 0 and 1 which

can be seen from Figure 4.2(b) where mεh
(i)(G) = max

{
1,median(|εh

(i)(G)|)
}
, under the
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assumption that the marginal distribution of εh
(i)(G) = y−Xβ̂

(i−1)
h (G) is symmetric about

0. Similarly, 0 ≤ 1−dB(G) ≤ 1 decreases when distances in X space increase. Therefore, the

weight function, w
(i)
G , decreases with extreme residuals and/or large distances. Furthermore,

0 ≤ w
(0)
G (γ) ≤ 1 for any G ∈ F . Existence and non-negative definiteness of Sw(i) can be

shown as in Part I. Other assumption made in this section, additional to the (1 ), (2 ), (3 )

and (4 ) given in Part I, is that

5. PF {γ : |ε(i)
h | = m

(i)
εh (F )} = 0.

This assumption is required for differentiability of w∗(εh
(i)(F )) over the support of the

random vector γ.

Similar to previous subsection, the influence function for S0
wyx(i)S

0
wxy(i) = Swyx(i)Swxy(i)

is needed to determine the influence function of the r
(i)
1 for i ≥ 1.

Lemma 4.8 Influence function of Swyx(i)Swxy(i) at F ∈ F is

IF (γ∗; Swyx(i)Swxy(i), F ) = 2w
(i)
F (γ∗)u>vΣxy−2ΣyxΣxy+2ΣyxAi

d+2ΣyxAi
s+2ΣyxAi

ββ̂
(i−1)′
h (H)

(4.29)

with Ai
d = EF

(
−dB′(H)w∗(εh

(i))xy
)
, Ai

s = EF

(
−(1− dB) ∂w∗

∂εh
(i)

ε
(i)
h

s′(H)

s2 xy

)
, and

Ai
β = EF

(
−(1− dB) ∂w∗

∂εh
(i)

y
sxx>

)
where s = mad(ε(i)h (F )).

Proof:

The influence function for Swxy(i) is:

S′wxy(i)(H) = EF

(
w(i)′(H)xy

)
+EH

(
w

(i)
F (γ)xy

)
= EF

(
w(i)′(H)xy

)
+

{
w

(i)
F (γ∗)uv − Σxy

}

with

w(i)′(H) = ∂
∂tw

(i)
F+tH(γ) |t=0= ∂

∂t

{
(1− dB(F + tH))w∗

(
εh

(i)(F + tH)
)}

|t=0
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= −dB′(H)w∗(εh
(i)) + (1− dB) ∂w∗

∂εh
(i) εh

(i)′(H)

where εh
(i)(F ) = ε

(i)
h

(F )

s(F ) = ε
(i)
h with scaling factor s(F ) = mad(ε(i)h (F )) = s, ε

(i)
h (F ) =

y − x>β
(i−1)
h (F ) = ε

(i−1)
h , dB(F ) = dB, and εh

(i)′(H) is

εh
(i)′(H) =

ε
(i)′
h (H)s− ε

(i)
h s′(H)

s2
=
−x>β̂

(i−1)′
h s− ε

(i)
h s′(H)

s2
.

Therefore S′wxy(i)(H) can be written as

S′wxy(i)(H) = Ai
d + Ai

s + Ai
ββ̂

(i−1)′
h +

{
w

(i)
F (γ∗)uv − Σxy

}

with Ai
d = EF

(
−dB′(H)w∗(εh

(i))xy
)
, Ai

s = EF

(
−(1− dB) ∂w∗

∂εh
(i)

ε
(i)
h

s′(H)

s2 xy

)
, and

Ai
β = EF

(
−(1− dB) ∂w∗

∂εh
(i)

y
sxx>

)
.

Ai
d exists since dB′(H)w∗(εh

(i)) is bounded. From Figure 4.2(b), it can be seen that

∂w∗
∂εh

(i) exists everywhere except ±m
(i)
εh (F ). Hence, Ai

β exists because of the assumption (5 ).

Ai
s exists if Ai

β exists since s′(H) is known to be bounded which is influence function of robust

scatter measure median absolute deviation. Using multiplication rule and the fact that

S′wyx(i)(H) = S′wxy(i)(H)>, the following influence function is obtained for Swyx(i)Swxy(i):

2w
(i)
F (γ∗)u>vΣxy − 2ΣyxΣxy + 2ΣyxAi

d + 2ΣyxAi
s + 2ΣyxAi

ββ̂
(i−1)′(H)
h

2.

Since the influence function of Swyx(i)Swxy(i) is equal to 2ρ(i)′
1 (H),

ρ
(i)′
1 (H) = w

(i)
F (γ∗)vr>1 u− ρ1 + r>1 Ai

d + r>1 Ai
s + r>1 Ai

ββ̂
(i−1)′(H)
h .

The next lemma gives the influence function for r
(i)
1 .
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Lemma 4.9 Influence function of r
(i)
1 at F is

IF (γ∗; r(i)
1 , F ) =

1
ρ1

[
Ip − r1r

>
1

] [
w

(i)
F (γ∗)uv + Ai

d + Ai
s + Ai

ββ̂
(i−1)′(H)
h

]
(4.30)

The proof can be given in a similar way to that of the proof of Lemma 4.5.

