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Risk analysis is a process for considering possible risks and determining which 

are the most significant for any particular effort.  Determining which risks to address and 

the optimum strategy for mitigating said risks is often an intuitive and qualitative process.  

An objective view of the risks inherent in a development effort requires a quantitative 

risk model.  Quantitative risk models used in determining which risk factors to focus on 

tend to use a traditional approach of annualized loss expectancy (ALE)  based on 

frequency of occurrence and the exposure factor (EF) which is the percentage of asset 

loss due to the potential threat in question.  This research uses empirical data that reflects 

the security posture of each vulnerability to calculate Loss Expectancy, a risk impact 
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estimator. Data from open source vulnerability databases and results of predicted threat 

models are used as input to the risk model.  Security factors that take into account the 

innate characteristics of each vulnerability are incorporated into the calculation of the risk 

model.  The result of this model is an assessment of the potential threats to a development 

effort and a ranking of these threats based on the risk metric calculation.   
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1 INTRODUCTION 

1.1 Problem Statement 

Assessing security risks in software is predominately a qualitative process. Traditionally, 

efforts to deal with security vulnerabilities focus on hardening networks and peripherals 

that have access to computer systems. Hardening of networks and peripherals entails the 

application of security measures, such as firewalls and virtual private networks, or 

removing non secure systems and services from the network.  In 2002, the National 

Institute of Standards (NIST) reported that $59.5 billion was spent annually in 

breakdowns and repairs of faulty software [NIST 2002-10] [Mead and Stehney 2005].  

NIST also found that 92% of all security vulnerabilities were due to application 

vulnerabilities as opposed to network vulnerabilities [Curphey 2004].  Efforts have been 

underway to deal with application vulnerabilities early in the software development life 

cycle. These efforts have underscored the fact that risk management should drive the 

software development process, which assures that security is made an emergent feature of 

the development process [Mkpong-Ruffin and Umphress 2007].  

Methodologies for performing risk management activities – risk identification, risk 

assessment and risk mitigation – are largely qualitative in nature. Risk identification 

approaches such as attack trees, attack nets, and attack pattern matching aid in 

determining and identifying the risks that exist in a development effort [Mkpong-Ruffin 
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and Umphress 2007, Jurjens 2001, Sindre and Opdahl, Microsoft 2006]; whereas risk 

assessment methodologies and tools aid in determining what and where resources can be 

allocated to ameliorate the risks identified [Boehm 2001, SP 800-30, FIPS 2004, Kontio 

1999, Voas et al. 1997]. The qualitative nature of these methodologies makes it difficult 

to generalize assessment and duplicate results from other projects. Since effective risk 

mitigation strategies are dependent upon the results of the risk assessment process, there 

needs to be an empirical means for implementing risk assessment. 

1.2 Research Objective 

The objective of this research is to use historical data as a basis to categorize and 

quantitatively assess risk elements by incorporating risk impact factors in the assessment 

model. This objective is articulated through the creation of a software security risk 

assessment model (SSRAM) that categorizes, estimates, and ranks risk elements that 

have been identified during a threat modeling activity in the design phase of a 

development effort. The result of the research is a quantitative risk assessment of 

software security for a development effort.   

1.3 Background 

Risk is defined as the estimation of the probability and severity of an adverse effect 

[Haimes 2004]. There are two kinds of risks: speculative and hazard risk [Voas et al. 

1998; Young 2001].  A speculative risk, as in a stock investment, may produce a loss or a 

profit.  A hazard risk, on the other hand, always produces a loss; see Figure 1 [Alberts 

2006].  In dealing with risk, the prevalent approach is to find a plan that will reduce the 

loss incurred or the actual occurrence of the risk.  This plan can take the form of 

insurance purchased to reduce the effect of the loss if it were to happen, installation of 
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deterrent devices around existing structures, or the incorporation of restraints within the 

construct of the system. For example, a homeowner could buy insurance, install security 

systems on an existing home, or incorporate burglary bars and other theft resistance 

structures into the home. 

 
Figure 1 -- Difference between Speculative and Hazard Risk [Alberts 2006] 

Risk exists when the exercise of a vulnerability produces a net negative impact. Risk 

management is the process of identifying, assessing, and taking the steps to reduce risk to 

a satisfactory level. It takes into account the probability and impact of the occurrence of 

risk factors. This process allows operational and economic costs to be balanced while still 

protecting the development effort.  It minimizes the negative impact on the organization 

and gives the sound basis needed for decision-making. Risk management allows for a 

better security posture in that it enables stakeholders “to make well-informed risk 

management decisions to justify the expenditures” that are a part of the IT budget for the 

development effort. It also assists stakeholders in “authorizing (or accrediting)” the 

development effort based on the documentation derived from the performance of risk 

management [SP 800-30; SP 800-53].  
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Effective risk management gives software engineers the necessary focus to understand 

the stakeholders’ objectives. It also provides a context for exploring solution approaches; 

thereby reducing the risk of building the wrong system. Effective risk management also 

makes it possible for risks to be resolved early, avoiding extensive rework late into the 

project [Boehm 2001]. These reasons show the need for risk management to be fully 

integrated into the software development life cycle [SP 800-30; SP 800-55; Boehm 

2001]. 

1.3.1 Risk Assessment 

Figure 2 below, shows a high-level illustration of the risk assessment process [SP 800-
100].  

 
Figure 2- Risk Function 

Risk assessment is the process of estimating the impact of a successful exploitation and 

determining the likelihood of an attacker successfully exploiting a given vulnerability. 

The estimation of impact is done by looking at the effect an exploitation can have on the 

confidentiality, integrity and availability of the system [SP 800-100].  

 

 

Impact Likelihood Risk 

Threat 

Vulnerability 
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Figure 3 - Risk Management Cycle [GAO AIMD-00-33] 

Risk assessment provides the foundation for the risk management process.  As shown in 

Figure 3, risk assessment affords the basis for the establishment of appropriate policies 

upon which the other elements of risk management are directed [GAO AIMD-00-33 ]. It 

determines the extent of the potential threat and the risks associated with the software 

developed, throughout its life cycle [Voas et al 1997]. It also provides decision makers 

with needed information that allows them to understand factors that can negatively 

impact operations and outcomes.  Additionally, risk assessment allows decision makers 

to make informed judgments about actions to take and the extent to which such actions 

should be taken to reduce risk.  The output of this process aids in finding out what 

controls will be needed to reduce or eliminate risks during the risk mitigation process.  

For example, bank officials make judgments concerning loan portfolios based on the 

results of risk assessment. Insurance providers use risk assessment to determine the 

amount to charge for insurance provided. Nuclear power plant engineers conduct risk 

assessments to ascertain risks to public health and safety.  With the increased dependence 

on computer systems, the growth of electronic data and the ubiquity of software, risk 

assessment in the software development effort is critical. 
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In order to provide adequate assessment of the risks for a development effort, threats and 

vulnerabilities have to be identified. The likelihood and impact of each risk occurring 

have to be determined. In general, risk analysis entails [SP 800-30; McGraw 2006; GAO 

AIMD-00 33 11/99; Boehm1989]:  

• Determination of the system’s character under question - understanding the 

system boundaries, the data sensitivity and criticality, and the stakeholders’ 

perspectives on the system 

• Identification of the threats – attackers that would likely want to attack the system 

• Identification of vulnerabilities – flaws that exist or could exist in each level of 

the development and the operating environment 

• Determination of the likelihood of a vulnerability being exploited. 

• Analysis of current and planned controls to mitigate the threats/vulnerabilities 

exposed 

• Determination of the impact on the system and the organization should the risk be 

realized 

• Determination of the risks based on the threat and vulnerability identification, the 

likelihood of exploitation and impact on the system. 

• Determination of controls to mitigate stated risks 

1.3.2 Threat Identification 

Without a vulnerability to exploit, an attacker cannot exercise a threat.  Such a threat-

source can come either from a deliberate attack or from an accidental activation of a 

vulnerability. It is generally accepted that a compilation of potential threat sources be 

made that are applicable to the IT system under evaluation.  These should be adapted to 
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the organization and its environment. Information on threats and threat sources are now 

available from different sources, such as: 

• Federal Bureau of Investigation’s National Infrastructure Protection 

Center (www.fbi.gov) 

• Federal Computer Incident Response Center (FedCIRC) – www.us-

cert.gov 

• Mass media, particularly Web-based resources such as National 

Vulnerability Database (NVD), SecurityFocus.com, 

SecurityWatch.com, SecurityPortal.com, and SANS.org   

1.3.3 Vulnerability Identification 

Vulnerability is a flaw or weakness in a system’s security procedure, design, 

implementation, or internal controls.  Its exploitation could be either intentional or 

accidentally triggered and would result in a violation of the system’s security policy or a 

security breach [SP 800-30; SP 800-12; Steel et al. 2005]. 

In making an analysis of the threats to an IT system, an analysis of the vulnerabilities 

associated with the system and its environment must also be made. A list of flaws or 

weakness that could be exploited by the probable threat-sources has to be developed. The 

different vulnerabilities can be categorized to allow for ease of identification. [Tsipenyuk 

et al. 2005; Howard et al. 2005; OWASP] 

1.3.4 Likelihood Determination 

Once vulnerabilities and attackers have been determined, the likelihood of a potential 

vulnerability being exercised within the associated threat environment has to be derived. 
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The attacker’s motivation and capability, nature of the vulnerability, existence and 

effectiveness of current control are factors that govern likelihood determination. [SP 800-

30; SP 800-100; SP 800-12; Steel et al. 2005]  

To describe the likelihood determination most practitioners use qualitative measures of 

high, medium, low to describe likelihood levels as shown in Table 1.  

Likelihood Level Likelihood Definition 

High The threat-source is highly motivated and sufficiently 
capable; and the controls to prevent the vulnerability 
from being exercised are ineffective 

Medium The threat-source is motivated and capable, but 
controls are in place that may impede successful 
exercise of the vulnerability 

Low The threat-source lacks motivation or capability, or 
controls are in place to significantly impede, the 
vulnerability from being exercised. 

Table 1 Likelihood Definitions [SP 800-30] 

1.3.5 Impact Determination 

When a vulnerability is exercised, the impact of the security event is usually described as 

either a degradation of one or a combination of the following security goals: integrity, 

availability and confidentiality. Stoneburner [SP 800-30] briefly describes each security 

goal and the result of the goal not being met as follows: 

Loss of Integrity. System and data integrity refers to the requirement that 
information be protected from improper modification. Integrity is lost if 
unauthorized changes are made to the data or IT system by either intentional or 
accidental acts. If the loss of system or data integrity is not corrected, continued use 
of the contaminated system or corrupted data could result in inaccuracy, fraud, or 
erroneous decisions. Also, violation of integrity may be the first step in a successful 
attack against system availability or confidentiality. For all these reasons, loss of 
integrity reduces the assurance of an IT system. 
Loss of Availability. If a mission-critical IT system is unavailable to its end users, 
the organization’s mission may be affected. Loss of system functionality and 
operational effectiveness, for example, may result in loss of productive time, thus 
impeding the end users’ performance of their functions in supporting the 
organization’s mission. 
Loss of Confidentiality. System and data confidentiality refers to the protection of 
information from unauthorized disclosure. The impact of unauthorized disclosure of 
confidential information can range from the jeopardizing of national security to the 
disclosure of Privacy Act data. Unauthorized, unanticipated, or unintentional 
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disclosure could result in loss of public confidence, embarrassment, or legal action 
against the organization. Some tangible impacts can be measured quantitatively in 
lost revenue, the cost of repairing the system, or the level of effort required to correct 
problems caused by a successful threat action. Other impacts (e.g., loss of public 
confidence, loss of credibility, damage to an organization’s interest) cannot be 
measured in specific units but can be qualified or described in terms of high, 
medium, and low impacts.  

Qualitative categories of high, medium and low are also used to describe the impact of 

these security goals (Table 2). 

Magnitude of Impact Impact Definition 

High Exercise of the vulnerability (1) may result in the highly costly loss of 
major tangible assets or resources or (2) may significantly violate, 
harm or impede an organization’s mission reputation, or interest or 
(3) may result in human death or serious injury 

Medium Exercise of the vulnerability (1) may result in the costly loss of some 
tangible assets or resources or (2) may violate, harm or impede an 
organization’s mission reputation, or interest or (3) may result in 
human injury 

Low Exercise of the vulnerability (1) may result in the loss of some 
tangible assets or resources or (2) may noticeably affect an 
organization’s mission reputation, or interest. 

Table 2 Magnitude of Impact Definitions [SP 800-12] 

1.3.6 Risk Determination 

Risk is a function of the likelihood of a given attacker’s ability to exercise a potential 

vulnerability and the resulting impact of that adverse event on the organization.  The 

impact realized is the degree of harm that could be caused when vulnerability is 

exercised. The level of impact is based on the relative value of the resources affected 

such as the sensitivity and criticality of the system’s components and data [SP 800-30 SP 

800-12; Steel et al. 2005].  The linking of system-level concerns with probability and 

impact measures that matter to a software development organization produces superior 

risk analysis [McGraw 2006; Voas et. al 1997].  As such, it is important that the threats to 

a system, the probable vulnerabilities, and the controls in existence be analyzed in 

tandem for the system in question.   
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Once the threat-sources, vulnerabilities, likelihood of occurrence and impacts have been 

determined, a risk measure can then be developed.  Deciding the risk for a particular 

threat/vulnerability pair may be expressed as a function of: 

• probability of a particular attacker trying to exercise a particular vulnerability 

• the magnitude of impact if the vulnerability is successfully exercised 

• the adequacy of planned or existing security controls for removing or reducing 
risk [SP 800-30] 

Stoneburner advocates that a risk scale and risk-level matrix, shown in Table 3, be 

developed for measuring risk [SP 800-30].  

Impact 
Threat 
Likelihood

Low 
(10) 

Medium 
(50) 

High 
(100) 

High (1.0) Low 
10 X 1.0 = 10

Medium 
50 X 1.0 = 50

High 
100 X 1.0 = 100

High (0.5) Low 
10 X 0.5 = 5 

Medium 
50 X 0.5 = 25

High 
100 X 0.5 = 50 

High (0.1) Low 
10 X 0.1 = 1 

Medium 
50 X 0.1 = 5 

High 
100 X 0.1 = 10 

Risk Scale: High (>50 to 100); Medium (>10 to 50); Low (1 to 10) [SP 800-30] 

Table 3 Risk-Level Matrix 

When the risk has been determined, the results of the assessments can be documented and 

maintained; this allows for accountability.  Since risks and threats change over time, it is 

important that risks and threats be reassessed periodically.  Subsequent risk assessment 

can use the report as the basis for subsequent risk assessment and evaluations [GAO 

AIMD-00-33]. This information also assists designers and developers in challenging their 

own built up assumptions about their system [McGraw 2006]. Risk assessment early in 

the process molds and provides contextual framework for the assumptions developers 

have about the system. 
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2 STATE OF RISK ASSESSMENT 
Risk management is an integral part of the software development process. Since risk 

assessment is the foundation for other risk management activities, it should drive the 

development process to ameliorate security issues. Developers are expected to identify, 

assess, rank, mitigate and manage risk through out the software product life cycle 

[Humphrey et al. 2004; Addison and Vallabh 2002]. As noted previously, methodologies 

used to allow risk to drive the development process have in large part been qualitative in 

nature. 

2.1 Threat/Vulnerability Identification 

To determine what threats and vulnerabilities exist in a development effort, 

methodologies for identification early in the development process exist. Some of them 

are: 

• SecureUML – a modeling language that incorporates information pertinent to 

access control into applications modeled or defined using the Uniform Modeling 

Language (UML) [Lodderstedt et al. 2002].  It models security requirement for 

“well-behaved applications in predictable environment’ [McGraw 2006]. 

• UMLsec [Jurjens 2001] – an extension of UML to encapsulate the modeling of 

security-related features, such as confidentiality and access control.
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• Abuse Cases [Sindre and Opdahl] – an approach that extends use-cases to include 

misuse-cases, showing side-by-side what behavior should be supported and/or 

prevented. 

• Microsoft’s Threat Analysis and Modeling Tool (TAMT) – a tool that generates 

risks based on the components, roles, data, external dependencies and the 

application’s use-cases of a given development effort [Microsoft 2006]. 

2.1.1 Threat/Vulnerability Categorization 

Different approaches have been used to categorize vulnerabilities. A representative list is 

given below.   

• Neural Networks - have been used to categorize software security risks within 

software with different levels of success [Neumann 2002; Jain et al. 1996].  In 

most cases they are used with software metrics, such as McCabe’s complexity 

metrics, failure history, lines of code, etc., on modules that have already been 

written.   

Neumann [Neumann 2002] utilized neural networks combined with factor and 

component analysis to generate a set of orthogonal independent variables that 

could be used in representing the dependent variable, the goal being to allow for 

the focus of testing efforts on the portions of code with the largest number of 

faults.  

• STRIDE –Introduced by Michael Howard and David Leblanc [Howard and 

Leblanc], this approach relies heavily on cycling through a list of attacks and 

applying to each attack one or more of the different risk categories of - Spoofing, 

Tampering, Repudiation, Information Disclosure, Denial of Service or Elevation 



  13 

of Privilege (STRIDE) - during analysis. McGraw finds it a good starting point 

that gives a useful list of things to consider when identifying risks [McGraw 

2006].    

• Tsipenyuk [Tsipenyuk et al. 2005] uses a taxonomy of seven “kingdoms” (Input 

validation and representation; API abuse; Security features, Time and State, 

Errors, Code quality, Encapsulation and Environment) to categorize risk elements.  

Under each kingdom are the specific elements relevant to the kingdom.  For 

example SQL injection and buffer-overflow belong to the input-validation and 

representation kingdom.  

• Others, such as the Open Web Application Security Project [OWASP] and 

[Howard et al. 2005] provide lists of types of vulnerabilities that can be used to 

facilitate adoption of vulnerability groupings.  These lists tend to have a mixture 

of specific types of errors and groupings of vulnerabilities. For example, cross-

site scripting and SQL-injection are discussed at the same level of abstraction as 

Improper Error Handling and Trusting Network Address Information.  A 

mapping of the different types of vulnerabilities as given by Howard, OWASP 

and Tsipenyuk is shown in Appendix F. 

2.2 Software Testing and Assessment 

Traditionally, testing has been done to see if an application works correctly.  For security 

testing, emphasis is placed on identifying and removing vulnerabilities that could result 

in security violations. It validates the effectiveness of the security measures that are in 

place [Pan 1999].  Just as with ordinary testing, security testing methods fall into one of 

two major categories: black-box or white-box testing.  
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What method the tester uses to carry out security assessment and testing depends on the 

tester’s perspective with respect to the software component.  Black-box tests are 

conducted when specific knowledge about the software internals is not known, and the 

test cases are constructed based on functional requirements. White-box tests are 

conducted when the application’s internal structure is known.  

2.2.1 Black-Box Testing 

In black-box testing, the data used is taken from the specified functional requirements 

[Howard et. al. 2005; Hetzel 1988]. Testing approaches such as penetration, functional, 

risk-based, and unit testing are commonly used to perform black-box testing [Howard et. 

al. 2005; Hetzel 1988; Voas et al. 1998; Michael and Radosevich].  

• Penetration testing looks at how easy it would be for a component to be broken 

into.  

• Functional testing looks to see whether software behaves as it was required to 

behave and whether it adheres to the given functional requirements.   

• Risk-based testing is a subset of functional testing that focuses on those negative 

requirements that do not have a direct code base to be tested against.  For 

example, the requirement to make sure that the application is not vulnerable to 

buffer overflows would be hard to map to a particular segment of code but still 

requires that testing be implemented to address this requirement.  Risk-based 

testing is usually done by testing for misuse and abuse cases [Michael and 

Radosevich 2005].  

• Unit security testing looks at how an adversary could gain access to the software 

and then take control of the software after gaining access.  Given this two-stage 
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approach to unit testing, many use attack trees as a method for identifying and 

modeling threats since attack trees are amenable to portraying the different stages 

of implementation of a threat [Schneier 2000]. 

2.2.2 White-Box Testing 

White-box approaches use test and assessment activities to show the structure and flow of 

the software under review. The program structure provides the basis for the test cases 

generated [Mkpong-Ruffin  and Umphress 2007]. Commonly used white-box testing and 

assessment methods are fault-injection, source-code analysis and profiling.  

Fault-Injection 

Fault-injection uses information based on test cases – flaws – to show the effects of 

successfully exploiting a vulnerability by adding code that would forcefully change 

program state.  This approach gives insight into predictive measures of risk such as 

minimum-time-to-hazard and mean-time-to-failure. Wallace defines hazard as “an unsafe 

condition that may lead to an unintended event that causes an undesirable outcome” 

[Wallace 1991]. 

Fault-injection allows for absolute worst-case prediction [Voas et al. 1998]. Jeffery Voas 

and colleagues distill the problems that software risks could stem from to the following: 

“erroneous input data (from sensors, humans, or stored files), faulty code, or a 

combination of the two” [Voas et al. 1997].  They postulate that accurate assessment of 

liability requires worst-case predictions of software outputs if any of the aforementioned 

problems would occur.  To identify faulty or defective code, analytical techniques such as 

formal code verification and testing can be employed.  To detect wrong input data and 

faulty code, fault injection should be performed. 
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Injecting anomalies allows the simulation of the effects that the real anomalies would 

probably have and makes it feasible to build up a body of knowledge about probable 

future behavior. The simulation of the effects makes it possible to quantify the risks that a 

system’s component would create and allows observation of how bad things could get.  

Being able to quantify the risks gives a way to determine the ‘boundaries of liability’ 

[Voas et al. 1997].  Like other testing techniques, fault-injection is a technique utilized 

after a development effort is well under way. 

Static Analysis 

Static analysis tools look at the text of program, while not in execution, to discover 

potential vulnerabilities within the program. For example, many vulnerabilities are 

known to come from reusable library functions such as C’s strcopy() and stat().  A static 

analyzer could scan the programs to see if they contain any calls to those functions 

[Mkpong-Ruffin  and Umphress 2007] and then analyze the potential vulnerabilities 

uncovered to ascertain that they do not lead to security violations [Janardhanudu].   

Profiling  

Profiling tools allow the tester to observe the application’s performance while in 

execution to see where bottlenecks occur.  It also allows for observation and 

understanding of the sequence of function calls and the time spent in different areas of 

the software.  This observation of the performance bottlenecks of the software with 

profiling tools allows for a better understanding of vulnerability areas, such as areas with 

memory leaks, which would not be apparent with the use of static code analyzers [Steel et 

al. 2005]. 

In all the instances given for software testing and assessment, these methodologies are at 

a lower level of abstraction in the development process. 
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2.3 Stakeholder’s Goals  

2.3.1 Boehm Win-Win approach 

Boehm advocates using a risk management cycle consisting of risk identification, risk 

assessment and risk tracking.  To this end, risk identification aided by software risk 

management techniques [Boehm 2001] proactively identifies, as early as possible, the 

possible sources of significant risks (see Table 4). 

Source of Risk Risk Management Techniques 

Personnel shortfalls Staffing with top talent; key personnel agreements; team-
building; training; tailoring process to skill mix; 
walkthroughs. 

Schedules, budgets, process Detailed, multi-source cost and schedule estimation; design 
to cost; incremental development; software reuse; 
requirements descoping; adding more budget and schedule; 
outside reviews. 

COTS, external components Benchmarking; inspections; reference checking; 
compatibility prototyping and analysis 

Requirements mismatch Requirements scrubbing; prototyping; cost-benefit analysis; 
design to cost; user surveys 

User interface –mismatch Prototyping; scenarios; user characterization (functionality; 
style, workload); identifying the real users 

Architecture, performance, quality Simulation; benchmarking; modeling; prototyping; 
instrumentation; tuning 

Requirements changes High change threshold: information hiding; incremental 
development (defer changes to later increments) 

Legacy software Reengineering; code analysis; interviewing; wrappers; 
incremental deconstruction 

Externally-performed tasks Pre-award audits, award-fee contracts, competitive design 
or prototyping 

Straining computer science Technical analysis; cost-benefit analysis; prototyping; 
reference checking 

Table 4 Software Risk Management Techniques [Boehm 2001] 

The cycle would then continue with resolving each risk and, if not possible, addressing 

the resolution in the risk management plan by re-scoping the risk. Barry Boehm [Boehm 

2001] uses the ‘Top-N Risk Item List’ to monitor risk management.  This process gives a 
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summary of the risk items that are either growing or decreasing in criticality.  The 

elaboration of the cycle is shown in Figure 4.  

 
Figure 4 - Top-N Risk Item List[Boehm 2001] 

2.3.2 RISKIT 

RISKIT [Kontio 1997] is a method for risk management developed by J. Kontio.  It 

incorporates utility theory with a support for the perspective of different stakeholders’ 

goals, by the maintenance of links between risks and stakeholders (See Figure 5).  It 

utilizes analysis graphs, as shown in Figure 6, for visual documentation of risks.  The 

goal of the analysis graph is to give a deeper understanding of the process thereby 

enhancing communication [Kontio et al. 1998].  

• Identify new risks 

• Identify affects of risks 

• Assess risk exposure; reconcile risks with project goals, constraints, 
objectives 

• Evaluate risk reduction alternatives and risk reduction leverage 

• Take corrective action; assess decision points to invoke contingency plans 

• Perform top-N Risk Item Tracking (See Table 4) 

• Identify the  top-N Risk Items 

• Highlight these in regular project reviews (focuses review on 
manager-priority items) 

• Focus on new entries and slow-progress items 

• Reassess top-N risks 
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Figure 5 - Definition of Risk in Riskit Method [Kontio et al. 1997] 

 
Figure 6 -Example of the Riskit analysis graph (risk scenarios) [Kontio et al. 1998] 

2.4 Risk Management Framework (RMF) 

Introduced by Gary McGraw, this risk analysis approach is embedded within a risk 

management framework [McGraw 2006].  He suggests three steps – attack resistance 

analysis, ambiguity analysis, and weakness analysis as the sub processes performed to 

accomplish risk analysis. Attack patterns and exploit graphs are explored for attack 

resistance analysis. Ambiguity analysis looks at the disparate viewpoints of analysts of a 

particular system, on how the system should work to determine whether disagreements 

are due to misunderstanding or the need for further analysis. [Viega and McGraw 2001]. 
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Weakness analysis is performed by looking at the security of commonly used frameworks 

such as .NET and JEE and other third-party components. 

2.5 Software Reliability 

The area of software reliability engineering looks at the probability of failure-free 

software. [Rosenberg et al. 1998].  It is a mature area of software engineering with 

models and methods for assessing the reliability of software and, in some cases, 

predicting future-failures based on error-history [Karunanithi et al. 1992]. Software 

reliability engineering utilizes fault prevention, fault removal, fault tolerance and 

fault/failure forecasting as methods to provide system dependability. These terms are 

explained below [Lyu et al.1996]: 

• Fault is a defect within software that causes a failure.   

• Failure is the erroneous output as determined by the requirements for the system.  

• Fault prevention is the avoidance of the occurrence of a fault. 

• Fault removal is the usage of verification and validation to find and remove faults 

and 

• Fault/failure forecasting is the estimation of the existence of faults and where they 

occur and the consequences of failure.  

2.6 Traditional approach  

A traditional approach to quantitative risk analysis is to measure risk with respect to 

financial loss or loss expectancy [GAO AIMD-00-33; Mkpong-Ruffin and Umphress 

2007; Verdon and McGraw 2004; Steel et al. 2005].  This involves identifying all key 

risk elements and assigning estimates of values associated with each risk element, such as 

frequency, asset cost, potential loss value, business impact. With these values, estimates 
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of potential loss can be computed and an analysis of potential threats can be performed.  

The Annual Loss Expectancy (ALE) can be computed as follows: 

ALE = Single Loss Expectancy (SLE) x Annualized Rate of Occurrence (ARO) 

Where, 

ARO is the frequency of threats per year, 

SLE is the asset value x exposure factor (EF) 

EF is the percentage of asset loss caused by the potential threat  
Equation 1 - Traditional Annual Loss Expectancy 

2.7 Cross-Disciplinary ties to Insurance  

In actuarial science, actuarial tables (known also as mortality tables or life tables) exist to 

show the probability, at each age, of a person dying before their next birthday.  With this 

as a starting point, statistics are derived on the probability of surviving any particular year 

of age.  This process uses characteristics such as smoking, occupation and socio-

economic class to distinguish between different risks in determining life expectancy.  To 

develop predictions of future insured events, such as sickness, death, disability, etc., 

actuaries study incidence and severity of these events based on the recent past. They use 

this study to develop expectations about how the factors that motivated the events in the 

past will change over time. Armed with factors that affect risk, they are able to create 

models that allow them to evaluate risk [Klugman et al. 2004]. 

