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A comparison of hazard rates of multiple treatments are compared under the

assumption that survival times follow the log-logistic distribution. Exact test proce-

dures are developed for ordered comparisons of the worst case hazard rates of several

log-logistic survival functions. In particular, critical constants are computed for test-

ing the null hypothesis that all dose levels give the same maximum hazard rates versus

the alternative that the maximum hazard rates are decreasing with increasing dose

level. In addition, critical constants are given for comparing equal maximum hazard

rates against the alternative of valley ordered hazard rates. A procedure for build-

ing simultaneous confidence intervals for certain contrasts is provided. The procedure

proposed in this thesis is then compared to two nonparametric simultaneous inference

procedures compare it to two nonparametric procedures: the Jonckheere-Terpstra test

and the Mack-Wolfe test.
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Chapter 1

Introduction

In survival analysis, the survival and hazard functions are very functions used to

characterize the important characteristics of survival up to a certain specified time

and instantaneous death or break-down at a specific time. Although the Weibull

distribution is frequently used in modeling survival data, its use is restricted since

its hazard function is either monotonically increasing or decreasing. The log-logistic

distribution is similar in appearance to the log-normal distribution but its hazard

and survival functions can be computed efficiently. Thus it is a good choice when

the hazard rate function is desired to have increasing and then decreasing shapes in

addition to monotone increasing/decreasing shapes. Moreover, the log-logistic distri-

bution can be easily employed in the presence of censored data which is very common

in survival or reliability analysis. It is very difficult to use log-normal distribution

in such cases. Consequently, the log-logistic distribution has seen increasing use re-

cently. For example, Diekmann [12] used the log-logistic distribution as a model for

event history analysis, Bennett [8] used it to model survival data, and Singh, Lee and

George [41] used it to model censored survival data.

The log-logistic distribution is a derivative of the very popular logistic distrib-

ution. The logistic distribution was initially developed to model population growth

by Verhulst [47, 48]. Verhulst [47] noticed that exponential distribution was used
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in studies involving growth of biological populations such as cancer cells and bacte-

ria. But when there is a limitation of food and space for a large population then its

growth will not follow the exponential curve but rather the logistic curve. The use

of the logistic distribution for economic and demographic purposes was very popular

in the nineteenth century. The logistic distribution is also known by names such as

growth function, autocatalytic curve and so on depending on its application. The

name ‘logistic ’was coined by Reed and Berkson [32]. Berkson [10] noted that under

some circumstances if the dosage of a drug is expressed in proportion to its logarithm,

the effect, as a percentage, follows the form of a more or less symmetric sigmoidal

curve, the integral of a normal curve has been employed for the estimation of the

potency of a drug. The logistic distribution has been used on human population by

Pearl and Read [31], on fish by Jensen [21], on animals by Miller and Botkin [11], on

bacteria and cells by Tan [43] and on tumor cells by Eisen [15], and on breast tumor

by Moolgavkar [30].

In many practical situations theories and previous evidences or conditions suggest

an expected ordering among the treatment effects. Example of such situations include

severity of disease, drug dosage level etc. In our study, we consider a dose-response

relationship where increasing dose levels lead to certain order relationships among

the hazard rates. In particular we consider the situation where increasing dose leads

to decreasing hazard rate and the situation where increasing dose leads to decreasing

hazard rate up to a certain level and any more increase in the dose level results in an

increase in hazard rate.
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Such type of ordered alternatives have been considered in the past. Robert-

son [33] considers umbrella ordering to fit multinomial distributions to cell counts.

Bartholomew [5, 6, 7] proposed a likelihood ratio test (LRT) for umbrella alternatives.

Simpson and Margolin [40] considered umbrella ordering in dose-response relation-

ships. Hayter and Liu [18] considered umbrella alternative for the normal distribution

and Singh et al.[42] for the logistic distribution. More recently, the test of a null of

no difference against that of a u-shaped alternative was developed for the exponential

distribution location parameters by Abebe and Singh [1]. A nonparametric test for

umbrella alternatives was given by Mack and Wolfe [28].

When it comes to simple (increasing or decreasing) ordering of parameters,

Hayter and Liu [17] developed tests for the normal distribution location parame-

ters while Tebbs and Bilder [44] developed such tests for comparing proportions. A

nonparametric test for the simple order was given by Jonckheere [22] and Terpstra

[45].

In Chapter 2 the log logistic distribution and its properties are discussed along

with its comparison with the log-normal distribution. In Chapter 3, we develop

an exact simultaneous testing procedure to compare the maximum hazard rates of k

treatments (or doses) under a simple ordering restriction. From the union-intersection

test statistic, the required critical constants are computed using a recursive algorithm

and tables of critical constants are provided. A Monte Carlo simulation is performed

to verify the results and compare the new test procedure with the nonparametric test

due to Jonckheere and Terpstra. The fourth chapter deals with the valley ordering
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restriction of the maximum hazard rates. A test statistic is introduced for testing for a

valley ordering and a recursive algorithm is given for computing the critical constants.

The power of this test is then compared to that of the Mack-Wolfe procedure for

umbrella alternative. Chapter 5 presents a discussion of simultaneous confidence

intervals for a certain set of contrasts.
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Chapter 2

The Log-Logistic Distribution and its Properties

The log-logistic distribution is used in survival and reliability analysis as a model

for survival times and is similar in shape to the log-normal distribution (see for

example Kalbfleish and Prentice [24] ). Its use is appealing because, like the lognormal

distribution, its hazard rate function takes several different shapes depending on

a value of a shape parameter. Recently it has seen increased use in hydrology to

model stream flow and precipitation and also in economics as a simple model of the

distribution of wealth or income due to its relationship to the generalized Pareto

distribution. For more on the use of the log-logistic distribution in hydrology, the

reader is referred to Shoukri et al.[39], Robson and Reed [35], or Ahmad et al.[3].

2.1 Density and Distribution Functions

A random variable T is said to follow the log-logistic distribution with scale

parameter γ and shape parameter β, henceforth denoted by T ∼ LL(γ, β), if its

probability density function (pdf) is given by

f(t; γ, β) =
(β/γ)(t/γ)β−1

[1 + (t/γ)β]2
, t > 0 , (2.1)

where γ > 0 and β > 0. The corresponding cumulative function (cdf) is given by
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F (t; γ, β) =
tβ

γβ + tβ
. (2.2)
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Figure 2.1: The pdf of LL(1, β) for different values of β

In Figure 2.1, the pdf of log-logistic distribution is shown for various values of β.

This is a non negative distribution of random variables which takes various shapes.

For β ≤ 1 the pdf is a decreasing function, where as for β > 1, the pdf is an increasing

decreasing function and there by has a peak. As value of β increases, the peak of the

pdf shifts towards one and becomes more symmetric.
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Figure 2.2: The cdf of LL(1, β) for different values of β

In Figure 2.2 the cdf of the log-logistic distribution is shown for various values

of β.
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2.2 Relationship with the Logistic Distribution

A random variable X is said to follow the logistic distribution with location µ

and scale σ, written X ∼ L(µ, σ), if its probability density function (pdf) is given by

g(x; µ, σ) =
exp

(
−(x−µ)

σ

)

σ
[
1 + exp

(
−(x−µ)

σ

)]2 , |x| < ∞ ,

where −∞ < µ < ∞ and σ > 0. The cdf is given by

G(x; µ, σ) =
[
1 + e

−(x−µ)
σ

]−1

.

The relationship between the logistic and the log-logistic distributions is anal-

ogous to that between the normal and the log-normal distributions. In particular,

using a simple change-of-variable technique, one can show that X ∼ L(µ, σ) if and

only if T ≡ exp(X) ∼ LL(exp(µ), 1/σ) distribution.

In later sections, we will exploit this relationship between the two random vari-

ables when constructing simultaneous tests and confidence intervals.

2.3 Moments, Mode and Median

Let T ∼ LL(γ, β). The kth moment of T for k < β can be shown to be

ET k = γkB(1− k/β , 1 + k/β) = γk(kπ/β) csc(kπ/β) ,
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where B(· , ·) is the beta function given by B(a, b) =
∫ 1

0
sa−1(1−s)b−1ds and csc(·) is

the cosecant function. The kth moment is undefined if k ≥ β. In particular, if β > 1,

we can show that the mean and variance of T are (see Tadikamalla and Johnson [2])

ET = γ(π/β) csc(π/β)

and

ET 2 − E2T = γ2[(2π/β) csc(2π/β)− (π/β)2 csc2(π/β)] .