Step 2: Influence function for r
(i)
h

The next lemma gives the influence function for r
(i)
h and the proof is similar to the

proof of Lemma 4.6.

Lemma 4.10 The influence function of r
(i)
h at F ∈ F is

r
(i)
h

′
(H) = 1

ρh

{
[Ip − rhrh

>][vw
(i)
F (γ∗)u + Ai

d + Ai
s + Ai

ββ̂
(i−1)′
h (H)]

}

− 1
ρh

{
[Ip − rh

2ρh
Σyx]Υh−1

w(i)

′
(H)Σxy

}

− 1
ρh

{
Υh−1[w(i)

F (γ∗)uv + Ai
d + Ai

s + Ai
ββ̂

(i−1)′
h (H)]

}

where Υh−1
w(i)

′
(H) is calculated recursively.

Step 3: Influence functions for r̃
(i)
h and β̂

(i)
h

r̃h
(i) is the scaled version of rh

(i) that is

r̃h
(i) =

rh
(i)

√
rh

(i)>Swxx(i)rh
(i)

and using the quotient rule, the influence function of r̃h
(i) is

[Ψ(h)Ip − rhrh
>Σxx]r(i)

h

′
(H)

Ψ(h)3/2
− rhrh

>Swxx(i)
′(H)rh

2Ψ(h)3/2
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where Ψ(h) = rh
>Σxxrh and Swxx

′(H) = [w(i)
F (γ∗)uu> −Σxx + Ai

xd + Ai
xs + Ai

xββ̂
(i−1)′
h (H)]

with Ai
xd = EF

(
−dB′(H)w∗(εh

(i))xx>
)
, Ai

xs = EF

(
−(1− dB) ∂w∗

∂εh
(i)

ε
(i)
h

s′(H)

s2 xx>
)

, and

Ai
xβ = EF

(
−(1− dB) ∂w∗

∂εh
(i)

yx>β̂
(i′)
h

(H)

s xx>
)

.

Ai
xd, Ai

xs, and Ai
xβ exist under the same conditions that Ai

d, Ai
s, and Ai

β exist. Finally,

the influence function for β̂
(i)
h is given in the next lemma.

Lemma 4.11 Influence function for the RoPLS1 slope estimator at the ith iteration for

h (h ≥ 1) component, represented by functional β̂
(i)
h = R̃h

(i)
R̃h

(i)>Swxy(i) with R̃h
(i)

=

[r̃1
(i), r̃2

(i), . . . , r̃h
(i)], at F ∈ F is

β̂
(i)′
h (H) = R̃h

(i)′
(H)R̃h

>
Σxy+R̃hR̃h

(i)′
(H)

>
Σxy+R̃hR̃h

>
[w(i)

F (γ∗)uv−Σxy+Ai
d+Ai

s+Ai
ββ̂

(i−1)′
h (H)]

(4.31)

where jth column of R̃h
(i)′

(H) is r̃j
(i)′(H) for 1 ≤ j ≤ h.

The boundedness of β̂
(i)′
h (H) for i ≥ 1 can be proven by induction. For i = 1, since

w
(1)
F gets smaller for the observations lying far from the data (large dB) and/or the ones

which are not fitted well by the model (large residuals), influence function given (4.30) is

bounded as long as β
(0)
h

′
(H) is bounded. Therefore, r

(1)′
1 (H) has bounded influence function.

Similarly, Swxx(1) has a bounded influence function. These facts imply the boundedness of

β̂
(1)′
h (H).

If we assume that β̂
(i)′
h (H) is bounded, using the similar argument it can be proven that

β̂
(i+1)′
h (H) is bounded. So, it can be concluded that under conditions described in Part I &

II, influence function for the h component RoPLS1 slope estimator, determined implicitly,

exists and it has infinitesimal robustness.
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4.3.2 Empirical Influence Function for High Dimension

Influence function obtained in Section 4.3 is shown to be bounded, which demonstrates

the robustness of RoPLS1 for low dimensional data. For high dimensional case with n

observations, the following empirical influence function, defined as

β̂(Γ̃)− β̂(Γ)
1/n

, (4.32)

is used where Γ̃ is the contaminated data set obtained from varying one observation of Γ,

β̂(Γ̃) and β̂(Γ) are the estimated slope vectors for the contaminated and the clean data,

respectively. Data are generated by the same simulation setting described in Chapter 3

where the error terms are generated from standard normal distributions, that is, ε ∼ N(0, 1).

The contamination added to a randomly chosen observation by varying the explanatory

variable and response variable between −50 to 50. For each contamination level, the norm

of the empirical influence function given in (4.32) is calculated for {n,p,k}={20,200,3} and

{25,125,2} . Then three dimensional plots in Figure 4.4 are constructed. Figure 4.4 (a) and

(c) clearly illustrate non-robustness of the SIMPLS estimator. However, empirical influence

curves for RoPLS1 estimator are clearly bounded which can be seen in Figure 4.4 (b) and

(d). The maximal norms of the empirical influence functions for the SIMPLS, RoPLS1,

PRM, and RSIMPLS estimators of β are summarized in Table 4.1. RoPLS1 yielded the

smallest upper bound for the norm of the empirical influence function.

