

QUANTITATIVE RISK ASSESSMENT MODEL FOR SOFTWARE SECURITY IN

THE DESIGN PHASE OF SOFTWARE DEVELOPMENT

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee. This

dissertation does not include proprietary or classified information.

Idongesit Okon Mkpong-Ruffin

Certificate of Approval:

_________________________________ ________________________________
David A. Umphress, Co-Chair John A. Hamilton, Co-Chair
Associate Professor, Associate Professor,
Computer Science Software Engineering Computer Science Software Engineering

_________________________________ ________________________________
Juan E. Gilbert George T. Flowers
Associate Professor, Dean
Computer Science Software Engineering Graduate School

QUANTITATIVE RISK ASSESSMENT MODEL FOR SOFTWARE SECURITY IN

THE DESIGN PHASE OF SOFTWARE DEVELOPMENT

Idongesit Mkpong-Ruffin

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
May 9, 2009

 iii

QUANTITATIVE RISK ASSESSMENT MODEL FOR SOFTWARE SECURITY IN

THE DESIGN PHASE OF SOFTWARE DEVELOPMENT

Idongesit Mkpong-Ruffin

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon request of individuals or institutions and at their expense. The author

reserves all publication rights.

 Signature of Author

 Date of Graduation

 iv

DISSERTATION ABSTRACT

QUANTITATIVE RISK ASSESSMENT MODEL FOR SOFTWARE SECURITY IN

THE DESIGN PHASE OF SOFTWARE DEVELOPMENT

Idongesit Mkpong-Ruffin

Doctor of Philosophy, May 9, 2008
(M.S. Troy University, 2007)

(M.B.A, Tennessee State University, 1992)
(B.S. Freed-Hardeman University, 1985)

186 Typed Pages

Directed by David A. Umphress and John A. Hamilton

Risk analysis is a process for considering possible risks and determining which

are the most significant for any particular effort. Determining which risks to address and

the optimum strategy for mitigating said risks is often an intuitive and qualitative process.

An objective view of the risks inherent in a development effort requires a quantitative

risk model. Quantitative risk models used in determining which risk factors to focus on

tend to use a traditional approach of annualized loss expectancy (ALE) based on

frequency of occurrence and the exposure factor (EF) which is the percentage of asset

loss due to the potential threat in question. This research uses empirical data that reflects

the security posture of each vulnerability to calculate Loss Expectancy, a risk impact

v

estimator. Data from open source vulnerability databases and results of predicted threat

models are used as input to the risk model. Security factors that take into account the

innate characteristics of each vulnerability are incorporated into the calculation of the risk

model. The result of this model is an assessment of the potential threats to a development

effort and a ranking of these threats based on the risk metric calculation.

vi

ACKNOWLEDGEMENTS

I have been very blessed to have been advised, supported, and encouraged by the

different members of my committee during the different stages of my educational

journey. I thank Dr David Umphress for his patience, deliberate guidance, and direction.

I would also like to thank Dr. John Hamilton for his insight and support. I would like to

give my thanks to Dr. Juan Gilbert for his support and encouragement throughout my

stay at Auburn.

I would like to thank the members of the Human Centered Computing Lab

(HCCL), the Information Assurance Lab and other members of the Computer Science

department for their support. Their helpful comments, suggestions and acts of kindness

are very much appreciated.

I would also like to thank my family, especially my parents, Obong Okon

Mkpong and, ObongAwan Affiong Mkpong, for instilling in me the zeal for knowledge,

as well as my sisters and brothers for their continued support and belief in me and my

ability to achieve this milestone. A very special thanks to my husband, Dale, and

children, Akaninyene and Aniekan, who have been my motivation. Without their support,

patience and encouragement I would not have started nor finished this program. I

dedicate this work to them.

Most of all, special thanks to God-- for His mercies, for putting each person in my

path to strengthen me and make this journey what it has become. His protection and

guidance have been very evident, and I thank Him.

 vii

Style manual or journal used: ACM Computing Surveys

Computer software used: Microsoft Word, Microsoft Excel, Microsoft Visual Studio (C#,

SQL Server, SQL Analysis Server)

 viii

TABLE OF CONTENTS

TABLE OF CONTENTS...viii

LIST OF FIGURES...xii

LIST OF TABLES ...xiv

LIST OF EQUATIONS .. xv

1 INTRODUCTION.. 1

1.1 Problem Statement .. 1

1.2 Research Objective.. 2

1.3 Background ... 2

1.3.1 Risk Assessment... 4

1.3.2 Threat Identification... 6

1.3.3 Vulnerability Identification .. 7

1.3.4 Likelihood Determination .. 7

1.3.5 Impact Determination... 8

1.3.6 Risk Determination .. 9

2 STATE OF RISK ASSESSMENT... 11

2.1 Threat/Vulnerability Identification ... 11

2.1.1 Threat/Vulnerability Categorization .. 12

2.2 Software Testing and Assessment... 13

2.2.1 Black-Box Testing.. 14

 ix

2.2.2 White-Box Testing ... 15

2.3 Stakeholder’s Goals... 17

2.3.1 Boehm Win-Win approach... 17

2.3.2 RISKIT ... 18

2.4 Risk Management Framework (RMF) .. 19

2.5 Software Reliability... 20

2.6 Traditional approach ... 20

2.7 Cross-Disciplinary ties to Insurance ... 21

2.8 Problems with Existing Approaches ... 21

3 RESEARCH DETAILS ... 25

3.1 Conceptual Overview.. 26

3.2 Data Preparation.. 27

3.3 Parsing the Data .. 27

3.3.1 Validation of Data Entry ... 29

3.4 Cluster Determination ... 30

3.4.1 Validation of Clustering .. 35

3.5 Data Classification .. 37

3.5.1 Data Classification Validation .. 41

3.6 Loss Expectancy Determination.. 42

3.6.1 Determining Fields to Predict CVSS Score .. 43

 x

3.6.1.1 Regression Analysis: Cluster Node versus Loss Type, Vulnerability

Type and Exploit Range.. 45

3.6.1.2 Regression Analysis: CVSS Score versus Loss Type, Vulnerability

Type and Exploit Range.. 47

3.6.2 Determining Loss Expectancy .. 48

3.6.2.1 Validation of Loss Expectancy Calculations .. 50

3.6.3 Validation of Loss Expectancy ... 52

3.7 Confidence Interval of Predictions.. 57

3.8 Summary ... 58

4 APPLICATION OF MODEL TO CASE STUDY .. 61

4.1 Vulnerability Identification and Data Preparation .. 62

4.2 Data Classification and Loss Expectation Determination................................. 64

5 SUMMARY, FUTURE WORK AND CONCLUSIONS.. 71

5.1 Summary ... 71

5.2 Future Work .. 74

5.3 Conclusions ... 75

BIBLIOGRAPHY... 78

APPENDICES... 84

Appendix A-1 – The NVD Schema .. 85

Appendix A-2 – An Example of an NVD entry.. 92

 xi

Appendix A-3 – Script for Parsing XML document ... 94

Appendix A-4 – Validation of Data Upload ... 112

Appendix B-1 – Creating Term Vector... 113

Appendix B-2 – Determining Clustering Algorithm... 117

Appendix B-3 – Query for Identifying Clusters in Training Data 127

Appendix B-4 – Classified Data Matrix.. 129

Appendix B-5 – Validation of Clustering Algorithms.. 132

Appendix B-6 – Processing Time for Classifiers.. 135

Appendix B-7 – Calculating CVSS ‘base’ Score.. 136

Appendix C-1 – Stored Procedure for Calculating Impact Score Attributes 138

Appendix C-2 – Stored Procedure for Determining Prioritized Listing 140

Appendix C-3 – Stored Procedure for Persisting Predictions 141

Appendix D-1 – Singleton Request Algorithm... 142

Appendix D-2 – Data Table Request (Code for Load Data)....................................... 146

Appendix D-3 – Data for SSRAM Validation .. 155

Appendix E-1 – Microsoft’s TAMT Listing of Vulnerabilities.................................. 160

Appendix E-2 – Prime III Data ... 165

Appendix E-3 – Prime III Predictions... 166

Appendix F- Vulnerability Classification ... 171

xii

LIST OF FIGURES

Figure 1 -- Difference between Speculative and Hazard Risk [Alberts 2006].................... 3

Figure 2 - Risk Function.. 4

Figure 3 - Risk Management Cycle [GAO AIMD-00-33].. 5

Figure 4 - Top-N Risk Item List[Boehm 2001] .. 18

Figure 5 - Definition of Risk in Riskit Method [Kontio et al. 1998] 19

Figure 6 -Example of the Riskit analysis graph (risk scenarios) [Kontio et al. 1998] 19

Figure 7 -Reported Incidences [NVD] .. 25

Figure 8 - SSRAM's Cluster Creation... 26

Figure 9 - Software Security Risk Assessment ... 26

Figure 10 - NVD's First Level Node ... 28

Figure 11- NVD Description Node ... 28

Figure 12 - Node with nested lower level tags.. 29

Figure 13 - SSRAM Schema... 29

Figure 14 - Independent Variable Selection Statement... 31

Figure 15 -Clustering without Description.. 33

Figure 16 - Clustering with Description.. 34

Figure 17 - Cluster Assignment Query Example .. 35

Figure 18 -Mining Accuracy Chart ... 36

Figure 19 -Classifiers with Description Vector... 40

xiii

Figure 20 - Classifiers without Description Vector .. 40

Figure 21 - Prediction Accuracy of Classifiers ... 42

Figure 22 - CVSS base Score and Vector ... 43

Figure 23 - Suggested Input Fields .. 44

Figure 24 - Multiple Regression Result (Cluster Node) ... 46

Figure 25 - Multiple Regression Result (CVSS score) ... 47

Figure 26-Query for Sample data to validate Calculation... 50

Figure 27 - Calculation of Impact Factors Result (Stored Procedure) 51

Figure 28 -Single Entry Impact Estimation... 52

Figure 29 Vulnerability Entries (Test Data – 2002).. 53

Figure 30 - Predicted Values... 53

Figure 31 - Impact and Loss Expectation Estimation ... 53

Figure 32: Prime III System Architecture High-Level Overview..................................... 62

Figure 33 - Load Prime III .. 65

Figure 34 - Prime III De-normalized Predictions.. 65

Figure 35 - Prime III Loss Expectation (Prioritized List) – Predictions 69

Figure 36 - Prime III Loss Expectation (Prioritized List) – 2006 Predictions 69

Figure 37 - Processing Time for Classification Algorithm... 135

xiv

LIST OF TABLES

Table 1 Likelihood Definitions [SP 800-30]... 8

Table 2 Magnitude of Impact Definitions [SP 800-12]... 9

Table 3 Risk-Level Matrix .. 10

Table 4 Software Risk Management Techniques [Boehm 2001] 17

Table 5 - Cluster Algorithm Cohesion Factors ... 37

Table 6 - Classifier Processing Time & Score – Cluster Classifier without Description . 39

Table 7 - Classification Confusion Matrix – Classifier without Description.................... 41

Table 8 – Calculation of Impact Factors (Excel Result) ... 51

Table 9 - t-Test: Paired Two Sample for Means ... 54

Table 10 - Confidence Interval Derivation ... 57

Table 11 - Prime III Vulnerability List ... 63

Table 12- Prime III Normalized Tables .. 64

Table 13 - Example of PrimeIII's Input Data ... 64

Table 14 – Comparison of SSRAM with other Risk Analysis Methodologies................. 76

Table 15 - Data Entry Validation Entries.. 112

 xv

LIST OF EQUATIONS

Equation 1 - Traditional Annual Loss Expectancy ... 21

Equation 2 - TFDIF ... 31

Equation 3 – Accuracy Determination .. 41

Equation 4 – Predicted Loss Expectancy (PLE) ... 48

Equation 5 - Predicted Impact Score (PIS) ... 49

Equation 6 - Weighted Average CVSS Score... 49

Equation 7 - Growth Rate.. 49

Equation 8 - Margin of Error... 57

 1

1 INTRODUCTION

1.1 Problem Statement

Assessing security risks in software is predominately a qualitative process. Traditionally,

efforts to deal with security vulnerabilities focus on hardening networks and peripherals

that have access to computer systems. Hardening of networks and peripherals entails the

application of security measures, such as firewalls and virtual private networks, or

removing non secure systems and services from the network. In 2002, the National

Institute of Standards (NIST) reported that $59.5 billion was spent annually in

breakdowns and repairs of faulty software [NIST 2002-10] [Mead and Stehney 2005].

NIST also found that 92% of all security vulnerabilities were due to application

vulnerabilities as opposed to network vulnerabilities [Curphey 2004]. Efforts have been

underway to deal with application vulnerabilities early in the software development life

cycle. These efforts have underscored the fact that risk management should drive the

software development process, which assures that security is made an emergent feature of

the development process [Mkpong-Ruffin and Umphress 2007].

Methodologies for performing risk management activities – risk identification, risk

assessment and risk mitigation – are largely qualitative in nature. Risk identification

approaches such as attack trees, attack nets, and attack pattern matching aid in

determining and identifying the risks that exist in a development effort [Mkpong-Ruffin

 2

and Umphress 2007, Jurjens 2001, Sindre and Opdahl, Microsoft 2006]; whereas risk

assessment methodologies and tools aid in determining what and where resources can be

allocated to ameliorate the risks identified [Boehm 2001, SP 800-30, FIPS 2004, Kontio

1999, Voas et al. 1997]. The qualitative nature of these methodologies makes it difficult

to generalize assessment and duplicate results from other projects. Since effective risk

mitigation strategies are dependent upon the results of the risk assessment process, there

needs to be an empirical means for implementing risk assessment.

1.2 Research Objective

The objective of this research is to use historical data as a basis to categorize and

quantitatively assess risk elements by incorporating risk impact factors in the assessment

model. This objective is articulated through the creation of a software security risk

assessment model (SSRAM) that categorizes, estimates, and ranks risk elements that

have been identified during a threat modeling activity in the design phase of a

development effort. The result of the research is a quantitative risk assessment of

software security for a development effort.

1.3 Background

Risk is defined as the estimation of the probability and severity of an adverse effect

[Haimes 2004]. There are two kinds of risks: speculative and hazard risk [Voas et al.

1998; Young 2001]. A speculative risk, as in a stock investment, may produce a loss or a

profit. A hazard risk, on the other hand, always produces a loss; see Figure 1 [Alberts

2006]. In dealing with risk, the prevalent approach is to find a plan that will reduce the

loss incurred or the actual occurrence of the risk. This plan can take the form of

insurance purchased to reduce the effect of the loss if it were to happen, installation of

 3

deterrent devices around existing structures, or the incorporation of restraints within the

construct of the system. For example, a homeowner could buy insurance, install security

systems on an existing home, or incorporate burglary bars and other theft resistance

structures into the home.

Figure 1 -- Difference between Speculative and Hazard Risk [Alberts 2006]

Risk exists when the exercise of a vulnerability produces a net negative impact. Risk

management is the process of identifying, assessing, and taking the steps to reduce risk to

a satisfactory level. It takes into account the probability and impact of the occurrence of

risk factors. This process allows operational and economic costs to be balanced while still

protecting the development effort. It minimizes the negative impact on the organization

and gives the sound basis needed for decision-making. Risk management allows for a

better security posture in that it enables stakeholders “to make well-informed risk

management decisions to justify the expenditures” that are a part of the IT budget for the

development effort. It also assists stakeholders in “authorizing (or accrediting)” the

development effort based on the documentation derived from the performance of risk

management [SP 800-30; SP 800-53].

 4

Effective risk management gives software engineers the necessary focus to understand

the stakeholders’ objectives. It also provides a context for exploring solution approaches;

thereby reducing the risk of building the wrong system. Effective risk management also

makes it possible for risks to be resolved early, avoiding extensive rework late into the

project [Boehm 2001]. These reasons show the need for risk management to be fully

integrated into the software development life cycle [SP 800-30; SP 800-55; Boehm

2001].

1.3.1 Risk Assessment

Figure 2 below, shows a high-level illustration of the risk assessment process [SP 800-
100].

Figure 2- Risk Function

Risk assessment is the process of estimating the impact of a successful exploitation and

determining the likelihood of an attacker successfully exploiting a given vulnerability.

The estimation of impact is done by looking at the effect an exploitation can have on the

confidentiality, integrity and availability of the system [SP 800-100].

Impact Likelihood Risk

Threat

Vulnerability

 5

Figure 3 - Risk Management Cycle [GAO AIMD-00-33]

Risk assessment provides the foundation for the risk management process. As shown in

Figure 3, risk assessment affords the basis for the establishment of appropriate policies

upon which the other elements of risk management are directed [GAO AIMD-00-33]. It

determines the extent of the potential threat and the risks associated with the software

developed, throughout its life cycle [Voas et al 1997]. It also provides decision makers

with needed information that allows them to understand factors that can negatively

impact operations and outcomes. Additionally, risk assessment allows decision makers

to make informed judgments about actions to take and the extent to which such actions

should be taken to reduce risk. The output of this process aids in finding out what

controls will be needed to reduce or eliminate risks during the risk mitigation process.

For example, bank officials make judgments concerning loan portfolios based on the

results of risk assessment. Insurance providers use risk assessment to determine the

amount to charge for insurance provided. Nuclear power plant engineers conduct risk

assessments to ascertain risks to public health and safety. With the increased dependence

on computer systems, the growth of electronic data and the ubiquity of software, risk

assessment in the software development effort is critical.

 6

In order to provide adequate assessment of the risks for a development effort, threats and

vulnerabilities have to be identified. The likelihood and impact of each risk occurring

have to be determined. In general, risk analysis entails [SP 800-30; McGraw 2006; GAO

AIMD-00 33 11/99; Boehm1989]:

• Determination of the system’s character under question - understanding the

system boundaries, the data sensitivity and criticality, and the stakeholders’

perspectives on the system

• Identification of the threats – attackers that would likely want to attack the system

• Identification of vulnerabilities – flaws that exist or could exist in each level of

the development and the operating environment

• Determination of the likelihood of a vulnerability being exploited.

• Analysis of current and planned controls to mitigate the threats/vulnerabilities

exposed

• Determination of the impact on the system and the organization should the risk be

realized

• Determination of the risks based on the threat and vulnerability identification, the

likelihood of exploitation and impact on the system.

• Determination of controls to mitigate stated risks

1.3.2 Threat Identification

Without a vulnerability to exploit, an attacker cannot exercise a threat. Such a threat-

source can come either from a deliberate attack or from an accidental activation of a

vulnerability. It is generally accepted that a compilation of potential threat sources be

made that are applicable to the IT system under evaluation. These should be adapted to

 7

the organization and its environment. Information on threats and threat sources are now

available from different sources, such as:

• Federal Bureau of Investigation’s National Infrastructure Protection

Center (www.fbi.gov)

• Federal Computer Incident Response Center (FedCIRC) – www.us-

cert.gov

• Mass media, particularly Web-based resources such as National

Vulnerability Database (NVD), SecurityFocus.com,

SecurityWatch.com, SecurityPortal.com, and SANS.org

1.3.3 Vulnerability Identification

Vulnerability is a flaw or weakness in a system’s security procedure, design,

implementation, or internal controls. Its exploitation could be either intentional or

accidentally triggered and would result in a violation of the system’s security policy or a

security breach [SP 800-30; SP 800-12; Steel et al. 2005].

In making an analysis of the threats to an IT system, an analysis of the vulnerabilities

associated with the system and its environment must also be made. A list of flaws or

weakness that could be exploited by the probable threat-sources has to be developed. The

different vulnerabilities can be categorized to allow for ease of identification. [Tsipenyuk

et al. 2005; Howard et al. 2005; OWASP]

1.3.4 Likelihood Determination

Once vulnerabilities and attackers have been determined, the likelihood of a potential

vulnerability being exercised within the associated threat environment has to be derived.

 8

The attacker’s motivation and capability, nature of the vulnerability, existence and

effectiveness of current control are factors that govern likelihood determination. [SP 800-

30; SP 800-100; SP 800-12; Steel et al. 2005]

To describe the likelihood determination most practitioners use qualitative measures of

high, medium, low to describe likelihood levels as shown in Table 1.

Likelihood Level Likelihood Definition

High The threat-source is highly motivated and sufficiently
capable; and the controls to prevent the vulnerability
from being exercised are ineffective

Medium The threat-source is motivated and capable, but
controls are in place that may impede successful
exercise of the vulnerability

Low The threat-source lacks motivation or capability, or
controls are in place to significantly impede, the
vulnerability from being exercised.

Table 1 Likelihood Definitions [SP 800-30]

1.3.5 Impact Determination

When a vulnerability is exercised, the impact of the security event is usually described as

either a degradation of one or a combination of the following security goals: integrity,

availability and confidentiality. Stoneburner [SP 800-30] briefly describes each security

goal and the result of the goal not being met as follows:

Loss of Integrity. System and data integrity refers to the requirement that
information be protected from improper modification. Integrity is lost if
unauthorized changes are made to the data or IT system by either intentional or
accidental acts. If the loss of system or data integrity is not corrected, continued use
of the contaminated system or corrupted data could result in inaccuracy, fraud, or
erroneous decisions. Also, violation of integrity may be the first step in a successful
attack against system availability or confidentiality. For all these reasons, loss of
integrity reduces the assurance of an IT system.
Loss of Availability. If a mission-critical IT system is unavailable to its end users,
the organization’s mission may be affected. Loss of system functionality and
operational effectiveness, for example, may result in loss of productive time, thus
impeding the end users’ performance of their functions in supporting the
organization’s mission.
Loss of Confidentiality. System and data confidentiality refers to the protection of
information from unauthorized disclosure. The impact of unauthorized disclosure of
confidential information can range from the jeopardizing of national security to the
disclosure of Privacy Act data. Unauthorized, unanticipated, or unintentional

 9

disclosure could result in loss of public confidence, embarrassment, or legal action
against the organization. Some tangible impacts can be measured quantitatively in
lost revenue, the cost of repairing the system, or the level of effort required to correct
problems caused by a successful threat action. Other impacts (e.g., loss of public
confidence, loss of credibility, damage to an organization’s interest) cannot be
measured in specific units but can be qualified or described in terms of high,
medium, and low impacts.

Qualitative categories of high, medium and low are also used to describe the impact of

these security goals (Table 2).

Magnitude of Impact Impact Definition

High Exercise of the vulnerability (1) may result in the highly costly loss of
major tangible assets or resources or (2) may significantly violate,
harm or impede an organization’s mission reputation, or interest or
(3) may result in human death or serious injury

Medium Exercise of the vulnerability (1) may result in the costly loss of some
tangible assets or resources or (2) may violate, harm or impede an
organization’s mission reputation, or interest or (3) may result in
human injury

Low Exercise of the vulnerability (1) may result in the loss of some
tangible assets or resources or (2) may noticeably affect an
organization’s mission reputation, or interest.

Table 2 Magnitude of Impact Definitions [SP 800-12]

1.3.6 Risk Determination

Risk is a function of the likelihood of a given attacker’s ability to exercise a potential

vulnerability and the resulting impact of that adverse event on the organization. The

impact realized is the degree of harm that could be caused when vulnerability is

exercised. The level of impact is based on the relative value of the resources affected

such as the sensitivity and criticality of the system’s components and data [SP 800-30 SP

800-12; Steel et al. 2005]. The linking of system-level concerns with probability and

impact measures that matter to a software development organization produces superior

risk analysis [McGraw 2006; Voas et. al 1997]. As such, it is important that the threats to

a system, the probable vulnerabilities, and the controls in existence be analyzed in

tandem for the system in question.

 10

Once the threat-sources, vulnerabilities, likelihood of occurrence and impacts have been

determined, a risk measure can then be developed. Deciding the risk for a particular

threat/vulnerability pair may be expressed as a function of:

• probability of a particular attacker trying to exercise a particular vulnerability

• the magnitude of impact if the vulnerability is successfully exercised

• the adequacy of planned or existing security controls for removing or reducing
risk [SP 800-30]

Stoneburner advocates that a risk scale and risk-level matrix, shown in Table 3, be

developed for measuring risk [SP 800-30].

Impact
Threat
Likelihood

Low
(10)

Medium
(50)

High
(100)

High (1.0) Low
10 X 1.0 = 10

Medium
50 X 1.0 = 50

High
100 X 1.0 = 100

High (0.5) Low
10 X 0.5 = 5

Medium
50 X 0.5 = 25

High
100 X 0.5 = 50

High (0.1) Low
10 X 0.1 = 1

Medium
50 X 0.1 = 5

High
100 X 0.1 = 10

Risk Scale: High (>50 to 100); Medium (>10 to 50); Low (1 to 10) [SP 800-30]

Table 3 Risk-Level Matrix

When the risk has been determined, the results of the assessments can be documented and

maintained; this allows for accountability. Since risks and threats change over time, it is

important that risks and threats be reassessed periodically. Subsequent risk assessment

can use the report as the basis for subsequent risk assessment and evaluations [GAO

AIMD-00-33]. This information also assists designers and developers in challenging their

own built up assumptions about their system [McGraw 2006]. Risk assessment early in

the process molds and provides contextual framework for the assumptions developers

have about the system.

 11

2 STATE OF RISK ASSESSMENT
Risk management is an integral part of the software development process. Since risk

assessment is the foundation for other risk management activities, it should drive the

development process to ameliorate security issues. Developers are expected to identify,

assess, rank, mitigate and manage risk through out the software product life cycle

[Humphrey et al. 2004; Addison and Vallabh 2002]. As noted previously, methodologies

used to allow risk to drive the development process have in large part been qualitative in

nature.

2.1 Threat/Vulnerability Identification

To determine what threats and vulnerabilities exist in a development effort,

methodologies for identification early in the development process exist. Some of them

are:

• SecureUML – a modeling language that incorporates information pertinent to

access control into applications modeled or defined using the Uniform Modeling

Language (UML) [Lodderstedt et al. 2002]. It models security requirement for

“well-behaved applications in predictable environment’ [McGraw 2006].