2.8 Problems with Existing Approaches 

Most of the work done on risk management in software development has been from a 

subjective point of view [Boehm 2001; Farahmand 2003]. The main problem with 

qualitative approaches is the lack of objectivity, which makes it hard to duplicate results 
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or generalize assessments from previous projects [Voas et al. 1997]. The approaches 

enumerated above have the following limitations: 

• Threat/Vulnerability Identification models and tools have as a goal the listing of risks 

that need addressing.  These lists provide a starting point in dealing with security but 

it is not the case that all risks identified can be addressed. Even if all risks enumerated 

could be addressed, protecting against every single conceivable threat would reduce 

security to “a labor-some project that gets in the way of functionality …” [Cheswick 

et al. 2003].  The removal of all enumerated risk would make it very difficult, if not 

impossible, to produce a system that would be useful as well as secure.  Since all risks 

may not be addressable, determining which vulnerabilities to address becomes a 

problem.  

• The neural network approaches have had disparate results as evidenced by the 

statements given by Sherer and Koshgoftar [Sherer 1995, Koshgoftar 1995]. Sherer’s 

conclusion was that neural networks did not do a good job of predicting the 

components that would have many faults. Koshgoftar, on the other hand, saw neural 

networks as effective modeling tool that should be seriously considered for software 

engineers because of its predictive capabilities.  

• The testing approaches, though effective in measuring some classes of risks 

described, are used later in the development process, after most of the work for 

development has been accomplished.  Any changes due to the analysis would be more 

expensive in terms of time and cost. 

• The traditional quantitative approach of annualized loss expectancy (ALE) and the 

exposure factor (EF) carries with it the burden of knowing what asset costs to use.  
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The impact effect is measured by the cost of asset loss, which is not easily determined 

during the design phase of development. If the cost of asset loss is available, it may 

not adequately reflect the seriousness of the problem.  This approach also suffers 

from the lack of sufficient data to determine probability of loss.  Unlike the insurance 

or finance companies, software developers do not have probability loss tables 

available to adequately determine the frequency of occurrence and the probability of a 

risk occurring.   

• Another reason given for not using quantitative models is the lack of access to 

reliable and current vulnerability data to support estimating probability of loss [GAO 

AIMD-00-33 ]. The data on the likelihood and costs associated with information 

security risk factors have been limited and the risk factors in this domain are 

constantly changing.  This lack of reliable and current data has made it hard to 

determine which information security risks are the most significant. It is also difficult 

to compare controls to determine which ones are most effective.  To this end, many 

organizations historically have leaned towards methods that do not rely on empirical 

data for obtaining reliable results.  

• Risk assessment methodologies that are based on being able to accurately quantify 

reliability have also not been found to be good approaches because 100 percent 

reliability does not necessarily correlate to zero percent risk.  Another problem with 

using reliability for liability prediction is that the reliability prediction models in 

existence are conflicting and make it almost impossible to know definitively the true 

reliability of a piece of software.  Most of the error-history-based reliability models 
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predict reliability differently using the same data, which makes determining the 

model that is most accurate for a definite system hard to do.  

• Relevant work on risk management in other disciplines has not been fully embraced 

by the software risk management community [Kontio 1999]. Since risk management 

is mature in other disciplines, knowledge can be gleaned from those disciplines to 

strengthen software risk management process. 

Risk analysis is a process for considering possible risks and determining which are the 

most significant for any particular effort. Work has been done on risk identification, 

mitigation, evaluation and assessment, but not much has been done in assessing and 

ranking risks during the early part of the software development life cycle [Voas et al. 

1997].  Determining which risk elements should be addressed and the optimum strategy 

for mitigating risks is often an intuitive process.  Risk element assessment in software 

security is predominantly a qualitative process. An objective view of the risks inherent in 

a development effort requires a quantitative risk model. 
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3 RESEARCH DETAILS 
A great need exists for tools to evaluate and quantify risks that are attributable to 

software development, if for no other reason than to reduce litigation costs due to 

software failure [Voas et al. 1997]. This research demonstrates that those attempting to 

perform risk assessment can do so from an objective point of view.   

As previously noted, one of the hindrances to objective measures for risk assessment is 

the lack of available data.  As shown in Figure 7, the rate of reported incidence of 

vulnerabilities as recorded in NVD has increased dramatically.  This increase in available 

data provides a basis for building a database for determining and evaluating risks. 
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Figure 7 -Reported Incidences [NVD]
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3.1 Conceptual Overview 

To empirically assess the risks inherent in a development effort, using the approach 

applied in this research requires that the historical data be placed in a format that allows 

for classification.  A clustering algorithm can then be applied to the data to determine the 

best segmentation of the underlying data as illustrated in Figure 8.  This allows for new 

risk elements to be classified based on their similarities to the clusters discovered.  Once 

the risk elements have been classified, the cluster that best represents the risk element in 

question is then used to determine the impact factor for that risk element.  The impact 

factor value can then be used to calculate loss expectancy. This process of determining an 

empirical posture for a given development effort is illustrated in the sequence diagram of 

Figure 9. 

 
Figure 8 - SSRAM's Cluster Creation 

 
Figure 9 - Software Security Risk Assessment 
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This model provides an empirical assessment of the potential threats to a development 

effort and a ranking of these threats based on the risk metric calculation. 

3.2 Data Preparation 

To be able to assess risk elements, the historical data must be in a categorized form that 

allows new elements to be classified (Figure 8). To this end, historical data for this 

research was taken from an open-source vulnerability database provided by the U.S. 

government, the National Vulnerability Database (NVD). The NVD database provides 

RSS (Really Simple Syndication) feeds, in an XML format, of incidences reported from a 

variety of sources. The schema for this data is presented in Appendix A-1.  It has seven 

sublevels with a nested hierarchy.  An example of an entry is provided in Appendix A-2. 

3.3 Parsing the Data 

To parse the XML data, we had to traverse each node of the NVD XML document and 

used different types of SQL INSERT SELECT statements to accommodate the different 

ways that the XML feed reports node level data.  An overview of these steps is given 

below, accompanied by the database diagram that depicts the tables generated based on 

the schema given.   

• Insert the XML documents into a table 
use ssram 
INSERT nvdtmp 
  SELECT CONVERT(xml, BulkColumn, 2) FROM  
    OPENROWSET(Bulk 'F:\Dissertation\Databases\National Vulnerability 
Database\nvdcve-recent.xml', SINGLE_BLOB) [rowsetresults] 

 

• Parse the data into the different tables based on the schema of the XML document. To 

parse the data into each table required that we implement different scripts for each 

table due to the differences in each of the tags of the XML document. 
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o Parsing first level tags — The first level tag <entry> has all of its values in 

attributes as shown below in Figure 10. To parse this data, an attribute centric 

approach was applied to the data in the first level node, 

<entry  

type="CVE"  
name="CVE-2006-0948"  

seq="2006-0948"  
published="2006-08-21"  
modified="2006-08-22"  
severity="High"  
CVSS_score="7.0"  
CVSS_vector="(AV:L/AC:L/Au:NR/C:C/I:C/A:C/B:N)"> 

Figure 10 - NVD's First Level Node 

o Parsing lower level tags with additional tag and attribute values — The <desc>, 

<ref> and <sols> tags use a combination of tag and attribute values that need be 

parsed independently.  For example, Figure 11 shows a <desc> tag that has the 

nested <descript> tag and the source attribute. The tag and attribute have to be 

parsed separately.  Also, since these are nested tags, parsing involved getting 

information from the parent tag along with information from the lower level tag.   

<desc> 

<descript source="cve"> AOL 9.0 Security Edition revision 4184.2340, and probably 
other versions, uses insecure permissions (Everyone/Full Control) for the "America 
Online 9.0" directory, which allows local users to gain privileges by replacing 
critical files. 
</descript>  

</desc> 

Figure 11- NVD Description Node 

o Parsing lower level tags with nested lower level tags  –  

The <loss_types>, <vuln_types> and <range> tag entries have nested lower-level 

tags that contain the data needed.  If the value is not present, then the tag is not 

available for that particular instance. For example Figure 13 shows two instances 

of the <loss_types> tag.  Note that Figure 12(a), has the <int /> tag which is not 

in Figure 12(b)’s tag and Figure 12(b) has the <sec_prot> tag and its associated 

attribute which is not in Figure 12(a).  These values are embedded as part of the 
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meta property of the tag. The meta property data for these tags needed to be 

accessed to accurately represent their information. 

<loss_types> 

<avail /> 

<int /> 

</loss_types> 

(a) 

<loss_types> 

  <avail />  

  <sec_prot other="1" />  

 </loss_types> 

(b) 

Figure 12 - Node with nested lower level tags 

Appendix A-3 has the full script for parsing the NVD XML document into required 

tables. Successful parsing of the data resulted in the population of the SSRAM database 

based on the schema depicted in Figure 13. Each entry level tag is depicted as a record in 

the entry table with a unique entry name that is used to associate with the lower level tags 

in the other tables shown in Figure 13. 
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Figure 13 - SSRAM Schema 

3.3.1 Validation of Data Entry 

To validate that the data was gotten correctly from the XML files, a random sample of 

entries was chosen. [Bartlett II et al] recommends a sample size that is less than or equal 
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to 5% of the captive population.  Given that the NVD data is captive data, in that all the 

data requested is in the file gotten, a file with 136 entries was downloaded on 8/26/06 and 

used to test the process for data entry.  A systematic random sampling approach was 

implemented to test the data. With systematic random sampling, every k-th entry is 

chosen, with the first entry randomly selected.  Since this test file had 136 entries, we 

chose   7136%5 =×  entries to be compared with the actual XML data to see if there 

were any discrepancies and chose   207136 =÷  as the k factor. To this end, a random 

number, between 1 and 19 based on a random generator, was chosen to determine the 

first entry to be validated. Thereafter, every 20th entry was chosen for validation. The 

following records were checked - the 5th, 25, 45, 65, 85, 105, 125 and, for added measure, 

the first and last entries. We compared the contents of the actual XML document with the 

content of the uploaded table to ascertain that they had the same information (Table 20 in 

Appendix A-4).  Any discrepancies between the table and the actual record information 

were corrected and the data uploaded again.  We again compared the contents of the first 

sample of data and then using the same approach, selected seven other entries (2, 22, 42, 

62, 82, 102, 122) to confirm that the data had been correctly uploaded. See Appendix A-4 

for complete data upload validation information. 

3.4 Cluster Determination 

With the data parsed into the component tables, we were able to look at the fields 

necessary for clustering the data.  Clustering the data allows for determining the different 

kinds of natural groupings or classes that may exist within the underlying data.  Given the 

nature of the data collected, we chose fields within each table that were independent as 
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fields necessary for clustering.  For example, in the entry table, we did not choose the 

severity field, as it depends on the CVSS_score field.  Along with the scalar fields, we 

also chose the description text field as it contained information about the vulnerability 

entry that is cogent in determining the kind of vulnerabilities and losses affected.  Figure 

14 shows the select statement of the fields chosen to determine the clusters for the 

elements reported. 

select entry.name, entry.discovered,entry.published, entry.cvss_score, 
lossType2.loss_type, lossType2.adminSP,lossType2.userSP, 
lossType2.otherSP,vuln_types.vuln_type, vuln_types.input_bound, 
vuln_types.input_buffer,range.exploit_range, refs.source, 
refs.sig, refs.adv, refs.patch,vuln_soft.prodName, 
vuln_soft.versionNum, vuln_soft.preVersion, vuln_soft.edition 

 into denormNVD 
  from entry, lossType2, vuln_types, range, refs,vuln_soft 
  where 
 entry.name = lossType2.entry_name AND 
 entry.name = vuln_types.entry_name AND 
 entry.name = range.entry_name AND 
 entry.name = refs.entry_name AND 
 entry.name = vuln_soft.entry_name 

Figure 14 - Independent Variable Selection Statement 

Since the description field contained ‘comment-like’ data that cannot be clustered in the 

form given, it was necessary to create a table to which the nouns and noun-phrases of the 

description field were extracted. With each term an associated score Term Frequency and 

Inverse Document Frequency (TFIDF) was assigned.  This score is defined as: 

TFIDF of a Term T = (frequency of T) * log( (#rows in Input) / (#rows having T) ). 
Equation 2 - TFDIF 

Upon completion, a vector table that associates each term with the description entry was 

also created.  (Appendix B-1) 

Determining the clusters to use to classify risk elements required the exploration of 

different segmentation schemes.  Some clustering algorithms produce well-separated 

clusters, such that an object can belong to only one cluster. Others use an overlapping 
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approach so that an object could belong to more than one cluster.  To identify the natural 

groupings that may exist in the historical data, we examined two clustering algorithms 

that implemented each of the segmentation schemes described above, K-Means and 

Expected Maximization (EM).   

K-Means is a clustering algorithm that produces k partitions or clusters of the underlying 

data by trying to find the centers of natural clusters in the data.  This is achieved by 

minimizing the total variance within the cluster [Tang and MacLennan 2005].  Using this 

approach, the K-Means algorithm assigns each data record to a specific cluster.  This 

approach does not allow for uncertainty in the membership record within a cluster.  

The EM clustering algorithm, like K-Means, produces k partitions by finding the center 

of the natural clusters in the data, but unlike the K-means, relaxes the assumption that a 

data record has to belong to only one cluster.  It allows for the overlapping of clusters, in 

that data can belong to other clusters but with different probabilities of membership 

[Bradley, Fayyad, Reina 1998]. 

Two mining structures were developed, one for the data without the description terms and 

the other with the vector table included as a nested table.  Within each mining structure, 

mining models using EM and KM algorithms with different target numbers for clusters 

were generated.  These models were then compared for predictive accuracy.  We found 

that the EM mining models with the description vector table showed better predictive 

accuracy than those without the description vector tables. Figure 15 and Figure 16 show 

the mining accuracy charts for the different structures.  The X-axis of each chart 

represents the percentage of the test dataset that is used to compare the predictions, while 
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the Y-axis represents the percentage of predictions that are correct.  In both cases, the EM 

models outperformed the KM models.  As shown in Figure 15 and Figure 16, the 

structure with models that took into account the description vector table had better 

prediction values than the mining structure without the vector table. Given 100% of the 

test cases used for prediction, the best predictive model for the mining structure with the 

description vector table (NVDCL-EM10) had a 71.86 % predictive accuracy score as 

compared to 61.25% predictive accuracy of the best model for the mining structure 

without the vector table (NVDCLwo_EM10).  

  
Figure 15 -Clustering without Description 

NVDCLwo-EM10 

NVDCLwo-EM8 

NVDCLwo-KM10, 
KM8, KM6 

NVDCLwo-EM6 
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Figure 16 - Clustering with Description 

Choosing to use the mining structures with the description vector, we decided to use the 

EM clustering algorithm to segment our training data since it predominantly 

outperformed the K-Means algorithms, regardless of the mining structure used, as shown 

in the graphs in Figure 15 and Figure 16.  To determine the cluster node size to use, we 

looked at predictive results obtained from mining structures with 4, 6, 8 and 10 cluster 

node sizes.  We decided on using node size of four based on the heuristic determination 

of the clustering algorithm.  We then incremented the node size by two, up to the default 

node size of ten for the different mining models and compared the predictive results 

obtained with each model.   Upon completion we chose the EM clustering algorithm 

based on 10 nodes because the EM 10-Node size outperformed the other node sizes 

across most of the population. See Figure 18. 

With the clusters formed, each data item of the training model was assigned to a cluster.  

This was done by extracting all the data necessary for the prediction query along with the 

NVDCL-EM8 NVDCL-EM6 

NVDCL-EM10 

NVDCL-KM10 

NVDCL-KM6 

NVDCL-KM8 
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cluster tag associated with each entry and saving this data so that prediction algorithms 

would be run against it. Effectively, a query such as that is shown in Figure 17. 

SELECT 
  (t.[name]), CLUSTER() FROM [NVDCL-EM-10] 
PREDICTION JOIN 
OPENQUERY([SSRAM],…) AS t 
ON 
  [NVDCL-EM-10].[Cvss Score] = t.[cvss_score] AND … 

Figure 17 - Cluster Assignment Query Example 

3.4.1 Validation of Clustering  

We separated the data from NVD into two parts so that we could use one part for training 

and the other for testing our algorithm.  After training the algorithm, we used two 

approaches to validate the clustering algorithms. In the first approach, we used the test 

data to find an indication of how likely it is for each test case to exist within a determined 

cluster.  A score for the model as shown in the mining legend table to the right of the 

graph in Figure 18 reflects the average case likelihood of each of the training cases 

existing within each model. A score closer to 1 is an indication that the training points are 

close to the clusters in the model and, as such, implies that the clusters are compact and 

well-defined.  A score that is close to 0 implies that the training data points are scattered 

and the clusters are not as well defined [Tang and MacLennan 2005].  
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Figure 18 -Mining Accuracy Chart 

Also, we examined the cohesion of the cluster with respect to the centroid of the cluster 

by looking at the mean, standard deviation, maximum and minimum values for each of 

the clusters within each mining model to.  In essence these statistics were used to reflect 

the proximity of the entries within each cluster to the mean.  An example of the results 

gotten is shown in the Table 5.  For the algorithm represented here, seven clusters were 

derived and the count shows the number of entries within the cluster. With the smallest 

number of entries in a node being 300, we assume a normal distribution for our data.  The 

average CVSS score and the standard deviation values reflect the fact that though the 

range of scores in each of the clusters ranged from 1.9 – 10, 96.3% of the data within the 

clusters were within 1.95 standard deviation from the mean, implying a tight cohesion.  

Cluster 4 had the least cohesion with a standard deviation of 2.27, while Cluster 7 had the 

tightest cohesion with entries that were exactly the same, as reflected in its standard 

deviation and range of 0. 

NVDCL-EM10 

NVDCL-EM8 

NVDCL-KM10 

NVDCL-KM6 

NVDCL-EM6 

NVDCL-KM8 
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Cluster Count 
Std 
Deviation 

Avg 
Score 

Max 
Score 

Min 
Score 

1 1700 1.61 3.8 10 1.9 

2 8351 0.81 6.74 10 1.9 

3 8761 1.34 9.29 10 1.6 

4 860 2.27 4.41 10 1.9 

5 429 1.91 4.45 10 2.3 

6 2990 1.54 3.28 10 2.3 

7 300 0 7 7 7 

Table 5 - Cluster Algorithm Cohesion Factors (NVDCL-EM10 ) 

 

 Cluster Count 
Std 
Deviation 

Avg 
Score 

Max 
Score 

Min 
Score 

1 22717 2.08 7.44 10 1.6 

2 7816 2.2 5.43 10 1.9 

3 7296 2.19 5.16 10 1.9 

4 3856 2.39 5.01 10 2.3 

5 9306 2.33 4.75 10 2.3 

6 514 0 7 7 7 

Table 6-Cluster Algorithm Cohesion Factors (NVDCL-EM8) 

Looking at the cohesion values for the mining structures in Table 5 and Table 6, it is 

evident that the clusters formed by the mining model NVDCL-EM10 exhibited tighter 

cohesion values than that of NVDCL-EM8.  All but one of the clusters in Table 5 have 

has data within 1.95 standard deviations from the mean.  On the other hand, NVDCL-

EM8 has only one cluster with data within 1.95 standard deviations from the mean (Table 

6). Given that NVDCL-EM10 (Table 5) had the tightest cohesion factors, we chose this 

algorithm for clustering the historical data so that new data can be classified against it. 

See Appendix B-5 for complete validation results. 

3.5 Data Classification 

Determining the general categories of the vulnerability database allows for classifying 

new data.  Classification is the process of assigning objects to one of several predefined 

categories.  To find the cluster most similar to new data given, we examined Decision 
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Tree, Neural Networks and Naïve Bayes classification algorithms and chose the 

classification algorithm that best predicted the cluster that should be used.  

Decision Tree algorithm: The decision tree algorithm is a classification algorithm for 

predictive modeling of continuous and discrete attributes.  It uses the relationships 

between the input columns within the data set to make predictions.  It does this by 

identifying the input columns that correlate with the predictable columns. Each time an 

input column is found to be significantly correlated with the predictable column, the node 

is added [Microsoft 2008-3]. 

Neural Networks: Neural network algorithms stem from the 1940s research work by 

Warren McCulloch and Walter Pits on simulating how the brain works [Tang and 

MacLennan 2005].  Neural network algorithms address primarily classification and 

regression tasks of data mining.  Like decision trees, they find non-linear relationships 

between input attributes, but unlike decision trees, they find smooth as opposed to 

discontinuous nonlinearities.    Neural network algorithms use networks that are made up 

of three types of nodes or layers (input, hidden and output) and directed edges that show 

the data flow during the prediction process.  The input nodes, which form the first layer 

of the network, are mapped to the input attributes. The hidden nodes, which are the nodes 

in intermediate layer, combine the values gotten from previous layers with weights of 

associated edges to perform some calculations and generate the result value to the next 

layer. The output layer represents the predictable attribute(s) [Microsoft 2008-4]. 

Naïve Bayes: The Naïve Bayes algorithm, like decision tree and neural network 

algorithms, is a classification algorithm for predictive modeling. It works by calculating 

the conditional probability of input and predictive attributes.  Naïve Bayes assumes that 
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the input attributes are independent and as such does not take into account any 

dependencies that may exist between attributes.  In doing so, the probabilities can be 

multiplied so that the likelihood of each state can be determined [Microsoft 2008-5, Tang 

and MacLennan 2005]. 

To help in determining the model to be used for classification, two mining structures 

were created, one using the vector table with descriptive information and one without. A 

comparison of the classification algorithms explained above was done. Figure 19  and 

Figure 20 pictorially depict the result of classifying the test data with and without the 

description vector.  The Naïve Bayes and Neural Network algorithm outperformed the 

Decision Tree algorithm in each instance.  Though the scores for Neural and Naïve Bayes 

were the same (Table 7), the Naïve Bayes algorithm took less time (0:00:03 versus 

0:00:32) to process the same data.  

Model Name Processing  

Duration Time 

Score 

NBClusterClassifier (Naïve Bayes) 3 seconds 0.81 

DTClusterClassifier (Decision Tree Classifier) 5 seconds 0.78 

NNClusterClassifier (Neural Network Classifier) 32 seconds 0.81 

Table 7 - Classifier Processing Time and Score – Cluster Classifier without Description 
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Figure 19 -Classifiers with Description Vector 

 

 
Figure 20 - Classifiers without Description Vector 

NB ClusterClassifier 

NN ClusterClassifier 

DT ClusterClassifier 

NB ClusterClassifier 

NN ClusterClassifier 

DT ClusterClassifier 
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3.5.1 Data Classification Validation 

Classification models are evaluated based on the number of test records that they 

correctly and incorrectly predict.  An example of this evaluation is shown in Table 8. 

Columns correspond to the actual values and rows depict the predicted values.  The 

complete matrix can be seen in Appendix B-4.  Table 8 shows the confusion Matrix for 

the Naïve Bayes model, the first row should be read as follows: Row 1 depicts the entries 

that were predicted for Cluster 1. Of all the entries predicted for Cluster 1, 3158 actually 

belonged to Cluster 1, 496 belonged to Cluster 6 and 157 entries predicted as Cluster 1 

were in actuality Cluster 2’s entries.  This matrix provides enough information to 

measure the performance of each model using the Accuracy metric defined as follows: 

edictionsofNumberTotal

edictionscorrectofNumber
Accuracy

Pr

Pr
=  

Equation 3 – Accuracy Determination 

Counts for NB ClusterClassifier on [Cluster Node] 

Predicted 

Cluster 
1 
(Actual) 

Cluster 
6 
(Actual) 

Cluster 
4 
(Actual) 

Cluster 
3 
(Actual) 

Cluster 
8 
(Actual) 

Cluster 
5 
(Actual) 

Cluster 
7 
(Actual) 

Cluster 
2 
(Actual) 

Total 
Predicted 

Cluster 1 3158 496 60 145 74 164 41 157 4295 

Cluster 6 307 680 1 89 0 63 2 29 1171 

Cluster 4 35 14 257 5 75 32 197 6 621 

Cluster 3 19 129 10 513 0 7 4 103 785 

Cluster 8 2 0 9 0 17 0 15 6 49 

Cluster 5 47 89 6 15 2 1017 7 59 1242 

Cluster 7 28 2 226 8 202 2 578 22 1068 

Cluster 2 11 21 6 221 10 27 15 628 939 

Accuracy=0.67          
Table 8 - Classification Confusion Matrix – Classifier without Description 

Figure 21 shows a comparison of the accuracy performance metric for the classifiers in 

both mining structures.  The mining structure without the description vector tables had an 

average accuracy score of 0.66 while the structure without the description vector had an 

average accuracy score of 0.79. Though the description vector was necessary in 
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determining cluster, it was not necessary to have that information in classifying a new 

entry. 

Accuracy of Classification Algorithms
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Figure 21 - Prediction Accuracy of Classifiers 

3.6 Loss Expectancy Determination 

With the data segmented into clusters and a classification algorithm adopted, the impact 

score and frequency of occurrence of a given risk entry was determined and used to 

calculate loss expectancy. Traditionally, loss expectancy is computed by determining the 

value of the percentage of asset loss caused by the potential threat and finding the 

frequency of occurrence of threats within a given year, as shown in Equation 1. 

Since asset value loss cannot be easily determined, we opted to use the Common 

Vulnerability Scoring System (CVSS) ‘base’ score because it shows the inherent 

characteristics of the vulnerability incidence reported and reflects the impact value of the 

reported incident.   
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<entry  

type="CVE"  
name="CVE-2006-0948"  
seq="2006-0948"  
published="2006-08-21"  
modified="2006-08-22"  
severity="High"  
CVSS_score="7.0"  
CVSS_vector="(AV:L/AC:L/Au:NR/C:C/I:C/A:C/B:N)"> 

 

Figure 22 - CVSS base Score and Vector 

Each NVD entry has along with the CVSS base score, a vector that reflects how the base 

score was calculated.  The vector, as shown in Figure 22, is used to determine the base 

score for a particular entry. In Figure 22, AV: Access Vector = L (Local accessibility) 

intimates that this vulnerability can only be exploited locally; AC: Access Complexity = 

L (Low) indicates that an attack based on this vulnerability would not require special 

access conditions, as it could be performed manually.  It would not necessarily require 

much skill or a lot of additional information for its execution. Au: Authentication = NR 

(Not Required) shows that authentication is not required to trigger this vulnerability.  The 

impact metrics of C: Confidentiality, I: Integrity and A: Availability all equaling C 

(Complete) imply a total system compromise if vulnerability is exercised.  Based on the 

NVD algorithm for computing base score [First 2005], the resulting base score of 7.0 was 

calculated as shown in (Appendix B-7). 

3.6.1 Determining Fields to Predict CVSS Score 

The data mining wizard, supplied with Microsoft’s Visual Studio 2005, suggests fields 

that would likely give information that would lead to the selected output using entropy-

based analysis [Tang and MacLennan 2005]. This analysis looks at the contribution of 

attribute values to predicting a particular attribute.  In our case, the analysis looked at the 

contribution of all of the attributes in predicting CVSS score.  Those attributes with an 
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entropy value of 0 are evaluated as being able to contribute nothing to the prediction 

decision.  Those attributes with entropy values of 1 are so distinct that in effect, each 

record would be a partition of its own, thereby making it too small to make any reliable 

prediction.   

 
Figure 23 - Suggested Input  Fields 

This suggestion provided a basis for the fields that could be used in determining the 

parameters for predicting impact.  Since the scores provide values between 0 and 1, we 

chose to remove those attributes whose entropy scores were less than 0.01 , since the 

level of contribution was so close to zero implying very little contribution, and those 

whose entropy values were very close to 1 were also removed as they would not help in 

making reliable prediction.  Figure 23 depicts all the attributes for the model, their 

associated entropy score and the Input column that identifies those fields suggested for 

predicting CVSS score.  Although Administrative level security protection (adminSP) 

was suggested as an input attribute, we did not include it in our model since its value is 

dependent on a specific loss type. Those attributes grayed out in Figure 23 are those with 

entropy values very close to 1.  We chose Cluster Node, Loss Type, Vulnerability Type 
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and Exploit Range as the fields for predicting CVSS score.  To validate the choice of 

fields for predicting impact factors, we performed two multiple regression analysis test, 

one between cluster node and loss type, vulnerability type and exploit range (Figure 24) 

and the other between CVSS Score and loss type, vulnerability type and exploit range 

(Figure 25). We performed the multiple regression analysis against cluster node (Figure 

24), to ascertain whether loss type, vulnerability type and exploit range could be used to 

determine a specific cluster for a risk element since our algorithm requires us to classify a 

risk element to a specific cluster (Figure 9).  The determination of the CVSS score is also 

based on the cluster node chosen; as such, the second multiple regression analysis was 

conducted to examine whether loss type, vulnerability type, and exploit range were 

variables that could be used to predict CVSS score (Figure 25).  