{n,p,k}\ Method SIMPLS RoPLS1 PRM RSIMPLS
{20,200,3} 218.13 0.16 1.48 0.62
{25,125,2} 88.74 0.17 0.93 1.76

Table 4.1: The maximal norms for SIMPLS, RoPLS1, PRM, and RSIMPLS estimators.
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Figure 4.4: Norms of the empirical influence functions for the (a)SIMPLS, n=20, p=200,
k=3 (b) RoPLS1 n=20, p=200, k=3 (c) SIMPLS, n=25, p=125, k=2 (d) RoPLS1, n=25,
p=125, k=2.
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Figure 4.5: The finite-sample breakdown values of the SIMPLS, RoPLS1 and PRM estima-
tors for (a){n,p}={30,6} (b){n,p}={20,200}.

4.3.3 Finite-Sample Breakdown Properties of RoPLS1 Estimator

The resistance of a robust statistical method to groups of outliers is another important

issue which is measured by breakdown point. In this section, finite-sample breakdown value,

given in (4.5), is investigated for RoPLS1 estimator. After X and y are generated as in

Section 4.3.2, various amounts of contamination are added to generated data by replacing

first i observations (i = 1, 2, . . . , n/2) of the response variable with 50. For each amount

of contamination, the norm of the difference between slope estimates for the contaminated

and the clean data is calculated and a plot of norm versus contamination percentage is

constructed. The sample size and the number of variables are taken as {n,p}={30,6} and

{20,200} for k = 2 component PLS model. It is clear from Figure 4.5 that the SIMPLS

estimator of β is not robust, whereas RoPLS1 estimator copes with up to 43% of irregular
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observations for low dimensional case and about 40% for high dimensional case. PRM yields

comparable results with RoPLS1.
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Chapter 5

RoCPLS: Robust Partial Classification

5.1 Introduction

The problem of classifying entities into one of several groups has been one of the main

goals of many scientific investigations. For instance, predicting whether someone will have a

heart attack on the basis of demographic and clinical measurements or identifying a tumor

as one of the many different possibilities on the basis of DNA expression values are po-

tentially life-saving and hence are indispensable to physicians. Numerous other interesting

applications of classification can be found in a broad range of scientific areas such as chem-

istry, economics, marketing research, bio-informatics, image analysis, pattern recognition

and data mining.

Classification is a multivariate method of distinguishing among classes of objects by

developing a decision rule to assign a new object with unknown class membership to the

most likely group. In this study, only two-class problems are considered. (x′i, yi) denotes the

observed data set, with xi = [xi1, xi2, . . . , xip]′ ∈ Rp consisting of p characteristics that are

sampled from two populations and yi is the class membership for the observation i where

i = 1, 2, . . . , n. Ig = {i; yi = g} denotes the set of indices for the ng observations in the

class g where g = 1, 2 and n = n1 + n2.

It is important that classification is done in a manner that the proportion of misclas-

sified observations (misclassification error rate) is minimum. In general, performances of

classification methods can be evaluated based on their misclassification error rates which

can be obtained by using different approaches. Optimum error rate (OER) and actual error

89



rate (AER) are two quantities that can be used for determining misclassification probabili-

ties. However, they cannot, in general, be calculated, because they depend on the unknown

density functions of the populations. Another method, which is employed in this study

since it does not depend on the form of populations, is to split the data set randomly into

two non-overlapping sets, called learning, (XL, yL), and test, (XT, yT) sets. The learning

set, XL, allows to construct a decision rule, δ, that associates a new vector x ∈ Rp to one

of the two classes, that is

δ(x, XL, yL) : Rp → {1, 2}

where yL is the vector containing the class labels of the observations in the learning data

set, XL. Based on the determined classification rule, the fraction of the misclassified ob-

servations in the test set, XT, is computed. By repeating this process N times, estimated

misclassification error rate is obtained as

M̂ER =
1

NnT

N∑

r=1

nT∑

j=1

I{−1,1}(yj − ŷj) (5.1)

where nT is the number of observations in the test set, yj is the known class label in XL,

ŷj is the estimated class label for the jth observation in XT, and I{−1,1}(b) is the indicator

function which takes the value of 1 if b = −1, 1 and 0 otherwise. Apparent error rate

(APER) is another measure of the performance that can be used for any classification

procedure. APER is the fraction of observations in the XL that are misclassified by the

classification rule, δ(., XL, yL). Although, it is easy to calculate, it underestimates the error

rate. Cross-validation is also a popular approach that consists to split data set into m non-

overlapping subsets where m − 1 subsets form learning set to construct decision rule and
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remaining subset is used as test set. If m = n, the procedure is called leave-one-out cross

validation. Throughout this study, leave-one-out classification is employed to estimate the

value of meta parameter, k, i.e. optimal number of components.

Since the introduction of the Fisher’s discriminant (FD) analysis in 1936 ([28]), several

classification rules have been proposed and studied in the literature. FD analysis is based

on the idea of finding the directions in multivariate space that yield the best discrimination

between the groups of samples. This idea can be written as the optimization problem given

by

argmax
a∈Rp

a′Ba

a′Wa
=

a′
{∑2

g=1 ng(xg − x)(xg − x)′
}

a

a′
{∑2

g=1

∑
i∈Ig

(xi − xg)(xi − xg)′
}

a
(5.2)

where B is the sample between-group matrix, W is the sample within-group matrix, xg

sample mean vector for gth class with g = 1, 2 and x is the overall sample mean vector. In

general, if α1 is the largest eigenvalue and e1 is the corresponding eigenvector of W−1B,

then a = e1 = S−1
p (x1 − x2) is the solution of the optimization problem in (5.2) where

Sp = W/(n− 2) is the sample pooled covariance matrix. Therefore FD rule can be given as

δFD(x, X, y) =





1; e′1x ≥ 0.5(x1 − x2)′S−1
p (x1 + x2)

2; otherwise.

