
Generic Reverse Engineering Architecture with Compiler and

Compression Classification Components

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee. This

dissertation does not include proprietary or classified information.

Stephen A. Torri

Certificate of Approval:

Richard Chapman
Associate Professor
Computer Science and Software
Engineering

John A. Hamilton, Jr.
Associate Professor
Computer Science and Software
Engineering

David Umphress
Associate Professor
Computer Science and Software
Engineering

David Rouse
Professor
Fisheries & Allied Aquacultures

George T. Flowers
Dean
Graduate School

Generic Reverse Engineering Architecture with Compiler and

Compression Classification Components

Stephen A. Torri

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
May 9, 2009

Generic Reverse Engineering Architecture with Compiler and

Compression Classification Components

Stephen A. Torri

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon the request of individuals or institutions and at

their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation

iii

Dissertation Abstract

Generic Reverse Engineering Architecture with Compiler and

Compression Classification Components

Stephen A. Torri

Doctor of Philosophy, May 9, 2009
(M.S., in Computer Science, Washington University in Saint Louis, 2004)

(B.S., in Accounting and Finance and Computer Science,
Lancaster University (UK), 2001)

195 Typed Pages

Directed by John A. Hamilton, Jr.

As more and more applications, libraries, and other types of programs are being

executed in untrusted environments they will be targets of attackers. These applications

are exposed to malicious programs attempting to exploit some publicly known or newly

discovered vulnerability in order to produce an unwanted action. These malicious and/or

suspect programs can be installed on a system without the knowledge of the user. In

these circumstances reverse engineering would be able to discover the functionality of

the programs without actually executing them. This is important because it is necessary

to know as much about a program before executing it in a controlled environment.

Since each binary application, e.g. malicious programs for Intel X86 or Java, was

produced by a compiler it would be helpful to customize the reverse engineering process

by detecting which compiler was used. This research will be experimenting with methods

that help detect the compiler used to create an executable program regardless of the

programming language used. The method discovered for compiler detection will be

added to a generic reverse engineering architecture that will utilize this information to

alter the run-time behavior of the generic reverse engineering architecture.

iv

Acknowledgments

Every great adventure has many stages and a cast of different people that contributed to

it. The following people I wish to thank for their part in this journey.

To my Lord and Savior Jesus Christ because of whom none of this would be possible. It

is because of and through Him I was placed here at this place in time to perform the task set

before me by His power with the skills endowed to me by Him.

To my parents Joseph and Marilynn Torri without whom this journey would not have been

possible. It is their unfailing belief in me and support that enabled me to complete my journey.

In addition I thank my brothers, Brian and Christopher, and sister, Jennifer, for taking the time

to encourage me and help me keep a right perspective on the task at hand.

To my adviser Dr John A. Hamilton, Jr. and the IA-Lab research group. I want to thank

for their support, discussions and guidance on this project. Also I wish to thank the members of

my committee: Dr Richard Chapman, Dr David Umphress and Dr Rouse for their contributions

and their helpful discussions.

To Dr Morgan Deters for giving me the dissertation by Dr Cristina Cifuentes at Washing-

ton University in Saint Louis which inspired me to look at generic reverse engineering. Your

encouragement and support helped me to see the potential in this area of research.

To Winard Britt for his support of the use of Artificial Intelligence in classification. Your

comments on this dissertation, research and encouragement during this process were invaluable.

To Dr Christopher Gill who believed in my potential as a researcher and gave me a plat-

form from which I could grow. I greatly value our discussions we had and appreciate all your

assistance.

To the mentors and close friends whom I have met over the years who helped me to learn

more about who I am, how I was created and to know what abilities I have been given.

v

Style manual or journal used Journal of Approximation Theory (together with the

style known as “aums”). Bibliograpy follows van Leunen’s A Handbook for Scholars.

Computer software used The document preparation package TEX (specifically

LATEX) together with the departmental style-file aums.sty.

vi

Table of Contents

List of Figures xi

1 Introduction 1
1.1 Statement of the Problem . 1
1.2 Motivation of the Research . 3

1.2.1 Detecting properties in executable programs 4
1.2.2 Generic reverse engineering architecture 7
1.2.3 Modification of the run-time behavior of generic reverse engineer-

ing architectures . 8
1.3 Summary . 8

2 Background and Literature Review 9
2.1 Reverse Engineering Definitions . 9
2.2 Background . 10

2.2.1 Windows Portable Executable (PE) 10
2.2.2 Linux ELF . 20
2.2.3 Java Class . 24

2.3 Compressed Executables . 26
2.4 Survey of Decompiling Architectures . 29

2.4.1 x86 . 29
2.4.2 Java Class . 36
2.4.3 Static Slicing on Binary Executables 41
2.4.4 Static Analysis on Executables without Decompiling 42

2.5 Machine Learning Related Work . 44
2.6 Survey of Compiler Detection . 45
2.7 Generic Decompilation . 45
2.8 Summary . 46

3 Analysis And Classification 47
3.1 Introduction . 47
3.2 The General Regression Neural Network 47

3.2.1 Learnability in the Training Instances 49
3.2.2 Training Set Instances . 50
3.2.3 Complexity . 51
3.2.4 Network Parameters . 51

3.3 The Evolutionary Hill-Climber Algorithm 51
3.3.1 Algorithm Description . 52

3.4 Logarithmic Search . 53
3.4.1 Steady-State Genetic Algorithm 54

vii

3.5 Statistical Algorithm . 55
3.5.1 Fitness Function . 57

3.6 Summary . 57

4 Compressed Executables 58
4.1 Experiments . 59

4.1.1 The Training, Validation, and Test Sets 59
4.1.2 Optimizer Stopping Conditions 61
4.1.3 Identifying Compression . 61
4.1.4 Classifying Type of Compression or Lack Thereof 62
4.1.5 Classifying Type of Compression 63
4.1.6 Impact of Compression . 64

4.2 Data source and compressors . 65
4.2.1 Cexe . 65
4.2.2 Ultimate Packer for eXecutables 65
4.2.3 PEtite . 66

4.3 Data Extraction . 66
4.4 Weaknesses . 67
4.5 Summary . 68

5 A Compiler Classification Framework for Use in Reverse Engineer-
ing 69
5.1 Introduction . 69

5.1.1 How can machine learning be used for classifying compiler type? 69
5.2 Software Architecture . 70

5.2.1 Java Input Data . 70
5.2.2 ELF Input Data . 72
5.2.3 Windows PE Input Data . 73
5.2.4 Structure . 75

5.3 Experiments . 75
5.3.1 The Training, Validation, and Test Sets 75
5.3.2 Optimizer Stopping Conditions 78
5.3.3 Experiment I: Java Compiler Classification with a GRNN Opti-

mized with an Evolutionary Hill-Climber Algorithm 78
5.3.4 Experiment II: Java Compiler Classification with a GRNN Opti-

mized with a Steady-State Genetic Algorithm 79
5.3.5 Experiment III: ELF File Compiler Classification with a GRNN

Optimized with a Steady-State Genetic Algorithm 81
5.3.6 Experiment IV: Windows PE File Compiler Classification with a

GRNN Optimized with a Steady-State Genetic Algorithm 82
5.4 Weaknesses . 83
5.5 Summary . 84

6 Classifier Architecture 85
6.1 Offline File Processing . 85

6.1.1 Compiler Dump Program . 85
6.2 Input Data . 91

viii

6.2.1 Linux ELF XML . 92
6.2.2 Java Class XML . 94
6.2.3 Windows PE XML . 96

6.3 GRNN Optimizer . 99
6.3.1 Optimizer Algorithm . 99
6.3.2 Input parser . 104
6.3.3 Optimizer . 108
6.3.4 Candidate Solution . 110
6.3.5 GRNN . 110

7 API 111
7.1 Execute . 111

7.1.1 Steps of Processing . 112

8 Configuration 114
8.1 Configurator . 114
8.2 Master Formula File . 115
8.3 Formula File . 117

9 Components 120
9.1 Design Principles . 120

9.1.1 Two Mode Operation . 120
9.1.2 Single Primitive Operation . 121
9.1.3 Loosely Coupled . 121
9.1.4 Hidden data sources . 121

9.2 Component Class Diagram . 122
9.3 Component Actor Interface . 124
9.4 Input Components . 125

9.4.1 Architecture Type Detector . 125
9.4.2 Code Section Detector . 126
9.4.3 Data Section Detector . 127
9.4.4 Entry Point Detector . 128
9.4.5 File Header Printer . 129
9.4.6 File Type Detector . 130
9.4.7 Memory Map Producer . 130
9.4.8 Null . 131
9.4.9 Tevis Unknown Region Checker 132
9.4.10 Tevis Zero Filled Checker . 132
9.4.11 Compiler Classifier . 133

10 Component Graph 135
10.1 Graph . 135
10.2 ID Map . 135
10.3 Component Map . 135
10.4 Visitor . 136

11 Data Source 137

ix

12 Data Structures 141
12.1 Filename . 141
12.2 Memory Map . 141
12.3 Control Flow Graph (CFG) Sequence 142

13 Meta Information 144
13.1 Importance of meta information . 144
13.2 How meta information is exchanged . 146
13.3 Meta Items . 148

13.3.1 Arch Type Meta . 148
13.3.2 Code Section Meta . 149
13.3.3 Code Section 64 Meta . 150
13.3.4 Compiler Type Meta . 150
13.3.5 Data Section Meta . 151
13.3.6 Data Section 64 Meta . 152
13.3.7 Entry Point Meta . 152
13.3.8 Entry Point 64 Meta . 153
13.3.9 File Type Meta . 154
13.3.10 Tevis Unknown Region Meta . 154
13.3.11 Tevis Zero Filled Meta . 155

14 Scenarios 156
14.1 Non-expert and Expert user . 156
14.2 Compressed Executables and Compiler Classification 156
14.3 Behind the scene . 158

15 Conclusion and Future Work 169
15.1 Conclusion . 169
15.2 Future Work . 169

15.2.1 Compiler Detection . 169
15.2.2 Components . 170
15.2.3 Control Flow Graph Generation 170
15.2.4 Intermediate Forms . 172
15.2.5 Configurator . 173
15.2.6 Data Source . 174
15.2.7 Compressed Executables . 175
15.2.8 Compiler Classification . 175
15.2.9 XML . 176

15.3 Final Thoughts . 176

Bibliography 177

x

List of Figures

2.1 PE File Header . 11

3.1 A GRNN Block Diagram . 48

4.1 Experiment I Training Instance . 59

4.2 Experiment II Training Instance . 60

6.1 Compiler Dump Algorithm class diagram 87

6.2 ELF Compiler Dump Algorithm class diagram 88

6.3 ELF Compiler Dump Algorithm sequence diagram for reading a 32-bit
Linux ELF file . 88

6.4 Windows Compiler Dump Algorithm class diagram 89

6.5 Windows Compiler Dump Algorithm sequence diagram for reading a
Windows PE+ file . 89

6.6 Java Compiler Dump Algorithm class diagram 90

6.7 Java Compiler Dump Algorithm sequence diagram for reading a Java
class file . 91

6.8 Optimizer Algorithm class diagram . 100

6.9 ELF Optimizer Algorithm class diagram 101

6.10 ELF Optimizer Algorithm sequence diagram 101

6.11 Java Optimizer Algorithm class diagram 102

6.12 Java Optimizer Algorithm sequence diagram 102

6.13 Windows Optimizer Algorithm class diagram 103

6.14 Windows Optimizer Algorithm sequence diagram 103

6.15 Optimizer class diagram . 108

xi

6.16 Optimizer sequence diagram . 109

7.1 Libreverse API ’execute’ function . 111

8.1 Configurator Class Diagram . 114

8.2 Configurator get Graph sequence diagram 115

8.3 High-level view of set of Component Graphs 116

9.1 Component Class Diagram . 123

9.2 Component execution with its state set to SOURCE MODE 125

9.3 Component execution with its state set to WORKING MODE 125

11.1 Data Source Class Diagram . 138

11.2 Data Transfer Class Diagram . 139

11.3 Memory Data Transfer Sequence Diagram 140

12.1 Data Container Class Diagram . 143

13.1 Three sets of unique components for handling compiler classification . . 145

13.2 Generic components for handling compiler classification 145

13.3 Reading meta information from a Data Source 146

13.4 Meta Object class diagram . 147

13.5 Meta Item class diagram . 148

13.6 Arch Type Meta class diagram . 149

13.7 Code Section Meta class diagram . 149

13.8 Code Section 64 Meta class diagram . 150

13.9 Compiler Type Meta class diagram . 151

13.10 Data Section Meta class diagram . 151

13.11 Data Section Meta class diagram . 152

13.12 Entry Point Meta class diagram . 153

13.13 Entry Point Meta class diagram . 153

xii

13.14 File Type Meta class diagram . 154

13.15 Tevis Unknown Region Meta class diagram 155

13.16 Tevis Zero Filled Meta class diagram 155

14.1 Graphical view of binary RTL.xml . 162

14.2 Graphical view of binary RTL2.xml . 162

14.3 Graphical view of decompiling analysis.xml 165

14.4 Graphical view of cpp writer.xml . 165

14.5 Graphical view of uml writer.xml . 166

14.6 Graphical view of Non-Expert User Component Graphs 167

14.7 Graphical view of Expert User Component Graphs 168

xiii

Chapter 1

Introduction

1.1 Statement of the Problem

At present there is a limited set of tools available to an organization to conduct

reverse engineering work and research. Most of these tools are focused on a specific

problem space with a limited set of inputs. The problem with these approaches is that

they are too limited and provide no ability to reuse the solution for other problems.

There is often large overlap in functionality in these approaches that cannot be reused

since the functionality is so tightly coupled to the particular problem.

One purpose of this work is to contribute to the reverse engineering of software by

providing a means for identifying the type of compiler used to compile a Java Class,

Linux ELF or Windows PE file. Since each compiler performs its operations differently it

is important to know which one produced a binary application. This information would

be valuable in the reverse engineering effort. There is no method known at present

for detecting the compiler used to create a binary computer application. This research

shows that it is possible to detect the compiler used to create a binary computer applica-

tion, regardless of the programming language used, through information gathered from

the binary file headers by classifying against profiles from a list of available compilers.

The research focuses on information gathered from the binary file headers and not the

actual instructions executed by the system processor.

This research investigated the file properties from two different binary file types

(Windows PE and Linux ELF) and an intermediate file type (Java Class) to determine

the initial set of values believed to be useful to the classification of the compiler used.

Once the file properties to be used were determined, an automated method was used to

condense this information into training sets. A training set was produced for each set of

1

files created by the compilers. For example, there are three different compilers used to

produce Windows PE files. Each set of Windows PE files has a training set containing

the desired file properties. All of the training sets were given to an optimization method

to determine the properties that are actually useful to the classification of the compiler

used. This method was repeated for the Linux ELF and Java Class binary file types.

Two different optimization methods were used to optimize the neural network pa-

rameters, similar to the ideas suggested in [22] for the optimization of weights in a

Feed-Forward Neural Network using a Particle Swarm Optimizer. Experiments were

developed to test the effectiveness of the system on classifying unseen executable file

instances, recording metrics of success rate and average distance to desired output.

The output of the optimization method was a final training set with each entry

only containing the actual file properties useful for classification. In addition, the user

of the optimization method receives a list of file properties used, success rate and neural

network parameters. The final training set and the model parameters are incorporated

into a reverse engineering architecture and demonstrated to show how the knowledge of

the compiler used can alter a reverse engineering architecture’s behavior.

The second contribution of this research provides a general reverse engineering ar-

chitecture. The generic reverse engineering architecture contains the following elements:

1. Memory Map data structure to represent a load segment of memory.

2. File readers for the Windows PE, Linux ELF and Java class binary file formats.

3. Meta information data structure for recording discovered properties of the target

binary executable and utilizing this information to alter run-time behavior.

4. Generic processing components for performing reverse engineering analysis.

5. Mechanism for flexible arrangement of discovered generic processing components.

6. XML based scheme for representing combinations of processing components.

2

Libreverse is a generic reverse engineering architecture created by the author that

implements these elements. The approach taken in this work was to utilize the Libre-

verse architecture to analyze three of the most popular sets of binary file types in use

today.

1.2 Motivation of the Research

This dissertation covers the areas of reverse engineering, software engineering and

artificial intelligence. Reverse engineering describes a wide range of topics and is classi-

fied into two areas: software source code and executable binaries. Software source code

reverse engineering focuses on the understanding of large amounts of programming in-

structions.

The use of reverse engineering in this area helps convert the input source code into

a format (e.g. Unified Modeling Language - UML) that aids in the understanding of the

software. In reverse engineering of executable binaries, the focus is on the conversion

of a target binary file into a higher level language representation (e.g. C++ or Java)

in order to perform actions such as source code recovery, malicious code detection and

classification.

More and more applications, libraries, and other types of programs are being exe-

cuted in untrusted environments. These applications are exposed to malicious programs

attempting to exploit some publicly known or newly discovered vulnerability in order to

produce an unwanted action. These malicious and/or suspect programs can be installed

on a system without the knowledge of the user. In order to understand the functionality

of the programs without actually executing them, reverse engineering can be employed

to investigate the behavior of these malicious programs. Companies wishing to obtain

a higher-level of assurance on their systems or to recover lost programming source code

will utilize reverse engineering.

The key motivations of this research were to experiment with methods that:

3

• help detect properties in executable programs. The first property was the compiler

used to produce Java Class, Windows PE and Linux ELF executable. The second

property was the compression method used for Windows PE executable.

• produce a generic reverse engineering architecture

• utilize these detected properties to alter the run-time behavior of the generic

reverse engineering architecture to eliminate the need for customized components.

1.2.1 Detecting properties in executable programs

In order to more effectively reverse engineer a program, an engineer would need to

know as much information as possible about a suspect program. This information allows

the engineers to customize the reverse engineering process to the suspect program, and

thereby ensuring a higher degree of success than a generic tool can provide.

The Libreverse architecture is a run-time configured reverse engineering library

which is designed to meet the goal of allowing the user to reverse engineer a binary

program without having any prior knowledge about it. The value of adding compiler

and compressed executable classification to Libreverse is that it allows the architecture

to make better decisions rather than assuming one process fits all programs.

1.2.1.1 Compressed Executables

Computer systems and software have a broad impact on the lives of millions every-

day. Computers have long since stopped existing as mere word-processors and gaming

engines; they help run our hospitals and defense systems, as well as provide support for

a significant portion of all commerce in the world. As more and more critical systems

become dependent on reliable computing, the dangers of system disruptions and failures

increase [1].

As the proliferation of malicious software expands, the ability to classify applica-

tions as safe or risky becomes of greater interest to both the computer security and

computer forensics communities. “Risky” applications can arise from either deliberate

4

attempts to do ill-intent (as in viruses, worms, and the like) or merely poor software

development (poor error-checking, use of risky functions, etc). Taking into account

only software created with malicious intent, the number of known viruses today has

skyrocketed into the tens of thousands. The number of identified malicious programs is

surely only a subset of all viruses in the wild [56]. Viruses are also increasing in sophis-

tication, including methods of encryption, compression, and mutation in order to hide

their malicious intent. Utilizing these methodologies makes identifying malware with

traditional signature-based techniques more difficult, since self-modification can change

the signature of the application. Research has shown that virus variants altered by mu-

tation, encryption, and obfuscation prove more difficult to identify by many commercial

malware detectors [12].

This work seeks to contribute to reverse engineering research for identifying ma-

licious applications through static analysis. Specifically, the classification program at-

tempts to identify if an application has capabilities for self-modification (typically en-

cryption and compression), which can, in turn, make reverse-engineering the application

easier. Further, if the capability for compression exists, the system attempts to classify,

based on a number of the properties of the executable, which type of compression was

used. This approach can be advantageous in practice, since it does not require actually

executing potentially dangerous software in order to analyze it. Further, the approach

does not require the source code of the application to be analyzed, since source code

is not readily available for analysis in a great deal of software (even when considering

fairly optimistic predictions made by open source enthusiasts [68]).

In order to perform the analysis, first, information is extracted from the Windows

Portable Executable (PE) headers [39] from many common Windows executable ap-

plications. Then, a General Regression Neural Network (GRNN) [53] learns from the

training data and attempts to estimate the likelihood of compression of a previously un-

seen application. Once a training set consisting of file summaries is constructed along

with the general regression neural network, two different optimization methods are used

to optimize the neural network parameters, similar to the ideas suggested in [22] for

5

the optimization of weights in a Feed-Forward Neural Network using a Particle Swarm

Optimizer. Experiments are designed to test the effectiveness of the system on classify-

ing unseen application instances, recording metrics of success rate and average distance

to desired output. The structure of the training set and the network parameters are

adjusted for the more difficult problem of identifying which of three popular modern

compression utilities was used to compress a given application.

1.2.1.2 Is there a situation beyond reverse engineering where compiler and

compressed executable detection would be useful?

Consider the situation where a company wants to install a particular application

on a server that will be used for secure transfer and manipulation of private customer

health records. The company wants to be assured that the application risks are known

and their impact is minimized. In order to do this, the company would need a tool that

could identify which compiler was used to produce the binary computer application.

This information would enable the company to investigate the compiler for any defects

known to be security vulnerabilities. They may want to know if the compiler uses

any standard functions known to be insecure. These functions could be used in the

application either directly linked into the application or through the use of a shared

library. If the company has this information it would take appropriate action to mitigate

the risks.

A second situation where compiler classification is important is when attempting to

reverse engineer binary programs. In compilation, certain semantic information is lost

transforming the programming instructions from a certain language into an intermedi-

ate language like Single Static Assignment (SSA) [17] or Register Transfer Language

(RTL) [49]. Various compilers use one or more of the intermediate languages when

compiling applications. So in order to decompile an executable a researcher would need

to know which one of the compilers was used to create the program. This information

would be used to customize their approach. For example, GNU Compiler Collection

(GCC) was originally designed to use RTL as its intermediate language. This was true

6

for compilers created before version 4.0. After 4.0 GCC used SSA for representing the

instructions during the optimization phase before being translated into RTL for the final

conversion to binary instructions. Therefore if researchers found out that the compiler

used was GCC 3.3 they would know that they would have to customize the process to

recover the semantic information lost from conversion to RTL. Otherwise if the com-

piler were GCC 4.2 or later then they would know they would have to deal with the

translation to SSA and then to RTL.

Another situation is where a company is attempting to recover the source code for

a legacy application. The company is unsure if the application was protected with any a

compression utility. In order to be assured that the instructions contained in the legacy

application are not the decompression instructions the company would first use a tool

to detect which compression utility, if any, was applied to it. If no compression utility

was detected then the company could be assured the instructions are from the legacy

application. Otherwise, the company would have to use another tool to decompress the

legacy application in order to recover the original binary instructions.

1.2.1.3 How can machine learning be used for classifying?

Given the evidence of the past successes in the area of artificial intelligence (AI)

methods being applied to computer defense [7], this work seeks to take advantage of

machine learning algorithms (a subset of AI). Neural networks have been applied to a

large array of classification and regression problems. They also have been shown to be

capable of generalizing from a small, representative training set [28]. For example, in

[58], a neural network was implemented to classify and prevent boot-disk viruses. Neural

networks have also proven useful for SPAM detection and filtering [13], for analyzing

user behavior for anomalies [57], and in intrusion detection [31].

1.2.2 Generic reverse engineering architecture

While custom solutions to specific problems typically perform very well, they fail to

be useful beyond the scope of the original problem. Generic reverse engineering systems

7

are necessary for reverse engineering source code files [30][9] and binary applications [14]

to aid in software quality assurance, code review and understanding of complex software

systems. This work seeks to construct a generic reverse engineering architecture in a

way that allows for rearrangement of components in a flexible manner. This means

components of the generic reverse engineering architecture must be designed to allow

for information to be passed without knowledge of the producer or consumer. Also

each component must be designed to perform a fundamental operation that cannot be

reduced any further.

1.2.3 Modification of the run-time behavior of generic reverse engineering

architectures

Given the problems with specific reverse engineering solutions, this work seeks to

construct a mechanism which will allow the transfer of secondary information, called

meta information, between components. The meta information will be used be each

component to alter its behavior. For example meta information will allow a component

to perform algorithm X when the X meta information is present otherwise a default

algorithm is utilized.

1.3 Summary

There are a limited set of tools available to an organization to conduct reverse

engineering work and research. What is needed is a generic reverse engineering tool,

used in research and production, that can use detected properties from the binary

applications to make produce better results than assuming one process fits all programs.

8

Chapter 2

Background and Literature Review

The purpose of this chapter is to provide background information and literature

review on the different uses of reverse engineering. Some of the techniques used in

compiling programming languages to machine instructions use the same data structures

as the reverse engineering process. Therefore, it is necessary to review techniques used

in both.

2.1 Reverse Engineering Definitions

• Compiler: A computer application that transforms instructions written in a

programming language into instructions for a target platform architecture.

• Decompiler: A binary computer application that performs the decompiling of a

target binary computer application.

• Decompiling: The act of transforming instructions for a target platform archi-

tecture into the high-level representation of a programming language.

• Disassembler: A binary computer application that performs the transforming

of executable instructions for a target binary computer application into an assem-

bly language. The assembly language used depends on the CPU architecture of

the binary computer applications. (E.g. x86 binary disassembler produces x86

assembly language)

• DOS: Disk operating system for personal computers. One example is MS-DOS.

A 16-bit operating system released by Microsoft.

• Executable Binary: A computer application stored in a binary format of an

operating system used by a user for a particular task.
9

• Reverse engineering: A standard definition for reverse engineering was given

by Chikofsky and Cross [11] in 1990:

Reverse engineering is the process of analyzing a subject [software] sys-

tem to:

– identify the systems components and their interrelationships and

– create representations of the system in another form or at a higher

level of abstraction

• Self-modifying Programs: An executable binary that hides the actual instruc-

tions that will be executed through encryption and/or compression.

• XML: Extensible Markup Language (XML) is a simple, very flexible text format

derived from SGML (ISO 8879). Originally designed to meet the challenges of

large-scale electronic publishing, XML is also playing an increasingly important

role in the exchange of a wide variety of data on the Web and elsewhere [65].

2.2 Background

In order to fully understand how the compressed executable and compiler classifica-

tion research use the information in binary file format headers it is necessary to explain

the different file formats.

2.2.1 Windows Portable Executable (PE)

The PE format is the main executable format for binary computer applications for

the Windows operating system. It maintains backwards compatibility with MS-DOS for

software applications. For the sake of brevity only the DOS, PE, optional and section

headers are described.

As can be seen in Figure 2.1 and Table 2.1, a PE file requires overhead to allow it

to be portable amongst the different versions of Windows. The first section is always a

DOS header, often referred to as the DOS stub, which is a small application that runs

10

Figure 2.1: PE File Header

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

DOS 2.0 Header
(Includes base of the PE image header)

COFF File Header
Section Headers

Table 2.1: Typical Portable EXE File Layout

under MS-DOS and prints the message: “This program cannot be run in DOS mode.”

Normally, having such a thing at the beginning of an executable would likely cause the

application to fail to run. However, as stated in the official documentation of the PE

format, the file offset to the PE signature is placed at location 0x3c within the stub,

which allows the image to be run by Windows even with the stub present. [39]

2.2.1.1 DOS Header

The DOS header, in most cases, is only included in an executable program to

provide the MS-DOS signature and the location of the PE header. The signature of a

DOS header is MZ which is used by the Windows loader to know it is at least dealing

11

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Machine NumberOfSections
TimeDateStamp

PointerToSymbolTable
NumberOfSymbols

SizeOfOptionalHeader Characteristics

Table 2.2: Fields of the PE COFF File Header

with a DOS program. In most versions of Microsoft Windows (e.g. Vista, XP, 2000

Professional) today the loader skips to the location in the binary file where the PE

header begins. If the program was executed in DOS mode, a string is printed saying

that the application cannot be executed in this mode.

2.2.1.2 PE Header

2.2.1.2.1 Common Object File Format (COFF) File Header : The PE COFF

File Header, as shown in Table 2.2 is composed of a signature and the following fields.

The signature is used to identify the kind of Windows file. In previous versions of

Windows 3.0 and 3.1 operating systems the signature was marked by the four-bytes

“NE00”, but the most recent version of Windows (e.g. Vista, XP, NT), the signature is

marked by the string “PE00”. The following list are COFF header properties [39] that

could be used during the classification process:

• Machine: The number that identifies the type of target machine (e.g. x86,

PowerPC)

• NumberOfSections: The number of sections. This indicates the size of the

section table, which immediately follows the headers.