3.6.1.1 Regression Analysis: Cluster Node versus Loss Type, 

Vulnerability Type and Exploit Range 

The result of the multiple regression analysis, as shown in Figure 24, implies that loss 

type, vulnerability type and exploit range are significantly related to cluster node. The 

coefficient of determination (R2) and the adjusted R2 of 27.9% show that 27.9% of 

variations in the dependent variable (Cluster Node) can be explained by the independent 

variables (Loss Type, Vulnerability Type and Exploit Range). This indicates that Loss 

Type, Vulnerability Type and Exploit Range can be used to determine the cluster node to 

which a risk element could belong.  Given the lack of difference between the R2 and the 

adjusted R2, we can intimate that all the variables chosen to explain variation of cluster 

nodes are necessary (see Table 9 for interpretation of other Regression statistics).   
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Regression Analysis:  
Cluster Node versus Loss Type, Vulnerability Type and Exploit Range 

     

Regression Statistics     

Multiple R 0.528     

R Square 0.279     
Adjusted R 
Square 0.279     

Standard Error 1.992     

Observations 13140     

      

ANOVA      

  df SS MS F 
Significance 

F 

Regression 3 20169.732 6723.244 1693.694 0 

Residual 13136 52144.324 3.970   

Total 13139 72314.056       

      

  Coefficients 
Standard 
Error t Stat P-value  

Intercept 8.070 0.084 96.497 0  

LossType -0.927 0.014 -65.714 0  

VulnType -0.279 0.009 -31.171 7.5E-206  

ExploitRange -0.337 0.034 -10.020 1.52E-23  

Figure 24 - Multiple Regression Result (Cluster Node) 

The F test statistic (F) and its corresponding p-value (Significance F) indicate an overall 

goodness of fit for the model.  The p-value (0) is considered highly significant as it is less 

than 1 %.  The F-test statistic of 1693.694 shows that the ratio of explained variation 

(6723.244) to unexplained variation (3.970) is very large but more so, the significance 

value (p < 0.001) of the F-test statistic allows us to reject the null hypothesis that there is 

no significant relationship between Cluster Node and the independent variables, Loss 

Type, Vulnerability Type and Exploit Range. We also looked at the influence of Loss 

Type, Vulnerability Type and Exploit Range on Cluster Node and as can be seen by the 

results of the test statistics for LossType, VulnType and ExploitRange, along with their 
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P-values (p < .0001), the three independent variables have a significant relation with 

Cluster Node and as such can be used to classify a risk element entry to a cluster.   

Regression Statistics Interpretation 

Multiple R 0.528  
R= Coefficient of Multiple Correlation = the positive 
square root of R-squared  

R Square 
0.279 = 
27.9% 

R-squared = Coefficient of Multiple Determination = 
percent of the variation in the cluster node (dependent 
variable) that is explained by the x-variables (LossType, 
VulnType, ExploitRange) and the model  

Adjusted R Square 0.279 

R-squared adjusted = version of R-squared that has 
been adjusted for the number of predictors in the model.  
R-squared tends to over estimate the strength of the 
association, especially when more than one independent 
variable is included in the model.  

Standard Error  1.992 

S =  Standard Error = Standard Error of the Estimate = 
average squared difference of the error in the actual to 
the predicted values.  

Observations  13140 Number of observations in the sample.  

Table 9 - Regression Statistic Interpretation 

3.6.1.2 Regression Analysis: CVSS Score versus Loss Type, 

Vulnerability Type and Exploit Range 

Regression Analysis:  
CVSS Score versus Loss Type, Vulnerability Type and Exploit Range 

      

Regression Statistics     

Multiple R 0.593     

R Square 0.352     
Adjusted R 
Square 0.352     

Standard Error 1.943     

Observations 13140     

ANOVA      

  df SS MS F 
Significance 

F 

Regression 3 26962.24325 8987.414 2380.023 0 

Residual 13136 49604.01067 3.776188   

Total 13139 76566.25392       

  Coefficients 
Standard 
Error t Stat P-value  

Intercept 0.916 0.082 11.224 4.2E-29  

LossType 1.147 0.014 83.300 0  

VulnType 0.108 0.009 12.335 9.15E-35  

ExploitRange 0.774 0.033 23.583 1.8E-120  
Figure 25 - Multiple Regression Result (CVSS score) 
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The result of the analysis to see if the parameters, loss type, vulnerability type and exploit 

range, would aid in predicting CVSS score is summarized in Figure 25.  The coefficient 

of determination,  R2  and the adjusted R2 = .352, showed that 35.2% of the variation of 

CVSS score could be explained by the independent variables, loss type, vulnerability type 

and exploit range.  Also, the F-test statistic of 2380.023 with P-value (p < .001) showed 

that there is a significant relationship between the dependent variable CVSS score and the 

independent variables in question.  The P-values for t-test statistic for LossType, 

VulnType and ExploitRange are all (p < .0001), also show that the independent variables 

(LossType, VulnType and ExploitRange) have a significant linear relationship with the 

dependent variable CVSS score. 

3.6.2 Determining Loss Expectancy 

The result of the multiple regression analysis motivated us to use the related data from a 

classified cluster to determine the predicted impact score and the predicted frequency of 

occurrence.  We used the predicted impact score in the same manner asset loss x 

exposure factor is used in the traditional approach, to determine single loss expectancy. 

Given the predicted impact score, frequency of occurrence of incidence, and growth rate 

for each of these attributes, the loss expectancy for a specified time was calculated as 

follows: 

Predicted Loss Expectancy (PLE) = Predicted Impact Score (PIS) ×  Predicted Frequency 
of Occurrence (PFO) 

Equation 4 – Predicted Loss Expectancy (PLE) 

Using the growth rate of the CVSS score and the average CVSS score, the predicted 

impact value was calculated as follows for each test entry: 

Predicted Impact Score = )1( )()( periodRateGrowthperiodScoreCVSSx µ+×   
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where  
 

period covers the evaluation time given, 

x  = the weighted mean, with the weight being the number of incidences reported 
µ = the arithmetic mean 

Equation 5 - Predicted Impact Score (PIS) 

To find the weighted mean CVSS scores for the period ( )( periodScoreCVSSx ), we used the 

number of incidences reported for each month as the weighting factor to obtain the 

weighted mean. We used the relative weights of the number of incidences for each month 

as coefficients to express the weighted mean in a linear form. The coefficients αi were 

determined by dividing the number of incidences reported per month by the total number 

of incidences reported for the time period under evaluation. 

)( periodScoreCVSSx =α1x1 + α2x2+…+ αnxn 

where  

the real numbers αi satisfy 0≥iα and α1 + α2+…+ αn = 1 and 
αi = number of incidence coefficient for the month and 
xi = average CVSS scores for the month 
Equation 6 - Weighted Average CVSS Score 

The CVSS score and frequency of occurrence growth rates were calculated as follows: 

( )
ValueAvgsMonthcurrent

ValueAvgsMonthpreviousValueAvgMonthcurrent

'

's' −
 

Equation 7 - Growth Rate 
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3.6.2.1 Validation of Loss Expectancy Calculations 

To make sure that the calculations in our algorithm were correct, we generated a query to 

select certain sample data from the input set (Figure 26).   

 select datediff(month, published,'01/01/2002')as 
timeLag,avg(cvss_score)as avgScore, count(distinct name) as 
reportedEntries 
  from trainingdatawclusters96_01 where  
   (datediff(month, published,'01/01/2002') <= 12)and 
   (datediff(month, published,'01/01/2002') > 0 )and 
   clusternode = 'Cluster 1' 
  group by datediff(month, published,'01/01/2002') 
  order by timeLag 

Figure 26-Query for Sample data to validate Calculation 

We used Excel to calculate the values in question (Table 10), and then compared the 

results to those gotten from the actual running of the stored procedure used within 

SSRAM (Figure 27).  See Appendix C-1 for complete listing of the stored procedure used 

to calculate different values necessary for computation of loss expectancy. The 

coefficients for the reported entries were calculated for each month by dividing the 

number of entries for that month by the total number of entries.  For example, in Table 

10, the coefficient for Dec-01 (0.15) was calculated by dividing 94 by 630.  The weighted 

average score was then calculated using Equation 6. The growth rate for the score and 

frequency of occurrence were calculated using Equation 7 and the total number of 

incidences reported was determined by adding the reported entries for each month.  These 

values as noted in Table 10 and Figure 27 are the same and validates that the algorithm 

works as expected.  
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TimeLag 

12 months 
prior to  
1/1/2002 

Reported 
Entries Avg Score 

Coefficient 
of Reported 
Entries 

Score 
Growth 

Frequency 
Growth 

1 Dec-01 94 7.58 0.15 -0.11 -0.72 

2 Nov-01 26 6.77 0.04 0.06 0.96 

3 Oct-01 51 7.16 0.08 -0.03 -0.10 

4 Sep-01 46 6.97 0.07 0.23 0.83 

5 Aug-01 84 8.57 0.13 -0.07 -0.04 

6 Jul-01 81 8.01 0.13 0.09 -0.12 

7 Jun-01 71 8.72 0.11 -0.05 -0.39 

8 May-01 43 8.32 0.07 -0.33 -0.91 

9 Apr-01 4 5.57 0.01 0.59 7.25 

10 Mar-01 33 8.86 0.05 0.00 0.48 

11 Feb-01 49 8.87 0.08 -0.24 -0.02 

12 Jan-01 48 6.77 0.08     

 Total 630 WeightedAvg 7.93 0.0143 0.6564 

Table 10 – Calculation of Impact Factors (Excel Result) 

 
Figure 27 - Calculation of Impact Factors Result (Stored Procedure) 

To ascertain that the result of an impact and loss expectation prediction could be made, 

we created an application to determine loss expectancy for a single entry (Appendix D-1). 

We chose loss type, vulnerability type, and exploit range values and used the information 

to classify the entry to a cluster node from which the impact factors were calculated.  For 

our case, we chose input as the vulnerability type, security protection as the loss type and 

exploitation range of local.  This selection was classified as a Cluster 1 entry and the 
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calculations for impact were computed (Figure 28).  Note that these values are also 

consistent with the values shown in Figure 27 and Table 10 for Cluster 1 data. 

 
Figure 28 -Single Entry Impact Estimation 

3.6.3 Validation of Loss Expectancy  

The goal of this research is to provide an empirical assessment of risk elements based on 

historical data and provide a prioritized list of the risk elements based on the empirical 

estimations generated. To this end we have chosen the historical data validation approach 

[Sargent 2003] for validating our research.  

NVD’s data was divided into two parts, the training and testing data. The data from 

1996 - 2001 was used to build the impact prediction model and tested against the impact 

values for January 2002 as shown in Figure 31 (Appendix D-2 for code).  In essence the 

test data was loaded as vulnerability entries as shown in Figure 29; each entry was then 

classified to a cluster and the data from that cluster used to predict the frequency of 

occurrence and the impact value for each entry (Figure 30).   The mean values from the 

actual data were compared to the predicted scores from the model (see Appendix D-3 for 

the data) using t-Test comparison of means (Table 11).  
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Figure 29 Vulnerability Entries (Test Data – 2002) 

 
Figure 30 - Predicted Values 

 

 
Figure 31 - Impact and Loss Expectation Estimation 

The goal of this research is to predict the impact score of a given risk element.  The 

predicted impact is analogous to the base CVSS score provided by NVD.  Our claim is 
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that our predicted impact score will be significantly equivalent to actual NVD’s CVSS 

scores.  We express this claim as µd = 0. As such, we have the null hypothesis (H0)  

H0: The impact values derived from SSRAM does not reflect the risk posture of the 

threat element in question. 

Ho: µd > 0 or µd < 0 where  
µd = (µactual – µpredicted ) the difference of means of the predicted scores from 
the actual scores 

versus 

Ha:  The impact values derived from SSRAM correctly reflects the risk posture of a 

software development effort  in that µactual – µpredicted = 0 

Ha: µd = 0   
 

t-Test: Paired Two Sample for Means 

  
Actual  
Score Predicted 

Mean 5.663889 6.10243 

Variance 5.556087 2.225617 

Observations 36 36 

Pearson Correlation 0.67673  

Hypothesized Mean Difference 0  

df 35  

t Stat -1.51354  

P(T<=t) one-tail 0.06956  

t Critical one-tail 1.689572  

P(T<=t) two-tail 0.139121  

t Critical two-tail 2.030108   

Table 11 - t-Test: Paired Two Sample for Means 

The t-test critical value was computed and compared with the critical t-value at a 

significance level of α = 0.05. 

The sample mean of the difference is d  = -0.4385 and the sample standard deviation 

is ds  = 1.7385.  The test statistic is  
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t0 - 

n

s

d

d

 = 

36

7385.1

4385.0−
 = -1.5135 

Since this is a two-tailed test, we determined the critical t-value at the α  = 0.05 level of 

significance with n – 1 = 36 – 1 = 35 degrees of freedom to be 
2

05.0t−  = 025.0t−  = -2.030 

and 025.0t  = 2.030.  Because the test statistic t0 = -1.5135 is greater than the critical value 

025.0t−  = -2.030 and t0 = 1.5135 is less than 025.0t  = 2.030, we reject the null hypothesis 

that there is a significant difference between the actual and predicted scores. These 

statistics suggest that there is no statistical significant difference between the predicted 

scores given by SSRAM and the actual scores as reported to NVD. 

To further evaluate the predictions, we made a comparison of the predictions based on 

the three classification schemes as shown in Table 12, Table 13, and Table 14.  The 

critical value for all three algorithms is 2.04 and the t-stat of 1.06 and 1.633 for the neural 

network and decision tree, as evidenced in Table 13, and Table 14, showed that the null 

hypothesis could be rejected. This result was consistent with the results of the predictive 

accuracy shown in section 3.5.1 that reflected that there was no significant difference 

between neural networks and decision trees when used for predictions.  There was a 

difference with Naïve Bayes, which is also reflected with the t-stat of 2.13 as shown in 

Table 12.  This t-stat does not allow us to reject the null hypothesis that there is no 

significant difference between the actual scores and the predicted scores when using 

Naïve Bayes as the classification scheme for predicting.  The result of this analysis shows 

that either neural networks or decision tree algorithm can be used for classifying new risk 

elements.  
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 Actual Predicted 

Mean 5.577419 6.23709 

Variance 5.520473 2.362795 

Observations 31 31 

Pearson Correlation 0.68273  

Hypothesized Mean Difference 0  

df 30  

t Stat -2.1378  

P(T<=t) one-tail 0.020399  

t Critical one-tail 1.697261  

P(T<=t) two-tail 0.040798  

t Critical two-tail 2.042272  
Table 12 - t-Test Results using Naïve Bayes algorithm 

 
 Actual Predicted 

Mean 5.76129 6.102877 

Variance 5.636452 2.316325 

Observations 31 31 

Pearson Correlation 0.658869  

Hypothesized Mean Difference 0  

df 30  

t Stat -1.06461  

P(T<=t) one-tail 0.147773  

t Critical one-tail 1.697261  

P(T<=t) two-tail 0.295546  

t Critical two-tail 2.042272  
Table 13 -t-Test: Paired Two Sample for Means using Decision Tree Classifier 

 
 Actual Predicted 

Mean 5.653125 6.180540625 

Variance 5.525796371 2.337423284 

Observations 32 32 

Pearson Correlation 0.629684793  

Hypothesized Mean Difference 0  

Df 31  

t Stat 1.633197931  

P(T<=t) one-tail 0.056272384  

t Critical one-tail 1.695518742  

P(T<=t) two-tail 0.112544769  

t Critical two-tail 2.039513438  
Table 14 - t-Test: Paired Two Sample for Means using Neural Networks Classification 

Algorithm 
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3.7 Confidence Interval of Predictions 

The result of our predictions as shown in Figure 30 and Figure 31 are based on a 

confidence that the 95% scores predicted are ±  the margin of error shown in Table 15.  

The confidence interval was computed on the training data used for classification of new 

risk elements.  Table 15 shows the number of distinct elements in each cluster, their 

average CVSS score, and the standard deviation from the mean for each cluster’s score. 

Given the large number of entries for each cluster, we can assume normal distribution, 

and use these values to construct the margin of error as: 

n

σ
×96.1  

Equation 8 - Margin of Error 

where σ the standard deviation and,  n is the size of each cluster and, the value 1.96, 

based on a two-tailed normal distribution at the 95% confidence interval,  is used as the 

critical value.   

Training Data  by Clusters (1996 - 2001) With 95% Confidence 
Interval 

NumInCluster CVSS_Score StdDev Margin of 
Error 

Cluster Lower Upper 

1257 8.2541 1.8124 0.1002 Cluster 2 8.1539 8.3543 

719 7.0872 1.7984 0.1315 Cluster 4 6.9557 7.2186 

107 7 0 0 Cluster 7 7 7 

765 5.5393 2.0795 0.1474 Cluster 5 5.3919 5.6867 

1298 5.3409 1.9665 0.107 Cluster 1 5.2339 5.4478 

1250 4.3934 2.0171 0.1118 Cluster 3 4.2816 4.5052 

735 4.3105 1.6957 0.1226 Cluster 6 4.1879 4.4331 
Table 15 - Confidence Interval Derivation 

Given this confidence interval derivation, we can say that we are confident that 95% of 

our predictions will be within the margin of error shown in Table 15.  For example, in 

Figure 30 ‘CVE-1999-1081’ is classified as Cluster 3 with a predicted impact of 4.9852.  
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Given our confidence interval construction, we can say that we are 95% confident that 

the predicted impact factor for ‘CVE-1999-1081’ is 4.9852 ±  0.1118. 

3.8 Summary 

One of the deterrents to creating objective measures for assessing risks in software 

security was purported to be the lack of data to use as a basis for historical predictions.  

There are now open source vulnerability databases, one such being the NVD, which 

provide a historical data source that can be used to assess vulnerabilities.  Since the data 

from NVD is an RSS feed in XML format, we parsed the NVD data into SSRAM’s 

database. In so doing, we were able to categorize the data based on the K-Means and EM 

algorithm to obtain natural groupings of the entries based on the data about each entry.  

These algorithms portrayed different approaches to categorizing data.   

We compared the performance of the models between two mining structures, one with 

the description entries, a comment-like attribute without discrete values, and one without.  

This performance was measured by dividing the NVD data into two segments, one for 

training and the other for testing.  We used the test data to find an indication of how 

likely it is for each test case to exist within a determined cluster.   Based on the average 

case likelihood scores obtained, we saw that the clustering algorithms that took into 

account the description vectors performed better than those without.  In addition to this, 

we examined the cohesion of each cluster with respect to the centroid of the cluster by 

looking at the mean, standard deviation, maximum and minimum values for each of the 

clusters within each mining model.  We validated our choice by comparing the cohesion 

values of the algorithms.  
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Within each structure we compared EM versus K-Means models and chose those with 

higher average case likelihood scores. EM consistently outperformed KM models for our 

data.  Choosing the algorithm with the best score, we labeled each entry of the training 

data with the cluster it belonged to.  To determine what fields should be used to classify 

the data we looked at those fields with entropy values > 0.05 and < 0.95. We then ran two 

multiple regression analysis, which at α = 0.05 significance showed that the variables loss 

type, vulnerability type and exploit range were significant to predict cluster node and 

CVSS score. Upon naming each entry with its cluster, we investigated different 

classification algorithms to see which best classified the data under investigation. We 

again used two mining structures to compare results of classification mining models, one 

with the description terms and another without the description terms.  Furthermore, we 

looked at the accuracy of each of the classification models and with a step-wise approach 

chose the algorithm with good accuracy and shorter performance time.  With CVSS score 

used as the impact factor we adapted the traditional loss expectancy model by using 

CVSS score, as opposed to asset cost as the impact factor to determine loss expectation. 

In addition, we constructed confidence intervals for our predictions based on the training 

data sets used for classifying new entries at a 95% level of confidence.  

Given these results, this study along with the historical validation of the model with 

statistical significance, suggests an empirical means for implementing risk assessment.  It 

does so by providing a means for categorizing historical data (NVD) based on risk factors 

such as loss type, vulnerability type, exploit range and other product dependent factors.  

These discovered categories allow for classifying new threats, and through this 

classification, predict the impact for exercising the threat and the frequency of occurrence 
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of such exercise.  These predicted values are used to rank the risk elements identified 

during a threat modeling activity and provide a means for objectively justifying the 

approaches chosen to ameliorate stated risks. 
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4 APPLICATION OF MODEL TO CASE STUDY 
This chapter shows the application of the model to a case study.  We looked at an 

electronic voting system Prime III developed by the Human Computer Centered Lab at 

Auburn University [Prime III]: 

The Prime III voting system should be engineered through a human-centered 
computing approach. This approach considers the users first and implements a 
design that accommodates users and integrates usability with the necessary 
safeguards to provide security, trust, and privacy (i.e., usable security).  Prime III 
should provide a naturally interactive user interface that reduces the learning 
curve by using multiple modalities during the voting process.  Voters will cast 
their votes using touch and/or voice commands as shown in [Figure 32], 
eliminating the need for specialized machines for one segment of the voting 
population. Everyone votes on the same type of machine, independently without 
additional assistance. The procedure for a voter should be as follows: 

1. The voter steps into the voting booth and puts on the provided headset. 

2. The voter begins voting as normal. 

3. Each time the voter makes a selection either by voice or touch, he hears a confirmation in the 

headphones and simultaneously observes the confirmation on the screen. For example, when the 

voter selects candidate A, Prime III should say “selected candidate A” and concurrently display 

the selection. This audio and visual confirmation should be heard and seen for every important 

action that the voter takes including, selecting a candidate, unselecting a candidate, advancing 

races, and submitting the ballot. 

4. The Prime III visual and audio output are passed to the video recording unit which records the 

voting session on some physical medium such as a video cassette. 

5. At the end of the session the voter confirms his selection twice; then submits their ballot and 

leaves the voting booth. 

As illustrated below in Figure 32, Prime III will be comprised of systems and software 

that are deployable at each electoral precinct. The basic functions of this 

system are to permit citizens to vote, and to allow for the tabulation and creation of an 

auditable trail of the ballots cast. 
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Figure 32: Prime III System Architecture High-Level Overview 

 

4.1 Vulnerability Identification and Data Preparation 

To determine the vulnerabilities for this application, Microsoft’s Threat Analysis and 

Modeling Tool (TAMT) was used to generate the non-prioritized list of vulnerabilities 

(Appendix E-1), namely, Canonicalization, Buffer Overflow, Cryptanalysis Attacks, 

Format String and Integer Underflow or Overflow.   

Before entering this non-prioritized list into SSRAM, each of the threats given was 

evaluated for the type of security impact that would be affected if the threat were 

exercised, the kind of vulnerability this threat could exploit, and the exploitation range 

that could exist for it.   A summary of the threats as given by TAMT, the impact of loss, 

the vulnerability and exploit range evaluations performed are shown in Table 16. It 
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should be noted that the TAMT provided the threats and descriptions from which we 

derived the loss type, vulnerability and exploit range values. 

ID Threat Description Loss Type Vulnerability  Exploit 
Range 

Threat-1 Canonicalization  Canonicalization : Only 
accept primitive typed 
identified (e.g., integers) 
which are mapped to 
filenames 

Confidentiality 
Availability 
Integrity 

Input Local 
User-
init 

Threat-2 Buffer Overflow Buffer Overflow : Use safe 
functions such as strncpy, 
strncat instead of strcpy, 
strcat 
Validation on input should be 
performed. 

Confidentiality 
Availability 
Integrity 

Input 
Access 

Local 
User-
Init 

Threat-3 Cryptanalysis 
Attacks 

Cryptanalysis Attacks : Use 
well-known implementations 
of well-known cryptographic 
algorithms 
Use cryptographically 
generated random keys 
Utilize platform supplied 
feature to store secret key 
(e.g., DPAPI) 
Utilize SSL or IPSec w/ 
Encryption to establish a 
secure communication 
channel 

Confidentiality 
Availability 
Integrity 
Security 
Protection – 
Admin 

Environment 
Access 

Local 

Threat-4 Format String Format String :  Use a 
managed language 

Confidentiality 
Availability 
Integrity 

Design 
Access 

Local 

Threat-5 Integer 
Overflow/Underflow 

Integer Overflow/Underflow 
: Use Language features 

Confidentiality 
Availability 
Integrity 

Input Local 

Table 16 - Prime III Vulnerability List 

The vulnerability listing and the evaluation of threat descriptions as shown in Table 16 

provided the basis for creating tables that associated each threat to its loss type, 

vulnerability type and exploit range as portrayed in Table 17 (a – c).  These tables were 

then de-normalized using a select statement similar to that of Figure 14 to create a table 

similar to Table 18.  The complete de-normalized table is shown in Appendix E-2. 
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ID LossType  ID VulnType  ID ExploitRange 

Threat-1 Avail  Threat-1 input  Threat-1 user_init 

Threat-1 Int  Threat-2 access  Threat-1 local 

Threat-1 Conf  Threat-2 input  Threat-2 user_init 

Threat-2 Int  Threat-3 env  Threat-2 local 

Threat-2 Avail  Threat-3 access  Threat-3 local 

Threat-2 Conf  Threat-4 design  Threat-3 local 

Threat-3 Avail  Threat-5 input  Threat-4 user_init 

Threat-3 Int  (b)  Threat-4 local 

Threat-3 Conf     Threat-5 user_init 

Threat-3 Sec_Prot     (c) 

Threat-4 Avail     

Threat-4 Int     

Threat-4 Conf     

Threat-5 Avail     

Threat-5 Int     

Threat-5 Conf     

(a)     

Table 17- Prime III Normalized Tables 

ID Name VulnType Loss Type Exploit Range 

Threat-1 Canonicalization input Avail user_init 

Threat-1 Canonicalization input Avail local 

Threat-1 Canonicalization input Int user_init 

Threat-1 Canonicalization input Int local 

Threat-1 Canonicalization input Conf  user_init 

Threat-1 Canonicalization input Conf  local 

Threat-2 Buffer Overflow access Int user_init 

Threat-2 Buffer Overflow input Int user_init 

Threat-2 Buffer Overflow access Int local 

Threat-2 Buffer Overflow input Int local 

Threat-2 Buffer Overflow access Avail user_init 

Threat-2 Buffer Overflow input Avail user_init 

Threat-2 Buffer Overflow access Avail local 

Threat-2 Buffer Overflow input Avail local 

Threat-2 Buffer Overflow access Conf  user_init 
Table 18 - Example of PrimeIII’s Input Data 

4.2 Data Classification and Loss Expectation Determination 

As noted in section 3.1, using SSRAM to assess risk elements requires that the historical 

data used be segmented into clusters (Figure 8). Since this was already done with data 

from 1996 – 2001, we imported the data shown in Table 18 into SSRAM database and 
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loaded same data into SSRAM’s application (Figure 33) to assess the risk of the 

vulnerabilities identified.  SSRAM classified each of the de-normalized entries based on 

its similarity to the clusters within SSRAM.  The data within the cluster assigned to each 

entry was then used to calculate the impact factor and the frequency of occurrence of 

each threat within the time constraint given (Figure 34).  

 
Figure 33 - Load Prime III 

 
Figure 34 - Prime III De-normalized Predictions 
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The de-normalized vulnerabilities list, along with the impact criteria, served as the basis 

for generating the predicted values. The Predicted Values data grid (Figure 34) shows not 

only the vulnerability entries uploaded but the cluster an entry is most similar to 

(EntryCluster), the predicted impact based on that cluster (PredictedImpact), the number 

of entries reported of like incidences for the time period under evaluation (Incidences), 

the rate of growth of said incidences (FregGrowthRate), the predicted frequency of 

occurrence (Predicted Frequency) and the loss expectation (LossExpect).  The predicted 

impact value derived is an estimation of the CVSS base score, and the predicted 

frequency of occurrence, which is the product of the incidences and the rate of growth of 

the number of incidences reported, reflects the evaluated period’speriods predicted 

number of occurrences. These predictions are based on a statistically significant, 

historically validated approach as explained in section 3.6.3 and summarized in Table 11 

of same section.  The prediction of impact is based on the confidence that 95% of 

predictions will fall within the margin of error as explained in section 3.7 of Chapter 3. 

For example, in Figure 34, the first entry is assigned to Cluster 4 with a predicted impact 

of 7.36 ±   0.1315 (Table 15). The loss expectation is calculated as the product of the 

predicted impact and the predicted frequency of occurrence (Equation 4), following the 

best practice used in calculating traditional loss expectancy (Equation 1).  This 

information is then aggregated for each vulnerability entry and ranked in descending 

order, as seen in the resulting prioritized list (Figure 35).  