• UMLsec [Jurjens 2001] – an extension of UML to encapsulate the modeling of

security-related features, such as confidentiality and access control.

 12

• Abuse Cases [Sindre and Opdahl] – an approach that extends use-cases to include

misuse-cases, showing side-by-side what behavior should be supported and/or

prevented.

• Microsoft’s Threat Analysis and Modeling Tool (TAMT) – a tool that generates

risks based on the components, roles, data, external dependencies and the

application’s use-cases of a given development effort [Microsoft 2006].

2.1.1 Threat/Vulnerability Categorization

Different approaches have been used to categorize vulnerabilities. A representative list is

given below.

• Neural Networks - have been used to categorize software security risks within

software with different levels of success [Neumann 2002; Jain et al. 1996]. In

most cases they are used with software metrics, such as McCabe’s complexity

metrics, failure history, lines of code, etc., on modules that have already been

written.

Neumann [Neumann 2002] utilized neural networks combined with factor and

component analysis to generate a set of orthogonal independent variables that

could be used in representing the dependent variable, the goal being to allow for

the focus of testing efforts on the portions of code with the largest number of

faults.

• STRIDE –Introduced by Michael Howard and David Leblanc [Howard and

Leblanc], this approach relies heavily on cycling through a list of attacks and

applying to each attack one or more of the different risk categories of - Spoofing,

Tampering, Repudiation, Information Disclosure, Denial of Service or Elevation

 13

of Privilege (STRIDE) - during analysis. McGraw finds it a good starting point

that gives a useful list of things to consider when identifying risks [McGraw

2006].

• Tsipenyuk [Tsipenyuk et al. 2005] uses a taxonomy of seven “kingdoms” (Input

validation and representation; API abuse; Security features, Time and State,

Errors, Code quality, Encapsulation and Environment) to categorize risk elements.

Under each kingdom are the specific elements relevant to the kingdom. For

example SQL injection and buffer-overflow belong to the input-validation and

representation kingdom.

• Others, such as the Open Web Application Security Project [OWASP] and

[Howard et al. 2005] provide lists of types of vulnerabilities that can be used to

facilitate adoption of vulnerability groupings. These lists tend to have a mixture

of specific types of errors and groupings of vulnerabilities. For example, cross-

site scripting and SQL-injection are discussed at the same level of abstraction as

Improper Error Handling and Trusting Network Address Information. A

mapping of the different types of vulnerabilities as given by Howard, OWASP

and Tsipenyuk is shown in Appendix F.

2.2 Software Testing and Assessment

Traditionally, testing has been done to see if an application works correctly. For security

testing, emphasis is placed on identifying and removing vulnerabilities that could result

in security violations. It validates the effectiveness of the security measures that are in

place [Pan 1999]. Just as with ordinary testing, security testing methods fall into one of

two major categories: black-box or white-box testing.

 14

What method the tester uses to carry out security assessment and testing depends on the

tester’s perspective with respect to the software component. Black-box tests are

conducted when specific knowledge about the software internals is not known, and the

test cases are constructed based on functional requirements. White-box tests are

conducted when the application’s internal structure is known.

2.2.1 Black-Box Testing

In black-box testing, the data used is taken from the specified functional requirements

[Howard et. al. 2005; Hetzel 1988]. Testing approaches such as penetration, functional,

risk-based, and unit testing are commonly used to perform black-box testing [Howard et.

al. 2005; Hetzel 1988; Voas et al. 1998; Michael and Radosevich].

• Penetration testing looks at how easy it would be for a component to be broken

into.

• Functional testing looks to see whether software behaves as it was required to

behave and whether it adheres to the given functional requirements.

• Risk-based testing is a subset of functional testing that focuses on those negative

requirements that do not have a direct code base to be tested against. For

example, the requirement to make sure that the application is not vulnerable to

buffer overflows would be hard to map to a particular segment of code but still

requires that testing be implemented to address this requirement. Risk-based

testing is usually done by testing for misuse and abuse cases [Michael and

Radosevich 2005].

• Unit security testing looks at how an adversary could gain access to the software

and then take control of the software after gaining access. Given this two-stage

 15

approach to unit testing, many use attack trees as a method for identifying and

modeling threats since attack trees are amenable to portraying the different stages

of implementation of a threat [Schneier 2000].

2.2.2 White-Box Testing

White-box approaches use test and assessment activities to show the structure and flow of

the software under review. The program structure provides the basis for the test cases

generated [Mkpong-Ruffin and Umphress 2007]. Commonly used white-box testing and

assessment methods are fault-injection, source-code analysis and profiling.

Fault-Injection

Fault-injection uses information based on test cases – flaws – to show the effects of

successfully exploiting a vulnerability by adding code that would forcefully change

program state. This approach gives insight into predictive measures of risk such as

minimum-time-to-hazard and mean-time-to-failure. Wallace defines hazard as “an unsafe

condition that may lead to an unintended event that causes an undesirable outcome”

[Wallace 1991].

Fault-injection allows for absolute worst-case prediction [Voas et al. 1998]. Jeffery Voas

and colleagues distill the problems that software risks could stem from to the following:

“erroneous input data (from sensors, humans, or stored files), faulty code, or a

combination of the two” [Voas et al. 1997]. They postulate that accurate assessment of

liability requires worst-case predictions of software outputs if any of the aforementioned

problems would occur. To identify faulty or defective code, analytical techniques such as

formal code verification and testing can be employed. To detect wrong input data and

faulty code, fault injection should be performed.

 16

Injecting anomalies allows the simulation of the effects that the real anomalies would

probably have and makes it feasible to build up a body of knowledge about probable

future behavior. The simulation of the effects makes it possible to quantify the risks that a

system’s component would create and allows observation of how bad things could get.

Being able to quantify the risks gives a way to determine the ‘boundaries of liability’

[Voas et al. 1997]. Like other testing techniques, fault-injection is a technique utilized

after a development effort is well under way.

Static Analysis

Static analysis tools look at the text of program, while not in execution, to discover

potential vulnerabilities within the program. For example, many vulnerabilities are

known to come from reusable library functions such as C’s strcopy() and stat(). A static

analyzer could scan the programs to see if they contain any calls to those functions

[Mkpong-Ruffin and Umphress 2007] and then analyze the potential vulnerabilities

uncovered to ascertain that they do not lead to security violations [Janardhanudu].

Profiling

Profiling tools allow the tester to observe the application’s performance while in

execution to see where bottlenecks occur. It also allows for observation and

understanding of the sequence of function calls and the time spent in different areas of

the software. This observation of the performance bottlenecks of the software with

profiling tools allows for a better understanding of vulnerability areas, such as areas with

memory leaks, which would not be apparent with the use of static code analyzers [Steel et

al. 2005].

In all the instances given for software testing and assessment, these methodologies are at

a lower level of abstraction in the development process.

 17

2.3 Stakeholder’s Goals

2.3.1 Boehm Win-Win approach

Boehm advocates using a risk management cycle consisting of risk identification, risk

assessment and risk tracking. To this end, risk identification aided by software risk

management techniques [Boehm 2001] proactively identifies, as early as possible, the

possible sources of significant risks (see Table 4).

Source of Risk Risk Management Techniques

Personnel shortfalls Staffing with top talent; key personnel agreements; team-
building; training; tailoring process to skill mix;
walkthroughs.

Schedules, budgets, process Detailed, multi-source cost and schedule estimation; design
to cost; incremental development; software reuse;
requirements descoping; adding more budget and schedule;
outside reviews.

COTS, external components Benchmarking; inspections; reference checking;
compatibility prototyping and analysis

Requirements mismatch Requirements scrubbing; prototyping; cost-benefit analysis;
design to cost; user surveys

User interface –mismatch Prototyping; scenarios; user characterization (functionality;
style, workload); identifying the real users

Architecture, performance, quality Simulation; benchmarking; modeling; prototyping;
instrumentation; tuning

Requirements changes High change threshold: information hiding; incremental
development (defer changes to later increments)

Legacy software Reengineering; code analysis; interviewing; wrappers;
incremental deconstruction

Externally-performed tasks Pre-award audits, award-fee contracts, competitive design
or prototyping

Straining computer science Technical analysis; cost-benefit analysis; prototyping;
reference checking

Table 4 Software Risk Management Techniques [Boehm 2001]

The cycle would then continue with resolving each risk and, if not possible, addressing

the resolution in the risk management plan by re-scoping the risk. Barry Boehm [Boehm

2001] uses the ‘Top-N Risk Item List’ to monitor risk management. This process gives a

 18

summary of the risk items that are either growing or decreasing in criticality. The

elaboration of the cycle is shown in Figure 4.

Figure 4 - Top-N Risk Item List[Boehm 2001]

2.3.2 RISKIT

RISKIT [Kontio 1997] is a method for risk management developed by J. Kontio. It

incorporates utility theory with a support for the perspective of different stakeholders’

goals, by the maintenance of links between risks and stakeholders (See Figure 5). It

utilizes analysis graphs, as shown in Figure 6, for visual documentation of risks. The

goal of the analysis graph is to give a deeper understanding of the process thereby

enhancing communication [Kontio et al. 1998].

• Identify new risks

• Identify affects of risks

• Assess risk exposure; reconcile risks with project goals, constraints,
objectives

• Evaluate risk reduction alternatives and risk reduction leverage

• Take corrective action; assess decision points to invoke contingency plans

• Perform top-N Risk Item Tracking (See Table 4)

• Identify the top-N Risk Items

• Highlight these in regular project reviews (focuses review on
manager-priority items)

• Focus on new entries and slow-progress items

• Reassess top-N risks

 19

Figure 5 - Definition of Risk in Riskit Method [Kontio et al. 1997]

Figure 6 -Example of the Riskit analysis graph (risk scenarios) [Kontio et al. 1998]

2.4 Risk Management Framework (RMF)

Introduced by Gary McGraw, this risk analysis approach is embedded within a risk

management framework [McGraw 2006]. He suggests three steps – attack resistance

analysis, ambiguity analysis, and weakness analysis as the sub processes performed to

accomplish risk analysis. Attack patterns and exploit graphs are explored for attack

resistance analysis. Ambiguity analysis looks at the disparate viewpoints of analysts of a

particular system, on how the system should work to determine whether disagreements

are due to misunderstanding or the need for further analysis. [Viega and McGraw 2001].

Database release in
 beta test phase

Factor

Database not
available in time

Event

Change database
product

Reaction

Delay project

Reaction

Schedule: 2+ mo
Cost: $30+ K

Effect on Goals

Schedule: 3+ mo
Reputation:
negative

Effect on Goals

Database
integration
problems

Event

Call in the DB
expert

Reaction

Cost: $10K

Effect on Goals

 20

Weakness analysis is performed by looking at the security of commonly used frameworks

such as .NET and JEE and other third-party components.

2.5 Software Reliability

The area of software reliability engineering looks at the probability of failure-free

software. [Rosenberg et al. 1998]. It is a mature area of software engineering with

models and methods for assessing the reliability of software and, in some cases,

predicting future-failures based on error-history [Karunanithi et al. 1992]. Software

reliability engineering utilizes fault prevention, fault removal, fault tolerance and

fault/failure forecasting as methods to provide system dependability. These terms are

explained below [Lyu et al.1996]:

• Fault is a defect within software that causes a failure.

• Failure is the erroneous output as determined by the requirements for the system.

• Fault prevention is the avoidance of the occurrence of a fault.

• Fault removal is the usage of verification and validation to find and remove faults

and

• Fault/failure forecasting is the estimation of the existence of faults and where they

occur and the consequences of failure.

2.6 Traditional approach

A traditional approach to quantitative risk analysis is to measure risk with respect to

financial loss or loss expectancy [GAO AIMD-00-33; Mkpong-Ruffin and Umphress

2007; Verdon and McGraw 2004; Steel et al. 2005]. This involves identifying all key

risk elements and assigning estimates of values associated with each risk element, such as

frequency, asset cost, potential loss value, business impact. With these values, estimates

 21

of potential loss can be computed and an analysis of potential threats can be performed.

The Annual Loss Expectancy (ALE) can be computed as follows:

ALE = Single Loss Expectancy (SLE) x Annualized Rate of Occurrence (ARO)

Where,

ARO is the frequency of threats per year,

SLE is the asset value x exposure factor (EF)

EF is the percentage of asset loss caused by the potential threat
Equation 1 - Traditional Annual Loss Expectancy

2.7 Cross-Disciplinary ties to Insurance

In actuarial science, actuarial tables (known also as mortality tables or life tables) exist to

show the probability, at each age, of a person dying before their next birthday. With this

as a starting point, statistics are derived on the probability of surviving any particular year

of age. This process uses characteristics such as smoking, occupation and socio-

economic class to distinguish between different risks in determining life expectancy. To

develop predictions of future insured events, such as sickness, death, disability, etc.,

actuaries study incidence and severity of these events based on the recent past. They use

this study to develop expectations about how the factors that motivated the events in the

past will change over time. Armed with factors that affect risk, they are able to create

models that allow them to evaluate risk [Klugman et al. 2004].

2.8 Problems with Existing Approaches

Most of the work done on risk management in software development has been from a

subjective point of view [Boehm 2001; Farahmand 2003]. The main problem with

qualitative approaches is the lack of objectivity, which makes it hard to duplicate results

 22

or generalize assessments from previous projects [Voas et al. 1997]. The approaches

enumerated above have the following limitations:

• Threat/Vulnerability Identification models and tools have as a goal the listing of risks

that need addressing. These lists provide a starting point in dealing with security but

it is not the case that all risks identified can be addressed. Even if all risks enumerated

could be addressed, protecting against every single conceivable threat would reduce

security to “a labor-some project that gets in the way of functionality …” [Cheswick

et al. 2003]. The removal of all enumerated risk would make it very difficult, if not

impossible, to produce a system that would be useful as well as secure. Since all risks

may not be addressable, determining which vulnerabilities to address becomes a

problem.

• The neural network approaches have had disparate results as evidenced by the

statements given by Sherer and Koshgoftar [Sherer 1995, Koshgoftar 1995]. Sherer’s

conclusion was that neural networks did not do a good job of predicting the

components that would have many faults. Koshgoftar, on the other hand, saw neural

networks as effective modeling tool that should be seriously considered for software

engineers because of its predictive capabilities.

• The testing approaches, though effective in measuring some classes of risks

described, are used later in the development process, after most of the work for

development has been accomplished. Any changes due to the analysis would be more

expensive in terms of time and cost.

• The traditional quantitative approach of annualized loss expectancy (ALE) and the

exposure factor (EF) carries with it the burden of knowing what asset costs to use.

 23

The impact effect is measured by the cost of asset loss, which is not easily determined

during the design phase of development. If the cost of asset loss is available, it may

not adequately reflect the seriousness of the problem. This approach also suffers

from the lack of sufficient data to determine probability of loss. Unlike the insurance

or finance companies, software developers do not have probability loss tables

available to adequately determine the frequency of occurrence and the probability of a

risk occurring.

• Another reason given for not using quantitative models is the lack of access to

reliable and current vulnerability data to support estimating probability of loss [GAO

AIMD-00-33]. The data on the likelihood and costs associated with information

security risk factors have been limited and the risk factors in this domain are

constantly changing. This lack of reliable and current data has made it hard to

determine which information security risks are the most significant. It is also difficult

to compare controls to determine which ones are most effective. To this end, many

organizations historically have leaned towards methods that do not rely on empirical

data for obtaining reliable results.

• Risk assessment methodologies that are based on being able to accurately quantify

reliability have also not been found to be good approaches because 100 percent

reliability does not necessarily correlate to zero percent risk. Another problem with

using reliability for liability prediction is that the reliability prediction models in

existence are conflicting and make it almost impossible to know definitively the true

reliability of a piece of software. Most of the error-history-based reliability models

 24

predict reliability differently using the same data, which makes determining the

model that is most accurate for a definite system hard to do.

• Relevant work on risk management in other disciplines has not been fully embraced

by the software risk management community [Kontio 1999]. Since risk management

is mature in other disciplines, knowledge can be gleaned from those disciplines to

strengthen software risk management process.

Risk analysis is a process for considering possible risks and determining which are the

most significant for any particular effort. Work has been done on risk identification,

mitigation, evaluation and assessment, but not much has been done in assessing and

ranking risks during the early part of the software development life cycle [Voas et al.

1997]. Determining which risk elements should be addressed and the optimum strategy

for mitigating risks is often an intuitive process. Risk element assessment in software

security is predominantly a qualitative process. An objective view of the risks inherent in

a development effort requires a quantitative risk model.

 25

3 RESEARCH DETAILS
A great need exists for tools to evaluate and quantify risks that are attributable to

software development, if for no other reason than to reduce litigation costs due to

software failure [Voas et al. 1997]. This research demonstrates that those attempting to

perform risk assessment can do so from an objective point of view.

As previously noted, one of the hindrances to objective measures for risk assessment is

the lack of available data. As shown in Figure 7, the rate of reported incidence of

vulnerabilities as recorded in NVD has increased dramatically. This increase in available

data provides a basis for building a database for determining and evaluating risks.

Reported incidences

0

1000

2000

3000

4000

5000

6000

7000

1
9
8
8

1
9
9
0

1
9
9
2

1
9
9
4

1
9
9
6

1
9
9
8

2
0
0
0

2
0
0
2

2
0
0
4

2
0
0
6

Year

R
e
p
o
rt
e
d
 I
n
c
id
e
n
c
e
s

Reported
incidences

Figure 7 -Reported Incidences [NVD]

 26

3.1 Conceptual Overview

To empirically assess the risks inherent in a development effort, using the approach

applied in this research requires that the historical data be placed in a format that allows

for classification. A clustering algorithm can then be applied to the data to determine the

best segmentation of the underlying data as illustrated in Figure 8. This allows for new

risk elements to be classified based on their similarities to the clusters discovered. Once

the risk elements have been classified, the cluster that best represents the risk element in

question is then used to determine the impact factor for that risk element. The impact

factor value can then be used to calculate loss expectancy. This process of determining an

empirical posture for a given development effort is illustrated in the sequence diagram of

Figure 9.

Figure 8 - SSRAM's Cluster Creation

Figure 9 - Software Security Risk Assessment

nvdData SSRAM clusteredIncidences

request NVD data

return NVD data

Clean NVD data and
Update SSRAM db

Create clusters

riskElement(s) SSRAM clusteredIncidences

calculate
loss expectancy

Send unordered list of risk
elements requestRiskAssessment

(rElement)

total incidences &
impact values

return ranked list of
elements

Identify
Risk Cluster
(rElement)

Generated list
of

 risk elements

List of
elements

 27

This model provides an empirical assessment of the potential threats to a development

effort and a ranking of these threats based on the risk metric calculation.

3.2 Data Preparation

To be able to assess risk elements, the historical data must be in a categorized form that

allows new elements to be classified (Figure 8). To this end, historical data for this

research was taken from an open-source vulnerability database provided by the U.S.

government, the National Vulnerability Database (NVD). The NVD database provides

RSS (Really Simple Syndication) feeds, in an XML format, of incidences reported from a

variety of sources. The schema for this data is presented in Appendix A-1. It has seven

sublevels with a nested hierarchy. An example of an entry is provided in Appendix A-2.

3.3 Parsing the Data

To parse the XML data, we had to traverse each node of the NVD XML document and

used different types of SQL INSERT SELECT statements to accommodate the different

ways that the XML feed reports node level data. An overview of these steps is given

below, accompanied by the database diagram that depicts the tables generated based on

the schema given.

• Insert the XML documents into a table
use ssram
INSERT nvdtmp
 SELECT CONVERT(xml, BulkColumn, 2) FROM
 OPENROWSET(Bulk 'F:\Dissertation\Databases\National Vulnerability
Database\nvdcve-recent.xml', SINGLE_BLOB) [rowsetresults]

• Parse the data into the different tables based on the schema of the XML document. To

parse the data into each table required that we implement different scripts for each

table due to the differences in each of the tags of the XML document.

 28

o Parsing first level tags — The first level tag <entry> has all of its values in

attributes as shown below in Figure 10. To parse this data, an attribute centric

approach was applied to the data in the first level node,

<entry

type="CVE"
name="CVE-2006-0948"

seq="2006-0948"
published="2006-08-21"
modified="2006-08-22"
severity="High"
CVSS_score="7.0"
CVSS_vector="(AV:L/AC:L/Au:NR/C:C/I:C/A:C/B:N)">

Figure 10 - NVD's First Level Node

o Parsing lower level tags with additional tag and attribute values — The <desc>,

<ref> and <sols> tags use a combination of tag and attribute values that need be

parsed independently. For example, Figure 11 shows a <desc> tag that has the

nested <descript> tag and the source attribute. The tag and attribute have to be

parsed separately. Also, since these are nested tags, parsing involved getting

information from the parent tag along with information from the lower level tag.

<desc>

<descript source="cve"> AOL 9.0 Security Edition revision 4184.2340, and probably
other versions, uses insecure permissions (Everyone/Full Control) for the "America
Online 9.0" directory, which allows local users to gain privileges by replacing
critical files.
</descript>

</desc>

Figure 11- NVD Description Node

o Parsing lower level tags with nested lower level tags –

The <loss_types>, <vuln_types> and <range> tag entries have nested lower-level

tags that contain the data needed. If the value is not present, then the tag is not

available for that particular instance. For example Figure 13 shows two instances

of the <loss_types> tag. Note that Figure 12(a), has the <int /> tag which is not

in Figure 12(b)’s tag and Figure 12(b) has the <sec_prot> tag and its associated

attribute which is not in Figure 12(a). These values are embedded as part of the

 29

meta property of the tag. The meta property data for these tags needed to be

accessed to accurately represent their information.

<loss_types>

<avail />

<int />

</loss_types>

(a)

<loss_types>

 <avail />

 <sec_prot other="1" />

 </loss_types>

(b)

Figure 12 - Node with nested lower level tags

Appendix A-3 has the full script for parsing the NVD XML document into required

tables. Successful parsing of the data resulted in the population of the SSRAM database

based on the schema depicted in Figure 13. Each entry level tag is depicted as a record in

the entry table with a unique entry name that is used to associate with the lower level tags

in the other tables shown in Figure 13.

entry
type

name

seq

nvd_name

discovered

published

modified

severity

reject

CVSS_score

CVSS_vector

entryDesc

entry_name

descript

source

entrySols

entry_name

sol

source

nvdtmp

XmlCol

range
entry_name

exploit_range

refs
entry_name

ref

source

url

sig

adv

patch

vuln_soft
entry_name

prodName

prodVendor

versionNum

preVersion

edition

vuln_types
entry_name

vuln_type

input_bound

input_buffer

lossType2
entry_name

loss_type

adminSP

userSP

otherSP

Figure 13 - SSRAM Schema

3.3.1 Validation of Data Entry

To validate that the data was gotten correctly from the XML files, a random sample of

entries was chosen. [Bartlett II et al] recommends a sample size that is less than or equal

 30

to 5% of the captive population. Given that the NVD data is captive data, in that all the

data requested is in the file gotten, a file with 136 entries was downloaded on 8/26/06 and

used to test the process for data entry. A systematic random sampling approach was

implemented to test the data. With systematic random sampling, every k-th entry is

chosen, with the first entry randomly selected. Since this test file had 136 entries, we

chose   7136%5 =× entries to be compared with the actual XML data to see if there

were any discrepancies and chose   207136 =÷ as the k factor. To this end, a random

number, between 1 and 19 based on a random generator, was chosen to determine the

first entry to be validated. Thereafter, every 20th entry was chosen for validation. The

following records were checked - the 5th, 25, 45, 65, 85, 105, 125 and, for added measure,

the first and last entries. We compared the contents of the actual XML document with the

content of the uploaded table to ascertain that they had the same information (Table 20 in

Appendix A-4). Any discrepancies between the table and the actual record information

were corrected and the data uploaded again. We again compared the contents of the first

sample of data and then using the same approach, selected seven other entries (2, 22, 42,

62, 82, 102, 122) to confirm that the data had been correctly uploaded. See Appendix A-4

for complete data upload validation information.

3.4 Cluster Determination

With the data parsed into the component tables, we were able to look at the fields

necessary for clustering the data. Clustering the data allows for determining the different

kinds of natural groupings or classes that may exist within the underlying data. Given the

nature of the data collected, we chose fields within each table that were independent as

 31

fields necessary for clustering. For example, in the entry table, we did not choose the

severity field, as it depends on the CVSS_score field. Along with the scalar fields, we

also chose the description text field as it contained information about the vulnerability

entry that is cogent in determining the kind of vulnerabilities and losses affected. Figure

14 shows the select statement of the fields chosen to determine the clusters for the

elements reported.

select entry.name, entry.discovered,entry.published, entry.cvss_score,
lossType2.loss_type, lossType2.adminSP,lossType2.userSP,
lossType2.otherSP,vuln_types.vuln_type, vuln_types.input_bound,
vuln_types.input_buffer,range.exploit_range, refs.source,
refs.sig, refs.adv, refs.patch,vuln_soft.prodName,
vuln_soft.versionNum, vuln_soft.preVersion, vuln_soft.edition

 into denormNVD
 from entry, lossType2, vuln_types, range, refs,vuln_soft
 where
 entry.name = lossType2.entry_name AND
 entry.name = vuln_types.entry_name AND
 entry.name = range.entry_name AND
 entry.name = refs.entry_name AND
 entry.name = vuln_soft.entry_name

Figure 14 - Independent Variable Selection Statement

Since the description field contained ‘comment-like’ data that cannot be clustered in the

form given, it was necessary to create a table to which the nouns and noun-phrases of the

description field were extracted. With each term an associated score Term Frequency and

Inverse Document Frequency (TFIDF) was assigned. This score is defined as:

TFIDF of a Term T = (frequency of T) * log((#rows in Input) / (#rows having T)).
Equation 2 - TFDIF

Upon completion, a vector table that associates each term with the description entry was

also created. (Appendix B-1)

Determining the clusters to use to classify risk elements required the exploration of

different segmentation schemes. Some clustering algorithms produce well-separated

clusters, such that an object can belong to only one cluster. Others use an overlapping

 32

approach so that an object could belong to more than one cluster. To identify the natural

groupings that may exist in the historical data, we examined two clustering algorithms

that implemented each of the segmentation schemes described above, K-Means and

Expected Maximization (EM).