• TimeDateStamp: The low 32 bits of the number of seconds since 00:00 January

1, 1970 (a C run-time time t value), that indicates when the file was created.

• PointerToSymbolTable: The file offset of the COFF symbol table, or zero if

no COFF symbol table is present. [39]

12

• NumberOfSymbols: The number of entries in the symbol table. This data can

be used to locate the string table, which immediately follows the symbol table.

• SizeOfOptionalHeader: The size of the optional header, which is required for

executable files but not for object files.

• Characteristics: The flags that indicate the attributes of the file.

The fields of interest are the number of sections and the characteristics. There

should be at least two sections in a file to denote the code and data sections of a binary

computer application. Not all compilers follow the same arrangement of sections. The

number of sections lets the security researcher know at least how many sections are

contained in PE file. The characteristics field is there to let the Windows operating

system know if it is reading in an EXE versus a DLL.

2.2.1.2.2 Optional Header : There are many fields in the optional header, as

seen in Figure 2.3, that give information on the kind of binary program contained in a

Windows PE file. The first indication is the Magic field. This tells the Windows binary

loader that it is dealing with a 32-bit version (PE) or a 64-bit version (PE+) Windows

program. This information cannot be falsified in a system because there is a slight

difference in how certain fields would be interpreted by the Windows binary loader.

For example the BaseOfData field is present in the Windows PE (32-bit version) but

not in the Windows PE+ (64-bit version). Falsifying the Magic field will cause the

Windows loader to improperly read the binary computer application from the system

disk possibly crashing the Windows loader. There are only two accepted hex values

stated in the PE specification [39] of ’0x10b’ for Windows PE and ’0x20b’ for Windows

PE+. The following are Optional Header properties [39] that could be used during the

classification process:

• Magic: The unsigned integer that identifies the state of the image file. (0x10B

= PE), (0x107 = ROM image), (0x20B = PE32+)

13

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Magic MajorLinkerVersion MinorLinkerVersion
SizeOfCode

SizeOfInitializedData
SizeOfUninitializedData
AddressOfEntryPoint

BaseOfCode
BaseOfData

Table 2.3: Fields of the PE Optional Header

• MajorLinkerVersion: The linker major version number.

• MinorLinkerVersion: The linker minor version number.

• SizeOfCode: The size of the code (text) section, or the sum of all code sections

if there are multiple sections.

• SizeOfInitializedData: The size of the initialized data section, or the sum of

all such sections if there are multiple data sections.

• SizeOfUninitializedData: The size of the uninitialized data section (marked by

the section name BSS), or the sum of all such sections if there are multiple BSS

sections.

• AddressOfEntryPoint: The address of the entry point relative to the image

base when the executable file is loaded into memory. For program images, this is

the starting address. For device drivers, this is the address of the initialization

function. An entry point is optional for DLLs. When no entry point is present,

this field must be zero.

The only remaining fields in the optional header that are of interest are the table

pointer as seen in Table 2.4 and described in the list below [39]. The table pointers

give the relative virtual address in where each table is located in memory and its size.

These tables are used by the Windows binary loader to prepare the binary program for

execution. There is one table in particular of interest called the Import Table. This
14

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Export Table
Import Table

Resource Table
Exception Table
Certificate Table

Base Relocation Table
Debug

Architecture
Export Table

Global Pointer
TLS Table

Load Config Table
Bound Import

IAT
Delay Import Descriptor

CLR Runtime Header
Reserved

Table 2.4: PE Optional Header Directories

table tells what DLLs are needed to run the binary program plus what functions in

them are accessed.

It is important to note that while these tables are listed in the optional header

there does not need to be a matching section header for each one. What can happen

is that certain tables, like the import table, can be packed into another section. So the

only way to be sure of the presence of the Import Table in a Windows PE file is to first

use the Import Table pointer and size if they are non-zero values. If either is a zero

value then a search of the section headers is required to find the Import Table. The

tables listed in the Optional Header may provide details useful to classifying a certain

property but certain tools may desire to hide them from analysis.

• Export Table: The export table address and size. This table describes the

exported symbols that can be used through dynamic linking.

• Import Table: The import table address and size. This table describes the

imported symbols from other dynamically linked libraries.

15

• Resource Table: The resource table address and size. The resoure table is a

tree base data structure describing information used by the application like icons

and version information.

• Exception Table: The exception table address and size. The exception table

contains a list of function table entries used for exception handling.

• Certificate Table: The attribute certificate table address and size. The cer-

tificate table contains digital certificates, like Authenticode signatures [40], which

are used by a verification policy, e.g. Win32 WinVerifyTrust function [40], to

determine the origin and integrity of an application.

• Base Relocation Table: The base relocation table address and size. The base

relocation table is used to adjust base relocations if the operating system loader

cannot load the image at the desired location stated in the PE header.

• Debug: The debug data starting address and size. The debug data contains all

the compiler generated debug information.

• Architecture: Reserved for future use, must be 0.

• Global Pointer: The RVA of the value to be stored in the global pointer register.

The size member of this structure must be set to zero. According to Pietrek [47] the

global pointer is “a preassigned value for accessing data within a load module”.

Further Pietrek says that “On the IA64, each instruction is 41 bits in length.

As such, it’s impossible for a 41-bit IA64 instruction to contain a complete 64-bit

address. Instead, all memory accesses must be done by using a 64-bit pointer value

loaded into a general-purpose register. When working with data defined within a

load module, the global pointer makes it possible to put the target address that

you want into a register using a single instruction.”

• TLS Table: The thread local storage (TLS) table address and size. The TLS

table “provides direct PE and COFF support for static thread local storage (TLS).

16

TLS is a special storage class that Windows supports in which a data object is

not an automatic (stack) variable, yet is local to each individual thread that runs

the code. Thus, each thread can maintain a different value for a variable declared

by using TLS.” [39]

• Load Config Table: The load configuration table address and size. The load

configuration table was used to describe information too big to be described in the

file header but it is presently used by Windows XP and later version to contain

structured exception handlers.

• Bound Import: The bound import table address and size. The bound import ta-

ble contains a list of precomputed real addresses for each of the imported functions

used from DLLs [37].

• Delay Import Address Table (IAT): The import address table (IAT) address

and size. The IAT is used to support a uniform mechanism for applications to

delay loading of a DLL until the first call into that DLL.

• Delay Import Descriptor: The delay import descriptor address and size. Al-

lows access to the delay IAT to update the entry point function pointers that

reside in the data section of the image and initially refer to the delay load thunks.

A thunk is a mechanism which allows a 16-bit application to access 32-bit DLLs

and vice versa. [38].

• Common Language Runtime (CLR) Runtime Header: The CLR run time

header address and size. The CLR is used to indicate that a object file contains

managed code.

• Reserved: must be zero [39]

2.2.1.2.3 Section Header : Each section header, as shown in Table 2.5, has a

name that is supposed to be descriptive of the contents of the section. The section

header information was derived from [39]. While there are predefined traditional names
17

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Name
VirtualSize VirtualAddress

SizeOfRawData PointerToRawData
PointerToRelocations PointerToLineNumbers

NumberOf NumberOf Characteristics
Relocations LineNumbers

Table 2.5: PE Section Header

for some sections there is no guidance as to what happens in the Windows binary loader

when it deals with the names that deviate from the norm. In some suspected malicious

files some utilities will create sections with names specific to the utility. For example

the PEtite program sometimes makes a section header which contains the decrypter

titled as “.petite”. Now this is a good indication that the binary program has been

compressed with the PEtite program, but this has to be confirmed by other means. It

is necessary to not assume anything about an application but to confirm each property.

Just labeling a section as “.petite” does not mean the PEtite program was used to

compressed the application. The following list of section header information [39] can be

used for classification:

• Name: An 8-byte, null-padded UTF-8 encoded string. If the string is exactly 8

characters long, there is no terminating null. For longer names, this field contains

a slash (/) that is followed by an ASCII representation of a decimal number that

is an offset into the string table. Executable images do not use a string table and

do not support section names longer than 8 characters. Long names in object files

are truncated if they are written to an executable file.

• VirtualSize: The total size of the section when loaded into memory. If this value

is greater than SizeOfRawData, the section is zero-padded. This field is valid only

for executable images and should be set to zero for object files.

• VirtualAddress: For executable images, the address of the first byte of the

section relative to the image base when the section is loaded into memory. For
18

object files, this field is the address of the first byte before relocation is applied;

for simplicity, compilers should set this to zero. Otherwise, it is an arbitrary value

that is subtracted from offsets during relocation.

• SizeOfRawData: The size of the section (for object files) or the size of the

initialized data on disk (for image files). For executable images, this must be a

multiple of FileAlignment from the optional header. If this is less than VirtualSize,

the remainder of the section is zero-filled. Because the SizeOfRawData field is

rounded but the VirtualSize field is not, it is possible for SizeOfRawData to be

greater than VirtualSize as well. When a section contains only uninitialized data,

this field should be zero.

• PointerToRawData: The file pointer to the first page of the section within

the COFF file. For executable images, this must be a multiple of FileAlignment

from the optional header. For object files, the value should be aligned on a 4byte

boundary for best performance. When a section contains only uninitialized data,

this field should be zero.

• PointerToRelocations: The file pointer to the beginning of relocation entries for

the section. This is set to zero for executable images or if there are no relocations.

• PointerToLinenumbers: The file pointer to the beginning of line-number entries

for the section. This is set to zero if there are no COFF line numbers. This value

should be zero for an image because COFF debugging information is deprecated.

• NumberOfRelocations: The number of relocation entries for the section. This

is set to zero for executable images.

• NumberOfLinenumbers: The number of line-number entries for the section.

This value should be zero for an image because COFF debugging information is

deprecated.

• Characteristics: The flags that describe the characteristics of the section.

19

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

e ident
e type e machine

e machine
e version
e entry
e phoff
e shoff
e flags

e ehsize e phentsize
e phnum e shentsize
e shnum e shstrndx

Table 2.6: ELF Header

2.2.2 Linux ELF

The Linux kernel has had three variations for its binary file format over the years.

The Executable and Linking Format (ELF) [62] format is the present generation binary

file format used for all Linux binary programs For the sake of brevity only the ELF

header, program header table and the section headers are covered.

2.2.2.1 ELF Header

The ELF header, as shown in Table 2.6, starts with a unique identifier. The

unique identifier is read by the Linux binary loader to confirm it is executing an ELF

program. It will also read properties from the ELF header like which processor it was

intended to run and where to start reading the program header and the section headers.

These properties allow the binary loader to confirm the ELF program is capable of being

executed on the system (e.g. x86 ELF program executed on a x86 linux host) and how

to prepare the ELF program’s image in system memory.

• e ident: The initial bytes mark the file as an object file and provide machine-

independent data with which to decode and interpret the file’s contents.

• e type: This identifies the object file type.

• e machine: This value specifies the required architecture for an individual file.
20

• e version: This identifies the object file version.

• e entry: This gives the virtual address to which the system first transfers control,

thus starting the process.

• e phoff: This holds the program header table’s file offset in bytes.

• e shoff: This holds the section header table’s file offset in bytes.

• e flags: This holds processor-specific flags associated with the file.

• e ehsize: This holds the ELF header’s size in bytes.

• e phentsize: This holds the size in bytes of one entry in the file’s program header

table. All entries are the same size.

• e phnum: This holds the number of entries in the program header table. Thus,

the product of e phentsize and e phnum gives the table’s size in bytes.

• e shentsize: This holds a section header’s size in bytes. A section header is one

entry in the section header table; all entries are the same size.

• e shnum: This holds the number of entries in the section header table. Thus, the

product of e shentsize and e shnum gives the section header table’s size in bytes.

• e shstrndx: This holds the section header table index of the entry associated

with the section name string table.

2.2.2.2 ELF Program Header

The ELF program header, as shown in Table 2.7 tells the Linux binary loader where

to store the program in memory along with setting any specific permission(s) for that

segment of memory.

• p type: This tells what kind of segment this array element describes or how to

interpret the array element’s information.

21

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

p type
p offset
p vaddr
p paddr
p filesz

p memsz
p flags
p align

Table 2.7: ELF Program Header

• p offset: This gives the offset from the beginning of the file at which the first

byte of the segment resides.

• p vaddr: This gives the virtual address at which the first byte of the segment

resides in memory.

• p paddr: On systems for which physical addressing is relevant, this is reserved

for the segment’s physical address.

• p filesz: This gives the number of bytes in the file image of the segment; it may

be zero.

• p memsz: This gives the number of bytes in the memory image of the segment;

it may be zero.

• p flags: This gives flags relevant to the segment.

• p align: Loadable process segments must have congruent values for p vaddr and

p offset modulo the page size. This member gives the value to which the segments

are aligned in memory and in the file.

2.2.2.3 ELF Section Header

The layout of the ELF binary format is similar to the Windows PE format but

there is an important difference. In the Windows PE format, we mentioned that a

22

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

sh name
sh type
sh flags
sh addr
sh offset
sh size
sh link
sh info

Table 2.8: ELF Section Header

section can be placed inside another section. This was allowed by the Table pointers in

the Optional Header. With regard to ELF, there is no such list of tables pointing to

places in the binary file for sections that must be loaded into memory. Any segment of

information that must be handled by the Linux binary loader in a particular way needs

to have its own section header. The ELF section header is shown in Table 2.8.

In the Windows PE format, the import table can be hidden by a utility preparing

a self-modifying program inside another section. This type of subterfuge is not possible

in the ELF format. Any shared libraries that need to be loaded must be described in

the ELF section header called ’.dynamic’.

• sh name: This specifies the name of the section. Its value is an index into the

section header string table section giving the location of a null-terminated string.

• sh type: This categorizes the section’s contents and semantics.

• sh flags: Each section supports 1-bit flags that describe miscellaneous attributes.

• sh addr: If the section will appear in the memory image of a process, this gives

the address at which the section’s first byte should reside. Otherwise, the contains

0.

• sh offset: This value gives the byte offset from the beginning of the file to the

first byte in the section.

23

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

magic
minor version major version

constant pool count constant pool item #1
. . . constant pool item #N

access flags this class
super class interfaces count

interface #1 . . .
interface #N field count
field info #1 . . .
field info #N methods count

method info #1 . . .
method info #N attributes count
attribute info #1 . . .
attribute info #N

Table 2.9: Java Class File format

• sh size: This gives the section’s size in bytes. Unless the section type is

SHT NOBITS, the section occupies sh size bytes in the file. A section of type

SHT NOBITS may have a non-zero size, but it occupies no space in the file.

• sh link: This holds a section header table index link, whose interpretation de-

pends on the section type.

• sh info: This holds extra information, whose interpretation depends on the sec-

tion type.

2.2.3 Java Class

A Java Class file, as shown in Table 2.9, is different from the other two formats,

Linux ELF and Windows PE formats, in that every piece of information is contained

in one structure. There is no concept of sections, segments, or any data structure other

than a Class file data structure.

24

2.2.3.1 Class Header

• magic: The magic item supplies the magic number identifying the class file for-

mat; it has the value 0xCAFEBABE.

• minor version: Minor version of the class file.

• major version: Major version of the class file

• constant pool count: The value is equal to the number of entries in the con-

stant pool table plus one.

• constant pool: This is a table of structures representing various string constants,

class and interface names, field names, and other constants that are referred to

within the Class file structure and its substructures.

• access flags: The value is a mask of flags used to denote access permissions to

and properties of this class or interface.

• this class: The value of this item must be a valid index into the constant pool

table. The object at this index must be a Constant Class Info type.

• super class: For a class, the value of the super class item either must be zero or

must be a valid index in the constant pool table. For an interface, the value of

the super class item must always be a valid index in the constant pool table.

• interfaces count: Number of interfaces in the class interfaces. Each value in the

interfaces array must be a valid index into the constant pool table. Each object

in the constant pool must be of Constant Class Info.

• field count: Number of fields in the class

• methods count: Number of methods in the class

• attributes count: Number of attributes in the class

25

The “major version” and “minor version” are used by the Java Virtual Machine

(JVM) to determine if it is capable of running the java byte code. The Java Class file

might have a higher version number than it is capable of executing properly. The JVM

starts reading the constant pool, similar to a table of contents, for validating, initializing

and preparing the class file for execution.

2.2.3.1.1 Constant Pool: The constant pool is a list of all the classes, interfaces,

fields, methods and data that can be used in the Java Class file. Each item in the

constant pool is a variable length constant pool Info object. Each object has an 8-bit

tag describing the kind of constant pool item it is along with a series of bytes giving

the information for that object. The Java Virtual Machine (JVM) reads in all this

information into a run time constant pool for use later.

It is interesting to note that the Java Class file explicit separates instructions of a

program from its data. Each method info structure contains a list instructions stored

in the Code Attribute. This attribute is only allowed to contain valid 8-bit Java byte

code instructions. No data is allowed to be stored in this attribute.

A method can reference constant values found in the constant pool for use in the

function. Any data used by the method will be found either in the constant pool, in

the stack frame or on the heap.

The validation process of the JVM that validates all the data structures in the Java

Class file follows a strict set of rules. The discussion of the rules is beyond the scope of

this dissertation.

2.3 Compressed Executables

Malicious code present in an executable has the capacity to oppose the security aims

of confidentially (by revealing information against the wishes of the owner), integrity

(by disrupting or altering data), and availability (by rendering systems unusable) [4].

Therefore, it is both natural and imperative to seek to root out and defend against such

attacks.

26

There are a variety of methods that have been proposed and applied (with varying

levels of success) in order to improve the classification of and defense against malware.

The general components of defense systems, as presented in [43] include:

1. Data collectors/information sources which provide information on normal and

abnormal entities.

2. Analysis components which look at new instances and attempt to determine

whether or not they are a threat.

3. Response components which take action against wouldbe threats

4. Testing components which attempt to expose vulnerabilities in the system.

Data collectors typically provide information to the analysis components which in

turn provide detection capabilities to the response components. The response compo-

nents then take appropriate action against a given threat. Finally, the testing compo-

nents identify weaknesses in the system and provide information to the data collector

and analysis components.

One focus of this work is to improve analysis capabilities by providing informa-

tion about executable files, even though little information concerning those files may

be known. While techniques exist for disassembly and reverse compilation for executa-

bles, different tactics must be taken for self-modifying files. If a reverse engineering

framework has the capacity to know exactly the type of file with which it is dealing

with then the process of reverse compilation becomes simpler. The framework can take

action using the discovered knowledge of the file to recover the hidden instructions.

Otherwise the framework has to take a general approach which may or may not work.

Reverse engineering a file supports digital forensic investigation since it allows an an-

alyst to determine the intention of a malicious file without actually executing the file.

Additionally, knowing that an executable has been compressed can alert an investigator

of suspicious activity on a machine under investigation. Normally most executables

27

are stored in a uncompressed format on a system since space is not an issue. Embed-

ded system designer may choose to compress their application since the target device

often has limited storage space. Therefore when an investigator finds an compressed

executable on a system that does not normally need them it should alert them to a

potential problem.

Static analysis of files typically focuses on determining program properties and be-

havior by examining software without running it, while dynamic analysis executes a

program repeatedly under known conditions and then observes the results [24]. There

are advantages to both approaches. In static analysis, program execution must be ab-

stracted and modeled, so the results may be less specific in order to preserve correctness.

Put simply, it may be difficult to determine exactly what a program does in all situations

without actually running it. There are other complications, as illustrated in [66]:

• Tractability: increasing program size dramatically increases the time required for

static analysis.

• Decidability: it is impossible to know how many times a loop will be executed

at run time; it is equally impossible to know how many times a function may be

called recursively.

• Pointer Aliasing: in languages that are not type-safe (C, for example) it is pos-

sible to have many different variables accessing some buffer in memory, and it is

infeasible to gain an accurate listing of such variables.

In dynamic analysis, while it is typically easier to get a clear picture of what the

program does, given specific test cases, it is generally unreasonable to expect to be able

to exhaustively test all possible executions. Worse still, in the domain on information

security, it is highly undesirable to execute potentially malicious software many times

in order to examine its behavior. Thus, we will largely confine our discussion of related

work to static analysis and reverse engineering schemes.

28

2.4 Survey of Decompiling Architectures

This section covers the different kinds of decompiling architectures. There are two

types of decompiling architectures covered in reverse engineering research. Section 2.4.1

covers the decompiling architectures for x86 problems and Section 2.4.2.

2.4.1 x86

Sung and Mukkamala [55] demonstrates the complexity of reverse engineering code

in general. It is highly desirable from a security standpoint to be able to have access to

the source code of a potentially dangerous executable.

Some decompiling architectures focuses on binaries that are compiled for the Intel

x86 architecture. The following research listed below investigated methods to reverse

engineer x86 binary programs into a form of high-level output (e.g. C programming

language).

2.4.1.1 Cifuentes

Summary: Cifuentes [14] illustrates one example of x86 decompiling architecture

to transform from x86 executable code to high-level C language code. The stepwise

process converts the application to assembly first. Secondly it converts the assembly

output into RTL form in a control flow graph. Finally it converts the RTL in the control

flow graph into a high level form of RTL. The output is converted into C programming

language.

Cifuentes’s work [14] demonstrates the complexity of reverse engineering code in

general. It is highly desirable from a security standpoint to be able to have access

to the source code of a potentially dangerous executable. However, while creating

executables from source code is easily done with modern software, the reverse is not

at all simple. Cifuentes illustrates a working process to move from executable code to

high-level language code.

29

Many of the steps are simple in theory but difficult in practice due to a variety of

issues. Converting from binary to assembly can be difficult, since it is difficult to dis-

tinguish between data and instructions in the binary format. System-specific strategies

make this possible but still difficult. Compression and encryption techniques make this

effort even more difficult, especially if the compression or encryption method used on

the file is not known (thus the motivation for this research). A further example of the

complexity of this process comes in converting from assembly to high-level code. This

is often made difficult by the fact that not all assembly instructions have an equivalent

high-level representation. Further, differing choices of high-level language will lead to

differing final representations.

Even given these difficulties, Cifuentes manages to successfully use a variety of

new and existing tools to effectively reverse engineer a number of programs of varying

complexity. However, as is expected, there are issues with scalability and such efforts

have the potential to be somewhat fragile with respect to which executables can be

reverse engineered.

Key Contributions: A three stage process for automatically converting DOS x86

executables into C programming language:

• The first stage is the “Input” where the binary program is converted into a control

flow graph containing instructions in RTL format.

• The second stage is the “Analysis” where the control and data flow analysis trans-

form the control flow graph.

• The final stage is the “Output” where the contents of the control flow graph are

converted into a file containing C programming language instructions.

Weaknesses: Due to a variety of issues some of the above steps are simple in

theory but difficult in practice. Converting from binary to assembly can be difficult

since it is difficult to distinguish between data and instructions in the binary format.

System-specific strategies make this possible but still difficult. Compression and en-

cryption techniques make this effort even more difficult, especially if the compression or
30

encryption method used on the file is not known. A further example of the complexity

of this process comes in converting from assembly to high-level code. This is often made

difficult by the fact that not all assembly instructions have an equivalent high-level rep-

resentation. Further, differing choices of high-level language will lead to differing final

representations. Even given these difficulties, Cifuentes manages to successfully use a

variety of new and existing tools to effectively reverse engineer a number of programs

of varying complexity. However, as is expected, there are issues with scalability, and

such efforts have the potential to be somewhat fragile with respect to what executable

programs can be reverse engineered.

2.4.1.2 Boomerang

Summary: Boomerang [35] is a program which attempts to extend the disserta-

tion work of Cifuentes. It is designed to work with either Intel Pentium or Sparc binary

executable programs.

Key Contributions: Boomerang follows the same structure as Cifuentes’s work:

• It first converts an x86 (Linux/Windows), PowerPC (Linux/Mac), or Sparc (So-

laris) executable to assembly using a disassembler.

• Secondly it translates the assembly into an intermediary language for the purpose

of reducing the bulk of instructions by analyzing the semantics of the operations.

• Next it converts the intermediary language into arbitrary high-level code using a

decompiler.

• Finally it post-processed arbitrary high-level code into C language for analysis

and use.

This program was utilized to recover the core algorithm from a third-party’s bi-

nary application along with almost all original class names and the complete class

hierarchy. [21]

31

Weaknesses: It suffers from the same issue of scalability of Cifuentes’s work. It

cannot be altered to add new functionality to apply this solution to other problems

without serious modification. It does not support compressed or encrypted executables.

Andromeda Decompiler

Summary: The goal of the Andromeda Decompiler [51] is to create a universal

interactive decompiling environment. The idea is to take in a user’s binary executable

and produce output in a high-level language of their choosing. The program runs on

the Windows platform and supports 32-bit Intel x86-compatible programs and C/C++

output.

Key Contributions: The two main features of Andromeda Decompiler are:

• Research and investigation of binary modules at a level of source codes.

• Partial or full restoration up to recompilable forms.

Weaknesses: All the features of the system were gleaned from the website for the

project. There is no source code available for the project so the internal workings of

the decompiler could not be investigated. At the time of this dissertation, no work had

been done on this project in four years given the last release was in 2005.

Static Detection of Malicious Code in Executable Programs

Summary: The static analyzer developed by Bergeron, Debbabi, Desharnais, Er-

hioui, Lavioe and Tawbi [3] converts a Windows PE executable file into an intermediate

representation, creates a control flow graph from this information and analyzes the

graph against a policy to determine if malicious code is present.

Key Contributions: The authors provide:

• A three step process for converting a Windows PE into a control flow graph for

analysis using the IDA32 disassembler.

32

– The first step processes a syntax tree representing the control structure of

the program. Each basic block in the control structure contains assembly

instructions produced by the IDA32 disassembler.

– The second step performs the control flow and data flow analysis on the

control flow graph.

– The final step of the process is to apply a security policy to the control flow

graph to detect malicious code.

Weaknesses: The solution is exclusively catered to x86 executable binaries in

the Windows PE format. Its design is very similar to Cifuentes [14] altering only the

method of producing the x86 assembly instructions. Whether or not the analyzer can

be expanded to Linux and Java is not clear.

Analysis of Binary Programs

Summary: Kapil and Kumar [32] produced a decompiling system composed of an

disassembler library libdisasm and a translation phase using the Standford University

Intermediate Format (SUIF). The system converts a binary program to an Intermediate

Representation(IR).

Key Contributions: The SUIF is a:

• Modular and extensible system that can describe a wide set of CPU instructions.

• The system utilizes these two tools in a two pass structure that produces the

assembly output of the binary program which is processed as a control flow graph.

• The output of the program is in SUIF format for conversion later into a higher

level language.

Weaknesses: The authors state that the system cannot handle input programs

that contain pointers, recognize user defined structures, recognize defined return type for

functions, handle arguments to functions passed in memory, identify loops that contain

break or continue statements, and handle control flags changed by all statements and
33

recognize if-then-else block structures. It only assumes control statements alter control

flags.

Designing an object-oriented decompiler

Summary: Desquirr [23] produced an IDA Pro plugin that performed a series of

transformations and analysis to produce high level output.

Key Contributions:

• Conversion method for translating assembly instructions into code in a high-level

language. It first translates 16- and 32-bit Intel 386 machine code produced by

the IDA Pro disassembler into Register Transfer Language (RTL) form.

• Secondly, it performs data and control flow analysis before finally producing source

code written in the C programming language.

Weaknesses: Desquirr cites Cifuentes work as a motivator for creating his so-

lution but limits his work to using IDA Pro to reverse engineer x86 programs. Since

IDA Pro provides a set of binary file formats and disassembly of the binary input,

Desquirr’s program utilized this through the IDA plugin interface. Instead of starting

the reverse engineering from the first byte of the code section as done by the Linux

program objdump, the program starts reading from the entry point of the target ap-

plication. Desquirr uses the same analysis operations that Cifuentes uses in her tool.

These tools separate code into basic blocks, perform live register analysis, find Def-Use

chains, register copy propagation, find functions and finally produce assembly instruc-

tions broken up into individual functions. This solution does not support analysis of

other architectures (e.g. PowerPC) or other file formats (e.g. Linux ELF).

Cobra: Fine-grained Malware Analysis using Stealth Localized executions

Summary: Cobra is a dynamic fine-grained malicious code analysis framework

that executes in kernel mode. The goal of the project is to support multi-threading,

34

self-modifying / self-checking code and any form of code obfuscation in both user and

kernel mode on commodity operating systems [64].