FD rule is developed under the assumption that the two populations have a common co-

variance matrix and it does not explicitly assume any form for the underlying distributions.

Bayes classification is another approach that needs prior probabilities, πg, and prob-

abilistic structure estimates for each class. The Bayesian discriminant rule assigns an ob-

servation x ∈ Rp to the population for which posterior probability, P (y|x), is maximal.

Under the assumption that each class comes from multivariate normal distribution with
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equal covariance matrix, the allocation rule is

δLD(x, X, y) = argmax
g

LDg(x;X, y); (5.3)

where

LDg(x; X, y) = x′gS
−1
p x− 0.5x′gS

−1
p xg + ln(πg); (5.4)

and this is called linear discriminant (LD) rule. Provided that the two classes come from

the two normal distributions with the same covariance matrix and equal prior probabilities,

δFD is equivalent to linear discriminant rule, δLD. When the assumption of equality of

covariance matrices is not satisfied, an individual covariance matrix for each group can be

used in (5.4) and this leads to the so-called quadratic discriminant (QD) analysis as the

discriminating boundaries are quadratic curves.

Over the last decade, many sophisticated classification methods, like support vector

machine, neural networks, classification and regression trees (CART), have been proposed.

In spite of these refined methods, δLD, that yields optimal discrimination between two

classes, is still often used and very popular because of the simplicity, unnecessity of strict

assumptions, interpretation easiness and its good performance in many applications. Of

course from the point of view of optimality, LD analysis should be used for classification

when it can be used. However, it becomes a serious challenge to use LD analysis in the set-

tings where the data matrix X is multicollinear or p >> n. Because, the sample covariance

matrix estimate is near singular if high collinearity exists and high dimensionality makes

direct matrix operation difficult. Many solutions have been proposed to deal with these

problems such as variable selection, penalized estimation, and dimension reduction.
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Variable selection is a very popular method due to its simplicity and interpretabil-

ity. The most commonly used variable selection methods are based on a score (such as

t-statistic, Wilcoxon’s rank-sum statistic, false discovery rate) which measures discriminat-

ing power of each variable individually and the variables with the best scores are selected

(see [20], [24], [25]). These methods are called univariate ranking methods. The major

drawback is the selection of variables according to an individual relevance score that ig-

nores the correlations and interactions among variables. Therefore, more complex criteria

than the individual scores have been proposed (optimal subset selection methods), which

are generally computationally expensive and suffer from over fitting problem ([7], [11], [52]).

Penalization (regularization) methods can be also employed to stabilize the pertinent

covariance matrices so that the classical discrimination paradigms might be implemented

(see [32]). These methods reduce the variance associated with the sample based estimate

at the expense of potentially increased bias.

Dimension reduction (feature extraction) is another alternative to deal with dimen-

sionality problem. It allows the visualization of data in a low dimension, takes into account

the correlation structure of the data and the most importantly, utilizes the information

on all variables. This topic, particularly PLS as a dimension reduction tool, is examined

in Section 5.2. Although, PLS solves dimensionality problem by constructing orthogonal

components described in Section 5.2, it fails to deal with data containing outliers. There-

fore, in Section 5.3, a new robust method, RoCPLS, is proposed. To our knowledge, there

has been no study on the robustness of PLS based classification methods. Performances of

the existing PLS based classification methods and RoCPLS are compared using benchmark

data sets in Section 5.4.
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5.2 Classification Methods Based on Dimension Reduction

A typical DNA microarray data set in tumor tissue classification studies consists of

expression measurements on thousands of genes over a relatively small number of tissue

samples. Similarly, in food research, classical classification methodologies can not be used

for the prediction of presence/absence of a preservative in a particular food product based

on spectral data in which number of variables is very large and the correlation among them

is substantial.

One approach to classification problems, dealing with high dimensional and/or collinear

data sets, is to employ a dimension reduction method and then perform a standard clas-

sification method in the reduced space. In this section, we study dimension reduction for

classification based on PLS and PCA followed by LD implemented in the reduced subspace.

Another classification method such as logistic regression can also be employed instead of

LD, however logistic regression does not perform well when the classes are completely or

quasi-completely separated which is quite common configuration in microarray data.

Although PLS was originally designed for problems with quantitative response, it has

started to be used frequently as a dimension reduction tool for classification problems where

response variable is qualitative. There are mainly two approaches when PLS is employed

as a dimension reduction method for classification purpose.