The LL(γ, β) distribution is unimodal with

γ

(
β − 1

β + 1

)1/β

.

for β > 1. The mode is zero for β ≤ 1. The median m of LL(γ, β) is found by solving

F (m; γ, β) = 0.5 which gives m = γ.

2.4 Survival and Hazard Functions

The survival function, also known as the reliability function in engineering, is

the characteristic of an explanatory variable that maps a set of events, usually as-

sociated with mortality or failure of some system onto time. It is the probability

that the system will survive beyond a specified time. The term reliability function is

common in engineering while the term survival function is used commonly in many

fields, including human mortality. Lately, the log-logistic survival model is being used
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increasingly. Conkin [14] used the log-logistic survival model as a model for hypobaric

decompression sickness as a consequence of flying high in the atmosphere. According

to Jones [23], even when the underlying survival function was best described by a

negative power curve, a log-logistic model fits the data well and provides more ver-

satility for fitting individual populations. In summarizing survival data, there are

two important functions, namely survival function and hazard function. The actual

survival time of an individual, represented by t is regarded as the realized value of

the survival time T , which is a random variable that can take any non negative value.

The survival function of T ∼ LL(γ, β) is

S(t) = P (T > t) =
[
1 + (t/γ)β

]−1

.

This survival function is plotted in Figure 2.3. These decreasing survival func-

tions cross each other at t = 1 as S(t) becomes independent of β for this particular

value of t.

The corresponding hazard function is the probability that an individual dies or

an equipment fails at instantaneously at time t, provided that the individual survived

up to time t. So the hazard function represents the death rate at a given point of

time t. The hazard function at t is given by

λ(t) =
f(t)

S(t)
= (β/γ)(t/γ)β−1

[
1 + (t/γ)β

]−1
.
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Figure 2.3: The pdf of LL(1, β) for different values of β

Figure 2.4 explains the hazard rate function for different values of β. Later on

we assume β > 1 so that hazard rate function increases and decreases. We compare

the worst case scenarios.

Thus besides the similarity of the log-logistic distribution to the log-normal dis-

tribution, one using the log-logistic distribution to model survival data has the ad-

vantage of knowing explicit forms of the hazard and survival functions. This is not

the case with the log-normal distribution.
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Figure 2.4: The cdf of LL(1, β) for different values of β

2.5 Comparison of Log-Normal and Log-Logistic Distributions

In this section we will compare several characteristics of the log-logistic and log-

normal distributions.

Considering the shape of the distributions, the log-normal distribution, like the

Weibull distribution, is a very flexible model that can empirically fit many types of

failure time data. The log-normal distribution has two parameters, shape parameter
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and a scale parameter. The log-logistic distribution is also defined using a scale and a

shape parameter and can also take a variety of shapes like the log-normal distribution.

Since scale parameter will not affect the tails of either the log-normal or the log-

logistic distributions, we can take the scale parameter to be unity without any loss of

generality. The log-logistic distribution has heavier tail than log-normal distribution

when the shape parameter of the log-logistic distribution is less than or equal to 4√
2π

times the shape parameter of the log-normal distribution Yanagimoto [50].

According to Bennett [8], the log-logistic distribution is very similar in shape

of the log-normal distribution but the log-logistic distribution is more suitable for

survival analysis than the log-normal distribution when the data contain censored

observations. Censored observations are quite common in survival analysis and the

log-normal distribution cannot be used directly in the presence of censored data. With

the Weibull distribution being monotonic increasing or decreasing, the log-logistic

distribution is a popular choice.

The differences between the probability density functions of the log-normal and

log-logistic distributions is illustrated in Fig. 2.5 for the same grid values. Similarly,

the cdf of the log-normal and log-logistic distributions are shown in Fig. 2.6.

Some properties of the log-logistic and log-normal distributions are listed in Table

2.1.
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Figure 2.5: The pdf of log-logistic and log-normal distributions

2.6 Sampling Distribution of the Logistic Sample Median

We will be using the sampling distribution of the median of a random sample

from the logistic distribution to construct tests and intervals relating to the scale

parameter of the log-logistic distribution. The median is considered to be a good

estimator of the location parameter of the logistic distribution since

1. the logistic distribution is symmetric,

2. the logistic distribution is long-tailed,

3. the median is easy to compute, and

4. the closed form expressions of the pdf and cdf of the sampling distribution of

the logistic median are known.
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Figure 2.6: The cdf of log-logistic and log-normal distributions

Consider a random sample of size n from the logistic distribution with location

parameter µ and scale parameter σ. Without loss of generality, let m = (2n − 1).

The probability density function (pdf) of logistic distribution L(µ, σ) in variable X

is given by Eq. 2.3

f(x; µ, σ) =
a

σ

e
−a(x−µ)

σ

1 + e
−a(x−µ)

σ

(2.3)

and corresponding cumulative function (cdf) is given by

F (x; µ, σ) =
1

1 + e
−a(x−µ)

σ

(2.4)

where a = π/
√

3.
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Log-normal Distribution Log-logistic Distribution
Support [0,∞) [0,∞)

Probability Density Function 1
xσ
√

2π
exp

(
− (ln(x)−µ)2

2σ2

)
(β/γ)(t/γ)β−1

[1+(t/γ)β]
2

Cumulative Density Function 1
2

+ 1
2
Φ

(
(ln(x)−µ)

σ
√

2

)
tβ

γβ+tβ

Mean eµ+σ2 απ/β
sin(π/β)

if β > 1, else not defined

Median eµ γ

Mode e(µ−σ2) γ
(

β−1
β+1

)1/β

if β > 1, 0 otherwise

Table 2.1: comparison of log-logistic and log-normal distribution

Given a random sample X1, . . . , Xn from the L(0, 1) distribution, by ordering

X(1) ≤ X(2) ≤ · · ·X(n)

we can get the median as X(m). Using the formula for the distribution of order

statistics we can write the pdf of the sample median as

ψm(x) =
Γ(2m)

Γ2(m)
F (m−1)(x)[1− F (x)]m−1f(x)

that, after some simplification, can be written as

ψm(x) =
Γ(2m)

Γ2(m)
a(e−ax)m(1 + e−ax)−2m (2.5)

16



The cdf is given by

Ψm(x) =
Γ(2m)

Γ2(m)

m−1∑
j=0

(
m− 1

j

)
(2m− j − 1)−1(−1)m−1−j(1 + e−ax)j+1−2m . (2.6)

The probability density functions and cumulative distribution function of the

logistic distribution with median as location parameter is shown in Fig. 2.7 and Fig.

2.8.
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Figure 2.7: The pdf of logistic distributions with median as location parameter.

The asymptotic distribution of the standardized sample median is normal with

mean zero and variance [4nf 2(0)]−1 since f 2(0) = a2/16 this variance reduces to

12/nπ2 Ref. [27]
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Figure 2.8: The cdf of logistic distributions with median as location parameter.
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Chapter 3

Simple Ordering of Hazard Rates

Consider the situation where we have k dose levels of a certain treatment. Sup-

pose that n subjects have been randomly allocated to each of the k dose levels. Let

the survival times be given according to the log-linear model

log Tij = µi + εij , 1 ≤ j ≤ n , 1 ≤ i ≤ k , (3.1)

where εij are independent L(0, σ) random variables and µi is the unknown center of

the ith treatment and the scale parameter σ is assumed to be known. As we have

shown earlier, this condition is equivalent to assuming that Tij ∼ LL(exp(µi), 1/σ)

for 1 ≤ j ≤ n , 1 ≤ i ≤ k.

Let λi(·) be the hazard function of the ith dose level and let

λmax
i = sup

t
λi(t) ,

1 ≤ i ≤ k. We are interested in finding out if increasing dose leads to a decrease of

the worst case hazard rate of individuals. In particular, we would like to perform the

simultaneous test of the null hypothesis

H0 : λmax
1 = · · · = λmax

k

19



versus the simple ordering alternative

Hs : λmax
1 ≥ · · · ≥ λmax

k

with at least one strict inequality.

As the following theorems show, for the log-logistic distribution, performing this

test is equivalent to making multiple comparisons of the scale parameters of the log-

logistic distribution.