Key Contributions:

• Method for breaking up code execution into blocks for analysis.

• Support of self-modifying code through the use of xfer-stubs which allow Cobra

to always have control at the end of a block’s execution.

• Selective execution of code based on user defined points.

• Call back feature for applications built on its API.

Weaknesses: While the method of analysis for malicious programs is an excellent

solution, it is not scalable. The problem lies in the possible combinations of architec-

tures and operating systems. The Microsoft Windows family of operating systems is

dedicated mainly for the x86 architecture for home and business computers. The Win-

dows operating systems also operate in the embedded products. In order to support the

analysis of malicious code in all possible combinations, Cobra would have to be ported

to each of the possible operating systems. It also relies on the host operating system to

prepare the malicious program for execution and actually executes each of the instruc-

tions. While the strength of dynamic analysis of malicious programs is more powerful

than static analysis, there is an inherent risk in actually executing the instructions on

the host operating system even if it was in a VM environment. The risk of executing

malicious programs is that it is not known which, if any, of the host and network services

will be used.

Detecting Malicious Code by Model Checking

Summary: Model checking can be used to provide a flexible way to detect mali-

cious code patterns in executables. [33]

Key Contributions: The authors contribute:

35

• Computation Tree Predicate Logic (CTPL) to extend the Computation Tree Logic

(CTL) [16]. It is as expressive as CTL but allows a precise way to represent

malicious code patterns.

Weaknesses: CTPL provides a way to represent malicious code in a precise way

describing what a program should not be doing. To fully exercise this method, all

possible “malicious” patterns would need to be determined. In addition, the possibilities

of no false positives or negatives would have to be assured. The authors do not provide

any tests where normal programs, not containing malicious code, were processed by the

system. There is no proof given that the system will not accidentally classify something

as malicious code nor incorrectly classify a malicious program as a virus free. It is

uncertain that this solution would be capable of being used for Java binaries which use

different types of assembly operations.

2.4.2 Java Class

Java program files are platform independent files compiled for Java opcodes to run

on a Java Virtual Machine (JVM). Decompiling programs convert the Java opcodes

either to Java assembly or back into Java source files. The follow sections describe

various solutions to decompiling Java Class files into source files.

Sun Disassembler (Javap)

Summary: The Javap program is a part of the Sun Microsystem JDK that will

disassemble the input class file to the Java assembly. Since it is packaged within the

JDK, it is safe to assume that the expected input is one that was compiled with the

JDK compiler (javac).

Key Contributions: The Javap programs contributes:

• A Java disassembler which converts a Java class file into a Java source file con-

taining Java assembly instructions.

36

Weaknesses: Javap does not produce high-level Java source code which can

rapidly aid understanding of a suspect Java Class file. Javap produces a output file

containing java assembly instructions from a given Java Class file. An assembly instruc-

tions are one step up from the 1s and 0s a CPU or Virtual Machine instruction. It is not

very easy to identify high level programming constructs when looking at the assembly

instructions. For example identifying a complex if statement.

Dava decompiler

Summary: The Dava [41] decompiler project is a multiple stage decompiling pro-

cess by first constructing a typed list of all the statements found in the Java Class

file. Secondly, it constructs a control flow graph from the the output of the first stage.

Finally, it performs the analysis on the input to produce their high level output.

Key Contributions: The authors provide:

• data structure called Structure Encapsulation Tree (SET) that contains the Java

structures as the file is reverse engineered.

• six stages of transformation

1. Synchronized Blocks which contain the regions of the instructions of a syn-

chronized() block.

2. Loop Detection (e.g. while)

3. Remaining Conditionals identification (e.g. if)

4. Exceptions

5. Statement Sequences

6. Continues, Breaks, and Arbitrary Labeled Breaks

Weaknesses: The authors dive straight into the decompiling. They do not cover

what compiler was used. The basic problem with their work is that it is not obvious

how these same techniques will apply to other executable binaries compiled for different

architectures (e.g. x86 program for Windows PE).
37

In the course of explaining their project, the authors talk about what has been

previously done in the area of reverse engineering architectures. They talk about Ci-

fuentes’s work as an example of restructuring an input binary to source code based on

gotos. Cifuentes was targeting C as an output programming language hence the use

of goto statements to handle loops in the program. The Dava authors mention that

Cifuentes’s approach would require modification to handle Java. This is true because

C binary executable and Java Class files are vastly different. Cifunetes’s input phase

could not handle the Java Class file. It would require a new front-end to produce a

new control flow graph for the rest of her architecture. The same argument can be

applied to Dava because it cannot handle C binary executable programs. Each group

of researchers has produced a customized solution that cannot be easily altered. So the

Dava authors have no space to argue that they are doing more. Both groups scoped

their problem in order to make a tractable solution.

The fast JAva Decompiler (JAD)

Summary: JAD [34] is a Java decompiler written in C++ that is used to produce

source code or Java assembly output from a valid Java Class file.

Key Contributions:

• Enhanced readability of the generated source code.

• Ability to comment Java source code with JVM byte codes. Useful for verification

and educational purposes.

• Full support for inner and anonymous classes.

• Fast decompilation and simple setup.

• Automatic conversion of identifiers garbled by Java obfuscators into valid ones.

Weaknesses: While JAD can decompile Java Class files into Java source code,

it has a list of limitations. It cannot handle zip or jar files as input to the system

nor make use of the Java Class hierarchy. It has trouble with nested classes that
38

contain constructors with extra arguments added by the Java compiler. Also it makes

no mention about determining the compiler used to create the input class file. JAD

ignores line number table and source file attributes in the class file. Finally JAD has

trouble with in-lined functions.

DJ Java Decompiler

Summary: The DJ Java Decompiler [45] is a Java decompiler and disassembler.

It will recreate a file containing equivalent source code from a class file. It is a front-end

application that utilizes the JAD Decompiler as its decompiling engine. It makes no

mention about determining the compiler used to create the input class file.

Key Contributions: The DJ Dava Decompiler is a:

• Stand alone Windows program able to decompile Java Class files without requiring

the Java JDK to be installed.

• Provides an editor to allow changing the generated Java code.

Weaknesses: The design is only able to handle Java Class files and not any other

executable binaries.

Reverse Engineering Compiler (REC)

Summary: REC [10] is a graphical decompiler that can handle Intel x86, 68k,

PowerPC and MIPS R3000 programs for ELF, COFF, PE, AOUT, Playstation PS-X

and raw binary data files.

Key Contributions: REC is a:

• Graphical decompiler that can handle Intel x86, 68k, PowerPC and MIPS R3000

programs for ELF, COFF, PE, AOUT, Playstation PS-X and raw binary data

files.

Weaknesses Since the source files for REC are not publicly available, there is

no way to understand the internal behavior of REC. REC is designed to best handle

39

programs that were originally written in the C programming language and compiled

with the debug options enabled. If a target executable binary does not have debugging

information present, it cannot produce good output.

Decompiler for TurboC (DisC)

Summary: DiSC [36] is a decompiler specialized for the TurboC compiler.

Key Contributions:

• Only handles MS-DOS programs originally written in the C programming lan-

guage and compiled with the TurboC compiler.

• DiSC is a prime example of a decompiler written specifically for a certain compiler.

DisC will produce TurboC output that only requires a few modifications by the

user to compile the resulting

source code.

Weaknesses: It does not recognize floating point code and strings. It is not 100%

automated and is limited to TurboC. Most decompilers focus on convert instructions

for a particular processor into assembly language. They are not typically customized to

decompile an application produced by a particular compiler.

Java Optimize and Decompile Environment (JODE)

Summary: JODE [29] is an optimizer for Java Class files to remove debug infor-

mation, renaming objects like classes or variables, and removing dead code.

Key Contributions:

• Can be used to decompile Java Class files

• Can optimize Java Class files.

Weaknesses: It is limited to Java Class files that do not contain Java generics.

40

Mocha

Summary: Mocha [63] is a Java Class decompiler originally written by Hanpeter

van Vliet.

Key Contributions: Mocha contributes

• Mechanism to decompile Java Class files into Java source code.

Weaknesses: It is limited to Java Class files that do not contain Java generics.

The solution was created before Java generics were a part of the Java programming

language. The source code for this project cannot be obtained due to the author’s

death in 1996. When JAD was applied to the Mocha’s Java Class files, the resulting

code was determined to be obfuscated. Any further analysis into how Mocha works

would require a lengthy reverse engineering process.

2.4.3 Static Slicing on Binary Executables

Summary: In [4], the authors propose a process for static slicing of binary exe-

cutables in order to detect malicious code very similar to the approach offered in [14].

The difference is that in [14], the author was seeking the source code as the end product,

whereas in [4] the authors are interested in the identification of security vulnerabilities

in software. However, this approach is intended for use on commercial off-the-shelf

software, where the source code is unlikely to be available directly for use in analysis.

Key Contributions: Their methodology is as follows:

1. Using disassembler software to reduce binary code into an assembly equivalent.

2. Transforming the assembly code into a corresponding high-level representation,

which maintains the semantics of the code while improving the quality of the

analysis.

3. Using the high-level representation, they attempt to identify potentially malicious

portions of the code. This serves to reduce the amount of code which must be

further analyzed (thus reducing the complexity of the overall file analysis).
41

4. Examining potentially malicious slices identified before.

Weaknesses: While this approach does provide a methodology for dealing with

software when the source code is not available, it does have certain weaknesses. First, it

is highly dependent on the availability and capability of tools, such as disassemblers and

assembly-to-source translators to be able to successfully perform analysis. In practice,

these tools may not always be available, often have difficulties with scalability, and tend

to be very system-specific. Further, these strategies may not be effective at all against

purposefully altered executables (such as those that have been compressed, obfuscated,

or encrypted), since they depend on disassembly.

2.4.4 Static Analysis on Executables without Decompiling

Analyzing an executable file directly without decompilation improves the robustness

of the solution and can provide greater insight than static analysis on the source code.

2.4.4.1 Related Work on Windows Portable Executable Files

Several of the other approaches surveyed depend either on the availability of source

code directly or on the ability to reverse-compile such source code. However, as shown

by [14], this is a non-trivial effort. Further, in a security environment, this process

may not be at all practical for file analysis. To this end, the authors in [59, 60] attempt

to extract useful security information directly from Windows PE executables without

decompilation or execution.

The motivation behind this work is that even when source code is obtainable, it

may not always reveal the vulnerabilities in the executable. For example, malicious

behaviors may be inserted in the executable post-compilation (many viruses take this

approach). Tevis automatically extracts information from the PE file to produce a file

synopsis. Then, anomaly detection is done by a series of discovered rules:

• Checking for mismatches in table sizes as reported by the optional headers versus

the actual size in memory.
42

• Checking for large blocks of memory unaccounted for in the header (which may

potentially be used for holding data in a self-modifying file).

• Checking for sections in the Windows Portable Executable sections header which

are both writable and executable (also potentially used for self-modification).

• Analyzing the symbol table for strings of potentially dangerous functions (for

example, notoriously unsafe C functions like gets()).

• Identifying purposefully removed information in symbol tables and import tables,

which may indicate an attempt to hide inappropriately placed data.

Tevis tested a test-set of thousands of Windows Portable Executable (PE) (dis-

cussed at greater length in Section 2.2.1) files for anomalies and found no shortage of

vulnerabilities in a large array of even Microsoft system files. His work is particularly

of interest since he demonstrates that a large amount of information can be extracted

and interpreted from the PE header file itself. This shows that patterns and anomalies

can be observed directly from the executable. The downside of this research is that

the work does not naturally translate well to other executable types or other operating

systems. All trends and rules would have to be rediscovered for any other types. An-

other problem, in terms of deployment, is that while the system attempts to identify

anomalies, it does not attempt to draw many conclusions about those anomalies. With-

out further analysis, these anomalies would produce a high false-positive rate. They

would constantly alert a user of potential problems with executables, whether or not an

immediate security concern actually existed.

2.4.4.2 Related Work on Self-Modifying Virus Detection

Static analysis has been proven to work in the detection of self-encrypting and

polymorphic viruses by the work presented in [42]. A self-modifying virus has its pay-

load encrypted and carries code for decryption once it is in memory. This means that

most virus detection utilities will be ineffective as they cannot perform code checking in

43

an attempt to determine the intent of the program. Polymorphic viruses are enhanced

self-modifying viruses that were designed to avoid fixed patterns which are often used

by virus scanners/detectors. The authors of this work created a code simulation en-

vironment in order to analyze the actions performed by a number of programs. The

authors used a simulator that was allowed to run virus code in a controlled environment

in order to detect external API function calls. Also the authors allowed for execution

of these API function calls by OS emulation that uses stub functions instead of the real

library functions.

The results presented in [42] show that it is possible to use static analysis in order

to find viruses that are self-encrypting and/or polymorphic. In a testing set where a

majority of the instances (80%) had never been seen by the tool and using only a handful

of the policies that were defined, the system was able to detect malicious code with over

80% accuracy and as high as 95% accuracy with four of the policies defined.

2.5 Machine Learning Related Work

In [58], the authors describe the use of a Neural Network to analyze the boot

sector of a PC to determine if it was infected by a virus. In this application, their

representation of a training instance was novel, since simply including all the 512 bytes

of the boot sector would be infeasible due to Bellman’s Curse of Dimensionality [2].

Instead, they interpreted the boot sector as a series of approximately a dozen features

(properties of the boot sector) and classified based on this set. Their primary focus was

the minimization of false positives, since they were targeting a commercial audience.

They used a training set of 200 known boot-sector viruses and roughly 100 executable

viruses. The neural network used was trained with an iterative back propagation al-

gorithm. This system resulted in a very low false-positive rate (less than 1%) and a

modest false-negative rate (around 15%).

In [50], the authors attempt to identify malicious executables using a strategy of

feature extraction from a large test set of binary executables. Training instance features

include Dynamically Linked Libraries (DLL) file names used, DLL function calls made,
44

numbers of function calls made to specific DLLs, and byte sequences appearing in the

files. These test sets were used to train both Náıve Bayesian Classifiers and Multi-Náıve

Bayesian Classifiers (probabilistic instance-based learners), which ultimately outper-

formed signature based malware-detection programs dramatically in terms of detection

rates (although they demonstrate slight false-positive rates).

In [55], the authors attempt to reduce the number of elements in training instances

(to be used for a Neural Network classifier) by assessing their importance. If smaller

training instances can be produced without sacrificing accuracy, then this practice can

improve the computational speed of the classifier when being used for classification

(of course, this will improve the speed of training generally as well). Better still, by

removing useless data from the learner, it can actually improve accuracy. In order to

rank features, they use a feature selection scheme designed to maximize classification

ability. This research is significant since it examines an effective mechanism for reducing

the size of training instances (they generally saw as large as 20% reductions in the

number of features without loss of classification accuracy).

2.6 Survey of Compiler Detection

A thorough search of unclassified sources and published literature was conducted

as demonstrated in this chapter. Queries were sent to the open source community and

Richard Stallman [54] on the belief that someone had conducted this work. The answers

received back showed this was not the case.

2.7 Generic Decompilation

Construction of a general decompiling / reverse engineering architecture that can

be applied across a wide set of inputs and various problems has not been done. Similarly,

detection of which compiler was used to create a binary executable has not been done.

Clearly the previous work in this area shows that reverse engineering is possible to

45

some degree. This work will show how previous reverse engineering solutions can be

generalized.

2.8 Summary

Past research into reverse engineering have shown how specific solutions can solve

certain reverse engineering problems. The solutions were catered to reverse engineering

files written in a specific file format. Each file format provides a lot of information that

can be utilized in a generic reverse engineering architecture to verify certain properties

about executable files. Machine learning can take advantage of this information to

classify and verify properites found in executable files.

46

Chapter 3

Analysis And Classification

3.1 Introduction

In this chapter, we describe the machine learning technique utilized, the inner

workings of a General Regression Neural Network, and optimization techniques used to

optimize the parameters for the GRNN.

3.2 The General Regression Neural Network

Neural networks, in general, attempt to emulate the biological neural networks

in the brain, which depend on massive parallelism and inter-connectivity in order to

process information quickly.

A GRNN, shown in Figure 3.1, is a one-pass learning algorithm which attempts

to approximate a continuous variable that is dependent on many representative vector

training instances. This is more beneficial than other neural network strategies which

require iterative learning that uses many iterations in order to produce workable solu-

tions. In practice, any analysis system deployed to provide computer security should

be created with the awareness that computational resources are not infinite. Typical

computer users will not sacrifice much convenience for security.

As described by Specht[53], elements of training instances x1...xn are passed into

the network and collected into pattern units (where each unit represents a single training

instance). The output from the pattern units is collected in the summation units (as

described below) and then the output of the summation units is ultimately collected to

provide an estimate for Ŷ corresponding to an unseen input vector X.

47

Figure 3.1: A GRNN Block Diagram

48

Each training instance in the GRNN consists of a vector X and a desired output Y .

In order to provide an estimate of the value of Ŷ for an unseen instance X is calculated

in Formula 3.1:

Ŷ (X) =
∑n

i=1 Yi ∗ exp(−
Ci
σ)∑n

i=1 exp(−
Ci
σ)

(3.1)

where n is the number of all training instances, Yi is the desired output for a given

training instance vector, σ is a constant parameter of the GRNN, and the value of Ci

is the Euclidean distance between X and a given instance vector, as shown in Formula

3.2:

Ci =
p∑
i=1

|Xj −Xij | (3.2)

where Xj represents a single element of the training instance vector and Xij represents

the corresponding element in the instance to be classified.

The effectiveness of a Neural Network depends on [28]:

1. The presence of learnable characteristics in the training instances

2. The number of training set instances

3. The representation of the training set

4. The complexity of the problem at hand

5. System parameters of the Neural Network

Our classifier attempts to carefully address each of the above factors.

3.2.1 Learnability in the Training Instances

One of the significant risks in the initial phase of this research was that the infor-

mation available from the Java Class, Linux ELF and Windows PE file headers would

not be sufficient to provide the learning algorithm with enough knowledge to effectively

classify target (e.g. compiler or compression method). The algorithm used depends on
49

discovering relations between various fields in the file headers. If there is not enough in-

formation from the file headers that a learner can form these relations then this method

would fail. Even the best learner cannot extract information if there is not a correlation

between the input vectors and the desired outputs.

In regard to compressed file classification, there was reason to believe that there is a

correlation between the physical and virtual sizes of files in the executable (to determine

between compressed and uncompressed) and that this information could be effectively

extracted. Perhaps of greater interest was the hope that each compression algorithm

had a sufficient characteristic impact on the PE Header to be revealed to the neural

network.

In a similar light, there was reason to believe that each compiler leaves unique

characteristics in the file headers that can be revealed to the neural network. Each

compiler has a unique way it writes a binary computer application file for a particular

file format given the same input source code file. This is because groups of programmers

have different methods for solving the same problem. Given the same plans people

often interpret them differently. Therefore, it was likely that there would be unique

characteristics found in the file headers that could be used to classify the compiler.

3.2.2 Training Set Instances

Under ideal conditions, the training set should be relatively large and perfectly

representative of all possible instances that the network could be asked to classify. In

practice, this is not always possible. We sought to choose a wide variety of executable

files for the two problem areas. In the compressed executable classification we sought

both compressed and uncompressed of common applications on a Windows XP system

for the compression detection. In the compiler classification we sought to choose a wide

variety of Java Class (produced from Java source files), Windows PE and Linux ELF

executable files (produced from C++ source files).

50

3.2.3 Complexity

In general, the complexity of the classification problem is not under the control of

the system designer. In the first problem, the system attempts to differentiate between

uncompressed files and compressed files that were compressed using one of three common

utilities. Thus, the system must attempt to classify a given executable into one of four

equivalence classes. In the second problem, the system attempts to differentiate between

the four Java compilers if given a Java class file, three C++ compilers that produced a

Windows PE file and three C++ compilers that produced a Linux ELF file.

3.2.4 Network Parameters

The General Regression Neural Network is dependent on the value chosen for σ.

σ is a system parameter of the GRNN which impacts performance in terms of success

rate. Larger values of σ essentially mean that more nearby training instances (in the

sense of Euclidean Distance) will contribute to the resultant output. Essentially, large σ

values act as a smoothing function, which can be desirable when the available training

data is either sparse or contains outliers. When σ is small, it reduces the contribution of

nearby instances to virtually zero; therefore, only the closest instances will provide any

contribution at all. When the training set is highly representative of the classification

function being considered, a small σ would be highly desirable. For all cases other than

the above, some intermediate value of σ would be appropriate. No prior information

regarding the appropriate value of σ was known in this case, so optimization methods

were utilized to find a good setting. These approaches are described in Section 3.3.

3.3 The Evolutionary Hill-Climber Algorithm

Although there are many techniques for parameter optimization, and although only

one parameter was being optimized (σ), a simple Evolutionary Hill-Climber (EHC) was

utilized. For comparison, a logarithmic search approach which searches a larger portion

of the search space was also implemented and compared. The rationale behind using

51

the EHC was in recognition that this framework might need to be extended to deal

with a more complex search. For example, for other similar problems, it might be

interesting to determine not only network parameters, but which attributes are useful

for the classification problem itself (such as exactly which fields in the PE Header should

be used). In this case, a simple logarithmic search may not be able to effectively find the

best solutions (particularly as the number of possible attributes becomes quite large).

3.3.1 Algorithm Description

Traditional deterministic Hill-Climbing methodologies tend to inadequately deal

with complex search spaces and instead get stuck at local minima [27]. Instead, stochas-

tic methods of search often prove preferable in instances where there exists no guarantee

of smoothness or of singular maxima in the function to be optimized [48]. In optimizing

σ for the GRNN, there are no such guarantees. The Evolutionary Hill-Climber (EHC),

based loosely on the Random-Mutation Hill-Climber described in [26], first randomly

creates a single candidate solution consisting of a chromosome with a number of values

corresponding to parameters being optimized (in this case, only the σ value). Initial

values are chosen from within the allowable range dictated by the problem type (in

this case, the range of values for the σ was chosen from the range (0,1.0). This candi-

date solution is then evaluated by a fitness function, and the fitness is assigned to that

individual. This is shown in Algorithm 1.

Algorithm 1 Evolutionary Hill-Climber

1: procedure EHC
2: t = 0
3: Initialize candidate solution i
4: Evaluate i
5: while GRNN evaluations remain do
6: choose a step location
7: evaluate step location
8: if step yields better fitness
9: replace i with new individual

10: end while
11: end procedure

52

On each iteration, a single uniform mutation (taken from the range [0,1]) is added to

the parameter value, multiplied by the mutation amount δ and the starting value of the

gene itself. The value of 0.25 for δ was chosen from the set [0.03,0.05,0.1,0.15,0.25,0.5] by

experimentation. This new candidate solution is then evaluated. If the new candidate

solution has better fitness than the previous, the previous is replaced. However, if

the new candidate solution has worse fitness than the previous then the candidate is

rejected.

The overhead associated with the EHC is quite low on each iteration, requiring

only a handful of elementary operations. This is worth consideration in order to reduce

off-line training time.

3.4 Logarithmic Search

In order to present a deterministic approach to determining σ, we used a very simple

logarithmic search algorithm (LOG). For a given search space (in this case, searching

between a lower bound of 0 and and upper bound of 1.0), the logarithmic search works

as shown in Algorithm 2:

Algorithm 2 Logarithmic Search

1: procedure LOG
2: range = upperbound− lowerbound
3: while GRNN evaluations remain do
4: step size = range

the number of steps
5: for for k = 0 ... number of steps do
6: σ = step size * k + lower bound
7: determine fitness of σ
8: store sigma of best fitness
9: upper bound = best sigma + step size

10: lower bound = best sigma - step size
11: guarantee that new bounds are valid
12: range = upper bound - lower bound
13: end for
14: end while
15: end procedure

53

The value of “steps” was chosen to be 200 in order to give sufficient granularity

to find a (tiny) σ value. In plain English, the search divides a range into a number of

discrete values and then tests all those discrete increments. Once the algorithm finds

the best value in a range, it takes a smaller area around that value, subdivides it, and

then performs the search again. This search continues until it either runs out of time

or finds a performance within a given tolerance.

It is important to note that this search is perfectly adequate for a small search

space, but it would not be scalable if the dimension of the search was increased to

include more variables (which is part of the future goals of the system).

3.4.1 Steady-State Genetic Algorithm

In the initialization phase the SSGA [18] first generates a population of ten can-

didate solutions consisting of a binary listing of attributes (either ”0” for not included

in the classification or ”1” for included in the classification) and a floating point value

of sigma. Initial values of each candidate solution are determined by generating a uni-

formly distributed random value. In the second step these candidate solutions are each

evaluated using the success rate of the GRNN on the validation set as fitness.

In the iteration phase the SSGA performs 1000 iterations of the next three steps.

First, two binary tournament selections are used to select a first and second parent.

These two parents are then used to create a child via uniform crossover. Second, there

is a 10% probability of randomly flipping a single attribute bit in the child candidate

solution in order to mutate the configuration. Finally, there is a random probability

that a Uniform Mutation operator, is applied to the value of sigma, calculated as shown

in Algorithm 3. The child will always replace the worst fit individual in the population.

This process is repeated until the maximum number of allowed function evaluations has

expired.

54

Algorithm 3 Mutate Sigma

1: procedure Mutate Sigma
2: mutation amount← 0.125
3: current sigma ← current sigma + rand(0, 1) ∗ mutation amount ∗
current sigma

4: end procedure

3.5 Statistical Algorithm

In order to be complete and we provide a statistical search algorithm to show that

a statistical method is not an optimal solution. The input for the statistical search

algorithm is a training set of files described as F = {F0, F1, . . . , FN}. Each file has a

list of attributes to consider defined as A = {A0, A1, . . . , AM}. A0 is a special attribute.

It is the unique identifier describing the object being classified (e.g. compiler id) called

the target id. The statistical search algorithm works as follows:

First, determine the statistical information for the training set:

1. Calculate sum and count for each attribute for each target file. The sum is a

map with the key equal to the target id, t, and the map value equal to the list of

attribute totals. The count is a map with the key equal to the target id and the

map value equal to the list of attribute count. The target id is always the first

attribute, a0, associated with each file f(a0). This is shown in Algorithm 4.

Algorithm 4 Statistical Algorithm - Attribute Total and Count
1: procedure calculate Column Totals(F)
2: for each file f ∈ F do
3: t← f(a0)
4: for a← 1, n do . For each attribute a in the file minus target id
5: sum(target id, a)← sum(t, a) + f(a)
6: count(target id, a)← count(target id, a) + 1
7: end for
8: end for
9: end procedure

2. Calculate the average value, avg, for each attribute for each target. The avg is

a map with the key equal to the target id and the map value equal to the list of
55

the average attribute values. The first attribute, A0, is skipped since this is the

unique id for the type of object being classified. This is shown in Algorithm 5.

Algorithm 5 Statistical Algorithm - Attribute Average
1: procedure calculate Column Averages(F)
2: for t← 0, size(sum) do . size(sum) gives the number of target ids
3: for a← 1, n do . For each attribute minus the first

4: avg(t, a)← avg(t, a) + sum(t, a)
count(t, a)

5: end for
6: end for
7: end procedure

3. Calculate the variance value, variance, for each attribute for each target The

variance is a map with the key equal to the target id, t, and the map value initially

equal to the sum of the variance for each attribute values. Later the map value

is equal to the variance for each attribute value for each target. This is shown in

Algorithm 6.

Algorithm 6 Statistical Algorithm - Attribute Variance
1: procedure calculate Column Variances(F)
2: for each file f ∈ F do
3: for each attribute a ∈ f do
4: t← first attribute in f
5: variance(t, a)← variance(t, a) + (f(t, a)− avg(t, a))2

6: end for
7: end for
8: end procedure

4. Calculate the standard deviation for each attribute for each target. This is shown

in Algorithm 7.

Algorithm 7 Statistical Algorithm - Attribute Standard Deviation
1: procedure calculate Column Standard Deviations
2: for t← 0, size(sum) do . size(sum) gives the number of target ids
3: for a← 1, n do . For each attribute minus the first
4: stdev(t, a)+ =

√
variance(t, a)

5: end for
6: end for
7: end procedure

56

5. Calculate the lower bound and upper bound for each attribute for each target

3.5.1 Fitness Function

In order to evaluate the fitness of a candidate solution, we ran the GRNN with the

indicated value of σ. Our first fitness criteria was the success rate (how often the GRNN

correctly classified the file as self-modifying or not). In order to break ties in cases where

the success rates for two candidate solutions were equal, the average distance from the

desired output to the resultant output over all the test cases was used.