K-Means is a clustering algorithm that produces k partitions or clusters of the underlying

data by trying to find the centers of natural clusters in the data. This is achieved by

minimizing the total variance within the cluster [Tang and MacLennan 2005]. Using this

approach, the K-Means algorithm assigns each data record to a specific cluster. This

approach does not allow for uncertainty in the membership record within a cluster.

The EM clustering algorithm, like K-Means, produces k partitions by finding the center

of the natural clusters in the data, but unlike the K-means, relaxes the assumption that a

data record has to belong to only one cluster. It allows for the overlapping of clusters, in

that data can belong to other clusters but with different probabilities of membership

[Bradley, Fayyad, Reina 1998].

Two mining structures were developed, one for the data without the description terms and

the other with the vector table included as a nested table. Within each mining structure,

mining models using EM and KM algorithms with different target numbers for clusters

were generated. These models were then compared for predictive accuracy. We found

that the EM mining models with the description vector table showed better predictive

accuracy than those without the description vector tables. Figure 15 and Figure 16 show

the mining accuracy charts for the different structures. The X-axis of each chart

represents the percentage of the test dataset that is used to compare the predictions, while

 33

the Y-axis represents the percentage of predictions that are correct. In both cases, the EM

models outperformed the KM models. As shown in Figure 15 and Figure 16, the

structure with models that took into account the description vector table had better

prediction values than the mining structure without the vector table. Given 100% of the

test cases used for prediction, the best predictive model for the mining structure with the

description vector table (NVDCL-EM10) had a 71.86 % predictive accuracy score as

compared to 61.25% predictive accuracy of the best model for the mining structure

without the vector table (NVDCLwo_EM10).

Figure 15 -Clustering without Description

NVDCLwo-EM10

NVDCLwo-EM8

NVDCLwo-KM10,
KM8, KM6

NVDCLwo-EM6

 34

Figure 16 - Clustering with Description

Choosing to use the mining structures with the description vector, we decided to use the

EM clustering algorithm to segment our training data since it predominantly

outperformed the K-Means algorithms, regardless of the mining structure used, as shown

in the graphs in Figure 15 and Figure 16. To determine the cluster node size to use, we

looked at predictive results obtained from mining structures with 4, 6, 8 and 10 cluster

node sizes. We decided on using node size of four based on the heuristic determination

of the clustering algorithm. We then incremented the node size by two, up to the default

node size of ten for the different mining models and compared the predictive results

obtained with each model. Upon completion we chose the EM clustering algorithm

based on 10 nodes because the EM 10-Node size outperformed the other node sizes

across most of the population. See Figure 18.

With the clusters formed, each data item of the training model was assigned to a cluster.

This was done by extracting all the data necessary for the prediction query along with the

NVDCL-EM8 NVDCL-EM6

NVDCL-EM10

NVDCL-KM10

NVDCL-KM6

NVDCL-KM8

 35

cluster tag associated with each entry and saving this data so that prediction algorithms

would be run against it. Effectively, a query such as that is shown in Figure 17.

SELECT
 (t.[name]), CLUSTER() FROM [NVDCL-EM-10]
PREDICTION JOIN
OPENQUERY([SSRAM],…) AS t
ON
 [NVDCL-EM-10].[Cvss Score] = t.[cvss_score] AND …

Figure 17 - Cluster Assignment Query Example

3.4.1 Validation of Clustering

We separated the data from NVD into two parts so that we could use one part for training

and the other for testing our algorithm. After training the algorithm, we used two

approaches to validate the clustering algorithms. In the first approach, we used the test

data to find an indication of how likely it is for each test case to exist within a determined

cluster. A score for the model as shown in the mining legend table to the right of the

graph in Figure 18 reflects the average case likelihood of each of the training cases

existing within each model. A score closer to 1 is an indication that the training points are

close to the clusters in the model and, as such, implies that the clusters are compact and

well-defined. A score that is close to 0 implies that the training data points are scattered

and the clusters are not as well defined [Tang and MacLennan 2005].

 36

Figure 18 -Mining Accuracy Chart

Also, we examined the cohesion of the cluster with respect to the centroid of the cluster

by looking at the mean, standard deviation, maximum and minimum values for each of

the clusters within each mining model to. In essence these statistics were used to reflect

the proximity of the entries within each cluster to the mean. An example of the results

gotten is shown in the Table 5. For the algorithm represented here, seven clusters were

derived and the count shows the number of entries within the cluster. With the smallest

number of entries in a node being 300, we assume a normal distribution for our data. The

average CVSS score and the standard deviation values reflect the fact that though the

range of scores in each of the clusters ranged from 1.9 – 10, 96.3% of the data within the

clusters were within 1.95 standard deviation from the mean, implying a tight cohesion.

Cluster 4 had the least cohesion with a standard deviation of 2.27, while Cluster 7 had the

tightest cohesion with entries that were exactly the same, as reflected in its standard

deviation and range of 0.

NVDCL-EM10

NVDCL-EM8

NVDCL-KM10

NVDCL-KM6

NVDCL-EM6

NVDCL-KM8

 37

Cluster Count
Std
Deviation

Avg
Score

Max
Score

Min
Score

1 1700 1.61 3.8 10 1.9

2 8351 0.81 6.74 10 1.9

3 8761 1.34 9.29 10 1.6

4 860 2.27 4.41 10 1.9

5 429 1.91 4.45 10 2.3

6 2990 1.54 3.28 10 2.3

7 300 0 7 7 7

Table 5 - Cluster Algorithm Cohesion Factors (NVDCL-EM10)

 Cluster Count
Std
Deviation

Avg
Score

Max
Score

Min
Score

1 22717 2.08 7.44 10 1.6

2 7816 2.2 5.43 10 1.9

3 7296 2.19 5.16 10 1.9

4 3856 2.39 5.01 10 2.3

5 9306 2.33 4.75 10 2.3

6 514 0 7 7 7

Table 6-Cluster Algorithm Cohesion Factors (NVDCL-EM8)

Looking at the cohesion values for the mining structures in Table 5 and Table 6, it is

evident that the clusters formed by the mining model NVDCL-EM10 exhibited tighter

cohesion values than that of NVDCL-EM8. All but one of the clusters in Table 5 have

has data within 1.95 standard deviations from the mean. On the other hand, NVDCL-

EM8 has only one cluster with data within 1.95 standard deviations from the mean (Table

6). Given that NVDCL-EM10 (Table 5) had the tightest cohesion factors, we chose this

algorithm for clustering the historical data so that new data can be classified against it.

See Appendix B-5 for complete validation results.

3.5 Data Classification

Determining the general categories of the vulnerability database allows for classifying

new data. Classification is the process of assigning objects to one of several predefined

categories. To find the cluster most similar to new data given, we examined Decision

 38

Tree, Neural Networks and Naïve Bayes classification algorithms and chose the

classification algorithm that best predicted the cluster that should be used.

Decision Tree algorithm: The decision tree algorithm is a classification algorithm for

predictive modeling of continuous and discrete attributes. It uses the relationships

between the input columns within the data set to make predictions. It does this by

identifying the input columns that correlate with the predictable columns. Each time an

input column is found to be significantly correlated with the predictable column, the node

is added [Microsoft 2008-3].

Neural Networks: Neural network algorithms stem from the 1940s research work by

Warren McCulloch and Walter Pits on simulating how the brain works [Tang and

MacLennan 2005]. Neural network algorithms address primarily classification and

regression tasks of data mining. Like decision trees, they find non-linear relationships

between input attributes, but unlike decision trees, they find smooth as opposed to

discontinuous nonlinearities. Neural network algorithms use networks that are made up

of three types of nodes or layers (input, hidden and output) and directed edges that show

the data flow during the prediction process. The input nodes, which form the first layer

of the network, are mapped to the input attributes. The hidden nodes, which are the nodes

in intermediate layer, combine the values gotten from previous layers with weights of

associated edges to perform some calculations and generate the result value to the next

layer. The output layer represents the predictable attribute(s) [Microsoft 2008-4].

Naïve Bayes: The Naïve Bayes algorithm, like decision tree and neural network

algorithms, is a classification algorithm for predictive modeling. It works by calculating

the conditional probability of input and predictive attributes. Naïve Bayes assumes that

 39

the input attributes are independent and as such does not take into account any

dependencies that may exist between attributes. In doing so, the probabilities can be

multiplied so that the likelihood of each state can be determined [Microsoft 2008-5, Tang

and MacLennan 2005].

To help in determining the model to be used for classification, two mining structures

were created, one using the vector table with descriptive information and one without. A

comparison of the classification algorithms explained above was done. Figure 19 and

Figure 20 pictorially depict the result of classifying the test data with and without the

description vector. The Naïve Bayes and Neural Network algorithm outperformed the

Decision Tree algorithm in each instance. Though the scores for Neural and Naïve Bayes

were the same (Table 7), the Naïve Bayes algorithm took less time (0:00:03 versus

0:00:32) to process the same data.

Model Name Processing

Duration Time

Score

NBClusterClassifier (Naïve Bayes) 3 seconds 0.81

DTClusterClassifier (Decision Tree Classifier) 5 seconds 0.78

NNClusterClassifier (Neural Network Classifier) 32 seconds 0.81

Table 7 - Classifier Processing Time and Score – Cluster Classifier without Description

 40

Figure 19 -Classifiers with Description Vector

Figure 20 - Classifiers without Description Vector

NB ClusterClassifier

NN ClusterClassifier

DT ClusterClassifier

NB ClusterClassifier

NN ClusterClassifier

DT ClusterClassifier

 41

3.5.1 Data Classification Validation

Classification models are evaluated based on the number of test records that they

correctly and incorrectly predict. An example of this evaluation is shown in Table 8.

Columns correspond to the actual values and rows depict the predicted values. The

complete matrix can be seen in Appendix B-4. Table 8 shows the confusion Matrix for

the Naïve Bayes model, the first row should be read as follows: Row 1 depicts the entries

that were predicted for Cluster 1. Of all the entries predicted for Cluster 1, 3158 actually

belonged to Cluster 1, 496 belonged to Cluster 6 and 157 entries predicted as Cluster 1

were in actuality Cluster 2’s entries. This matrix provides enough information to

measure the performance of each model using the Accuracy metric defined as follows:

edictionsofNumberTotal

edictionscorrectofNumber
Accuracy

Pr

Pr
=

Equation 3 – Accuracy Determination

Counts for NB ClusterClassifier on [Cluster Node]

Predicted

Cluster
1
(Actual)

Cluster
6
(Actual)

Cluster
4
(Actual)

Cluster
3
(Actual)

Cluster
8
(Actual)

Cluster
5
(Actual)

Cluster
7
(Actual)

Cluster
2
(Actual)

Total
Predicted

Cluster 1 3158 496 60 145 74 164 41 157 4295

Cluster 6 307 680 1 89 0 63 2 29 1171

Cluster 4 35 14 257 5 75 32 197 6 621

Cluster 3 19 129 10 513 0 7 4 103 785

Cluster 8 2 0 9 0 17 0 15 6 49

Cluster 5 47 89 6 15 2 1017 7 59 1242

Cluster 7 28 2 226 8 202 2 578 22 1068

Cluster 2 11 21 6 221 10 27 15 628 939

Accuracy=0.67
Table 8 - Classification Confusion Matrix – Classifier without Description

Figure 21 shows a comparison of the accuracy performance metric for the classifiers in

both mining structures. The mining structure without the description vector tables had an

average accuracy score of 0.66 while the structure without the description vector had an

average accuracy score of 0.79. Though the description vector was necessary in

 42

determining cluster, it was not necessary to have that information in classifying a new

entry.

Accuracy of Classification Algorithms

0.00

0.20

0.40

0.60

0.80

1.00

P
re
d
ic
ti
o
n
 A
c
c
u
ra
c
y

with Desc

without Desc

with Desc 0.63 0.68 0.65

without Desc 0.86 0.67 0.85

DT Classifier NB Classifier NN Classifier

Figure 21 - Prediction Accuracy of Classifiers

3.6 Loss Expectancy Determination

With the data segmented into clusters and a classification algorithm adopted, the impact

score and frequency of occurrence of a given risk entry was determined and used to

calculate loss expectancy. Traditionally, loss expectancy is computed by determining the

value of the percentage of asset loss caused by the potential threat and finding the

frequency of occurrence of threats within a given year, as shown in Equation 1.

Since asset value loss cannot be easily determined, we opted to use the Common

Vulnerability Scoring System (CVSS) ‘base’ score because it shows the inherent

characteristics of the vulnerability incidence reported and reflects the impact value of the

reported incident.

 43

<entry

type="CVE"
name="CVE-2006-0948"
seq="2006-0948"
published="2006-08-21"
modified="2006-08-22"
severity="High"
CVSS_score="7.0"
CVSS_vector="(AV:L/AC:L/Au:NR/C:C/I:C/A:C/B:N)">

Figure 22 - CVSS base Score and Vector

Each NVD entry has along with the CVSS base score, a vector that reflects how the base

score was calculated. The vector, as shown in Figure 22, is used to determine the base

score for a particular entry. In Figure 22, AV: Access Vector = L (Local accessibility)

intimates that this vulnerability can only be exploited locally; AC: Access Complexity =

L (Low) indicates that an attack based on this vulnerability would not require special

access conditions, as it could be performed manually. It would not necessarily require

much skill or a lot of additional information for its execution. Au: Authentication = NR

(Not Required) shows that authentication is not required to trigger this vulnerability. The

impact metrics of C: Confidentiality, I: Integrity and A: Availability all equaling C

(Complete) imply a total system compromise if vulnerability is exercised. Based on the

NVD algorithm for computing base score [First 2005], the resulting base score of 7.0 was

calculated as shown in (Appendix B-7).

3.6.1 Determining Fields to Predict CVSS Score

The data mining wizard, supplied with Microsoft’s Visual Studio 2005, suggests fields

that would likely give information that would lead to the selected output using entropy-

based analysis [Tang and MacLennan 2005]. This analysis looks at the contribution of

attribute values to predicting a particular attribute. In our case, the analysis looked at the

contribution of all of the attributes in predicting CVSS score. Those attributes with an

 44

entropy value of 0 are evaluated as being able to contribute nothing to the prediction

decision. Those attributes with entropy values of 1 are so distinct that in effect, each

record would be a partition of its own, thereby making it too small to make any reliable

prediction.

Figure 23 - Suggested Input Fields

This suggestion provided a basis for the fields that could be used in determining the

parameters for predicting impact. Since the scores provide values between 0 and 1, we

chose to remove those attributes whose entropy scores were less than 0.01 , since the

level of contribution was so close to zero implying very little contribution, and those

whose entropy values were very close to 1 were also removed as they would not help in

making reliable prediction. Figure 23 depicts all the attributes for the model, their

associated entropy score and the Input column that identifies those fields suggested for

predicting CVSS score. Although Administrative level security protection (adminSP)

was suggested as an input attribute, we did not include it in our model since its value is

dependent on a specific loss type. Those attributes grayed out in Figure 23 are those with

entropy values very close to 1. We chose Cluster Node, Loss Type, Vulnerability Type

 45

and Exploit Range as the fields for predicting CVSS score. To validate the choice of

fields for predicting impact factors, we performed two multiple regression analysis test,

one between cluster node and loss type, vulnerability type and exploit range (Figure 24)

and the other between CVSS Score and loss type, vulnerability type and exploit range

(Figure 25). We performed the multiple regression analysis against cluster node (Figure

24), to ascertain whether loss type, vulnerability type and exploit range could be used to

determine a specific cluster for a risk element since our algorithm requires us to classify a

risk element to a specific cluster (Figure 9). The determination of the CVSS score is also

based on the cluster node chosen; as such, the second multiple regression analysis was

conducted to examine whether loss type, vulnerability type, and exploit range were

variables that could be used to predict CVSS score (Figure 25).

3.6.1.1 Regression Analysis: Cluster Node versus Loss Type,

Vulnerability Type and Exploit Range

The result of the multiple regression analysis, as shown in Figure 24, implies that loss

type, vulnerability type and exploit range are significantly related to cluster node. The

coefficient of determination (R2) and the adjusted R2 of 27.9% show that 27.9% of

variations in the dependent variable (Cluster Node) can be explained by the independent

variables (Loss Type, Vulnerability Type and Exploit Range). This indicates that Loss

Type, Vulnerability Type and Exploit Range can be used to determine the cluster node to

which a risk element could belong. Given the lack of difference between the R2 and the

adjusted R2, we can intimate that all the variables chosen to explain variation of cluster

nodes are necessary (see Table 9 for interpretation of other Regression statistics).

 46

Regression Analysis:
Cluster Node versus Loss Type, Vulnerability Type and Exploit Range

Regression Statistics

Multiple R 0.528

R Square 0.279
Adjusted R
Square 0.279

Standard Error 1.992

Observations 13140

ANOVA

 df SS MS F
Significance

F

Regression 3 20169.732 6723.244 1693.694 0

Residual 13136 52144.324 3.970

Total 13139 72314.056

 Coefficients
Standard
Error t Stat P-value

Intercept 8.070 0.084 96.497 0

LossType -0.927 0.014 -65.714 0

VulnType -0.279 0.009 -31.171 7.5E-206

ExploitRange -0.337 0.034 -10.020 1.52E-23

Figure 24 - Multiple Regression Result (Cluster Node)

The F test statistic (F) and its corresponding p-value (Significance F) indicate an overall

goodness of fit for the model. The p-value (0) is considered highly significant as it is less

than 1 %. The F-test statistic of 1693.694 shows that the ratio of explained variation

(6723.244) to unexplained variation (3.970) is very large but more so, the significance

value (p < 0.001) of the F-test statistic allows us to reject the null hypothesis that there is

no significant relationship between Cluster Node and the independent variables, Loss

Type, Vulnerability Type and Exploit Range. We also looked at the influence of Loss

Type, Vulnerability Type and Exploit Range on Cluster Node and as can be seen by the

results of the test statistics for LossType, VulnType and ExploitRange, along with their

 47

P-values (p < .0001), the three independent variables have a significant relation with

Cluster Node and as such can be used to classify a risk element entry to a cluster.

Regression Statistics Interpretation

Multiple R 0.528
R= Coefficient of Multiple Correlation = the positive
square root of R-squared

R Square
0.279 =
27.9%

R-squared = Coefficient of Multiple Determination =
percent of the variation in the cluster node (dependent
variable) that is explained by the x-variables (LossType,
VulnType, ExploitRange) and the model

Adjusted R Square 0.279

R-squared adjusted = version of R-squared that has
been adjusted for the number of predictors in the model.
R-squared tends to over estimate the strength of the
association, especially when more than one independent
variable is included in the model.

Standard Error 1.992

S = Standard Error = Standard Error of the Estimate =
average squared difference of the error in the actual to
the predicted values.

Observations 13140 Number of observations in the sample.

Table 9 - Regression Statistic Interpretation

3.6.1.2 Regression Analysis: CVSS Score versus Loss Type,

Vulnerability Type and Exploit Range

Regression Analysis:
CVSS Score versus Loss Type, Vulnerability Type and Exploit Range

Regression Statistics

Multiple R 0.593

R Square 0.352
Adjusted R
Square 0.352

Standard Error 1.943

Observations 13140

ANOVA

 df SS MS F
Significance

F

Regression 3 26962.24325 8987.414 2380.023 0

Residual 13136 49604.01067 3.776188

Total 13139 76566.25392

 Coefficients
Standard
Error t Stat P-value

Intercept 0.916 0.082 11.224 4.2E-29

LossType 1.147 0.014 83.300 0

VulnType 0.108 0.009 12.335 9.15E-35

ExploitRange 0.774 0.033 23.583 1.8E-120
Figure 25 - Multiple Regression Result (CVSS score)

 48

The result of the analysis to see if the parameters, loss type, vulnerability type and exploit

range, would aid in predicting CVSS score is summarized in Figure 25. The coefficient

of determination, R2 and the adjusted R2 = .352, showed that 35.2% of the variation of

CVSS score could be explained by the independent variables, loss type, vulnerability type

and exploit range. Also, the F-test statistic of 2380.023 with P-value (p < .001) showed

that there is a significant relationship between the dependent variable CVSS score and the

independent variables in question. The P-values for t-test statistic for LossType,

VulnType and ExploitRange are all (p < .0001), also show that the independent variables

(LossType, VulnType and ExploitRange) have a significant linear relationship with the

dependent variable CVSS score.

3.6.2 Determining Loss Expectancy

The result of the multiple regression analysis motivated us to use the related data from a

classified cluster to determine the predicted impact score and the predicted frequency of

occurrence. We used the predicted impact score in the same manner asset loss x

exposure factor is used in the traditional approach, to determine single loss expectancy.

Given the predicted impact score, frequency of occurrence of incidence, and growth rate

for each of these attributes, the loss expectancy for a specified time was calculated as

follows:

Predicted Loss Expectancy (PLE) = Predicted Impact Score (PIS) × Predicted Frequency
of Occurrence (PFO)

Equation 4 – Predicted Loss Expectancy (PLE)

Using the growth rate of the CVSS score and the average CVSS score, the predicted

impact value was calculated as follows for each test entry:

Predicted Impact Score =)1()()(periodRateGrowthperiodScoreCVSSx µ+×

 49

where

period covers the evaluation time given,

x = the weighted mean, with the weight being the number of incidences reported
µ = the arithmetic mean

Equation 5 - Predicted Impact Score (PIS)

To find the weighted mean CVSS scores for the period ()(periodScoreCVSSx), we used the

number of incidences reported for each month as the weighting factor to obtain the

weighted mean. We used the relative weights of the number of incidences for each month

as coefficients to express the weighted mean in a linear form. The coefficients αi were

determined by dividing the number of incidences reported per month by the total number

of incidences reported for the time period under evaluation.

)(periodScoreCVSSx =α1x1 + α2x2+…+ αnxn

where

the real numbers αi satisfy 0≥iα and α1 + α2+…+ αn = 1 and
αi = number of incidence coefficient for the month and
xi = average CVSS scores for the month
Equation 6 - Weighted Average CVSS Score

The CVSS score and frequency of occurrence growth rates were calculated as follows:

()
ValueAvgsMonthcurrent

ValueAvgsMonthpreviousValueAvgMonthcurrent

'

's' −

Equation 7 - Growth Rate

 50

3.6.2.1 Validation of Loss Expectancy Calculations

To make sure that the calculations in our algorithm were correct, we generated a query to

select certain sample data from the input set (Figure 26).

 select datediff(month, published,'01/01/2002')as
timeLag,avg(cvss_score)as avgScore, count(distinct name) as
reportedEntries
 from trainingdatawclusters96_01 where
 (datediff(month, published,'01/01/2002') <= 12)and
 (datediff(month, published,'01/01/2002') > 0)and
 clusternode = 'Cluster 1'
 group by datediff(month, published,'01/01/2002')
 order by timeLag

Figure 26-Query for Sample data to validate Calculation

We used Excel to calculate the values in question (Table 10), and then compared the

results to those gotten from the actual running of the stored procedure used within

SSRAM (Figure 27). See Appendix C-1 for complete listing of the stored procedure used

to calculate different values necessary for computation of loss expectancy. The

coefficients for the reported entries were calculated for each month by dividing the

number of entries for that month by the total number of entries. For example, in Table

10, the coefficient for Dec-01 (0.15) was calculated by dividing 94 by 630. The weighted

average score was then calculated using Equation 6. The growth rate for the score and

frequency of occurrence were calculated using Equation 7 and the total number of

incidences reported was determined by adding the reported entries for each month. These

values as noted in Table 10 and Figure 27 are the same and validates that the algorithm

works as expected.

 51

TimeLag

12 months
prior to
1/1/2002

Reported
Entries Avg Score

Coefficient
of Reported
Entries

Score
Growth

Frequency
Growth

1 Dec-01 94 7.58 0.15 -0.11 -0.72

2 Nov-01 26 6.77 0.04 0.06 0.96

3 Oct-01 51 7.16 0.08 -0.03 -0.10

4 Sep-01 46 6.97 0.07 0.23 0.83

5 Aug-01 84 8.57 0.13 -0.07 -0.04

6 Jul-01 81 8.01 0.13 0.09 -0.12

7 Jun-01 71 8.72 0.11 -0.05 -0.39

8 May-01 43 8.32 0.07 -0.33 -0.91

9 Apr-01 4 5.57 0.01 0.59 7.25

10 Mar-01 33 8.86 0.05 0.00 0.48

11 Feb-01 49 8.87 0.08 -0.24 -0.02

12 Jan-01 48 6.77 0.08

 Total 630 WeightedAvg 7.93 0.0143 0.6564

Table 10 – Calculation of Impact Factors (Excel Result)

Figure 27 - Calculation of Impact Factors Result (Stored Procedure)

To ascertain that the result of an impact and loss expectation prediction could be made,

we created an application to determine loss expectancy for a single entry (Appendix D-1).

We chose loss type, vulnerability type, and exploit range values and used the information

to classify the entry to a cluster node from which the impact factors were calculated. For

our case, we chose input as the vulnerability type, security protection as the loss type and

exploitation range of local. This selection was classified as a Cluster 1 entry and the

 52

calculations for impact were computed (Figure 28). Note that these values are also

consistent with the values shown in Figure 27 and Table 10 for Cluster 1 data.

Figure 28 -Single Entry Impact Estimation

3.6.3 Validation of Loss Expectancy

The goal of this research is to provide an empirical assessment of risk elements based on

historical data and provide a prioritized list of the risk elements based on the empirical

estimations generated. To this end we have chosen the historical data validation approach

[Sargent 2003] for validating our research.