One approach is to utilize NIPALS algorithm to determine components. However, since

NIPALS algorithm consists of regression steps (see Chapter 2), it seems to be unappealing

to use NIPALS algorithm designed to handle continuous response models that do not suffer

from heteroscedasticity. So, Marx ([60]) proposed an extension of NIPALS algorithm to han-

dle qualitative response models. He basically incorporated the original NIPALS algorithm
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into the framework of generalized linear models by employing iteratively reweighted least

squares (IRLS). The main drawback of the method is the convergence problem. Therefore,

Ding and Gentleman ([21]) modified the Marx’s method by applying Firth’s procedure ([27])

to resolve complete or quasi-complete separation problem resulted in convergence problem.

Recent method by Fort and Lacroix, RPLS, ([30]), combines the NIPALS algorithm and

Ridge penalized logistic regression. They also provided an extensive simulation study to

compare existing NIPALS based classification methods and concluded that misclassification

error rates for IRPLS and Ding and Gentleman’s method are lower and less variable.

The other most commonly used approach is to determine PLS components for classifi-

cation problem is applying original SIMPLS algorithm, described in Chapter 2. Barker and

Rayens ([4]), Nguyen and Rocke ([65]) and Boulesteix ([8]) proposed the use of SIMPLS for

dimension reduction based on SIMPLS as a preliminary step to classification problems. In

this chapter, SIMPLS based classification is considered because not only SIMPLS has com-

putational advantages over NIPALS algorithm (see Chapter 2), but also optimal directions

obtained by SIMPLS are related to the Fisher’s optimal directions, so there is a relationship

between classification based on SIMPLS and Fisher’s discrimination. The following lemma

gives this relationship.

Lemma 5.1 (Boluesteix, [8]) If the common covariance matrix, Σ, is assumed to be of the

form Σ = σ2Ip for a non-zero constant σ, then a = e1 and the first PLS-weight vector, r1

are collinear.

Proof:

Let X and y be centered. r̂1 is the direction that maximizes the square of the covariance

between projected explanatory variable and response variable, i.e.
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r̂1 = argmaxa cov(Xa, Y ) = X′y√
y′XX′y

.

The centered y is given by

yi =





−n2/n; i ∈ I1

n1/n; i ∈ I2.

Therefore, the jth row of p× 1 vector r1 is

−n2

n

∑

i∈I1

xij +
n1

n

∑

i∈I2

xij =
n1n2

n
(x2j − x1j)

and

r̂1 =
(x2 − x1)
‖ x1 − x2 ‖ .

Therefore r1 is proportional to the normalized form of µ1 − µ2 which is the dominant

eigenvector of between-groups matrix, B. Since e1 = Σ−1(µ1 − µ2) and Σ = σ2Ip, r1 and

e1 are collinear 2.

Lemma 5.1 implies that SIMPLS depends on the between-groups matrix. It is also

obvious that the within-group matrix information is not utilized to construct SIMPLS

components, that is, since only B not W is involved, classification based on SIMPLS only

depends on between-groups matrix. So, LD outperforms in the situations that it can be

implemented. However, in the existence of multicollinearity, optimality advantage of LD

over SIMPLS based classification would reverse direction.

PCA reduces the dimension of the data set by retaining as much as possible the vari-

ation present in the data. So, PCA is only capable of identifying total variability, i.e.,

B + W , and not capable of distinguishing between-groups and within-groups variability

which is the main goal of Fisher’s discrimination ([4], [8]). Especially, if within-groups
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variability, W , dominates the total variability, PCA will no longer perform well as a classifi-

cation tool. Since, SIMPLS depends on the between-groups matrix, when the discrimination

is the major goal after dimension reduction, SIMPLS is to be preferred to PCA. The fol-

lowing example also indicates that PLS outperforms the PCA as within-groups variability

increases.

Example 5.1

This example is the modified version of the example given by Barker and Rayens, [4]. 50

observations from the two multivariate normal distributions with the means µ1 = (−2, 0, 0)′

and µ2 = (2, 0, 0)′ and common covariance matrix

Σ =




1 0 0

0 1 rσ

0 rσ σ2




are generated N=100 times, where σ2 = 1, 2, . . . , 6 is the variance of the third variable and

r = 0.9 is the correlation between second and third variable. Misclassification error rates

are calculated using leave-one-out cross validation and these rates are averaged over 100

randomly generated data. It can be seen from Figure 5.1 that as σ2, variance of the third

variable, varies from 1 to 6, the misclassification rate based on PCA based classification

increases since the PCA loses sight of the discrimination information when within-group

matrix dominates the total variability.

PCA and SIMPLS are both linear dimension reduction methods, but SIMPLS uses

class information, y, to construct components (supervised), while PCA does not use the

class information (unsupervised). There are several other dimension reduction methods

that can be applied in the context of classification. For instance, sliced inverse regression
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Figure 5.1: Misclassification error rates for PLS and PCA for k=1.

(SIR) is one of the sufficient dimension reduction methods ([51]) which represent a family

of dimension reduction procedures. A simulation study by Dai et al. ([14]) demonstrates

that SIMPLS and SIR are both effective in dimension reduction for classification and also

more effective than PCA which is not surprising since both SIMPLS and SIR are supervised

methods. Considering both accuracy and computational efficiency, it is concluded in this

study that SIMPLS provides the best performance among PCA and SIR.