Since loss expectation is derived from the impact factor and the frequency of occurrence, 

we can assess situations when threats of lower impact may require more attention due to 

the high predicted frequency of occurrence of attacks to a particular vulnerability.  In 
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Figure 35, the prioritized list of threats identified and predicted for January of 2001 

shows ‘Format String’ as the risk element of highest threat, with a loss expectation value 

of 2266.78.  Even though the impact factor for ‘Format String’ (6.15) is less than that of 

‘Canonicalization’ (7.42), ‘Format String’ would still be considered a greater threat 

because of its higher predicted number of occurrences (377) when compared to 

‘Canonicalization’ (237).  In looking at the aggregated predicted impact scores, the 

clusters to which they most resemble, and the confidence intervals for each cluster as 

depicted in Table 15 of section 3.7, we observed that ‘Canonicalization’, ‘Buffer 

Overflow’, and ‘Integer Overflow/Underflow’ would be classified to the same cluster – 

‘Cluster 4’. ‘Cryptanalysis’ and ‘Format String’ would be classified as Cluster 5 data.  As 

can be seen in Figure 35, the difference in priority is based on the predicted frequency of 

threats to exercise these vulnerabilities.  Since our prediction of impact is based on the 

CVSS score, we note that the values for Prime III vulnerabilities warrant that all listed 

vulnerabilities be addressed during the development phase of the software development 

life cycle.  The CVSS score range from 0 – 9, where 0 indicates no damage potential and 

9 signifies a high collateral damage.  All scores for the prediction depicted in Figure 35 

are above the mid-level point of 5 and would be considered at least medium to high risk 

vulnerabilities.  In order of priority based on the loss expectation ‘Format String’, 

‘Canonicalization’, ‘Buffer Overflow’, ‘Integer Overflow/Underflow’ and 

‘Cryptanalysis’ should be considered in the order listed. Based on the confidence interval 

for the predictions, we would surmise that ‘Canonicalization’, ‘Buffer Overflow’ and  

‘Integer Overflow/Underflow’ would be of the same level of importance and though 

‘Cryptanalysis’ and ‘Format String’ are of the same classification, due to the frequency of 
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predicted exercise of the ‘Format String’ vulnerability that it take precedence in 

mitigation.   

Figure 36 shows the prediction of impact based on the same vulnerability list but with 

historical data from 2003 – 2005 to predict January 2006 data.  To obtain the clusters for 

classifying this data, we applied EM clustering algorithm (NVDCL-EM10). It can be 

seen that though the predicted impact scores have become less, the frequency of 

occurrence of threats have at least tripled.  It should also be noted that the vulnerability 

whose loss expectation implies greatest collateral damage has also changed from ‘Format 

String’ to ‘Buffer Overflow’.  ‘Canonicalization’ and ‘Integer Overflow/Underflow’ now 

command the same level of attention and though their impact scores (4.56) are slightly 

below the medium risk level, the high number associated with frequency of occurrence 

(1,784) requires that countermeasures to address these vulnerabilities are addressed, even 

before attention is given to ‘Format String’ vulnerability even though it has a higher 

impact score.  The full prediction and confidence interval information for Prime III is in 

Appendix E-3.   

Training Data  by Clusters (1996 - 2001) With 95% 
Confidence 
Interval 

CVSS_Score StdDev Margin of 
Error 

Cluster Lower Upper 

8.2541 1.8124 0.1002 Cluster 2 8.1539 8.3543 

7.0872 1.7984 0.1315 Cluster 4 6.9557 7.2186 

7 0 0 Cluster 7 7 7 

5.5393 2.0795 0.1474 Cluster 5 5.3919 5.6867 

5.3409 1.9665 0.107 Cluster 1 5.2339 5.4478 

4.3934 2.0171 0.1118 Cluster 3 4.2816 4.5052 

4.3105 1.6957 0.1226 Cluster 6 4.1879 4.4331 

Table 15 - Confidence Interval Derivation 
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Figure 35 - Prime III Loss Expectation (Prioritized List) – Predictions 

 
Figure 36 - Prime III Loss Expectation (Prioritized List) – 2006 Predictions 

Given this ordered list with empirical values showing the vulnerabilities with their 

associated impact values and predicted number of occurrences, we have provided an 

objective measure that can be used to justify dealing with the vulnerabilities in question. 

Unlike vulnerability identification systems that list in no particular order of importance 

the vulnerabilities and threats of a particular effort, SSRAM’s prediction of the impact 

factor and the frequency of occurrence provides an objective means for determining and 

justifying which threats to ameliorate. SSRAM also provides an empirical foundation for 

focusing testing later in the development process to make sure that the development 

effort took steps to lessen the chances of these threats being successfully exercised.  The 

analysts can now determine, based on the tools at hand, what needs to be done, what 

resources need to be acquired and which vulnerabilities they want to concentrate efforts 

and resources. In essence they can better perform analysis analogous to cost benefit 
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analysis and empirically assess the opportunity cost of the risk elements they chose to 

address.  



  71 

5 SUMMARY, FUTURE WORK AND CONCLUSIONS 

5.1 Summary 

When responding to system vulnerabilities, efforts tend towards reactive measures that 

support the hardening of systems and their connected networks.  Even though these 

efforts are necessary, they do not address the fact that the majority of the security 

vulnerabilities are due to software vulnerabilities, as reported by NIST [Curphey 2004]. 

Efforts to ameliorate system vulnerabilities should in effect start early in the software 

development life cycle, so that security is built in and not bolted onto the system upon 

completion of development. To this end, risks to a software development effort have to 

be determined and assessed early in the development life cycle.  Attempts to date to 

assess the risks that could apply to a development effort have been largely qualitative in 

nature.  Though helpful, these qualitative approaches have drawbacks such as the 

difficulty in duplicating results and transferring assessment lessons to other projects.  The 

traditional quantitative approach of annualized loss expectancy (ALE) and the exposure 

factor (EF) carries with it the burden of knowing what asset costs to use.  The impact 

effect is measured by the cost of asset loss, which is not easily determined during the 

design phase of development. If the cost of asset loss is available, it may not adequately 

reflect the impact that is a result of the exercise of a given threat.  Other efforts that 

provide objective results are implemented late in the software development life cycle, 
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usually during the testing phase, thereby incurring additional costs for dealing with 

vulnerabilities assessed after the system has been built.    

In looking at risk assessment in other fields such as insurance, banking, and finance, we 

find that one of the factors that allows for prediction of risk metrics is the availability of 

historical data.  One of the deterrents to creating objective measures for assessing risks in 

software security was purported to be the lack of data to use as a basis for historical 

predictions.  As it stands, there are now open source vulnerability databases, which 

provide a historical data source that can be used to assess vulnerabilities.  We chose the 

NVD, and in so doing we were able to categorize the data based on the K-Means and EM 

algorithm to obtain natural groupings of the entries based on the data about each entry.  

These algorithms portrayed different approaches to categorizing data.   

We compared the performance of the models between two mining structures, one with 

the description entries, a comment-like attribute without discrete values, and one without.  

This performance was measured by dividing the NVD data into two segments, one for 

training and the other for testing.  We used the test data to find an indication of how 

likely it is for each test case to exist within a determined cluster.   Based on the average 

case likelihood scores obtained, we saw that the clustering algorithms that took into 

account the description vectors performed better than those without.  In addition to this, 

we examined the cohesion of each cluster with respect to the centroid of the cluster by 

looking at the mean, standard deviation, maximum and minimum values for each of the 

clusters within each mining model.  We validated our choice by comparing the cohesion 

values of the algorithms.  
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Within each structure we compared EM versus K-Means models and chose those with 

higher average case likelihood scores. The average case likelihood score measures the 

likelihood that a test case would be similar to one of the cases within the training model. 

EM consistently outperformed KM models for our data.  Choosing the algorithm with the 

best score, we labeled each entry of the training data with the cluster it belonged to.  To 

determine what fields should be used to classify the data we looked at those fields with 

entropy values > 0.05 and < 0.95. We then ran two multiple regression analysis, which at 

α = 0.05 significance showed that the variables loss type, vulnerability type and exploit 

range were significant to predict cluster node and CVSS score. Upon naming each entry 

with its cluster, we investigated different classification algorithms to see which best 

classified the data under investigation. We again used two mining structures to compare 

results of classification mining models, one with the description terms and another 

without the description terms.  Furthermore, we looked at the accuracy of each of the 

classification models and with a step-wise approach chose the algorithm with good 

accuracy and shorter performance time.  With CVSS score used as the impact factor we 

adapted the traditional loss expectancy model by using CVSS score as opposed to asset 

cost as the impact factor to determine loss expectation. In addition, we constructed 

confidence intervals for our predictions based on the training data sets used for 

classifying new entries at a 95% level of confidence. With the ability to predict CVSS 

score with statistical significance, our study suggests an empirical approach to 

determining the impact of a given risk or threat and provides a way to objectively 

compare the impact and frequency of occurrence of identified threats. 
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5.2 Future Work 

Any significant research effort invariably opens more questions than it solves.  This 

endeavor was no different.  The following are suggestions for extending the research: 

• Validate SSRAM with an industry project.  Our research looked at the Prime III 

development effort but did not validate the results of its work.  We propose to run 

SSRAM in a development environment and assess its effectiveness.   

• Investigate the usage of SSRAM to assess risk on component based systems.  As 

development efforts rely more and more on other components, empirically 

assessing the risk of utilizing components within a development effort is 

necessary.   

• Perform comparative studies. We propose to do comparative studies using other 

vulnerability databases and other data mining algorithms for classification and 

prediction of impact factors. 

• Strengthen predictive values. We will investigate factors, along with time, which 

will strengthen the predictive values of the impact scores.  Along with this, we 

propose to look at the trend of vulnerabilities reported based on security factors 

such as impact scores, loss type, vulnerability type, and exploit range. 

• Investigate the characteristic of the clusters within SSRAM. We will investigate 

the characteristics of the clusters determined within SSRAM to better describe the 

classification of each entry.  As it stands, SSRAM classifies each entry to a 

generic cluster – “Cluster 1 … Cluster N”. 

• Investigate other variables that can be used to determine clusters. The R2 statistic 

of 27.9% in Figure 24shows that there is a need to explore other variables that can 
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be used to predict the cluster node. Though Loss Type, Vulnerability Type and 

Exploit Range are significant predictors of cluster node, they are not enough to 

explain the model. 

• Generate countermeasures based on the vulnerabilities assessed.  SSRAM would 

be enhanced by the provision of countermeasures to enact based on the 

vulnerabilities assessed. 

• Integrate SSRAM with a vulnerability identification system.  The use of SSRAM 

is predicated on the identification of vulnerabilities.  The integration of SSRAM 

to an identification system would reduce the amount of work necessary to 

implement SSRAM and overall produce a more robust risk assessment 

methodology. 

5.3 Conclusions 

In creating a model that predicts impact factors, we found that there was no statistical 

difference between the actual scores and the predicted scores produced by our research. 

We were able to estimate the CVSS score and use it as the impact factor estimation that 

allows loss expectation to be quantitatively derived based on historical data.  Along with 

that we also produced confidence intervals for the predicted impact scores.  

This study shows that the database of vulnerabilities is adequate for use as a basis for 

predicting risk metrics such as impact factor.  We were also able to provide a 

categorization of vulnerabilities based on development environment factors along with 

descriptive terms of the vulnerabilities.  This categorization allowed us to be able to 

classify new vulnerabilities based on their similarities to historical entries.   
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This research has shown that the predictions based on these categorizations were not 

significantly different from the actual impact scores for the time under research.  

 Data 
Availability 

Assess 
Risk 

Elements 

Can be used 
at design 
level of 

development 

Generalize 
& 

 Duplicate 
Results 

Categorizatio
n based on 

Development 
Environment
al Factors 

Identify 
Risks 

SSRAM Yes Yes Yes Yes Yes No 
Traditional Risk 
Impact Estimation 

No Yes No No No No 

Software Reliability Yes No Yes Yes N/A No 
Qualitative 
Assessment 
approaches (Boehm, 
RiskIT, Risk 
Management 
Framework) 

N/A Yes Yes No ? No 

Testing & Assessment 
Approaches 

Yes Yes No Yes No No 

Identification 
Approaches 

Yes No Yes Yes No Yes 

Table 19 – Comparison of SSRAM with other Risk Analysis Methodologies 

This research shows that our approach (SSRAM) when compared to other risk analysis 

methodologies is capable of being used to objectively assess risk elements early in the 

software development life cycle due to its ability to classify risk elements to categories 

that are determined based on the development factors (Table 19). SSRAM provides a 

basis for objectively assessing threats or vulnerabilities early in the software development 

life cycle.  The prediction of both the impact value and the number of occurrences of a 

given threat in a prioritized format provides objective evidence that can direct risk 

mitigation during the development of software.  Assessment lessons can be transferred to 

other projects and the predictions from SSRAM can be used to do comparative analysis 

of different projects with similar parameters.  Since the assessment is done early in the 

development cycle, these vulnerabilities can be mitigated during the development effort 
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without the added cost usually incurred when they are discovered and assessed during 

later periods in the software development life cycle such as the testing phase.  

Given the pivotal role risk assessment has in the development of reliable and secure 

systems, SSRAM provides a historically validated risk assessment model for analyzing 

risks so that an objective justification of the direction and choice of risk elements can be 

made. 
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Appendix A-1 – The NVD Schema 

This appendix gives the NVD Schema from which SSRAM derives its schema. 

Table structural data and attribute types used in SSRAM are based on the NVD Schema 

shown in this appendix. 

 
<xs:simpleType name="CVSSVector" xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 <xs:annotation> 
 <xs:documentation> 
  simpleType to describe the CVSS Base Vector 
 </xs:documentation> 
 </xs:annotation> 
 <xs:restriction base="xs:string"> 
<xs:pattern value="\(AV:[RL]/AC:[HL]/Au:(R|NR)/C:[NPC]/I:[NPC]/A:[NPC]/B:[NCIA]\)( Approximated)?" /> 
 </xs:restriction> 
</xs:simpleType><xs:simpleType name="dateType" xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 <xs:annotation> 
 <xs:documentation> 
  Defines date format for NVD.  Dates follow the mask "yyyy-mm-dd" 
 </xs:documentation> 
 </xs:annotation> 
 <xs:restriction base="xs:date"> 
<xs:pattern value="(19|20)\d\d-((01|03|05|07|08|10|12)-(0[1-9]|[1-2]\d|3[01])|(04|06|09|11)-(0[1-9]|[1-2]\d|30)|02-(0[1-
9]|1\d|2\d))" /> 
 </xs:restriction> 
</xs:simpleType><xs:simpleType name="trueOnlyAttribute" xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 <xs:annotation> 
 <xs:documentation> 
  simpleType used for attributes that are only present when they are true. 
  Such attributes appear only in the form attribute_name="1". 
 </xs:documentation> 
 </xs:annotation> 
 <xs:restriction base="xs:NMTOKEN"> 
 <xs:enumeration value="1" /> 
 </xs:restriction> 
</xs:simpleType><xs:simpleType name="zeroToTen" xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 <xs:annotation> 
 <xs:documentation> 
  simpleType used when scoring on a scale of 0-10, inclusive 
 </xs:documentation> 
 </xs:annotation> 
 <xs:restriction base="xs:decimal"> 
 <xs:minInclusive value="0" fixed="true" /> 
 <xs:maxInclusive value="10" fixed="true" /> 
 </xs:restriction> 
</xs:simpleType><xs:simpleType name="urlType" xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 <xs:annotation> 
 <xs:documentation> 
  Restricts urls in NVD beyond the xs:anyURI restrictions. 
 </xs:documentation> 
 </xs:annotation> 
 <xs:restriction base="xs:anyURI"> 
 <xs:whiteSpace value="collapse" /> 
 <xs:pattern value="((news|(ht|f)tp(s)?)://([^:]|:[^/]|:/[^/])+(:|:/)?)+" /> 
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 </xs:restriction> 
</xs:simpleType><xs:element name="nvd" xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 <xs:annotation> 
 <xs:documentation> 
  Root element.  Contains only "entry" child elements. 
  Attributes for this element describe the version of the XML feed being read. 
  Attributes: 
"nvd_xml_version" (required) =&gt; the schema and DTD version number currently supported by this document 
  "pub_date" (required) =&gt; the date this document was compiled 
 </xs:documentation> 
 </xs:annotation> 
 <xs:complexType> 
 <xs:sequence> 
  <xs:element name="entry" minOccurs="0" maxOccurs="unbounded"> 
  <xs:annotation> 
   <xs:documentation> 
   Documents one CVE entry.  The child elements should always appear 
   in the sequence defined below.  These elements are compatible with 
   entry elements from the CVE XML feeds. 
   Attributes: 
   "type" (required) =&gt; CVE or CAN 
   "name" (required) =&gt; full CVE name 
   "seq" (required) =&gt; sequence number from CVE name 
   "nvd_name" =&gt; NVD name (if it exists) 
   "discovered" =&gt; date discovered 
   "published" (required) =&gt; date published 
   "modified" =&gt; date modified 
   "severity" =&gt; severity as determined by NVD analysts: High, Medium, or Low 
   "reject" =&gt; indicates that this CVE entry has been rejected by CVE or NVD 
   "CVSS_score" =&gt; CVSS Severity Score 
   "CVSS_vector" =&gt; CVSS Base Vector 
   </xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
   <xs:element name="desc"> 
    <xs:annotation> 
    <xs:documentation> 
   Description wrapper tag, parent to any documented descriptions of this CVE entry. 
   While the "desc" tag will always be present, there may be no "descript" child tags. 
   Only one "descript" tag will exist for each description source (i.e. CVE, NVD, ...). 
    </xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
    <xs:sequence> 
     <xs:element name="descript" minOccurs="0" maxOccurs="2"> 
     <xs:annotation> 
      <xs:documentation> 
     Contains a specific description of this CVE entry from source 
      indicated by the "source" attribute. 
      </xs:documentation> 
     </xs:annotation> 
     <xs:complexType mixed="true"> 
      <xs:attribute name="source" use="required"> 
      <xs:simpleType> 
       <xs:restriction base="xs:NMTOKEN"> 
       <xs:enumeration value="cve" /> 
       <xs:enumeration value="nvd" /> 
       </xs:restriction> 
      </xs:simpleType> 
      </xs:attribute> 
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     </xs:complexType> 
     </xs:element> 
    </xs:sequence> 
    </xs:complexType> 
   </xs:element> 
   <xs:element name="impacts" minOccurs="0"> 
    <xs:annotation> 
    <xs:documentation> 
   Impact wrapper tag (may or may not be present).  Only one "impact" tag will exist 
     for each impact explanation source. 
    </xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
    <xs:sequence> 
     <xs:element name="impact"> 
     <xs:annotation> 
      <xs:documentation> 
     Contains a specific impact explanation of this CVE entry from 
      source indicated by the "source" attribute. 
      </xs:documentation> 
     </xs:annotation> 
     <xs:complexType mixed="true"> 
      <xs:attribute name="source" use="required"> 
      <xs:simpleType> 
       <xs:restriction base="xs:NMTOKEN"> 
       <xs:enumeration value="nvd" /> 
       </xs:restriction> 
      </xs:simpleType> 
      </xs:attribute> 
     </xs:complexType> 
     </xs:element> 
    </xs:sequence> 
    </xs:complexType> 
   </xs:element> 
   <xs:element name="sols" minOccurs="0"> 
    <xs:annotation> 
    <xs:documentation> 
   Solution wrapper tag (may or may not be present).  Only one "sol" tag will exist 
     for each solution explanation source. 
    </xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
    <xs:sequence> 
     <xs:element name="sol"> 
     <xs:annotation> 
      <xs:documentation> 
     Contains a specific solution explanation of this CVE entry from 
      source indicated by the "source" attribute. 
      </xs:documentation> 
     </xs:annotation> 
     <xs:complexType mixed="true"> 
      <xs:attribute name="source" use="required"> 
      <xs:simpleType> 
       <xs:restriction base="xs:NMTOKEN"> 
       <xs:enumeration value="nvd" /> 
       </xs:restriction> 
      </xs:simpleType> 
      </xs:attribute> 
     </xs:complexType> 
     </xs:element> 
    </xs:sequence> 
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    </xs:complexType> 
   </xs:element> 
   <xs:element name="loss_types" minOccurs="0"> 
    <xs:annotation> 
    <xs:documentation> 
   Loss type tag (may or may not be present).  Contains one loss type child for each loss 
     type of this CVE entry. 
     Potential loss types are: 
     "avail" =&gt; availability 
     "conf" =&gt; confidentiality 
     "int" =&gt; integrity 
     "sec_prot" =&gt; security protection 
    </xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
    <xs:sequence> 
     <xs:element name="avail" minOccurs="0" /> 
     <xs:element name="conf" minOccurs="0" /> 
     <xs:element name="int" minOccurs="0" /> 
     <xs:element name="sec_prot" minOccurs="0"> 
     <xs:annotation> 
     <xs:documentation> 
    Security Protection tag with one attribute for each security protection type. 
      Potential security protection types are: 
      "admin" =&gt; gain administrative access 
      "user" =&gt; gain user access 
      "other" =&gt; other 
      </xs:documentation> 
     </xs:annotation> 
     <xs:complexType> 
      <xs:attribute name="admin" type="trueOnlyAttribute" /> 
      <xs:attribute name="user" type="trueOnlyAttribute" /> 
      <xs:attribute name="other" type="trueOnlyAttribute" /> 
     </xs:complexType> 
     </xs:element> 
    </xs:sequence> 
    </xs:complexType> 
   </xs:element> 
   <xs:element name="vuln_types" minOccurs="0"> 
    <xs:annotation> 
    <xs:documentation> 
   Vulnerability type tag (may or may not be present).  Contains one vulnerability type 
     child for each vulnerability type of this CVE entry. 
     Potential vulnerability types are: 
     "access" =&gt; Access validation error 
     "input" =&gt; Input validation error 
     "design" =&gt; Design error 
     "exception" =&gt; Exceptional condition error 
     "env" =&gt; Environmental error 
     "config" =&gt; Configuration error 
     "race" =&gt; Race condition error 
     "other" =&gt; other 
    </xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
    <xs:sequence> 
     <xs:element name="access" minOccurs="0" /> 
     <xs:element name="input" minOccurs="0"> 
     <xs:annotation> 
      <xs:documentation> 
    Input validation error tag with one attribute for each input validation error type. 
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      Potential input validation error types are: 
      "bound" =&gt; Boundary condition error 
      "buffer" =&gt; Buffer overflow 
      </xs:documentation> 
     </xs:annotation> 
     <xs:complexType> 
      <xs:attribute name="bound" type="trueOnlyAttribute" /> 
      <xs:attribute name="buffer" type="trueOnlyAttribute" /> 
     </xs:complexType> 
     </xs:element> 
     <xs:element name="design" minOccurs="0" /> 
     <xs:element name="exception" minOccurs="0" /> 
     <xs:element name="env" minOccurs="0" /> 
     <xs:element name="config" minOccurs="0" /> 
     <xs:element name="race" minOccurs="0" /> 
     <xs:element name="other" minOccurs="0" /> 
    </xs:sequence> 
    </xs:complexType> 
   </xs:element> 
   <xs:element name="range" minOccurs="0"> 
    <xs:annotation> 
    <xs:documentation> 
   Vulnerability range tag (may or may not be present).  Contains one vulnerability range 
     child for each vulnerability range of this CVE entry. 
     Potential vulnerability ranges are: 
     "local" =&gt; Locally exploitable 
     "remote" =&gt; Remotely exploitable 
     "user_init" =&gt; User accesses attacker 
    </xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
    <xs:sequence> 
     <xs:element name="local" minOccurs="0" /> 
     <xs:element name="remote" minOccurs="0" /> 
     <xs:element name="user_init" minOccurs="0" /> 
    </xs:sequence> 
    </xs:complexType> 
   </xs:element> 
   <xs:element name="refs"> 
    <xs:annotation> 
    <xs:documentation> 
  Reference wrapper tag (always present).  External references to this CVE entry are contained 
     within this tag. 
    </xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
    <xs:sequence> 
     <xs:element name="ref" minOccurs="0" maxOccurs="unbounded"> 
     <xs:annotation> 
      <xs:documentation> 
    Individual reference to this CVE entry.  Text is the name of this vulnerability 
      at this particular reference. 
      Attributes: 
      "source" (required) =&gt; Name of reference source 
      "url" (required) =&gt; hyperlink to reference 
    "sig" =&gt; indicates this reference includes a tool signature 
      "adv" =&gt; indicates this reference is a Security Advisory 
    "patch" =&gt; indicates this reference includes a patch for this vulnerability 
      </xs:documentation> 
     </xs:annotation> 
     <xs:complexType mixed="true"> 
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    <xs:attribute name="source" type="xs:string" use="required" /> 
      <xs:attribute name="url" type="urlType" use="required" /> 
      <xs:attribute name="sig" type="trueOnlyAttribute" /> 
      <xs:attribute name="adv" type="trueOnlyAttribute" /> 
      <xs:attribute name="patch" type="trueOnlyAttribute" /> 
     </xs:complexType> 
     </xs:element> 
    </xs:sequence> 
    </xs:complexType> 
   </xs:element> 
   <xs:element name="vuln_soft" minOccurs="0"> 
    <xs:annotation> 
    <xs:documentation> 
  Vulnerable software wrapper tag (may or may not be present).  Software affected by this CVE 
     entry are listed within this tag. 
    </xs:documentation> 
    </xs:annotation> 
    <xs:complexType> 
    <xs:sequence> 
     <xs:element name="prod" maxOccurs="unbounded"> 
     <xs:annotation> 
      <xs:documentation> 
    Product wrapper tag.  Versions of this product that are affected by this 
      vulnerability are listed within this tag. 
      Attributes: 
      "name" =&gt; Product name 
      "vendor" =&gt; Vendor of this product 
      </xs:documentation> 
     </xs:annotation> 
     <xs:complexType> 
      <xs:sequence> 
      <xs:element name="vers" maxOccurs="unbounded"> 
       <xs:annotation> 
       <xs:documentation> 
    Represents a version of this product that is affected by this vulnerability. 
        Attributes: 
        "num" =&gt; This version number 
 "prev" =&gt; Indicates that versions previous to this version number are also affected by this vulnerability 
       </xs:documentation> 
       </xs:annotation> 
       <xs:complexType> 
     <xs:attribute name="num" type="xs:string" use="required" /> 
      <xs:attribute name="prev" type="trueOnlyAttribute" /> 
       </xs:complexType> 
      </xs:element> 
      </xs:sequence> 
    <xs:attribute name="name" type="xs:string" use="required" /> 
     <xs:attribute name="vendor" type="xs:string" use="required" /> 
     </xs:complexType> 
     </xs:element> 
    </xs:sequence> 
    </xs:complexType> 
   </xs:element> 
   </xs:sequence> 
   <xs:attribute name="type" use="required"> 
   <xs:simpleType> 
    <xs:restriction base="xs:NMTOKEN"> 
    <xs:enumeration value="CAN" /> 
    <xs:enumeration value="CVE" /> 
    </xs:restriction> 
   </xs:simpleType> 
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   </xs:attribute> 
   <xs:attribute name="name" use="required"> 
   <xs:simpleType> 
    <xs:restriction base="xs:ID"> 
    <xs:pattern value="(CAN|CVE)\-\d\d\d\d\-\d\d\d\d" /> 
    </xs:restriction> 
   </xs:simpleType> 
   </xs:attribute> 
   <xs:attribute name="seq" use="required"> 
   <xs:simpleType> 
    <xs:restriction base="xs:NMTOKEN"> 
    <xs:pattern value="\d\d\d\d\-\d\d\d\d" /> 
    </xs:restriction> 
   </xs:simpleType> 
   </xs:attribute> 
   <xs:attribute name="nvd_name" type="xs:string" /> 
   <xs:attribute name="discovered" type="dateType" /> 
   <xs:attribute name="published" type="dateType" use="required" /> 
   <xs:attribute name="modified" type="dateType" /> 
   <xs:attribute name="severity"> 
   <xs:simpleType> 
    <xs:restriction base="xs:NMTOKEN"> 
    <xs:enumeration value="High" /> 
    <xs:enumeration value="Medium" /> 
    <xs:enumeration value="Low" /> 
    </xs:restriction> 
   </xs:simpleType> 
   </xs:attribute> 
   <xs:attribute name="reject" type="trueOnlyAttribute" /> 

   <xs:attribute name="CVSS_score" type="zeroToTen" /> 
   <xs:attribute name="CVSS_vector" type="CVSSVector" /> 
  </xs:complexType> 
  </xs:element> 
 </xs:sequence> 
 <xs:attribute name="nvd_xml_version" type="xs:NMTOKEN" use="required" /> 
 <xs:attribute name="pub_date" type="dateType" use="required" /> 
 </xs:complexType> 
</xs:element> 
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Appendix A-2 – An Example of an NVD entry 

This appendix shows an example of an NVD entry that had to be parsed.  In all, 20,804 

entries where loaded into SSRAM from 1996 – 2006 to be used for training and testing of 

data.  The historical data used was divided into 2 groups. 1996 – 2001 for training to 

predict 2002 data, and 2003-2005 to predict 2006. 