NVD’s data was divided into two parts, the training and testing data. The data from

1996 - 2001 was used to build the impact prediction model and tested against the impact

values for January 2002 as shown in Figure 31 (Appendix D-2 for code). In essence the

test data was loaded as vulnerability entries as shown in Figure 29; each entry was then

classified to a cluster and the data from that cluster used to predict the frequency of

occurrence and the impact value for each entry (Figure 30). The mean values from the

actual data were compared to the predicted scores from the model (see Appendix D-3 for

the data) using t-Test comparison of means (Table 11).

 53

Figure 29 Vulnerability Entries (Test Data – 2002)

Figure 30 - Predicted Values

Figure 31 - Impact and Loss Expectation Estimation

The goal of this research is to predict the impact score of a given risk element. The

predicted impact is analogous to the base CVSS score provided by NVD. Our claim is

 54

that our predicted impact score will be significantly equivalent to actual NVD’s CVSS

scores. We express this claim as µd = 0. As such, we have the null hypothesis (H0)

H0: The impact values derived from SSRAM does not reflect the risk posture of the

threat element in question.

Ho: µd > 0 or µd < 0 where
µd = (µactual – µpredicted) the difference of means of the predicted scores from
the actual scores

versus

Ha: The impact values derived from SSRAM correctly reflects the risk posture of a

software development effort in that µactual – µpredicted = 0

Ha: µd = 0

t-Test: Paired Two Sample for Means

Actual
Score Predicted

Mean 5.663889 6.10243

Variance 5.556087 2.225617

Observations 36 36

Pearson Correlation 0.67673

Hypothesized Mean Difference 0

df 35

t Stat -1.51354

P(T<=t) one-tail 0.06956

t Critical one-tail 1.689572

P(T<=t) two-tail 0.139121

t Critical two-tail 2.030108

Table 11 - t-Test: Paired Two Sample for Means

The t-test critical value was computed and compared with the critical t-value at a

significance level of α = 0.05.

The sample mean of the difference is d = -0.4385 and the sample standard deviation

is ds = 1.7385. The test statistic is

 55

t0 -

n

s

d

d

 =

36

7385.1

4385.0−
 = -1.5135

Since this is a two-tailed test, we determined the critical t-value at the α = 0.05 level of

significance with n – 1 = 36 – 1 = 35 degrees of freedom to be
2

05.0t− = 025.0t− = -2.030

and 025.0t = 2.030. Because the test statistic t0 = -1.5135 is greater than the critical value

025.0t− = -2.030 and t0 = 1.5135 is less than 025.0t = 2.030, we reject the null hypothesis

that there is a significant difference between the actual and predicted scores. These

statistics suggest that there is no statistical significant difference between the predicted

scores given by SSRAM and the actual scores as reported to NVD.

To further evaluate the predictions, we made a comparison of the predictions based on

the three classification schemes as shown in Table 12, Table 13, and Table 14. The

critical value for all three algorithms is 2.04 and the t-stat of 1.06 and 1.633 for the neural

network and decision tree, as evidenced in Table 13, and Table 14, showed that the null

hypothesis could be rejected. This result was consistent with the results of the predictive

accuracy shown in section 3.5.1 that reflected that there was no significant difference

between neural networks and decision trees when used for predictions. There was a

difference with Naïve Bayes, which is also reflected with the t-stat of 2.13 as shown in

Table 12. This t-stat does not allow us to reject the null hypothesis that there is no

significant difference between the actual scores and the predicted scores when using

Naïve Bayes as the classification scheme for predicting. The result of this analysis shows

that either neural networks or decision tree algorithm can be used for classifying new risk

elements.

 56

 Actual Predicted

Mean 5.577419 6.23709

Variance 5.520473 2.362795

Observations 31 31

Pearson Correlation 0.68273

Hypothesized Mean Difference 0

df 30

t Stat -2.1378

P(T<=t) one-tail 0.020399

t Critical one-tail 1.697261

P(T<=t) two-tail 0.040798

t Critical two-tail 2.042272
Table 12 - t-Test Results using Naïve Bayes algorithm

 Actual Predicted

Mean 5.76129 6.102877

Variance 5.636452 2.316325

Observations 31 31

Pearson Correlation 0.658869

Hypothesized Mean Difference 0

df 30

t Stat -1.06461

P(T<=t) one-tail 0.147773

t Critical one-tail 1.697261

P(T<=t) two-tail 0.295546

t Critical two-tail 2.042272
Table 13 -t-Test: Paired Two Sample for Means using Decision Tree Classifier

 Actual Predicted

Mean 5.653125 6.180540625

Variance 5.525796371 2.337423284

Observations 32 32

Pearson Correlation 0.629684793

Hypothesized Mean Difference 0

Df 31

t Stat 1.633197931

P(T<=t) one-tail 0.056272384

t Critical one-tail 1.695518742

P(T<=t) two-tail 0.112544769

t Critical two-tail 2.039513438
Table 14 - t-Test: Paired Two Sample for Means using Neural Networks Classification

Algorithm

 57

3.7 Confidence Interval of Predictions

The result of our predictions as shown in Figure 30 and Figure 31 are based on a

confidence that the 95% scores predicted are ± the margin of error shown in Table 15.

The confidence interval was computed on the training data used for classification of new

risk elements. Table 15 shows the number of distinct elements in each cluster, their

average CVSS score, and the standard deviation from the mean for each cluster’s score.

Given the large number of entries for each cluster, we can assume normal distribution,

and use these values to construct the margin of error as:

n

σ
×96.1

Equation 8 - Margin of Error

where σ the standard deviation and, n is the size of each cluster and, the value 1.96,

based on a two-tailed normal distribution at the 95% confidence interval, is used as the

critical value.

Training Data by Clusters (1996 - 2001) With 95% Confidence
Interval

NumInCluster CVSS_Score StdDev Margin of
Error

Cluster Lower Upper

1257 8.2541 1.8124 0.1002 Cluster 2 8.1539 8.3543

719 7.0872 1.7984 0.1315 Cluster 4 6.9557 7.2186

107 7 0 0 Cluster 7 7 7

765 5.5393 2.0795 0.1474 Cluster 5 5.3919 5.6867

1298 5.3409 1.9665 0.107 Cluster 1 5.2339 5.4478

1250 4.3934 2.0171 0.1118 Cluster 3 4.2816 4.5052

735 4.3105 1.6957 0.1226 Cluster 6 4.1879 4.4331
Table 15 - Confidence Interval Derivation

Given this confidence interval derivation, we can say that we are confident that 95% of

our predictions will be within the margin of error shown in Table 15. For example, in

Figure 30 ‘CVE-1999-1081’ is classified as Cluster 3 with a predicted impact of 4.9852.

 58

Given our confidence interval construction, we can say that we are 95% confident that

the predicted impact factor for ‘CVE-1999-1081’ is 4.9852 ± 0.1118.

3.8 Summary

One of the deterrents to creating objective measures for assessing risks in software

security was purported to be the lack of data to use as a basis for historical predictions.

There are now open source vulnerability databases, one such being the NVD, which

provide a historical data source that can be used to assess vulnerabilities. Since the data

from NVD is an RSS feed in XML format, we parsed the NVD data into SSRAM’s

database. In so doing, we were able to categorize the data based on the K-Means and EM

algorithm to obtain natural groupings of the entries based on the data about each entry.

These algorithms portrayed different approaches to categorizing data.

We compared the performance of the models between two mining structures, one with

the description entries, a comment-like attribute without discrete values, and one without.

This performance was measured by dividing the NVD data into two segments, one for

training and the other for testing. We used the test data to find an indication of how

likely it is for each test case to exist within a determined cluster. Based on the average

case likelihood scores obtained, we saw that the clustering algorithms that took into

account the description vectors performed better than those without. In addition to this,

we examined the cohesion of each cluster with respect to the centroid of the cluster by

looking at the mean, standard deviation, maximum and minimum values for each of the

clusters within each mining model. We validated our choice by comparing the cohesion

values of the algorithms.

 59

Within each structure we compared EM versus K-Means models and chose those with

higher average case likelihood scores. EM consistently outperformed KM models for our

data. Choosing the algorithm with the best score, we labeled each entry of the training

data with the cluster it belonged to. To determine what fields should be used to classify

the data we looked at those fields with entropy values > 0.05 and < 0.95. We then ran two

multiple regression analysis, which at α = 0.05 significance showed that the variables loss

type, vulnerability type and exploit range were significant to predict cluster node and

CVSS score. Upon naming each entry with its cluster, we investigated different

classification algorithms to see which best classified the data under investigation. We

again used two mining structures to compare results of classification mining models, one

with the description terms and another without the description terms. Furthermore, we

looked at the accuracy of each of the classification models and with a step-wise approach

chose the algorithm with good accuracy and shorter performance time. With CVSS score

used as the impact factor we adapted the traditional loss expectancy model by using

CVSS score, as opposed to asset cost as the impact factor to determine loss expectation.

In addition, we constructed confidence intervals for our predictions based on the training

data sets used for classifying new entries at a 95% level of confidence.

Given these results, this study along with the historical validation of the model with

statistical significance, suggests an empirical means for implementing risk assessment. It

does so by providing a means for categorizing historical data (NVD) based on risk factors

such as loss type, vulnerability type, exploit range and other product dependent factors.

These discovered categories allow for classifying new threats, and through this

classification, predict the impact for exercising the threat and the frequency of occurrence

 60

of such exercise. These predicted values are used to rank the risk elements identified

during a threat modeling activity and provide a means for objectively justifying the

approaches chosen to ameliorate stated risks.

 61

4 APPLICATION OF MODEL TO CASE STUDY
This chapter shows the application of the model to a case study. We looked at an

electronic voting system Prime III developed by the Human Computer Centered Lab at

Auburn University [Prime III]:

The Prime III voting system should be engineered through a human-centered
computing approach. This approach considers the users first and implements a
design that accommodates users and integrates usability with the necessary
safeguards to provide security, trust, and privacy (i.e., usable security). Prime III
should provide a naturally interactive user interface that reduces the learning
curve by using multiple modalities during the voting process. Voters will cast
their votes using touch and/or voice commands as shown in [Figure 32],
eliminating the need for specialized machines for one segment of the voting
population. Everyone votes on the same type of machine, independently without
additional assistance. The procedure for a voter should be as follows:

1. The voter steps into the voting booth and puts on the provided headset.

2. The voter begins voting as normal.

3. Each time the voter makes a selection either by voice or touch, he hears a confirmation in the

headphones and simultaneously observes the confirmation on the screen. For example, when the

voter selects candidate A, Prime III should say “selected candidate A” and concurrently display

the selection. This audio and visual confirmation should be heard and seen for every important

action that the voter takes including, selecting a candidate, unselecting a candidate, advancing

races, and submitting the ballot.

4. The Prime III visual and audio output are passed to the video recording unit which records the

voting session on some physical medium such as a video cassette.

5. At the end of the session the voter confirms his selection twice; then submits their ballot and

leaves the voting booth.

As illustrated below in Figure 32, Prime III will be comprised of systems and software

that are deployable at each electoral precinct. The basic functions of this

system are to permit citizens to vote, and to allow for the tabulation and creation of an

auditable trail of the ballots cast.

 62

Figure 32: Prime III System Architecture High-Level Overview

4.1 Vulnerability Identification and Data Preparation

To determine the vulnerabilities for this application, Microsoft’s Threat Analysis and

Modeling Tool (TAMT) was used to generate the non-prioritized list of vulnerabilities

(Appendix E-1), namely, Canonicalization, Buffer Overflow, Cryptanalysis Attacks,

Format String and Integer Underflow or Overflow.

Before entering this non-prioritized list into SSRAM, each of the threats given was

evaluated for the type of security impact that would be affected if the threat were

exercised, the kind of vulnerability this threat could exploit, and the exploitation range

that could exist for it. A summary of the threats as given by TAMT, the impact of loss,

the vulnerability and exploit range evaluations performed are shown in Table 16. It

 63

should be noted that the TAMT provided the threats and descriptions from which we

derived the loss type, vulnerability and exploit range values.

ID Threat Description Loss Type Vulnerability Exploit
Range

Threat-1 Canonicalization Canonicalization : Only
accept primitive typed
identified (e.g., integers)
which are mapped to
filenames

Confidentiality
Availability
Integrity

Input Local
User-
init

Threat-2 Buffer Overflow Buffer Overflow : Use safe
functions such as strncpy,
strncat instead of strcpy,
strcat
Validation on input should be
performed.

Confidentiality
Availability
Integrity

Input
Access

Local
User-
Init

Threat-3 Cryptanalysis
Attacks

Cryptanalysis Attacks : Use
well-known implementations
of well-known cryptographic
algorithms
Use cryptographically
generated random keys
Utilize platform supplied
feature to store secret key
(e.g., DPAPI)
Utilize SSL or IPSec w/
Encryption to establish a
secure communication
channel

Confidentiality
Availability
Integrity
Security
Protection –
Admin

Environment
Access

Local

Threat-4 Format String Format String : Use a
managed language

Confidentiality
Availability
Integrity

Design
Access

Local

Threat-5 Integer
Overflow/Underflow

Integer Overflow/Underflow
: Use Language features

Confidentiality
Availability
Integrity

Input Local

Table 16 - Prime III Vulnerability List

The vulnerability listing and the evaluation of threat descriptions as shown in Table 16

provided the basis for creating tables that associated each threat to its loss type,

vulnerability type and exploit range as portrayed in Table 17 (a – c). These tables were

then de-normalized using a select statement similar to that of Figure 14 to create a table

similar to Table 18. The complete de-normalized table is shown in Appendix E-2.

 64

ID LossType ID VulnType ID ExploitRange

Threat-1 Avail Threat-1 input Threat-1 user_init

Threat-1 Int Threat-2 access Threat-1 local

Threat-1 Conf Threat-2 input Threat-2 user_init

Threat-2 Int Threat-3 env Threat-2 local

Threat-2 Avail Threat-3 access Threat-3 local

Threat-2 Conf Threat-4 design Threat-3 local

Threat-3 Avail Threat-5 input Threat-4 user_init

Threat-3 Int (b) Threat-4 local

Threat-3 Conf Threat-5 user_init

Threat-3 Sec_Prot (c)

Threat-4 Avail

Threat-4 Int

Threat-4 Conf

Threat-5 Avail

Threat-5 Int

Threat-5 Conf

(a)

Table 17- Prime III Normalized Tables

ID Name VulnType Loss Type Exploit Range

Threat-1 Canonicalization input Avail user_init

Threat-1 Canonicalization input Avail local

Threat-1 Canonicalization input Int user_init

Threat-1 Canonicalization input Int local

Threat-1 Canonicalization input Conf user_init

Threat-1 Canonicalization input Conf local

Threat-2 Buffer Overflow access Int user_init

Threat-2 Buffer Overflow input Int user_init

Threat-2 Buffer Overflow access Int local

Threat-2 Buffer Overflow input Int local

Threat-2 Buffer Overflow access Avail user_init

Threat-2 Buffer Overflow input Avail user_init

Threat-2 Buffer Overflow access Avail local

Threat-2 Buffer Overflow input Avail local

Threat-2 Buffer Overflow access Conf user_init
Table 18 - Example of PrimeIII’s Input Data

4.2 Data Classification and Loss Expectation Determination

As noted in section 3.1, using SSRAM to assess risk elements requires that the historical

data used be segmented into clusters (Figure 8). Since this was already done with data

from 1996 – 2001, we imported the data shown in Table 18 into SSRAM database and

 65

loaded same data into SSRAM’s application (Figure 33) to assess the risk of the

vulnerabilities identified. SSRAM classified each of the de-normalized entries based on

its similarity to the clusters within SSRAM. The data within the cluster assigned to each

entry was then used to calculate the impact factor and the frequency of occurrence of

each threat within the time constraint given (Figure 34).

Figure 33 - Load Prime III

Figure 34 - Prime III De-normalized Predictions

 66

The de-normalized vulnerabilities list, along with the impact criteria, served as the basis

for generating the predicted values. The Predicted Values data grid (Figure 34) shows not

only the vulnerability entries uploaded but the cluster an entry is most similar to

(EntryCluster), the predicted impact based on that cluster (PredictedImpact), the number

of entries reported of like incidences for the time period under evaluation (Incidences),

the rate of growth of said incidences (FregGrowthRate), the predicted frequency of

occurrence (Predicted Frequency) and the loss expectation (LossExpect). The predicted

impact value derived is an estimation of the CVSS base score, and the predicted

frequency of occurrence, which is the product of the incidences and the rate of growth of

the number of incidences reported, reflects the evaluated period’speriods predicted

number of occurrences. These predictions are based on a statistically significant,

historically validated approach as explained in section 3.6.3 and summarized in Table 11

of same section. The prediction of impact is based on the confidence that 95% of

predictions will fall within the margin of error as explained in section 3.7 of Chapter 3.

For example, in Figure 34, the first entry is assigned to Cluster 4 with a predicted impact

of 7.36 ± 0.1315 (Table 15). The loss expectation is calculated as the product of the

predicted impact and the predicted frequency of occurrence (Equation 4), following the

best practice used in calculating traditional loss expectancy (Equation 1). This

information is then aggregated for each vulnerability entry and ranked in descending

order, as seen in the resulting prioritized list (Figure 35).

Since loss expectation is derived from the impact factor and the frequency of occurrence,

we can assess situations when threats of lower impact may require more attention due to

the high predicted frequency of occurrence of attacks to a particular vulnerability. In

 67

Figure 35, the prioritized list of threats identified and predicted for January of 2001

shows ‘Format String’ as the risk element of highest threat, with a loss expectation value

of 2266.78. Even though the impact factor for ‘Format String’ (6.15) is less than that of

‘Canonicalization’ (7.42), ‘Format String’ would still be considered a greater threat

because of its higher predicted number of occurrences (377) when compared to

‘Canonicalization’ (237). In looking at the aggregated predicted impact scores, the

clusters to which they most resemble, and the confidence intervals for each cluster as

depicted in Table 15 of section 3.7, we observed that ‘Canonicalization’, ‘Buffer

Overflow’, and ‘Integer Overflow/Underflow’ would be classified to the same cluster –

‘Cluster 4’. ‘Cryptanalysis’ and ‘Format String’ would be classified as Cluster 5 data. As

can be seen in Figure 35, the difference in priority is based on the predicted frequency of

threats to exercise these vulnerabilities. Since our prediction of impact is based on the

CVSS score, we note that the values for Prime III vulnerabilities warrant that all listed

vulnerabilities be addressed during the development phase of the software development

life cycle. The CVSS score range from 0 – 9, where 0 indicates no damage potential and

9 signifies a high collateral damage. All scores for the prediction depicted in Figure 35

are above the mid-level point of 5 and would be considered at least medium to high risk

vulnerabilities. In order of priority based on the loss expectation ‘Format String’,

‘Canonicalization’, ‘Buffer Overflow’, ‘Integer Overflow/Underflow’ and

‘Cryptanalysis’ should be considered in the order listed. Based on the confidence interval

for the predictions, we would surmise that ‘Canonicalization’, ‘Buffer Overflow’ and

‘Integer Overflow/Underflow’ would be of the same level of importance and though

‘Cryptanalysis’ and ‘Format String’ are of the same classification, due to the frequency of

 68

predicted exercise of the ‘Format String’ vulnerability that it take precedence in

mitigation.

Figure 36 shows the prediction of impact based on the same vulnerability list but with

historical data from 2003 – 2005 to predict January 2006 data. To obtain the clusters for

classifying this data, we applied EM clustering algorithm (NVDCL-EM10). It can be

seen that though the predicted impact scores have become less, the frequency of

occurrence of threats have at least tripled. It should also be noted that the vulnerability

whose loss expectation implies greatest collateral damage has also changed from ‘Format

String’ to ‘Buffer Overflow’. ‘Canonicalization’ and ‘Integer Overflow/Underflow’ now

command the same level of attention and though their impact scores (4.56) are slightly

below the medium risk level, the high number associated with frequency of occurrence

(1,784) requires that countermeasures to address these vulnerabilities are addressed, even

before attention is given to ‘Format String’ vulnerability even though it has a higher

impact score. The full prediction and confidence interval information for Prime III is in

Appendix E-3.

Training Data by Clusters (1996 - 2001) With 95%
Confidence
Interval

CVSS_Score StdDev Margin of
Error

Cluster Lower Upper

8.2541 1.8124 0.1002 Cluster 2 8.1539 8.3543

7.0872 1.7984 0.1315 Cluster 4 6.9557 7.2186

7 0 0 Cluster 7 7 7

5.5393 2.0795 0.1474 Cluster 5 5.3919 5.6867

5.3409 1.9665 0.107 Cluster 1 5.2339 5.4478

4.3934 2.0171 0.1118 Cluster 3 4.2816 4.5052

4.3105 1.6957 0.1226 Cluster 6 4.1879 4.4331

Table 15 - Confidence Interval Derivation

 69

Figure 35 - Prime III Loss Expectation (Prioritized List) – Predictions

Figure 36 - Prime III Loss Expectation (Prioritized List) – 2006 Predictions

Given this ordered list with empirical values showing the vulnerabilities with their

associated impact values and predicted number of occurrences, we have provided an

objective measure that can be used to justify dealing with the vulnerabilities in question.

Unlike vulnerability identification systems that list in no particular order of importance

the vulnerabilities and threats of a particular effort, SSRAM’s prediction of the impact

factor and the frequency of occurrence provides an objective means for determining and

justifying which threats to ameliorate. SSRAM also provides an empirical foundation for

focusing testing later in the development process to make sure that the development

effort took steps to lessen the chances of these threats being successfully exercised. The

analysts can now determine, based on the tools at hand, what needs to be done, what

resources need to be acquired and which vulnerabilities they want to concentrate efforts

and resources. In essence they can better perform analysis analogous to cost benefit

 70

analysis and empirically assess the opportunity cost of the risk elements they chose to

address.

 71

5 SUMMARY, FUTURE WORK AND CONCLUSIONS

5.1 Summary

When responding to system vulnerabilities, efforts tend towards reactive measures that

support the hardening of systems and their connected networks. Even though these

efforts are necessary, they do not address the fact that the majority of the security

vulnerabilities are due to software vulnerabilities, as reported by NIST [Curphey 2004].

Efforts to ameliorate system vulnerabilities should in effect start early in the software

development life cycle, so that security is built in and not bolted onto the system upon

completion of development. To this end, risks to a software development effort have to

be determined and assessed early in the development life cycle. Attempts to date to

assess the risks that could apply to a development effort have been largely qualitative in

nature. Though helpful, these qualitative approaches have drawbacks such as the

difficulty in duplicating results and transferring assessment lessons to other projects. The

traditional quantitative approach of annualized loss expectancy (ALE) and the exposure

factor (EF) carries with it the burden of knowing what asset costs to use. The impact

effect is measured by the cost of asset loss, which is not easily determined during the

design phase of development. If the cost of asset loss is available, it may not adequately

reflect the impact that is a result of the exercise of a given threat. Other efforts that

provide objective results are implemented late in the software development life cycle,

 72

usually during the testing phase, thereby incurring additional costs for dealing with

vulnerabilities assessed after the system has been built.

In looking at risk assessment in other fields such as insurance, banking, and finance, we

find that one of the factors that allows for prediction of risk metrics is the availability of

historical data. One of the deterrents to creating objective measures for assessing risks in

software security was purported to be the lack of data to use as a basis for historical

predictions. As it stands, there are now open source vulnerability databases, which

provide a historical data source that can be used to assess vulnerabilities. We chose the

NVD, and in so doing we were able to categorize the data based on the K-Means and EM

algorithm to obtain natural groupings of the entries based on the data about each entry.

These algorithms portrayed different approaches to categorizing data.

We compared the performance of the models between two mining structures, one with

the description entries, a comment-like attribute without discrete values, and one without.

This performance was measured by dividing the NVD data into two segments, one for

training and the other for testing. We used the test data to find an indication of how

likely it is for each test case to exist within a determined cluster. Based on the average

case likelihood scores obtained, we saw that the clustering algorithms that took into

account the description vectors performed better than those without. In addition to this,

we examined the cohesion of each cluster with respect to the centroid of the cluster by

looking at the mean, standard deviation, maximum and minimum values for each of the

clusters within each mining model. We validated our choice by comparing the cohesion

values of the algorithms.

 73

Within each structure we compared EM versus K-Means models and chose those with

higher average case likelihood scores. The average case likelihood score measures the

likelihood that a test case would be similar to one of the cases within the training model.

EM consistently outperformed KM models for our data. Choosing the algorithm with the

best score, we labeled each entry of the training data with the cluster it belonged to. To

determine what fields should be used to classify the data we looked at those fields with

entropy values > 0.05 and < 0.95. We then ran two multiple regression analysis, which at

α = 0.05 significance showed that the variables loss type, vulnerability type and exploit

range were significant to predict cluster node and CVSS score. Upon naming each entry

with its cluster, we investigated different classification algorithms to see which best

classified the data under investigation. We again used two mining structures to compare

results of classification mining models, one with the description terms and another

without the description terms. Furthermore, we looked at the accuracy of each of the

classification models and with a step-wise approach chose the algorithm with good

accuracy and shorter performance time. With CVSS score used as the impact factor we

adapted the traditional loss expectancy model by using CVSS score as opposed to asset

cost as the impact factor to determine loss expectation. In addition, we constructed

confidence intervals for our predictions based on the training data sets used for

classifying new entries at a 95% level of confidence. With the ability to predict CVSS

score with statistical significance, our study suggests an empirical approach to

determining the impact of a given risk or threat and provides a way to objectively

compare the impact and frequency of occurrence of identified threats.

 74

5.2 Future Work

Any significant research effort invariably opens more questions than it solves. This

endeavor was no different. The following are suggestions for extending the research:

• Validate SSRAM with an industry project. Our research looked at the Prime III

development effort but did not validate the results of its work. We propose to run

SSRAM in a development environment and assess its effectiveness.

• Investigate the usage of SSRAM to assess risk on component based systems. As

development efforts rely more and more on other components, empirically

assessing the risk of utilizing components within a development effort is

necessary.

• Perform comparative studies. We propose to do comparative studies using other

vulnerability databases and other data mining algorithms for classification and

prediction of impact factors.