Theorem 3.1. Let λ(·; γ, β∗) be the hazard function of LL(γ, β∗), for a given value

of β∗. Then λ(·; γ, β∗) is a monotone decreasing function of γ.

Proof. The proof follows since for any given t, we can write

λ(t; γ, β∗) =
β∗tβ

∗−1

γβ∗ + tβ∗
.

Theorem 3.2. Let λmax(γ, β∗) be worst case of the hazard function of LL(γ, β∗), for

a given value of β∗. Then λmax(γ, β∗) is a monotone decreasing function of γ.

Proof. For any given t, we can write log-logistic distribution as

λ(t; γ, β) =

(
β
γ

)(
t
γ

)β−1

1 +

(
t
γ

)β
.

20



If β > 1, we can find the value of t that maximizes λ(t; γ, β) by solving

0 =
∂λ(t)

∂t
=

(
β
γ

)
(β − 1)

(
t
γ

)β−2[
1 +

(
t
γ

)β]
− β

(
t
α

)β−1(
β
γ

)(
t
γ

)β−1

[
1 +

(
t
γ

)β]2
.

This gives

0 = (β − 1) + (β − 1)

(
t

α

)β

− β

(
t

γ

)β

and solving for t gives

tmax = γ

(
β − 1

) 1
β

Substituting in λ(t; γ, β) we get

λ(tmax; γ, β) =

(
β
γ

)(
tmax

γ

)β−1

1 +

(
tmax

γ

)β

=

(
β
γ

)[
γ

(
β−1

) 1
β

γ

]β−1

1 +

[
γ

(
β−1

) 1
β

γ

]β

=

(
β − 1

)β−1/β

γ
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Thus for a fixed β = β∗

λmax =
k

γ

where k is a constant.

One may consider a Cox proportional hazards model by imposing the restriction

λi(t) = λ0i(t) exp(δi)

where δi is an unknown constant. This restriction produces a models that are in the

so-called Lehmann class (Lehmann [25] ). Although this is used often in the literature,

it imposes a proportionality assumption that is not necessary in our case. Thus, this

model will not be considered in this thesis.

In a similar manner to the proof of Theorem 3.1, one can show that the survival

function of the LL(γ, β) distribution is a monotone increasing function of γ for a

fixed value of β. So, a similar analysis may be performed for survival functions. In

our case, it is true that decreasing λ(·) is equivalent to increasing S(·) and thus the

inferences that we develop for λ(·) may be used directly for S(·).

Let us now consider the test of H0 versus the simple ordering Hs. By Theo-

rem 3.2, the hypotheses can be written down as

H0 : γ1 = · · · = γk
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versus

Hs : γ1 ≤ · · · ≤ γk

with at least one strict inequality. Here γi = exp(µi) and µi is given in Equation 3.1

for 1 ≤ i ≤ k. Since exp(·) is a monotone increasing function, this is equivalent to

testing

H0 : µ1 = · · · = µk

versus

Hs : µ1 ≤ · · · ≤ µk

with at least one strict inequality. Recall that this corresponds to the case where

increasing dose levels are expected to give decreasing worst case hazard rates.

Thus we have reframed the problem as a multiple comparison of logistic location

parameters. This has been considered in Singh et al.[42]. Similar comparisons for the

case where the underlying distribution is normal has been considered in the literature

(see Robertson et al.[34] ). Williams [49] gave a test based on the maximum likelihood

estimators of the normal means µ1, . . . , µk under the restriction given by Hs : µ1 ≤

· · · ≤ µk. Hayter [16] gave a studentized range test for the normal case while Hayter

and Liu [17] gave a recursive computational procedure for computing the exact critical

values of this studentized range test.

We reiterate that if we know any information specifically about the data from

theory or from the previous experience that the hazard rates follow a certain order

prior to collecting the data, then it is very important to incorporate this information
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into our analysis. If one neglects these factors then the potential consequence will be

improper interpretation of results.

3.1 Test Statistic

Consider the model given by Equation 3.1. Let Yi = median{log Ti1, . . . , log Tin}

for 1 ≤ i ≤ k. For H0 versus Hs given above, the statistic for the union-intersection

test (Roy [36]; Sen [38] ) is given by

Wk,m = min
1≤i<j≤k

(Yi − Yj)

and the null is rejected in favor of the alternative for small values of Wk,m. In partic-

ular, H0 is rejected at with a familywise error rate of α if and only if

Wk,m ≤ −ck,m,α

where ck,m,α is chosen such that

P0(Wk,m ≤ −ck,m,α) = α .

Most of our remaining discussion of this chapter considers the computation of the

critical constants ck,m,α.
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3.2 Computing the Critical Constants

Since the variance of L(µ, σ) is π2σ2/3, we will re-parameterize it using log T/a

in place of log T and then taking, without loss of generality, the known σ = 1, where

a = π/
√

3. Under the null, Wk,m is invariant to log-logistic scale transformations,

we can take γ = 1 (or equivalently µ = 0 for the logistic distribution). This means

that, under the null, Tij are iid LL(1, a) random variables, 1 ≤ i ≤ k, 1 ≤ j ≤ n.

Consequently, under the null, the medians Y1, . . . , Yk are iid random variables.

Let us take n = 2m−1. The even sample size case is analogous. From the theory

of order statistics (David and Nagaraja [4] or see the discussion above), the pdf and

cdf of Y1, . . . , Yk are

ψm(x) =
Γ(2m)

Γ2(m)
a(e−ax)m(1 + e−ax)−2m (3.2)

and

Ψm(x) =
Γ(2m)

Γ2(m)

m−1∑
j=0

(
m− 1

j

)
(2m− j − 1)−1(−1)m−1−j(1 + e−ax)j+1−2m (3.3)

respectively.

The following theorem gives an integral equation that can be used in computing

the desired critical constants.
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Theorem 3.3. The critical constant c = ck,m,α is the solution of

1− α =

∫ ∞

−∞
ψm(y)Ak(y, c)dy ,

where Ak(y, c) = P0 (min1≤i<j≤k(Yi − Yj) ≥ −c|Yk = y).

Proof. From the definition of the critical constants we have that P0(Wk,m ≥

−ck,m,α) = 1− α. Now with c = ck,m,α, we have

1− α = P0(Wk.m ≥ −c) = P0

{
min

1≤i<j≤k
(Yi − Yj) ≥ −c

}
.

Conditioning on Yk gives

1− α =

∫ ∞

−∞
P0

(
min

1≤i<j≤k
(Yi − Yj) ≥ −c

∣∣∣Yk = y

)
ψm(y) dy

which is nothing but

1− α =

∫ ∞

−∞
ψm(y)Ak(y, c)dy .

Note that the computation of the critical constants requires finding the numerical

solution of the k-variate integral equation 1− α =
∫∞
−∞ ψm(y)Ak(y, c)dy. This is not

feasible for any practical value of k. However, the advantage of the representation
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given in the above theorem is that instead of solving a k-variate integral equation,

we can now recursively compute Ak that can then be solved numerically to give the

critical constants. The following theorem gives the recursive algorithm that is used

to compute Ak.

Theorem 3.4. Let

A0(y, c) = 1

At(y, c) = P0

(
min

1≤i<j≤t+1
(Yi − Yj) ≥ −c|Yt+1 = y

)
, t ≥ 1 .

Then, for t ≥ 2, At(y; c) can be recursively computed as

At(y, c) =

∫ ∞

y

At−1(x, c)ψm(x)dx + At−1(y, c)[Ψm(y)−Ψm(y − c)] .