 
- <entry type="CVE" name="CVE-2006-0948" seq="2006-0948" published="2006-08-
21" modified="2006-08-22" severity="High" CVSS_score="7.0" 
CVSS_vector="(AV:L/AC:L/Au:NR/C:C/I:C/A:C/B:N)"> 
- <desc> 
  <descript source="cve">AOL 9.0 Security Edition revision 4184.2340, and probably 
other versions, uses insecure permissions (Everyone/Full Control) for the "America 
Online 9.0" directory, which allows local users to gain privileges by replacing critical 
files.</descript>  
  </desc> 
- <sols> 
  <sol source="nvd">AOL has released fixes to address this issue. These fixes can be 
automatically applied by logging in to the service.</sol>  
  </sols> 
- <loss_types> 
  <sec_prot admin="1" />  
  </loss_types> 
- <vuln_types> 
  <design />  
  </vuln_types> 
- <range> 
  <local />  
  </range> 
- <refs> 
  <ref source="BID" url="http://www.securityfocus.com/bid/19583" 
patch="1">19583</ref>  
  <ref source="BUGTRAQ" 
url="http://www.securityfocus.com/archive/1/archive/1/443622/100/0/threaded" 
adv="1">20060818 Secunia Research: AOL Insecure Default Directory 
Permissions</ref>  
  <ref source="FRSIRT" url="http://www.frsirt.com/english/advisories/2006/3317" 
adv="1" patch="1">ADV-2006-3317</ref>  
  <ref source="SECTRACK" url="http://securitytracker.com/id?1016717" 
patch="1">1016717</ref>  
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  <ref source="SECUNIA" url="http://secunia.com/advisories/18734" adv="1" 
patch="1">18734</ref>  
  <ref source="XF" url="http://xforce.iss.net/xforce/xfdb/28445" patch="1">aol-default-
insecure-permissions(28445)</ref>  
  </refs> 
- <vuln_soft> 
- <prod name="AOL Security Edition" vendor="AOL"> 
  <vers num="9.0 4184.2340" />  
  </prod> 
  </vuln_soft> 
  </entry> 
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Appendix A-3 – Script for Parsing XML document 
 

The code shown in this appendix was used to load the xml document feeds and parse the 

xml document into corresponding tables in SSRAM. 

 
 
use ssram 
-- --------------Insert XML file into nvdtmp 
INSERT nvdtmp 
  SELECT CONVERT(xml, BulkColumn, 2) FROM  
    OPENROWSET(Bulk 'F:\Dissertation\Databases\National Vulnerability 
Database\nvdcve-2002.xml', SINGLE_BLOB) [rowsetresults] 
 --   OPENROWSET(Bulk 'F:\Dissertation\Databases\National Vulnerability 
Database\nvdcve-recent.xml', SINGLE_BLOB) [rowsetresults] 
 
Go 
-- ------------ Drop and create SSRAM tables 
USE [SSRAM] 
GO 
--Drop entryDesc 
 
 
IF  EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id = 
OBJECT_ID(N'[dbo].[FK_entryDesc_entry]') AND parent_object_id = 
OBJECT_ID(N'[dbo].[entryDesc]')) 
ALTER TABLE [dbo].[entryDesc] DROP CONSTRAINT [FK_entryDesc_entry] 
GO 
USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[entryDesc]    Script Date: 02/05/2008 
10:43:52 ******/ 
IF  EXISTS (SELECT * FROM sys.objects WHERE object_id = 
OBJECT_ID(N'[dbo].[entryDesc]') AND type in (N'U')) 
 DROP TABLE [dbo].[entryDesc] 
---Drop entrySols 
 
USE [SSRAM] 
GO 
IF  EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id = 
OBJECT_ID(N'[dbo].[FK_entrySols_entry]') AND parent_object_id = 
OBJECT_ID(N'[dbo].[entrySols]')) 
 ALTER TABLE [dbo].[entrySols] DROP CONSTRAINT 
[FK_entrySols_entry] 
GO 
USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[entrySols]    Script Date: 02/05/2008 
10:55:14 ******/ 
IF  EXISTS (SELECT * FROM sys.objects WHERE object_id = 
OBJECT_ID(N'[dbo].[entrySols]') AND type in (N'U')) 
 DROP TABLE [dbo].[entrySols] 
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---drop lossType2 
 
USE [SSRAM] 
GO 
IF  EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id = 
OBJECT_ID(N'[dbo].[FK_lossType2_entry]') AND parent_object_id = 
OBJECT_ID(N'[dbo].[lossType2]')) 
ALTER TABLE [dbo].[lossType2] DROP CONSTRAINT [FK_lossType2_entry] 
GO 
USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[lossType2]    Script Date: 02/05/2008 
10:56:52 ******/ 
IF  EXISTS (SELECT * FROM sys.objects WHERE object_id = 
OBJECT_ID(N'[dbo].[lossType2]') AND type in (N'U')) 
DROP TABLE [dbo].[lossType2] 
 
--Drop nvdtmp 
  
USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[nvdtmp]    Script Date: 02/05/2008 
10:58:49 ******/ 
IF  EXISTS (SELECT * FROM sys.objects WHERE object_id = 
OBJECT_ID(N'[dbo].[nvdtmp]') AND type in (N'U')) 
 DROP TABLE [dbo].[nvdtmp] 
-- 
---DROP range 
 
USE [SSRAM] 
GO 
IF  EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id = 
OBJECT_ID(N'[dbo].[FK_range_entry]') AND parent_object_id = 
OBJECT_ID(N'[dbo].[range]')) 
 ALTER TABLE [dbo].[range] DROP CONSTRAINT [FK_range_entry] 
GO 
USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[range]    Script Date: 02/05/2008 
10:59:59 ******/ 
IF  EXISTS (SELECT * FROM sys.objects WHERE object_id = 
OBJECT_ID(N'[dbo].[range]') AND type in (N'U')) 
 DROP TABLE [dbo].[range] 
 
 
--- DROP refs 
 
 
USE [SSRAM] 
GO 
IF  EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id = 
OBJECT_ID(N'[dbo].[FK_refs_entry]') AND parent_object_id = 
OBJECT_ID(N'[dbo].[refs]')) 
ALTER TABLE [dbo].[refs] DROP CONSTRAINT [FK_refs_entry] 
GO 
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USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[refs]    Script Date: 02/05/2008 11:01:17 
******/ 
IF  EXISTS (SELECT * FROM sys.objects WHERE object_id = 
OBJECT_ID(N'[dbo].[refs]') AND type in (N'U')) 
DROP TABLE [dbo].[refs] 
 
 
--DROP vuln_soft 
 
 
USE [SSRAM] 
GO 
IF  EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id = 
OBJECT_ID(N'[dbo].[FK_vuln_soft_entry]') AND parent_object_id = 
OBJECT_ID(N'[dbo].[vuln_soft]')) 
ALTER TABLE [dbo].[vuln_soft] DROP CONSTRAINT [FK_vuln_soft_entry] 
GO 
USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[vuln_soft]    Script Date: 02/05/2008 
11:03:26 ******/ 
IF  EXISTS (SELECT * FROM sys.objects WHERE object_id = 
OBJECT_ID(N'[dbo].[vuln_soft]') AND type in (N'U')) 
DROP TABLE [dbo].[vuln_soft] 
 
 
---DROP vuln_types 
 
USE [SSRAM] 
GO 
IF  EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id = 
OBJECT_ID(N'[dbo].[FK_vuln_types_entry]') AND parent_object_id = 
OBJECT_ID(N'[dbo].[vuln_types]')) 
ALTER TABLE [dbo].[vuln_types] DROP CONSTRAINT [FK_vuln_types_entry] 
GO 
USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[vuln_types]    Script Date: 02/05/2008 
11:04:17 ******/ 
IF  EXISTS (SELECT * FROM sys.objects WHERE object_id = 
OBJECT_ID(N'[dbo].[vuln_types]') AND type in (N'U')) 
DROP TABLE [dbo].[vuln_types] 
 
---DROP entry 
 
 
-----ENTRY TABLE DROP AND CREATE 
/****** Object:  Table [dbo].[entry]    Script Date: 02/05/2008 
10:42:30 ******/ 
IF  EXISTS (SELECT * FROM sys.objects WHERE object_id = 
OBJECT_ID(N'[dbo].[entry]') AND type in (N'U')) 
 DROP TABLE [dbo].[entry] 
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/****** Object:  Table [dbo].[entry]    Script Date: 02/05/2008 
10:43:14 ******/ 
SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 
SET ANSI_PADDING ON 
GO 
CREATE TABLE [dbo].[entry]( 
 [type] [varchar](5) COLLATE SQL_Latin1_General_CP1_CI_AS NOT 
NULL, 
 [name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS NOT 
NULL, 
 [seq] [varchar](12) COLLATE SQL_Latin1_General_CP1_CI_AS NOT 
NULL, 
 [nvd_name] [varchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 [discovered] [datetime] NULL, 
 [published] [datetime] NOT NULL, 
 [modified] [datetime] NULL, 
 [severity] [varchar](10) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 [reject] [varchar](10) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 [CVSS_score] [real] NULL, 
 [CVSS_vector] [varchar](25) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 CONSTRAINT [PK_entry] PRIMARY KEY CLUSTERED  
( 
 [name] ASC 
)WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY] 
) ON [PRIMARY] 
 
GO 
SET ANSI_PADDING OFF 
 
 
 
-- CREATE entryDesc 
USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[entryDesc]    Script Date: 02/05/2008 
10:53:52 ******/ 
SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 
SET ANSI_PADDING ON 
GO 
CREATE TABLE [dbo].[entryDesc]( 
 [entry_name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS 
NOT NULL, 
 [descript] [varchar](max) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 [source] [varchar](5) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
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 CONSTRAINT [PK_entryDesc] PRIMARY KEY CLUSTERED  
( 
 [entry_name] ASC 
)WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY] 
) ON [PRIMARY] 
 
GO 
SET ANSI_PADDING OFF 
GO 
EXEC sys.sp_addextendedproperty @name=N'MS_Description', 
@value=N'associated with entry.name (foreign key)' 
,@level0type=N'SCHEMA', @level0name=N'dbo', @level1type=N'TABLE', 
@level1name=N'entryDesc', @level2type=N'COLUMN', 
@level2name=N'entry_name' 
 
GO 
EXEC sys.sp_addextendedproperty @name=N'MS_Description', 
@value=N'Contains a specific description of this CVE entry from source 
indicated by the "source" attribute' ,@level0type=N'SCHEMA', 
@level0name=N'dbo', @level1type=N'TABLE', @level1name=N'entryDesc', 
@level2type=N'COLUMN', @level2name=N'descript' 
 
GO 
EXEC sys.sp_addextendedproperty @name=N'MS_Description', 
@value=N'enumerated type "cve" or "nvd" - required for each descript' 
,@level0type=N'SCHEMA', @level0name=N'dbo', @level1type=N'TABLE', 
@level1name=N'entryDesc', @level2type=N'COLUMN', @level2name=N'source' 
 
GO 
USE [SSRAM] 
GO 
ALTER TABLE [dbo].[entryDesc]  WITH CHECK ADD  CONSTRAINT 
[FK_entryDesc_entry] FOREIGN KEY([entry_name]) 
REFERENCES [dbo].[entry] ([name]) 
 
-----------entrySols Table 
 
 
USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[entrySols]    Script Date: 02/05/2008 
10:55:56 ******/ 
SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 
SET ANSI_PADDING ON 
GO 
CREATE TABLE [dbo].[entrySols]( 
 [entry_name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS 
NOT NULL, 
 [sol] [varchar](max) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 [source] [varchar](5) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 CONSTRAINT [PK_entrySols] PRIMARY KEY CLUSTERED  
( 
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 [entry_name] ASC 
)WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY] 
) ON [PRIMARY] 
 
GO 
SET ANSI_PADDING OFF 
GO 
USE [SSRAM] 
GO 
ALTER TABLE [dbo].[entrySols]  WITH CHECK ADD  CONSTRAINT 
[FK_entrySols_entry] FOREIGN KEY([entry_name]) 
REFERENCES [dbo].[entry] ([name]) 
 
--------------create lossType 
 
 
 
USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[lossType2]    Script Date: 02/05/2008 
10:57:14 ******/ 
SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 
SET ANSI_PADDING ON 
GO 
CREATE TABLE [dbo].[lossType2]( 
 [entry_name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS 
NOT NULL, 
 [loss_type] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS 
NOT NULL, 
 [adminSP] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 [userSP] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 [otherSP] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 CONSTRAINT [PK_lossType2] PRIMARY KEY CLUSTERED  
( 
 [entry_name] ASC, 
 [loss_type] ASC 
)WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY] 
) ON [PRIMARY] 
 
GO 
SET ANSI_PADDING OFF 
GO 
USE [SSRAM] 
GO 
ALTER TABLE [dbo].[lossType2]  WITH CHECK ADD  CONSTRAINT 
[FK_lossType2_entry] FOREIGN KEY([entry_name]) 
REFERENCES [dbo].[entry] ([name]) 
 
-----nvdtmp  
 
 
USE [SSRAM] 
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GO 
/****** Object:  Table [dbo].[nvdtmp]    Script Date: 02/05/2008 
10:58:18 ******/ 
SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 
CREATE TABLE [dbo].[nvdtmp]( 
 [XmlCol] [xml] NULL 
) ON [PRIMARY] 
 
-----range 
 
 
USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[range]    Script Date: 02/05/2008 
11:00:42 ******/ 
SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 
SET ANSI_PADDING ON 
GO 
CREATE TABLE [dbo].[range]( 
 [entry_name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS 
NOT NULL, 
 [exploit_range] [varchar](15) COLLATE 
SQL_Latin1_General_CP1_CI_AS NOT NULL, 
 CONSTRAINT [PK_range] PRIMARY KEY CLUSTERED  
( 
 [entry_name] ASC, 
 [exploit_range] ASC 
)WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY] 
) ON [PRIMARY] 
 
GO 
SET ANSI_PADDING OFF 
GO 
USE [SSRAM] 
GO 
ALTER TABLE [dbo].[range]  WITH CHECK ADD  CONSTRAINT [FK_range_entry] 
FOREIGN KEY([entry_name]) 
REFERENCES [dbo].[entry] ([name]) 
 
----refs 
 
USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[refs]    Script Date: 02/05/2008 11:01:37 
******/ 
SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 
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SET ANSI_PADDING ON 
GO 
CREATE TABLE [dbo].[refs]( 
 [entry_name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS 
NOT NULL, 
 [ref] [nvarchar](max) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 [source] [nvarchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 [url] [nvarchar](100) COLLATE SQL_Latin1_General_CP1_CI_AS NOT 
NULL, 
 [sig] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 [adv] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 [patch] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 CONSTRAINT [PK_refs] PRIMARY KEY CLUSTERED  
( 
 [entry_name] ASC, 
 [url] ASC 
)WITH (IGNORE_DUP_KEY = ON) ON [PRIMARY] 
) ON [PRIMARY] 
 
GO 
SET ANSI_PADDING OFF 
GO 
USE [SSRAM] 
GO 
ALTER TABLE [dbo].[refs]  WITH CHECK ADD  CONSTRAINT [FK_refs_entry] 
FOREIGN KEY([entry_name]) 
REFERENCES [dbo].[entry] ([name]) 
 
-----vuln_soft 
 
USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[vuln_soft]    Script Date: 02/05/2008 
11:03:47 ******/ 
SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 
SET ANSI_PADDING ON 
GO 
CREATE TABLE [dbo].[vuln_soft]( 
 [entry_name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS 
NOT NULL, 
 [prodName] [nvarchar](25) COLLATE SQL_Latin1_General_CP1_CI_AS 
NOT NULL, 
 [prodVendor] [nvarchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS 
NOT NULL, 
 [versionNum] [nvarchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS 
NOT NULL, 
 [preVersion] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 [edition] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 CONSTRAINT [PK_vuln_soft] PRIMARY KEY CLUSTERED  
( 
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 [entry_name] ASC, 
 [prodName] ASC, 
 [prodVendor] ASC, 
 [versionNum] ASC 
)WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY] 
) ON [PRIMARY] 
 
GO 
SET ANSI_PADDING OFF 
GO 
USE [SSRAM] 
GO 
ALTER TABLE [dbo].[vuln_soft]  WITH CHECK ADD  CONSTRAINT 
[FK_vuln_soft_entry] FOREIGN KEY([entry_name]) 
REFERENCES [dbo].[entry] ([name]) 
 
--vuln_types 
 
USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[vuln_types]    Script Date: 02/05/2008 
11:04:49 ******/ 
SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 
SET ANSI_PADDING ON 
GO 
CREATE TABLE [dbo].[vuln_types]( 
 [entry_name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS 
NOT NULL, 
 [vuln_type] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS 
NOT NULL, 
 [input_bound] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 [input_buffer] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 CONSTRAINT [PK_vuln_types] PRIMARY KEY CLUSTERED  
( 
 [entry_name] ASC, 
 [vuln_type] ASC 
)WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY] 
) ON [PRIMARY] 
 
GO 
SET ANSI_PADDING OFF 
GO 
USE [SSRAM] 
GO 
ALTER TABLE [dbo].[vuln_types]  WITH CHECK ADD  CONSTRAINT 
[FK_vuln_types_entry] FOREIGN KEY([entry_name]) 
REFERENCES [dbo].[entry] ([name]) 
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USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[denormNVD]    Script Date: 02/05/2008 
11:07:28 ******/ 
IF  EXISTS (SELECT * FROM sys.objects WHERE object_id = 
OBJECT_ID(N'[dbo].[denormNVD]') AND type in (N'U')) 
DROP TABLE [dbo].[denormNVD] 
 
USE [SSRAM] 
GO 
/****** Object:  Table [dbo].[denormNVD]    Script Date: 02/05/2008 
11:08:06 ******/ 
SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 
SET ANSI_PADDING ON 
GO 
CREATE TABLE [dbo].[denormNVD]( 
 [name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS NOT 
NULL, 
 [discovered] [datetime] NULL, 
 [published] [datetime] NOT NULL, 
 [cvss_score] [real] NULL, 
 [descript] [varchar](max) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 [sol] [varchar](max) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 [loss_type] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 [adminSP] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 [userSP] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 [otherSP] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 [vuln_type] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 [input_bound] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 [input_buffer] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 [exploit_range] [varchar](15) COLLATE 
SQL_Latin1_General_CP1_CI_AS NULL, 
 [ref] [nvarchar](max) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 [source] [nvarchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 [sig] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 [adv] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 [patch] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL, 
 [prodName] [nvarchar](25) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 [versionNum] [nvarchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 [preVersion] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS 
NULL, 
 [edition] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL 
) ON [PRIMARY] 
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GO 
SET ANSI_PADDING OFF 
 
 
-- ------------Parse Entry--------------------- 
 
-- to be used by the sp_xml_prepared document to shred the nvd xml file 
DECLARE @idoc int 
DECLARE @doc xml 
 
-- Get the nvd xml content for parsing 
-- note that set @ doc accepts any valid expression, a select 
statement had to be put in parenthesis to work 
set @doc = (select XmlCol from dbo.nvdtmp)  
 
-- create and internal representation of the XML document 
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc 
 
-- Use OPENXML to provide rowset consisting of entries for nvd 
insert entry 
select * from OPENXML(@idoc, '/nvd/entry') 
 with entry 
 
EXEC sp_xml_removedocument @idoc 

 

------------------------------- Parse EntryDesc --------------------- 
use ssram 
-- to be used by the sp_xml_prepared document to shred the nvd xml file 
DECLARE @idoc int 
DECLARE @doc xml 
 
-- Get the nvd xml content for parsing 
-- note that set @ doc accepts any valid expression, a select 
statement had to be  
-- put in parenthesis to work 
set @doc = (select top 1 XmlCol from dbo.nvdtmp)  
 
-- create and internal representation of the XML document 
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc 
 
-- Use OPENXML to provide rowset consisting of descriptions for each 
entry in the nvd 
-- Note the use of 'with' and '../../@name to get the grandparent node 
attribute and the use 
-- of ntext 'text () ' to get the element value for the description 
insert entryDesc 
select * from OPENXML(@idoc, '/nvd/entry/desc/descript', 3) 
 with (entry_name varchar (15) '../../@name', 
    descript  ntext   'text ()', 
    source  varchar (max) '@source')   
 
EXEC sp_xml_removedocument @idoc 

 
 
-- -------------- Parse into entrySols ----------------------------- 
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use ssram 
-- to be used by the sp_xml_prepared document to shred the nvd xml file 
DECLARE @idoc int 
DECLARE @doc xml 
 
-- Get the nvd xml content for parsing 
-- note that set @ doc accepts any valid expression, a select 
statement had to be  
-- put in parenthesis to work 
-- set @doc = (select top 1 XmlCol from dbo.nvdtmp)  
set @doc = (select XmlCol from dbo.nvdtmp) 
 
-- create and internal representation of the XML document 
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc 
 
-- Use OPENXML to provide rowset consisting of descriptions for each 
entry in the nvd 
-- Note the use of 'with' and '../../@name to get the grandparent node 
attribute and the use 
-- of ntext 'text () ' to get the element value for the description 
insert entrySols 
select * from OPENXML(@idoc, '/nvd/entry/sols/sol', 3) 
 with (entry_name varchar (15) '../../@name', 
    sol  ntext   'text ()', 
    source  varchar (5) '@source')   
 
EXEC sp_xml_removedocument @idoc 

 
 
-- -------------------------Parse LossType -------------------------- 
use ssram 
-- to be used by the sp_xml_prepared document to shred the nvd xml file 
DECLARE @idoc int 
DECLARE @doc xml 
 
-- Get the nvd xml content for parsing 
-- note that set @ doc accepts any valid expression, a select 
statement had to be  
-- put in parenthesis to work 
--set @doc = (select top 1 XmlCol from dbo.nvdtmp)  
set @doc = (select XmlCol from dbo.nvdtmp)  
 
 
-- create and internal representation of the XML document 
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc 
 
 
 
-- Note use of meta property @mp:localname to get the value for the 
loss_type element   
--  for availability loss type 
insert lossType2 
 select * from OPENXML(@idoc, '/nvd/entry/loss_types/avail',9) 
  with (entry_name varchar (15) '../../@name', 
     loss_type  varchar (15) '@mp:localname', 
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     adminSP  char (1)  '@admin', 
     userSP  char (1)   '@user', 
        otherSP  char (1)  '@other')  
--  for confidentiality loss type 
insert lossType2 
 select * from OPENXML(@idoc, '/nvd/entry/loss_types/conf',9) 
  with (entry_name varchar (15) '../../@name', 
     loss_type  varchar (15) '@mp:localname', 
     adminSP  char (1)  '@admin', 
     userSP  char (1)   '@user', 
        otherSP  char (1)  '@other')   
 
--  for integrity loss type 
insert lossType2 
 select * from OPENXML(@idoc, '/nvd/entry/loss_types/int',9) 
  with (entry_name varchar (15) '../../@name', 
     loss_type  varchar (15)  '@mp:localname', 
     adminSP  char (1)  '@admin', 
     userSP  char (1)   '@user', 
        otherSP  char (1)  '@other')   
 
--  for security protection loss type 
insert lossType2 
 select * from OPENXML(@idoc, '/nvd/entry/loss_types/sec_prot',9) 
  with (entry_name varchar (15) '../../@name', 
     loss_type  varchar (15)  '@mp:localname', 
     adminSP  char (1)  '@admin', 
     userSP  char (1)   '@user', 
        otherSP  char (1)  '@other')   
 
-- 
---- admin attribute for security protection loss type 
--update lossType2 
--set adminSP = LS.adminSP 
--from 
--( 
-- select * from OPENXML(@idoc, '/nvd/entry/loss_types/sec_prot', 3) 
--  with (entry_name varchar (15) '../../@name', 
--     adminSP  nchar (10)  '@admin')  
--) as LS 
--where lossType2.entry_name = LS.entry_name 
-- 
---- user attribute for security protection loss type 
--update lossType2 
--set userSP = LS.userSP 
--from 
--( 
-- select * from OPENXML(@idoc, '/nvd/entry/loss_types/sec_prot', 3) 
--  with (entry_name varchar (15) '../../@name', 
--     userSP  nchar (10)  '@user')  
--) as LS 
--where lossType2.entry_name = LS.entry_name 
-- 
---- other attribute for security protection loss type 
--update lossType2 
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--set userSP = LS.userSP 
--from 
--( 
-- select * from OPENXML(@idoc, '/nvd/entry/loss_types/sec_prot', 3) 
--  with (entry_name varchar (15) '../../@name', 
--     otherSP  nchar (10)  '@other')  
--) as LS 
--where lossType2.entry_name = LS.entry_name 
-- 
 
 
 
 
EXEC sp_xml_removedocument @idoc 
 
 

 
-- -------------------Parse Vuln Types------------------------------- 
 
use ssram 
-- to be used by the sp_xml_prepared document to shred the nvd xml file 
DECLARE @idoc int 
DECLARE @doc xml 
 
-- Get the nvd xml content for parsing 
-- note that set @ doc accepts any valid expression, a select 
statement had to be  
-- put in parenthesis to work 
--set @doc = (select top 1 XmlCol from dbo.nvdtmp)  
set @doc = (select XmlCol from dbo.nvdtmp)  
 
 
-- create and internal representation of the XML document 
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc 
 
---- Use OPENXML to provide rowset consisting of descriptions for each 
entry in the nvd 
--insert vuln_types 
--select * from OPENXML(@idoc, '/nvd/entry/vuln_types', 3) 
-- with (entry_name varchar (15) '../@name', 
--    vuln_type  varchar (10)  '/access', 
--    input  varchar (5)  '/input', 
--    design varchar (10) '/design', 
--    exception varchar (10) '/exception', 
--    env  varchar (10) '/env', 
--    config varchar (10) '/config', 
--    race  varchar (10) '/race', 
--    other  varchar (10) '/other') 
 
-- update the other nodes for vuln_types 
insert vuln_types 
 select * from OPENXML(@idoc, '/nvd/entry/vuln_types/access',9) 
  with (entry_name varchar (15) '../../@name', 
     vuln_type  varchar (15) '@mp:localname', 
     input_bound char (1)  '@bound', 



  108 

     input_buffer char (1)  '@buffer' ) 
 
 
insert vuln_types 
 select * from OPENXML(@idoc, '/nvd/entry/vuln_types/input',9) 
  with (entry_name varchar (15) '../../@name', 
     vuln_type  varchar (15) '@mp:localname', 
     input_bound char (1)  '@bound', 
     input_buffer char (1)  '@buffer' ) 
 
insert vuln_types 
 select * from OPENXML(@idoc, '/nvd/entry/vuln_types/design',9) 
  with (entry_name varchar (15) '../../@name', 
     vuln_type  varchar (15) '@mp:localname', 
     input_bound char (1)  '@bound', 
     input_buffer char (1)  '@buffer' ) 
 
insert vuln_types 
 select * from OPENXML(@idoc, '/nvd/entry/vuln_types/exception',9) 
  with (entry_name varchar (15) '../../@name', 
     vuln_type  varchar (15) '@mp:localname', 
     input_bound char (1)  '@bound', 
     input_buffer char (1)  '@buffer' ) 
 
insert vuln_types 
 select * from OPENXML(@idoc, '/nvd/entry/vuln_types/env',9) 
  with (entry_name varchar (15) '../../@name', 
     vuln_type  varchar (15) '@mp:localname', 
     input_bound char (1)  '@bound', 
     input_buffer char (1)  '@buffer' ) 
 
insert vuln_types 
 select * from OPENXML(@idoc, '/nvd/entry/vuln_types/config',9) 
  with (entry_name varchar (15) '../../@name', 
     vuln_type  varchar (15) '@mp:localname', 
     input_bound char (1)  '@bound', 
     input_buffer char (1)  '@buffer' ) 
 
insert vuln_types 
 select * from OPENXML(@idoc, '/nvd/entry/vuln_types/race',9) 
  with (entry_name varchar (15) '../../@name', 
     vuln_type  varchar (15) '@mp:localname', 
     input_bound char (1)  '@bound', 
     input_buffer char (1)  '@buffer' ) 
 
insert vuln_types 
 select * from OPENXML(@idoc, '/nvd/entry/vuln_types/other',9) 
  with (entry_name varchar (15) '../../@name', 
     vuln_type  varchar (15) '@mp:localname', 
     input_bound char (1)  '@bound', 
     input_buffer char (1)  '@buffer' ) 
 
EXEC sp_xml_removedocument @idoc 

 
-- ----------------- Parse Exploit range --------------------------- 
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use ssram 
-- to be used by the sp_xml_prepared document to shred the nvd xml file 
DECLARE @idoc int 
DECLARE @doc xml 
 
-- Get the nvd xml content for parsing 
-- note that set @ doc accepts any valid expression, a select 
statement had to be  
-- put in parenthesis to work 
--set @doc = (select top 1 XmlCol from dbo.nvdtmp)  
set @doc = (select XmlCol from dbo.nvdtmp)  
 
-- create and internal representation of the XML document 
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc 
 