• Strengthen predictive values. We will investigate factors, along with time, which

will strengthen the predictive values of the impact scores. Along with this, we

propose to look at the trend of vulnerabilities reported based on security factors

such as impact scores, loss type, vulnerability type, and exploit range.

• Investigate the characteristic of the clusters within SSRAM. We will investigate

the characteristics of the clusters determined within SSRAM to better describe the

classification of each entry. As it stands, SSRAM classifies each entry to a

generic cluster – “Cluster 1 … Cluster N”.

• Investigate other variables that can be used to determine clusters. The R2 statistic

of 27.9% in Figure 24shows that there is a need to explore other variables that can

 75

be used to predict the cluster node. Though Loss Type, Vulnerability Type and

Exploit Range are significant predictors of cluster node, they are not enough to

explain the model.

• Generate countermeasures based on the vulnerabilities assessed. SSRAM would

be enhanced by the provision of countermeasures to enact based on the

vulnerabilities assessed.

• Integrate SSRAM with a vulnerability identification system. The use of SSRAM

is predicated on the identification of vulnerabilities. The integration of SSRAM

to an identification system would reduce the amount of work necessary to

implement SSRAM and overall produce a more robust risk assessment

methodology.

5.3 Conclusions

In creating a model that predicts impact factors, we found that there was no statistical

difference between the actual scores and the predicted scores produced by our research.

We were able to estimate the CVSS score and use it as the impact factor estimation that

allows loss expectation to be quantitatively derived based on historical data. Along with

that we also produced confidence intervals for the predicted impact scores.

This study shows that the database of vulnerabilities is adequate for use as a basis for

predicting risk metrics such as impact factor. We were also able to provide a

categorization of vulnerabilities based on development environment factors along with

descriptive terms of the vulnerabilities. This categorization allowed us to be able to

classify new vulnerabilities based on their similarities to historical entries.

 76

This research has shown that the predictions based on these categorizations were not

significantly different from the actual impact scores for the time under research.

 Data
Availability

Assess
Risk

Elements

Can be used
at design
level of

development

Generalize
&

 Duplicate
Results

Categorizatio
n based on

Development
Environment
al Factors

Identify
Risks

SSRAM Yes Yes Yes Yes Yes No
Traditional Risk
Impact Estimation

No Yes No No No No

Software Reliability Yes No Yes Yes N/A No
Qualitative
Assessment
approaches (Boehm,
RiskIT, Risk
Management
Framework)

N/A Yes Yes No ? No

Testing & Assessment
Approaches

Yes Yes No Yes No No

Identification
Approaches

Yes No Yes Yes No Yes

Table 19 – Comparison of SSRAM with other Risk Analysis Methodologies

This research shows that our approach (SSRAM) when compared to other risk analysis

methodologies is capable of being used to objectively assess risk elements early in the

software development life cycle due to its ability to classify risk elements to categories

that are determined based on the development factors (Table 19). SSRAM provides a

basis for objectively assessing threats or vulnerabilities early in the software development

life cycle. The prediction of both the impact value and the number of occurrences of a

given threat in a prioritized format provides objective evidence that can direct risk

mitigation during the development of software. Assessment lessons can be transferred to

other projects and the predictions from SSRAM can be used to do comparative analysis

of different projects with similar parameters. Since the assessment is done early in the

development cycle, these vulnerabilities can be mitigated during the development effort

 77

without the added cost usually incurred when they are discovered and assessed during

later periods in the software development life cycle such as the testing phase.

Given the pivotal role risk assessment has in the development of reliable and secure

systems, SSRAM provides a historically validated risk assessment model for analyzing

risks so that an objective justification of the direction and choice of risk elements can be

made.

 78

 BIBLIOGRAPHY

[Addison and Vallabh 2002] Controlling Software Project Risks – an Empirical Study of
Methods used by Experienced Project Managers. Proceedings of South African
Institute of Computer Scientists and Information Technologists SAICSIT
(September 2002), 128-140

[Alberts 2006] “Common Elements of Risk” CMU SEI 2006
“http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tn014.pdf”

[Bartlett II et al] Bartlett II, J., Kotrlik, J. W., Higgins, C. C., “Organizational Research:
Determining Appropriate Sample Size in Survey Research” Information

Technology, Learning and Performance Journal (Spring 2001), 43-50.

[Boehm 1989] Boehm B., Software Risk Management, IEEE-Computer Science Press,
1989

[Boehm 2001] Boehm, B.; Educating software engineering students to manage risk” ,
2001. Proceedings of the 23rd International Conference Software Engineering
(12-19 May 2001), 591 – 600

[Boehm and Demarco 1997] Boehm, B.W.; and DeMarco, T.; Software risk
management IEEE Software, Volume 14, Issue 3, (May-June 1997),17 – 19

[Bradley, Fayyad, Reina 1998] Bradley, P. S., Fayyad, U., and Reina, C., “Scaling EM
(Expectation-Maximization) Clustering to Large Databases,” Technical Report
MSR-TR-98-35, Microsoft Research. (1998)

[Carr et al. 1993] Carr M., Konda S ., Monarch 1., Ulrich, F., and Walker, C.,
“Taxonomy-Based Risk Identification,” CMU/SEI-93-TR=6, Software
Engineering Institute, Pittsburgh, PA 15213, 1993.

[Cheswick et al. 2003] Cheswick, B, Kocher, P., McGraw, G., and Rubin, A.. “Bacon Ice
Cream: The Best Mix of Proactive and Reactive Security?” IEEE Security and
Privacy 1.4. (2003)

[Curphey 2004] Curphey, M. “Software Security Testing: Let's Get Back to Basics”
Security (October 2004) http://www.softwaremag.com/L.cfm?Doc=2004-
09/2004-09software-security-testing last accessed 6/15/07

 79

[Farahmand 2003] Farahmand, F., Navathe, S. B., Sharp, G., Phillip P., Enslow H.,
Managing Vulnerabilities of Information Systems to Security Incidents
International Conference on Entertainment Computing ICEC Pittsburgh, PA,
(2003).

[First 2005] CVSS v1 Complete Documentation http://www.first.org/cvss/v1/guide.html
last accessed 5/2006

[First 2008] CVSS v2 Complete Documentation http://www.first.org/cvss/cvss-
guide.html#i2.1 last accessed 7/22/08

[FIPS 2004] Federal Information Processing Standard (FIPS) 199 -
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf
- last accessed 3/27/07

[GAO AIMD-00-33] Information Security Risk Assessment: Practices of Leading
Organizations (GAO AIMD-00-33, 1999)
http://www.gao.gov/special.pubs/ai00033.pdf last accessed 1/24/07

[Haimes 2004] Haimes, Y. V. Risk Modeling, Assessment, and Management 2
nd
 ed.

Wiley Press, 2004

[Hetzel 1988] Hetzel, William C., The Complete Guide to Software Testing, 2nd ed.

Publication info: Wellesley, Mass. : QED Information Sciences, 1988. ISBN:
0894352423.Physical description: ix, 280 p. : ill ; 24 cm

[Howard and Leblanc] Howard, Michael & LeBlanc, David C. Writing Secure Code, 2
nd

ed. Redmond, WA: Microsoft Press, 2002

[Howard et al. 2005] Howard M., LeBlanc D., and Viega J., 19 Deadly Sins of Software

Security, McGraw-Hill, (2005).

[Humphrey et al. 2004] Humphrey, W., Davis, N., Redwine Jr., S. T., Zibulski, G.,
McGraw, G., “Processes for Producing Secure Software – Summary of US
National Cyberscevurity Summit subgroup Report” IEEE Security & Privacy
(May/June 2004)

[Janardhanudu] Janardhanudu, G. “White Box Testing” https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/best-practices/white-box/259-BSI.html last accessed
3/9/2006

[Jain et al. 1996] Jain, A.K.; Mao, J., Mohiuddin, K.M.; “Artificial neural networks: a
tutorial” Computer Volume 29, Issue 3, (March 1996),:31 - 44

[Jurjens 2001] Jan Jurjens. “Towards Secure Systems Development with UMLsec,”
Proceedings of FASE 2001. Springer Lecture Notes in Computer Science 2001

 80

[Karunanithi et al. 1992] Karunanithi, N.; Whitley, D.; Malaiya, Y.K Using neural
networks in reliability prediction Software, IEEE Volume 9, Issue 4, (July 1992
), :53 – 59

[Khoshgoftar 1995] Khoshgoftar T.M., Szabo R.M., and Guasti P.J., “Exploring the
Behaviour of Neural Network Software Quality Models,” Software Engineering

Journal., (May 1995).

[Klugman et al. 2004] Klugman, S. A., Panjer, H. H., Willmot, G. E., Loss Models From

Data to Decisions 2
nd
 edition Wiley Series in Probability and Statistics John

Wiley & Sons Inc. (2004)

[Kontio 1997] Kontio, J., The Riskit Method for Software Risk Management, version
1.00 CS-TR-3782 / UMIACS-TR- 97-38, 1997. Computer Science Technical
Reports. University of Maryland. College Park, MD

[Kontio 1999] Kontio, J.; Risk management in software development: a technology
overview and the riskit method Software Engineering, 1999. Proceedings of the
1999 International Conference (May 16-22 1999), 679 -– 680

[Kontio et al. 1998] J. Kontio, G. Getto, and D. Landes. Experiences in improving risk
management processes using the concepts of the Riskit method. In Proceedings.
ACM SIGSOFT Int’l Symp. Foundations Softw. Eng., (1998), 163–174

[Lodderstedt et al. 2002] Lodderstedt T., Basin D., Doser, J.; SecureUML: A UML-
Based Modeling Language for Model-Driven Security
http://kisogawa.inf.ethz.ch/WebBIB/publications-
softech/papers/2002/0_secuml_uml2002.pdf last accessed 07/03/2007

[Lyu et al. 1996] Michael R. Lyu (editor) Handbook of Software Reliability Engineering
IEEE Computer Society Press and McGraw-Hill Book Company 1996
http://www.cse.cuhk.edu.hk/~lyu/book/reliability/ last accessed 3/30/07

[McGraw 2002] McGraw, G., “Managing Software Security Risks” Computer (April
2002)

[McGraw 2006] McGraw, G., Software Security Building Security In Addison-Wesley
Software Security Series, Boston, MA.(2006)

[Mead and Stehney 2005] Mead, N. R.; Stehney, T. “ Security Quality Requirements
Engineering (SQUARE) Methodology”

[Mead 2005] Mead, Nancy R., Hough, Eric D. , Stehney II, Theodore R. Software
Quality Requirements Engineering (SQUARE) methodology
http://www.sei.cmu.edu/pub/documents/05.reports/pdf/05tr009.pdf November
2005

 81

[Mead 2006] Mead, Nancy R. Software Engineering Institute Carnegie Mellon University
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-
practices/requirements/232.html. Last accessed 1/24/07

[Michael and Radosevich 2005] Michael, C., and Radosevich “Risk-Based and
Functional Security Testing” Building Security In https://buildsecurityin.us-
cert.gov/portal/article/bestpractices/security_testing/overview.xml#Risk-Based-
Testing

[Microsoft 2006] http://www.microsoft.com/downloads/details.aspx?familyid=570dccd9-
596a-44bc-bed7-1f6f0ad79e3d&displaylang=en accessed last - 3/9/07

[Microsoft 2008-1] ms-
help://MS.VSCC.v80/MS.VSIPCC.v80/MS.SQLSVR.v9.en/uas9/html/61eb4861-
8a6a-4214-a4b8-1dd278ad7a68.htm accessed last – 5/20/08

[Microsoft 2008-2]] ms-
help://MS.VSCC.v80/MS.VSIPCC.v80/MS.SQLSVR.v9.en/uas9/html/3b53e011-
3b1a-4cd1-bdc2-456768ba31b5.htm accessed last – 5/20/08

[Microsoft 2008-3] ms-
help://MS.VSCC.v80/MS.VSIPCC.v80/MS.SQLSVR.v9.en/uas9/html/95ffe66f-
c261-4dc5-ad57-14d2d73205ff.htm accessed last – 5/20/08

[Microsoft 2008-4] ms-
help://MS.VSCC.v80/MS.VSIPCC.v80/MS.SQLSVR.v9.en/uas9/html/61eb4861-
8a6a-4214-a4b8-1dd278ad7a68.htm accessed last – 7/1/08

[Microsoft 2008-5] ms-
help://MS.VSCC.v80/MS.VSIPCC.v80/MS.SQLSVR.v9.en/uas9/html/3b53e011-
3b1a-4cd1-bdc2-456768ba31b5.htm accessed last – 5/20/08

[Mkpong-Ruffin and Umphress 2007] Mkpong-Ruffin, I., Umphress, D. A., “High-
Leveraged Techniques for Software Security” CrossTalk The Journal of Defense
Software Engineering (March 2007)

[Neumann 2002] D. E. Neumann. An enhanced neural network technique for software
risk analysis. IEEE Transactions Software Eng., 28(9):904–912, 2002.

[NIST 2002-10] National Institute of Standards and Technology, “Software Errors Cost
U.S. Economy $59.5 Billion Annually” (NIST 2002-10).
http://www.nist.gov/public_affairs/releases/n02- 10.htm (2002).

[NVD] National Vulnerability Database www.nist.nvd.gov last accessed 4/7/07

[OWASP] http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project last
accessed 4/5/07

 82

[Pan 1999] 16. Pan, Jiantao. “Software Testing – 18- 849b Dependable Embedded
Systems.” Carnegie Mellon University, 1999 ,www.ece.cmu.edu/~koop
man/des_s99/sw_testing>.

[Prime III] http://www.primevotingsystem.com/ last access 7/29/08

[Rosenberg et al. 1998] Linda Rosenberg, Ted Hammer, Jack Shaw International
Symposium on Software Reliability November 1998
http://satc.gsfc.nasa.gov/support/ISSRE_NOV98/software_metrics_and_reliabilit
y.html - last accessed 3/30/07

[Sherer 1995] Sherer, S.A., “Software Fault Prediction,” J. Systems and Software, vol. 2
no. 2, (May 1995).

[Sargent 2003] Sargent, R. G., “Validation and Verification of Simulation Models”
Proceedings of the 2003 Winter Simulation Conference S. Chick, P. J. Sánchez,
D. Ferrin, and D. J. Morrice, eds.

[Schneier 2000] Schneier, B. Secrets and Lies: Digital Security in a Networked World.
New York: John Wiley & Sons, 2000

[Sindre and Opdahl] Sindre, G., and Opdahl, A.L.,. “Templates for Misuse Case
Description.” Proc. Of the Seventh International Workshop on Requirements

Engineering, Foundation for Software Quality (REFSQ 2001), (4-5 June 2001),
Switzerland.

[SP 800-30] Stoneburner, G.; Goguen, A.; Feringa, A., NIST SP-300 Risk Management
Guide for Information Technology Systems - (July 2002)

[SP 800-53] Ross, R., Katzke, S., Johnson, A., Swanson, Stoneburner, G., Rogers, G.,
Lee, A., -, “Information Security” National Institute of Standards and Technology
(NIST) Special Publication 800-53 Recommended Security Controls for Federal
Information Systems

[SP 800-55] Swanson, M., Bartol, N., Sabato, J., Hash, J., and Graffo, L.,”C O M P U T
E R S E C U R I T Y” – NIST SP 800-55 Security Metrics Guide for Information
Technology Systems (July 2003)

[SP800-12] An Introduction to Computer Security – The NIST Handbook – Chapter 7
Computer Security Risk Management

[SP800-100] Bowen, P. hash, J., Wilson, M. “Information Security Handbook: A Guide
for Managers” –National Institute of Standards and Technology (NIST) Special
Publication 800-100 (October 2006)

 83

[Steel et al.. 2005] Steel, C., Nagappan, R., Lai, R., Core Security Patterns: Best Practices
and Strategies for J2EE Web Services, and Identity Management. Prentice Hall,
(2005)

[Tang & MacLennan 2005] Tang, Z., MacLennan, J., Data Mining with SQL Server 2005
Wiley, (2005)

[Tsipenyuk et al.. 2005] Tsipenyuk, K., Chess, B., and McGraw, G., “Seven Pernicious
Kingdoms: A Taxonomy of Software Security Errors,” IEEE Security and
Privacy (November/December 2005)

[Verdon and McGraw 2004] Verdon, D, McGraw, G., “Risk Analysis in Software
Design.” IEEE Security and Privacy 2.4 (2004)

[Viega and McGraw 2001] Viega, J., and McGraw, G.,. Building Secure Software: How
to Avoid Security Problems the Right Way. Addison-Wesley Boston, MA.(2001)

[Voas et al.. 1997] Voas, J., McGraw, G., Kassab, L., Voas, L.,“A ‘Crystal Ball’ for
Software Liability” IEEE Computer (June 1997) 29 – 36

[Voas et al. 1998] Voas, J., and McGraw, G.,. Software Fault Injection: Inoculating

Programs Against Errors, 47-48. New York, NY: John Wiley & Sons, 1998.

[Walker et al.. 2006] Walker, Robert J., Holmes, R., Hedgeland, I., Kapur, P., Smith, A.,
“A Lightweight Approach to Technical Risk Estimation via Probabilistic Impact
Analysis” International Conference on Software Engineering Proceedings of the

2006 international workshop on Mining software repositories Shanghai, China
(2006)

[Wallace 1991] Wallace, D.R., Kuhn, D.R., Cherniavsky, J.C., "Report on a Workshop
on the Assurance of High Integrity Software," Proceedings of the Sixth Annual
Conference on Computer Assurance (COMPASS 1991), NIST, Gaithersburg, MD,

June 24-27, 1991 , The Institute of Electrical and Electronics Engineers, (1991).

[Weingberg and Schulman 1974] Weinberg, G. M., Schulman, E. M., “Goals and
Performance in Computer Programming,” Human Factors, (1974), 16(1), 70-77.

[Young 2001] Young, Peter C. and Tippins, Steven C. Managing Business Risk: An
Organization-Wide Approach to Risk Management. New York, NY: American
Management Association, (2001) (ISBN: 0-814-40461-8).

 84

APPENDICES

 85

Appendix A-1 – The NVD Schema

This appendix gives the NVD Schema from which SSRAM derives its schema.

Table structural data and attribute types used in SSRAM are based on the NVD Schema

shown in this appendix.

<xs:simpleType name="CVSSVector" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:documentation>
 simpleType to describe the CVSS Base Vector
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
<xs:pattern value="\(AV:[RL]/AC:[HL]/Au:(R|NR)/C:[NPC]/I:[NPC]/A:[NPC]/B:[NCIA]\)(Approximated)?" />
 </xs:restriction>
</xs:simpleType><xs:simpleType name="dateType" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:documentation>
 Defines date format for NVD. Dates follow the mask "yyyy-mm-dd"
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:date">
<xs:pattern value="(19|20)\d\d-((01|03|05|07|08|10|12)-(0[1-9]|[1-2]\d|3[01])|(04|06|09|11)-(0[1-9]|[1-2]\d|30)|02-(0[1-
9]|1\d|2\d))" />
 </xs:restriction>
</xs:simpleType><xs:simpleType name="trueOnlyAttribute" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:documentation>
 simpleType used for attributes that are only present when they are true.
 Such attributes appear only in the form attribute_name="1".
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="1" />
 </xs:restriction>
</xs:simpleType><xs:simpleType name="zeroToTen" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:documentation>
 simpleType used when scoring on a scale of 0-10, inclusive
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:decimal">
 <xs:minInclusive value="0" fixed="true" />
 <xs:maxInclusive value="10" fixed="true" />
 </xs:restriction>
</xs:simpleType><xs:simpleType name="urlType" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:documentation>
 Restricts urls in NVD beyond the xs:anyURI restrictions.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:anyURI">
 <xs:whiteSpace value="collapse" />
 <xs:pattern value="((news|(ht|f)tp(s)?)://([^:]|:[^/]|:/[^/])+(:|:/)?)+" />

 86

 </xs:restriction>
</xs:simpleType><xs:element name="nvd" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:documentation>
 Root element. Contains only "entry" child elements.
 Attributes for this element describe the version of the XML feed being read.
 Attributes:
"nvd_xml_version" (required) => the schema and DTD version number currently supported by this document
 "pub_date" (required) => the date this document was compiled
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="entry" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 Documents one CVE entry. The child elements should always appear
 in the sequence defined below. These elements are compatible with
 entry elements from the CVE XML feeds.
 Attributes:
 "type" (required) => CVE or CAN
 "name" (required) => full CVE name
 "seq" (required) => sequence number from CVE name
 "nvd_name" => NVD name (if it exists)
 "discovered" => date discovered
 "published" (required) => date published
 "modified" => date modified
 "severity" => severity as determined by NVD analysts: High, Medium, or Low
 "reject" => indicates that this CVE entry has been rejected by CVE or NVD
 "CVSS_score" => CVSS Severity Score
 "CVSS_vector" => CVSS Base Vector
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="desc">
 <xs:annotation>
 <xs:documentation>
 Description wrapper tag, parent to any documented descriptions of this CVE entry.
 While the "desc" tag will always be present, there may be no "descript" child tags.
 Only one "descript" tag will exist for each description source (i.e. CVE, NVD, ...).
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="descript" minOccurs="0" maxOccurs="2">
 <xs:annotation>
 <xs:documentation>
 Contains a specific description of this CVE entry from source
 indicated by the "source" attribute.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType mixed="true">
 <xs:attribute name="source" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="cve" />
 <xs:enumeration value="nvd" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>

 87

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="impacts" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 Impact wrapper tag (may or may not be present). Only one "impact" tag will exist
 for each impact explanation source.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="impact">
 <xs:annotation>
 <xs:documentation>
 Contains a specific impact explanation of this CVE entry from
 source indicated by the "source" attribute.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType mixed="true">
 <xs:attribute name="source" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="nvd" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="sols" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 Solution wrapper tag (may or may not be present). Only one "sol" tag will exist
 for each solution explanation source.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="sol">
 <xs:annotation>
 <xs:documentation>
 Contains a specific solution explanation of this CVE entry from
 source indicated by the "source" attribute.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType mixed="true">
 <xs:attribute name="source" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="nvd" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

 88

 </xs:complexType>
 </xs:element>
 <xs:element name="loss_types" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 Loss type tag (may or may not be present). Contains one loss type child for each loss
 type of this CVE entry.
 Potential loss types are:
 "avail" => availability
 "conf" => confidentiality
 "int" => integrity
 "sec_prot" => security protection
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="avail" minOccurs="0" />
 <xs:element name="conf" minOccurs="0" />
 <xs:element name="int" minOccurs="0" />
 <xs:element name="sec_prot" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 Security Protection tag with one attribute for each security protection type.
 Potential security protection types are:
 "admin" => gain administrative access
 "user" => gain user access
 "other" => other
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="admin" type="trueOnlyAttribute" />
 <xs:attribute name="user" type="trueOnlyAttribute" />
 <xs:attribute name="other" type="trueOnlyAttribute" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="vuln_types" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 Vulnerability type tag (may or may not be present). Contains one vulnerability type
 child for each vulnerability type of this CVE entry.
 Potential vulnerability types are:
 "access" => Access validation error
 "input" => Input validation error
 "design" => Design error
 "exception" => Exceptional condition error
 "env" => Environmental error
 "config" => Configuration error
 "race" => Race condition error
 "other" => other
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="access" minOccurs="0" />
 <xs:element name="input" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 Input validation error tag with one attribute for each input validation error type.

 89

 Potential input validation error types are:
 "bound" => Boundary condition error
 "buffer" => Buffer overflow
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="bound" type="trueOnlyAttribute" />
 <xs:attribute name="buffer" type="trueOnlyAttribute" />
 </xs:complexType>
 </xs:element>
 <xs:element name="design" minOccurs="0" />
 <xs:element name="exception" minOccurs="0" />
 <xs:element name="env" minOccurs="0" />
 <xs:element name="config" minOccurs="0" />
 <xs:element name="race" minOccurs="0" />
 <xs:element name="other" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="range" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 Vulnerability range tag (may or may not be present). Contains one vulnerability range
 child for each vulnerability range of this CVE entry.
 Potential vulnerability ranges are:
 "local" => Locally exploitable
 "remote" => Remotely exploitable
 "user_init" => User accesses attacker
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="local" minOccurs="0" />
 <xs:element name="remote" minOccurs="0" />
 <xs:element name="user_init" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="refs">
 <xs:annotation>
 <xs:documentation>
 Reference wrapper tag (always present). External references to this CVE entry are contained
 within this tag.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ref" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 Individual reference to this CVE entry. Text is the name of this vulnerability
 at this particular reference.
 Attributes:
 "source" (required) => Name of reference source
 "url" (required) => hyperlink to reference
 "sig" => indicates this reference includes a tool signature
 "adv" => indicates this reference is a Security Advisory
 "patch" => indicates this reference includes a patch for this vulnerability
 </xs:documentation>
 </xs:annotation>
 <xs:complexType mixed="true">

 90

 <xs:attribute name="source" type="xs:string" use="required" />
 <xs:attribute name="url" type="urlType" use="required" />
 <xs:attribute name="sig" type="trueOnlyAttribute" />
 <xs:attribute name="adv" type="trueOnlyAttribute" />
 <xs:attribute name="patch" type="trueOnlyAttribute" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="vuln_soft" minOccurs="0">
 <xs:annotation>
 <xs:documentation>
 Vulnerable software wrapper tag (may or may not be present). Software affected by this CVE
 entry are listed within this tag.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="prod" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 Product wrapper tag. Versions of this product that are affected by this
 vulnerability are listed within this tag.
 Attributes:
 "name" => Product name
 "vendor" => Vendor of this product
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="vers" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 Represents a version of this product that is affected by this vulnerability.
 Attributes:
 "num" => This version number
 "prev" => Indicates that versions previous to this version number are also affected by this vulnerability
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="num" type="xs:string" use="required" />
 <xs:attribute name="prev" type="trueOnlyAttribute" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required" />
 <xs:attribute name="vendor" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="CAN" />
 <xs:enumeration value="CVE" />
 </xs:restriction>
 </xs:simpleType>

 91

 </xs:attribute>
 <xs:attribute name="name" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:ID">
 <xs:pattern value="(CAN|CVE)\-\d\d\d\d\-\d\d\d\d" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="seq" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:pattern value="\d\d\d\d\-\d\d\d\d" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="nvd_name" type="xs:string" />
 <xs:attribute name="discovered" type="dateType" />
 <xs:attribute name="published" type="dateType" use="required" />
 <xs:attribute name="modified" type="dateType" />
 <xs:attribute name="severity">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="High" />
 <xs:enumeration value="Medium" />
 <xs:enumeration value="Low" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="reject" type="trueOnlyAttribute" />

 <xs:attribute name="CVSS_score" type="zeroToTen" />
 <xs:attribute name="CVSS_vector" type="CVSSVector" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="nvd_xml_version" type="xs:NMTOKEN" use="required" />
 <xs:attribute name="pub_date" type="dateType" use="required" />
 </xs:complexType>
</xs:element>

 92

Appendix A-2 – An Example of an NVD entry

This appendix shows an example of an NVD entry that had to be parsed. In all, 20,804

entries where loaded into SSRAM from 1996 – 2006 to be used for training and testing of

data. The historical data used was divided into 2 groups. 1996 – 2001 for training to

predict 2002 data, and 2003-2005 to predict 2006.