Proof. For t = 1

A1(y, c) = P0

(
min

1≤i<j≤2
(Yi − Yj) ≥ −c|Y2 = y

)

= P0 (Y1 − Y2 ≥ −c|Y2 = y)

= P0(Y1 ≥ y − c)

= 1−Ψm(y) + Ψm(y)−Ψm(y − c)

=

∫ ∞

y

A0(x, c)ψm(x)dx + A0(y, c)[Φm(y)− Φm(y − c)] .
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For t ≥ 2

At(y, c) = P0

(
min

1≤i<j≤t
(Yi − Yj) ≥ −c , min

1≤i≤t
(Yi − y) ≥ −c

)

=

∫ ∞

y−c

P0

(
min

1≤i<j≤t
(Yi − Yj) ≥ −c , min

1≤i≤t
(Yi − y) ≥ −c | Yt = x

)
ψm(x)dx

=

∫ ∞

y−c

P0

(
min

1≤i<j≤t−1
(Yi − Yj) ≥ −c , min

1≤i≤t−1
Yi ≥ max(y − c, x− c)

)
ψm(x)dx

=

∫ y

y−c

P0

(
min

1≤i<j≤t−1
(Yi − Yj) ≥ −c , min

1≤i≤t−1
Yi ≥ max(y − c, x− c)

)
ψm(x)dx +

∫ ∞

y

P0

(
min

1≤i<j≤t−1
(Yi − Yj) ≥ −c , min

1≤i≤t−1
Yi ≥ max(y − c, x− c)

)
ψm(x)dx

=

∫ y

y−c

P0

(
min

1≤i<j≤t−1
(Yi − Yj) ≥ −c , min

1≤i≤t−1
(Yi − y) ≥ −c

)
ψm(x)dx +

∫ ∞

y

P0

(
min

1≤i<j≤t−1
(Yi − Yj) ≥ −c , min

1≤i≤t−1
(Yi − x) ≥ −c

)
ψm(x)dx

=

∫ y

y−c

P0

(
min

1≤i<j≤t
(Yi − Yj) ≥ −c|Yt = y

)
ψm(x)dx +

∫ ∞

y

P0

(
min

1≤i<j≤t
(Yi − Yj) ≥ −c|Yt = x)

)
ψm(x)dx

=

∫ ∞

y

At−1(x, c)ψm(x)dx + At−1(y, c)[Ψm(y)−Ψm(y − c)]

The theorem above shows that Ak can be represented as

Ak(y, c) =

∫ ∞

y

Ak−1(x, c)ψm(x)dx + Ak−1(y, c)[Ψm(y)−Ψm(y − c)]
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setting up a recursion of univariate integrals. After computing Ak using this recursive

algorithm, the integral equation

1− α =

∫ ∞

−∞
ψm(y)Ak(y, c)dy,

can easily be solved using Gauss quadrature. The Matlab code that is used is found

in the appendix. The computed critical constants for k = 3(1)10 and m = 3(1)10 for

α = 0.01, 0.05 are given in Table 3.1.

Values of the critical constants ck,m,α, decreases as the value of the location of

the median increases and ck,m,α increases as the number of groups increases. These

changes ensure that the test maintains level α.

3.3 Monte Carlo Simulation

3.3.1 Nominal Level Simulation

After finding the values of the critical constants for different combinations of

group sizes and sample sizes, we performed a simulation study to evaluate the cor-

rectness, in terms of retaining the nominal α, of the computed critical constants.

This is done by repeatedly generating k× (2m−1) random variates from the LL(1, 1)

distribution, splitting these into k equal parts o f 2(m−1) and computing the hazard

rate function. We then compute the test statistic Wk,m and compute the proportion

of times H0 is rejected. 10,000 iterations are performed and these values are given
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α = 0.01
k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

m=3 1.9203 2.0877 2.2075 2.3007 2.3770 2.4414 2.4972 2.5463
m=4 1.6163 1.7542 1.8525 1.9288 1.9910 2.0435 2.0888 2.1287
m=5 1.4211 1.5407 1.6258 1.6916 1.7453 1.7905 1.8295 1.8638
m=6 1.2826 1.3895 1.4655 1.5242 1.5720 1.6122 1.6468 1.6773
m=7 1.1778 1.2754 1.3446 1.3980 1.4414 1.4780 1.5095 1.5371
m=8 1.0951 1.1853 1.2493 1.2986 1.3387 1.3724 1.4014 1.4269
m=9 1.0276 1.1119 1.1716 1.2177 1.2551 1.2865 1.3136 1.3373
m=10 0.9712 1.0507 1.1069 1.1502 1.1854 1.2149 1.2404 1.2627

α = 0.05
k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

m=3 1.4516 1.6352 1.7650 1.8653 1.9468 2.0154 2.0745 2.1265
m=4 1.2285 1.3818 1.4897 1.5728 1.6402 1.6968 1.7455 1.7882
m=5 1.0837 1.2178 1.3120 1.3843 1.4429 1.4921 1.5343 1.5713
m=6 0.9803 1.1009 1.1854 1.2503 1.3028 1.3467 1.3845 1.4176
m=7 0.9016 1.0121 1.0894 1.1487 1.1967 1.2368 1.2712 1.3014
m=8 0.8393 0.9418 1.0135 1.0684 1.1128 1.1499 1.1818 1.2097
m=9 0.7883 0.8843 0.9515 1.0029 1.0444 1.0791 1.1089 1.1349
m=10 0.7456 0.8362 0.8996 0.9480 0.9871 1.0199 1.0479 1.0724

Table 3.1: Table of critical values ck,m,α for simple ordered alternatives
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in Table 3.2. It can be seen that the computed constants maintain give Type I error

rates that is very close to the nominal levels.

k=h, α = 0.01
k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

m=3 0.0109 0.0114 0.0101 0.0076 0.0115 0.0113 0.0075 0.0095
m=4 0.0100 0.0100 0.0105 0.0102 0.0122 0.0092 0.0095 0.0086
m=5 0.0120 0.0097 0.0095 0.0100 0.0105 0.0104 0.0096 0.0083
m=6 0.0093 0.0117 0.0094 0.0090 0.0096 0.0103 0.0112 0.0097
m=7 0.0087 0.0113 0.0097 0.0106 0.0105 0.0096 0.0098 0.0095
m=8 0.0102 0.0110 0.0105 0.0098 0.0088 0.0090 0.0096 0.0099
m=9 0.0109 0.0112 0.0090 0.0100 0.0097 0.0099 0.0084 0.0105
m=10 0.0096 0.0097 0.0109 0.0104 0.0102 0.0114 0.0097 0.0101

k=h, α = 0.05
k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

m=3 0.0468 0.0509 0.0506 0.0510 0.0483 0.0540 0.0466 0.0529
m=4 0.0483 0.0499 0.0482 0.0551 0.0508 0.0484 0.0523 0.0469
m=5 0.0500 0.0547 0.0539 0.0554 0.0487 0.0502 0.0464 0.0498
m=6 0.0506 0.0471 0.0488 0.0495 0.0518 0.0497 0.0497 0.0506
m=7 0.0510 0.0507 0.0495 0.0524 0.0485 0.0518 0.0468 0.0475
m=8 0.0485 0.0517 0.0489 0.0494 0.0493 0.0527 0.0449 0.0531
m=9 0.0481 0.0516 0.0499 0.0494 0.0471 0.0481 0.0497 0.0502
m=10 0.0512 0.0501 0.0492 0.0477 0.0520 0.0534 0.0478 0.0518

Table 3.2: Table of significance level α for simple ordered alternatives

3.3.2 Power Simulation versus the Jonckheere-Terpstra Test

The corresponding nonparametric test when the treatment can be labeled a priori

in such a way that the experimenter expects any deviation from H0 to be in the

particular direction associated with Hs is the Jonckheere and Terpstra of Jonckheere

[22] and Terpstra [45], that can be found in Hollander and Wolfe [19]. As above, we
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label the treatments so that the ordered alternatives are appropriate. The labeling

must be done in accordance with the nature of the experimental design and not the

data observed.

After labeling the treatments so that they are in the expected order in the alterna-

tive Jonckheere-Terpstra statistic J is then the sum of the k(k− 1)/2 Mann-Whitney

counts Uuv given by

Uuv =
nu∑
i=1

nv∑
j=1

φ(log Tiu, log Tjv), 1 ≤ u < v ≤ k

where φ(a, b) = 1 if a < b, 0 otherwise. That is, Uuv is the number of sample u

before sample v precedences. The Jonckheere-Terstra statistic J , is then sum of these

k(k − 1)/2 Mann-Whitney counts,

J =
v−1∑
u=1

k∑
v=2

Uuv

For testing the null hypothesis

H0 : λmax
1 = · · · = λmax

k

versus the simple ordering alternative

Hs : λmax
1 ≥ · · · ≥ λmax

k
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with at least one strict inequality at α level of significance, the JT test rejects H0 if

J ≥ jα. The value of jα is taken from table A.13 of Hollander and Wolfe [19] chosen

to make Type I error probability equal to α.

n α jα γ1 γ2 γ3 c P (W < −c) P (J ≥ jα)
3 0.0369 22 1 1 1.65 1.9869 0.0901 0.0657
5 0.0456 54 1 1 1.28 1.4808 0.0781 0.0779
7 0.0471 100 1 1 1.65 1.2443 0.9181 0.2046

Table 3.3: Power comparison against JT for k = 3

We performed a Monte Carlo simulation study comparing the performance of

the test procedure developed in this thesis with that of the Jonckheere-Terpstra test.