3.6 Summary

In this chapter, we described the machine learning technique, the inner workings

of a General Regression Neural Network, and optimization techniques utilized in this

research to optimize the parameters for the GRNN.

57

Chapter 4

Compressed Executables

In submission to the IEEE Transactions on Information Forensics and Security.

In order to effectively defend computers from malicious software, analysts need

as much information as possible about files that will be executed on those machines.

Particularly, analysts would like to have the capacity to make predictions about the

danger posed by a file, but they would prefer to do so without actually executing the

file (and therefore potentially doing harm to the system that the file is being run on).

Thus, static file analysis is generally preferable from the perspective of the analyst.

Our approach is to apply machine learning techniques to classify files with respect to

their status of compression based on their Windows Portable Executable (Windows PE)

header information. Specifically, we use General Regression Neural Networks upon a

representative sample of training data to identify files with potentially self-modifying

behavior. In the course of this work, we perform optimization for critical algorithm

parameters. In order to accomplish these tasks, we make use of Evolutionary Hill-

Climbing and a Logarithmic Search for parameter optimization. The system is tested

on a previously unseen set of files to assess the ability of the system to generalize.

Ultimately, this algorithm could be used to aid in anomaly detection mechanisms and

forensic analysis by providing more information from the static analysis of executable

files.

The remainder of the chapter is organized as follows: In Section 4.1, the specific

experiments are described along with their results and discussion. Section 4.3 describes

in detail the collection of data, the algorithms implemented for classification, and many

of the important issues regarding these implementations. Section 4.4 addresses some

general weaknesses of the approach. Section 15.2.7 describes continuing work with the

58

research, as well as future work for the Information Security community at large. Finally,

a conclusion is given in Section 4.5.

4.1 Experiments

In this section, the experiments are described, and the results are given, along with

discussion of the implications of those results.

4.1.1 The Training, Validation, and Test Sets

A training instance includes three (3) fields of interest, (Total Size, Sum of Section

Sizes, and Total Virtual Size) plus the desired classification value (see Figure 4.1).

In Experiment I, the desired output was either a 0 (indicating uncompressed) or a 1

(indicating any type of compression).

Figure 4.1: Experiment I Training Instance

For Experiment II, the desired output varies from the set [0,1,2,3], where 0 indicates

an uncompressed file, 1 represents a file produced by cexe, 2 represents a file compressed

by PEtite, and 3 represents a file compressed by UPX (see Figure 4.2).

For Experiment III, the data was basically the same as Experiment II, but there

are no uncompressed files (in other words, the only goal was to distinguish between the

59

Figure 4.2: Experiment II Training Instance

type of compression used). In this case, the desired outputs vary from the set [0,1,2],

where 0 indicates UPX, 1 represents Cexe, and 2 represents a PEtite file.

For all the above experiments, the training set consisted of roughly 600 file in-

stances. The validation and test sets were collected with each containing approximately

70 random distinct unseen file instances. The only change in the sets between the first

two experiments is the adjustment in the values for desired outputs (as described above).

In the third experiment, however, the uncompressed files were removed from all sets,

reducing their sizes by about 25%.

In each experiment, the training set was used as the training data for the GRNN.

The optimization method was used on the validation set in order to optimize the GRNN.

Then, the trained network was tested on the test set in order to provide our results.

The rationale behind the three separate sets was to eliminate training bias resulting

from the optimization of the GRNN.

60

Optimizer Iterations to Best Best Success Rate Best σ Mean Square Error
LOG 211 0.9143 4.14E-4 0.105
EHC 15.57 0.9143 4.14E-4 0.105

Table 4.1: Identifying Compression: GRNN Parameters and Results

4.1.2 Optimizer Stopping Conditions

The optimizers in all the experiments were given 1000 function evaluations (evalua-

tions of the GRNN, which is the most expensive portion of the optimization, regardless

of method).

4.1.3 Identifying Compression

The goal of this experiment was to classify an unseen file as either compressed or

uncompressed (no attempt at this stage is made to determine what type of compression

was used). First, we used the LOG optimization method (see Section 2) of determining

the appropriate value of σ using the range [0,1.0].

The LOG approach (see Table 4.1) identifies a value of σ with a 0.9143 Success Rate

(very high classification on unseen instances). This value of σ also yields a relatively

low Average Distance of 0.105. While this approach is clearly deterministic, it carries

a small penalty in terms of offline training time. The success of the search is bounded

by the granularity of the step size (which may need to be quite small if the range of σ

cannot be narrowed down somehow beforehand). In practice, as the number of training

instances grows larger (which is desirable for greater ability to generalize over a wider

variety of files), the cost to evaluate a GRNN will increase. In this case, evaluating the

GRNN many times would be undesirable if training the network is done often in an

actual system. To this end, we utilized the EHC to discover σ, as described in Section

3.3. It is worth noting that our goal is to produce a method for the quick, efficient, and

effective discovery of σ, not merely for this specific problem, but rather for a general

methodology that can be used for many file classification problems.

61

The EHC was run 30 times (for statistical significance) with 1000 maximum itera-

tions on each run in order to discover a sigma value. The average solution (which always

discovered the best known σ) is also provided in Table 4.1.

In Table 4.1, the value for “Iterations to Best” indicates the average number of itera-

tions the EHC took to find its best value for σ (lower is better). The value “Best Success

Rate” indicates the average percentage of correct identifications made on the testing set

by the GRNN. The value “Best σ” indicates the mean of all the best-performing σ

values. It should be noted that on every run, the EHC discovered the best value of

σ. Finally, the “Mean Square Error” measure indicates the average distance between

the desired output and the actual output given by the GRNN. These results show that

the EHC, despite being a non-deterministic algorithm, still consistently identifies the

best-performing values of σ. Further, it does so in a very small number of iterations,

even fewer than the deterministic LOG optimizer.

The results for the first experiment were quite promising. Both the LOG and EHC

methods of discovering σ ultimately resulted in very high Success Rates (with bests

giving better than 90% classification). It should be noted, however, that the EHC

method found the good σ values consuming less computational time. In general, the

values of σ discovered were quite small, which seems to indicate that the training set is

fairly representative of the classification space.

4.1.4 Classifying Type of Compression or Lack Thereof

Since Experiment I gave strong results the system was expanded to deal with the

more difficult problem of identifying the compression utility used to compress a file

(or to identify if the file was compressed at all). Again, first the LOG method was

applied, as shown in Table 4.2. The value headings for all tables in this section have

the same meaning as in Experiment I. The Best Success Rate discovered was 0.8857

(slightly lower than in the previous experiment). The σ values remain tiny, but the

Best Average Distance roughly doubles from Experiment I. This is expected, however,

given that there are a larger number of categories for classification.

62

Optimizer Iterations to Best Best Success Rate Best σ Mean Square Error
LOG 452 0.8857 2.42E-5 0.214
EHC 58.8 0.8857 2.5E-5 0.214

Table 4.2: Classifying Type of Compression or Lack Thereof: GRNN Parameters and
Results

Optimizer Iterations to Best Best Success Rate Best σ Mean Square Error
LOG 452 0.9149 2.42E-5 0.107
EHC 36.57 0.9149 2.42E-5 0.107

Table 4.3: Classifying Type of Compression: GRNN Parameters and Results

Again, the EHC was also applied to σ search problem. The results in Table 4.2

show the average performance on the search problem. The Best σ is discovered in an

average of 58.8 EHC iterations and Average Success Rate is the same as the results

discovered through the LOG optimization approach.

In general, the results from Experiment II are quite promising. Even when dealing

with a more complex classification problem, the GRNN with the same training data still

managed to effectively classify the type of compression with success rates of nearly 0.89.

4.1.5 Classifying Type of Compression

In the third set of experiments, the system was tasked with determining type of

compression in the absence of uncompressed files to see if having a priori information

regarding the files could improve accuracy. It is conceivable that files to be tested are

known to be compressed already (eliminating the possibility of the network confusing

files for uncompressed), which could increase the accuracy of the classifications. Es-

sentially, this experiment deals with detecting the differences between the properties in

files known to be compressed with differing algorithms.

Again, both the LOG and EHC optimization methods were applied, as shown in

Table 4.3. The Best Success Rate discovered was 0.9149 (better than in the previous

experiment) for both optimizers. In fact, they perform roughly as well as the classifiers

in Experiment I. In general, both algorithms discover the best σ, but the EHC does so

faster.

63

4.1.6 Impact of Compression

While certain attributes, such as the capacity for self-modification, compression,

and encryption may make an executable suspicious, all of these capabilities have legit-

imate purposes as well [69]. For example, completely reasonable uses of compression

include:

• Software on embedded systems

• NASA Mars Exploration Rovers Spirit and Opportunity used on-board loss-less

data compressors

• to deter reverse engineering

• to obfuscate contents of executables

• programs designed for portability on resource-poor media

• games with large quantities of data

• large applications available for download

• backups are sometimes saved as compressed executables to save disk space

The lesson taken from the various uses of compression demonstrates that identifying

a file as compressed is only one part of an analysis. However, knowing the compression

type of a file makes the analysis of said file considerably easier (or sometimes makes

an infeasible problem feasible). It should be noted that a file should typically only be

flagged as “risky” when it exhibits multiple symptoms.

Noting the above, file compression and encryption have a negative impact on the

capability of many schemes to analyze executable files. Many methods for detecting

malicious programs, especially for virus and malware, depend on specific “signatures”

composed of a specific group of bytes to match files. Such signatures are very specific

in nature (to avoid false positives), but this makes them highly ineffective against even

small alterations in the executable. Signature-based schemes have reduced capacity to
64

identify a file if that file’s corresponding signature is compressed or encrypted. Worse

still, in order to address such a problem, the signature-detecting scheme would need

a corresponding signature for every possible encryption and compression methodology

that might produce different output! Clearly, given the vast number of encryption and

compression algorithms, this is simply not feasible (the signature database would swell

to epic proportions).

4.2 Data source and compressors

To get a representative sampling of file types and sizes we used a large number

of files, including wide variety of executables, from self-written executables to common

applications. We then used three different compression utilities, Cexe, Ultimate Packer

for eXecutables (UPX) [46], and PEtite [19] to compress these files. There were a

few instances where one of the compression utilities failed to compress the original

executable; however, the information from the remaining utilities’ compression of the

same file was still included.

4.2.1 Cexe

Cexe is a Win32 compressor that tries multiple compressors and chooses the one

that gives the smallest size. The version that we used contained compressors for Lempel-

Ziv-Welch (lzw), published in 1984 [67], and zlib, which was written by Jean-loup Gailly.

Often zlib was used; however, there were some of the smaller files that Cexe used lzw

to compress.

4.2.2 Ultimate Packer for eXecutables

UPX, written by Markus F.X.J. Oberhumer, Làszló Molnàr and John F. Reiser,

is a packer for executables of several different formats. It uses the Not Really Van-

ished (NRV) compression library, a generic data compression library written by ober-

humer.com, a small company in Linz, Austria.

65

4.2.3 PEtite

PEtite is another executable packer which compresses an executable while still

allowing the executable to run exactly as the original uncompressed version after loading.

While we could not get information on exactly which compression is used by PEtite,

after viewing the compression ratios, the method of the compression that is utilized is

different from both Cexe and UPX.

4.3 Data Extraction

We created a TrainerDump program which operates on a similar basis as the pop-

ular Pedump utility to extract PE file information. It uses the Libreverse library for

opening the Windows PE32 executables in memory and then parsing its headers. The

MS-DOS header is read to determine if the program under observation is in fact a win-

dows executable. The file extension does not guarantee any particular property about

an executable file. The MS-DOS header also provides the location of the Windows PE

header which tells us where to look for the section headers. In the Windows PE section

header, we can find two of the properties that are required for the trainer: virtual mem-

ory size of the section when loaded and its raw size in the binary file on disk. For each

section header found on the disk, a total is produced for both along with the actual size

of the file.

The actual size of the file is an obvious fact about a binary program. Typically, the

binary program takes as much space as required. There is little reason to pad the file

so the size is larger on the system. This is contradictory to what a malicious program

designer wants to achieve. They often want their application to be as small as possible

to avoid suspicion. The data that can potentially be altered are the virtual memory size

and the raw data size. The virtual memory size is what is required to store the data or

instructions in memory. If the value is smaller than the size of raw data on disk, then

the loader will have a memory error when it attempts to put data past the end of the

space. If the memory request is equal to or larger than the size of raw data, the loader

66

can perform the loading without errors. The virtual memory size must be at least as

large as the raw data size. Most virus writers can alter this number. It is most often

altered to ensure that the sufficient space is available for decompressing/decrypting a

real binary program. Finally, the raw data size cannot be less than the entire program.

If a malicious program has a stated raw data size, it is safe to conclude that the size

is at least equal to or greater than the actual instructions. Just because the bytes in

a section are marked as executable, does not mean that they will actually be used. So

the raw data size can be larger than is required, but this is a negative feature if we are

trying to minimize our file size.

TrainerDump will be reading the target file so the access time of the target file will

change. It is important to also note that none of the bytes of the malicious executable

are altered or executed. This is necessary when considering that forensic tools should

not modify a suspect file during analysis. Therefore, the PE files should have read-only

set on them just as a safety back up. TrainerDump program extracts the necessary facts

for a large number of files into a space delimited file for use by the GRNN.

4.4 Weaknesses

Our approach carries some practical weaknesses that should be noted in the name

of good scholarship. First, while our GRNN proved to be an effective classifier, it

is dependent on the quality of the training set. If such a training set could not be

engineered (perhaps the information used for the training instances is not available for

some type of executables), then this strategy would not be useful. Second, we rely on

the information provided in the PE Header to perform the classification. If this header

could be distorted or misrepresented by a malicious entity, then it could easily fool

our system by presenting the file’s pre-compressed header information. Third, training

instances must be gathered for every file type that may be subject to analysis. This

returns to a fundamental problem regarding static analysis of executables in that they

67

tend to be system specific. This may not be a significant problem, since most reverse-

engineering efforts are already very system-specific (meaning that this restriction is no

greater than those that already exist).

4.5 Summary

In this chapter, we motivated the need for effective malware analysis upon exe-

cutable files when neither the source code is readily available nor is there any desire to

execute the file to examine its behavior. Further, we implemented logarithmic search

and evolutionary search tactics in order to optimize the system parameter (σ) of the

GRNN. The fairly promising results of the system were discussed and, finally, we pro-

vided a number of opportunities for the expansion of this work.

68

Chapter 5

A Compiler Classification Framework for Use in Reverse Engineering

5.1 Introduction

In submission to IEEE Symposium Series on Computational Intelligence in Cyber

Security (CICS 2009)

A software framework is presented in this chapter for extracting useful information

from Java Class, Windows PE and Linux ELF files and analyzing that information to

classify future files. A General Regression Neural Network is implemented and optimized

using both deterministic and stochastic search algorithms. In experimental results, the

system can classify compiler type on an unseen file with a more than a 98% degree of

accuracy.

5.1.1 How can machine learning be used for classifying compiler type?

The problem of determining if a binary computer application was compressed or

not is quite similar to the problem of classifying the compiler used to create a binary

computer application. Both require certain attributes from the header of the binary

computer application in order to make a determination. In order to perform the analysis,

first information is extracted from the files. Instead of selecting attributes from the files

to determine compression, new attributes would have to be selected. Once the training

data is collected, a General Regression Neural Network (GRNN) [53] learns from the

training data and attempts to estimate the type of compiler used to create a file previous

unseen by the GRNN.

Once a training set consisting of the file summaries is constructed along with the

GRNN, two different optimization methods are used to optimize the neural network

parameters. This is similar to the ideas suggested in [22] for the optimization of weights

69

in a Feed-Forward Neural Network using a Particle Swarm Optimizer. Experiments were

developed to test the effectiveness of the system on classifying unseen file instances

and recording metrics of success rate and average distance to desired output. The

structure of the training set and the network parameters were adjusted for the problem

of classifying which of three families of popular modern Java Compilers, three families

of popular modern C++ compilers for Linux or three families of popular modern C++

compilers for Windows were used to compile a given set of test files.

Java

JDK v5.0
JDK v6.0
IBM Jikes

ECJ

Windows
Cygwin GCC 4.1

Visual Studio 2003
Visual Studio 2005

Linux
GCC 4.1

Portland Group C++ 7.1
Intel C++ 10.1

Table 5.1: List of compilers

5.2 Software Architecture

In this section, we describe the software architecture of the compiler classifier and

the XML format of the input.

5.2.1 Java Input Data

The input information used by the compiler classifier was obtained from a simple

program which utilizes the Libreverse library to read the input Java Class files. These

input training sets of Java Class files were produced by compiling a set of test Java files

with the Eclipse, Jikes, Sun Microsystem 1.5 and 1.6 Java compilers. The Libreverse

library is a reverse-engineering architecture developed to automatically produce the de-

sired high-level output from a given input based on predefined configurations of analysis

components.

70

The input data was formatted in XML using the schema shown in Listing 5.1 in

order to produce a easy parse input format to the classifier.

Listing 5.1: XML schema for input Java data
<?xml version = ’ ’1.0 ’ ’?>
<xs:schema>
<xs:element name= ’ ’ data ’ ’>
<xs:complexType>
<xs:sequence>
<xs:element name= ’ ’ f i l e ’ ’ type= ’ ’ f i l e t y p e ’ ’/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name= ’ ’ f i l e t y p e ’ ’>
<xs:sequence>
<xs:element name= ’ ’ t a r g e t i d ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ s i z e ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’version ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ t h i s c l a s s i n d e x ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ s u p e r c l a s s i n d e x ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ cons tant poo l count ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ c o n s t a n t p o o l i n f o ’ ’

type= ’ ’ cons tant poo l type ’ ’
minOccurs= ’ ’12 ’ ’ maxOccurs= ’ ’12 ’ ’/>

<xs:element name= ’ ’ f i e l d c o u n t ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ method count ’ ’ type= ’ ’ xs :dec imal ’ ’/>

</xs:sequence>
</xs:complexType>

<xs:complexType name= ’ ’ cons tant poo l type ’ ’>
<xs:sequence>
<xs:element name= ’ ’ tag ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ count ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ r a t i o ’ ’ type= ’ ’ xs :dec imal ’ ’/>

</xs:sequence>
</xs:complexType>

<xs:schema>

The description of each of the elements are:

• compiler id: Unique id associated with the compiler that produced the file.

• size: File size

• version: This value is used to indicate what release level of Java this binary

requires the JVM to support.
71

• this class index: The value of the this class item must be a valid index into the

constant pool table. The constant pool entry at that index must be a Constant

Class Info structure representing the class or interface defined by this class file [8].

• super class index: This is similar to the this class defined above but the only

difference is that this index refers to a parent class or the default Object class.

• constant pool count: Number of constant pool entries.

• constant pool info (tag): Unique id for the constant pool entry.

• constant pool info (count): Number of times the unique id was seen.

• constant pool info (ratio): Ratio of the number times to the number of con-

stant pool entries.

• field count: Number of field info structures in the class file.

• method count: Number of method info structures in the class file.

5.2.2 ELF Input Data

The input information used by the compiler classifier was obtained from a simple

program which utilizes the Libreverse library to read the input ELF files. These input

training sets of ELF files were produced by compiling a set of test C++ files with

the GNU GCC 4.1, Portland Group C++ 7.1, and Intel C++ 10.1 compilers. The

Libreverse library was used to automatically produce the desired high-level output from

a given input based on predefined configurations of analysis components.

The input data was formatted in XML using the schema shown in Listing 5.2 in

order to produce a easy parse input format to the classifier.

The description of each of the elements are:

• compiler id: Unique id associated with the compiler that produced the file.

• size: File size

72

Listing 5.2: XML schema for input ELF data
<?xml version = ’ ’1.0 ’ ’?>
<xs:schema>
<xs:element name= ’ ’ data ’ ’>
<xs:complexType>
<xs:sequence>
<xs:element name= ’ ’ f i l e ’ ’ type= ’ ’ f i l e t y p e ’ ’/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name=’ f i l e t y p e ’>
<xs:sequence>
<xs:element name= ’ ’ t a r g e t i d ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ s i z e ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ en t ry po in t addre s s ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ s e c t i o n h e a d e r s s t a r t ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ program header count ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ s e c t i on heade r count ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ s e c t i o n h e a d e r s t r i n g t a b l e i n d e x ’ ’

type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ t e x t s e c t i o n s i z e ’ ’ type= ’ ’ xs :dec imal ’ ’/>

</xs:sequence>
</xs:complexType>

<xs:schema>

• entry point address: Virtual address where the system first transfer control.

• section header start: Where the Section header table is located in the file.

• program header count: Number of entries in the program header table.

• section header count: Number of entries in the section header table.

• section header string table index: Section header table index associated with

the string table.

• text section size: Size in bytes of the executable code section in memory.

5.2.3 Windows PE Input Data

The input information used by the compiler classifier was obtained from a simple

program which utilizes the Libreverse library to read the input Windows PE files. These

input training sets of Windows PE files were produced by compiling a set of test C++
73

files with the GNU GCC 4.1 (Cygwin), Visual Studio 2003 and 2005 C++ compilers.

The Libreverse library was used to automatically produce the desired high-level output

from a given input based on predefined configurations of analysis components.

The input data was formatted in XML using the schema shown in Listing 5.3 in

order to produce a easy parse input format to the classifier.

Listing 5.3: XML schema for input PE data
<?xml version = ’ ’1.0 ’ ’?>
<xs:schema>
<xs:element name= ’ ’ data ’ ’>
<xs:complexType>
<xs:sequence>
<xs:element name= ’ ’ f i l e ’ ’ type= ’ ’ f i l e t y p e ’ ’/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name=’ f i l e t y p e ’>
<xs:sequence>
<xs:element name= ’ ’ t a r g e t i d ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ s i z e ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ exe header addres s ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ c o f f s e c t i o n h e a d e r c o u n t ’ ’

type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ p e o p t c o d e s i z e ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ pe opt ba s e o f da ta ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ pe opt en t ry po in t ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ pe opt image s i z e ’ ’ type= ’ ’ xs :dec imal ’ ’/>

</xs:sequence>
</xs:complexType>

<xs:schema>

The description of each of the elements are:

• target id: Unique id associated with the compiler that produced the file.

• size: File size

• exe header address: File offset where the Windows PE header starts in the file

header.

• coff section header count: Number of section headers in the file header.

• pe opt code size: Size of the code section.
74

• pe opt base of data: Base address of the data section.

• pe opt entry point: Address of the first instruction to be executed.

• pe opt image size: Size of the loaded image in memory.

5.2.4 Structure

There are two basic sections to the compiler classifier: Input and Analysis. The

Input section is responsible for parsing the XML files, preparing the data structures,

separating data into training, test and verification sets.

The input data is retrieved from the input XML files by the IO class. It is respon-

sible for calling the Training Data Parser for each input file and then processing it with

the Selection Policy to get the final Training Set. A Training Set is used to contain the

three types of data (training, test and verification).

The main function of the classifier optimizer takes the data retrieved from the

IO class and passes it to the Optimizer. The Optimizer is the part that coordinates

the processing of the input data. Processing continues until the number of iterations

is achieved or time runs out. At that point the success value, final sigma value, and

attributes used are output from the program.

5.3 Experiments

In this section, the three major experiments are described and the results of said

experiments are given, along with discussion.

5.3.1 The Training, Validation, and Test Sets

A training or test or validation instance potentially includes many fields of interest.

In Experiment I (Java Compiler Classification with the GRNN Optimized with

an Evolutionary Hill-Climber Algorithm), a simple optimization was utilized to try to

determine appropriate attributes and system parameters for the GRNN. There were a

total of 29 Java attributes available plus the continuous variable σ to be optimized. The

75

Compiler ID
ECJ 0
Jikes 1

JDK v5.0 2
JDK v6.0 3

Table 5.2: Java classification values

Compiler ID
GCC 4.1 0

Portland Group C++ 7.1 1
Intel C++ 10.1 2

Table 5.3: ELF classification values

goal was to create a GRNN that would be most accurate at classifying the compiler type

to a value in Table 5.2 for unseen Java file instances. Additionally, potentially reducing

the number of attributes used by the GRNN was motivated by:

• Given that not all of the attributes are strongly correlated with compiler type,

some of this information may actually detract from the GRNN’s ability to classify

correctly.

• Reducing the size of the instances greatly improves the speed of the classifier at

run time

• A consequence of reducing run time speed of the classifier is that the time required

to perform optimization is dramatically reduced.

For Experiment II (Java Compiler Classification with the GRNN Optimized with a

Steady-State Genetic Algorithm), the experimental goals were unchanged, but a more

sophisticated optimization routine (a genetic algorithm) was used to optimize the at-

tributes and system parameters.

For Experiment III (ELF File Classification with the GRNN Optimized with a

Steady-State Genetic Algorithm), the experimental setup was essentially the same as

in Experiment II, with the exception that ELF file data was being used to classify an

unseen file to a value in Table 5.3.

76

Compiler ID
Cygwin GCC 4.1 0

Visual Studio 2003 1
Visual Studio 2005 2

Table 5.4: PE classification values

For Experiment IV (Windows PE File Classification with the GRNN Optimized

with a Steady-State Genetic Algorithm), the experimental setup was essentially the

same as in Experiment II and III, with the exception that Windows PE file data was

being used to classify an unseen file to a value in Table 5.4.

It should be noted that using a deterministic optimization approach in order to

determine the attributes in this case would be more time-consuming since the search

space grows by a factor of 2n, where n is the number of attributes (in this case 29 for

Java and 10 for the ELF files).

For all of the Java experiments, the training set consisted of roughly 334 class file

instances, collected as mentioned in Section 5.2.1. The validation and test sets were

collected in the same manner each containing approximately 50 - 70 random distinct

unseen class file instances.

For all of the Linux ELF Experiments, the training set consisted of 567 file instances

with validation and test sets containing about 114 random distinct unseen file instances.

For all of the Windows PE Experiments, the training set consisted of 563 file

instances with validation and test sets containing about 112 random distinct unseen file

instances.

In each experiment, the training set was used as the training data for the GRNN.

The optimization method was used on the validation set in order to optimize the GRNN.

Then, the trained network was tested on the unseen test set in order to provide our

final results. The rationale behind the three separate sets was to eliminate training bias

resulting from the optimization of the GRNN. In other words, the optimization process

does not see the test set instances at any time. Only after the completion of training is

the test set used.

77

σ Success Rate Mean Square Error
min. 0.00181 54.5% 0.050
max. 0.00242 95.1% 0.964
stdev. 9.41E-05 9.9% 0.199
avg. 0.00200 78.3% 0.285

Table 5.5: Experiment I: Identifying Java Compiler Type with GRNN optimized by
the EHC. Shows the results of optimizing a GRNN using an Evolutionary Hill-Climber
Algorithm. The EHC was allowed a maximum of 10000 iterations, had a 10% chance of
modifying σ each iteration, and always performed a single bit-flip mutation on a random
attribute.

5.3.2 Optimizer Stopping Conditions

All the optimizers in all the experiments were given a fixed number of function

evaluations (evaluations of the GRNN, which is the most expensive portion of the op-

timization, regardless of method). This cap on optimization time is described in the

experiment.

5.3.3 Experiment I: Java Compiler Classification with a GRNN Optimized

with an Evolutionary Hill-Climber Algorithm

For this experiment set, the Evolutionary Hill-Climber was used as the optimization

method (with settings as described in Section 3.3) to distinguish between the four Java

compiler types.

5.3.3.1 Distinguishing Four Compiler Types

The goal of this experiment was to classify the unseen class files (the test set) into

the appropriate compiler type, using all four possible types.

It is worth noting that our goal is to produce a method for the quick, efficient,

and effective discovery of σ not merely for this specific problem compiler classification

problem, but for a general methodology that can be used for many file classification

problems.

The EHC was run 30 times (for statistical significance) maximum of 10000 iterations

on each run in order to discover a sigma value and a good combination of attributes.

78

The experimental results are provided in Table 5.5. In the table, the value indicated by

“σ” represents best “σ” value discovered by the EHC. The “Succeses Rate” indicates

the number of correct classifications by the configuration on unseen test data. A higher

success rate is better. Finally, the “Mean Square Error” as defined as average squared

difference between the predicted value and actual value. In other words, we favor

classifiers that not only correctly identifier the compiler type, but also that give a

continuous value that is as close as possible to the actual value. A lower Mean Square

Error is better.