-- Use OPENXML to provide rowset consisting of the vulnerabilty range 
for each entry in the nvd 
--insert range 
--select * from OPENXML(@idoc, '/nvd/entry/range', 3) 
-- with (entry_name  varchar (15) '../@name', 
--    local    nchar (1)  'local', 
--    local_network  nchar (1)  'local_network', 
--    network   nchar (1)  'network', 
--    user_init   nchar (1)  'user_init') 
-- 
 
 
-- update the local nodes for range -- locally exploitable range 
insert range 
 select * from OPENXML(@idoc, '/nvd/entry/range/local',9) 
  with (entry_name varchar (15) '../../@name', 
     exploit_range  varchar (15) '@mp:localname') 
 
--  for local network exploitable range 
insert range 
 select * from OPENXML(@idoc, '/nvd/entry/range/local_network',9) 
  with (entry_name varchar (15) '../../@name', 
     exploit_range  varchar (15) '@mp:localname') 
 
 
--  for remote exploitable range 
insert range 
 select * from OPENXML(@idoc, '/nvd/entry/range/remote',9) 
  with (entry_name varchar (15) '../../@name', 
     exploit_range  varchar (15) '@mp:localname') 
 
 
--  for user intiated exploit - where user accesses the attacker 
insert range 
 select * from OPENXML(@idoc, '/nvd/entry/range/user_init',9) 
  with (entry_name varchar (15) '../../@name', 
     exploit_range  varchar (15) '@mp:localname') 
 
 
EXEC sp_xml_removedocument @idoc 
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-- ------------------ Parse ref node ------------- 
 
use ssram 
-- to be used by the sp_xml_prepared document to shred the nvd xml file 
DECLARE @idoc int 
DECLARE @doc xml 
 
-- Get the nvd xml content for parsing 
-- note that set @ doc accepts any valid expression, a select 
statement had to be  
-- put in parenthesis to work 
--set @doc = (select top 1 XmlCol from dbo.nvdtmp)  
set @doc = (select XmlCol from dbo.nvdtmp)  
----Used to see what the contents would be like 2/5/08  
---- may have to do a nested select or join it with itself to remove 
duplicates 
----EXEC sp_xml_preparedocument @idoc OUTPUT, @doc 
---- 
---- 
----select * from OPENXML(@idoc, '/nvd/entry/refs/ref', 3) 
---- with (entry_name varchar (15) '../../@name', 
----    ref   nvarchar(max) 'text ()', 
----    source  nvarchar (50) '@source', 
----    url   nvarchar (100) '@url', 
----    sig   nchar (1)  '@sig', 
----    adv   nchar (1)  '@adv', 
----    patch   nchar (1)  '@patch')  
 
-- create and internal representation of the XML document 
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc 
 
-- USED TO SHRED INTO TABLE 
-- Use OPENXML to provide rowset consisting of external references for 
each entry in the nvd 
-- Note the use of 'with' and '../../@name to get the grandparent node 
attribute and the use 
-- of ntext 'text () ' to get the element value for the description 
insert refs 
select * from OPENXML(@idoc, '/nvd/entry/refs/ref', 3) 
 with (entry_name varchar (15) '../../@name', 
    ref   nvarchar(max) 'text ()', 
    source  nvarchar (50) '@source', 
    url   nvarchar (100) '@url', 
    sig   nchar (1)  '@sig', 
    adv   nchar (1)  '@adv', 
    patch   nchar (1)  '@patch')   
 
EXEC sp_xml_removedocument @idoc 
 
 
 

use ssram 
-- to be used by the sp_xml_prepared document to shred the nvd xml file 
DECLARE @idoc int 
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DECLARE @doc xml 
 
-- Get the nvd xml content for parsing 
-- note that set @ doc accepts any valid expression, a select 
statement had to be  
-- put in parenthesis to work 
set @doc = (select top 1 XmlCol from dbo.nvdtmp)  
 
-- create and internal representation of the XML document 
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc 
 
-- Use OPENXML to provide rowset consisting of software (product and 
versions)affected by each entry in the nvd 
-- Note the use of 'with' and '../../../@name to get the great-
grandparent node (if it works)attribute and the use 
insert vuln_soft 
select distinct * from OPENXML(@idoc, '/nvd/entry/vuln_soft/prod/vers', 
3) 
 with (entry_name varchar (15) '../../../@name', 
    prodName   nvarchar (25)  '../@name', 
    prodVendor  nvarchar (50) '../@vendor', 
    versionNum  nvarchar (15) '@num', 
    preVersion  nchar (1) '@prev', 
    edition   nchar (1) '@edition')   
 
EXEC sp_xml_removedocument @idoc 
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Appendix A-4 – Validation of Data Upload 

This appendix shows the entries that were used to validate that the NVD XML data were 

parsed and loaded correctly into SSRAM 

Records Validated 

Record Number Actual File NVDtmp File 

1- CVE-2006-0948 CVE-2006-0948 

5 CVE-2006-3124 CVE-2006-3124 

25 CVE-2006-4257 CVE-2006-4257 

45 CVE-2006-4277 CVE-2006-4277 

65 CVE-2006-4298 CVE-2006-4298 

85 CVE-2006-4319 CVE-2006-4319 

105 CVE-2006-4349 CVE-2006-4349 

125 CVE-2006-4369 CVE-2006-4369 

Last CVE-2006-4380 CVE-2006-4380 
Table 20 - Data Entry Validation Entries 

At the end of the first round of validation, we found out that our representation of the loss 

type and vulnerability type nodes did not adequately reflect the different types of security 

protection loss and input vulnerabilities.  As such, additional fields were added to the 

loss_type and vuln_type tables and parsing script corrected to reflect the changes made. 

We compared again for the previous data and 7 additional records given below to confirm 

that the data was uploaded correctly. 

 

Record Number Actual File NVDtmp File 

2 CVE-2006-2122 CVE-2006-2122 

22 CVE-2006-4254 CVE-2006-4254 

42 CVE-2006-4274 CVE-2006-4274 

62 CVE-2006-4295 CVE-2006-4295 

82 CVE-2006-4316 CVE-2006-4316 

102 CVE-2006-4346 CVE-2006-4346 

122 CVE-2006-4366 CVE-2006-4366 
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Appendix B-1 – Creating Term Vector  

 
We felt that the description attribute of each entry had information that would help in 

clustering NVD data.  This was a non- trivial problem. In order to be able to use this 

comment-like attribute we had to create term vectors that associated terms with entries, 

so that we could look at the frequency of occurrence of those terms. To create a term 

vector so that the comment-like description of vulnerability terms could be used as part of 

the data mining process involved the following steps. 

1. Create a text mining dictionary for the vector table based on the terms in the 

description attribute for all of the entries. 

2. Build Term Vectors based on an association of entries to text mining dictionary 

terms. 

 

Creating a Text Mining Dictionary for the Vector Table 

1.1 Create a new DTS (SSIS) package 
1.2 Rename the package to BuildDictionary.dtsx 
1.3 Go to Data Flow tab and add a new Data Flow task 
1.4 In the data flow task, add a “OLE DB Source” transform 

• Connection: create a new for localhost.SSRAM 

• Table: desc 

• Columns:  

•  
1.5 Add a Data Conversion transform and connect from the OLE DB Source transform 
1.6 Add a “Term Extraction” transform and connect from the Data Conversion transform 

• Term Type: Noun and Noun Phrase 
• Score Type: TFIDF – 

TFIDF - Specify that the score is the TFIDF value of the term. The TFIDF score is the 

product of Term Frequency and Inverse Document Frequency, defined as: TFIDF of a 

Term T = (frequency of T) * log( (#rows in Input) / (#rows having T) ) 

 

• Parameters: Frequency=2, Length=10 
1.7 Add a “Sort” transform and connect it. 

• Sort “Term” in ascending order 

• Don’t pass through Score column 
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1.8 Add an “OLE DB Destination” transform and connect it. 

• Use the connection: localhost.SSRAM 

• Click “New” and name it “TermDictionary” 

• In Mappings, connect the column, “Term” 
1.9 Execute the package 

• It automatically enters into debugging mode 

• It may take a few minutes 
1.10 Stop debugging  
 

 
Build term vectors 

1.11 Create a new DTS (SSIS) package 
1.12 Rename the package to BuildTermVectors.dtsx 
1.13 Go to Data Flow tab and add a new Data Flow task 
1.14 In the data flow task, add a “OLE DB Source” transform 

• Connection: create a new for localhost.SSRAM 

• Table: entryDesc 

• Columns: entry_Name, desc only 

•  
1.15 Add a “Term Lookup” transform and connect from the previous transform 

• Reference table: TermDictionary 
1.16 Add a “Sort” transform and connect it. 

• Sort “entry_name” in ascending order, then, “Term” in ascending order, no 
duplicates 
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1.17 Add an “OLE DB Destination” transform and connect it. 

• Use the connection: localhost.TDM 

• Click “New” and name it “TermVectors” 

• In Mappings, make sure to connect all columns, “Term”, “Frequency”, “ID” 
1.18 Execute the package 

• It automatically enters into debugging mode 

• It may take a few minutes 
1.19 Stop debugging  

• PassThru column: entry_name 

• Lookup input column: descript 
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Appendix B-2 – Determining Clustering Algorithm 

This appendix shows the process of preparing the data for clustering and setting up the 

clustering algorithm. 

 
o Create a new prepareSampleData by splitting the data for training and 

testing.  In our case, we used those entries reported between 1996 through 
2001 for training and created the test data as those entries reported in 
2002. 

�  
o Setup new DataSourceView to be used for Clustering 

 
o Create clustering data mining structure with and without description 

components 
� With Description 

• Following Fields suggested 
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•  
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• Created 4 Clustering using EM algorithm with 10,8,6 and 4 nodes. 
o The X-axis of the chart represents the percentage of the test dataset that is 

used to compare the predictions 
o the Y-axis now represents the percentage of predictions that are correct. 
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o  

o  
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�  

�  
� With NVDCL-EM4  consistently underperforming the others, it was replaced with a 

KMeans algorithm for further comparison 
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�  

�  

The K-Means algorithm regardless of number of nodes used had the same score and 

population predicted as correct were the same, so it did not matter which one we used. 
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The KMeans models consistently underperformed the EM models – 
Choosing the EM-8 models. 
 

o Without Description 
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o  

o  
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Processing time Clustering with Description Vector 

 

We looked at the processing time for clustering given the description vector, given all of 

the algorithms, it took 56 seconds. 
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Appendix B-3 – Query for Identifying Clusters in Training Data 
 

The following query was run on the analysis server to predict and assign clusters to each 

entry. 

 
SELECT 
  t.[name], 
  t.[discovered], 
  t.[published], 
  t.[cvss_score], 
  t.[loss_type], 
  t.[adminSP], 
  t.[userSP], 
  t.[otherSP], 
  t.[vuln_type], 
  t.[input_bound], 
  t.[input_buffer], 
  t.[exploit_range], 
  t.[ref], 
  t.[source], 
  t.[sig], 
  t.[adv], 
  t.[patch], 
  t.[prodName], 
  t.[versionNum], 
  t.[preVersion], 
  t.[edition], 
  (Cluster()) as 
[ClusterNode], 
  (ClusterProbability()) as 
[ClusterProbability] 
From 
  [NVDCL-EM-10] 
PREDICTION JOIN 
  SHAPE { 
  OPENQUERY([SSRAM], 
    'SELECT 
      [name], 
      [discovered], 
      [published], 
      [cvss_score], 
      [loss_type], 
      [adminSP], 
      [userSP], 
      [otherSP], 
      [vuln_type], 
      [input_bound], 
      [input_buffer], 
      [exploit_range], 
      [ref], 
      [source], 

      [sig], 
      [adv], 
      [patch], 
      [prodName], 
      [versionNum], 
      [preVersion], 
      [edition] 
    FROM 
      [dbo].[TrainingData_96_01] 
    ORDER BY 
      [name]')} 
  APPEND  
  ({OPENQUERY([SSRAM], 
    'SELECT 
      [Term], 
      [Frequency], 
      [entry_name] 
    FROM 
      [dbo].[TermVectors] 
    ORDER BY 
      [entry_name]')} 
    RELATE 
      [name] TO [entry_name]) 
    AS 
      [TermVectors] AS t 
ON 
  [NVDCL-EM-10].[Discovered] = 
t.[discovered] AND 
  [NVDCL-EM-10].[Published] = 
t.[published] AND 
  [NVDCL-EM-10].[Cvss Score] = 
t.[cvss_score] AND 
  [NVDCL-EM-10].[Loss Type] = 
t.[loss_type] AND 
  [NVDCL-EM-10].[Admin SP] = 
t.[adminSP] AND 
  [NVDCL-EM-10].[User SP] = 
t.[userSP] AND 
  [NVDCL-EM-10].[Other SP] = 
t.[otherSP] AND 
  [NVDCL-EM-10].[Vuln Type] = 
t.[vuln_type] AND 
  [NVDCL-EM-10].[Input Bound] = 
t.[input_bound] AND 
  [NVDCL-EM-10].[Input Buffer] = 
t.[input_buffer] AND 
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  [NVDCL-EM-10].[Exploit 
Range] = t.[exploit_range] 
AND 
  [NVDCL-EM-10].[Source] = 
t.[source] AND 
  [NVDCL-EM-10].[Sig] = 
t.[sig] AND 
  [NVDCL-EM-10].[Adv] = 
t.[adv] AND 
  [NVDCL-EM-10].[Patch] = 
t.[patch] AND 
  [NVDCL-EM-10].[Prod Name] = 
t.[prodName] AND 

  [NVDCL-EM-10].[Version Num] = 
t.[versionNum] AND 
  [NVDCL-EM-10].[Pre Version] = 
t.[preVersion] AND 
  [NVDCL-EM-10].[Edition] = 
t.[edition] AND 
  [NVDCL-EM-10].[Term 
Vectors].[Term] = 
t.[TermVectors].[Term] AND 
  [NVDCL-EM-10].[Term 
Vectors].[Frequency] = 
t.[TermVectors].[Frequency]

 
Which effectively gives a result as follows that is stored in a table. 
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Appendix B-4 – Classified Data Matrix 

Classification models are evaluated based on the number of test records that they 

correctly and incorrectly predict.  Columns correspond to the actual values and rows 

depict the predicted values.  The metric to measure the performance of each model – 

Accuracy, defined as follows 

ionsrofpredictTotalNumbe

edictionsrrectNumberofco
Accuracy

Pr
=

 

The rest of this appendix shows the confusion matrix used to determine the accuracy of 

the classification models. 

Classifier without Description 
Counts for DT 
ClusterClassifier 
on [Cluster 
Node] 

Classification Confusion Matrix 
  

 Predicted 

Cluster 
1 
(Actual) 

Cluster 
6 
(Actual) 

Cluster 
4 
(Actual) 

Cluster 
3 
(Actual) 

Cluster 
8 
(Actual) 

Cluster 
5 
(Actual) 

Cluster 
7 
(Actual) 

Cluster 
2 
(Actual) 

  Cluster 1 2708 5 0 6 42 4 0 102 

  Cluster 6 767 1243 0 256 2 162 0 54 

  Cluster 4 31 13 167 2 41 23 71 2 

  Cluster 3 0 48 0 117 0 5 7 79 

  Cluster 8 0 0 0 0 0 0 0 0 

  Cluster 5 32 92 9 18 0 1099 13 91 

  Cluster 7 47 6 394 5 289 2 762 25 

  Cluster 2 22 24 5 592 6 17 6 657 

Accuracy .66          

          

Counts for NB 
ClusterClassifier 
on [Cluster 
Node]           

  Predicted 

Cluster 
1 
(Actual) 

Cluster 
6 
(Actual) 

Cluster 
4 
(Actual) 

Cluster 
3 
(Actual) 

Cluster 
8 
(Actual) 

Cluster 
5 
(Actual) 

Cluster 
7 
(Actual) 

Cluster 
2 
(Actual) 

  Cluster 1 3158 496 60 145 74 164 41 157 

  Cluster 6 307 680 1 89 0 63 2 29 

  Cluster 4 35 14 257 5 75 32 197 6 

  Cluster 3 19 129 10 513 0 7 4 103 

  Cluster 8 2 0 9 0 17 0 15 6 

  Cluster 5 47 89 6 15 2 1017 7 59 
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  Cluster 7 28 2 226 8 202 2 578 22 

  Cluster 2 11 21 6 221 10 27 15 628 

Accuracy 0.67          
Counts for NN 
ClusterClassifier 
on [Cluster 
Node]           

  Predicted 

Cluster 
1 
(Actual) 

Cluster 
6 
(Actual) 

Cluster 
4 
(Actual) 

Cluster 
3 
(Actual) 

Cluster 
8 
(Actual) 

Cluster 
5 
(Actual) 

Cluster 
7 
(Actual) 

Cluster 
2 
(Actual) 

  Cluster 1 3052 260 46 77 70 149 31 137 

  Cluster 6 421 889 0 154 0 73 1 28 

  Cluster 4 34 3 207 3 68 32 138 7 

  Cluster 3 11 146 6 566 2 5 3 174 

  Cluster 8 0 1 6 1 2 1 4 1 

  Cluster 5 50 89 16 15 3 1027 11 70 

  Cluster 7 27 10 285 10 226 2 662 29 

  Cluster 2 12 33 9 170 9 23 9 564 

Accuracy 0.86          

 

Classifier with Description 

Classification Confusion Matrix 

Counts for DTCluster 
Classifier with Desc on 
[Cluster Node]                   

  Predicted 
Cluster 1 
(Actual) 

Cluster 6 
(Actual) 

Cluster 4 
(Actual) 

Cluster 3 
(Actual) 

Cluster 8 
(Actual) 

Cluster 5 
(Actual) 

Cluster 7 
(Actual) 

Cluster 2 
(Actual) 

  Cluster 1 2708 5 0 6 42 4 0 102 

  Cluster 6 774 1251 0 256 2 212 0 54 

  Cluster 4 0 0 0 0 0 0 0 0 

  Cluster 3 0 0 0 0 0 0 0 0 

  Cluster 8 0 0 0 0 0 0 0 0 

  Cluster 5 32 72 0 18 0 882 3 95 

  Cluster 7 79 31 570 7 330 209 843 40 

  Cluster 2 14 72 5 709 6 5 13 719 

Accuracy 0.63                 

Counts for NB 
ClusterClassifier with 
Desc on [Cluster Node]           

  Predicted 
Cluster 1 
(Actual) 

Cluster 6 
(Actual) 

Cluster 4 
(Actual) 

Cluster 3 
(Actual) 

Cluster 8 
(Actual) 

Cluster 5 
(Actual) 

Cluster 7 
(Actual) 

Cluster 2 
(Actual) 

  Cluster 1 3158 409 0 105 44 163 3 129 

  Cluster 6 339 809 0 153 0 64 0 33 

  Cluster 4 31 13 185 2 41 23 71 2 

  Cluster 3 3 83 2 325 0 7 0 83 

  Cluster 8 0 0 0 0 0 0 0 0 

  Cluster 5 12 84 9 16 0 1033 10 79 

  Cluster 7 47 6 376 9 289 2 769 29 

  Cluster 2 17 27 3 386 6 20 6 655 

Accuracy 0.68                 
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Counts for NN 
ClusterClassifier 
with Desc on 
[Cluster Node]           

  Predicted 

Cluster 
1 
(Actual) 

Cluster 
6 
(Actual) 

Cluster 
4 
(Actual) 

Cluster 
3 
(Actual) 

Cluster 
8 
(Actual) 

Cluster 
5 
(Actual) 

Cluster 
7 
(Actual) 

Cluster 
2 
(Actual) 

  Cluster 1 3482 880 100 196 83 205 25 155 

  Cluster 6 33 347 0 41 0 22 0 2 

  Cluster 4 0 0 4 0 0 0 0 0 

  Cluster 3 2 63 8 287 0 5 15 43 

  Cluster 8 0 0 0 0 0 0 0 0 

  Cluster 5 25 85 12 16 0 1043 13 85 

  Cluster 7 48 11 448 7 291 13 793 22 

  Cluster 2 17 45 3 449 6 24 13 703 

Accuracy 0.65                 
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Appendix B-5 – Validation of Clustering Algorithms 

  
Validation Statistics of all models for Training Data 1996-2001.  In order that the 

cohesion of each model could be determined we looked at the average score for each 

cluster and the standard deviation.  This allowed us to see the variability around the 

mean.  We also looked at the range of scores within the clusters by getting the minimum 

(Min) and maximum (Max) score.  The wtd scores were based on the growth rate of the 

scores as explained in Chapter 3. 

EM8Clusters - 
All           

  Count 
Avg 
Probability 

Std 
Deviation 

Avg 
Score 

Max 
Score 

Min 
Score 

Wtd 
StdDev 

Wtd 
Avg 
Score 

Wtd 
Max 

Wtd 
Min 

Cluster 1 22717 0.81 2.08 7.44 10 1.6 2.25 6.09 10 0.91 

Cluster 2 7816 0.54 2.2 5.43 10 1.9 1.43 2.89 10 0.95 

Cluster 3 7296 0.51 2.19 5.16 10 1.9 1.64 2.66 10 1.06 

Cluster 4 3856 0.51 2.39 5.01 10 2.3 1.52 2.46 10 0.83 

Cluster 5 9306 0.62 2.33 4.75 10 2.3 1.84 3.02 10 1.02 

Cluster 6 514 0.9 0 7 7 7 0.61 6.29 7 5.59 

EM8Clusters           

Probability 
 >.8 Count 

Avg 
Probability 

Std 
Deviation 

Avg 
Score 

Max 
Score 

Min 
Score 

Wtd 
StdDev 

Wtd 
Avg 
Score 

Wtd 
Max 

Wtd 
Min 

Cluster 1 14101 0.94 1.67 7.69 10 1.6 1.64 7.23 10 1.6 

Cluster 2 687 0.97 2.26 5.21 10 2.3 2.19 5.03 10 1.86 

Cluster 3 1011 0.96 2.4 4.58 10 1.9 2.29 4.39 10 1.59 

Cluster 4 631 0.99 2.15 4.51 10 2.3 2.11 4.45 10 1.9 

Cluster 5 2143 0.86 2.31 6.32 10 2.3 1.88 5.35 10 1.85 

Cluster 6 292 0.97 0 7 7 7 0.01 6.82 7 6.82 

EM10Clusters           

All Count 
Avg 
Probability 

Std 
Deviation 

Avg 
Score 

Max 
Score 

Min 
Score 

Wtd 
StdDev 

Wtd 
Avg 
Score 

Wtd 
Max 

Wtd 
Min 

Cluster 1 9468 0.65 2.02 4.38 10 1.9 1.34 2.78 10 0.72 

Cluster 2 11350 0.82 1.24 6.75 10 1.9 1.32 5.51 10 0.9 

Cluster 3 11688 0.86 1.59 8.89 10 1.6 2.23 7.72 10 1.03 

Cluster 4 6940 0.55 1.91 6.04 10 1.9 1.34 3.23 10 1.01 

Cluster 5 4869 0.51 1.91 4.6 10 2.3 1.35 2.38 10 1.2 

Cluster 6 6649 0.74 1.73 3.9 10 2.3 1.25 2.82 10 1.12 

Cluster 7 541 0.87 0 7 7 7 0.69 6.11 7 5.34 
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EM10Clusters           

>0.80 Count 
Avg 
Probability 

Std 
Deviation 

Avg 
Score 

Max 
Score 

Min 
Score 

Wtd 
StdDev 

Wtd 
Avg 
Score 

Wtd 
Max 

Wtd 
Min 

Cluster 1 1700 0.9 1.61 3.8 10 1.9 1.71 3.48 10 1.86 

Cluster 2 8351 0.9 0.81 6.74 10 1.9 0.78 6.09 10 1.61 

Cluster 3 8761 0.94 1.34 9.29 10 1.6 1.46 8.72 10 1.59 

Cluster 4 860 0.94 2.27 4.41 10 1.9 2.17 4.13 10 1.57 

Cluster 5 429 0.98 1.91 4.45 10 2.3 1.87 4.35 10 2.25 

Cluster 6 2990 0.86 1.54 3.28 10 2.3 1.48 2.85 10 1.85 

Cluster 7 300 0.96 0 7 7 7 0.02 6.73 7 6.73 

           

EM12Clusters           

All Count 
Avg 
Probability 

Std 
Deviation 

Avg 
Score 

Max 
Score 

Min 
Score 

Wtd 
StdDev 

Wtd 
Avg 
Score 

Wtd 
Max 

Wtd 
Min 

Cluster 1 15406 0.85 1.79 8.08 10 1.6 2.3 6.86 10 1.49 

Cluster 2 6655 0.73 2.07 4.18 10 2.3 1.33 2.87 10 0.96 

Cluster 3 2072 0.5 1.93 4.2 10 2.3 1.95 2.26 10 0.61 

Cluster 4 2324 0.56 2.79 7.23 10 1.9 1.68 3.51 10 1.16 

Cluster 5 4484 0.5 1.06 3.57 10 1.9 1.17 1.81 10 0.82 

Cluster 6 5843 0.53 1.37 6.71 10 1.9 0.91 3.46 10 1.19 

Cluster 7 5191 0.53 2.36 5.11 10 2.3 1.58 2.74 10 0.89 

Cluster 8 9016 0.41 1.97 5.87 10 2.7 1.17 2.48 9.98 0.84 

Cluster 9 514 0.84 0 7 7 7 0.87 5.88 7 4.89 

           

EM12Clusters           

>0.8 Count 
Avg 
Probability 

Std 
Deviation 

Avg 
Score 

Max 
Score 

Min 
Score 

Wtd 
StdDev 

Wtd 
Avg 
Score 

Wtd 
Max 

Wtd 
Min 

Cluster 1 11589 0.96 1.73 8.1 10 1.6 1.69 7.81 10 1.6 

Cluster 2 3107 0.9 1.56 3.31 10 2.3 1.56 3.03 10 1.85 

Cluster 3 471 0.97 2.22 4.85 10 2.3 2.14 4.71 10 2.14 

Cluster 4 673 0.95 2.44 4.9 10 1.9 2.4 4.7 10 1.55 

Cluster 5 518 0.99 1.93 4.15 10 1.9 1.9 4.11 10 1.9 

Cluster 6 435 0.9 1.25 5.84 10 1.9 1.29 5.26 10 1.89 

Cluster 7 266 0.98 2.53 4.81 10 2.3 2.54 4.74 10 2.23 

Cluster 8 71 0.95 2.16 5.62 10 2.7 2.06 5.35 9.98 2.69 

Cluster 9 292 0.95 0 7 7 7 0.02 6.64 7 6.64 
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KM10Clusters           

All Count 
Avg 
Probability 

Std 
Deviation 

Avg 
Score 

Max 
Score 

Min 
Score 

Wtd 
StdDev 

Wtd 
Avg 
Score 

Wtd 
Max 

Wtd 
Min 

Cluster 1 12020 1 1.19 7.01 10 2.3 1.19 7.01 10 2.3 

Cluster 10 2126 1 1.75 4.14 10 1.9 1.75 4.14 10 1.9 

Cluster 2 12774 1 1.64 8.68 10 1.9 1.64 8.68 10 1.9 

Cluster 3 6422 1 0.55 3.38 10 1.9 0.55 3.38 10 1.9 

Cluster 4 2642 1 0.77 3.41 10 1.9 0.77 3.41 10 1.9 

Cluster 5 4423 1 0.73 6.99 10 2.3 0.73 6.99 10 2.3 

Cluster 6 3136 1 0.62 2.41 10 1.9 0.62 2.41 10 1.9 

Cluster 7 2257 1 1.02 5.25 10 1.6 1.02 5.25 10 1.6 

Cluster 8 3522 1 2 4.64 10 1.9 2 4.64 10 1.9 

Cluster 9 2183 1 2.04 6.78 10 2.3 2.04 6.78 10 2.3 

 

Training Data  by Clusters (1996 - 2001) 

With 95% 
Confidence 
Interval 

NumInCluster CVSS_Score StdDev 
Margin of 
Error Cluster Lower Upper 

1395 7.9726 1.7142 0.09 Cluster 1 7.8826 8.0625 

867 6.7191 1.4718 0.098 Cluster 6 6.6211 6.817 

338 6.1498 2.6781 0.2855 Cluster 8 5.8643 6.4353 

651 5.5779 2.266 0.1741 Cluster 2 5.4038 5.752 

573 4.8681 2.1551 0.1765 Cluster 3 4.6916 5.0445 

431 4.6508 2.4416 0.2305 Cluster 4 4.4203 4.8813 

536 4.384 2.1133 0.1789 Cluster 5 4.2051 4.5629 

549 3.3 0 0 Cluster 7 3.3 3.3 
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Appendix B-6 – Processing Time for Classifiers 
 

 
Figure 37 - Processing Time for Classification Algorithm 

<Batch xmlns="http://schemas.microsoft.com/analysisservices/2003/engine"> 
  <Parallel> 
    <Process xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
      <Object> 
        <DatabaseID>SSRAM22608</DatabaseID> 
        <MiningStructureID>Classify Clusters</MiningStructureID> 
      </Object> 
      <Type>ProcessFull</Type> 
      <WriteBackTableCreation>UseExisting</WriteBackTableCreation> 
    </Process> 
  </Parallel> 
</Batch> 
 Processing Mining Structure 'ClassifyClustersWoDescription' completed successfully. 
  Start time: 7/22/2008 7:53:20 AM; End time: 7/22/2008 7:54:00 AM; Duration: 0:00:40 
  Processing Mining Model 'NB ClusterClassifier' completed successfully. 
  Start time: 7/22/2008 7:53:27 AM; End time: 7/22/2008 7:53:30 AM; Duration: 0:00:03 
  Processing Mining Model 'DT ClusterClassifier' completed successfully. 
  Start time: 7/22/2008 7:53:28 AM; End time: 7/22/2008 7:53:33 AM; Duration: 0:00:05 
  Processing Mining Model 'NN ClusterClassifier' completed successfully. 
  Start time: 7/22/2008 7:53:28 AM; End time: 7/22/2008 7:54:00 AM; Duration: 0:00:32 
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Appendix B-7 – Calculating CVSS ‘base’ Score 

 
An example of how the CVSS base score is derived – given the entry in Figure 22 - 

CVSS base Score and Vector 

. 