We performed 10000 repetitions where data are generated from the log-logistic dis-

tribution with the given parameters. The worst case hazard rates and the proportion

of times that the null is rejected are computed for both tests. The results are given

in Table 3.3.

It is evident from Table 3.3 that our test W rejects the null hypothesis more often

than the JT test J . Thus for these particular alternative hypothesis configurations,

our test proves to be more powerful than the Jonckheere-Terstra test in detecting

decreasing worst case hazard rate patterns.
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Chapter 4

Valley Ordering of Hazard Functions

4.1 Dose Response experiment

In toxicology and drug development studies, several increasing dose levels of a

substance are usually compared with the zero-dose control to investigate the effect of

the substance. According to Chen [13] for this purpose, a dose-response experiment

is often conducted in a one way layout in which the doses of the substance under

consideration are administered to separate groups of subjects. There are different

concerns in these studies. In toxicological studies, the major concern is the safety of

the toxin under consideration. Therefore, the goal is to estimate the highest dose that

shows no significance difference from the zero-dose control, which is generally called

the no statistical significance of trend (NOSTASOT; Tukey, Cimenra and Heyse, [46] )

or no observed adverse event level (NOAEL; Ryan, [26] ) dose. In drug developmental

studies, however the primary interest is identifying the lowest dose level producing a

desirable effect over that of the zero-dose control, which is commonly referred as the

minimum effect dose(MED; Ruberg, [37] ).

The approach in toxicological studies is to identify the NOSTASOT or NOAEL

dose and apply appropriate safety factors to reach a safe dose level.

The regression based quantitative approach is not commonly used in drug devel-

opment studies it is impractical to specify such an amount of increase in effect over
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the zero-dose control so that the corresponding dose level causes a desirable effect.

In dose-response experiments one cannot do extrapolation. So a test based approach

to identifying the MED in drug development studies is very crucial. In such experi-

ments it is expected that increasing dose level will produce stronger or at least equal

treatment effects. However in many situations due to the toxic effects at high doses,

an ordering in the treatment effects is anticipated, monotonically increasing up to a

point then monotonically decrease. This up and down ordering of the treatment is

called as umbrella alternate hypothesis (Mack and Wolfe, [28] ) and the turning point

is called the peak or valley of the umbrella.

To identify the MED for normal distribution several methods have been devel-

oped. But many a times the data do not fallow normal distribution. Then for such

scenarios there are several nonparametric methods have been developed.

In this thesis we are interested in dose-response experiments where the hazard

rate is generally decreasing with increasing dose level until MED is reached and then

any more increase in dose starts to have an adverse effect increasing the hazard rate.

In a sense, we are testing if this inverted umbrella pattern is satisfied by the worst

cases of the hazard functions, that is, we wish to test

H0 : λmax
1 = · · · = λmax

k

versus

Hv : λmax
1 ≥ · · · ≥ λmax

h ≤ · · · ≤ λmax
k
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with at least one strict inequality, where 1 ≤ h ≤ k is a known valley point. In other

words, the investigator has an idea of the ordering and what the most effective dose

will be, but wants to test if it is statistically significant with a specified familywise

error rate of α.

4.2 Test Statistic

Once again, we will assume the log-linear model given by Equation 3.1. Let

Yi = median{log Ti1, . . . , log Tin} for 1 ≤ i ≤ k. By Theorem 3.1, for testing H0

versus Hv given above, the statistic for the union-intersection test (Roy [36]; Sen

[38]) is given by

Vk,h,m = min

{
min

1≤i<j≤h
(Yi − Yj) , min

h≤j<i≤k
(Yi − Yj)

}

where small values of Vk,h,m indicate the alternative. Thus H0 is rejected with a

familywise error rate of α if and only if

Vk,h,m ≤ −qk,h,m,α

where the critical constant qk,h,m,α is the solution of

P0(Vk,h,m ≤ −qk,h,m,α) = α .
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Once again, solving for qk,h,m,α requires finding the solution of a multiple integral

equation. Since this is not practically feasible, like the simple ordering case, we will

find a recursive method for obtaining the critical constants.

4.3 Computing the Critical Constants

As in the simple ordering case, assume that n = 2m − 1. Then under the null

hypothesis, Y1, . . . , Yk are iid random variables with density ψm and distribution Ψm

given in Equations 3.2 and 3.3, respectively.

The following theorem gives the integral equation that will be solved to give the

critical constants qk,h,m,α.

Theorem 4.1. The critical constant q = qk,h,m,α is the solution of

1− α =

∫ ∞

−∞
ψm(y)Ah−1(y, q)Ak−h(y, q)dy ,

where At(y, q) = P0 (min1≤i<j≤t+1(Yi − Yj) ≥ −q|Yt+1 = y) for t ≥ 1 and A0(y, q) =

1.

Proof. If h = 1 or h = k, then we have simple ordering. The result follows by

Theorem 3.3 since A0(y, q) = 1. If 1 < h < k , then from the definition of the critical

constants we have that P0(Vk,h,m ≥ −qk,h,m,α) = 1− α. Thus

1− α = P0

(
min

{
min

1≤i<j≤h
(Yi − Yj) , min

h≤j<i≤k
(Yi − Yj)

}
≥ −q

)
.
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Conditioning on Yh gives

1− α =

∫ ∞

−∞
P0

(
min

{
min

1≤i<j≤h
(Yi − Yj) , min

h≤j<i≤k
(Yi − Yj)

}
≥ −q

∣∣∣Yh = y

)
ψm(y) dy

=

∫ ∞

−∞
P0

(
min

{
min

1≤i<j≤h−1
(Yi − Yj) , min

1≤i≤h−1
(Yi − y) ,

min
h+1≤j<i≤k

(Yi − Yj) , min
h+1≤i≤k

(Yi − y)

}
≥ −q

)
ψm(y) dy

=

∫ ∞

−∞
P0

(
min

{
min

1≤i<j≤h−1
(Yi − Yj) , min

1≤i≤h−1
(Yi − y)

}
≥ −q

)
×

P0

(
min

{
min

h+1≤j<i≤k
(Yi − Yj) , min

h+1≤i≤k
(Yi − y)

}
≥ −q

)
ψm(y) dy

=

∫ ∞

−∞
P0

(
min

1≤i<j≤h
(Yi − Yj) ≥ −q

∣∣∣Yh = y

)
×

P0

(
min

h≤j<i≤k
(Yi − Yj) ≥ −q

∣∣∣Yh = y

)
ψm(y) dy .

Since the probabilities are taken under the null, Y1, . . . , Yk are iid. Thus making a

switch of variables in the second probability gives

1− α =

∫ ∞

−∞
P0

(
min

1≤i<j≤h
(Yi − Yj) ≥ −q

∣∣∣Yh = y

)
×

P0

(
min

1≤i<j≤k−h+1
(Yi − Yj) ≥ −q

∣∣∣Yk−h+1 = y

)
ψm(y) dy

=

∫ ∞

−∞
ψm(y)Ah−1(y, q)Ak−h(y, q) dy .

Although, Theorem 4.1 provides us a representation that can be solved to find

the critical constants qk,h,m,α, it is still not numerically feasible, especially for large
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k, since it is a k-variate integral equation. A direct numerical solution would require

us to generate grid points on <k and then perform numerical integration which then

has to be solved for qk,h,m,α.

Fortunately, by Theorem 3.4, the values of At for 0 ≤ t ≤ k can be found

recursively requiring only single dimensional numerical integration. Thus the eventual

solution will require the solution of a single dimensional integral equation.

Using Matlab 7.5, we performed a trapezoidal numerical integration is used to

calculate the critical constants on a grid from -8 to 8. As in Hayter and Liu [16], the

grids are selected such that the grid points are denser near 0 and more sparse near

the tails. The critical values qk,h,m,α are given for k = 3(1)10, m = 3(1)10, h = 2(1)5

in Table 4.1 and Table 4.2, for α = 0.05 and α = 0.01, respectively.