In general, it should be noted that the performance on this problem was weaker

than could be used in practice. While the EHC finds a solution quickly (on average, in

only a few iterations), this is likely due to premature convergence to a local minima.

The average values of σ are relatively small (hovering around 2E-03) with only a small

degree of variability. The average success rate discovered is about 78%, with around

10% standard deviation. This much error and variability indicates that this particular

strategy would be undesirable for everyday application. Not surprisingly, the Mean

Square Error is also fairly high, with an average of 0.285.

While these results are somewhat promising in that the optimized classifier clearly

does much better than random guessing (which would be expected to perform at about

25% accuracy), it still does not achieve a low enough error rate to be used in a practical

setting. The weakness in optimization seems to be the inability of the EHC to break out

of local minima, which means that it never finds the best configuration of attributes.

In order to fix this problem, a more powerful search mechanism, the SSGA, was used.

5.3.4 Experiment II: Java Compiler Classification with a GRNN Optimized

with a Steady-State Genetic Algorithm

Since Experiment I gave weaker than desired results, a more powerful optimization

algorithm was used. The primary hope was that this optimization would be better able

to remove data that had a weak correlation to the compiler type and thus improve

the relatively weak success rates obtained so far. This seems reasonable because the

79

σ Success Rate Mean Square Error
max. 0.00233 100.00% 0.159
min. 0.00177 90.24% 0.00190
avg. 0.00201 96.04% 0.0599

stdev. 0.00011 2.85% 0.0457

Table 5.6: Experiment II: Identifying Java Compiler Type with GRNN optimized by the
SSGA. Shows the results of optimizing a GRNN using a Steady-State Genetic Algorithm.
The SSGA was allowed a maximum of 100 iterations, the population size was set to be
10, the mutation amount was set to be 0.125, and the mutation rate was set to be 0.10.

σ Success Rate Mean Square Error
max. 0.00246 100.00% 0.152
min. 0.00172 94.51% 4.64E-12
avg. 0.00199 98.53% 0.0323

stdev. 0.00017 1.48% 0.0338

Table 5.7: Experiment II: Identifying Java Compiler Type with GRNN optimized by the
SSGA. Shows the results of optimizing a GRNN using a Steady-State Genetic Algorithm.
The SSGA was allowed a maximum of 1000 iterations, the population size was set to be
10, the mutation amount was set to be 0.125, and the mutation rate was set to be 0.10.

crossover operation (as described in Section 3.4.1) has the potential to change many

attributes in the configuration compared to the one attribute that could be changed

by random bit-flip mutation in the EHC. The same training, validation, and test data

from the Java files used in Experiment I was used in Experiment II. The settings for

the SSGA itself are as described in Section 3.4.1.

The results from this experiment allowing only 100 function evaluations (instead

of the 10000 which were allowed for the EHC) are shown in Table 5.6. The results for

the same experiment allowing 1000 function evaluations are shown in Table 5.7. The

meanings of the column headings is unchanged from Experiment I.

While the number of required iterations needed to find the best solution increases in

both cases, this seems to be attributed to the fact that those iterations are consistently

finding better configurations as opposed to getting stuck in local minima. Even when

the optimizer is limited to 100 iterations, the average success rate is still notably better

at 96.04%, albeit with a higher standard deviation of 2.85%. However, in the 1000

iterations case, the success rate achieved rises to 98.53% with a much lower standard

80

deviation of 1.48%. This indicates a level of accuracy useful for practical application.

In both the 100 iteration and the 1000 iteration case, the average Mean Square Error

drops, garnering 0.0457 and 0.0338, respectively. The average discovered value of σ

remains around 2.01E-03, which seems to indicate that this is a good value of σ for this

problem.

It should be noted that the dramatically improved accuracy makes this approach

plausible for practical application. Although not visible from the above charts, the vast

majority of the classification error stems from the GRNN’s inability to distinguish well

between the two versions of the JDK. Again, this is due to the fact that the attributes

chosen change very little between these two versions.

5.3.5 Experiment III: ELF File Compiler Classification with a GRNN Op-

timized with a Steady-State Genetic Algorithm

Given the promising results of the approach in Experiment II, a similar strategy

was pursued for the Linux ELF files. Different attributes were available for selection (as

described in Section 5.2.2), but the same SSGA and GRNN combination was used. Since

the EHC results were not very promising in Experiment I, only the SSGA was used for

Experiment III. Again, the optimizer was first allowed 100, then 1000 iterations in order

to discover an optimal configuration. The results from this experiment are reported in

Table 5.8 and Table 5.9. A run of the optimizer, described in Section 6.3.3, can have

a iteration value of 0. This is due to the fact that the best solution found will have

already existed before any children were considered.

The results for the ELF files were quite good, showing again results of practical

value. Even when given only 100 iterations, a configuration with 99.51% success rate is

discovered. Further, not much additional value is gained from further training (only a

small improvement in terms of Mean Square Error in the 1000 iteration case). Even in

the worst case run, a configuration with 97.21% success rate is discovered. In the best

case, the success rate is 99.51%.

81

σ Success Rate Mean Square Error
max. 0.00224 100.00% 0.0561
min. 0.00176 97.21% 5.53E-011
avg. 0.00199 99.51% 0.0128

stdev. 0.0001 0.69% 0.0179

Table 5.8: Experiment III: Identifying C++ Compiler Type for Linux ELF with GRNN
optimized by the SSGA. Shows the results of optimizing a GRNN using a Steady-State
Genetic Algorithm. The SSGA was allowed a maximum of 100 iterations, the population
size was set to be 10, the mutation amount was set to be 0.125, and the mutation rate
was set to be 0.10.

σ Success Rate Mean Square Error
max. 0.00222 100.0% 0.04
min. 0.00179 98.60% 0.00
avg. 0.00198 99.88% 0.00191

stdev. 7.84E-05 0.32% 0.00740

Table 5.9: Experiment III: Identifying C++ Compiler Type for Linux ELF with GRNN
optimized by the SSGA. Shows the results of optimizing a GRNN using a Steady-
State Genetic Algorithm. The SSGA was allowed a maximum of 1000 iterations, the
population size was set to be 10, the mutation amount was set to be 0.125, and the
mutation rate was set to be 0.10.

Ultimately, this experiment shows that the approach has promise in terms of being

able to produce good results for a wide variety of file types on differing platforms.

5.3.6 Experiment IV: Windows PE File Compiler Classification with a

GRNN Optimized with a Steady-State Genetic Algorithm

Given the strong results of the approach in Experiment II and III, a similar strategy

was pursued for the Windows PE files. Different attributes were available for selection

(as described in Section 5.2.3), but the same SSGA and GRNN combination was used.

Since the EHC results were not very promising in Experiment I, only the SSGA was

used for Experiment IV. Again, the optimizer was first allowed 100, then 1000 iterations

in order to discover an optimal configuration. The results from this experiment are

reported in Table 5.10 and Table 5.11.

82

σ Success Rate Mean Square Error
max. 0.002 100.00% 0.0356
min. 0.00192 99.11% 0.00
avg. 0.002 99.77% 0.00820

stdev. 1.45E-05 0.37% 0.0145

Table 5.10: Experiment III: Identifying C++ Compiler Type for Windows PE with
GRNN optimized by the SSGA. Shows the results of optimizing a GRNN using a Steady-
State Genetic Algorithm. The SSGA was allowed a maximum of 100 iterations, the
population size was set to be 10, the mutation amount was set to be 0.125, and the
mutation rate was set to be 0.10.

σ Success Rate Mean Square Error
max. 0.00222 100.0% 0.0400
min. 0.00179 98.60% 0.00
avg. 0.00198 99.88% 0.00191

stdev. 7.84E-05 0.32% 0.00740

Table 5.11: Experiment III: Identifying C++ Compiler Type for Windows PE with
GRNN optimized by the SSGA. Shows the results of optimizing a GRNN using a Steady-
State Genetic Algorithm. The SSGA was allowed a maximum of 1000 iterations, the
population size was set to be 10, the mutation amount was set to be 0.125, and the
mutation rate was set to be 0.10.

5.4 Weaknesses

With respect to the methodology, it is important to realize that machine learning

is dependent on the quality of the training data. If the training data is unrelated to

the compiler type or if there is insufficient training data available, then the machine

learner will perform poorly (regardless of optimization). It should also be noted that

the offline training becomes time-consuming when the appropriate attributes to use as

input are unknown (which is the expected situation). Further, optimization will have

to be repeated for every new type of classification problem (although this process can

be largely automated as has been demonstrated above).

Currently, the training data is extracted from the files, but, if certain fields could

somehow be altered significantly, then the classifier would have diminished value. This

might prove to be a difficult task, but, if a file was being designed to thwart reverse

engineering efforts, then it is not outside of the realm of possibility.

83

5.5 Summary

In this work, we provide a general motivation for reverse engineering of files, as well

as the value added by identifying attributes about those files from the Java Class, Linux

ELF and Windows PE files themselves. In doing so, we motivate the need for the ability

to identify the compiler used to produce a Java Class, Linux ELF or Windows PE file.

Moreover, this identification should take place with only knowledge obtained from the

target file itself. We present a software system capable of extracting information from

Java Class, Linux ELF and Windows PE files and analyzing those files appropriately

and accurately. This analysis makes use of a General Regression Neural Network that

is optimized using a pair of optimization techniques. Experiments were performed on a

large test set of Java Class, Linux ELF and Windows PE files to validate the approach

and classification error was shown to be less than 2%. Ultimately, the contribution of

this work is to contribute to reverse engineering by providing a means to identify the

type of compiler used to compile a Java Class, Linux ELF and Windows PE file using

only information obtained from the target file itself.

84

Chapter 6

Classifier Architecture

The compiler classifier is a three stage process. The first stage, offline file processing,

is responsible for gathering the desired file properties from the input executable produced

by a compiler for a certain file type (e.g. Linux ELF). These values are stored into a

XML file associated with the compiler for use by the optimizer. The second stage, offline

optimization, is responsible for taking the input XML files for a set of compilers and

processing them through a GRNN. The output of the second stage is a sigma value,

a filtered XML file containing the actual file properties used and a list of attributes

used for classifying a executable file for that file type (e.g. Linux ELF). The final stage,

on-line compiler classification, is responsible for classifying the compiler used to create

a unknown file by processing the saved XML data and the unknown file properties

through a GRNN. The on-line processing will save the detected compiler id as Meta

information for use by other child Components.

6.1 Offline File Processing

The most time intensive part of classification is the optimization phase. It is during

this part of the classification that the actual values used for classifying new files are

determined. The offline file processing is started first by collecting the values using the

compiler dump program, described in Section 6.1.1 and then Section 6.3.3.

6.1.1 Compiler Dump Program

The compiler dump program was created to collect the attributes that are believed

by an human expert to be necessary to classify the compiler. It is important to under-

stand that the actual attributes necessary to classify the compiler will not be known

85

until after the optimizer program is executed on the collected data. Each of the at-

tributes collected are believed to be either difficult to falsify or counterproductive if

they are altered. Attributes that are “informative” in nature, for example the date the

target program was created, can either be ignored or eliminated without affecting the

program’s execution. The compiler dump program requires four pieces of information

from the user via command line flags:

• compiler name: String name to be associated with the compiler that produced

the set of test programs.

• compiler id: Unique integer identifier to be associated with the compiler that

produced the set of test programs.

• source type: String name describing the type of test programs (e.g. Java class).

• directory: Location where the test programs can be found.

The compiler dump program uses these command line flags to locate the appropri-

ate algorithm to use, collect the test programs from the given directory, process each

executable program, and store the collected information in a XML file. Section 6.1.1.1

will describe each of the kind of algorithms available. Section 6.2 describes the XML

schema associated with the type of test programs. Figure 6.1 shows the structure of the

compiler dump program.

6.1.1.1 Compiler Dump Algorithm

Each algorithm that is used to gather suspect file attributes must follow the inter-

face laid out in the Compiler Dump Algorithm class. The use of an abstract base class

for the Compiler Dump Algorithm was necessary since it is important to hide the kind

of algorithm being used from the trainer program. It is unnecessary for the compiler

dump program to know which algorithm it is interacting with when processing a set of

files. This property allows the design to support a wide variety of file types and allows

scalability to future design changes.
86

Figure 6.1: Compiler Dump Algorithm class diagram

The correct Compiler Dump Algorithm is found through the Compiler Dump Algo-

rithm Factory’s get Algorithm function. The Compiler Dump Program calls this func-

tion, obtains the correct algorithm, and then calls the algorithm’s functions to perform

its work.

6.1.1.1.1 ELF Compiler Dump Algorithm The ELF Compiler Dump Algo-

rithm, as shown in Figure 6.2, is used when processing a Linux ELF executable. Since

the advent of 64-bit computing the ELF format was extended to support 64-bit executa-

bles. Therefore the ELF Compiler Dump Algorithm must first determine which type of

file is being read, load the file via the correct file reader, and then read the necessary

attributes. This is shown in Figure 6.3.

87

Figure 6.2: ELF Compiler Dump Algorithm class diagram

Figure 6.3: ELF Compiler Dump Algorithm sequence diagram for reading a 32-bit Linux

ELF file

6.1.1.1.2 Windows Compiler Dump Algorithm The Windows Compiler Dump

Algorithm, as shown in Figure 6.4, is used when processing a Windows PE or PE+

executable. When Microsoft released its 64-bit version of Windows XP it extended

the Windows PE format, called PE+, to support 64-bit executables. Therefore the

Windows Trainer Dump Algorithm must first determine which type of file is being read,

88

load the file via the correct file reader, and then read the necessary attributes. This is

shown in Figure 6.5.

Figure 6.4: Windows Compiler Dump Algorithm class diagram

Figure 6.5: Windows Compiler Dump Algorithm sequence diagram for reading a Win-

dows PE+ file

6.1.1.1.3 Java Compiler Dump Algorithm The Java Compiler Dump Algo-

rithm, as shown in Figure 6.6, is used when processing a Java class file. Unlike the

Linux ELF and Windows PE file format, there is no need to determine the kind of file

that is being read. All the Java Compiler Dump Algorithm must do is load the file via
89

the Java file reader and then read the necessary attributes. This is shown in Figure 6.7.

Another unique feature of this algorithm is the use of statistics about attributes in the

file. When investigating the Java class file format it was noticed that certain kinds of

objects in the Constant Pool table appeared more often for one compiler versus another.

Therefore additional programming code was implemented to keep track of how many

of each kind of Constant Pool table entry occurred. These operations are performed by

the collect Constant Pool Stats and print Constant Pool Stats functions.

Figure 6.6: Java Compiler Dump Algorithm class diagram

90

Figure 6.7: Java Compiler Dump Algorithm sequence diagram for reading a Java class

file

6.2 Input Data

While a comma-delineated file makes it easy to switch between programs like Win-

dows Excel and a text editor it does little in explaining what the information is and any

expected fields. XML was chosen to represent the attributes collected from the input

files since that it was designed [65] for:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute

minimum, ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

91

10. Terseness in XML markup is of minimal importance.

It was important that the XML data should be easy to process, human readable,

concise and easy to create. Since human developers are involved any ambiguities must

be removed. XML has the option that requires files to adhere to a particular format.

In this present design a schema is provided but not validated due to the limitation

in the XML library used to parse the files. This is an important point in the future

development of the compiler dump program.

6.2.1 Linux ELF XML

The input information used by the compiler classifier was obtained from a Compiler

Dump program utilizes the Libreverse library, a reverse engineering library also written

by the authors, to read the input ELF files. The input data was formatted in XML [6]

in order to produce a easy parse input format to the classifier. The input data has the

following XML schema [25] [61] [5] as shown in Listing 6.1.

92

Listing 6.1: XML schema for input ELF XML data
<?xml version = ’ ’1.0 ’ ’?>
<xs:schema>
<xs:element name= ’ ’ data ’ ’>
<xs:complexType>
<xs:element name= ’ ’maximum’ ’ type= ’ ’maximum type ’ ’

minOccurs=”0”
maxOccurs=”1”/>

<xs:sequence>
<xs:element name= ’ ’ f i l e ’ ’ type= ’ ’ f i l e t y p e ’ ’

minOccurs=”1”
maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name= ’ ’maximum type ’ ’>
<xs:sequence>
<xs:element name= ’ ’value ’ ’ type= ’ ’ xs :dec imal ’ ’>
<xs:complexType>
<xs:attribute name= ’ ’key ’ ’ type= ’ ’ xs :dec imal ’ ’

use= ’ ’ requ i red ’ ’/>
<xs:attribute name= ’ ’ f l o a t ’ ’ type= ’ ’ x s : f l o a t ’ ’

use= ’ ’ requ i red ’ ’/>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>

<xs:complexType name= ’ ’ f i l e t y p e ’ ’>
<xs:sequence>
<xs:element name= ’ ’ compi l e r id ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ s i z e ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ en t ry po in t addre s s ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ s e c t i o n h e a d e r s s t a r t ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ program header count ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ s e c t i on heade r count ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ s e c t i o n h e a d e r s t r i n g t a b l e i n d e x ’ ’

type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ t e x t s e c t i o n s i z e ’ ’ type= ’ ’ xs :dec imal ’ ’/>

</xs:sequence>
</xs:complexType>

<xs:schema>

The description of each of the elements are:

• compiler id: Unique id associated with the compiler that produce the file.

93

• size: File size

• entry point address: The address where program control is transferred.

• section header start: The file offset to the section header table.

• program header count: The number of program headers in the file.

• section header count: The number of section headers in the file.

• section header string table index: The index into the section header table

associated with the string table.

• text section size: Size in bytes of the executable code section in memory.

6.2.2 Java Class XML

The input information used by the compiler classifier was obtained from a Compiler

Dump program utilizes the Libreverse library, a reverse engineering library also written

by the authors, to read the input Java Class files. The input data was formatted in

XML [6] in order to produce a easy parse input format to the classifier. The input data

has the following XML schema [25] [61] [5] as shown in Listing 6.2.

94

Listing 6.2: XML schema for Java XML data
<?xml version = ’ ’1.0 ’ ’?>
<xs:schema>
<xs:element name= ’ ’Data ’ ’>
<xs:complexType>
<xs:element name= ’ ’maximum’ ’ type= ’ ’maximum type ’ ’

minOccurs=”0”
maxOccurs=”1”/>

<xs:sequence>
<xs:element name= ’ ’ f i l e ’ ’ type= ’ ’ f i l e t y p e ’ ’

minOccurs=”1”
maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name= ’ ’maximum type ’ ’>
<xs:sequence>
<xs:element name= ’ ’value ’ ’ type= ’ ’ xs :dec imal ’ ’>
<xs:complexType>
<xs:attribute name= ’ ’key ’ ’ type= ’ ’ xs :dec imal ’ ’

use= ’ ’ requ i red ’ ’/>
<xs:attribute name= ’ ’ f l o a t ’ ’ type= ’ ’ x s : f l o a t ’ ’

use= ’ ’ requ i red ’ ’/>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
<xs:complexType name= ’ ’ f i l e t y p e ’ ’>
<xs:sequence>
<xs:element name= ’ ’version ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ t h i s c l a s s i n d e x ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ s u p e r c l a s s i n d e x ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ cons tant poo l count ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ c o n s t a n t p o o l i n f o ’ ’

type= ’ ’ cons tant poo l type ’ ’
minOccurs= ’ ’12 ’ ’ maxOccurs= ’ ’12 ’ ’/>

<xs:element name= ’ ’ f i e l d c o u n t ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ method count ’ ’ type= ’ ’ xs :dec imal ’ ’/>

</xs:sequence>
</xs:complexType>
<xs:complexType name= ’ ’ cons tant poo l type ’ ’>
<xs:sequence>
<xs:element name= ’ ’ tag ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ count ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ r a t i o ’ ’ type= ’ ’ xs :dec imal ’ ’/>

</xs:sequence>
</xs:complexType>

<xs:schema>

95

The attributes that are collected are those that are independent of the java byte

codes produced. The description of each of the elements are:

• version: This value is used to indicate what release level of Java this binary

requires the JVM to support.

• this class index: The value of the this class item must be a valid index into the

constant pool table. The constant pool entry at that index must be a Constant

Class Info structure representing the class or interface defined by this class file.[8]

• super class index: This is similar to the this class defined above but the only

difference is that this index refers to a parent class or the default Object class.

• constant pool count: Number of constant pool entries.

• constant pool info (tag): Unique id for the constant pool entry.

• constant pool info (count): Number of times the unique id was seen.

• constant pool info (ratio): Ratio of the number times to the number of con-

stant pool entries.

• field count: Number of field info structures in the class file.

• method count: Number of method info structures in the class file.

6.2.3 Windows PE XML

The input information used by the compiler classifier was obtained from a Compiler

Dump program utilizes the Libreverse library, a reverse engineering library also written

by the authors, to read the input Windows PE files. The input data was formatted in

XML [6] in order to produce a easy parse input format to the classifier. The input data

has the following XML schema [25] [61] [5] as shown in Listing 6.3. The description of

the elements are:

• compiler id: Unique id associated with the compiler that produce the file.
96

• size: File size

• exe header address: The address in the binary file where the PE header is

located.

• coff section header count: The number of section headers in the file.

• pe opt code size: The size in bytes of the section that contains the executable

instructions.

• pe opt base of data: The memory address where the data for the PE file starts.

• pe opt entry point: The memory address where the first instruction to be ex-

ecuted is located.

• pe opt image size: Size in bytes of the PE file in memory.

97

Listing 6.3: XML schema for input PE XML data
<?xml version = ’ ’1.0 ’ ’?>
<xs:schema>
<xs:element name= ’ ’ data ’ ’>
<xs:complexType>
<xs:element name= ’ ’maximum’ ’ type= ’ ’maximum type ’ ’

minOccurs=”0”
maxOccurs=”1”/>

<xs:sequence>
<xs:element name= ’ ’ f i l e ’ ’ type= ’ ’ f i l e t y p e ’ ’

minOccurs=”1”
maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name= ’ ’maximum type ’ ’>
<xs:sequence>
<xs:element name= ’ ’value ’ ’ type= ’ ’ xs :dec imal ’ ’>
<xs:complexType>
<xs:attribute name= ’ ’key ’ ’ type= ’ ’ xs :dec imal ’ ’

use= ’ ’ requ i red ’ ’/>
<xs:attribute name= ’ ’ f l o a t ’ ’ type= ’ ’ x s : f l o a t ’ ’

use= ’ ’ requ i red ’ ’/>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>

<xs:complexType name= ’ ’ f i l e t y p e ’ ’>
<xs:sequence>
<xs:element name= ’ ’ compi l e r id ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ s i z e ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ exe header addres s ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ c o f f s e c t i o n h e a d e r c o u n t ’ ’

type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ p e o p t c o d e s i z e ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ pe opt ba s e o f da ta ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ pe opt en t ry po in t ’ ’ type= ’ ’ xs :dec imal ’ ’/>
<xs:element name= ’ ’ pe opt image s i z e ’ ’ type= ’ ’ xs :dec imal ’ ’/>

</xs:sequence>
</xs:complexType>

<xs:schema>

98

6.3 GRNN Optimizer

The grnn optimizer program was created to handle the offline classification of the

compiler classification to determine the actual file parameters used and the optimal

sigma value. The grnn optimizer has the follow command line flags:

• directory: Where the training data XML files are stored.

• source type: String name describing the type of test programs (e.g. Java class).

• output: Where the final training data file is stored.

The grnn optimizer program uses these command line flags to locate the appropriate

algorithm to use, collect the training data XML files from the given directory, train and

validate then finally store the condensed information in a XML file. Section 6.3.1 will

describe each of the kind of algorithms available. Section 6.2 describes the XML schema

associated with the training data.

6.3.1 Optimizer Algorithm

Each algorithm that is used to parse the XML training data must follow the in-

terface laid out in Figure 6.8. The use of an abstract base class for the Optimizer

Algorithm was necessary since it was determined to hide the kind of algorithm being

used from the grnn optimizer program. It is unnecessary for the grnn optimizer pro-

gram to know which algorithm it is interacting with when processing an XML file. This

allows the design to support a wide variety of training data and allows scalability to

future design changes.

99

Figure 6.8: Optimizer Algorithm class diagram

The correct Optimizer Algorithm is found through the Optimizer Algorithm Fac-

tory’s get Algorithm function. The grnn optimizer program calls this function, obtains

the correct algorithm, and then calls the algorithm’s functions to perform its work.

Each optimization algorithm was designed to accept the type of classifier to use as an

template parameter. This design feature allows for the future expansion to additional

classifier algorithms without duplication of functionality.

6.3.1.0.4 ELF Optimizer Algorithm The ELF Optimizer Algorithm, as shown

in Figure 6.9, is used when processing a Linux ELF executable. The ELF Optimizer

Algorithm parses in the input XML file name into a ELF Training Data object, runs

the appropriate classifier and outputs the final XML data. This interaction is shown in

Figure 6.10.

100

Figure 6.9: ELF Optimizer Algorithm class diagram

Figure 6.10: ELF Optimizer Algorithm sequence diagram

6.3.1.0.5 Java Optimizer Algorithm The Java Optimizer Algorithm, as shown

in Figure 6.11, is used when processing a Java Class file. The Java Optimizer Algorithm

101

parses in the input XML file name into a Java Training Data object, runs the appropriate

classifier and outputs the final XML data. This interaction is shown in Figure 6.12.

Figure 6.11: Java Optimizer Algorithm class diagram

Figure 6.12: Java Optimizer Algorithm sequence diagram

6.3.1.0.6 Windows Optimizer Algorithm The Windows Optimizer Algorithm,

as shown in Figure 6.13, is used when processing a Windows PE executable. The

102

Windows Optimizer Algorithm parses in the input XML file name into a Windows

Training Data object, runs the appropriate classifier and outputs the final XML data.

This interaction is shown in Figure 6.14.

Figure 6.13: Windows Optimizer Algorithm class diagram

Figure 6.14: Windows Optimizer Algorithm sequence diagram

103

6.3.2 Input parser

Each of the Optimization algorithms described in Section 6.3.1.0.4, 6.3.1.0.5 and

6.3.1.0.6 rely on the IO class to parse the stored XML data. The XML data is the result

of running the grnn optimizer program on the collected training data. The parsing of

the stored XML data is covered in Section 6.3.2.1 and the data structure returned from

the parser is described in Section 6.3.2.3.

6.3.2.1 IO

The IO class is use during the on-line and offline phases of compiler classification.

The first ’get Data’ function that takes a list of input XML data files is used during the

offline phase. The pseudo code of this function is covered in Algorithm 8.

Algorithm 8 IO - get Data (offline phase)
1: procedure get Data(F)
2: Create an instance of the correct parser
3: for f ∈ F do
4: if f does NOT exist then
5: Throw an exception
6: end if
7: Parse the Training Set from f using the parser
8: end for
9: Normalize the Training Set

10: Separate the Training Set into 60% training, 20% test and 20% validation data
11: Save the maximum value for each column of the Training Set.
12: return sorted Training Set.
13: end procedure

The algorithm takes in a Training Set containing N different entries and prepares

them for use in the optimization operation. The normalization of data is required

when using data with a neural network [20] because normalization enables comparison

between the various file attributes. The normalized data is separate into the values use

to learning from (training data), check the resulting learner (test data) and verify its

correct (validation data). All the information is now ready for the optimizer and GRNN

to learn if there is any means to distinguish the various classes of input from each other.

104

The second ’get Data’ function is used for reading the stored normalized training

data that was the result of the grnn optimizer. This information is utilized by the Com-

piler Classifier Component described in Section 9.4.11. There is no need to normalize

and separate the data again like done in the first ’get Data’ function. The data is con-

verted from its XML format into the appropriate Training Set object for use by the

Compiler Classifier Component. Algorithm 9 describes the operations of this function.

Algorithm 9 IO - get Data (on-line phase)
1: procedure get Data(f)
2: if f does NOT exist then
3: Throw an exception
4: end if
5: Create an instance of the correct parser
6: Parse the training set from f using the parser
7: Create new Training Set object
8: Add input data to the Training Set object
9: Add the maximum values to the Training Set object

10: return sorted Training Set object.
11: end procedure

6.3.2.2 Training Set

The training set is a data container for storing the training, test and verification

information in training data objects. Each Training Set is specialized by the kind of

training data objects stored in it through template specialization. Various methods are

available to allow iteration through the various training data object’s values during the

optimization and classification operations.