 BASE METRIC  EVALUATION SCORE 
 -------------------------------------------------------------------  
 Access Vector [Local] (0.395) 
 Access Complexity [Low] (0.71) 
 Authentication [None] (0.704) 
 Confidentiality Impact [Complete] (0.66) 
 Integrity Impact [Complete] (0.66) 
 Availability Impact [Complete] (0.66) 
 -------------------------------------------------------------------  
 BASE FORMULA  BASE SCORE 
 -------------------------------------------------------------------  
 
 Impact = 10.41*(1-(0.34*0.34*0.4)) == 9.83 
 Exploitability = 20*0.395*0.71*0.704 == 3.95 
 f(Impact) = 1.176 
 Base Score = ((0.6*9.83)+(0.4*3.95)–1.5)*1.176 
 
    == (7.09) 
 
Note that the score values above are derived from the algorithm shown below from 
[First 2005] 

BaseScore = round_to_1_decimal(((0.6*Impact)+(0.4*Exploitability)–
1.5)*f(Impact)) 
 
Impact = 10.41*(1-(1-ConfImpact)*(1-IntegImpact)*(1-AvailImpact)) 
 
Exploitability = 20* AccessVector*AccessComplexity*Authentication 
 
f(impact)= 0 if Impact=0, 1.176 otherwise 
 
AccessVector     = case AccessVector of 
                        requires local access: 0.395 
                        adjacent network accessible: 0.646 
                        network accessible: 1.0 
 
AccessComplexity = case AccessComplexity of 
                        high: 0.35 
                        medium: 0.61 
                        low: 0.71 
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Authentication   = case Authentication of 
                        requires multiple instances of authentication: 
0.45 
                        requires single instance of authentication: 
0.56 
                        requires no authentication: 0.704 
 
ConfImpact       = case ConfidentialityImpact of 
                        none:             0.0 
                        partial:          0.275 
                        complete:         0.660 
 
IntegImpact      = case IntegrityImpact of 
                        none:             0.0 
                        partial:          0.275 
                        complete:         0.660 
 
AvailImpact      = case AvailabilityImpact of 
                        none:             0.0 
                        partial:          0.275 
                        complete:         0.660 
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Appendix C-1 – Stored Procedure for Calculating Impact Score 
Attributes 

This appendix shows the code for calculating impact score attributes 
 
set ANSI_NULLS ON 
set QUOTED_IDENTIFIER ON 
go 
 
 
 
-- ============================================= 
-- Author:  Idongesit Mkpong-Ruffin 
-- Create date: 4/14/2008 
-- Description: Calculate impact factor values 
-- ============================================= 
ALTER PROCEDURE [dbo].[spCalcImpactFactors]  
 -- Add the parameters for the stored procedure here 
( @endDate datetime = '01/01/2001',  
 @timePeriods int = 12, 
 @clusterNode nvarchar(155)='Cluster 1',  
 @weightedAvgScore  float OUTPUT,  
 @avgScoreGrowth float OUTPUT, 
 @avgFreqGrowth float OUTPUT, 
 @SumResult int OUTPUT) -- to see if i can get the information 
returned 
 
AS 
BEGIN 
 -- SET NOCOUNT ON added to prevent extra result sets from 
 -- interfering with SELECT statements. 
 SET NOCOUNT ON; 
 
     -- Declare the return variable here 
 --DECLARE @SumResult int  
  
 -- Temporary table to store interim data for computation 
 
 
  DECLARE @tmpClusterInfo table(timeGap int, avgScore float, 
reportedEntries float) 
   
  INSERT INTO @tmpClusterInfo(timeGap, avgScore, 
reportedEntries) 
  select datediff(month, published, @endDate)as timeGap, 
avg(cvss_score) as avgScore, count(distinct name) as reportedEntries 
  
  from trainingdatawclusters96_01 
  where  
   (datediff(month, published, @endDate) > 0)and 
   (datediff(month, published, @endDate) <= 
@timePeriods)and 
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   clusternode = @clusterNode  
  group by datediff(month, published, @endDate) 
  order by timegap 
 
-- Total Entries 
--  select sum(reportedEntries) from @tmpClusterInfo as 
TotalEntries --debug 
  set @SumResult = (select sum(reportedEntries) from 
@tmpClusterInfo) 
 
 --- get the total entries for coefficientSummation 
  set @weightedAvgScore = (select 
round(sum(((reportedEntries)/@sumResult)*avgScore),2) 
   from @tmpClusterInfo) 
 
-- Score Growth 
  -- get the avgGrowth rate of Score for this period within 
cluster 
 
  set @avgScoreGrowth = (select 
round(avg(((nextRow.avgScore/curRow.avgScore)-1)),2) as avgScoreGrowth 
   from @tmpClusterInfo curRow 
   left join @tmpClusterInfo nextRow 
   on curRow.timegap = nextRow.timeGap-1) 
 
-- Frequency Of Occurrence Growth 
 -- get the avgGrowth rate of Score for this period within cluster 
 
 set @avgFreqGrowth = (select 
round(avg(((nextRow.reportedEntries/curRow.reportedEntries)-1)),2)  
   from @tmpClusterInfo curRow 
   left join @tmpClusterInfo nextRow 
   on curRow.timegap = nextRow.timeGap-1) 
 
 
 -- Add the T-SQL statements to compute the return value here 
return 
 
END 
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Appendix C-2 – Stored Procedure for Determining Prioritized 
Listing 

Once each entry has been de-normalized so that component elements of the entry can be 

analyzed and assigned scores, they are aggregated to determine overall impact score for 

the entry.  This appendix shows the code used to effect this in SSRAM. 

set ANSI_NULLS ON 
set QUOTED_IDENTIFIER ON 
go 
 
 
-- ============================================= 
-- Author:  Idongesit Mkpong-Ruffin 
-- Create date:  
-- Description:  
-- ============================================= 
ALTER PROCEDURE [dbo].[spPrioritizedList]  
 -- Add the parameters for the stored procedure here 
  
AS 
BEGIN 
 -- SET NOCOUNT ON added to prevent extra result sets from 
 -- interfering with SELECT statements. 
 SET NOCOUNT ON; 
 
    -- Insert statements for procedure here 
 select distinct entryID, round(avg(predImpact),2) as PredImpact,  
 round(avg(predFreq),0) as PredFreq, round(avg(lossExpect),2) as 
LossExpect 
 
 from predictions 
 group by entryID 
 order by LossExpect desc 
END 
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Appendix C-3 – Stored Procedure for Persisting Predictions 

 
To be able to prioritize predictions requires that the results of the prediction are stored.  

This appendix shows the code use for persisting predictions. 

set ANSI_NULLS ON 
set QUOTED_IDENTIFIER ON 
go 
 
 
 
-- ============================================= 
-- Author:  Idongesit Mkpong-Ruffin 
-- Create date: 5/19/08 
-- Description: Creates persistent storage of predicted information 
-- ============================================= 
ALTER PROCEDURE [dbo].[spPredictionStore]  
 -- Add the parameters for the stored procedure here 
 @entryID varChar(30), 
 @vulnType varChar(15), 
 @lossType varChar(15), 
 @exploitRange varChar(15), 
 @clusterNode varChar(15), 
 @predImpact float, 
 @predFreq float, 
 @lossExp float 
 
AS 
BEGIN 
 -- SET NOCOUNT ON added to prevent extra result sets from 
 -- interfering with SELECT statements. 
 SET NOCOUNT ON; 
  
     -- Insert statements for procedure here 
 insert into 
Predictions(entryID,vulnType,lossType,exploitRange,clusterNode,predImpa
ct,predFreq, lossExpect) 
           
values(@entryID,@vulnType,@lossType,@exploitRange,@clusterNode,@predImp
act,@predFreq,@lossExp); 
 
  
END 



  142 

Appendix D-1 – Singleton Request Algorithm 

To validate that SSRAM could, based on loss type, vulnerability type and exploit range, 

classify and entry and by extension accurately predict CVSS score, we generated a single 

request of known clusters based on the code shown in this appendix. 

using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Text; 
using System.Windows.Forms; 
using Microsoft.AnalysisServices.AdomdClient; 
 
namespace SSRAMWinApp1 
{ 
    public partial class frmSingle : Form 
    { 
        public frmSingle() 
        { 
            InitializeComponent(); 
        } 
 
        private void linkLabel1_LinkClicked(object sender, 
LinkLabelLinkClickedEventArgs e) 
        { 
 
        } 
 
        private void label2_Click(object sender, EventArgs e) 
        { 
 
        } 
 
        private void label1_Click(object sender, EventArgs e) 
        { 
 
        } 
 
        private void Form1_Load(object sender, EventArgs e) 
        { 
           
 
        } 
 
        private void label1_Click_1(object sender, EventArgs e) 
        { 
 
        } 
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        private void btnCalc_Click(object sender, EventArgs e) 
        { 
            string strASConnString = 
SSRAMWinApp1.Properties.Settings.Default.AS_SSRAMConnectionString; 
            string strDBConnString = 
Convert.ToString(SSRAMWinApp1.Properties.Settings.Default.DB_SSRAMConne
ctionString); 
            string strClusterLbl = ""; 
            double dblPredictImpact = 0; 
            double dblPredictFreq = 0; 
            DateTime dtPredictDate; 
            int intPeriods = 0;     
 
 
            try 
            { 
                IPredictElementCluster objRequester = new 
PredictElementCluster(); 
 
                this.txtResult.Text = ""; 
 //               string strRequestCluster = 
objRequester.Command(strASConnString, this.tbVT.Text.Trim(), 
this.tbLT.Text.Trim(), this.tbER.Text.Trim()); 
                string strRequestCluster = 
objRequester.Command(strASConnString, 
this.cbVulnType.SelectedItem.ToString().Trim(),  
                                                                
this.cbLossType.SelectedItem.ToString().Trim(),  
                                                                
this.cbExploitRange.SelectedItem.ToString().Trim()); 
 
                strClusterLbl = objRequester.getClusterNode; 
                 
                ICalculateImpactFactor objRequestImpact = new 
CalcImpactFactor(); 
 
                this.txtImpactInfo.Text = "";  // to put impact factor 
and loss expectation 
                dtPredictDate = 
Convert.ToDateTime(this.dateTimePicker1.Text.Trim()); 
              // result = Int32.TryParse("3", NumberStyles.Integer, 
null, out int32Val); 
                bool blconvertPeriod = 
int.TryParse(this.txtMonths.Text, out intPeriods); 
                //bool blcp = int.TryParse(this.txtImpactInfo.Text, out  
intPeriods); 
                string strImpactInfo = 
objRequestImpact.Command(strDBConnString,dtPredictDate,intPeriods,strCl
usterLbl); 
                int intImpactLength = strImpactInfo.Length; 
                 
                //get predicted Impact 
                dblPredictImpact = objRequestImpact.getPredictedImpact; 
                dblPredictFreq = 
objRequestImpact.getPredictedOccurrences; 
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                //display results 
                this.txtResult.Text = strRequestCluster + 
strImpactInfo; 
                this.txtImpactInfo.Text = "Predicted Impact: " + 
dblPredictImpact.ToString().Trim() + "\r\n" + 
                          "Predicted Occurrence: " + 
dblPredictFreq.ToString().Trim(); 
 
            } 
 
            catch (Exception ex) 
            { 
                System.Windows.Forms.MessageBox.Show(ex.ToString()); 
 
 
                //    try 
                //    { 
                //        IPredictCustomerMDXRequester objRequester = 
new PredictCustomerMDXRequester(); 
 
                //        this.m_tbResult.Text = ""; 
                //        this.m_tbResult.Text = 
objRequester.Command(strASConnString, this.m_tbCity.Text.Trim(), 
this.m_tbContactTitle.Text.Trim()); 
                //    } 
                //    catch (Exception ex) 
                //    { 
                //       
System.Windows.Forms.MessageBox.Show(ex.ToString()); 
                //    } 
            } 
        } // btnCalcClick 
 
        private void label1_Click_2(object sender, EventArgs e) 
        { 
 
        } 
 
        private void textBox1_TextChanged(object sender, EventArgs e) 
        { 
 
        } 
 
        private void label2_Click_1(object sender, EventArgs e) 
        { 
 
        } 
 
        private void checkedListBox1_SelectedIndexChanged(object 
sender, EventArgs e) 
        { 
 
        } 
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        private void label1_Click_3(object sender, EventArgs e) 
        { 
 
        } 
 
        private void comboBox1_SelectedIndexChanged(object sender, 
EventArgs e) 
        { 
 
        } 
 
        private void comboBox1_SelectedIndexChanged_1(object sender, 
EventArgs e) 
        { 
 
        } 
 
        private void button1_Click(object sender, EventArgs e) 
        { 
            Close(); 
        } 
    } 
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Appendix D-2 – Data Table Request (Code for Load Data) 

This appendix shows the code for loading a table of de-normalized entries for 

classification and prediction of impact scores. 

using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Data.SqlClient; 
using System.Drawing; 
using System.Text; 
using System.Windows.Forms; 
using Microsoft.AnalysisServices.AdomdClient; 
 
namespace SSRAMWinApp1 
{ 
    public partial class frmTableRequest : Form 
    { 
        // Adding the ManufactureEntryDataTable 
        public static void ManufactureEntryDataTable(DataSet ds) 
        { 
            DataTable entries = new DataTable("Entries"); 
            entries.Columns.Add(new DataColumn("EntryID", 
typeof(string))); 
            entries.Columns.Add(new DataColumn("VulnType", 
typeof(string))); 
            entries.Columns.Add(new DataColumn("LossType", 
typeof(string))); 
            entries.Columns.Add(new DataColumn("ExploitRange", 
typeof(string))); 
 
            ds.Tables.Add(entries); 
 
        }// ManufactureEntryDataTable(DataSet ds) 
 
 
        // Adding the ManufacturePredictDataTable 
        public static void ManufacturePredictDataTable(DataSet ds) 
        { 
            DataTable predictions = new DataTable("Predictions"); 
            predictions.Columns.Add(new DataColumn("EntryID", 
typeof(string))); 
            predictions.Columns.Add(new DataColumn("VulnType", 
typeof(string))); 
            predictions.Columns.Add(new DataColumn("LossType", 
typeof(string))); 
            predictions.Columns.Add(new DataColumn("ExploitRange", 
typeof(string))); 
            predictions.Columns.Add(new DataColumn("EntryCluster", 
typeof(string)));            
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            predictions.Columns.Add(new DataColumn("PredictedImpact", 
typeof(double))); 
            predictions.Columns.Add(new 
DataColumn("PredictedFrequency", typeof(int))); 
            predictions.Columns.Add(new DataColumn("LossExpect", 
typeof(double))); 
 
            ds.Tables.Add(predictions); 
 
        }// ManufacturePredictDataTable(DataSet ds) 
 
        public static void ManufactureOrderedTable(DataSet ds) 
        { 
            DataTable entries = new DataTable("Ordered"); 
            entries.Columns.Add(new DataColumn("PredictedImpact", 
typeof(double))); 
            entries.Columns.Add(new DataColumn("PredictedFrequency", 
typeof(double))); 
            entries.Columns.Add(new DataColumn("LossExpection", 
typeof(double))); 
 
            ds.Tables.Add("ordered"); 
 
            // ds.Tables.Add(prioritizedPredictions); 
 
        } // ManufactureOrderedTable(DataSet ds)         
 
        public frmTableRequest() 
        { 
            InitializeComponent(); 
             
        } 
 
       
 
        private void btnLoadDta_Click(object sender, EventArgs e) 
        { 
            try 
            { 
                //// used as test data to query  - may need to change 
this to get those based on the client's choice 
                string selectQuery = "select distinct name as EntryID," 
+ 
                                     "vuln_type as VulnType,loss_type 
as LossType, exploit_range as ExploitRange " + 
                                         "from test02classifier where 
month(published) = 1" + 
                                         "and year(published) = 2002"; 
 
 
                SqlConnection dtaConnection = new 
SqlConnection(strDBConnString); 
 
                SqlDataAdapter daCmd = new SqlDataAdapter(selectQuery, 
dtaConnection); 



  148 

 
                ////ManufactureEntryDataTable(ds);  //Add the Entries 
table to the dataset 
                daCmd.Fill(ds, "Entries");      
                this.vulnEntriesDataGridView.AutoGenerateColumns = 
true; 
                this.vulnEntriesDataGridView.DataSource = ds; 
                this.vulnEntriesDataGridView.DataMember = "Entries"; 
                 
                // do I need to close the connection? 
                dtaConnection.Close(); 
 
                ManufacturePredictDataTable(ds); 
                
                                        
            }// end try 
            catch (Exception ex) 
            { 
                System.Windows.Forms.MessageBox.Show(ex.ToString()); 
 
            }//end catch 
 
 
        } 
 
        private void label1_Click(object sender, EventArgs e) 
        { 
 
        } 
 
        private void btnPredict_Click(object sender, EventArgs e) 
        { 
            string strClusterLbl = ""; 
            double dblPredProb = 0; 
 
            SqlConnection conn = new SqlConnection(strDBConnString); 
 
 
            //delete content of predictions 
            string del = "delete Predictions"; 
            SqlCommand cmdDel = new SqlCommand(del, conn); 
 
            conn.Open(); 
 
 
            cmdDel.ExecuteScalar(); 
            conn.Close(); 
 
            foreach (DataRow row in ds.Tables["Entries"].Rows) 
            { 
 
                string strVulnType = row["VulnType"].ToString(); 
                string strLossType = row["LossType"].ToString(); 
                string strExploitRange = 
row["ExploitRange"].ToString(); 
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                IPredictElementCluster objRequester = new 
PredictElementCluster(); 
                string strRequestCluster = 
objRequester.Command(strASConnString, strVulnType.Trim(), 
                                             strLossType.Trim(), 
strExploitRange.Trim()); 
                strClusterLbl = objRequester.getClusterNode; 
                dblPredProb = objRequester.getPredictProbability; 
 
                // Get the predicted values for this entry values 
                ICalculateImpactFactor objRequestImpact = new 
CalcImpactFactor(); 
 
 
                // will look at this when I get data from interface 
 
 
                dtPredictDate = 
Convert.ToDateTime(this.dateTimePicker1.Text.Trim()); 
                bool blconvertPeriod = 
int.TryParse(this.txtMonths.Text, out intPeriods); 
                string strImpactInfo = 
objRequestImpact.Command(strDBConnString, dtPredictDate, intPeriods, 
strClusterLbl); 
 
                //get predicted Impact 
                dblPredictImpact = objRequestImpact.getPredictedImpact; 
                dblPredictFreq = 
objRequestImpact.getPredictedOccurrences; 
                double dblLossExpect = Math.Round(dblPredictImpact * 
dblPredictFreq,2); 
 
                //inserting a new row with the values into the 
Predictions Table 
 
 
                DataRow predictRow = ds.Tables["Predictions"].NewRow(); 
                predictRow["EntryID"] = row["EntryID"]; 
                predictRow["VulnType"] = row["VulnType"]; 
                predictRow["LossType"] = row["LossType"]; 
                predictRow["ExploitRange"] = row["ExploitRange"]; 
                predictRow["EntryCluster"] = strClusterLbl; 
                predictRow["PredictedImpact"] = dblPredictImpact; 
                predictRow["PredictedFrequency"] = dblPredictFreq; 
                predictRow["LossExpect"] = dblLossExpect; 
 
                // used to add the new row to the prediction table 
                ds.Tables["Predictions"].Rows.Add(predictRow); 
 
                //Persist the data gotten 8/2/2008 
 
                string ins = @"insert into 
Predictions(entryID,vulnType,lossType,exploitRange,clusterNode,predImpa
ct,predFreq,lossExpect) 
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values(@entryID,@vulnType,@lossType,@exploitRange,@clusterNode,@predImp
act,@predFreq, @lossExp)"; 
 
                SqlCommand cmdIns = new SqlCommand(ins, conn); 
                // not sure if this is necessary yet   
cmdIns.CommandType = CommandType.TableDirect; 
                // assign values to the parameters given  
                SqlParameter objParameter = null; 
                objParameter = cmdIns.CreateParameter(); 
                // objParameter.Direction = 
System.Data.ParameterDirection.Input;  //changed from 
ParameterDirection.Input 
                objParameter.ParameterName = "entryID"; 
                objParameter.Value = row["EntryID"]; 
                cmdIns.Parameters.Add(objParameter); 
 
                objParameter = cmdIns.CreateParameter(); 
                //  objParameter.Direction = 
System.Data.ParameterDirection.Input;  //changed from 
ParameterDirection.Input 
                objParameter.ParameterName = "vulnType"; 
                objParameter.Value = row["VulnType"]; 
                cmdIns.Parameters.Add(objParameter); 
 
                objParameter = cmdIns.CreateParameter(); 
                //   objParameter.Direction = 
System.Data.ParameterDirection.Input;  //changed from 
ParameterDirection.Input 
                objParameter.ParameterName = "lossType"; 
                objParameter.Value = row["LossType"]; 
                cmdIns.Parameters.Add(objParameter); 
 
                objParameter = cmdIns.CreateParameter(); 
                //   objParameter.Direction = 
System.Data.ParameterDirection.Input;  //changed from 
ParameterDirection.Input 
                objParameter.ParameterName = "exploitRange"; 
                objParameter.Value = row["ExploitRange"]; 
                cmdIns.Parameters.Add(objParameter); 
 
                objParameter = cmdIns.CreateParameter(); 
                //  objParameter.Direction = 
System.Data.ParameterDirection.Input;  //changed from 
ParameterDirection.Input 
                objParameter.ParameterName = "clusterNode"; 
                objParameter.Value = strClusterLbl; // 
predictRow["EntryCluster"]; 
                cmdIns.Parameters.Add(objParameter); 
 
                objParameter = cmdIns.CreateParameter(); 
                //   objParameter.Direction = 
System.Data.ParameterDirection.Input;  //changed from 
ParameterDirection.Input 
                objParameter.ParameterName = "predImpact"; 
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                objParameter.Value = dblPredictImpact; // 
predictRow["PredictedImpact"]; 
                cmdIns.Parameters.Add(objParameter); 
 
                objParameter = cmdIns.CreateParameter(); 
                //  objParameter.Direction = 
System.Data.ParameterDirection.Input;  //changed from 
ParameterDirection.Input 
                objParameter.ParameterName = "predFreq"; 
                objParameter.Value = dblPredictFreq; // 
predictRow["PredictedFrequency"]; 
                cmdIns.Parameters.Add(objParameter); 
 
                objParameter = cmdIns.CreateParameter(); 
                //    objParameter.Direction = 
System.Data.ParameterDirection.Input;  //changed from 
ParameterDirection.Input 
                objParameter.ParameterName = "lossExp"; 
                objParameter.Value = dblLossExpect; // 
predictRow["PredictedFrequency"]; 
                cmdIns.Parameters.Add(objParameter); 
                cmdIns.UpdatedRowSource = UpdateRowSource.Both; 
 
                SqlDataAdapter da = new SqlDataAdapter(cmdIns); 
 
                conn.Open(); 
                    da.InsertCommand = cmdIns; 
                    //  conn.Open(); 
                    //  cmdIns.ExecuteScalar(); 
                    //  cmdIns.ExecuteNonQuery(); 
                    da.Update(ds, "Predictions"); 
                conn.Close(); 
 
       
 
            }// end foreach (DataRow row in ds.Tables["Entries"].Rows) 
 
 
            this.predictedImpactDataGridView.AutoGenerateColumns = 
true; 
            this.predictedImpactDataGridView.DataSource = ds; 
            this.predictedImpactDataGridView.DataMember = 
"Predictions"; 
 
            // Aggregate each entry's prediction for a prioritized 
listing 8/3/2008 
            ManufactureOrderedTable(ds); 
            //Create data adapter to fill the dataset table 
            SqlDataAdapter daOrdered = new SqlDataAdapter(); 
 
            // Setup command for data adapter 
            SqlCommand orderedCmd = new SqlCommand("spPrioritizedList", 
conn); 
            orderedCmd.CommandType = CommandType.StoredProcedure; 
            orderedCmd.UpdatedRowSource = UpdateRowSource.None; 
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            daOrdered.SelectCommand = orderedCmd; 
            daOrdered.Fill(ds, "Ordered"); 
 
            this.orderedListDataGridView.AutoGenerateColumns = true; 
            this.orderedListDataGridView.DataSource = ds; 
            this.orderedListDataGridView.DataMember = "Ordered"; 
            this.orderedListDataGridView.Visible = true; 
 
 
 
 
        }//private void btnPredict_Click(object sender, EventArgs e) 
 
        private string strASConnString = 
SSRAMWinApp1.Properties.Settings.Default.AS_SSRAMConnectionString; 
        private string strDBConnString = 
Convert.ToString(SSRAMWinApp1.Properties.Settings.Default.DB_SSRAMConne
ctionString); 
        private double dblPredictImpact = 0; 
        private double dblPredictFreq = 0; 
        private DateTime dtPredictDate; 
        private int intPeriods = 0; 
        private DataSet ds = new DataSet(); 
 
        private void button1_Click(object sender, EventArgs e) 
        { 
      
            //get the data from the Predictions data table into a 
persistent state in the database 
 
            SqlConnection conn = new SqlConnection(strDBConnString); 
            //conn.Open(); 
            try 
            { 
                 
                 
                //delete content of predictions 
                string del = "delete Predictions"; 
                SqlCommand cmdDel = new SqlCommand(del,conn); 
 
                conn.Open(); 
 
                 
                cmdDel.ExecuteScalar(); 
                conn.Close(); 
 
               // string strEntryID, strVulnType, strLossType, 
strExploitRange, strClusterNode; 
               // double dblPredImpact, dblPredFreq; 
 
                foreach (DataRow row in ds.Tables["Predictions"].Rows) 
                { 
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                    string ins = @"insert into 
Predictions(entryID,vulnType,lossType,exploitRange,clusterNode,predImpa
ct,predFreq) 
                                                        
values(@entryID,@vulnType,@lossType,@exploitRange,@clusterNode,@predImp
act,@predFreq)"; 
                     
                    SqlCommand cmdIns = new SqlCommand(ins, conn); 
                 // not sure if this is necessary yet   
cmdIns.CommandType = CommandType.TableDirect; 
                    // assign values to the parameters given  
                    SqlParameter objParameter = null; 
                    objParameter = cmdIns.CreateParameter(); 
                    objParameter.Direction = 
System.Data.ParameterDirection.Input;  //changed from 
ParameterDirection.Input 
                    objParameter.ParameterName = "entryID"; 
                    objParameter.Value = row["EntryID"]; 
                    cmdIns.Parameters.Add(objParameter); 
 
 
                    objParameter = cmdIns.CreateParameter(); 
                    objParameter.Direction = 
System.Data.ParameterDirection.Input;  //changed from 
ParameterDirection.Input 
                    objParameter.ParameterName = "vulnType"; 
                    objParameter.Value = row["VulnType"]; 
                    cmdIns.Parameters.Add(objParameter); 
 