Values of the critical constants qk,h,m,α follows the same pattern as ck,m,α for

Simple ordering. qk,h,m,α decreases as the value of the location of the median increases

and increases as the number of groups increases. These changes ensure that the test

maintains level α.

4.4 Monte Carlo Simulation Studies

4.4.1 Nominal FWER Simulation

Just as in the simple ordering case, after finding the values of the critical con-

stants for different combinations of group sizes and sample sizes, we performed a

simulation study to evaluate the correctness, in terms of retaining the nominal fam-

ilywise error rate α, of the computed critical constants. This is done by repeatedly
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h=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
m=3 1.3314 1.5270 1.6749 1.7894 1.8818 1.9587 2.0244 2.0816
m=4 1.1280 1.2915 1.4147 1.5098 1.5863 1.6499 1.7041 1.7512
m=5 0.9957 1.1388 1.2465 1.3294 1.3961 1.4513 1.4984 1.5392
m=6 0.9010 1.0298 1.1265 1.2010 1.2607 1.3102 1.3523 1.3889
m=7 0.8290 0.9470 1.0356 1.1037 1.1583 1.2035 1.2419 1.2752
m=8 0.7718 0.8814 0.9635 1.0267 1.0772 1.1191 1.1546 1.1855
m=9 0.7250 0.8828 0.9047 0.9638 1.0111 1.0502 1.0835 1.1123
m=10 0.6858 0.7828 0.8554 0.9112 0.9558 0.9927 1.0240 1.0511
h=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
m=3 1.5270 1.6391 1.7447 1.8365 1.9155 1.9839 2.0440
m=4 1.2915 1.3846 1.4724 1.5485 1.6139 1.6705 1.7200
m=5 1.1388 1.2201 1.2967 1.3630 1.4199 1.4691 1.5121
m=6 1.0298 1.1028 1.1715 1.2310 1.2820 1.3261 1.3645
m=7 0.9470 1.0138 1.0767 1.3110 1.1776 1.2179 1.2530
m=8 0.8814 0.9433 1.0016 1.0520 1.0951 1.1324 1.1649
m=9 0.8274 0.8857 0.9403 0.9874 1.0278 1.0626 1.0930
m=10 0.7828 0.8375 0.8890 0.9335 0.9715 1.0043 1.0329
h=4 k=5 k=6 k=7 k=8 k=9 k=10
m=3 1.6749 1.7447 1.8201 1.8919 1.9575 2.0167
m=4 1.4147 1.4724 1.5348 1.5942 1.6484 1.6973
m=5 1.2465 1.2967 1.3510 1.4026 1.4498 1.4923
m=6 1.1265 1.1715 1.2202 1.2665 1.3087 1.3467
m=7 1.0336 1.0767 1.1211 1.1634 1.2020 1.2367
m=8 0.9635 1.0016 1.0428 1.0819 1.1176 1.1497
m=9 0.9047 0.9403 0.9788 1.0154 1.0488 1.0788
m=10 0.8554 0.8890 0.9253 0.9598 0.9913 1.0196
h=5 k=6 k=7 k=8 k=9 k=10
m=3 1.7894 1.8365 1.8919 1.9482 2.0023
m=4 1.5098 1.5485 1.5942 1.6407 1.6853
m=5 1.3294 1.3630 1.4026 1.4430 1.4818
m=6 1.2010 1.2310 1.2665 1.3026 1.3373
m=7 1.1037 1.1311 1.1634 1.1964 1.2280
m=8 1.0267 1.0520 1.0819 1.1125 1.1417
m=9 0.9638 0.9874 1.0154 1.0440 1.0713
m=10 0.9112 0.9335 0.9598 0.9867 1.0125

Table 4.1: Values of qk,h,m,.05
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h=2 k=4 k=5 k=6 k=7 k=8 k=9 k=10
m=3 1.8154 1.9895 2.1241 2.2299 2.3158 2.3878 2.4496 2.5036
m=4 1.5297 1.6733 1.7840 1.8707 1.9410 1.9998 2.0501 2.0940
m=5 1.3459 1.4706 1.5665 1.6415 1.7022 1.7528 1.7961 1.8339
m=6 1.2153 1.3268 1.4126 1.4794 1.5335 1.5786 1.6172 1.6507
m=7 1.1164 1.2182 1.2964 1.3573 1.4065 1.4475 1.4825 1.5130
m=8 1.0383 1.1325 1.2047 1.2610 1.3064 1.3443 1.3766 1.4046
m=9 0.9745 1.0625 1.1300 1.1826 1.2250 1.2603 1.2904 1.3166
m=10 0.9211 1.0041 1.0677 1.1171 1.1571 1.1903 1.2186 1.2432
h=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
m=3 1.9895 2.0898 2.1864 2.2716 2.3455 2.4100 2.4667
m=4 1.6733 1.7556 1.8348 1.9046 1.9650 2.0176 2.0638
m=5 1.4706 1.5418 1.6103 1.6706 1.7227 1.7680 1.8078
m=6 1.3268 1.3904 1.4516 1.5053 1.5518 1.5921 1.6275
m=7 1.2182 1.2762 1.3319 1.3808 1.4230 1.4597 1.4919
m=8 1.1325 1.1860 1.2375 1.2826 1.3216 1.3555 1.3851
m=9 1.0625 1.1125 1.1606 1.2028 1.2392 1.2707 1.2984
m=10 1.0041 1.0512 1.0964 1.1361 1.1704 1.2001 1.2261
h=4 k=5 k=6 k=7 k=8 k=9 k=10
m=3 2.1241 2.1864 2.2552 2.3217 2.3832 2.4392
m=4 1.7840 1.8348 1.8910 1.9453 1.9955 2.0411
m=5 1.5665 1.6103 1.6588 1.7057 1.7489 1.7882
m=6 1.4126 1.4516 1.4947 1.5365 1.5750 1.6100
m=7 1.2964 1.3319 1.3711 1.4091 1.4441 1.4759
m=8 1.2047 1.2375 1.2737 1.3088 1.3411 1.3704
m=9 1.1300 1.1606 1.1944 1.2271 1.2573 1.2846
m=10 1.0677 1.0964 1.1283 1.1591 1.1874 1.2131
h=5 k=6 k=7 k=8 k=9 k=10
m=3 2.2299 2.2716 2.3217 2.3737 2.4243
m=4 1.8707 1.9046 1.9453 1.9877 2.0289
m=5 1.6415 1.6706 1.7057 1.7421 1.7776
m=6 1.4794 1.5053 1.5365 1.5689 1.6005
m=7 1.3573 1.3808 1.4091 1.4386 1.4673
m=8 1.2610 1.2826 1.3088 1.3360 1.3624
m=9 1.1826 1.2028 1.2271 1.2525 1.2772
m=10 1.1171 1.1361 1.1591 1.1829 1.2061

Table 4.2: Values of qk,h,m,.01
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generating k groups, each with (2m− 1) iid random variates from the LL(1, 1) distri-

bution and computing the hazard rate function. We then compute the test statistic

Vk,h,m and compute the proportion of times H0 is rejected in favor of Hv. These values

are given in Table 4.3 and Table 4.4 for α = 0.05 and α = 0.01, respectively. It can be

seen that the computed constants maintain the FEWR at the desired nominal levels.

4.4.2 Power Simulation versus the Mack-Wolfe Test

A nonparametric test of H0 versus Hv for the known valley is the Mack-Wolfe

test given by Mack and Wolfe [28]. We would like to compare the power of the test

that we proposed in this thesis with that of the Mack-Wolfe test.