5.3 Description of the Proposed Algorithm: RoCPLS

In Chapter 3, it has been shown that RoPLS is successful in regression framework

where data contain outliers. Partial least squares is also frequently used as a classification

method as described in Section 5.2. In the presence of outliers, dimension reduction via

PLS would yield unreliable results since PLS is known to be sensitive to outliers. Although

several robust PLS methods have been proposed when the response variable is quantitative,

to our knowledge, there has been no study on the robustness of PLS when the response
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variable is qualitative. In this section, the sensitivity of PLS based classification methods

to outliers is demonstrated and an extension of the robust method introduced in Chapter 3

is given.

The proposed algorithm, RoCPLS, is the robustified version of SIMPLS based clas-

sification. The main differences between RoPLS and RoCPLS are that weights for the

response variable, y, are immaterial and weights for data matrix, X, are computed for each

class separately. The detailed algorithm is given below:

Algorithm: RoCPLS

Input: n×p data matrix, X, n×1 vector of response variable, y, a new observation, x ∈ Rp

Output: Score matrix, T , and p × k PLS weight matrix, R and class label for the new

observation, ŷ

Step 1 : Let Xg = {xij ; i ∈ Ig, j = 1, 2, . . . , p} for g = 1, 2. Apply PCOUT algorithm, de-

scribed in Section 3.2.2, to X1 and X2 to obtain weight vectors w1 and w2, respectively. Take

p∗ = ng − 1 for high dimensional data and p∗ = rank(Xg) for low dimensional data where

g = 1, 2. Within each group, any observation with final weight less than 0.25 is assigned

as an outlier. So, let X∗
1 and X∗

2 be the clean matrices of observations with corresponding

weights greater than 0.25, and merged matrix

X∗ = {x∗ij} =




X∗
1

X∗
2


,

with the vector of class labels y∗ and nc
1 and nc

2 are the number of observations in X∗
1 and

X∗
2 , respectively with nc = nc

1 + nc
2.

Step 2 : Let X0 = {x0
ij} = X∗; X0

1j = {x0
ij ; 1 ≤ i ≤ nc

1} and X0
2j = {x0

ij ; n
c
1 + 1 ≤ i ≤ nc}

for 1 ≤ j ≤ p. Repeat steps 2.1− 2.6 for h = 1, 2, . . . , k:

Step 2.1 : Compute PLS weight vector rh with jth row equal to:
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rh(j) =
m1

j −m2
j

‖ m1
j −m2

j ‖

where

mg
j =

∑
i∈Ij

g
xh−1

ij

nj
g

with

Ij
1 = {i; 1 ≤ i ≤ nc

1 and q25(Xh−1
1j )− 1.5IQR(X0

1j) ≤ xh−1
ij ≤ q75(X0

1j) + 1.5IQR(X0
1j)}

Ij
2 = {i; nc

1 + 1 ≤ i ≤ nc and q25(Xh−1
2j )− 1.5IQR(X0

2j) ≤ xh−1
ij ≤ q75(X0

2j) + 1.5IQR(X0
2j)}

where q25 and q75 are the 25th and 75th sample quantiles; IQR is the interquartile range

and nj
g is the size of Ij

g for g = 1, 2 and j = 1, 2, . . . , p.

Step 2.2 : Compute hth score, th = X∗rh, and normalize th =: th/‖th‖,

Step 2.3 : Update hth PLS weight, rh =: rh/
√

r′hX∗′X∗rh,

Step 2.4 : Compute hth x-loading by regressing X∗ on th: ph = X∗′th ,

Step 2.5 : Store vectors rh, th, and ph into matrices Rh = [r1, r2, . . . , rh],

Th = [t1, t2, . . . , th], and Ph = [p1,p1, . . . ,ph], respectively.

Step 2.6 : h =: h + 1 and Xh−1 = X∗(Ip − Vh−1V
′
h−1) = {xh−1

ij } where columns of

Vh−1 form an orthonormal basis for Ph−1.

Step 3 : ŷ = δLD(x′Rh, Th, y∗)

The constructed component matrix, Th, is not only utilized to determine classification

rule, but also used to plot the first two or three components which helps to display relation-

ships, possible groupings and potential outliers in the data. After projecting the original

data matrix, X, on the robustly calculated directions, R, orthogonal-score distance plot,
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described in Section 3.3, can be constructed to distinguish regular, good PLS-leverage, or-

thogonal and bad PLS-leverage points. It can be also used to visualize outlying observations

within each class.

Numerical examples with diagnostic plots in Section 5.4 demonstrated the robustness

and efficiency of the proposed method.

5.4 Numerical Examples

In this section, two benchmark data sets are utilized to compare performances of the

existing dimension reduction based classification methods and proposed method, RoCPLS.

5.4.1 Low Dimension: Wine Recognition Data

The wine recognition data ([29]) are the results of a chemical analysis of wines grown in

the same region in Italy but derived from three different cultivars. The analysis determined

the quantities of 13 constituents (i.e., the level of alcohol, the level of magnesium, the color

intensity ) found in each of the types of wines. In this study, only two cultivars with sample

sizes 59 and 71 are considered.