- <entry type="CVE" name="CVE-2006-0948" seq="2006-0948" published="2006-08-
21" modified="2006-08-22" severity="High" CVSS_score="7.0"
CVSS_vector="(AV:L/AC:L/Au:NR/C:C/I:C/A:C/B:N)">
- <desc>
 <descript source="cve">AOL 9.0 Security Edition revision 4184.2340, and probably
other versions, uses insecure permissions (Everyone/Full Control) for the "America
Online 9.0" directory, which allows local users to gain privileges by replacing critical
files.</descript>
 </desc>
- <sols>
 <sol source="nvd">AOL has released fixes to address this issue. These fixes can be
automatically applied by logging in to the service.</sol>
 </sols>
- <loss_types>
 <sec_prot admin="1" />
 </loss_types>
- <vuln_types>
 <design />
 </vuln_types>
- <range>
 <local />
 </range>
- <refs>
 <ref source="BID" url="http://www.securityfocus.com/bid/19583"
patch="1">19583</ref>
 <ref source="BUGTRAQ"
url="http://www.securityfocus.com/archive/1/archive/1/443622/100/0/threaded"
adv="1">20060818 Secunia Research: AOL Insecure Default Directory
Permissions</ref>
 <ref source="FRSIRT" url="http://www.frsirt.com/english/advisories/2006/3317"
adv="1" patch="1">ADV-2006-3317</ref>
 <ref source="SECTRACK" url="http://securitytracker.com/id?1016717"
patch="1">1016717</ref>

 93

 <ref source="SECUNIA" url="http://secunia.com/advisories/18734" adv="1"
patch="1">18734</ref>
 <ref source="XF" url="http://xforce.iss.net/xforce/xfdb/28445" patch="1">aol-default-
insecure-permissions(28445)</ref>
 </refs>
- <vuln_soft>
- <prod name="AOL Security Edition" vendor="AOL">
 <vers num="9.0 4184.2340" />
 </prod>
 </vuln_soft>
 </entry>

 94

Appendix A-3 – Script for Parsing XML document

The code shown in this appendix was used to load the xml document feeds and parse the

xml document into corresponding tables in SSRAM.

use ssram
-- --------------Insert XML file into nvdtmp
INSERT nvdtmp
 SELECT CONVERT(xml, BulkColumn, 2) FROM
 OPENROWSET(Bulk 'F:\Dissertation\Databases\National Vulnerability
Database\nvdcve-2002.xml', SINGLE_BLOB) [rowsetresults]
 -- OPENROWSET(Bulk 'F:\Dissertation\Databases\National Vulnerability
Database\nvdcve-recent.xml', SINGLE_BLOB) [rowsetresults]

Go
-- ------------ Drop and create SSRAM tables
USE [SSRAM]
GO
--Drop entryDesc

IF EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_entryDesc_entry]') AND parent_object_id =
OBJECT_ID(N'[dbo].[entryDesc]'))
ALTER TABLE [dbo].[entryDesc] DROP CONSTRAINT [FK_entryDesc_entry]
GO
USE [SSRAM]
GO
/****** Object: Table [dbo].[entryDesc] Script Date: 02/05/2008
10:43:52 ******/
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N'[dbo].[entryDesc]') AND type in (N'U'))
 DROP TABLE [dbo].[entryDesc]
---Drop entrySols

USE [SSRAM]
GO
IF EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_entrySols_entry]') AND parent_object_id =
OBJECT_ID(N'[dbo].[entrySols]'))
 ALTER TABLE [dbo].[entrySols] DROP CONSTRAINT
[FK_entrySols_entry]
GO
USE [SSRAM]
GO
/****** Object: Table [dbo].[entrySols] Script Date: 02/05/2008
10:55:14 ******/
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N'[dbo].[entrySols]') AND type in (N'U'))
 DROP TABLE [dbo].[entrySols]

 95

---drop lossType2

USE [SSRAM]
GO
IF EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_lossType2_entry]') AND parent_object_id =
OBJECT_ID(N'[dbo].[lossType2]'))
ALTER TABLE [dbo].[lossType2] DROP CONSTRAINT [FK_lossType2_entry]
GO
USE [SSRAM]
GO
/****** Object: Table [dbo].[lossType2] Script Date: 02/05/2008
10:56:52 ******/
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N'[dbo].[lossType2]') AND type in (N'U'))
DROP TABLE [dbo].[lossType2]

--Drop nvdtmp

USE [SSRAM]
GO
/****** Object: Table [dbo].[nvdtmp] Script Date: 02/05/2008
10:58:49 ******/
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N'[dbo].[nvdtmp]') AND type in (N'U'))
 DROP TABLE [dbo].[nvdtmp]
--
---DROP range

USE [SSRAM]
GO
IF EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_range_entry]') AND parent_object_id =
OBJECT_ID(N'[dbo].[range]'))
 ALTER TABLE [dbo].[range] DROP CONSTRAINT [FK_range_entry]
GO
USE [SSRAM]
GO
/****** Object: Table [dbo].[range] Script Date: 02/05/2008
10:59:59 ******/
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N'[dbo].[range]') AND type in (N'U'))
 DROP TABLE [dbo].[range]

--- DROP refs

USE [SSRAM]
GO
IF EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_refs_entry]') AND parent_object_id =
OBJECT_ID(N'[dbo].[refs]'))
ALTER TABLE [dbo].[refs] DROP CONSTRAINT [FK_refs_entry]
GO

 96

USE [SSRAM]
GO
/****** Object: Table [dbo].[refs] Script Date: 02/05/2008 11:01:17
******/
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N'[dbo].[refs]') AND type in (N'U'))
DROP TABLE [dbo].[refs]

--DROP vuln_soft

USE [SSRAM]
GO
IF EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_vuln_soft_entry]') AND parent_object_id =
OBJECT_ID(N'[dbo].[vuln_soft]'))
ALTER TABLE [dbo].[vuln_soft] DROP CONSTRAINT [FK_vuln_soft_entry]
GO
USE [SSRAM]
GO
/****** Object: Table [dbo].[vuln_soft] Script Date: 02/05/2008
11:03:26 ******/
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N'[dbo].[vuln_soft]') AND type in (N'U'))
DROP TABLE [dbo].[vuln_soft]

---DROP vuln_types

USE [SSRAM]
GO
IF EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_vuln_types_entry]') AND parent_object_id =
OBJECT_ID(N'[dbo].[vuln_types]'))
ALTER TABLE [dbo].[vuln_types] DROP CONSTRAINT [FK_vuln_types_entry]
GO
USE [SSRAM]
GO
/****** Object: Table [dbo].[vuln_types] Script Date: 02/05/2008
11:04:17 ******/
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N'[dbo].[vuln_types]') AND type in (N'U'))
DROP TABLE [dbo].[vuln_types]

---DROP entry

-----ENTRY TABLE DROP AND CREATE
/****** Object: Table [dbo].[entry] Script Date: 02/05/2008
10:42:30 ******/
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N'[dbo].[entry]') AND type in (N'U'))
 DROP TABLE [dbo].[entry]

 97

/****** Object: Table [dbo].[entry] Script Date: 02/05/2008
10:43:14 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo].[entry](
 [type] [varchar](5) COLLATE SQL_Latin1_General_CP1_CI_AS NOT
NULL,
 [name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS NOT
NULL,
 [seq] [varchar](12) COLLATE SQL_Latin1_General_CP1_CI_AS NOT
NULL,
 [nvd_name] [varchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 [discovered] [datetime] NULL,
 [published] [datetime] NOT NULL,
 [modified] [datetime] NULL,
 [severity] [varchar](10) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 [reject] [varchar](10) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 [CVSS_score] [real] NULL,
 [CVSS_vector] [varchar](25) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 CONSTRAINT [PK_entry] PRIMARY KEY CLUSTERED
(
 [name] ASC
)WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

GO
SET ANSI_PADDING OFF

-- CREATE entryDesc
USE [SSRAM]
GO
/****** Object: Table [dbo].[entryDesc] Script Date: 02/05/2008
10:53:52 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo].[entryDesc](
 [entry_name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL,
 [descript] [varchar](max) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 [source] [varchar](5) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,

 98

 CONSTRAINT [PK_entryDesc] PRIMARY KEY CLUSTERED
(
 [entry_name] ASC
)WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

GO
SET ANSI_PADDING OFF
GO
EXEC sys.sp_addextendedproperty @name=N'MS_Description',
@value=N'associated with entry.name (foreign key)'
,@level0type=N'SCHEMA', @level0name=N'dbo', @level1type=N'TABLE',
@level1name=N'entryDesc', @level2type=N'COLUMN',
@level2name=N'entry_name'

GO
EXEC sys.sp_addextendedproperty @name=N'MS_Description',
@value=N'Contains a specific description of this CVE entry from source
indicated by the "source" attribute' ,@level0type=N'SCHEMA',
@level0name=N'dbo', @level1type=N'TABLE', @level1name=N'entryDesc',
@level2type=N'COLUMN', @level2name=N'descript'

GO
EXEC sys.sp_addextendedproperty @name=N'MS_Description',
@value=N'enumerated type "cve" or "nvd" - required for each descript'
,@level0type=N'SCHEMA', @level0name=N'dbo', @level1type=N'TABLE',
@level1name=N'entryDesc', @level2type=N'COLUMN', @level2name=N'source'

GO
USE [SSRAM]
GO
ALTER TABLE [dbo].[entryDesc] WITH CHECK ADD CONSTRAINT
[FK_entryDesc_entry] FOREIGN KEY([entry_name])
REFERENCES [dbo].[entry] ([name])

-----------entrySols Table

USE [SSRAM]
GO
/****** Object: Table [dbo].[entrySols] Script Date: 02/05/2008
10:55:56 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo].[entrySols](
 [entry_name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL,
 [sol] [varchar](max) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 [source] [varchar](5) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 CONSTRAINT [PK_entrySols] PRIMARY KEY CLUSTERED
(

 99

 [entry_name] ASC
)WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

GO
SET ANSI_PADDING OFF
GO
USE [SSRAM]
GO
ALTER TABLE [dbo].[entrySols] WITH CHECK ADD CONSTRAINT
[FK_entrySols_entry] FOREIGN KEY([entry_name])
REFERENCES [dbo].[entry] ([name])

--------------create lossType

USE [SSRAM]
GO
/****** Object: Table [dbo].[lossType2] Script Date: 02/05/2008
10:57:14 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo].[lossType2](
 [entry_name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL,
 [loss_type] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL,
 [adminSP] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 [userSP] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 [otherSP] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 CONSTRAINT [PK_lossType2] PRIMARY KEY CLUSTERED
(
 [entry_name] ASC,
 [loss_type] ASC
)WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

GO
SET ANSI_PADDING OFF
GO
USE [SSRAM]
GO
ALTER TABLE [dbo].[lossType2] WITH CHECK ADD CONSTRAINT
[FK_lossType2_entry] FOREIGN KEY([entry_name])
REFERENCES [dbo].[entry] ([name])

-----nvdtmp

USE [SSRAM]

 100

GO
/****** Object: Table [dbo].[nvdtmp] Script Date: 02/05/2008
10:58:18 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE [dbo].[nvdtmp](
 [XmlCol] [xml] NULL
) ON [PRIMARY]

-----range

USE [SSRAM]
GO
/****** Object: Table [dbo].[range] Script Date: 02/05/2008
11:00:42 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo].[range](
 [entry_name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL,
 [exploit_range] [varchar](15) COLLATE
SQL_Latin1_General_CP1_CI_AS NOT NULL,
 CONSTRAINT [PK_range] PRIMARY KEY CLUSTERED
(
 [entry_name] ASC,
 [exploit_range] ASC
)WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

GO
SET ANSI_PADDING OFF
GO
USE [SSRAM]
GO
ALTER TABLE [dbo].[range] WITH CHECK ADD CONSTRAINT [FK_range_entry]
FOREIGN KEY([entry_name])
REFERENCES [dbo].[entry] ([name])

----refs

USE [SSRAM]
GO
/****** Object: Table [dbo].[refs] Script Date: 02/05/2008 11:01:37
******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

 101

SET ANSI_PADDING ON
GO
CREATE TABLE [dbo].[refs](
 [entry_name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL,
 [ref] [nvarchar](max) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 [source] [nvarchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 [url] [nvarchar](100) COLLATE SQL_Latin1_General_CP1_CI_AS NOT
NULL,
 [sig] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 [adv] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 [patch] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 CONSTRAINT [PK_refs] PRIMARY KEY CLUSTERED
(
 [entry_name] ASC,
 [url] ASC
)WITH (IGNORE_DUP_KEY = ON) ON [PRIMARY]
) ON [PRIMARY]

GO
SET ANSI_PADDING OFF
GO
USE [SSRAM]
GO
ALTER TABLE [dbo].[refs] WITH CHECK ADD CONSTRAINT [FK_refs_entry]
FOREIGN KEY([entry_name])
REFERENCES [dbo].[entry] ([name])

-----vuln_soft

USE [SSRAM]
GO
/****** Object: Table [dbo].[vuln_soft] Script Date: 02/05/2008
11:03:47 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo].[vuln_soft](
 [entry_name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL,
 [prodName] [nvarchar](25) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL,
 [prodVendor] [nvarchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL,
 [versionNum] [nvarchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL,
 [preVersion] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 [edition] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 CONSTRAINT [PK_vuln_soft] PRIMARY KEY CLUSTERED
(

 102

 [entry_name] ASC,
 [prodName] ASC,
 [prodVendor] ASC,
 [versionNum] ASC
)WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

GO
SET ANSI_PADDING OFF
GO
USE [SSRAM]
GO
ALTER TABLE [dbo].[vuln_soft] WITH CHECK ADD CONSTRAINT
[FK_vuln_soft_entry] FOREIGN KEY([entry_name])
REFERENCES [dbo].[entry] ([name])

--vuln_types

USE [SSRAM]
GO
/****** Object: Table [dbo].[vuln_types] Script Date: 02/05/2008
11:04:49 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo].[vuln_types](
 [entry_name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL,
 [vuln_type] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL,
 [input_bound] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 [input_buffer] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 CONSTRAINT [PK_vuln_types] PRIMARY KEY CLUSTERED
(
 [entry_name] ASC,
 [vuln_type] ASC
)WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY]
) ON [PRIMARY]

GO
SET ANSI_PADDING OFF
GO
USE [SSRAM]
GO
ALTER TABLE [dbo].[vuln_types] WITH CHECK ADD CONSTRAINT
[FK_vuln_types_entry] FOREIGN KEY([entry_name])
REFERENCES [dbo].[entry] ([name])

 103

USE [SSRAM]
GO
/****** Object: Table [dbo].[denormNVD] Script Date: 02/05/2008
11:07:28 ******/
IF EXISTS (SELECT * FROM sys.objects WHERE object_id =
OBJECT_ID(N'[dbo].[denormNVD]') AND type in (N'U'))
DROP TABLE [dbo].[denormNVD]

USE [SSRAM]
GO
/****** Object: Table [dbo].[denormNVD] Script Date: 02/05/2008
11:08:06 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
SET ANSI_PADDING ON
GO
CREATE TABLE [dbo].[denormNVD](
 [name] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS NOT
NULL,
 [discovered] [datetime] NULL,
 [published] [datetime] NOT NULL,
 [cvss_score] [real] NULL,
 [descript] [varchar](max) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 [sol] [varchar](max) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 [loss_type] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 [adminSP] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 [userSP] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 [otherSP] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 [vuln_type] [varchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 [input_bound] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 [input_buffer] [char](1) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 [exploit_range] [varchar](15) COLLATE
SQL_Latin1_General_CP1_CI_AS NULL,
 [ref] [nvarchar](max) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 [source] [nvarchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 [sig] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 [adv] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 [patch] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
 [prodName] [nvarchar](25) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 [versionNum] [nvarchar](15) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 [preVersion] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS
NULL,
 [edition] [nchar](1) COLLATE SQL_Latin1_General_CP1_CI_AS NULL
) ON [PRIMARY]

 104

GO
SET ANSI_PADDING OFF

-- ------------Parse Entry---------------------

-- to be used by the sp_xml_prepared document to shred the nvd xml file
DECLARE @idoc int
DECLARE @doc xml

-- Get the nvd xml content for parsing
-- note that set @ doc accepts any valid expression, a select
statement had to be put in parenthesis to work
set @doc = (select XmlCol from dbo.nvdtmp)

-- create and internal representation of the XML document
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc

-- Use OPENXML to provide rowset consisting of entries for nvd
insert entry
select * from OPENXML(@idoc, '/nvd/entry')
 with entry

EXEC sp_xml_removedocument @idoc

------------------------------- Parse EntryDesc ---------------------
use ssram
-- to be used by the sp_xml_prepared document to shred the nvd xml file
DECLARE @idoc int
DECLARE @doc xml

-- Get the nvd xml content for parsing
-- note that set @ doc accepts any valid expression, a select
statement had to be
-- put in parenthesis to work
set @doc = (select top 1 XmlCol from dbo.nvdtmp)

-- create and internal representation of the XML document
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc

-- Use OPENXML to provide rowset consisting of descriptions for each
entry in the nvd
-- Note the use of 'with' and '../../@name to get the grandparent node
attribute and the use
-- of ntext 'text () ' to get the element value for the description
insert entryDesc
select * from OPENXML(@idoc, '/nvd/entry/desc/descript', 3)
 with (entry_name varchar (15) '../../@name',
 descript ntext 'text ()',
 source varchar (max) '@source')

EXEC sp_xml_removedocument @idoc

-- -------------- Parse into entrySols -----------------------------

 105

use ssram
-- to be used by the sp_xml_prepared document to shred the nvd xml file
DECLARE @idoc int
DECLARE @doc xml

-- Get the nvd xml content for parsing
-- note that set @ doc accepts any valid expression, a select
statement had to be
-- put in parenthesis to work
-- set @doc = (select top 1 XmlCol from dbo.nvdtmp)
set @doc = (select XmlCol from dbo.nvdtmp)

-- create and internal representation of the XML document
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc

-- Use OPENXML to provide rowset consisting of descriptions for each
entry in the nvd
-- Note the use of 'with' and '../../@name to get the grandparent node
attribute and the use
-- of ntext 'text () ' to get the element value for the description
insert entrySols
select * from OPENXML(@idoc, '/nvd/entry/sols/sol', 3)
 with (entry_name varchar (15) '../../@name',
 sol ntext 'text ()',
 source varchar (5) '@source')

EXEC sp_xml_removedocument @idoc

-- -------------------------Parse LossType --------------------------
use ssram
-- to be used by the sp_xml_prepared document to shred the nvd xml file
DECLARE @idoc int
DECLARE @doc xml

-- Get the nvd xml content for parsing
-- note that set @ doc accepts any valid expression, a select
statement had to be
-- put in parenthesis to work
--set @doc = (select top 1 XmlCol from dbo.nvdtmp)
set @doc = (select XmlCol from dbo.nvdtmp)

-- create and internal representation of the XML document
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc

-- Note use of meta property @mp:localname to get the value for the
loss_type element
-- for availability loss type
insert lossType2
 select * from OPENXML(@idoc, '/nvd/entry/loss_types/avail',9)
 with (entry_name varchar (15) '../../@name',
 loss_type varchar (15) '@mp:localname',

 106

 adminSP char (1) '@admin',
 userSP char (1) '@user',
 otherSP char (1) '@other')
-- for confidentiality loss type
insert lossType2
 select * from OPENXML(@idoc, '/nvd/entry/loss_types/conf',9)
 with (entry_name varchar (15) '../../@name',
 loss_type varchar (15) '@mp:localname',
 adminSP char (1) '@admin',
 userSP char (1) '@user',
 otherSP char (1) '@other')

-- for integrity loss type
insert lossType2
 select * from OPENXML(@idoc, '/nvd/entry/loss_types/int',9)
 with (entry_name varchar (15) '../../@name',
 loss_type varchar (15) '@mp:localname',
 adminSP char (1) '@admin',
 userSP char (1) '@user',
 otherSP char (1) '@other')

-- for security protection loss type
insert lossType2
 select * from OPENXML(@idoc, '/nvd/entry/loss_types/sec_prot',9)
 with (entry_name varchar (15) '../../@name',
 loss_type varchar (15) '@mp:localname',
 adminSP char (1) '@admin',
 userSP char (1) '@user',
 otherSP char (1) '@other')

--
---- admin attribute for security protection loss type
--update lossType2
--set adminSP = LS.adminSP
--from
--(
-- select * from OPENXML(@idoc, '/nvd/entry/loss_types/sec_prot', 3)
-- with (entry_name varchar (15) '../../@name',
-- adminSP nchar (10) '@admin')
--) as LS
--where lossType2.entry_name = LS.entry_name
--
---- user attribute for security protection loss type
--update lossType2
--set userSP = LS.userSP
--from
--(
-- select * from OPENXML(@idoc, '/nvd/entry/loss_types/sec_prot', 3)
-- with (entry_name varchar (15) '../../@name',
-- userSP nchar (10) '@user')
--) as LS
--where lossType2.entry_name = LS.entry_name
--
---- other attribute for security protection loss type
--update lossType2

 107

--set userSP = LS.userSP
--from
--(
-- select * from OPENXML(@idoc, '/nvd/entry/loss_types/sec_prot', 3)
-- with (entry_name varchar (15) '../../@name',
-- otherSP nchar (10) '@other')
--) as LS
--where lossType2.entry_name = LS.entry_name
--

EXEC sp_xml_removedocument @idoc

-- -------------------Parse Vuln Types-------------------------------

use ssram
-- to be used by the sp_xml_prepared document to shred the nvd xml file
DECLARE @idoc int
DECLARE @doc xml

-- Get the nvd xml content for parsing
-- note that set @ doc accepts any valid expression, a select
statement had to be
-- put in parenthesis to work
--set @doc = (select top 1 XmlCol from dbo.nvdtmp)
set @doc = (select XmlCol from dbo.nvdtmp)

-- create and internal representation of the XML document
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc

---- Use OPENXML to provide rowset consisting of descriptions for each
entry in the nvd
--insert vuln_types
--select * from OPENXML(@idoc, '/nvd/entry/vuln_types', 3)
-- with (entry_name varchar (15) '../@name',
-- vuln_type varchar (10) '/access',
-- input varchar (5) '/input',
-- design varchar (10) '/design',
-- exception varchar (10) '/exception',
-- env varchar (10) '/env',
-- config varchar (10) '/config',
-- race varchar (10) '/race',
-- other varchar (10) '/other')

-- update the other nodes for vuln_types
insert vuln_types
 select * from OPENXML(@idoc, '/nvd/entry/vuln_types/access',9)
 with (entry_name varchar (15) '../../@name',
 vuln_type varchar (15) '@mp:localname',
 input_bound char (1) '@bound',

 108

 input_buffer char (1) '@buffer')

insert vuln_types
 select * from OPENXML(@idoc, '/nvd/entry/vuln_types/input',9)
 with (entry_name varchar (15) '../../@name',
 vuln_type varchar (15) '@mp:localname',
 input_bound char (1) '@bound',
 input_buffer char (1) '@buffer')

insert vuln_types
 select * from OPENXML(@idoc, '/nvd/entry/vuln_types/design',9)
 with (entry_name varchar (15) '../../@name',
 vuln_type varchar (15) '@mp:localname',
 input_bound char (1) '@bound',
 input_buffer char (1) '@buffer')

insert vuln_types
 select * from OPENXML(@idoc, '/nvd/entry/vuln_types/exception',9)
 with (entry_name varchar (15) '../../@name',
 vuln_type varchar (15) '@mp:localname',
 input_bound char (1) '@bound',
 input_buffer char (1) '@buffer')

insert vuln_types
 select * from OPENXML(@idoc, '/nvd/entry/vuln_types/env',9)
 with (entry_name varchar (15) '../../@name',
 vuln_type varchar (15) '@mp:localname',
 input_bound char (1) '@bound',
 input_buffer char (1) '@buffer')

insert vuln_types
 select * from OPENXML(@idoc, '/nvd/entry/vuln_types/config',9)
 with (entry_name varchar (15) '../../@name',
 vuln_type varchar (15) '@mp:localname',
 input_bound char (1) '@bound',
 input_buffer char (1) '@buffer')

insert vuln_types
 select * from OPENXML(@idoc, '/nvd/entry/vuln_types/race',9)
 with (entry_name varchar (15) '../../@name',
 vuln_type varchar (15) '@mp:localname',
 input_bound char (1) '@bound',
 input_buffer char (1) '@buffer')

insert vuln_types
 select * from OPENXML(@idoc, '/nvd/entry/vuln_types/other',9)
 with (entry_name varchar (15) '../../@name',
 vuln_type varchar (15) '@mp:localname',
 input_bound char (1) '@bound',
 input_buffer char (1) '@buffer')