The Mack-Wolfe test statistic is essentially the sum of two Jonckheere-Terpstra

test statistics, one for the decreasing trend at first and another one for the increasing

trend after the valley. Thus we must first label the treatments so that they are in

the prescribed ordered relationships to the known valley, h, corresponding to Hv as

discussed earlier. By Theorem 3.1, this turns into an umbrella pattern of logistic

location parameters with peak h. To calculate peak-known Mack-Wolfe statistic,

Ah, we first compute the h(h − 1)/2 Mann-Whitney counts Urs for every pair of

treatments with labels less than or equal to the hypothesized peak, that is for every

1 ≤ r < s ≤ h. These Mann-Whitney counts are given by

Urs =
nr∑
i=1

ns∑
j=1

φ(log Tir, log Tjs) , 1 ≤ r < s ≤ h ,
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h=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
m=3 0.0505 0.0482 0.0502 0.0472 0.0536 0.0509 0.0511 0.0526
m=4 0.0551 0.0473 0.0476 0.0526 0.0520 0.0514 0.0469 0.0479
m=5 0.0516 0.0492 0.0486 0.0499 0.0515 0.0483 0.0503 0.0492
m=6 0.0498 0.0539 0.0484 0.0524 0.0523 0.0461 0.0507 0.0530
m=7 0.0514 0.0471 0.0524 0.0515 0.0488 0.0470 0.0517 0.0475
m=8 0.0538 0.0474 0.0480 0.0511 0.0506 0.0497 0.0464 0.0482
m=9 0.0460 0.0357 0.0518 0.0459 0.0499 0.0529 0.0522 0.0516
m=10 0.0467 0.0483 0.0472 0.0475 0.0520 0.0465 0.0502 0.0486
h=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
m=3 0.0517 0.0494 0.053 0.0527 0.0518 0.0525 0.0513
m=4 0.0526 0.0483 0.0505 0.0486 0.0483 0.0513 0.0506
m=5 0.0574 0.0482 0.0517 0.051 0.0506 0.0494 0.0475
m=6 0.0513 0.0517 0.0482 0.0466 0.0494 0.0578 0.0469
m=7 0.0489 0.0478 0.0509 0.0178 0.0463 0.0523 0.0504
m=8 0.0471 0.0509 0.0467 0.0527 0.0531 0.0488 0.0491
m=9 0.0511 0.0467 0.0497 0.0502 0.0489 0.0494 0.0497
m=10 0.0491 0.0508 0.0518 0.0508 0.0509 0.0526 0.0465
h=4 k=5 k=6 k=7 k=8 k=9 k=10
m=3 0.0498 0.0509 0.0519 0.0512 0.0502 0.0457
m=4 0.0507 0.0505 0.0506 0.0547 0.0527 0.0498
m=5 0.0521 0.0520 0.0503 0.0506 0.0517 0.0479
m=6 0.0522 0.0478 0.0475 0.0509 0.0502 0.0488
m=7 0.0507 0.0511 0.0474 0.0513 0.0529 0.0532
m=8 0.0481 0.0507 0.0516 0.0472 0.0510 0.0463
m=9 0.0486 0.0504 0.0475 0.0510 0.0519 0.0507
m=10 0.0471 0.0498 0.0481 0.0450 0.0552 0.0487
h=5 k=6 k=7 k=8 k=9 k=10
m=3 0.0501 0.0494 0.0492 0.0513 0.0487
m=4 0.0513 0.0470 0.0522 0.0473 0.0531
m=5 0.0530 0.0518 0.0487 0.0469 0.0487
m=6 0.0502 0.0512 0.0523 0.0508 0.0525
m=7 0.0534 0.0489 0.0491 0.0548 0.0488
m=8 0.0502 0.0484 0.0523 0.0495 0.0501
m=9 0.0534 0.0510 0.0529 0.0476 0.0452
m=10 0.0473 0.0501 0.0511 0.0528 0.0544

Table 4.3: Values of α from simultaneous confidence intervals for α = 0.05
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h=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
m=3 0.0103 0.0089 0.0088 0.0109 0.0116 0.0118 0.0096 0.0099
m=4 0.0105 0.0090 0.0082 0.0104 0.0109 0.0076 0.0097 0.0103
m=5 0.0131 0.0099 0.0101 0.0108 0.0092 0.0106 0.0087 0.0105
m=6 0.0109 0.0103 0.0108 0.0099 0.0099 0.0091 0.0100 0.0096
m=7 0.0101 0.0097 0.0105 0.0101 0.0112 0.0084 0.0082 0.0104
m=8 0.0086 0.0121 0.0097 0.0089 0.0095 0.0112 0.0102 0.0096
m=9 0.0108 0.0118 0.0099 0.0093 0.0086 0.0094 0.0114 0.0097
m=10 0.0096 0.0113 0.0096 0.0098 0.0102 0.0106 0.0091 0.0101
h=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
m=3 0.0092 0.0111 0.0104 0.0104 0.0102 0.0107 0.0103
m=4 0.0099 0.0106 0.0090 0.0113 0.0096 0.0093 0.0112
m=5 0.0095 0.0088 0.0118 0.0118 0.0095 0.0103 0.0090
m=6 0.0090 0.0091 0.0109 0.0117 0.0102 0.0085 0.0078
m=7 0.0093 0.0090 0.0095 0.0102 0.0084 0.0118 0.0100
m=8 0.0104 0.0089 0.0092 0.0086 0.0097 0.0085 0.0085
m=9 0.0091 0.0095 0.0095 0.0087 0.0095 0.0101 0.0102
m=10 0.0096 0.0103 0.0100 0.0102 0.0095 0.0103 0.0105
h=4 k=5 k=6 k=7 k=8 k=9 k=10
m=3 0.0095 0.0109 0.0114 0.0105 0.0109 0.0099
m=4 0.0094 0.0107 0.0093 0.0102 0.0100 0.0119
m=5 0.0103 0.0107 0.0109 0.0117 0.0094 0.0097
m=6 0.0110 0.0119 0.0100 0.0088 0.0095 0.0082
m=7 0.0098 0.0082 0.0091 0.0102 0.0100 0.0098
m=8 0.0110 0.0100 0.0095 0.0093 0.0112 0.0088
m=9 0.0096 0.0102 0.0100 0.0102 0.0106 0.0105
m=10 0.0100 0.0122 0.0085 0.0093 0.0097 0.0099
h=5 k=6 k=7 k=8 k=9 k=10
m=3 0.0106 0.0084 0.0085 0.0109 0.0104
m=4 0.0091 0.0106 0.0114 0.0106 0.0108
m=5 0.0108 0.0109 0.0109 0.0080 0.0098
m=6 0.0103 0.0122 0.0099 0.0119 0.0090
m=7 0.0109 0.0096 0.0099 0.0097 0.0091
m=8 0.0110 0.0106 0.0114 0.0099 0.0100
m=9 0.0108 0.0111 0.0091 0.0109 0.0084
m=10 0.0091 0.0097 0.0113 0.0099 0.0087

Table 4.4: Values of α from simultaneous confidence intervals for α = 0.01
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where φ(a, b) = 1 if a < b, 0 otherwise. That is to say Urs is the number of sample r

before sample s precedences. The Jonckheere-Terpstra statistic, J1, is then the sum

of these h(h− 1)/2 Mann-Whitney counts,

J1 =
v−1∑
u=1

h∑
v=2

Uuv .

Since we have an umbrella alternative, after the order is reversed after the peak

and the Mann-Whitney counts are computed. That is (k − h + 1)(k − h)/2 reverse

Mann-Whitney counts Urs for every pair of treatments with labels greater than or

equal to the hypothesized peak for each pair of remaining treatments (h ≤ r < s ≤ k).

Thus Usr is the number of sample s before sample r precedences. The Jonckheere-

Terpstra statistic, J2, is then the sum of these (k − h + 1)(k − h)/2 reverse Mann-

Whitney counts,

J2 =
v−1∑

u=h

k∑

v=h+1

Uvu .

Then Mack-Wolfe peak known statistic, Ah, is then the sum of the Mann-Whitney

counts to the left of the peak and the reverse Mann-Whitney counts to the right of

the peak in accordance with the umbrella alternative, that is

Ah = J1 + J2 .

To test the umbrella alternative against no difference at α level significance, we

reject H0 in favor of Hv if
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Ah ≥ ah,α ,

where the constant ah,a is chosen to make the Type I error probability equal to α.

Values of ah,α are given in Table A.14 Hollander and Wolfe [19] for each selected h

and k combinations.

We considered the hazard function given by

λ(t; γ) =
(β/γ)(t/γ)β−1

1 + (t/γ)β

and fixed β = 1. This reduces the hazard function to λ(t; γ) = (γ + t)−1. We

then generated several hazard functions with different values of γ providing valley

patterned hazard rate function configurations. The Type I error rates of under these

different configurations are given in Table 4.5.