To determine the optimal number of components, SIMPLS based cross-validation er-

ror rate is calculated for h = 1, 2, . . . , 10 components and the scree plot in Figure 5.2 is

obtained. Based on the figure, the optimal number of components is determined as 7,

i.e. k = 7 which yields the lowest error rate. The orthogonal-score plots for SIMPLS and

RoCPLS based on k = 7 component model can be seen in Figure 5.3. It is obvious that

none of the PLS-bad leverage points can be identified when SIMPLS is employed, while
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Figure 5.2: Cross validation error rates obtained for Wine data.

observations 74, 79, 96, 111 and 122 are determined as PLS-bad leverage points when RoC-

PLS is employed. We deleted all PLS-bad leverage points as well as two good leverage

points 70 and 97 that are identified by RoCPLS; and SIMPLS based cross-validation error

rate is calculated for the new data which yields Figure 5.4. Excluding these observations

clearly yielded smaller error rates, and it also indicates that k = 4 is the optimal number of

components. This example demonstrates how outlying observations can affect the misclas-

sification error rate based on SIMPLS as well as the decision of the k. The orthogonal-score

plots based on k = 4 for SIMPLS and RoCPLS yielded very similar patterns observed in

Figure 5.3, therefore they are not repeated here.

In order to compare the classification accuracies, 100 random partitions, into learn-

ing set containing 70% of the data and a test set containing remaining observations, are

generated. We keep observations 70, 74, 79, 96, 97, 111 and 122 in the learning set for each

partition. Then, we calculated the classification rule based on learning set and evaluated

estimated class membership of the observations in the test set after projecting them onto
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Figure 5.3: Orthogonal-score distance plots based on SIMPLS (left) and RoCPLS (right)
for Wine data.
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Figure 5.4: Scree plots for original and deleted Wine data.
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the directions calculated from learning set and using the rule based on learning set. For

h = 1, 2, 3, 4, the error rates, given in Table 5.1., are obtained. Both SIMPLS and RoCPLS

give lower error rates than PCA does. Beside this, RoCPLS yields the smallest error rates

for each h which indicates the robustness of the method.

h SIMPLS RoCPLS PCA
1 0.0703 0.0677 0.0703
2 0.0736 0.0462 0.0744
3 0.0374 0.0292 0.0659
4 0.0187 0.0100 0.0362

Table 5.1: The mean misclassification error rates for Wine data based on SIMPLS, RoCPLS
and PCA classification.

5.4.2 High Dimension: Colon Data

Colon data set ([2]) contains the expression levels of p = 2000 genes for n = 62 patients

from two classes. 22 patients are healthy patients and 40 have colon cancer. After the

data preprocessed described in Dudoit ([24]), only 1224 variables remain. Cross validation

error rates indicated that k = 4 components result in the minimum error rate. Therefore,

orthogonal-score plots for k = 4 components are constructed using SIMPLS and RoCPLS

which are given in Figure 5.5. None of the plots indicates the existence of extreme outliers.

The scatter plot of the first three components in Figure 5.6 does not display any outlying

observations. It can also be seen from Figure 5.6 that classes are not completely separated.

This also explains why high misclassification error rates are obtained in Table 5.2 (k = 4)

where DG stands for Ding and Gentleman’s method ([21]). As in previous example, 100

randomly splitted data sets are employed to calculate the error rates. The optimal value

of k is estimated in each iteration based on the learning set. Boxplots given in Figure 5.7
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Figure 5.5: Orthogonal-score distance plots based on SIMPLS (left) and RoCPLS (right)
for Colon data.

summarize the error rates calculated from each method. Clearly, all methods give better

results than PCA. The numerical results and graphics show the comparable performances

of SIMPLS and RoCPLS, which demonstrates the efficiency of the proposed method at

uncontaminated data sets.

SIMPLS RoCPLS PCA DG
0.1326 0.1363 0.2289 0.1389

Table 5.2: The mean misclassification error rates for SIMPLS, RoCPLS, PCA and DG
based classification.

5.4.3 High Dimension: Leukemia Data

This data set was introduced in Golub et al. ([37]) and it contains the expression levels

of 7129 genes for 47 ALL-leukemia patients and 25 AML-leukemia patients. After data

preprocessing, only 500 variables remain. Leave-one-out cross validation on the whole data

set indicated k = 2 components should be retained in the model. For k = 2 components,
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Figure 5.6: 3D scatter plot of the first three components for Colon data obtained from
RoCPLS.
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Figure 5.7: Boxplots of the error rates for SIMPLS, RoCPLS, PCA and DG based classifi-
cation.
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Figure 5.8: Scatter plot of the first two components for Leukemia data.

scatter plot of the first two components is constructed (Figure 5.8), where the separation

between two groups can be clearly seen. The orthogonal-score plots obtained from SIMPLS

and RoCPLS do not demonstrate any extreme observations in the data as in colon data set.

Leukemia data set is randomly divided into a learning set of size 50 and a test set of

size 22, N = 250 times. For this simulation study, we introduced 0, 1, 2, and 3 outly-

ing observations to the each class corresponding to 0%, 4%, 7% and 10% contamination,

respectively. For class g, contaminated observation is generated from multivariate normal

distribution with mean (10)1500 + xg and covariance matrix I500 with class label y = g, for

g = 1, 2. For example, when 2 outliers are introduced for each class, the first two component

plot and orthogonal-score plot, obtained from RoCPLS in Figure 5.9, indicate that these

observations are PLS-bad leverage points.
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Figure 5.9: The scatter plot of first two components (left) and orthogonal-score plot (right)
for Leukemia data.