6.3.2.3 Training Data

The training data is a data container that stores the value for one kind of training

information (e.g. test data for Linux ELF) specialized by a template parameter. It is

a standard template library map that is designed to use the attribute id as the key to

set or retrieve information. Each optimization algorithm for a particular file type, e.g.

ELF Optimizer Algorithm, uses predefined attributes in these specialized training data

105

classes to access values stored in the training data. The following sections describe each

of the specialized training data classes. Each of the specialized Training Data classes pro-

vide predefined constants, “ATTRIBUTE COUNT” and “CLASSIFIER TARGET”’,

that are used by the Optimizer and GRNN classes during the optimization process.

These values allow for the Optimizer to know how many attributes it is consider and

which target the data is assigned to without knowing anything about the data. By

design the “CLASSIFIER TARGET” is always the first attribute in each training data

object. Therefore “CLASSIFIER TARGET” is set to 0. Each class also has an enu-

meration which lists the unique id for each attribute. The names and unique ids are

used are the result of the expert determining the file attributes that could potentially

be used for classification. How many file attributes used in each training data object is

set in the “ATTRIBUTE COUNT”.

6.3.2.3.1 ELF Training Data The ELF Training Data class is used to specialize

the training data class for storing values retrieved from the input XML data. It has its

“ATTRIBUTE COUNT” set to 8 and lists the values in its Attributes enumeration in

Table 6.1.

Name ID
ATTRIBUTE TARGET ID 0

ATTRIBUTE FILESIZE 1
ATTRIBUTE ENTRY POINT ADDRESS 2

ATTRIBUTE SECTION HEADERS START 3
ATTRIBUTE PROGRAM HEADER COUNT 4
ATTRIBUTE SECTION HEADER COUNT 5

ATTRIBUTE SECTION HEADER STRING TABLE INDEX 6
ATTRIBUTE TEXT SECTION SIZE 7

Table 6.1: ELF Training Data - Attributes enumeration

6.3.2.3.2 Java Training Data The Java Training Data class is used to specialize

the training data class for storing values retrieved from the input XML data. It has its

“ATTRIBUTE COUNT” set to 32 and lists the values in its Attributes enumeration in

Table 6.2.
106

Name ID
ATTRIBUTE TARGET ID 0

ATTRIBUTE FILESIZE 1
ATTRIBUTE THIS INDEX 2

ATTRIBUTE SUPER INDEX 3
ATTRIBUTE VERSION 4

ATTRIBUTE CONSTANT POOL COUNT 5
ATTRIBUTE CONSTANT UTF8 COUNT 6
ATTRIBUTE CONSTANT UTF8 RATIO 7

ATTRIBUTE CONSTANT RESERVED COUNT 8
ATTRIBUTE CONSTANT RESERVED RATIO 9
ATTRIBUTE CONSTANT INTEGER COUNT 10
ATTRIBUTE CONSTANT INTEGER RATIO 11
ATTRIBUTE CONSTANT FLOAT COUNT 12
ATTRIBUTE CONSTANT FLOAT RATIO 13
ATTRIBUTE CONSTANT LONG COUNT 14
ATTRIBUTE CONSTANT LONG RATIO 15

ATTRIBUTE CONSTANT DOUBLE COUNT 16
ATTRIBUTE CONSTANT DOUBLE RATIO 17
ATTRIBUTE CONSTANT CLASS COUNT 18
ATTRIBUTE CONSTANT CLASS RATIO 19

ATTRIBUTE CONSTANT STRING COUNT 20
ATTRIBUTE CONSTANT STRING RATIO 21

ATTRIBUTE CONSTANT FIELDREF COUNT 22
ATTRIBUTE CONSTANT FIELDREF RATIO 23

ATTRIBUTE CONSTANT METHODREF COUNT 24
ATTRIBUTE CONSTANT METHODREF RATIO 25

ATTRIBUTE CONSTANT INTERFACE METHODREF COUNT 26
ATTRIBUTE CONSTANT INTERFACE METHODREF RATIO 27

ATTRIBUTE CONSTANT NAME AND TYPE COUNT 28
ATTRIBUTE CONSTANT NAME AND TYPE RATIO 29

ATTRIBUTE FIELD COUNT 30
ATTRIBUTE METHOD COUNT 31

Table 6.2: Java Training Data - Attributes enumeration

6.3.2.3.3 Windows Training Data The Windows Training Data class is used

to specialize the training data class for storing values retrieved from the input XML

data. It has its “ATTRIBUTE COUNT” set to 8 and lists the values in its Attributes

enumeration in Table 6.3.

107

Name ID
ATTRIBUTE TARGET ID 0

ATTRIBUTE FILESIZE 1
ATTRIBUTE EXE HEADER ADDRESS 2
ATTRIBUTE COFF SECTION COUNT 3

ATTRIBUTE PE OPT CODE SIZE 4
ATTRIBUTE PE OPT BASE OF DATA 5
ATTRIBUTE PE OPT ENTRY POINT 6

ATTRIBUTE PE OPT IMAGE SIZE 7

Table 6.3: Windows Training Data - Attributes enumeration

Figure 6.15: Optimizer class diagram

6.3.2.4 Training Data Parser

Each input training data is stored with a different XML schema as shown in Sec-

tion 6.2.2 of Java Class, Section 6.2.1 for Linux ELF and Section 6.2.3 for Windows PE.

An XML parser is used to convert the data in XML format to a Training Set object.

6.3.3 Optimizer

The Optimizer object, shown in Figure 6.15, is responsible for discovering the best

possible solution for a given input data, sigma and mutation value. It can be specialized

with a classifier and data type to be used thereby allowing for replacing the types of

classifier algorithm used and the input data type. The function of the Optimizer object

utilized by the Optimizer algorithms is the ’process’ as described in Algorithm 10 and

shown in Figure 6.16.

108

Algorithm 10 Optimizer - process function pseudo code
1: procedure process
2: Populate the gene pool with 10 Candidate Solution objects
3: for i← 0 to iteration limit do
4: Evaluate each Candidate Solution in gene pool
5: Get the first randomly selected parent from the gene pool
6: Get the second randomly selected parent from the gene pool
7: Breed the two parents to produce a child Candidate Solution
8: Mutate the child Candidate Solution attributes
9: Calculate mutation chance between 1 to 10

10: if mutation chance is 1 then
11: Mutate Sigma value
12: end if
13: Evaluate child Candidate Solution
14: Set the iteration count in the child Candidate Solution
15: Replace the worst Candidate Solution found in the gene pool with the child
16: end for
17: Save the best Candidate Solution in the gene pool
18: end procedure

Figure 6.16: Optimizer sequence diagram

109

6.3.4 Candidate Solution

The Candidate Solution, as shown in Figure 6.15, is a data structure used to keep

track of all the possible iterations used in the Optimizer gene pool. In the present

implementation of Libreverse the Candidate Solution is instantiated with the GRNN

classifier and the appropriate data structure for the optimizer algorithm.

6.3.5 GRNN

The GRNN, as shown in Figure 6.15, implements the principles described in Sec-

tion 3.2 for use in performing the classification during the off-line and on-line phases.

110

Chapter 7

API

Applications built against Libreverse work through the API interface directly. The

interface controls the operation of the Libreverse library.

7.1 Execute

This function, as shown in Figure 7.1, coordinates all the specific operations of

the reverse engineering of the target file. The idea behind this function was that most

users of Libreverse will not have the detailed knowledge of what is required to be done.

Therefore this function automates all the operations for the user.

Figure 7.1: Libreverse API ’execute’ function

111

Parameter Description
target file File to be processed by Libreverse.
input type File type of the input (e.g. binary).
output type Desired output (e.g. C++).
trace level Tracing level for recording debugging informa-

tion.
trace mask Bitwise OR value that represents where debug-

ging information is recorded.

Table 7.1: Parameters of Execute function

7.1.1 Steps of Processing

The Reverse class is the location that handles the actual processing of the target

file given the input and output type. The execute function takes the parameters, as

shown in Table 7.1, and performs as shown in Algorithm 11.

Algorithm 11 Reverse - execute
1: procedure execute(target,typeinput,typeoutput, debuglevel, debugmask)
2: Determine if target file exists.
3: Check desired input and output type are valid.
4: Prepare initial source component.
5: Prepare initial data source that contains the target file name.
6: Get the Component Graph associated with the input and output type
7: Execute the input section
8: Execute the analysis section
9: Execute the output section

10: end procedure

The first two steps are performed to ensure everything provided by the application

calling ’execute’ is correct and available before beginning the processing of the target

file.

In the third and fourth step, the input Data Source, described later in Chapter 11,

is prepared with the given target file name for use with the source component. A Null

Component, described later in Section 9.4.8, acts as the source component providing

information to the first component in the Component Graph, described in Chapter 10.

In the fifth step, the Component Graph to be used is obtained from Configurator,

described in Section 8.1, using the input and output type. The Component Graphs

are predefined arrangements of components that represent the best practices of reverse
112

engineering discovered by the research community. How the graph is obtained is defined

in Chapter 8 and constructed in Chapter 10.

The sixth through eighth steps process the target file using the Component Graph.

This operation is handled by the Reverse Impl class. In order to hide the internal

operations of the processing stages the Reverse Impl class was designed to offer three

functions. The first function, execute Input Section, processes the Input section of

the Component Graph. The second function, execute Analysis Section, processes the

Analysis section of the Component Graph. Finally execute Output Section processes

the Output section of the Component Graph. Information is passed between the sections

by the Execute function.

Each of the processing functions in Reverse Impl class follows the same algorithm

as shown in Algorithm 12.

Algorithm 12 Reverse Impl - execute
1: procedure execute
2: Obtain the Component Graph for that part (e.g. input).
3: Print the Component Graph in graphviz dot file format for use in documentation.
4: Initialize Component Graph with the source component
5: Process each component in the Component Graph
6: Retrieve the results from the last component.
7: end procedure

The idea behind splitting up the steps of reverse engineering was inspired by the

way Cifuentes [14] and the Boomerang [35] project performed the major steps of reverse

engineering. Various uses of reverse engineering have similar input (e.g. Windows PE

executable) but have different analysis and output operations.

113

Chapter 8

Configuration

Libreverse is dynamically configured at run time based on the kind of input and

output the caller to the API execute function. The controller of Libreverse’s configura-

tion is the Configurator class covered in Section 8.1. It provides a variety of information

to various parts of Libreverse. Figure 8.1 shows the class diagram of the Configurator.

Figure 8.1: Configurator Class Diagram

8.1 Configurator

The Configurator is a singleton object that provides the Component Graphs for

processing a target binary file and sets up the Data Source factory for creating Data
114

Source objects used to pass information. The reason behind having the Configurator

being a singleton was the fact that there should only be one source of information.

Therefore the Singleton pattern was employed in this case.

The first responsibility of the Configurator is to create three Component Graphs

composed of Components prearranged by the associated Formula File. The input and

output types given to the get Graph function retrieves the appropriate master formula

file. Each master formula file contains a text string for the name of the formula file

for each of the sections (Input, Analysis, and Output). This is seen in Figure 8.2. The

pseudo code for get Graph is shown in Algorithm 13.

Figure 8.2: Configurator get Graph sequence diagram

The second responsibility of the Configurator is to setup the Data Source Factory

for creating Data Source objects are created for transferring information from one com-

ponent to the next. At this time only the memory passing Data Source is produced to

transfer information between components. In the future additional Data Sources will

be supported as shown in Section 15.2.6.

8.2 Master Formula File

The purpose of the master formula file is to show the three formula files that

compose the best practice solution for a specific problem. An entry in the master

115

Algorithm 13 Configurator - get Graph
1: procedure get Graph(IT ,OT)
2: if Master Formula Map is not set then
3: Get formula directory from Configuration Data.
4: Read the Master Formula Map
5: end if
6: Search for correct Formula Map in the Master Formula Map using IT, OT
7: if Formula Map is not found then
8: throw an exception
9: end if

10: Parse the input Component Graph with a Formula Parser
11: Parse the analysis Component Graph with a Formula Parser
12: Parse the output Component Graph with a Formula Parser
13: return resulting Component Graphs
14: end procedure

formula file is composed of a input and output value that represent the key pair for

the solution. The input formula, analysis formula and output formula store the string

name of the formula file for respective for the Input, Analysis and Output Component

Graphs. A high level view of how the formula files work together are seen in Figure 8.3.

Figure 8.1 describes the XML schema for the master formula file.

input

analysis

output

Figure 8.3: High-level view of set of Component Graphs

116

Listing 8.1: XML schema for master formula file
<?xml version=”1.0”?>
<xs:schema xmlns :xs=”h t t p : //www. w3 . org /2001/XMLSchema”>
<xs:element name=” f o r m u l a l i s t ”>
<xs:complexType>
<xs:sequence>
<xs:element name=”formula ” type=”FormulaType” minOccurs=”1”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name=”FormulaType”>
<xs:sequence>
<xs:element name=”input ” type=”InputType”/>
<xs:element name=”output ” type=”OutputType”/>
<xs:element name=”input formula ” type=”FormulaName”/>
<xs:element name=”a n a l y s i s f o r m u l a ” type=”FormulaName”/>
<xs:element name=”output formula ” type=”FormulaName”/>

</xs:sequence>
</xs:complexType>
<xs:simpleType name=”FormulaName”>
<xs:restr ict ion base=” x s : s t r i n g ”>
<xs:pattern

value=”[a−zA−z0 −9] ([a−zA−z0 −9] |) ∗ [a−zA−z0 −9]\ . fm”/>
</xs:restriction>

</xs:simpleType>
<xs:simpleType name=”InputType”>
<xs:restr ict ion base=” x s : s t r i n g ”>
<xs:enumeration value=”binary”/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name=”OutputType”>
<xs:restr ict ion base=” x s : s t r i n g ”>
<xs:enumeration value=”C++”/>
<xs:enumeration value=”C”/>
<xs:enumeration value=”Java”/>
<xs:enumeration value=”UML”/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

8.3 Formula File

The Formula File represents the best practice for a particular part, e.g. input phase,

of the reverse engineering process. The file represents the arrangement of components

in a Component Graph stored in XML format using schema shown in Listing 8.2. Each

117

Formula file has a series of node elements that make up the graph. Each node element

has a list of predecessors providing it data and meta information plus a name element

describing the node’s name and unique id.

Each node must follow a set of rules with the following variables.

• Child node: If a node has predecessors then the predecessor nodes must be exist

already in Component Graph therefore no parent node can reference a unknown

child. This rule prevents any loops from occurring in the resulting Component

Graph.

• A parent node will have a lower unique id than any of its children.

• No duplicates. Each node must provide a unique id attribute for the Component

Graph being constructed.

118

Listing 8.2: XML schema for formula file
<?xml version=”1.0”?>
<xs:schema xmlns :xs=”h t t p : //www. w3 . org /2001/XMLSchema”>
<xs:element name=”formula map”>
<xs:complexType>
<xs:sequence>
<xs:element name=”node”

type=”NodeType”
minOccurs=”1”
maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>
<xs:key name=”nodeId”>
<xs:selector xpath=”./node/ id”/>
<xs : f i e ld xpath=”@id”/>

</xs:key>
<xs:key name=”predNodeRef”>
<xs:selector xpath=”./node/ p r e d e c e s s o r s ”/>
<xs : f i e ld xpath=”@idre f”/>

</xs:key>
</xs:element>
<xs:complexType name=”NodeType”>
<xs:sequence>
<xs:element name=”p r e d e c e s s o r s ” type=”NodeReference”/>
<xs:element name=”name” type=” x s : s t r i n g ”>
<xs:complexType>
<xs:attribute name=”id ” type=”xs:NCName” use=”requ i r ed ”/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
<xs:complexType name=”NodeReference”>
<xs:sequence>
<xs:element name=”node r e f ” minOccurs=”0” maxOccurs=”unbounded”>
<xs:complexType>
<xs:attribute name=” i d r e f ” type=”xs:NCName” use=”requ i r ed ”/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:schema>

119

Chapter 9

Components

9.1 Design Principles

A component is defined as an object with two modes of operation (source and

Working) that is loosely coupled from other components performing a single primitive

operation. Previous reverse engineering solutions [35] [14] [41] utilized functions in the

programming language to provide the primitive operations. The problem with these

approaches is that they do not allow the user to rearrange these primitive operations

for new problems without altering the programming source code.

The list of design principles are listed here and describe in further detail below.

• Two mode operation (source vs working)

• Single primitive operation

• Loosely coupled

• Type of source of input data and destination of output data hidden

9.1.1 Two Mode Operation

When a component is in the working mode it is designed to operate as a part of a

component graph, defined later in Chapter 10, to perform its specific action. Each child

component takes its input data from their parent components through the data source,

defined later in Chapter 11. The input data is retrieved from a list of data sources

contained in the graph visitor defined later in Chapter 10. If all the necessary sources

of input data are provided the component when in the working mode it then performs

its specific operation. The results are placed into a data source and entered into the list

of data sources for use by other components.
120

When a component is the head node of the component graph it must have its state

set to source mode. When a component is in the source mode its normal operation is

not performed. The role of a component in this state is to provide its data contained in

a data source to child components in the component graph. For example, the file name

of a target binary executable to be analysis can be provided by a Null component set

in the source mode. How the graph visitor interacts with the components is described

in Chapter 10.

9.1.2 Single Primitive Operation

Any complex reverse engineering technique is often composed of many primitive op-

erations. These primitive operations are often reused across many different techniques.

In order to capture this principle each of the components described in this chapter are

design to only perform a single primitive operation. Couple this design principle with

the loosely coupled nature and the data sources then a component can be reused mul-

tiple times in the same component graph without any knowledge to the components

before or after it.

9.1.3 Loosely Coupled

Each component is designed to accept a visitor interacting with it and a set of data

sources. There are no hard links allowed between various components since how a generic

reverse engineering architecture will be used cannot be known before hand. Therefore

each component must be designed to be moved into various places in a component

graph thereby giving it nearly infinite flexibility to handle a vast amount of unknown

problems.

9.1.4 Hidden data sources

Since a design goal was to maintain a loosely coupled connectivity between com-

ponents there had to be a means by which the data could be passed. Each data source

contains all the information provided by a parent component but without the child

121

component needing to know exactly who is its parent. This is important since hard

wiring components together severely limits the range of problems this architecture can

solve. Each data source not only hides the previous component from the next but it

also has the ability to transmit the information through different means. This is further

described in Chapter 11.

9.2 Component Class Diagram

The component class is a purely virtual class that represents the interface, shown

in Table 9.1, that hides the internal workings from other parts of Libreverse. The com-

ponent base class implements the features of the component interface and is the parent

class that developers must inherit from when making a new component for Libreverse.

The component base class also implements the component actor interface described in

Section 9.3. The component base class has a member variable for a Component State

object which implements the two-mode operation. The overall structure of a component

is shown in Figure 9.1.

122

Figure 9.1: Component Class Diagram

123

Function Description
Add Input Source This is used during the creation of the Component

Graph. Each parent component providing data to a
child component must give its id to the child. The
child uses this id to check to see if it has all its parent
components have completed their operation before
running its analysis.

Received Input Source Data This is used during the actual processing of the com-
ponent graph. The parent component, identified by
id, has completed its analysis and has recorded its
results into the data map type in the graph visitor.
The child component marks that it has received in-
put from the parent component.

Get Name This is used for obtaining the actual name of the
component when printing information for debugging
or producing a graphviz file of the component graph

Run This is used by the graph visitor when it visits the
node that contains a component. This starts the
primitive operation performed by the component.

Results Returns the data source object that contains the
output data. This is called by the graph visitor to
store the results and notify the child components of
the completion of the parent components operation.

Set State This is functions will set the mode of the compo-
nent. It is mainly used to set a component to the
SOURCE MODE when the Reverse Impl class sets
the component acting as a source of information to
a component Graph.

Get Id Return the Unique ID for the component.
Get Source List Begin The input token list contains the list of parent com-

ponents that supply the child component with data.
If the data is ready the Boolean value is true other-
wise it is false.

Get Source List End The input token list contains the list of parent com-
ponents that supply the child component with data.
If the data is ready the Boolean value is true other-
wise it is false.

Table 9.1: Component Interface

9.3 Component Actor Interface

The component actor interface is the mechanism by which the two mode operation

of the component object is implemented. The component base class inherits from the

124

Figure 9.2: Component execution with its state set to SOURCE MODE

Figure 9.3: Component execution with its state set to WORKING MODE

component actor to implement the ’process’ function that will be called by the appro-

priate component state class (Component Source State or Component Working State)

depending on which is active in the Component at that time. If the component is in

the SOURCE MODE then the ’run’ function does nothing since the component base

class ’process’ function is never called. This is shown in Figure 9.2. Otherwise if the

component is in WORKING MODE then the ’run’ function will call ’process’ function

on the component base so that the primitive operation will be performed. This is shown

in Figure 9.3. The component base class calls the ’process impl’ function in the child

class to execute the primitive operation.

9.4 Input Components

This section contains a list and description of the components provided as a part

of the Libreverse architecture for use in the “input” formula files.

9.4.1 Architecture Type Detector

The Architecture Type Detector Component determines the CPU architecture that

is supported by this binary executable. For most architectures there is some form of
125

identifier that the operating system loader uses when determining if it can execute an

binary executable. There is little incentive for an attacker to alter the id in the binary

executable since they want the target program to execute. Algorithm 14 shows the

pseudo code for this component.

Algorithm 14 Architecture Type Detector - process impl

1: procedure process impl
2: Get the component data object from the input data source.
3: if target file name exists then
4: Get the target file name from the component data object
5: else
6: Throw an exception
7: end if
8: Get the file type from the meta object found in the component data object.
9: Get the correct Arch Type Detector Algorithm object from the based on the file

type from the Arch Type Detector Algorithm Factory.
10: Execute the algorithm
11: Store the returned Arch Type Meta object in the output data source.
12: end procedure

9.4.2 Code Section Detector

The Code Section Detector determines the beginning address in memory of the

executable code of a binary executable and size of memory used. The Code Section

Detector uses the input file name obtained from the data source and the appropriate file

reader produced by the File Reader Factory to read the necessary field. This information

is appended to the output data source as meta information. Algorithm 15 shows the

pseudo code for this component.

126

Algorithm 15 Code Section Detector - process impl

1: procedure process impl
2: Get the component data object from the input data source.
3: if target file name exists then
4: Get the target file name from the component data object
5: else
6: Throw an exception
7: end if
8: Get the file type from the meta object found in the component data object.
9: Get the correct Code Section Detector Algorithm object from the based on the

file type from the Code Section Detector Algorithm Factory.
10: Execute the algorithm
11: Store the returned meta object in the output data source.
12: end procedure

Each of the Code Section Detector algorithms uses its associated File Reader to

obtain the code section information. Windows PE, Linux ELF and Mac OS.X MachO

all allocate memory where the executable instructions are then placed by the operating

system loader. Java class files have Code Attribute sections that are part of each method.

Each class file is loaded by the JVM as it is required. There is no memory allocated in

a similar way compared to the other formats. Therefore there is no real value that can

be returned for this nor of the section size.

9.4.3 Data Section Detector

The Data Section Detector determines the beginning address in memory of the

program data in the binary executable and size of memory used. The Data Section

Detector uses the input file name obtained from the data source and the appropriate file

reader produced by the file reader factory to read the necessary field. This information

is appended to the output data source as Meta information. Algorithm 16 shows the

pseudo code for this component.

127

Algorithm 16 Data Section Detector - process impl

1: procedure process impl
2: Get the component data object from the input data source.
3: if target file name exists then
4: Get the target file name from the component data object
5: else
6: Throw an exception
7: end if
8: Get the file type from the meta object found in the component data object.
9: Get the correct Data Section Detector Algorithm object from the based on the

file type from the Data Section Detector Algorithm Factory.
10: Execute the algorithm
11: Store the returned meta object in the output data source.
12: end procedure

Each of the Data Section Detector algorithms uses its associated File Reader to

obtain the data section information. Windows PE, Linux ELF and Mac OS.X MachO

all allocate memory where the application data is placed by the operating system loader.

Java class files have Code Attribute sections that are part of each method. Each class

file is loaded by the JVM as it is required. There is no memory allocated in a similar way

compared to the other formats. Therefore there is no real value that can be returned

for this nor of the section size.

9.4.4 Entry Point Detector

The Entry Point Detector determines the beginning address in memory of the first

executable instruction is located in the binary executable. The Entry Point Detector

uses the input file name obtained from the data source and the appropriate file reader

produced by the file reader factory to read the necessary fields. This information is

appended to the output data source as meta information. Algorithm 17 shows the

pseudo code for this component.

128

Algorithm 17 Entry Point Detector - process impl

1: procedure process impl
2: Get the component data object from the input data source.
3: if target file name exists then
4: Get the target file name from the component data object
5: else
6: Throw an exception
7: end if
8: Get the file type from the meta object found in the component data object.
9: Get the correct Code Section Detector Algorithm object from the based on the

file type from the Code Section Detector Algorithm Factory.
10: Execute the algorithm using the target file name
11: Store the returned meta object in the output data source.
12: end procedure

Each of the Entry Point Detector algorithms uses its associated file reader to obtain

the entry point information. Windows PE, Linux ELF and Mac OS.X MachO all have

a field in their header which marks the address in memory of the first instruction to be

executed. Java class files have Code Attribute sections that are part of each method. A

Java class file without the standard main function is similar to a DLL under Windows

or a shared library on Linux. There are many entry points but the system is vastly

different. In Linux or Windows a file can have one (EXE/DLL) or many (DLL) entry

points. Instead of addresses of where entry points for functions stored in the file Java

Class files have a Code Attribute section for each method.

9.4.5 File Header Printer

The File Header Printer obtains a text string representing all the information that

can be obtained from the target binary executable. The File Header Printer uses the

input file name obtained from the data source and the appropriate file reader produced

by the file reader factory to read the necessary fields. This information is displayed to

the standard output on the command line. Algorithm 18 shows the pseudo code for this

component.

129

Algorithm 18 File Header Detector - process impl

1: procedure process impl
2: Get the component data object from the input data source.
3: if target file name exists then
4: Get the target file name from the component data object
5: else
6: Throw an exception
7: end if
8: Get the correct file reader from the Reader Factory.
9: Print the file header information retrieved from the file reader to the console

10: Copy the input meta information to the output data source
11: end procedure

9.4.6 File Type Detector

The File Type Detector determines the file type associated with a binary executable.

The File Type Detector uses the input file name obtained from the data source and

the appropriate file reader produced by the file reader factory to read the necessary

fields. This information is appended to the output data source as meta information.

Algorithm 19 shows the pseudo code for this component.

Algorithm 19 File Type Detector - process impl

1: procedure process impl
2: Get the component data object from the input data source.
3: if target file name exists then
4: Get the target file name from the component data object
5: else
6: Throw an exception
7: end if
8: Get the correct file reader from the Reader Factory.
9: Store the target file name in the output data source.

10: Stored the file type information retrieved from the file reader in the output data
source.

11: end procedure

9.4.7 Memory Map Producer

The Memory Map Producer creates a Memory Map object representing the memory

image of the the target binary executable as it would look after the operating system
130

loader completed loading the binary. The Memory Map Producer uses the input file

name obtained from the data source and the appropriate file reader produced by the file

reader factory to obtain the Memory Map. The Memory Map object is placed inside a

data source and passed onto the next Component. Algorithm 20 shows the pseudo code

for this component.

Algorithm 20 Memory Map Producer - process impl

1: procedure process impl
2: Get the component data object from the input data source.
3: if target file name exists then
4: Get the target file name from the component data object
5: else
6: Throw an exception
7: end if
8: Get the correct file reader from the Reader Factory.
9: Store the target file name in the output data source.

10: Stored the Memory Map object retrieved from the file reader in the output data
source.

11: end procedure

9.4.8 Null

The Null Component is a useful Component to condense meta information from

various sources. It is primarily used with in Libreverse as a source of information for

a component graph and when there is no action required at spots in a formula file.

Algorithm 21 shows the pseudo code for this component.

Algorithm 21 Null Component - process impl

1: procedure process impl
2: Get the component data object from the input data source.
3: Copy input data to the output data in the data source.
4: end procedure

131

9.4.9 Tevis Unknown Region Checker

The Tevis Unknown Region Checker implements the security check in Jay-Tevis’s

dissertation [59] which determines to see if there are any sections in memory not ex-

plicitly covered in the Windows PE file header. The original work was expanded to

the Linux ELF file format. Java Class format was excluded due to the design of the

file format. There is no possibility of a Java Class file having any region in memory

not captured somehow in the file format. Algorithm 22 shows the pseudo code for this

component.