EXEC sp_xml_removedocument @idoc

-- ----------------- Parse Exploit range ---------------------------

 109

use ssram
-- to be used by the sp_xml_prepared document to shred the nvd xml file
DECLARE @idoc int
DECLARE @doc xml

-- Get the nvd xml content for parsing
-- note that set @ doc accepts any valid expression, a select
statement had to be
-- put in parenthesis to work
--set @doc = (select top 1 XmlCol from dbo.nvdtmp)
set @doc = (select XmlCol from dbo.nvdtmp)

-- create and internal representation of the XML document
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc

-- Use OPENXML to provide rowset consisting of the vulnerabilty range
for each entry in the nvd
--insert range
--select * from OPENXML(@idoc, '/nvd/entry/range', 3)
-- with (entry_name varchar (15) '../@name',
-- local nchar (1) 'local',
-- local_network nchar (1) 'local_network',
-- network nchar (1) 'network',
-- user_init nchar (1) 'user_init')
--

-- update the local nodes for range -- locally exploitable range
insert range
 select * from OPENXML(@idoc, '/nvd/entry/range/local',9)
 with (entry_name varchar (15) '../../@name',
 exploit_range varchar (15) '@mp:localname')

-- for local network exploitable range
insert range
 select * from OPENXML(@idoc, '/nvd/entry/range/local_network',9)
 with (entry_name varchar (15) '../../@name',
 exploit_range varchar (15) '@mp:localname')

-- for remote exploitable range
insert range
 select * from OPENXML(@idoc, '/nvd/entry/range/remote',9)
 with (entry_name varchar (15) '../../@name',
 exploit_range varchar (15) '@mp:localname')

-- for user intiated exploit - where user accesses the attacker
insert range
 select * from OPENXML(@idoc, '/nvd/entry/range/user_init',9)
 with (entry_name varchar (15) '../../@name',
 exploit_range varchar (15) '@mp:localname')

EXEC sp_xml_removedocument @idoc

 110

-- ------------------ Parse ref node -------------

use ssram
-- to be used by the sp_xml_prepared document to shred the nvd xml file
DECLARE @idoc int
DECLARE @doc xml

-- Get the nvd xml content for parsing
-- note that set @ doc accepts any valid expression, a select
statement had to be
-- put in parenthesis to work
--set @doc = (select top 1 XmlCol from dbo.nvdtmp)
set @doc = (select XmlCol from dbo.nvdtmp)
----Used to see what the contents would be like 2/5/08
---- may have to do a nested select or join it with itself to remove
duplicates
----EXEC sp_xml_preparedocument @idoc OUTPUT, @doc

----select * from OPENXML(@idoc, '/nvd/entry/refs/ref', 3)
---- with (entry_name varchar (15) '../../@name',
---- ref nvarchar(max) 'text ()',
---- source nvarchar (50) '@source',
---- url nvarchar (100) '@url',
---- sig nchar (1) '@sig',
---- adv nchar (1) '@adv',
---- patch nchar (1) '@patch')

-- create and internal representation of the XML document
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc

-- USED TO SHRED INTO TABLE
-- Use OPENXML to provide rowset consisting of external references for
each entry in the nvd
-- Note the use of 'with' and '../../@name to get the grandparent node
attribute and the use
-- of ntext 'text () ' to get the element value for the description
insert refs
select * from OPENXML(@idoc, '/nvd/entry/refs/ref', 3)
 with (entry_name varchar (15) '../../@name',
 ref nvarchar(max) 'text ()',
 source nvarchar (50) '@source',
 url nvarchar (100) '@url',
 sig nchar (1) '@sig',
 adv nchar (1) '@adv',
 patch nchar (1) '@patch')

EXEC sp_xml_removedocument @idoc

use ssram
-- to be used by the sp_xml_prepared document to shred the nvd xml file
DECLARE @idoc int

 111

DECLARE @doc xml

-- Get the nvd xml content for parsing
-- note that set @ doc accepts any valid expression, a select
statement had to be
-- put in parenthesis to work
set @doc = (select top 1 XmlCol from dbo.nvdtmp)

-- create and internal representation of the XML document
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc

-- Use OPENXML to provide rowset consisting of software (product and
versions)affected by each entry in the nvd
-- Note the use of 'with' and '../../../@name to get the great-
grandparent node (if it works)attribute and the use
insert vuln_soft
select distinct * from OPENXML(@idoc, '/nvd/entry/vuln_soft/prod/vers',
3)
 with (entry_name varchar (15) '../../../@name',
 prodName nvarchar (25) '../@name',
 prodVendor nvarchar (50) '../@vendor',
 versionNum nvarchar (15) '@num',
 preVersion nchar (1) '@prev',
 edition nchar (1) '@edition')

EXEC sp_xml_removedocument @idoc

 112

Appendix A-4 – Validation of Data Upload

This appendix shows the entries that were used to validate that the NVD XML data were

parsed and loaded correctly into SSRAM

Records Validated

Record Number Actual File NVDtmp File

1- CVE-2006-0948 CVE-2006-0948

5 CVE-2006-3124 CVE-2006-3124

25 CVE-2006-4257 CVE-2006-4257

45 CVE-2006-4277 CVE-2006-4277

65 CVE-2006-4298 CVE-2006-4298

85 CVE-2006-4319 CVE-2006-4319

105 CVE-2006-4349 CVE-2006-4349

125 CVE-2006-4369 CVE-2006-4369

Last CVE-2006-4380 CVE-2006-4380
Table 20 - Data Entry Validation Entries

At the end of the first round of validation, we found out that our representation of the loss

type and vulnerability type nodes did not adequately reflect the different types of security

protection loss and input vulnerabilities. As such, additional fields were added to the

loss_type and vuln_type tables and parsing script corrected to reflect the changes made.

We compared again for the previous data and 7 additional records given below to confirm

that the data was uploaded correctly.

Record Number Actual File NVDtmp File

2 CVE-2006-2122 CVE-2006-2122

22 CVE-2006-4254 CVE-2006-4254

42 CVE-2006-4274 CVE-2006-4274

62 CVE-2006-4295 CVE-2006-4295

82 CVE-2006-4316 CVE-2006-4316

102 CVE-2006-4346 CVE-2006-4346

122 CVE-2006-4366 CVE-2006-4366

 113

Appendix B-1 – Creating Term Vector

We felt that the description attribute of each entry had information that would help in

clustering NVD data. This was a non- trivial problem. In order to be able to use this

comment-like attribute we had to create term vectors that associated terms with entries,

so that we could look at the frequency of occurrence of those terms. To create a term

vector so that the comment-like description of vulnerability terms could be used as part of

the data mining process involved the following steps.

1. Create a text mining dictionary for the vector table based on the terms in the

description attribute for all of the entries.

2. Build Term Vectors based on an association of entries to text mining dictionary

terms.

Creating a Text Mining Dictionary for the Vector Table

1.1 Create a new DTS (SSIS) package
1.2 Rename the package to BuildDictionary.dtsx
1.3 Go to Data Flow tab and add a new Data Flow task
1.4 In the data flow task, add a “OLE DB Source” transform

• Connection: create a new for localhost.SSRAM

• Table: desc

• Columns:

•
1.5 Add a Data Conversion transform and connect from the OLE DB Source transform
1.6 Add a “Term Extraction” transform and connect from the Data Conversion transform

• Term Type: Noun and Noun Phrase
• Score Type: TFIDF –

TFIDF - Specify that the score is the TFIDF value of the term. The TFIDF score is the

product of Term Frequency and Inverse Document Frequency, defined as: TFIDF of a

Term T = (frequency of T) * log((#rows in Input) / (#rows having T))

• Parameters: Frequency=2, Length=10
1.7 Add a “Sort” transform and connect it.

• Sort “Term” in ascending order

• Don’t pass through Score column

 114

1.8 Add an “OLE DB Destination” transform and connect it.

• Use the connection: localhost.SSRAM

• Click “New” and name it “TermDictionary”

• In Mappings, connect the column, “Term”
1.9 Execute the package

• It automatically enters into debugging mode

• It may take a few minutes
1.10 Stop debugging

Build term vectors

1.11 Create a new DTS (SSIS) package
1.12 Rename the package to BuildTermVectors.dtsx
1.13 Go to Data Flow tab and add a new Data Flow task
1.14 In the data flow task, add a “OLE DB Source” transform

• Connection: create a new for localhost.SSRAM

• Table: entryDesc

• Columns: entry_Name, desc only

•
1.15 Add a “Term Lookup” transform and connect from the previous transform

• Reference table: TermDictionary
1.16 Add a “Sort” transform and connect it.

• Sort “entry_name” in ascending order, then, “Term” in ascending order, no
duplicates

 115

1.17 Add an “OLE DB Destination” transform and connect it.

• Use the connection: localhost.TDM

• Click “New” and name it “TermVectors”

• In Mappings, make sure to connect all columns, “Term”, “Frequency”, “ID”
1.18 Execute the package

• It automatically enters into debugging mode

• It may take a few minutes
1.19 Stop debugging

• PassThru column: entry_name

• Lookup input column: descript

 116

 117

Appendix B-2 – Determining Clustering Algorithm

This appendix shows the process of preparing the data for clustering and setting up the

clustering algorithm.

o Create a new prepareSampleData by splitting the data for training and

testing. In our case, we used those entries reported between 1996 through
2001 for training and created the test data as those entries reported in
2002.

�
o Setup new DataSourceView to be used for Clustering

o Create clustering data mining structure with and without description

components
� With Description

• Following Fields suggested

 118

•

 119

• Created 4 Clustering using EM algorithm with 10,8,6 and 4 nodes.
o The X-axis of the chart represents the percentage of the test dataset that is

used to compare the predictions
o the Y-axis now represents the percentage of predictions that are correct.

 120

o

o

 121

�

�
� With NVDCL-EM4 consistently underperforming the others, it was replaced with a

KMeans algorithm for further comparison

 122

�

�

The K-Means algorithm regardless of number of nodes used had the same score and

population predicted as correct were the same, so it did not matter which one we used.

 123

 124

The KMeans models consistently underperformed the EM models –
Choosing the EM-8 models.

o Without Description

 125

o

o

 126

Processing time Clustering with Description Vector

We looked at the processing time for clustering given the description vector, given all of

the algorithms, it took 56 seconds.

 127

Appendix B-3 – Query for Identifying Clusters in Training Data

The following query was run on the analysis server to predict and assign clusters to each

entry.

SELECT
 t.[name],
 t.[discovered],
 t.[published],
 t.[cvss_score],
 t.[loss_type],
 t.[adminSP],
 t.[userSP],
 t.[otherSP],
 t.[vuln_type],
 t.[input_bound],
 t.[input_buffer],
 t.[exploit_range],
 t.[ref],
 t.[source],
 t.[sig],
 t.[adv],
 t.[patch],
 t.[prodName],
 t.[versionNum],
 t.[preVersion],
 t.[edition],
 (Cluster()) as
[ClusterNode],
 (ClusterProbability()) as
[ClusterProbability]
From
 [NVDCL-EM-10]
PREDICTION JOIN
 SHAPE {
 OPENQUERY([SSRAM],
 'SELECT
 [name],
 [discovered],
 [published],
 [cvss_score],
 [loss_type],
 [adminSP],
 [userSP],
 [otherSP],
 [vuln_type],
 [input_bound],
 [input_buffer],
 [exploit_range],
 [ref],
 [source],

 [sig],
 [adv],
 [patch],
 [prodName],
 [versionNum],
 [preVersion],
 [edition]
 FROM
 [dbo].[TrainingData_96_01]
 ORDER BY
 [name]')}
 APPEND
 ({OPENQUERY([SSRAM],
 'SELECT
 [Term],
 [Frequency],
 [entry_name]
 FROM
 [dbo].[TermVectors]
 ORDER BY
 [entry_name]')}
 RELATE
 [name] TO [entry_name])
 AS
 [TermVectors] AS t
ON
 [NVDCL-EM-10].[Discovered] =
t.[discovered] AND
 [NVDCL-EM-10].[Published] =
t.[published] AND
 [NVDCL-EM-10].[Cvss Score] =
t.[cvss_score] AND
 [NVDCL-EM-10].[Loss Type] =
t.[loss_type] AND
 [NVDCL-EM-10].[Admin SP] =
t.[adminSP] AND
 [NVDCL-EM-10].[User SP] =
t.[userSP] AND
 [NVDCL-EM-10].[Other SP] =
t.[otherSP] AND
 [NVDCL-EM-10].[Vuln Type] =
t.[vuln_type] AND
 [NVDCL-EM-10].[Input Bound] =
t.[input_bound] AND
 [NVDCL-EM-10].[Input Buffer] =
t.[input_buffer] AND

 128

 [NVDCL-EM-10].[Exploit
Range] = t.[exploit_range]
AND
 [NVDCL-EM-10].[Source] =
t.[source] AND
 [NVDCL-EM-10].[Sig] =
t.[sig] AND
 [NVDCL-EM-10].[Adv] =
t.[adv] AND
 [NVDCL-EM-10].[Patch] =
t.[patch] AND
 [NVDCL-EM-10].[Prod Name] =
t.[prodName] AND

 [NVDCL-EM-10].[Version Num] =
t.[versionNum] AND
 [NVDCL-EM-10].[Pre Version] =
t.[preVersion] AND
 [NVDCL-EM-10].[Edition] =
t.[edition] AND
 [NVDCL-EM-10].[Term
Vectors].[Term] =
t.[TermVectors].[Term] AND
 [NVDCL-EM-10].[Term
Vectors].[Frequency] =
t.[TermVectors].[Frequency]

Which effectively gives a result as follows that is stored in a table.

 129

Appendix B-4 – Classified Data Matrix

Classification models are evaluated based on the number of test records that they

correctly and incorrectly predict. Columns correspond to the actual values and rows

depict the predicted values. The metric to measure the performance of each model –

Accuracy, defined as follows

ionsrofpredictTotalNumbe

edictionsrrectNumberofco
Accuracy

Pr
=

The rest of this appendix shows the confusion matrix used to determine the accuracy of

the classification models.

Classifier without Description
Counts for DT
ClusterClassifier
on [Cluster
Node]

Classification Confusion Matrix

 Predicted

Cluster
1
(Actual)

Cluster
6
(Actual)

Cluster
4
(Actual)

Cluster
3
(Actual)

Cluster
8
(Actual)

Cluster
5
(Actual)

Cluster
7
(Actual)

Cluster
2
(Actual)

 Cluster 1 2708 5 0 6 42 4 0 102

 Cluster 6 767 1243 0 256 2 162 0 54

 Cluster 4 31 13 167 2 41 23 71 2

 Cluster 3 0 48 0 117 0 5 7 79

 Cluster 8 0 0 0 0 0 0 0 0

 Cluster 5 32 92 9 18 0 1099 13 91

 Cluster 7 47 6 394 5 289 2 762 25

 Cluster 2 22 24 5 592 6 17 6 657

Accuracy .66

Counts for NB
ClusterClassifier
on [Cluster
Node]

 Predicted

Cluster
1
(Actual)

Cluster
6
(Actual)

Cluster
4
(Actual)

Cluster
3
(Actual)

Cluster
8
(Actual)

Cluster
5
(Actual)

Cluster
7
(Actual)

Cluster
2
(Actual)

 Cluster 1 3158 496 60 145 74 164 41 157

 Cluster 6 307 680 1 89 0 63 2 29

 Cluster 4 35 14 257 5 75 32 197 6

 Cluster 3 19 129 10 513 0 7 4 103

 Cluster 8 2 0 9 0 17 0 15 6

 Cluster 5 47 89 6 15 2 1017 7 59

 130

 Cluster 7 28 2 226 8 202 2 578 22

 Cluster 2 11 21 6 221 10 27 15 628

Accuracy 0.67
Counts for NN
ClusterClassifier
on [Cluster
Node]

 Predicted

Cluster
1
(Actual)

Cluster
6
(Actual)

Cluster
4
(Actual)

Cluster
3
(Actual)

Cluster
8
(Actual)

Cluster
5
(Actual)

Cluster
7
(Actual)

Cluster
2
(Actual)

 Cluster 1 3052 260 46 77 70 149 31 137

 Cluster 6 421 889 0 154 0 73 1 28

 Cluster 4 34 3 207 3 68 32 138 7

 Cluster 3 11 146 6 566 2 5 3 174

 Cluster 8 0 1 6 1 2 1 4 1

 Cluster 5 50 89 16 15 3 1027 11 70

 Cluster 7 27 10 285 10 226 2 662 29

 Cluster 2 12 33 9 170 9 23 9 564

Accuracy 0.86

Classifier with Description

Classification Confusion Matrix

Counts for DTCluster
Classifier with Desc on
[Cluster Node]

 Predicted
Cluster 1
(Actual)

Cluster 6
(Actual)

Cluster 4
(Actual)

Cluster 3
(Actual)

Cluster 8
(Actual)

Cluster 5
(Actual)

Cluster 7
(Actual)

Cluster 2
(Actual)

 Cluster 1 2708 5 0 6 42 4 0 102

 Cluster 6 774 1251 0 256 2 212 0 54

 Cluster 4 0 0 0 0 0 0 0 0

 Cluster 3 0 0 0 0 0 0 0 0

 Cluster 8 0 0 0 0 0 0 0 0

 Cluster 5 32 72 0 18 0 882 3 95

 Cluster 7 79 31 570 7 330 209 843 40

 Cluster 2 14 72 5 709 6 5 13 719

Accuracy 0.63

Counts for NB
ClusterClassifier with
Desc on [Cluster Node]

 Predicted
Cluster 1
(Actual)

Cluster 6
(Actual)

Cluster 4
(Actual)

Cluster 3
(Actual)

Cluster 8
(Actual)

Cluster 5
(Actual)

Cluster 7
(Actual)

Cluster 2
(Actual)

 Cluster 1 3158 409 0 105 44 163 3 129

 Cluster 6 339 809 0 153 0 64 0 33

 Cluster 4 31 13 185 2 41 23 71 2

 Cluster 3 3 83 2 325 0 7 0 83

 Cluster 8 0 0 0 0 0 0 0 0

 Cluster 5 12 84 9 16 0 1033 10 79

 Cluster 7 47 6 376 9 289 2 769 29

 Cluster 2 17 27 3 386 6 20 6 655

Accuracy 0.68

 131

Counts for NN
ClusterClassifier
with Desc on
[Cluster Node]

 Predicted

Cluster
1
(Actual)

Cluster
6
(Actual)

Cluster
4
(Actual)

Cluster
3
(Actual)

Cluster
8
(Actual)

Cluster
5
(Actual)

Cluster
7
(Actual)

Cluster
2
(Actual)

 Cluster 1 3482 880 100 196 83 205 25 155

 Cluster 6 33 347 0 41 0 22 0 2

 Cluster 4 0 0 4 0 0 0 0 0

 Cluster 3 2 63 8 287 0 5 15 43

 Cluster 8 0 0 0 0 0 0 0 0

 Cluster 5 25 85 12 16 0 1043 13 85

 Cluster 7 48 11 448 7 291 13 793 22

 Cluster 2 17 45 3 449 6 24 13 703

Accuracy 0.65

 132

Appendix B-5 – Validation of Clustering Algorithms

Validation Statistics of all models for Training Data 1996-2001. In order that the

cohesion of each model could be determined we looked at the average score for each

cluster and the standard deviation. This allowed us to see the variability around the

mean. We also looked at the range of scores within the clusters by getting the minimum

(Min) and maximum (Max) score. The wtd scores were based on the growth rate of the

scores as explained in Chapter 3.

EM8Clusters -
All

 Count
Avg
Probability

Std
Deviation

Avg
Score

Max
Score

Min
Score

Wtd
StdDev

Wtd
Avg
Score

Wtd
Max

Wtd
Min

Cluster 1 22717 0.81 2.08 7.44 10 1.6 2.25 6.09 10 0.91

Cluster 2 7816 0.54 2.2 5.43 10 1.9 1.43 2.89 10 0.95

Cluster 3 7296 0.51 2.19 5.16 10 1.9 1.64 2.66 10 1.06

Cluster 4 3856 0.51 2.39 5.01 10 2.3 1.52 2.46 10 0.83

Cluster 5 9306 0.62 2.33 4.75 10 2.3 1.84 3.02 10 1.02

Cluster 6 514 0.9 0 7 7 7 0.61 6.29 7 5.59

EM8Clusters

Probability
 >.8 Count

Avg
Probability

Std
Deviation

Avg
Score

Max
Score

Min
Score

Wtd
StdDev

Wtd
Avg
Score

Wtd
Max

Wtd
Min

Cluster 1 14101 0.94 1.67 7.69 10 1.6 1.64 7.23 10 1.6

Cluster 2 687 0.97 2.26 5.21 10 2.3 2.19 5.03 10 1.86

Cluster 3 1011 0.96 2.4 4.58 10 1.9 2.29 4.39 10 1.59

Cluster 4 631 0.99 2.15 4.51 10 2.3 2.11 4.45 10 1.9

Cluster 5 2143 0.86 2.31 6.32 10 2.3 1.88 5.35 10 1.85

Cluster 6 292 0.97 0 7 7 7 0.01 6.82 7 6.82

EM10Clusters

All Count
Avg
Probability

Std
Deviation

Avg
Score

Max
Score

Min
Score

Wtd
StdDev

Wtd
Avg
Score

Wtd
Max

Wtd
Min

Cluster 1 9468 0.65 2.02 4.38 10 1.9 1.34 2.78 10 0.72

Cluster 2 11350 0.82 1.24 6.75 10 1.9 1.32 5.51 10 0.9

Cluster 3 11688 0.86 1.59 8.89 10 1.6 2.23 7.72 10 1.03

Cluster 4 6940 0.55 1.91 6.04 10 1.9 1.34 3.23 10 1.01

Cluster 5 4869 0.51 1.91 4.6 10 2.3 1.35 2.38 10 1.2

Cluster 6 6649 0.74 1.73 3.9 10 2.3 1.25 2.82 10 1.12

Cluster 7 541 0.87 0 7 7 7 0.69 6.11 7 5.34

 133

EM10Clusters

>0.80 Count
Avg
Probability

Std
Deviation

Avg
Score

Max
Score

Min
Score

Wtd
StdDev

Wtd
Avg
Score

Wtd
Max

Wtd
Min

Cluster 1 1700 0.9 1.61 3.8 10 1.9 1.71 3.48 10 1.86

Cluster 2 8351 0.9 0.81 6.74 10 1.9 0.78 6.09 10 1.61

Cluster 3 8761 0.94 1.34 9.29 10 1.6 1.46 8.72 10 1.59

Cluster 4 860 0.94 2.27 4.41 10 1.9 2.17 4.13 10 1.57

Cluster 5 429 0.98 1.91 4.45 10 2.3 1.87 4.35 10 2.25

Cluster 6 2990 0.86 1.54 3.28 10 2.3 1.48 2.85 10 1.85

Cluster 7 300 0.96 0 7 7 7 0.02 6.73 7 6.73

EM12Clusters

All Count
Avg
Probability

Std
Deviation

Avg
Score

Max
Score

Min
Score

Wtd
StdDev

Wtd
Avg
Score

Wtd
Max

Wtd
Min

Cluster 1 15406 0.85 1.79 8.08 10 1.6 2.3 6.86 10 1.49

Cluster 2 6655 0.73 2.07 4.18 10 2.3 1.33 2.87 10 0.96

Cluster 3 2072 0.5 1.93 4.2 10 2.3 1.95 2.26 10 0.61

Cluster 4 2324 0.56 2.79 7.23 10 1.9 1.68 3.51 10 1.16

Cluster 5 4484 0.5 1.06 3.57 10 1.9 1.17 1.81 10 0.82

Cluster 6 5843 0.53 1.37 6.71 10 1.9 0.91 3.46 10 1.19

Cluster 7 5191 0.53 2.36 5.11 10 2.3 1.58 2.74 10 0.89

Cluster 8 9016 0.41 1.97 5.87 10 2.7 1.17 2.48 9.98 0.84

Cluster 9 514 0.84 0 7 7 7 0.87 5.88 7 4.89

EM12Clusters

>0.8 Count
Avg
Probability

Std
Deviation

Avg
Score

Max
Score

Min
Score

Wtd
StdDev

Wtd
Avg
Score

Wtd
Max

Wtd
Min

Cluster 1 11589 0.96 1.73 8.1 10 1.6 1.69 7.81 10 1.6

Cluster 2 3107 0.9 1.56 3.31 10 2.3 1.56 3.03 10 1.85

Cluster 3 471 0.97 2.22 4.85 10 2.3 2.14 4.71 10 2.14

Cluster 4 673 0.95 2.44 4.9 10 1.9 2.4 4.7 10 1.55

Cluster 5 518 0.99 1.93 4.15 10 1.9 1.9 4.11 10 1.9

Cluster 6 435 0.9 1.25 5.84 10 1.9 1.29 5.26 10 1.89

Cluster 7 266 0.98 2.53 4.81 10 2.3 2.54 4.74 10 2.23

Cluster 8 71 0.95 2.16 5.62 10 2.7 2.06 5.35 9.98 2.69

Cluster 9 292 0.95 0 7 7 7 0.02 6.64 7 6.64

 134

KM10Clusters

All Count
Avg
Probability

Std
Deviation

Avg
Score

Max
Score

Min
Score

Wtd
StdDev

Wtd
Avg
Score

Wtd
Max

Wtd
Min

Cluster 1 12020 1 1.19 7.01 10 2.3 1.19 7.01 10 2.3

Cluster 10 2126 1 1.75 4.14 10 1.9 1.75 4.14 10 1.9

Cluster 2 12774 1 1.64 8.68 10 1.9 1.64 8.68 10 1.9

Cluster 3 6422 1 0.55 3.38 10 1.9 0.55 3.38 10 1.9

Cluster 4 2642 1 0.77 3.41 10 1.9 0.77 3.41 10 1.9

Cluster 5 4423 1 0.73 6.99 10 2.3 0.73 6.99 10 2.3

Cluster 6 3136 1 0.62 2.41 10 1.9 0.62 2.41 10 1.9

Cluster 7 2257 1 1.02 5.25 10 1.6 1.02 5.25 10 1.6

Cluster 8 3522 1 2 4.64 10 1.9 2 4.64 10 1.9

Cluster 9 2183 1 2.04 6.78 10 2.3 2.04 6.78 10 2.3

Training Data by Clusters (1996 - 2001)

With 95%
Confidence
Interval

NumInCluster CVSS_Score StdDev
Margin of
Error Cluster Lower Upper

1395 7.9726 1.7142 0.09 Cluster 1 7.8826 8.0625

867 6.7191 1.4718 0.098 Cluster 6 6.6211 6.817

338 6.1498 2.6781 0.2855 Cluster 8 5.8643 6.4353

651 5.5779 2.266 0.1741 Cluster 2 5.4038 5.752

573 4.8681 2.1551 0.1765 Cluster 3 4.6916 5.0445

431 4.6508 2.4416 0.2305 Cluster 4 4.4203 4.8813

536 4.384 2.1133 0.1789 Cluster 5 4.2051 4.5629

549 3.3 0 0 Cluster 7 3.3 3.3

 135

Appendix B-6 – Processing Time for Classifiers

Figure 37 - Processing Time for Classification Algorithm

<Batch xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">
 <Parallel>
 <Process xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Object>
 <DatabaseID>SSRAM22608</DatabaseID>
 <MiningStructureID>Classify Clusters</MiningStructureID>
 </Object>
 <Type>ProcessFull</Type>
 <WriteBackTableCreation>UseExisting</WriteBackTableCreation>
 </Process>
 </Parallel>
</Batch>
 Processing Mining Structure 'ClassifyClustersWoDescription' completed successfully.
 Start time: 7/22/2008 7:53:20 AM; End time: 7/22/2008 7:54:00 AM; Duration: 0:00:40
 Processing Mining Model 'NB ClusterClassifier' completed successfully.
 Start time: 7/22/2008 7:53:27 AM; End time: 7/22/2008 7:53:30 AM; Duration: 0:00:03
 Processing Mining Model 'DT ClusterClassifier' completed successfully.
 Start time: 7/22/2008 7:53:28 AM; End time: 7/22/2008 7:53:33 AM; Duration: 0:00:05
 Processing Mining Model 'NN ClusterClassifier' completed successfully.
 Start time: 7/22/2008 7:53:28 AM; End time: 7/22/2008 7:54:00 AM; Duration: 0:00:32

 136

Appendix B-7 – Calculating CVSS ‘base’ Score

An example of how the CVSS base score is derived – given the entry in Figure 22 -

CVSS base Score and Vector

.