As in colon data example, leave-one out method applied to clean learning set of size

50 to determine optimal number of components within each division. 60% of the time k is

determined as 2, while 40% of the time k = 1. For the optimal value, k, the error rates

based on the methods SIMPLS, RoCPLS, PCA and DG are calculated for the test set. The

boxplots in Figure 5.10 summarize the simulation results. For the clean data (no outliers),

all methods yield very comparable results. Once again, it can be seen that RoCPLS is

an effective method for uncontaminated data. As the number of outlying observations

increases, the error rates for the SIMPLS, PCA and DG increases as well. However, adding

outlying observations do not affect the error rates based on RoCPLS. The main reason

behind this is that the optimal directions obtained by RoCPLS are robust to outliers. In

order to show that, the angle between the first PLS components, r1, obtained from the clean

and the contaminated data is calculated for SIMPLS and RoCPLS. Boxplots, in Figure 5.11,

are constructed for each contamination level based on N = 250 divisions. The angle for

SIMPLS tends to increase as contamination level increases. However, RoCPLS yield smaller
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Figure 5.10: Boxplots of the error rates for (a) no outliers (b) 1 outlier (c) 2 outliers (d)3
outliers in each class.

angles than that of SIMPLS, and as contamination level increases, the results remain almost

the same.
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Figure 5.11: The angle between first PLS weight vectors for clean and contaminated data.
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Chapter 6

Conclusions and Future Work

In this dissertation, different aspects of partial least squares methods have been stud-

ied. In this chapter, final conclusions on all results obtained throughout dissertation are

summarized. We also discuss some possibilities for future research.

In Chapter 2, the main concepts of PLS are introduced and a detailed overview of its

applications to different data analysis problems is given. Two important algorithms, SIM-

PLS and NIPALS (PLS1 and PLS2) are described. It is stated that the optimal number of

components is an important issue in PLSR model building and several approaches in the

literature proposed for determining optimal number of components, k, are reviewed. The

connections among the biased estimation methods PLSR, PCR, and RR are examined in

detail. Statistical properties of PLSR such as shrinkage, asymptotic variance and consis-

tency are discussed. As a conclusion, computational and implementation simplicity of PLS

is a strong aspect of the approach which favours PLS to be used as a first step to understand

the existing relations and to analyse real world data.

In Chapter 3, a new iterative robust external reweighting algorithm for the regression

coefficient vector, which gives low weights to points with high leverage and/or large residuals

is proposed. This algorithm is carried out in two main parts: 1. obtain initial weights as

robust distances from recent outlier detection methods, BACON (RoPLS1) or PCOUT

(RoPLS2), to downweight outlying points in predictor X-space and/or response y-space to

get an initial PLS estimate for the regression coefficient vector, 2. perform reweighted PLS

regression iteratively by using the initial PLS estimate of the regression coefficient vector
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obtained in the first part. Both RoPLS1 and RoPLS2 can be applied to low and high

dimensional explanatory variables. Simulations have shown that they are resistant towards

many types of contamination, whereas their performance is also good at uncontaminated

data sets. RoPLS1 is scale and orthogonal equivariant, therefore it can be preferred over

RoPLS2 which is not orthogonal equivariant.

In Chapter 4, it is shown that SIMPLS algorithm is highly non-robust towards outlying

observations. It is illustrated that a single sample can change the direction of the SIMPLS

weight vectors and the regression estimates arbitrarily. This also appears in their unbounded

influence functions. Robustness properties of RoPLS estimator of β, including influence

function for low dimension, empirical influence curve for high dimensional case and finite-

sample breakdown properties, are provided. It is shown that the influence function of all

pairs of PLS weight vectors and of the regression estimator are bounded which makes the

method resistant towards point contamination. For high-dimensional data, it is illustrated

on simulated data sets that the empirical influence function remains bounded and that it

can resist large fractions of contamination. The resistance of a robust statistical method to

groups of outliers is another important issue which is measured by breakdown point, hence

the finite sample breakdown point is determined for RoPLS1 which is approximately 40%

for both low and high dimensional settings.

In Chapter 5, the effect of outliers on existing PLS classication methods is investigated

and a new robust PLS algorithm for classification (RoCPLS) is proposed. It is shown that

the proposed method is very effective for uncontaminated data and it yields better results

when data contain outliers.
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In this dissertation, we have shown promising results for RoPLS and RoCPLS as a data

mining tool and high-dimensional classifier, respectively. There is, of course, more research

to be done. We would like to extend RoPLS to multivariate case and RoCPLS to multi-class

case. Also, we would like to employ the influence function of the RoPLS1 estimator for the

robust estimation of its variance. The relationship between the PLS components and the

variable selection is going to be explored to build a robust variable selection method in the

future.
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Appendix

X : n× p matrix of explanatory variables

Y : n× q matrix of response variables

y : n× 1 vector of response variable

ai : jth column of a matrix A (column vector)

ai : ith row of a matrix A (column vector)

A′ : Transpose of matrix A

A⊥ : Orthogonal complement of A

A−1 : Inverse of matrix A

A+ : Moore-Penrose inverse of matrix A

Im : m×m identity matrix

1m : m× 1 vector of ones

‖a‖ : Euclidian norm of a vector a

∝ : Proportional to
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