Algorithm 22 Tevis Unknown Region Checker - process impl

1: procedure process impl
2: Get the component data object from the input data source.
3: if target file name exists then
4: Get the target file name from the component data object
5: else
6: Throw an exception
7: end if
8: Get the file type from the meta object found in the component data object.
9: Get the correct Tevis Unknown Region Checker Algorithm object from the

based on the file type from the Tevis Unknown Region Checker Algorithm Factory;
10: Execute the algorithm using the target file name
11: Store the returned meta object in the output data source.
12: end procedure

9.4.10 Tevis Zero Filled Checker

The Tevis Zero Filled Checker implements the security check in Jay-Tevis’s dis-

sertation [59] which determines to see if there are any sections in memory that have

more than 50 consecutive ’0’ bytes. The idea is that a region with too many non-zero

bytes could be used to store a malicious program. The original work was expanded to

the Linux ELF file format. Java Class format was excluded due to the design of the

file format. There is no possibility of a Java Class file having any region in memory

not captured somehow in the file format. Algorithm 23 shows the pseudo code for this

component.

132

Algorithm 23 Tevis Zero Filled Checker - process impl

1: procedure process impl
2: Get the component data object from the input data source.
3: if target file name exists then
4: Get the target file name from the component data object
5: else
6: Throw an exception
7: end if
8: Get the file type from the meta object found in the component data object.
9: Get the correct Tevis Zero Filled Checker Algorithm object from the based on

the file type from the Tevis Zero Filled Checker Algorithm Factory;
10: Execute the algorithm using the target file name
11: Store the returned meta object in the output data source.
12: end procedure

9.4.11 Compiler Classifier

The Compiler Classifier is used to determine the compiler that produced the target

binary executable. The Compiler Classifier uses the input file name obtained from

the data source and the Compiler Classifier, as described in Chapter 5, to obtain the

meta object output. The meta object placed inside a Data Source as meta information.

and passed onto the next Component. Algorithm 24 shows the pseudo code for this

component.

133

Algorithm 24 Compiler Classifier - process impl

1: procedure process impl
2: Get the component data object from the input data source.
3: if target file name exists then
4: Get the target file name from the component data object
5: else
6: Throw an exception
7: end if
8: Get the directory where the GRNN data is stored
9: if GRNN data file does not exists then

10: Throw an exception
11: end if
12: Get the file type from the meta object found in the component data object.
13: Get the correct Classifier Algorithm object from the based on the file type from

the Compiler Classifier Algorithm Factory;
14: Execute the algorithm using the GRNN data file
15: Store the returned meta object in the output data source.
16: end procedure

134

Chapter 10

Component Graph

The Component Graph is a directed graph of Component objects which represents

the reverse engineering work to be done on the target file.

10.1 Graph

The Boost Graph library was used to construct this data structure. Boost has

an adjacency list [52], a two-dimensional graph structure, that has an entry for each

vertex. Each vertex in the adjacency list contains a list of vertex references for those

vertexes that have a link between them. In the case of Libreverse the adjacency list was

specialized as a directed graph. Therefore the links between the vertices’s goes from the

parent vertex to its children only. Each vertex in the directed graph is a pointer to a

Component object.

10.2 ID Map

Since the parent of a vertex has a lower unique identifier than its children the graph

of Component objects can be sorted in ascending order. The ID Map is a standard

template library (STL) map that uses the unique identifier for a Component object as a

key and handle to the vertex of where that Component object is in the directed graph.

This data structure allows Libreverse to quickly get access to a particular component

in the directed graph using only its unique identifier.

10.3 Component Map

The Component Map is a Boost property map that is used to store the Component

object at a particular vertex. The [52] states that:
135

The Boost Property Map concepts define a general purpose interface for

mapping key objects to corresponding value objects, thereby hiding the de-

tails of how the mapping is implemented from algorithms. The implemen-

tation of types fulfilling the property map interface is up to the client of

the algorithm to provide. The property map requirements are purposefully

vague on the type of the key and value objects to allow for the utmost

genericity in the function templates of the generic library.

10.4 Visitor

The Graph Visitor is where the graph processing is controlled. The visitor is a

breadth-first search visitor that takes the directed graph, sorts the vertexes in ascending

order by their unique ids, calls run() on each of the vertexes in turn and passing on

the results to the children vertexes. A breadth-first search visitor is the best solution

since all the parent vertexes for a target vertex must have completed their work before

the child Component can execute. A depth-first search would require some mechanism

to revisit a child Component if it had more than one parent. Algorithm 25 shows the

pseudo code for the Graph Visitor.

Algorithm 25 Graph Visitor - visit

1: procedure process impl
2: Get a handle to the graph object from the Component Graph
3: Topologically sort the vertexes
4: for each vertex in the Component Graph do
5: Call run on the Component Object stored at this vertex
6: Get the number of children for the vertex
7: Save result from Component Object for each children in the data map.
8: for each child of the vertex do
9: Update child Component Object to indicate parent Component Object

has provided data.
10: end for
11: end for
12: end procedure

136

Chapter 11

Data Source

Components in the component graph need to pass information from one to another

in such a way that limits the connection between the two. Past solutions hard wired

the various parts of the reverse engineering process together. Their design was focus

around solving one problem.

There are three typical method for passing information from one part of an ap-

plication to another. Most applications are designed to pass information with system

memory allocated to the application. Second method for passing information can be

done through specially formatted files. Finally information can be stored within a

database. In order to be flexible to the needs of various users the data sources were

configured to allow different formats to be utilized within the Libreverse architecture.

At the present time only the memory data source has been implemented. Figure 11.1

shows the class diagram for the data source.

137

Figure 11.1: Data Source Class Diagram

Each type of data source has a data transfer base object that contains the informa-

tion to be passed. The data source is explicitly instantiated with the data transfer base

class describing the data transfer method. At present only the memory data transfer

class is fully implemented in Libreverse.

Each class that inherits from the data transfer base class has a data source config

base object containing the information necessary to access the target data. This data

source config base object is passed to the data transfer class when it is constructed.

Each call to get() will return the stored information and put() will store the information

within the data source. An example is shown in Figure 11.2 for the memory data

transfer.

138

Figure 11.2: Data Transfer Class Diagram

At present the Libreverse architecture supports passing information within system

memory allocated to the application. This design decision was used to simplify the

implementation of this prototype. The memory data source config object contains the

unique identifier for the Component that provides the information. In the operation

of the memory data transfer object the put() call stores the passed in data object in

system memory. The get() call returns the store data. The sequence of these operations

are shown in Figure 11.3. At present the memory data source config object does not do

anything but is in place in case additional information is required to access the memory

(e.g. encryption key).

139

Figure 11.3: Memory Data Transfer Sequence Diagram

The key design principle is the separation of what is being store, data object, how

it is being transferred, data transfer base, from how it is configured, data source config

base, allows for great flexibility in future designs. More on how the future design of the

data source is covered in Section 15.2.6.

140

Chapter 12

Data Structures

There are three different types of information commonly passed between Compo-

nents.

12.1 Filename

Some components require the filename of the target file so that they can obtain

a handle to the appropriate Reader. These components use the Reader to read values

from the header associated with the target file or gain access to the Memory Map for

the target file image. The filename data structure is a string that represents the full

path to the target file. This is shown in Figure 12.1.

12.2 Memory Map

A memory map object represents a image of a section of memory. It is composed

of an index of where the read-write head is in the image, an index of where the read-

write head was last located, the base address of the image and vector of bytes. When

the memory map is created it is initialized for the desired size and base address. A

Component can seek to particular addresses or indexes within the memory map to access

data. For example a Memory map allows access within the range of 0 to N where N is

the last byte (e.g. memory map.index Seek (10)) followed by a read. Or the component

can go to a particular address and read information (e.g. memory map.address Seek (

0x80048f8f)) followed by a read. There is not a list of addresses associated with each

index in the memory map. The address associated with each byte is used to calculate

the exact index where the read needs to start. For example, if a memory map has a size

of 10, a base address of 0x5000 and follows a address Seek to 0x5005 the index of the

141

target memory is 0x5005 - 0x5000 = 5. By using a calculation of the index to a byte

of memory does not require the memory map to contain a map of addresses with their

associated index. This is shown in Figure 12.1.

12.3 Control Flow Graph (CFG) Sequence

A control flow graph sequence is a collection of control flow graphs. A executable

program has one entry point where the operating system begins to execute the instruc-

tions. The CFG Sequence associated with this program will only contain one CFG.

Whereas a shared library will have one or more entry points depending on which func-

tions are publicly available. The CFG Sequence associated with the shared library will

have one or more CFG. Each CFG will represent one function in the shared library.

Each CFG is similar to the component graph. Each node in the CFG has a unique id

and a basic block object associated with it. Each basic block contains a list of instruc-

tions associated with that part of the program code before a jump instruction. This is

shown in Figure 12.1.

142

Figure 12.1: Data Container Class Diagram

143

Chapter 13

Meta Information

13.1 Importance of meta information

The properties that can be obtained from various components describing the target

binary are called meta information. Previous approaches to reverse engineering limited

their scope to a particular type of a target binary. Meta information significantly reduces

and/or eliminates the need to have special application to reverse engineering a target

binary.

When constructing a generic reverse engineering architecture it is necessary to

design the system in such a way as to eliminate the number of custom components for

a particular analysis. Consider the situation where Libreverse would be used to detect

which compiler was used for a target binary. If there was not a means to provide extra

information about a target binary then there would need to be unique solutions for each

type of target binary. Each unique solution would have to have two steps: detection of

the target file type and detection of the compiler used. For example, for Windows PE

there would be a component to verify that the target binary was indeed a Windows PE

file. There would also be a component to perform the compiler detection for compilers

that produce Windows PE files. If there were only a few kinds of compilers and target

binary file formats then have unique solutions would not be that much of an issue.

Unfortunately, since new file formats are coming out as operating systems are created

or extended every year this solution does not scale well. Figure 13.1 visual shows

how with just three target binary file formats the problems with the unique component

approach become apparent.

144

Figure 13.1: Three sets of unique components for handling compiler classification

It is important to note that there are overlapping steps performed with each unique

component. Each file detector requires a file reader that enables it to gather information

from the file. The file detector produces an answer to indicate that it was successful

or not. This data is passed on to the next component for analysis. In addition each

compiler classifier also requires a file reader to gather information as the file detector

and specific actions to classify the target binary’s compiler.

This solution can be simplified down from the three different sets of components

into one set of components. The first component is a file type detector that uses the

data, target binary, to determine what its file type. It passes this newly discovered

information as meta information to the next component. The second component reads

the meta information, determines the algorithm it needs to use, executes the algorithm

and passes on the results. This can be seen in Figure 13.2

Figure 13.2: Generic components for handling compiler classification

145

13.2 How meta information is exchanged

Meta information is passed along in a meta object with a Data Source providing

Components with hints about the kind of binary file being analyzed. These hints can

allow the designer of the Component to alter the behavior for specific actions. It is

important to realize that different reverse engineering applications have similar actions

that are performed. They only difference between these applications is the type of

binary being analyzed. So rather than having N different kinds of reverse engineering

tools one solution can be used to dynamically change its behavior at run-time.

Figure 13.3: Reading meta information from a Data Source

Figure 13.3 shows the steps in obtaining a meta entry. Each Data Source contains

one meta object storing all the meta information received thus far in the reverse engi-

neering process. A component will condense the meta information obtained from each

received Data Source into one meta object before beginning its work. The first step is

to call ’get()’ from each of the Data Sources to get a handle on the underlying Data

Object. How the Data Object is stored is described in more detail in Chapter 11. Once

a component has a handle to the Data Object it can access the meta object, shown in

Figure 13.4, for the meta information stored in it. Each entry in a meta object is a

key with a matched Meta Item object. The key is used to access the right Meta Item

if it is present in the meta object. The Meta Item can represent a variety of different

146

kinds of meta information as described in Section 13.3. After obtaining the desired meta

information the component can use this information to customize its behavior.

Figure 13.4: Meta Object class diagram

By decomposing complex operations into a set of components that use meta in-

formation to select the correct algorithm to use for a specific situation it eliminates

the need for a number of custom components for a particular analysis. Libreverse im-

plements this design criteria thereby enabling the architecture to be easily expanded

to new kinds of meta information and components. This is one of its great strengths

when compared to the specific solutions mentioned in Chapter 2. Each of the spe-

cific solutions have common actions requiring specific information necessary to perform

their purpose. These common actions can be decomposed into simple steps using meta

information to alter their behavior. For example, Cifuentes [14] decompiled MS-DOS

x86 programs into source files written in C programming language. Each of the steps

performed could be made into simple components using and providing meta information

to alter Libreverse’s run-time behavior. It would be easy to extend the work to handle

Java class files as input and output them as source files written in the C programming

language.

147

13.3 Meta Items

The meta item class and the child classes which inherit from it were modeled after

how the java class file format stores attribute information. In the java class file format

a generic base class is used to hide the kind of attributes listed in the file header. If

the JVM understands the attribute, identified by a unique tag, then the attribute is

utilized otherwise it would silently ignore it. The important principle inspired by the

java class format was to hide the kind of meta item objects passed. A meta object has

no knowledge of the kind of meta items it contains. Each component in Libreverse uses

the the appropriate meta item tag to retrieve the meta item from the meta object. This

section describes each of the meta item types shown in Figure 13.5.

Figure 13.5: Meta Item class diagram

13.3.1 Arch Type Meta

The Arch Type Meta, shown in Figure 13.6, is produced by the Architecture Type

Detector, described in Section 9.4.1, to capture the CPU architecture supported in the

target file. The ’m tag’ is the unique identifier, ’m bit length’ captures whether the

architecture is 32/64 bit, and the ’m type’ shows the supported architecture.

148

Figure 13.6: Arch Type Meta class diagram

13.3.2 Code Section Meta

The Code Section Meta, shown in Figure 13.7, is produced by the Code Section

Detector for 32-bit files, described in Section 9.4.2, to determine the beginning address

of the code section in a 32-bit target file. The ’m tag’ is the unique identifier, ’m offset’

is the offset of the code section from the beginning of the memory for the target file,

and ’m size’ is the length of the section.

Figure 13.7: Code Section Meta class diagram

149

13.3.3 Code Section 64 Meta

The Code Section 64 Meta, shown in Figure 13.8, is produced by the Code Section

Detector for 64-bit files, described in Section 9.4.2, to determine the beginning address

of the code section in a 64-bit target file. The ’m tag’ is the unique identifier, ’m offset’

is the offset of the code section from the beginning of the memory for the target file,

and ’m size’ is the length of the section.

Figure 13.8: Code Section 64 Meta class diagram

13.3.4 Compiler Type Meta

The Compiler Type Meta, shown in Figure 13.9, is produced by the Compiler Type

Detector for 32-bit files, described in Section 9.4.11, to determine the compiler used to

create the target file. The ’m tag’ is the unique identifier, and ’m compiler id’ is the

unique id describing the detected compiler.

150

Figure 13.9: Compiler Type Meta class diagram

13.3.5 Data Section Meta

The Data Section Meta, shown in Figure 13.10, is produced by the Data Section

Detector for 32-bit files, described in Section 9.4.3, to determine the beginning address

of the data section in a 32-bit target file. The ’m tag’ is the unique identifier, ’m offset’

is the offset of the data section from the beginning of the memory for the target file,

and ’m size’ is the length of the section.

Figure 13.10: Data Section Meta class diagram

151

13.3.6 Data Section 64 Meta

The Data Section Meta, shown in Figure 13.11, is produced by the Data Section

Detector for 64-bit files, described in Section 9.4.3, to determine the beginning address

of the data section in a 64-bit target file. The ’m tag’ is the unique identifier, ’m offset’

is the offset of the data section from the beginning of the memory for the target file,

and ’m size’ is the length of the section.

Figure 13.11: Data Section Meta class diagram

13.3.7 Entry Point Meta

The Entry Point Meta, shown in Figure 13.12, is produced by the Entry Point

Detector for 32-bit files, described in Section 9.4.4, to determine the list of addresses

describing the entry point in a 32-bit target file. The ’m tag’ is the unique identifier

and ’m entry points’ is the list of entry points.

152

Figure 13.12: Entry Point Meta class diagram

13.3.8 Entry Point 64 Meta

The Entry Point Meta, shown in Figure 13.13, is produced by the Entry Point

Detector for 64-bit files, described in Section 9.4.4, to determine the beginning address

of the entry point in a 64-bit target file. The ’m tag’ is the unique identifier and

’m entry points’ is the list of entry points.

Figure 13.13: Entry Point Meta class diagram

153

13.3.9 File Type Meta

The File Type Meta, shown in Figure 13.14, is produced by the File Type Detector,

described in Section 9.4.6, to determine the file type of the target file. The ’m tag’ is

the unique identifier, ’m bit length’ is the bit length of the target file, and ’m type’ is

the description of the file type.

Figure 13.14: File Type Meta class diagram

13.3.10 Tevis Unknown Region Meta

The Tevis Unknown Region Meta, shown in Figure 13.15, is produced by the Tevis

Unknown Region Detector, described in Section 9.4.9, to determine the regions in mem-

ory of a target file not described in the file headers. The ’m tag’ is the unique identifier

and ’m unknowns’ is the list of unknown regions found in the file.

154

Figure 13.15: Tevis Unknown Region Meta class diagram

13.3.11 Tevis Zero Filled Meta

The Tevis Zero Filled Meta, shown in Figure 13.16, is produced by the Tevis Zero

Filled Checker, described in Section 9.4.10, to determine the areas in memory for target

that have more that 50 consecutive zeroes. The ’m tag’ is the unique identifier and

’m zero filled’ is the list of regions found in the file that have more than 50 consecutive

zeros.

Figure 13.16: Tevis Zero Filled Meta class diagram

155

Chapter 14

Scenarios

In order to best understand the impact of this research two scenarios are used

throughout it to provide two different points of view. The problem of merely presenting

the research is that it does not connect the reader with the vision of the research. It

fails to provide the extra information that lives inside the mind of the researcher.

14.1 Non-expert and Expert user

The non-expert user of Libreverse is a 15-year veteran of a federal agency. His job

in this division is to take suspicious programs off suspect’s computers and attempt to

classify the programs for other investigators. Due to a rash of new white collar crimes

the department is looking for a automated method to assist the non-expert user. The

department wants a tool that can provide information on what compiler was used and

if any compression utility was applied to the file.

The expert user of the Libreverse is a 20-year computer security researcher for a

defense contracting company who is working with the federal agency on an assignment.

The expert user has been using the Libreverse for years and now would like to add

a new compiler classification. The expert user is known as an expert in the field of

compression and compiler classification using artificial intelligence (AI). The expert

user will be configuring Libreverse reverse so that the non-expert user can perform their

task without requiring extensive education.

14.2 Compressed Executables and Compiler Classification

In this problem the novice user utilizes the application supplied by the expert user

to process each suspect file. The novice user is not making any assumptions about

156

the suspect files found on a suspect’s computer. They are relying on Libreverse to

process each suspect file. From their point of view they use a program supplied by

the expert user to process a set of files. This application interacts with Libreverse to

perform the necessary analysis for each file. Once the novice user starts the application

their interaction with Libreverse is done. All they has to do is wait for the result. In

the arrangement of components there is a component that will classify the compiler

use to create the suspect file or determine. The compiler classification component uses

the original file name to determine the compiler used. The result of this component

is new meta information stating the compiler id used to create the suspect file. This

meta information would be utilized by other components to alter their behavior. In the

novice user case the output information is used by his application to move the suspect

file into a preset directory. In a similar way the compressed executable detector, which

will provide meta information on whether any sort of compression was used on the file.

This information will be used to place the suspect file into a present directory for further

analysis.

During a recent investigation into software piracy the expert user discovered a

binary executable with a new type of compression. Further investigation of the suspect

computer uncovered the new compression utility. The expert user will take the new

compression program and compress a predefined set of test programs. After which they

will collect the necessary attribute input data into a file for classification and rerun the

optimizer. The resulting attributes used to classify between the various compression

methods will be used to alter the compressed executable detector component.

In addition the expert user wants to expand Libreverse’s ability to detect a new

compiler he has found on a suspect’s computer running Windows Vista. Libreverse’s

compiler classification has no knowledge of this new compiler. At this point the expert

user has two choices. First, they can either create a whole new program that can

classify this new compiler along with those that Libreverse knows. Or they can take the

same steps to classify this new compiler as done with previous compilers that produced

Windows PE files. The former method seems to be the way a lot of reverse engineering

157

projects take. A specific program is created for a specific problem. The downside

is this approach is that the program cannot be reused. Since the expert user values

their time they know that all they have to do is to compile a set of test programs

with the new compiler. The expert user updates the trainer dump application from

Libreverse to read the necessary attributes used for classification from the new set of

test programs. This extracted information is placed in the same directory as the other

input data collected for compilers producing Windows PE executables. After executing

trainer dump on the new files they update the grnn optimizer to take advantage of this

new data. At this point the expert user can run the grnn optimizer to discover which

attributes are necessary to classify between the old Windows compilers and the newly

discovered compiler. the expert user takes this information and updates the compiler

classification component.

14.3 Behind the scene

The novice user’s analysis program communicates with Libreverse via the execute

function in the API. The analysis program will pass along the string name for the

path to the target file along with the suspected input type (BINARY) and output type

(CPLUSPLUS). It will not utilize any of the tracing parameters since those are mainly

used for debugging Libreverse.

Similarly the expert user uses the same analysis program as the novice user. The

only difference is the expert user requires different output (e.g. UML) and utilize the

tracing parameters so he can follow Libreverse as it attempts to use his new compiler

classification additions.

For each user the configurator takes the given input and output types to look up

the appropriate formula list in the master formula map. The master formula map is

created from the contents of the master formula file stored on the system. The master

formula file used for this case study is shown in Listing 14.1.

158

Listing 14.1: Case study master formula file
<?xml version=”1.0”?>
<formula list>
<formula>
<input>binary</input>
<output>uml</output>
<input formula>binary RTL 2 .xml</input formula>
<analysis formula>d e c o m p i l e r a n a l y s i s .xml</analysis formula>
<output formula>uml output .xml</output formula>

</formula>
<formula>
<input>binary</input>
<output>C++</output>
<input formula>binary RTL .xml</input formula>
<analysis formula>d e c o m p i l e r a n a l y s i s .xml</analysis formula>
<output formula>cp lu sp lu s ou tput .xml</output formula>

</formula>
</formula list>

The formulas described in this section are for the purpose of showing the flexibility

of the configuration system. Unless otherwise noted in Chapter 9 the components used

in the formula are future features of Libreverse not presently implemented.

Both the expert and non-expert user utilize the input formula that converts the

binary input into a control flow graph (CFG) in RTL format. The expert user will store

an altered input formula file, binary RTL 2.xml, under a new name to allow testing

a compressed executable unpacker component. The input formula, binary RTL.xml,

used by the non-expert user is shown in XML format in Listing 14.2 and graphically in

Figure 14.1. The input formula used by the expert user is shown in Listing 14.3 and

graphically in Figure 14.2.

159

Listing 14.2: Case study input formula file for non-expert user (binary RTL.xml)
<?xml version=”1.0”?>
<formula map>
<node>
<name id=”1”> f i l e t y p e d e t e c t o r </name>

</node>
<node>
<predecessors><node ref idref=”1”/></predecessors>
<name id=”2”>memory map producer</name>

</node>
<node>
<predecessors><node ref idref=”1”/></predecessors>
<name id=”3”> c o m p i l e r c l a s s i f i e r </name>

</node>
<node>
<predecessors><node ref idref=”1”/></predecessors>
<name id=”4”>arch de t e c to r </name>

</node>
<node>
<predecessors>
<node ref idref=”2”/>
<node ref idref=”3”/>
<node ref idref=”4”/>

</predecessors>
<name id=”5”>con t ro l f l ow prod uce r </name>

</node>
<node>
<predecessors><node ref idref=”5”/></predecessors>
<name id=”6”> r t l c o n v e r t e r </name>

</node>
</formula map>

160

Listing 14.3: Case study input formula file for expert user (binary RTL 2.xml)
<?xml version=”1.0”?>
<formula map>
<node>
<name id=”1”> f i l e t y p e d e t e c t o r </name>

</node>
<node>
<predecessors><node ref idref=”1”/></predecessors>
<name id=”2”>memory map producer</name>

</node>
<node>
<predecessors><node ref idref=”1”/></predecessors>
<name id=”3”> c o m p i l e r c l a s s i f i e r </name>

</node>
<node>
<predecessors><node ref idref=”1”/></predecessors>
<name id=”4”>arch de t e c to r </name>

</node>
<node>
<predecessors><node ref idref=”2”/></predecessors>
<name id=”5”>compressed executable unpacker</name>

</node>
<node>
<predecessors>
<node ref idref=”3”/>
<node ref idref=”4”/>
<node ref idref=”5”/>

</predecessors>
<name id=”6”>con t ro l f l ow prod uce r </name>

</node>
<node>
<predecessors><node ref idref=”6”/></predecessors>
<name id=”7”> r t l c o n v e r t e r </name>

</node>
</formula map>

161

Figure 14.1: Graphical view of binary RTL.xml

Figure 14.2: Graphical view of binary RTL2.xml

162

The configuration system obtains the correct formula list from the master map using

the input keys for the type of input and desired output (e.g. BINARY,CPLUSPLUS). It

parses the binary RTL.xml file for the non-expert user to return the component graph of

components listes in the XML file. Whereas the configurator will grab the formula list

from the master map using the keys BINARY,UML and parse the binary RTL 2.xml

file, shown in Figure 14.2, to return the component graph for the expert user. Each will

utilize the same formula file seen in Listing 14.4 and Figure 14.3 for the analysis phase

of the reverse engineering process.

The input to the analysis formula map will be the results of the input formula map

contained in the last component. The first component to receive the data is the dead

register elimination components. Its results are passed onto the dead code elimination

and so on. The end result is a CFG containing all the information in a higher level

format more resembling source code.

The output formula for non-expert user is described in Listing 14.5 and shown in

Figure 14.4. The output formula for the expert user is described in Listing 14.6 and

shown in Figure 14.5. The output from the analysis formula map will be the input to

the output formula map. The purpose of this stage is to convert the contents of the

CFG into a meaningful format requested by the user. In the case of the non-expert

user this output will be source files written in the C++ programming language. For the

expert user the output will be files describing the CFG contents using UML.

163

Listing 14.4: Case study analysis formula file for the expert user (decompil-
ing analysis.xml)
<?xml version=”1.0”?>
<formula map>
<node>
<predecessors/>
<name id=”1”>d e a d r e g i s t e r e l i m i n a t i o n </name>

</node>
<node>
<predecessors><node ref idref=”1”/></predecessors>
<name id=”2”>dead code e l im inat i on </name>

</node>
<node>
<predecessors><node ref idref=”2”/></predecessors>
<name id=”3”>cond i t i on code propagat i on </name>

</node>
<node>
<predecessors><node ref idref=”3”/></predecessors>
<name id=”4”> r e g i s t e r a r g u m e n t i d e n t i f i c a t i o n </name>

</node>
<node>
<predecessors><node ref idref=”4”/></predecessors>
<name id=”5”> f u n c t i o n r e t u r n r e g i s t e r </name>

</node>
<node>
<predecessors><node ref idref=”5”/></predecessors>
<name id=”6”> r e g i s t e r c o p y p r o p a g a t i o n </name>

</node>
<node>
<predecessors><node ref idref=”6”/></predecessors>
<name id=”7”>data type propagat ion</name>

</node>
</formula map>

164

Figure 14.3: Graphical view of decompiling analysis.xml

Listing 14.5: Case study output formula file for Non-Expert User (cplusplus output.xml)
<?xml version=”1.0”?>
<formula map>
<node>
<predecessors/>
<name id=”1”>cpp wr i te r</name>

</node>

Figure 14.4: Graphical view of cpp writer.xml

165

Listing 14.6: Case study output formula file for expert user (uml output.xml)
<?xml version=”1.0”?>
<formula map>
<node>
<predecessors/>
<name id=”1”>uml writer</name>

</node>

Figure 14.5: Graphical view of uml writer.xml

An overview of how all the formulas fit together are shown in Figure 14.6 and 14.7.