λmax
1 λmax

2 λmax
3 λmax

4 P0(V4,3,3 ≤ −q4,3,3,.0497) P0(A3 > a3,.0497)

1.0 1.0 1.0 1.0 0.0495 0.0423
(1.7)−1 (1.7)−1 (4.5)−1 (1.0)−1 0.6932 0.5800
(1.0)−1 (2.7)−1 (4.5)−1 (2.7)−1 0.7327 0.5895
(2.7)−1 (2.7)−1 (4.5)−1 (2.7)−1 0.5715 0.1956
(2.7)−1 (2.7)−1 (7.4)−1 (1.0)−1 0.8912 0.6424
(2.7)−1 (7.4)−1 (7.4)−1 (1.0)−1 0.9096 0.6375

Table 4.5: Simulated Power of the Mach-Wolfe Test against our Test

Based on the simulated power analysis, the following observations are noted:
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• our test maintains the level of the test α = 0.0497 when all the hazard functions

are the same level of accuracy

• our test is more powerful in detecting valley patterns in the hazard functions

compared to the Mack-Wolfe test.
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Chapter 5

Simultaneous Confidence Intervals

When the null hypothesis is rejected in favor of the alternative hypothesis, the

investigator is usually interested in determining exactly which hazard functions are

different from each other. If the null is not rejected, then no further action is needed.

Let us focus on the valley shaped alternative that was discussed in Chapter 4.

This case is chosen since it is more general than the simple ordering alternative

considered in Chapter 3. If one is interested in the simple ordering case, then one

can get the simultaneous confidence intervals by simply replacing h by 1(k) for the

decreasing (increasing) arrangement of hazard functions.

The simultaneous confidence intervals with simultaneous confidence coefficient

of 1− α for the pairwise differences (λmax
j − λmax

i ), 1 ≤ i < j ≤ h and h ≤ j < i ≤ k,

may be constructed by inverting the α-level test PH0(Vk,h,m < −qk,h,m,α) = α. The

100(1− α)% simultaneous confidence interval may be obtained as

1− α = PH0(Vk,h,m ≥ −qk,h,m,α)

= P

(
λmax

j − λmax
i ≥ (Yj − Yi)− qk,h,m,α , 1 ≤ i < j ≤ h, h ≤ j < i ≤ k

)

The investigator may also be interested in more general contrasts of the hazard

functions rather than just simple pairwise differences. Let Y = (Y1, . . . , Yk)
′. Letting

λmax = (λmax
1 , . . . , λmax

k )′, one may want to construct a confidence interval for c′λmax
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for a given constant c ∈ <k such that c′1 = 0, where 1 is the vector of all ones in

<k. More generally, one may want simultaneous intervals for all contrasts of a certain

type.

Following Berk and Marcus [9] (see also Hayter and Liu [17]), one may invert the

α level test to produce a set of simultaneous confidence intervals for the restricted set

of contrasts

{
c′λmax : c ∈ Ch

}
, (5.1)

where the class of contrasts is given by

Ch =

{
c :

j∑
i=1

ci ≥ 0 for j = 1, . . . , h−1,
k∑

i=k−t+1

ci ≥ 0 for t = 1, . . . , k−h, and c′1 = 0

}
.

The set simultaneous confidence intervals for the all the contrasts given in (5.1) is

1− α = P (c′λmax ≥ c′Y − qk,h,m,α‖c‖ , ∀c ∈ Ch) . (5.2)

Whenever the null hypothesis is rejected, we can find which of the means are

different. We can find any class of contrast including pairwise differences which follows

Eqs. (5.1) and (5.2). As an example in Table 5.1, we considered few combinations of

contrasts and inverted to get the simultaneous confidence intervals. Table 5.1 gives

SCI’s of (1− α).
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µi c (1− α)
h = 2, k = 5; r = 1.2465 (0.5 2 0.5 0.5 0) (-1 4 -1 -1 -1) 0.9519
h = 3, k = 5; r = 1.2201 (0.5 0.5 2 0.5 0) (-1 -1 4 -1 -1) 0.9436
h = 3, k = 6; r = 1.2967 (0.5 1 2 1 0.5 0) (-1 -1 5 -1 -1 -1) 0.9580

Table 5.1: Simultaneous confidence interval for m = 5 and α = 0.05

If the ordering given in the alternative hypothesis is certain, then this information

can be used to improve the simultaneous confidence intervals. One instance is when

a negative lower bound is obtained for the contrast c′λmax, which is impossible under

the alternative hypothesis. One then sharpens the interval by using zero as the lower

bound. In general, if the ordering given in the alternative hypothesis is believed

to be true, then the simultaneous confidence intervals for all sets of contrasts with

coefficients in Ch are

c′λmax ≥ max{0 , c′Y − qk,h,m,α‖c‖} .

For more discussion on simultaneous confidence intervals under order restrictions,

see Hayter and Liu [18], Marcus and Genizi [29], or Hwang and Peddada [20].
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Chapter 6

Summary

In this thesis we have developed an exact testing strategy for comparing max-

imum hazard rates of multiple treatments or doses under the assumption that the

survival times follow the log-logistic distribution. In particular, exact test proce-

dures are formulated for testing the null hypothesis of no difference against a simple

ordered alternative in the comparison of the worst case hazard rates of several log-

logistic survival functions. A recursive algorithm is given for computing the required

critical constants along with the computed constants and a Monte Carlo simulation

study to evaluate the power of the given procedure versus a suitable nonparametric

procedure.

The method of obtaining the critical constants for the simple ordering case was

extended to include umbrella and valley ordering on the maximum hazard rates.

Once again critical constants were computed using a recursive algorithm and they

were evaluated for correctness using a simulation study. We also compared the power

performance of the newly developed procedure against the nonparametric Mack-Wolfe

test under several valley-shaped configurations of the maximum hazard rate functions.

These comparisons show that the new test is much more powerful than the Mack-

Wolfe test in detecting valley-shaped patterns of the maximum hazard rate functions.

The test procedures developed were inverted to give simultaneous confidence

intervals for a class of contrasts including pairwise comparisons. This can be used to
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identify the treatments or doses that are significantly different from each other in case

the null hypothesis of no difference is rejected in favor of the valley- or simple-ordered

alternative.

We are currently working on developing test procedures for the entire survival

curve as well as other interesting characteristics of the survival function of log-logistic

survival times.
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APPENDIX 
 

MATLAB PROGRAM 
 

 
 
 
 
MAINPROGAM.m 
clear all; 
close all; 
c100=8; 
lambda=6*c100/(100*(100+1)*(2*100+1)); 
i= -101:0.001:100; 
    c=lambda*i.*(i+1).*(2*i+1)./6; 
h=3; k=7; m=5; alpha=0.95; 
f=fzero(@(r) myfunlogistic(r,c,h,k,alpha,m), 0)      
 % Solve for 'r' 
 
MYFUN.m 
 
function F=myfunlogistic(r,y,h,k,alpha,m) 
a=pi/3^0.5; 
term1=(gamma(2*m)/(gamma(m))^2); 
phi=term1*a*exp(-(a*y.*m)).*((1+exp(-a*y)).^(-2*m));   
%pdf 
for j=0:m-1, 
term2(j+1,:)=nchoosek((m-1),j)*(2*m-j-1)^(-1)*(-1)^(m-
1-j)*(1+exp(-a*(y+r))).^(j+1-2*m); 
end 
  
for j=0:m-1, 
term3(j+1,:)=nchoosek((m-1),j)*(2*m-j-1)^(-1)*(-1)^(m-
1-j)*(1+exp(-a*y)).^(j+1-2*m); 
end 
  
f1=term1*sum(term2);   % cdf 
f12=term1*sum(term3); 
dif1=k-h; 
dif2=h-1; 
if (dif2 == 1) 
    p1=f1; 
elseif (dif2 == 0) 
    p1=1; 
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else 
 p1 = myfunlogistic_rec(r,y,dif2,phi,f1,f12); 
end 
  
if (dif1 == 1) 
    p2=f1; 
else 
 
    p2=myfunlogistic_rec(r,y,dif1,phi,f1,f12);    
end 
    FB=(phi.*p1.*p2); 
          
  F=trapz(y,FB)-alpha; %y1 is phi(y)---pdf 
 
MYFUNREC.m 
 
function p=  myfunlogistic_rec(r,y,dif,phi,f1,f12) 
if (dif == 2) 
p=cumtrapz(y,phi.*f1)+f1.*( f1-f12); 
else 
p=cumtrapz(y,phi.*myfunlogistic_rec(r,y,dif-
1,phi,f1,f12))+myfunlogistic_rec(r,y,dif-
1,phi,f1,f12).*( f1-f12); 
end 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

59 