 
 
                    objParameter = cmdIns.CreateParameter(); 
                    objParameter.Direction = 
System.Data.ParameterDirection.Input;  //changed from 
ParameterDirection.Input 
                    objParameter.ParameterName = "lossType"; 
                    objParameter.Value = row["LossType"]; 
                    cmdIns.Parameters.Add(objParameter); 
 
                    objParameter = cmdIns.CreateParameter(); 
                    objParameter.Direction = 
System.Data.ParameterDirection.Input;  //changed from 
ParameterDirection.Input 
                    objParameter.ParameterName = "exploitRange"; 
                    objParameter.Value = row["ExploitRange"]; 
                    cmdIns.Parameters.Add(objParameter); 
 
                    objParameter = cmdIns.CreateParameter(); 
                    objParameter.Direction = 
System.Data.ParameterDirection.Input;  //changed from 
ParameterDirection.Input 
                    objParameter.ParameterName = "clusterNode"; 
                    objParameter.Value = row["EntryCluster"]; 
                    cmdIns.Parameters.Add(objParameter); 
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                    objParameter = cmdIns.CreateParameter(); 
                    objParameter.Direction = 
System.Data.ParameterDirection.Input;  //changed from 
ParameterDirection.Input 
                    objParameter.ParameterName = "predImpact"; 
                    objParameter.Value = row["PredictedImpact"]; 
                    cmdIns.Parameters.Add(objParameter); 
                    
                    objParameter = cmdIns.CreateParameter(); 
                    objParameter.Direction = 
System.Data.ParameterDirection.Input;  //changed from 
ParameterDirection.Input 
                    objParameter.ParameterName = "predFreq"; 
                    objParameter.Value = row["PredictedFrequency"]; 
                    cmdIns.Parameters.Add(objParameter); 
                    cmdIns.UpdatedRowSource = UpdateRowSource.None; 
 
                    SqlDataAdapter da = new SqlDataAdapter(cmdIns); 
                     
                    conn.Open(); 
                    da.InsertCommand = cmdIns; 
 
 
                    //  conn.Open(); 
                   //  cmdIns.ExecuteScalar(); 
                   //  cmdIns.ExecuteNonQuery(); 
                   da.Update(ds, "Predictions"); 
                    conn.Close(); 
                                   
 
                }//foreach (DataRow row in 
ds.Tables["Predictions"].Rows) 
            }// try 
            catch (Exception ex) 
            { 
                //Console.WriteLine("Error: " + e); 
                System.Windows.Forms.MessageBox.Show(ex.ToString()); 
 
            }// catch 
            finally 
            { 
                conn.Close(); 
            } 
 
 
            Close(); 
         
        } 
    } 
} 
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Appendix D-3 – Data for SSRAM Validation 

To validate that there was no statistical difference between SSRAM’s prediction and the 

actual result we ran a series of t-test of sample means.  We used data reported in January 

of 2002 as our test cases.  The following tables show the predictions and comparison to 

actual scores using the different classification schemes. 
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t-Test Results using Naïve Bayes algorithm 

  Actual Predicted 

Mean 5.577419 6.23709 

Variance 5.520473 2.362795 

Observations 31 31 

Pearson Correlation 0.68273  

Hypothesized Mean Difference 0  

df 30  

t Stat -2.1378  

P(T<=t) one-tail 0.020399  

t Critical one-tail 1.697261  

P(T<=t) two-tail 0.040798  

t Critical two-tail 2.042272   

CVE-ID Actual 
CVE-ID 
Predicted 

Actual 
 Score Predicted Difference 

CVE-1999-1081 CVE-1999-1081 3.3 6.292 -2.992 

CVE-1999-1091 CVE-1999-1091 3.3 4.8555 -1.5555 

CVE-1999-1091 CVE-1999-1091 3.3 5.7886 -2.4886 

CVE-2001-0887 CVE-2001-0887 2.3 4.8555 -2.5555 

CVE-2001-0891 CVE-2001-0891 7 8.0093 -1.0093 

CVE-2001-1457 CVE-2001-1457 7 8.0093 -1.0093 

CVE-2002-0002 CVE-2002-0002 7 8.0093 -1.0093 

CVE-2002-0005 CVE-2002-0005 10 8.0093 1.9907 

CVE-2002-0007 CVE-2002-0007 10 6.72 3.28 

CVE-2002-0008 CVE-2002-0008 7 6.72 0.28 

CVE-2002-0008 CVE-2002-0008 7 8.0093 -1.0093 

CVE-2002-0009 CVE-2002-0009 3.3 5.7886 -2.4886 

CVE-2002-0009 CVE-2002-0009 3.3 6.292 -2.992 

CVE-2002-0010 CVE-2002-0010 8 5.7886 2.2114 

CVE-2002-0010 CVE-2002-0010 8 6.72 1.28 

CVE-2002-0010 CVE-2002-0010 8 8.0093 -0.0093 

CVE-2002-0011 CVE-2002-0011 3.3 6.292 -2.992 

CVE-2002-0038 CVE-2002-0038 3.3 3.3 0 

CVE-2002-0043 CVE-2002-0043 7 6.72 0.28 

CVE-2002-0044 CVE-2002-0044 4.7 4.8555 -0.1555 

CVE-2002-0045 CVE-2002-0045 8 5.7886 2.2114 

CVE-2002-0045 CVE-2002-0045 8 8.0093 -0.0093 

CVE-2002-0046 CVE-2002-0046 3.3 5.7886 -2.4886 

CVE-2002-0047 CVE-2002-0047 3.3 3.3 0 

CVE-2002-0077 CVE-2002-0077 7 6.72 0.28 

CVE-2002-0077 CVE-2002-0077 7 8.0093 -1.0093 

CVE-2002-1594 CVE-2002-1594 7 8.0093 -1.0093 

CVE-2002-1595 CVE-2002-1595 3.3 6.292 -2.992 

CVE-2002-1596 CVE-2002-1596 3.3 3.3 0 

CVE-2002-1597 CVE-2002-1597 3.3 3.3 0 

CVE-2002-1600 CVE-2002-1600 3.3 5.7886 -2.4886 
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t-Test: Paired Two Sample for Means using Neural Networks Classification Algorithm 
  Actual Predicted 

Mean 5.653125 6.180540625 

Variance 5.525796371 2.337423284 

Observations 32 32 

Pearson Correlation 0.629684793   

Hypothesized Mean Difference 0   

df 31   

t Stat 1.633197931   

P(T<=t) one-tail 0.056272384   

t Critical one-tail 1.695518742   

P(T<=t) two-tail 0.112544769   

t Critical two-tail 2.039513438   

 

  Actual Predicted Difference 

CVE-1999-1081 CVE-1999-1081 3.3 6.292 -2.992 

CVE-1999-1091 CVE-1999-1091 3.3 4.8555 -1.5555 

CVE-1999-1091 CVE-1999-1091 3.3 5.7886 -2.4886 

CVE-2001-0887 CVE-2001-0887 2.3 4.8555 -2.5555 

CVE-2001-0891 CVE-2001-0891 7 8.0093 -1.0093 

CVE-2001-1457 CVE-2001-1457 7 8.0093 -1.0093 

CVE-2002-0002 CVE-2002-0002 7 8.0093 -1.0093 

CVE-2002-0005 CVE-2002-0005 10 8.0093 1.9907 

CVE-2002-0007 CVE-2002-0007 10 6.72 3.28 

CVE-2002-0008 CVE-2002-0008 7 6.292 0.708 

CVE-2002-0008 CVE-2002-0008 7 8.0093 -1.0093 

CVE-2002-0009 CVE-2002-0009 3.3 5.7886 -2.4886 

CVE-2002-0009 CVE-2002-0009 3.3 6.292 -2.992 

CVE-2002-0010 CVE-2002-0010 8 5.7886 2.2114 

CVE-2002-0010 CVE-2002-0010 8 6.72 1.28 

CVE-2002-0010 CVE-2002-0010 8 8.0093 -0.0093 

CVE-2002-0011 CVE-2002-0011 3.3 6.292 -2.992 

CVE-2002-0038 CVE-2002-0038 3.3 3.3 0 

CVE-2002-0043 CVE-2002-0043 7 6.72 0.28 

CVE-2002-0044 CVE-2002-0044 4.7 4.8555 -0.1555 

CVE-2002-0045 CVE-2002-0045 8 4.8555 3.1445 

CVE-2002-0045 CVE-2002-0045 8 5.7886 2.2114 

CVE-2002-0045 CVE-2002-0045 8 8.0093 -0.0093 

CVE-2002-0046 CVE-2002-0046 3.3 5.7886 -2.4886 

CVE-2002-0047 CVE-2002-0047 3.3 3.3 0 

CVE-2002-0077 CVE-2002-0077 7 6.72 0.28 

CVE-2002-0077 CVE-2002-0077 7 8.0093 -1.0093 

CVE-2002-1594 CVE-2002-1594 7 8.0093 -1.0093 

CVE-2002-1595 CVE-2002-1595 3.3 6.292 -2.992 

CVE-2002-1596 CVE-2002-1596 3.3 3.3 0 

CVE-2002-1597 CVE-2002-1597 3.3 3.3 0 

CVE-2002-1600 CVE-2002-1600 3.3 5.7886 -2.4886 
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t-Test: Paired Two Sample for Means using Decision Tree Classifier 
  Actual Predicted 

Mean 5.76129 6.102877 

Variance 5.636452 2.316325 

Observations 31 31 

Pearson Correlation 0.658869   

Hypothesized Mean Difference 0   

df 30   

t Stat -1.06461   

P(T<=t) one-tail 0.147773   

t Critical one-tail 1.697261   

P(T<=t) two-tail 0.295546   

t Critical two-tail 2.042272   

 

CVE-ID   Actual Predicted Difference 

CVE-1999-1081 CVE-1999-1081 3.3 5.7886 -2.4886 

CVE-1999-1091 CVE-1999-1091 3.3 4.8555 -1.5555 

CVE-1999-1091 CVE-1999-1091 3.3 6.292 -2.992 

CVE-2001-0887 CVE-2001-0887 2.3 4.8555 -2.5555 

CVE-2001-0891 CVE-2001-0891 7 8.0093 -1.0093 

CVE-2001-1457 CVE-2001-1457 7 8.0093 -1.0093 

CVE-2002-0002 CVE-2002-0002 7 8.0093 -1.0093 

CVE-2002-0005 CVE-2002-0005 10 8.0093 1.9907 

CVE-2002-0007 CVE-2002-0007 10 6.72 3.28 

CVE-2002-0008 CVE-2002-0008 7 6.72 0.28 

CVE-2002-0008 CVE-2002-0008 7 8.0093 -1.0093 

CVE-2002-0009 CVE-2002-0009 3.3 5.7886 -2.4886 

CVE-2002-0010 CVE-2002-0010 8 5.7886 2.2114 

CVE-2002-0010 CVE-2002-0010 8 6.292 1.708 

CVE-2002-0010 CVE-2002-0010 8 6.72 1.28 

CVE-2002-0010 CVE-2002-0010 8 8.0093 -0.0093 

CVE-2002-0011 CVE-2002-0011 3.3 5.7886 -2.4886 

CVE-2002-0038 CVE-2002-0038 3.3 3.3 0 

CVE-2002-0043 CVE-2002-0043 7 6.72 0.28 

CVE-2002-0044 CVE-2002-0044 4.7 4.8555 -0.1555 

CVE-2002-0045 CVE-2002-0045 8 4.8555 3.1445 

CVE-2002-0045 CVE-2002-0045 8 5.7886 2.2114 

CVE-2002-0045 CVE-2002-0045 8 8.0093 -0.0093 

CVE-2002-0046 CVE-2002-0046 3.3 5.7886 -2.4886 

CVE-2002-0047 CVE-2002-0047 3.3 3.3 0 

CVE-2002-0077 CVE-2002-0077 7 6.72 0.28 

CVE-2002-1594 CVE-2002-1594 7 8.0093 -1.0093 

CVE-2002-1595 CVE-2002-1595 3.3 5.7886 -2.4886 

CVE-2002-1596 CVE-2002-1596 3.3 3.3 0 

CVE-2002-1597 CVE-2002-1597 3.3 3.3 0 

CVE-2002-1600 CVE-2002-1600 3.3 5.7886 -2.4886 
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Mean -0.4385 

Std Dev 1.7385 

df 35.0000 

t -1.51354 

 

Entry-ID 
Cluster 
 Node 

Actual  
Score 

Predicted  
Impact Difference 

CVE-1999-1081 Cluster 2 3.3 5.1 -1.770 

CVE-1999-1091 Cluster 5 3.3 3.8 -0.518 
CVE-1999-1091 Cluster 3 3.3 2.4 0.893 

CVE-2001-0887 Cluster 5 2.3 3.8 -1.518 

CVE-2001-0887 Cluster 5 2.3 3.8 -1.518 

CVE-2001-0891 Cluster 1 7 8.1 -1.058 

CVE-2001-1457 Cluster 1 7 8.1 -1.058 

CVE-2002-0002 Cluster 1 7 8.1 -1.058 

CVE-2002-0005 Cluster 1 10 8.1 1.942 

CVE-2002-0007 Cluster 6 10 5.6 4.387 

CVE-2002-0008 Cluster 1 7 8.1 -1.058 

CVE-2002-0008 Cluster 6 7 5.6 1.387 

CVE-2002-0009 Cluster 2 3.3 5.1 -1.770 

CVE-2002-0009 Cluster 2 3.3 5.1 -1.770 

CVE-2002-0010 Cluster 3 8 2.4 5.593 

CVE-2002-0010 Cluster 6 8 5.6 2.387 

CVE-2002-0010 Cluster 2 8 5.1 2.930 
CVE-2002-0010 Cluster 1 8 8.1 -0.058 

CVE-2002-0011 Cluster 2 3.3 5.1 -1.770 

CVE-2002-0038 Cluster 7 3.3 3.3 0.000 

CVE-2002-0043 Cluster 6 7 5.6 1.387 

CVE-2002-0044 Cluster 5 4.7 3.8 0.882 

CVE-2002-0044 Cluster 5 4.7 3.8 0.882 

CVE-2002-0045 Cluster 5 8 3.8 4.182 

CVE-2002-0045 Cluster 2 8 5.1 2.930 

CVE-2002-0045 Cluster 1 8 8.1 -0.058 

CVE-2002-0045 Cluster 1 8 8.1 -0.058 

CVE-2002-0046 Cluster 2 3.3 5.1 -1.770 

CVE-2002-0047 Cluster 7 3.3 3.3 0.000 

CVE-2002-0077 Cluster 6 7 5.6 1.387 

CVE-2002-0077 Cluster 6 7 5.6 1.387 

CVE-2002-1594 Cluster 1 7 8.1 -1.058 

CVE-2002-1595 Cluster 2 3.3 5.1 -1.770 

CVE-2002-1596 Cluster 7 3.3 3.3 0.000 

CVE-2002-1597 Cluster 7 3.3 3.3 0.000 

CVE-2002-1600 Cluster 2 3.3 5.1 -1.770 
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Appendix E-1 – Microsoft’s TAMT Listing of Vulnerabilities 

This appendix shows the report generated from using Microsoft’s Threat Analysis and 

Modeling Tool.   

Confidentiality Threats 

Unauthorized disclosure of <creates a unique ballot for his/herself> using <speech user 
interface> by <Validated voter> 

Countermeasures 

Canonicalization : Only accept primitive typed identified (e.g., integers) which are 
mapped to filenames 

 

Unauthorized disclosure of <creates a unique ballot for his/herself> using <Graphical user 
interface> by <Validated voter> 

Countermeasures 

Canonicalization : Only accept primitive typed identified (e.g., integers) which are 
mapped to filenames 

 

Unauthorized disclosure of <completes ballot choices> using <speech user interface> by 
<Validated voter> 

Countermeasures 

Canonicalization : Only accept primitive typed identified (e.g., integers) which are 
mapped to filenames 

 

Unauthorized disclosure of <completes ballot choices> using <Graphical user interface> by 
<Validated voter> 

Countermeasures 

Canonicalization : Only accept primitive typed identified (e.g., integers) which are 
mapped to filenames 

 

Unauthorized disclosure of <prints ballot entry> using <Printer> by <Validated voter> 

Countermeasures 

Canonicalization : Only accept primitive typed identified (e.g., integers) which are 
mapped to filenames 

 

Unauthorized disclosure of <deletes his/her's ballot entry> using <speech user interface> by 
<Validated voter> 

Countermeasures 

Canonicalization : Only accept primitive typed identified (e.g., integers) which are 
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mapped to filenames 
 

Unauthorized disclosure of <deletes his/her's ballot entry> using <Graphical user interface> by 
<Validated voter> 

Countermeasures 

Canonicalization : Only accept primitive typed identified (e.g., integers) which are 
mapped to filenames 

 

Unauthorized disclosure of <Create Ballot counter> using <Secure counter> by <ballot tally> 

Countermeasures 

Buffer Overflow : Use safe functions such as strncpy, strncat instead of strcpy, 
strcat  

Buffer Overflow : Validation on input should be performed on the input 

Canonicalization : Only accept primitive typed identified (e.g., integers) which are 
mapped to filenames 

Cryptanalysis Attacks : Use well-known implementations of well-known 
cryptographic algorithms 

Cryptanalysis Attacks : Use cryptographically generated random keys 

Cryptanalysis Attacks : Utilize platform supplied feature to store secret key (e.g., 
DPAPI) 

Cryptanalysis Attacks : Utilize SSL or IPSec w/ Encryption to establish a secure 
communication channel 

Format String : Use a managed language 

Integer Overflow/Underflow : Use Language features  
 

Unauthorized disclosure of <reads ballot counter> using <Secure counter> by <ballot tally> 

Countermeasures 

Buffer Overflow : Use safe functions such as strncpy, strncat instead of strcpy, 
strcat  

Buffer Overflow : Validation on input should be performed on the input 

Canonicalization : Only accept primitive typed identified (e.g., integers) which are 
mapped to filenames 

Cryptanalysis Attacks : Use well-known implementations of well-known 
cryptographic algorithms 

Cryptanalysis Attacks : Use cryptographically generated random keys 
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Cryptanalysis Attacks : Utilize platform supplied feature to store secret key (e.g., 
DPAPI) 

Cryptanalysis Attacks : Utilize SSL or IPSec w/ Encryption to establish a secure 
communication channel 

Format String : Use a managed language 

Integer Overflow/Underflow : Use Language features  
 

Unauthorized disclosure of <updates ballot counter> using <Secure counter> by <ballot tally> 

Countermeasures 

Buffer Overflow : Use safe functions such as strncpy, strncat instead of strcpy, 
strcat  

Buffer Overflow : Validation on input should be performed on the input 

Canonicalization : Only accept primitive typed identified (e.g., integers) which are 
mapped to filenames 

Cryptanalysis Attacks : Use well-known implementations of well-known 
cryptographic algorithms 

Cryptanalysis Attacks : Use cryptographically generated random keys 

Cryptanalysis Attacks : Utilize platform supplied feature to store secret key (e.g., 
DPAPI) 

Cryptanalysis Attacks : Utilize SSL or IPSec w/ Encryption to establish a secure 
communication channel 

Format String : Use a managed language 

Integer Overflow/Underflow : Use Language features  
 

Unauthorized disclosure of <creates imposter file> using <imposter file> by <ballot tally> 

Countermeasures 

Buffer Overflow : Use safe functions such as strncpy, strncat instead of strcpy, 
strcat  

Buffer Overflow : Validation on input should be performed on the input 

Canonicalization : Only accept primitive typed identified (e.g., integers) which are 
mapped to filenames 

Cryptanalysis Attacks : Use well-known implementations of well-known 
cryptographic algorithms 
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Cryptanalysis Attacks : Use cryptographically generated random keys 

Cryptanalysis Attacks : Utilize platform supplied feature to store secret key (e.g., 
DPAPI) 

Cryptanalysis Attacks : Utilize SSL or IPSec w/ Encryption to establish a secure 
communication channel 

Format String : Use a managed language 

Integer Overflow/Underflow : Use Language features  
 

Unauthorized disclosure of <reads imposter file> using <imposter file> by <ballot tally> 

Countermeasures 

Buffer Overflow : Use safe functions such as strncpy, strncat instead of strcpy, 
strcat  

Buffer Overflow : Validation on input should be performed on the input 

Canonicalization : Only accept primitive typed identified (e.g., integers) which 
are mapped to filenames 

Cryptanalysis Attacks : Use well-known implementations of well-known 
cryptographic algorithms 

Cryptanalysis Attacks : Use cryptographically generated random keys 

Cryptanalysis Attacks : Utilize platform supplied feature to store secret key 
(e.g., DPAPI) 

Cryptanalysis Attacks : Utilize SSL or IPSec w/ Encryption to establish a secure 
communication channel 

Format String : Use a managed language 

Integer Overflow/Underflow : Use Language features  
 

Unauthorized disclosure of <updates imposter file> using <imposter file> by <ballot tally> 

Countermeasures 

Buffer Overflow : Use safe functions such as strncpy, strncat instead of strcpy, 
strcat  

Buffer Overflow : Validation on input should be performed on the input 

Canonicalization : Only accept primitive typed identified (e.g., integers) which are 
mapped to filenames 

Cryptanalysis Attacks : Use well-known implementations of well-known 
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cryptographic algorithms 

Cryptanalysis Attacks : Use cryptographically generated random keys 

Cryptanalysis Attacks : Utilize platform supplied feature to store secret key (e.g., 
DPAPI) 

Cryptanalysis Attacks : Utilize SSL or IPSec w/ Encryption to establish a secure 
communication channel 

Format String : Use a managed language 

Integer Overflow/Underflow : Use Language features  
 

Unauthorized disclosure of <Prints total tallies for ballots entered> using <Printer> by <Poll 
Worker > 

Countermeasures 

Canonicalization : Only accept primitive typed identified (e.g., integers) which are 
mapped to filenames 
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Appendix E-2 – Prime III Data 
ID Name VulnType Loss Type Exploit Range 

Threat-1 Canonicalization input Avail user_init 

Threat-1 Canonicalization input Avail local 

Threat-1 Canonicalization input Int user_init 

Threat-1 Canonicalization input Int local 

Threat-1 Canonicalization input Conf  user_init 

Threat-1 Canonicalization input Conf  local 

Threat-2 Buffer Overflow access Int user_init 

Threat-2 Buffer Overflow input Int user_init 

Threat-2 Buffer Overflow access Int local 

Threat-2 Buffer Overflow input Int local 

Threat-2 Buffer Overflow access Avail user_init 

Threat-2 Buffer Overflow input Avail user_init 

Threat-2 Buffer Overflow access Avail local 

Threat-2 Buffer Overflow input Avail local 

Threat-2 Buffer Overflow access Conf  user_init 

Threat-2 Buffer Overflow input Conf  user_init 

Threat-2 Buffer Overflow access Conf  local 

Threat-2 Buffer Overflow input Conf  local 

Threat-3 Cryptanalysis  env Avail local 

Threat-3 Cryptanalysis  access Avail local 

Threat-3 Cryptanalysis  env Avail local 

Threat-3 Cryptanalysis  access Avail local 

Threat-3 Cryptanalysis  env Int local 

Threat-3 Cryptanalysis  access Int local 

Threat-3 Cryptanalysis  env Int local 

Threat-3 Cryptanalysis  access Int local 

Threat-3 Cryptanalysis  env Conf  local 

Threat-3 Cryptanalysis  access Conf  local 

Threat-3 Cryptanalysis  env Conf  local 

Threat-3 Cryptanalysis  access Conf  local 

Threat-3 Cryptanalysis  env Sec_Prot local 

Threat-3 Cryptanalysis  access Sec_Prot local 

Threat-3 Cryptanalysis  env Sec_Prot local 

Threat-3 Cryptanalysis  access Sec_Prot local 

Threat-4 Format String design Avail user_init 

Threat-4 Format String design Avail local 

Threat-4 Format String design Int user_init 

Threat-4 Format String design Int local 

Threat-4 Format String design Conf user_init 

Threat-4 Format String design Conf local 

Threat-5 Integer 
Overflow/Underflow 

input Avail user_init 

Threat-5 Integer 
Overflow/Underflow 

input Int user_init 

Threat-5 Integer 
Overflow/Underflow 

input Conf user_init 



  166 

Appendix E-3 – Prime III Predictions 

This appendix shows the result of making predictions for our case study using the 

different classification schemes.  We ran the predictions based on two separate historical 

data sources (1996 – 2001, 2003 – 2005).  We performed predictions for 2002 and 2006 

based on the same vulnerability listing. 

 

The resulting predictions are shown in this appendix along with the confidence interval 

for the two separate historical basis for predictions. 

 
A. Using 2003-2005 data as training for 2006 Predictions with Neural Network 

algorithm for classification 

 

The prioritized list shows Integer overflow/underflow has the highest loss expectation 

based on the impact score and predicted frequency.  Countermeasures for dealing with 

integer overflow/underflow, such as making sure that the programming language features 

that deal with minimizing overflow/underflow, should be employed.  Canonicalization, 

Buffer Overflow and Format String would be considered of the same priority given the 
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confidence interval for the historical data (2003 – 2005) used for the prediction.  Since 

these are above 5.0, the first four vulnerabilities would be considered medium to high risk 

elements and, as such, require that countermeasures to ameliorate them be given.  

B. Using 2003-2005 data as training for 2006 Predictions with Decision Tree 
algorithm for classification 

 
 
Using the decision tree algorithm, Buffer Overflow would be considered the highest risk 

element, due to its high predicted impact while Canonicalization and Integer 

Overflow/Underflow would be of the same level of priority.  Although Format String has 

a higher impact factor, the predicted number of occurrences warrants it to be placed at a 

lower priority.  Cryptanalysis in both measures was given the lowest priority.  
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Training Data  by Clusters (2003 - 2005) 
With 95% 

Confidence Interval 

Number 
in 

Cluster 

Avg 
Score 

Std 
Deviation 

Margin 
of 
Error 

Cluster 
Node 

Lower Upper 

2083.000 7.599 1.673 0.072 Cluster 2 7.527 7.671 

1430.000 6.967 0.831 0.043 Cluster 1 6.924 7.010 

1616.000 5.379 2.075 0.101 Cluster 3 5.277 5.480 

371.000 4.159 2.088 0.212 Cluster 7 3.947 4.372 

17.000 3.300 0.000 0.000 Cluster 8 3.300 3.300 

1031.000 3.124 0.776 0.047 Cluster 4 3.077 3.172 

1764.000 3.013 0.551 0.026 Cluster 6 2.987 3.039 

669.000 2.631 0.932 0.071 Cluster 5 2.561 2.702 

Confidence Interval for Predictions on 2006 data based on 2003-2005 data 

 
C. Using 1996-2001 data as training for 2001 Predictions with Neural Network 

algorithm for classification 

 

The prioritized list for 2001 shows Integer Overflow/underflow as the highest 

vulnerability risk element for January 2001.  Canonicalization, Cryptanalysis and Buffer 

Overflow would be interpreted as having the same level of priority given the confidence 

interval data for the training period. 
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Using Decision Tree Classification Algorithm 

 

Using decision tree, Format String would be considered the element of highest risk due to 

the predicted number of occurrences, though Canonicalization, Buffer Overflow and 

Integer Overflow and Underflow all had higher impact predictions.  These three would be 

considered of the same priority level also.   

 
 
To actually predict for data not within our training data, we predicted for January 2002.  

Using the neural network classification algorithm we found that, Integer 
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Overflow/Underflow, Canonicalization, and Buffer Overflow were predicted with high 

impact scores of the same level of priority, while Format String and Cryptanalysis though 

of lower priority still had impact scores in the medium to high range.  In this case, we 

would recommend that all the vulnerabilities’ countermeasures be considered in the 

priority listed but, in essence, allow the decision makers to understand why they should 

all be addressed. 

Training Data  by Clusters (1996 - 2001) With 95% Confidence 
Interval 

NumInCluster CVSS_Score StdDev Margin of 
Error 

Cluster Lower Upper 

1257 8.2541 1.8124 0.1002 Cluster 2 8.1539 8.3543 

719 7.0872 1.7984 0.1315 Cluster 4 6.9557 7.2186 

107 7 0 0 Cluster 7 7 7 

765 5.5393 2.0795 0.1474 Cluster 5 5.3919 5.6867 

1298 5.3409 1.9665 0.107 Cluster 1 5.2339 5.4478 

1250 4.3934 2.0171 0.1118 Cluster 3 4.2816 4.5052 

735 4.3105 1.6957 0.1226 Cluster 6 4.1879 4.4331 
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Appendix F- Vulnerability Classification 

 
Kindoms  

[Tsipenyuk et al. 2005] 

Vulnerability Class 

[NVD] 

19 Sins  

[Howard et al. 2005] 

OWASP 

Input validation and 

representation 

Input validation error 

– (boundary condition 

error, buffer overflow) 

Buffer overflows, 

command injection, 

cross-site scripting, 

format string problems, 

integer range errors, 

SQL injection 

Buffer overflows, 

cross-site scripting 

flaws, injection 

flaws, unvalidated 

input 

API abuse  Trusting network address 

information 

 

Security features Access validation error Failing to protect 

network traffic, failing to 

store and protect data, 

failing to use 

cryptographically strong 

random numbers, 

improper file access, 

improper use of SQL, use 

of weak password-based 

systems, unauthenticated 

key exchange 

Broken access 

control, insecure 

storage 

Time and State Race condition Signal race conditions, 

use of “magic” URLs and 

hidden forms 

Broken 

authentication and 

session management 

Errors Exceptional condition 

error 

Failure to handle errors Improper error 

handling 

Code quality Design error Poor usability Denial of service 

Encapsulation  Information leakage  

Environment Environmental error  Insecure 

configuration 

management 

 Other error   

 