166

Figure 14.6: Graphical view of Non-Expert User Component Graphs

167

Figure 14.7: Graphical view of Expert User Component Graphs

168

Chapter 15

Conclusion and Future Work

15.1 Conclusion

In this research we have shown a generic reverse engineering system that is flexible,

scalable and able to be alter its behavior based on information detected during the

reverse engineering process. In addition this research has shown that it is possible to

detect the compiler used to create a binary computer application, regardless of the

programming language used, through information gathered from the binary file format

by classifying against profiles from a list of available compilers. This work showed that

it is possible to classify the compiler used to create an application with 99.88% accuracy

for Linux ELF, 99.88% accuracy for Windows PE and 98.53% accuracy for Java Class.

15.2 Future Work

Although we have accomplished a lot during this research the following features

are possible for future expansion of Libreverse.

15.2.1 Compiler Detection

The compiler detection needs to be expanded to investigate the idea that it is pos-

sible to identify a compiler used from looking at a stream of instructions. This method

of compiler detection would be very helpful for the situation where the executable was

compressed and/or encrypted after it was compiled. Information in the header might

make it difficult or impossible to detect the compiler if key information is altered too

much.

169

15.2.2 Components

In order to show an generic architecture, like Libreverse, is equivalent to a specific

solution it must perform all the actions of the specific solution. New components will

need to be written to perform the actions done in the work by Cifuentes [14], Tevis [59],

Mycroft [44] and others.

Cifuentes used Register Transfer List(RTL) as the intermediate form to represent

the code being reverse engineered. Future work will have to first reproduce the original

work using RTL but also investigate if the approach of each component, described in

Table 15.1 works for other intermediate forms. Table 15.1 describes further compo-

nents that will be researched and incorporated into the Libreverse reverse engineering

architecture.

Tevis conducted his research using the Windows PE format. Linux ELF and Mac

OS X Mach-O file format are loaded into memory by the operating system like Windows

PE file format. The same methods performed in Tevis [59] should be investigated to see

if the same potential security vulnerabilities exist in these other formats. Table 15.2 de-

scribes further components that will be researched and incorporated into the Libreverse

reverse engineering architecture.

Mycroft [44] investigated a static analysis method of reconstructing the type of

registers in target code represented in SSA form. Cifuentes [15] reports that “In von

Neumann machines, code and data are represented in the same way, hence making

it impossible to distinguish code from data statically”. Therefore it will be necessary

to investigate the dynamic means to reconstruct the type of registers in a program.

Table 15.3 describes further components that will be researched and incorporated into

the Libreverse reverse engineering architecture.

15.2.3 Control Flow Graph Generation

Reading a stream of assembly code output from a disassembler or a processed as-

sembly output from an application like IDA Pro is still difficult to read. Libreverse needs

170

Components Description
Dead-Register Eliminate Dead
Registers

Identifies and removes dead registers in the basic
blocks of a control flow graph.

Dead-Condition Code Elimi-
nation

Identifies and removed condition code from a pro-
gram if it is never used.

Condition Code Propagation Each machine instructions set flags in the CPU
when they are executed. Therefore where the
flags are used and defined must be identified for
each machine instruction and used as part of the
reverse engineering process.

Register arguments Identify registers that contain arguments passed
for each subroutine.

Function Return Registers Identify register used to return values from a sub-
routine.

Register Copy Propagation Identify temporary registers that are used to hold
the contents of other registers. Replace the tem-
porary register name with the original register
name.

Actual Function Parameters Parameters to a function call are either placed
into registers or put onto the stack. This com-
ponent will identify the parameters and place the
parameters in the correct order for the function
call.

Data Type Propagation
Across Procedure Calls

When the type of a register is identified it is nec-
essary to propagate that type to every place the
register is used.

Register Variable Elimination Replace all remaining registers output from the
Register Copy Propagation component with vari-
able names.

Table 15.1: Future optimization components from Cifuentes

Components Description
Detecting Anomalies in the
target file

Locate anomalies in the file (e.g. size of table
stated in a header from the actual size in the file).
These may indicate target file was tampered.

Detect Writable and Exe-
cutable sections

Locate sections in memory that are both writable
and executable.

Detecting Vulnerable Library
Functions

Identify functions that are known to be vulnerable
to attack.

Table 15.2: Future optimization components from Tevis

171

Components Description
Type Reconstruction Dynamically reconstruct types for registers con-

tained in the instructions basic blocks of a control
flow graph.

Table 15.3: Future optimization components from Mycroft

to be extended to contain algorithms that can take the input instructions and produce

a control flow graph that can aid in the understanding of a target file. These algorithms

need to be able to identify all branch types supported by the input instructions and

produce a the necessary control flow graph for future analysis. In addition rather than

using a two-step process of converting input instruction to assembly to intermediate

form the conversion process should be able to convert from input instruction directly

into intermediate form. They type of intermediate form should be an option that the

researcher can select as a part of the formula file.

15.2.4 Intermediate Forms

Various researchers use different intermediate forms to perform their analysis (e.g.

RTL or SSA). Libreverse needs to be able to represent instructions in

• Assembly language

• Register Transfer Language (RTL)

• Single State Assignment (SSA)

in order to give the researcher a wide choice of methods to represent the target in-

structions for analysis. By supporting a number of different intermediate forms further

research in the components described in Section 15.2.2 will be required to to see if the

component’s effectiveness is dependent upon the format of its data (e.g. RTL vs SSA).

172

15.2.5 Configurator

The Configurator part of the infrastructure of Libreverse needs to be expanded to

allow for a method to select the data source to use along with new kinds of data sources

to transfer information between components.

The Configuration Data class provides the data structure for storing the config-

uration information. It allows the setting and retrieval of the transfer configuration

type (e.g. Memory), directory where the formula files are store and DLLs. This data

structure allows for additional information to be added while keeping the Configurator

class free of the accessor methods.

Configurator will be changed to get the type of data source it should use from XML

file as shown in Figure 15.1. The limitation is only one transfer type is enforced by the

schema allowing only one transfer type element in the XML file. It can either be a file

prefix used in the file name for the output of each Component, database to where data

is store or in memory.

173

Listing 15.1: XML schema for configuration data
<?xml version=”1.0”?>
<xs:schema xmlns :xs=”h t t p : //www. w3 . org /2001/XMLSchema”>
<xs:element name=”Conf igurat ion”>
<xs:complexType>
<xs:sequence>
<xs:element name=”t r a n s f e r t y p e ” type=”TransferType”/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name=”TransferType”>
<xs:choice>
<xs:element name=” f i l e p r e f i x ” type=” x s : s t r i n g ”/>
<xs:element name=”database ” type=”DatabaseType”/>
<xs:element name=”memory” type=” x s : s t r i n g ” n i l l a b l e =”true”/>

</xs:choice>
</xs:complexType>

<xs:complexType name=”DatabaseType”>
<xs:sequence>
<xs:element name=”host ” type=” x s : s t r i n g ”/>
<xs:element name=”user ” type=” x s : s t r i n g ”/>
<xs:element name=”password” type=” x s : s t r i n g ”/>

</xs:sequence>
</xs:complexType>

</xs:schema>

15.2.6 Data Source

Two new data sources will be created that allow for the storing of data in a XML

file or through a database.

The File data source will store the contents in an XML format using a unique file

name. The administrator of Libreverse will use the Configurator’s XML file to defined

a file prefix to be used. Each file name will be composed of the prefix plus the unique id

of the component. A new XML parser will have to be created to read in the file when

the requested.

The Database data source will store the contents into a database that was defined by

the administrator of Libreverse in the Configurator’s XML. A database schema will have

to be developed for storing Libreverse’s data containers in the database. In addition a

174

object responsible for creating the data source from the database information or writing

to it will also have to be constructed.

15.2.7 Compressed Executables

There are number of opportunities to improve upon Compressed Executable clas-

sification to make it more palatable for general use in the field of Computer Forensics:

• The classifier should be able to distinguish between a larger number of compression

methodologies.

• These strategies could easily be applied to other operating systems (besides Win-

dows) and file formats, provided that similar representative information exists for

those formats as well.

• A separate classifier could possibly be created to further distinguish between types

of encryption based on system properties, as demonstrated possible for compres-

sion type in Experiment II.

• The methodologies demonstrated here could be implemented in a file analysis

framework, for the purpose of computer defense.

• Other classifiers (Radial Basis Function Networks, Feed-Forward Neural Networks,

Näıve Bayesian Classifiers) could be implemented and compared with the GRNN.

• Evolutionary Computation could be utilized to create a “White Hat Attacker”

which attempted to evolve malicious files which had the signature appearance

of non-self-modifying files. The GRNN could then attempt to learn from these

“tricky” instances and adapt appropriately by modifying its training data.

15.2.8 Compiler Classification

• Expand the work to distinguish between versions of compilers

• Expand the work to additional different file types (e.g. Mac OS.X MachO and

.NET Files)
175

• Explore alternative machine learning methods, particular those with less overhead.

• Explore identification of compilers using a stream of instructions.

15.2.9 XML

At present the XML library used for parsing the XML files used by libreverse does

not validate them against the supplied schema. It is important that the XML files

be correct before using them in a production environment. Therefore a method for

validating the XML files before they are used needs to be discovered.

15.3 Final Thoughts

So long as there are people attempting to circumvent security controls through ma-

licious software there will be a need to have reverse engineering tools available. These

tools will need to be easily adapted to handle the volume of malicious software. They

will need to be easily used by the security professional without requiring extensive ed-

ucation into the techniques of reverse engineering. Libreverse provides this necessary

flexibility and usability to the non-expert user for processing malicious software as well

as a research platform for the expert user. The future of reverse engineering lies in the

hands of the dedicated security professionals and researchers protecting our information

infrastructures by understanding the software that attacks them and identifying vulner-

abilities in the infrastructure software. Reverse engineering will be one line of defense

in this constantly shifting battlefield.

176

Bibliography

[1] J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, and E. Stoner.
State of the Practice of Intrusion Detection Technologies. Techni-
cal report. http://www.sei.cmu.edu/publications/documents/99.reports/
99tr028/99tr028abstract.html. Last accessed on 9/23/2008., 2000. 4

[2] R. Bellman. Adaptive Control Processes. Princeton University Press, Princeton,
NJ, 1961. 44

[3] J. Bergeron, M. Debbabi, J. Desharnais, M. Erhioui, Y. Lavoie, and N. Tawbi.
Static detection of malicious code in executable programs. In Proceedings of the
International Symposium on Requirements Engineering for Information Security,
2001. 32

[4] J. Bergeron, M. Debbabi, M.M. Erhioui, and B. Ktari. Static Analysis of Binary
Code to Isolate Malicious Behaviors. In IEEE 8th International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises, pages 184–189,
1999. 26, 41

[5] P. Biron and A. Malhorta. Xml schema part 2: Datatypes second edition. Technical
Report REC-xmlschema-2-20041028, World Wide Web Consortium (W3C), 2004.
92, 94, 96

[6] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, and J. Cowan.
Extensible Markup Language (XML) 1.1 - W3C recommendation 16-august-2006.
Technical Report REC-xml11-20060816, World Wide Web Consortium (W3C),
2004. 92, 94, 96

[7] W. Britt, S. Gopalaswamy, J. Hamilton, G. Dozier, and K. Chang. Computer
Defense Using Artificial Intelligence. In SpringSim 07: Symposium on Simulation
Software Security, pages 378–386, 2007. 7

[8] A. Buckley. JSR 202: Java Class File Specification Update. http://jcp.org/en/
jsr/detail?id=202. Last accessed on 9/23/2008., 2006. 72, 96

[9] G. Canfora, A. Cimitile, U. De Carlini, and A. De Lucia. An extensible system
for source code analysis. IEEE Transactions on Software Engineering, 24:721–740,
1998. 8

[10] G. Caprino. Rec: Reverse engineering compiler. http://www.backerstreet.com/
rec/rec.htm. Last accessed on 9/23/2008., 2007. 39

177

http://www.sei.cmu.edu/publications/documents/99.reports/99tr028/99tr028abstract.html
http://www.sei.cmu.edu/publications/documents/99.reports/99tr028/99tr028abstract.html
http://jcp.org/en/jsr/detail?id=202
http://jcp.org/en/jsr/detail?id=202
http://www.backerstreet.com/rec/rec.htm
http://www.backerstreet.com/rec/rec.htm

[11] E. Chikofsky and J. Cross II. Reverse engineering and design recovery: A taxonomy.
IEEE Software, 7(1):13–17, 1990. 10

[12] M. Christodorescu and S. Jha. Testing malware detectors. In International Sym-
posium on Software Testing and Analysis (ISSTA), pages 34–44, 2004. 5

[13] Z. Chuan, L. Xianliang, H. Mengshu, and Z. Xu. A lvq-based neural network
anti-spam email approach. SIGOPS Operting System Review, 39(1):34–39, 2005. 7

[14] C. Cifuentes. An environment for the reverse engineering of executable programs.
In APSEC, pages 410–419, 1995. 8, 29, 33, 41, 42, 113, 120, 147, 170

[15] C. Cifuentes, T. Waddington, and M. Van Emmerik. Computer security analysis
through decompilation and high-level debugging. In In Porceedings of the Working
Conference on Reverse Engineering (WCRE), pages 375–380. IEEE Press, 2001.
170

[16] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronisation skele-
tons using branching time temporal logic. In In Logic of Programs. Proceedings of
Workshop volume 131 of Lecture Notes in Computer Science, page 5271. Springer,
1981. 36

[17] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient
method of computing static single assignment form. In POPL ’89: Proceedings
of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 25–35, New York, NY, USA, 1989. ACM. 6

[18] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York,
1991. 54

[19] Un4seen Developments. Petite win32 executable compressor, 2005. Published on-
line at http://www.un4seen.com/petite. Last accessed on 6/20/2008. 65

[20] S. K. Dogra. Normalization, 2008. Published online at http://www.qsarworld.
com/qsar-statistics-normalization.php. Last accessed on 8/14/2008. 104

[21] M. Van Emmerik and T. Waddington. Using a decompiler for real-world source
recovery. In Proceedings of the 11th Working Conference on Reverse Engineering
(WCRE’04), pages 27–36. IEEE Computer Society, 2004. 31

[22] A. Engelbrecht. Computational Intelligence. John Wiley & Sons, Ltd, West Sussex,
England, 2002. 2, 5, 69

[23] D. Eriksson. Designing an object-oriented decompiler - decompilation support for
interactive disassembler pro. Master’s thesis, Blekinge Institute of Technology, June
2002. 34

[24] M. Ernst. Static and dynamic analysis: Synergy and duality. In Workshop on Dy-
namic Analysis 2003: ICSE Workshop on Dynamic Analysis, pages 24–27, Port-
land, OR, 2003. 28

178

http://www.un4seen.com/petite
http://www.qsarworld.com/qsar-statistics-normalization.php
http://www.qsarworld.com/qsar-statistics-normalization.php

[25] D. Fallside and P. Walmsley. Xml schema part 0: Primer second edition. Technical
Report REC-xmlschema-0-20041028, World Wide Web Consortium (W3C), 2004.
92, 94, 96

[26] S. Forrest and M. Mitchell. Relative building-block fitness and the building-block
hypothesis. In L. Darrell Whitley, editor, Foundations of Genetic Algorithms 2,
pages 109–126. Morgan Kaufmann, San Mateo, CA, 1993. 52

[27] D. Golberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1989. 52

[28] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper
Saddle River, New Jersey, 2nd edition, 1999. 7, 49

[29] J. Hoenicke. Java optimize and decompile environment (jode). Available at http:
//jode.sourceforge.net. Last accessed on 9/23/2008., 2006. 40

[30] S. Jarzabek and T. Keam. Design of a generic reverse engineering assistant tool.
In Proceedings of 2nd Working Conference on Reverse Engineering, 1995., pages
61–70. IEEE, July 1995. 8

[31] W. Jing-xin, W. Zhi-ying, and D. Kui. A network intrusion detection system
based on the artificial neural networks. In InfoSecu ’04: Proceedings of the 3rd
international conference on Information security, pages 166–170, New York, NY,
USA, 2004. ACM Press. 7

[32] K. Kapil and V. Kumar. Analysis of binary programs. http://www.cse.
iitk.ac.in/report-repository/2005/Y1189_Y1392_BTP_Report.ps. Last ac-
cessed on 9/23/2008., April 2005. 33

[33] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith. Detecting malicious code
by model checking. In Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA’05), volume 3548 of Lecture Notes in Computer
Science, pages 174–187. Springer, July 2005. 35

[34] P. Kouznetsovi. JAD - the fast JAva Decompiler. http://www.kpdus.com/jad.
html. Last accessed on 9/23/2008., 2001. 38

[35] G. Krol. Boomerang. http://boomerang.sourceforge.net/index.php. Last ac-
cessed on 9/23/2008., 2006. 31, 113, 120

[36] S. Kumar. Disc: Decompiler for turboc. Available at http://www.debugmode.
com/dcompile/disc.htm. Last accessed on 9/23/2008., 2003. 40

[37] lczelion. Tutorial 6: Import table, 2008. Published online at http://
win32assembly.online.fr/pe-tut6.html. Last accessed on 9/24/2008. 17

[38] Microsoft. Prb: Types of thunking available on win32 platforms, 2005. Pub-
lished online at http://support.microsoft.com/kb/125710. Last accessed on
9/24/2008. 17

179

http://jode.sourceforge.net
http://jode.sourceforge.net
http://www.cse.iitk.ac.in/report-repository/2005/Y1189_Y1392_BTP_Report.ps.
http://www.cse.iitk.ac.in/report-repository/2005/Y1189_Y1392_BTP_Report.ps.
http://www.kpdus.com/jad.html
http://www.kpdus.com/jad.html
http://boomerang.sourceforge.net/index.php
http://www.debugmode.com/dcompile/disc.htm
http://www.debugmode.com/dcompile/disc.htm
http://win32assembly.online.fr/pe-tut6.html
http://win32assembly.online.fr/pe-tut6.html
http://support.microsoft.com/kb/125710

[39] Microsoft. Visual Studio, Microsoft Portable Executable and Common Object
File Format (Rev. 8.0). http://www.microsoft.com/whdc/system/platform/
firmware/PECOFF.mspx. Last accessed on 9/23/2008., 2006. 5, 11, 12, 13, 14,
17, 18

[40] Microsoft. Windows authenticode portable executable signature format,
2008. Published online at http://download.microsoft.com/download/9/c/
5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx. Last ac-
cessed on 9/24/2008. 16

[41] J. Miecznikowski and L. Hendren. Decompiling java using staged encapsulation. In
WCRE ’01: Proceedings of the Eighth Working Conference on Reverse Engineering
(WCRE’01), page 368, Washington, DC, USA, 2001. IEEE Computer Society. 37,
120

[42] A. Mori, T. Izumida, T. Sawada, and T. Inoue. A tool for analyzing and detecting
malicious mobile code. In ICSE, pages 831–834, 2006. 43, 44

[43] S. Mukkamala, A. Sung, and A. Abraham. Cyber security challenges: Designing
efficient intrusion detection systems and antivirus tools. http://citeseer.ist.
psu.edu/735221.html. Last accessed on 9/23/2008., 2005. 27

[44] A. Mycroft. Type-based decompilation (or program reconstruction via type recon-
struction). In 8th European Symposium on Programming, ESOP’99, pages 208–224,
1999. 170

[45] A. Neshkov. DJ Java Decompiler. http://members.fortunecity.com/neshkov/
dj.html. Last accessed on 9/23/2008., 2007. 39

[46] M. F. Oberhumer and L. Molnár. The ultimate packer for executables (upx), 2005.
Published online at http://upx.sourceforge.net. Last accessed on 6/20/2008.
65

[47] M. Pietrek. Programming for 64-bit windows, 2000. Published online
at http://msdn.microsoft.com/en-us/magazine/bb985017.aspx. Last accessed
on 9/24/2008. 16

[48] S. Russell and P. Norvig. Artifical Intelligence: A Modern Approach. Prentice Hall,
2 edition, 2003. 52

[49] H. Schorr. Computer-Aided Digital System Design and Analysis Using a Register
Transfer Language. IEEE Transactions on Electronic Computers, pages 730–737,
1964. 6

[50] M. Schultz, E. Eskin, E. Zadok, and S. Stolfo. Data Mining Methods for Detection
of New Malicious Executables. In IEEE Symposium on Security and Privacy, pages
38–49, 2001. 44

[51] A. Shulga. Andromeda Decompiler, 2005. 32

180

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
http://citeseer.ist.psu.edu/735221.html
http://citeseer.ist.psu.edu/735221.html
http://members.fortunecity.com/neshkov/dj.html
http://members.fortunecity.com/neshkov/dj.html
http://upx.sourceforge.net
http://msdn.microsoft.com/en-us/magazine/bb985017.aspx

[52] J. Siek, L. Lee, and A. Lumsdaine. The Boost Graph Library: User Guide and
Reference Manual (C++ In-Depth Series). Addison-Wesley Professional, 2001.
pp. 213,277-278. 135

[53] D. Specht. A General Regression Neural Network. IEEE Transactions on Neural
Networks, 2:568–576, 1991. 5, 47, 69

[54] R. Stallman. personal communication, 2008. January 24, 2008 email. 45

[55] A. Sung and S. Mukkamala. Identifying important features for intrusion detection
using support vector machines and neural networks. In Symposium on Applications
and the Internet (SAINT), pages 209–217, 2003. 29, 45

[56] Symantec. Symantec Security Response - Definitions Added [Online]. http://
www.symantec.com/business/security_response/index.jsp. Last accessed on
9/23/2008., 2006. 5

[57] K. Tan. The application of neural networks to UNIX computer security. In Proc.
Int. Conf. Neural Networks, ICNN, pages 476–481. IEEE Computer Society, 1995.
7

[58] G. Tesauro, J. Kephart, and G. Sorkin. Neural Networks for Computer Virus
Recognition. In IEEE Expert, volume 11, pages 5–6, 1996. 7, 44

[59] J. Tevis. Automatic Detection of Software Vulnerabilities in Executables. PhD
thesis, Auburn University, 2005. 42, 132, 170

[60] J. Tevis and J. Hamilton Jr. Static analysis of anomalies and security vulnerabil-
ities in executable files. In ACM-SE 44: Proceedings of the 44th annual Southeast
regional conference, pages 560–565, New York, NY, USA, 2006. ACM Press. 42

[61] H. Thompson, D. Beech, M. Maloney, and N. Mendelson. Xml schema part 1:
Structures second edition. Technical Report REC-xmlschema-1-20041028, World
Wide Web Consortium (W3C), 2004. 92, 94, 96

[62] Unknown. Executable and linkable format. http://www.x86.org/ftp/manuals/
tools/elf.pdf. Last accessed on 9/24/2008. 20

[63] H. van Vliet. Mocha - the java decompiler. Available at http://www.brouhaha.
com/~eric/software/mocha. Last accessed on 9/23/2008., 1996. 41

[64] A. Vasudevan and R. Yerraballi. Cobra: Fine-grained malware analysis using
stealth localized-executions. In SP ’06: Proceedings of the 2006 IEEE Sympo-
sium on Security and Privacy, pages 264–279, Washington, DC, USA, 2006. IEEE
Computer Society. 35

[65] W3C. Extensible markup language (xml). Available at http://www.w3.org/XML/.
Last accessed on 9/23/2008., 2008. 10, 91

[66] M. Weber, V. Shah, and C. Ren. A Case Study in Detecting Software Security
Vulnerabilities Using Constraint Optimization. In SCAM, pages 3–13, 2001. 28

181

http://www.symantec.com/business/security_response/index.jsp
http://www.symantec.com/business/security_response/index.jsp
http://www.x86.org/ftp/manuals/tools/elf.pdf
http://www.x86.org/ftp/manuals/tools/elf.pdf
http://www.brouhaha.com/~eric/software/mocha
http://www.brouhaha.com/~eric/software/mocha
http://www.w3.org/XML/

[67] T. Welch. A Technique for High-Performance Data Compression. IEEE Computer,
17(6):8–19, 1984. 65

[68] D. Wheeler. Why Open Source Software/Free Software (OSS/FS,FLOSS,
or FOSS)? http://www.dwheeler.com/oss_fs_why.html. Last accessed on
9/23/2008., 2007. 5

[69] T. Yetiser. Polymorphic Viruses, Implementation, Detection, and Protection.
http://vx.netlux.org/lib/ayt01.html. Last accessed on 9/23/2008, 1993. 64

182

http://www.dwheeler.com/oss_fs_why.html
http://vx.netlux.org/lib/ayt01.html

	List of Figures
	Introduction
	Statement of the Problem
	Motivation of the Research
	Detecting properties in executable programs
	Generic reverse engineering architecture
	Modification of the run-time behavior of generic reverse engineering architectures

	Summary

	Background and Literature Review
	Reverse Engineering Definitions
	Background
	Windows Portable Executable (PE)
	Linux ELF
	Java Class

	Compressed Executables
	Survey of Decompiling Architectures
	x86
	Java Class
	Static Slicing on Binary Executables
	Static Analysis on Executables without Decompiling

	Machine Learning Related Work
	Survey of Compiler Detection
	Generic Decompilation
	Summary

	Analysis And Classification
	Introduction
	The General Regression Neural Network
	Learnability in the Training Instances
	Training Set Instances
	Complexity
	Network Parameters

	The Evolutionary Hill-Climber Algorithm
	Algorithm Description

	Logarithmic Search
	Steady-State Genetic Algorithm

	Statistical Algorithm
	Fitness Function

	Summary

	Compressed Executables
	Experiments
	The Training, Validation, and Test Sets
	Optimizer Stopping Conditions
	Identifying Compression
	Classifying Type of Compression or Lack Thereof
	Classifying Type of Compression
	Impact of Compression

	Data source and compressors
	Cexe
	Ultimate Packer for eXecutables
	PEtite

	Data Extraction
	Weaknesses
	Summary

	A Compiler Classification Framework for Use in Reverse Engineering
	Introduction
	How can machine learning be used for classifying compiler type?

	Software Architecture
	Java Input Data
	ELF Input Data
	Windows PE Input Data
	Structure

	Experiments
	The Training, Validation, and Test Sets
	Optimizer Stopping Conditions
	Experiment I: Java Compiler Classification with a GRNN Optimized with an Evolutionary Hill-Climber Algorithm
	Experiment II: Java Compiler Classification with a GRNN Optimized with a Steady-State Genetic Algorithm
	Experiment III: ELF File Compiler Classification with a GRNN Optimized with a Steady-State Genetic Algorithm
	Experiment IV: Windows PE File Compiler Classification with a GRNN Optimized with a Steady-State Genetic Algorithm

	Weaknesses
	Summary

	Classifier Architecture
	Offline File Processing
	Compiler Dump Program

	Input Data
	Linux ELF XML
	Java Class XML
	Windows PE XML

	GRNN Optimizer
	Optimizer Algorithm
	Input parser
	Optimizer
	Candidate Solution
	GRNN

	API
	Execute
	Steps of Processing

	Configuration
	Configurator
	Master Formula File
	Formula File

	Components
	Design Principles
	Two Mode Operation
	Single Primitive Operation
	Loosely Coupled
	Hidden data sources

	Component Class Diagram
	Component Actor Interface
	Input Components
	Architecture Type Detector
	Code Section Detector
	Data Section Detector
	Entry Point Detector
	File Header Printer
	File Type Detector
	Memory Map Producer
	Null
	Tevis Unknown Region Checker
	Tevis Zero Filled Checker
	Compiler Classifier

	Component Graph
	Graph
	ID Map
	Component Map
	Visitor

	Data Source
	Data Structures
	Filename
	Memory Map
	Control Flow Graph (CFG) Sequence

	Meta Information
	Importance of meta information
	How meta information is exchanged
	Meta Items
	Arch Type Meta
	Code Section Meta
	Code Section 64 Meta
	Compiler Type Meta
	Data Section Meta
	Data Section 64 Meta
	Entry Point Meta
	Entry Point 64 Meta
	File Type Meta
	Tevis Unknown Region Meta
	Tevis Zero Filled Meta

	Scenarios
	Non-expert and Expert user
	Compressed Executables and Compiler Classification
	Behind the scene

	Conclusion and Future Work
	Conclusion
	Future Work
	Compiler Detection
	Components
	Control Flow Graph Generation
	Intermediate Forms
	Configurator
	Data Source
	Compressed Executables
	Compiler Classification
	XML

	Final Thoughts

	Bibliography