 BASE METRIC EVALUATION SCORE

 Access Vector [Local] (0.395)
 Access Complexity [Low] (0.71)
 Authentication [None] (0.704)
 Confidentiality Impact [Complete] (0.66)
 Integrity Impact [Complete] (0.66)
 Availability Impact [Complete] (0.66)

 BASE FORMULA BASE SCORE

 Impact = 10.41*(1-(0.34*0.34*0.4)) == 9.83
 Exploitability = 20*0.395*0.71*0.704 == 3.95
 f(Impact) = 1.176
 Base Score = ((0.6*9.83)+(0.4*3.95)–1.5)*1.176

 == (7.09)

Note that the score values above are derived from the algorithm shown below from
[First 2005]

BaseScore = round_to_1_decimal(((0.6*Impact)+(0.4*Exploitability)–
1.5)*f(Impact))

Impact = 10.41*(1-(1-ConfImpact)*(1-IntegImpact)*(1-AvailImpact))

Exploitability = 20* AccessVector*AccessComplexity*Authentication

f(impact)= 0 if Impact=0, 1.176 otherwise

AccessVector = case AccessVector of
 requires local access: 0.395
 adjacent network accessible: 0.646
 network accessible: 1.0

AccessComplexity = case AccessComplexity of
 high: 0.35
 medium: 0.61
 low: 0.71

 137

Authentication = case Authentication of
 requires multiple instances of authentication:
0.45
 requires single instance of authentication:
0.56
 requires no authentication: 0.704

ConfImpact = case ConfidentialityImpact of
 none: 0.0
 partial: 0.275
 complete: 0.660

IntegImpact = case IntegrityImpact of
 none: 0.0
 partial: 0.275
 complete: 0.660

AvailImpact = case AvailabilityImpact of
 none: 0.0
 partial: 0.275
 complete: 0.660

 138

Appendix C-1 – Stored Procedure for Calculating Impact Score
Attributes

This appendix shows the code for calculating impact score attributes

set ANSI_NULLS ON
set QUOTED_IDENTIFIER ON
go

-- ===
-- Author: Idongesit Mkpong-Ruffin
-- Create date: 4/14/2008
-- Description: Calculate impact factor values
-- ===
ALTER PROCEDURE [dbo].[spCalcImpactFactors]
 -- Add the parameters for the stored procedure here
(@endDate datetime = '01/01/2001',
 @timePeriods int = 12,
 @clusterNode nvarchar(155)='Cluster 1',
 @weightedAvgScore float OUTPUT,
 @avgScoreGrowth float OUTPUT,
 @avgFreqGrowth float OUTPUT,
 @SumResult int OUTPUT) -- to see if i can get the information
returned

AS
BEGIN
 -- SET NOCOUNT ON added to prevent extra result sets from
 -- interfering with SELECT statements.
 SET NOCOUNT ON;

 -- Declare the return variable here
 --DECLARE @SumResult int

 -- Temporary table to store interim data for computation

 DECLARE @tmpClusterInfo table(timeGap int, avgScore float,
reportedEntries float)

 INSERT INTO @tmpClusterInfo(timeGap, avgScore,
reportedEntries)
 select datediff(month, published, @endDate)as timeGap,
avg(cvss_score) as avgScore, count(distinct name) as reportedEntries

 from trainingdatawclusters96_01
 where
 (datediff(month, published, @endDate) > 0)and
 (datediff(month, published, @endDate) <=
@timePeriods)and

 139

 clusternode = @clusterNode
 group by datediff(month, published, @endDate)
 order by timegap

-- Total Entries
-- select sum(reportedEntries) from @tmpClusterInfo as
TotalEntries --debug
 set @SumResult = (select sum(reportedEntries) from
@tmpClusterInfo)

 --- get the total entries for coefficientSummation
 set @weightedAvgScore = (select
round(sum(((reportedEntries)/@sumResult)*avgScore),2)
 from @tmpClusterInfo)

-- Score Growth
 -- get the avgGrowth rate of Score for this period within
cluster

 set @avgScoreGrowth = (select
round(avg(((nextRow.avgScore/curRow.avgScore)-1)),2) as avgScoreGrowth
 from @tmpClusterInfo curRow
 left join @tmpClusterInfo nextRow
 on curRow.timegap = nextRow.timeGap-1)

-- Frequency Of Occurrence Growth
 -- get the avgGrowth rate of Score for this period within cluster

 set @avgFreqGrowth = (select
round(avg(((nextRow.reportedEntries/curRow.reportedEntries)-1)),2)
 from @tmpClusterInfo curRow
 left join @tmpClusterInfo nextRow
 on curRow.timegap = nextRow.timeGap-1)

 -- Add the T-SQL statements to compute the return value here
return

END

 140

Appendix C-2 – Stored Procedure for Determining Prioritized
Listing

Once each entry has been de-normalized so that component elements of the entry can be

analyzed and assigned scores, they are aggregated to determine overall impact score for

the entry. This appendix shows the code used to effect this in SSRAM.

set ANSI_NULLS ON
set QUOTED_IDENTIFIER ON
go

-- ===
-- Author: Idongesit Mkpong-Ruffin
-- Create date:
-- Description:
-- ===
ALTER PROCEDURE [dbo].[spPrioritizedList]
 -- Add the parameters for the stored procedure here

AS
BEGIN
 -- SET NOCOUNT ON added to prevent extra result sets from
 -- interfering with SELECT statements.
 SET NOCOUNT ON;

 -- Insert statements for procedure here
 select distinct entryID, round(avg(predImpact),2) as PredImpact,
 round(avg(predFreq),0) as PredFreq, round(avg(lossExpect),2) as
LossExpect

 from predictions
 group by entryID
 order by LossExpect desc
END

 141

Appendix C-3 – Stored Procedure for Persisting Predictions

To be able to prioritize predictions requires that the results of the prediction are stored.

This appendix shows the code use for persisting predictions.

set ANSI_NULLS ON
set QUOTED_IDENTIFIER ON
go

-- ===
-- Author: Idongesit Mkpong-Ruffin
-- Create date: 5/19/08
-- Description: Creates persistent storage of predicted information
-- ===
ALTER PROCEDURE [dbo].[spPredictionStore]
 -- Add the parameters for the stored procedure here
 @entryID varChar(30),
 @vulnType varChar(15),
 @lossType varChar(15),
 @exploitRange varChar(15),
 @clusterNode varChar(15),
 @predImpact float,
 @predFreq float,
 @lossExp float

AS
BEGIN
 -- SET NOCOUNT ON added to prevent extra result sets from
 -- interfering with SELECT statements.
 SET NOCOUNT ON;

 -- Insert statements for procedure here
 insert into
Predictions(entryID,vulnType,lossType,exploitRange,clusterNode,predImpa
ct,predFreq, lossExpect)

values(@entryID,@vulnType,@lossType,@exploitRange,@clusterNode,@predImp
act,@predFreq,@lossExp);

END

 142

Appendix D-1 – Singleton Request Algorithm

To validate that SSRAM could, based on loss type, vulnerability type and exploit range,

classify and entry and by extension accurately predict CVSS score, we generated a single

request of known clusters based on the code shown in this appendix.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using Microsoft.AnalysisServices.AdomdClient;

namespace SSRAMWinApp1
{
 public partial class frmSingle : Form
 {
 public frmSingle()
 {
 InitializeComponent();
 }

 private void linkLabel1_LinkClicked(object sender,
LinkLabelLinkClickedEventArgs e)
 {

 }

 private void label2_Click(object sender, EventArgs e)
 {

 }

 private void label1_Click(object sender, EventArgs e)
 {

 }

 private void Form1_Load(object sender, EventArgs e)
 {

 }

 private void label1_Click_1(object sender, EventArgs e)
 {

 }

 143

 private void btnCalc_Click(object sender, EventArgs e)
 {
 string strASConnString =
SSRAMWinApp1.Properties.Settings.Default.AS_SSRAMConnectionString;
 string strDBConnString =
Convert.ToString(SSRAMWinApp1.Properties.Settings.Default.DB_SSRAMConne
ctionString);
 string strClusterLbl = "";
 double dblPredictImpact = 0;
 double dblPredictFreq = 0;
 DateTime dtPredictDate;
 int intPeriods = 0;

 try
 {
 IPredictElementCluster objRequester = new
PredictElementCluster();

 this.txtResult.Text = "";
 // string strRequestCluster =
objRequester.Command(strASConnString, this.tbVT.Text.Trim(),
this.tbLT.Text.Trim(), this.tbER.Text.Trim());
 string strRequestCluster =
objRequester.Command(strASConnString,
this.cbVulnType.SelectedItem.ToString().Trim(),

this.cbLossType.SelectedItem.ToString().Trim(),

this.cbExploitRange.SelectedItem.ToString().Trim());

 strClusterLbl = objRequester.getClusterNode;

 ICalculateImpactFactor objRequestImpact = new
CalcImpactFactor();

 this.txtImpactInfo.Text = ""; // to put impact factor
and loss expectation
 dtPredictDate =
Convert.ToDateTime(this.dateTimePicker1.Text.Trim());
 // result = Int32.TryParse("3", NumberStyles.Integer,
null, out int32Val);
 bool blconvertPeriod =
int.TryParse(this.txtMonths.Text, out intPeriods);
 //bool blcp = int.TryParse(this.txtImpactInfo.Text, out
intPeriods);
 string strImpactInfo =
objRequestImpact.Command(strDBConnString,dtPredictDate,intPeriods,strCl
usterLbl);
 int intImpactLength = strImpactInfo.Length;

 //get predicted Impact
 dblPredictImpact = objRequestImpact.getPredictedImpact;
 dblPredictFreq =
objRequestImpact.getPredictedOccurrences;

 144

 //display results
 this.txtResult.Text = strRequestCluster +
strImpactInfo;
 this.txtImpactInfo.Text = "Predicted Impact: " +
dblPredictImpact.ToString().Trim() + "\r\n" +
 "Predicted Occurrence: " +
dblPredictFreq.ToString().Trim();

 }

 catch (Exception ex)
 {
 System.Windows.Forms.MessageBox.Show(ex.ToString());

 // try
 // {
 // IPredictCustomerMDXRequester objRequester =
new PredictCustomerMDXRequester();

 // this.m_tbResult.Text = "";
 // this.m_tbResult.Text =
objRequester.Command(strASConnString, this.m_tbCity.Text.Trim(),
this.m_tbContactTitle.Text.Trim());
 // }
 // catch (Exception ex)
 // {
 //
System.Windows.Forms.MessageBox.Show(ex.ToString());
 // }
 }
 } // btnCalcClick

 private void label1_Click_2(object sender, EventArgs e)
 {

 }

 private void textBox1_TextChanged(object sender, EventArgs e)
 {

 }

 private void label2_Click_1(object sender, EventArgs e)
 {

 }

 private void checkedListBox1_SelectedIndexChanged(object
sender, EventArgs e)
 {

 }

 145

 private void label1_Click_3(object sender, EventArgs e)
 {

 }

 private void comboBox1_SelectedIndexChanged(object sender,
EventArgs e)
 {

 }

 private void comboBox1_SelectedIndexChanged_1(object sender,
EventArgs e)
 {

 }

 private void button1_Click(object sender, EventArgs e)
 {
 Close();
 }
 }

 146

Appendix D-2 – Data Table Request (Code for Load Data)

This appendix shows the code for loading a table of de-normalized entries for

classification and prediction of impact scores.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Data.SqlClient;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using Microsoft.AnalysisServices.AdomdClient;

namespace SSRAMWinApp1
{
 public partial class frmTableRequest : Form
 {
 // Adding the ManufactureEntryDataTable
 public static void ManufactureEntryDataTable(DataSet ds)
 {
 DataTable entries = new DataTable("Entries");
 entries.Columns.Add(new DataColumn("EntryID",
typeof(string)));
 entries.Columns.Add(new DataColumn("VulnType",
typeof(string)));
 entries.Columns.Add(new DataColumn("LossType",
typeof(string)));
 entries.Columns.Add(new DataColumn("ExploitRange",
typeof(string)));

 ds.Tables.Add(entries);

 }// ManufactureEntryDataTable(DataSet ds)

 // Adding the ManufacturePredictDataTable
 public static void ManufacturePredictDataTable(DataSet ds)
 {
 DataTable predictions = new DataTable("Predictions");
 predictions.Columns.Add(new DataColumn("EntryID",
typeof(string)));
 predictions.Columns.Add(new DataColumn("VulnType",
typeof(string)));
 predictions.Columns.Add(new DataColumn("LossType",
typeof(string)));
 predictions.Columns.Add(new DataColumn("ExploitRange",
typeof(string)));
 predictions.Columns.Add(new DataColumn("EntryCluster",
typeof(string)));

 147

 predictions.Columns.Add(new DataColumn("PredictedImpact",
typeof(double)));
 predictions.Columns.Add(new
DataColumn("PredictedFrequency", typeof(int)));
 predictions.Columns.Add(new DataColumn("LossExpect",
typeof(double)));

 ds.Tables.Add(predictions);

 }// ManufacturePredictDataTable(DataSet ds)

 public static void ManufactureOrderedTable(DataSet ds)
 {
 DataTable entries = new DataTable("Ordered");
 entries.Columns.Add(new DataColumn("PredictedImpact",
typeof(double)));
 entries.Columns.Add(new DataColumn("PredictedFrequency",
typeof(double)));
 entries.Columns.Add(new DataColumn("LossExpection",
typeof(double)));

 ds.Tables.Add("ordered");

 // ds.Tables.Add(prioritizedPredictions);

 } // ManufactureOrderedTable(DataSet ds)

 public frmTableRequest()
 {
 InitializeComponent();

 }

 private void btnLoadDta_Click(object sender, EventArgs e)
 {
 try
 {
 //// used as test data to query - may need to change
this to get those based on the client's choice
 string selectQuery = "select distinct name as EntryID,"
+
 "vuln_type as VulnType,loss_type
as LossType, exploit_range as ExploitRange " +
 "from test02classifier where
month(published) = 1" +
 "and year(published) = 2002";

 SqlConnection dtaConnection = new
SqlConnection(strDBConnString);

 SqlDataAdapter daCmd = new SqlDataAdapter(selectQuery,
dtaConnection);

 148

 ////ManufactureEntryDataTable(ds); //Add the Entries
table to the dataset
 daCmd.Fill(ds, "Entries");
 this.vulnEntriesDataGridView.AutoGenerateColumns =
true;
 this.vulnEntriesDataGridView.DataSource = ds;
 this.vulnEntriesDataGridView.DataMember = "Entries";

 // do I need to close the connection?
 dtaConnection.Close();

 ManufacturePredictDataTable(ds);

 }// end try
 catch (Exception ex)
 {
 System.Windows.Forms.MessageBox.Show(ex.ToString());

 }//end catch

 }

 private void label1_Click(object sender, EventArgs e)
 {

 }

 private void btnPredict_Click(object sender, EventArgs e)
 {
 string strClusterLbl = "";
 double dblPredProb = 0;

 SqlConnection conn = new SqlConnection(strDBConnString);

 //delete content of predictions
 string del = "delete Predictions";
 SqlCommand cmdDel = new SqlCommand(del, conn);

 conn.Open();

 cmdDel.ExecuteScalar();
 conn.Close();

 foreach (DataRow row in ds.Tables["Entries"].Rows)
 {

 string strVulnType = row["VulnType"].ToString();
 string strLossType = row["LossType"].ToString();
 string strExploitRange =
row["ExploitRange"].ToString();

 149

 IPredictElementCluster objRequester = new
PredictElementCluster();
 string strRequestCluster =
objRequester.Command(strASConnString, strVulnType.Trim(),
 strLossType.Trim(),
strExploitRange.Trim());
 strClusterLbl = objRequester.getClusterNode;
 dblPredProb = objRequester.getPredictProbability;

 // Get the predicted values for this entry values
 ICalculateImpactFactor objRequestImpact = new
CalcImpactFactor();

 // will look at this when I get data from interface

 dtPredictDate =
Convert.ToDateTime(this.dateTimePicker1.Text.Trim());
 bool blconvertPeriod =
int.TryParse(this.txtMonths.Text, out intPeriods);
 string strImpactInfo =
objRequestImpact.Command(strDBConnString, dtPredictDate, intPeriods,
strClusterLbl);

 //get predicted Impact
 dblPredictImpact = objRequestImpact.getPredictedImpact;
 dblPredictFreq =
objRequestImpact.getPredictedOccurrences;
 double dblLossExpect = Math.Round(dblPredictImpact *
dblPredictFreq,2);

 //inserting a new row with the values into the
Predictions Table

 DataRow predictRow = ds.Tables["Predictions"].NewRow();
 predictRow["EntryID"] = row["EntryID"];
 predictRow["VulnType"] = row["VulnType"];
 predictRow["LossType"] = row["LossType"];
 predictRow["ExploitRange"] = row["ExploitRange"];
 predictRow["EntryCluster"] = strClusterLbl;
 predictRow["PredictedImpact"] = dblPredictImpact;
 predictRow["PredictedFrequency"] = dblPredictFreq;
 predictRow["LossExpect"] = dblLossExpect;

 // used to add the new row to the prediction table
 ds.Tables["Predictions"].Rows.Add(predictRow);

 //Persist the data gotten 8/2/2008

 string ins = @"insert into
Predictions(entryID,vulnType,lossType,exploitRange,clusterNode,predImpa
ct,predFreq,lossExpect)

 150

values(@entryID,@vulnType,@lossType,@exploitRange,@clusterNode,@predImp
act,@predFreq, @lossExp)";

 SqlCommand cmdIns = new SqlCommand(ins, conn);
 // not sure if this is necessary yet
cmdIns.CommandType = CommandType.TableDirect;
 // assign values to the parameters given
 SqlParameter objParameter = null;
 objParameter = cmdIns.CreateParameter();
 // objParameter.Direction =
System.Data.ParameterDirection.Input; //changed from
ParameterDirection.Input
 objParameter.ParameterName = "entryID";
 objParameter.Value = row["EntryID"];
 cmdIns.Parameters.Add(objParameter);

 objParameter = cmdIns.CreateParameter();
 // objParameter.Direction =
System.Data.ParameterDirection.Input; //changed from
ParameterDirection.Input
 objParameter.ParameterName = "vulnType";
 objParameter.Value = row["VulnType"];
 cmdIns.Parameters.Add(objParameter);

 objParameter = cmdIns.CreateParameter();
 // objParameter.Direction =
System.Data.ParameterDirection.Input; //changed from
ParameterDirection.Input
 objParameter.ParameterName = "lossType";
 objParameter.Value = row["LossType"];
 cmdIns.Parameters.Add(objParameter);

 objParameter = cmdIns.CreateParameter();
 // objParameter.Direction =
System.Data.ParameterDirection.Input; //changed from
ParameterDirection.Input
 objParameter.ParameterName = "exploitRange";
 objParameter.Value = row["ExploitRange"];
 cmdIns.Parameters.Add(objParameter);

 objParameter = cmdIns.CreateParameter();
 // objParameter.Direction =
System.Data.ParameterDirection.Input; //changed from
ParameterDirection.Input
 objParameter.ParameterName = "clusterNode";
 objParameter.Value = strClusterLbl; //
predictRow["EntryCluster"];
 cmdIns.Parameters.Add(objParameter);

 objParameter = cmdIns.CreateParameter();
 // objParameter.Direction =
System.Data.ParameterDirection.Input; //changed from
ParameterDirection.Input
 objParameter.ParameterName = "predImpact";

 151

 objParameter.Value = dblPredictImpact; //
predictRow["PredictedImpact"];
 cmdIns.Parameters.Add(objParameter);

 objParameter = cmdIns.CreateParameter();
 // objParameter.Direction =
System.Data.ParameterDirection.Input; //changed from
ParameterDirection.Input
 objParameter.ParameterName = "predFreq";
 objParameter.Value = dblPredictFreq; //
predictRow["PredictedFrequency"];
 cmdIns.Parameters.Add(objParameter);

 objParameter = cmdIns.CreateParameter();
 // objParameter.Direction =
System.Data.ParameterDirection.Input; //changed from
ParameterDirection.Input
 objParameter.ParameterName = "lossExp";
 objParameter.Value = dblLossExpect; //
predictRow["PredictedFrequency"];
 cmdIns.Parameters.Add(objParameter);
 cmdIns.UpdatedRowSource = UpdateRowSource.Both;

 SqlDataAdapter da = new SqlDataAdapter(cmdIns);

 conn.Open();
 da.InsertCommand = cmdIns;
 // conn.Open();
 // cmdIns.ExecuteScalar();
 // cmdIns.ExecuteNonQuery();
 da.Update(ds, "Predictions");
 conn.Close();

 }// end foreach (DataRow row in ds.Tables["Entries"].Rows)

 this.predictedImpactDataGridView.AutoGenerateColumns =
true;
 this.predictedImpactDataGridView.DataSource = ds;
 this.predictedImpactDataGridView.DataMember =
"Predictions";

 // Aggregate each entry's prediction for a prioritized
listing 8/3/2008
 ManufactureOrderedTable(ds);
 //Create data adapter to fill the dataset table
 SqlDataAdapter daOrdered = new SqlDataAdapter();

 // Setup command for data adapter
 SqlCommand orderedCmd = new SqlCommand("spPrioritizedList",
conn);
 orderedCmd.CommandType = CommandType.StoredProcedure;
 orderedCmd.UpdatedRowSource = UpdateRowSource.None;

 152

 daOrdered.SelectCommand = orderedCmd;
 daOrdered.Fill(ds, "Ordered");

 this.orderedListDataGridView.AutoGenerateColumns = true;
 this.orderedListDataGridView.DataSource = ds;
 this.orderedListDataGridView.DataMember = "Ordered";
 this.orderedListDataGridView.Visible = true;

 }//private void btnPredict_Click(object sender, EventArgs e)

 private string strASConnString =
SSRAMWinApp1.Properties.Settings.Default.AS_SSRAMConnectionString;
 private string strDBConnString =
Convert.ToString(SSRAMWinApp1.Properties.Settings.Default.DB_SSRAMConne
ctionString);
 private double dblPredictImpact = 0;
 private double dblPredictFreq = 0;
 private DateTime dtPredictDate;
 private int intPeriods = 0;
 private DataSet ds = new DataSet();

 private void button1_Click(object sender, EventArgs e)
 {

 //get the data from the Predictions data table into a
persistent state in the database

 SqlConnection conn = new SqlConnection(strDBConnString);
 //conn.Open();
 try
 {

 //delete content of predictions
 string del = "delete Predictions";
 SqlCommand cmdDel = new SqlCommand(del,conn);

 conn.Open();

 cmdDel.ExecuteScalar();
 conn.Close();

 // string strEntryID, strVulnType, strLossType,
strExploitRange, strClusterNode;
 // double dblPredImpact, dblPredFreq;

 foreach (DataRow row in ds.Tables["Predictions"].Rows)
 {

 153

 string ins = @"insert into
Predictions(entryID,vulnType,lossType,exploitRange,clusterNode,predImpa
ct,predFreq)

values(@entryID,@vulnType,@lossType,@exploitRange,@clusterNode,@predImp
act,@predFreq)";

 SqlCommand cmdIns = new SqlCommand(ins, conn);
 // not sure if this is necessary yet
cmdIns.CommandType = CommandType.TableDirect;
 // assign values to the parameters given
 SqlParameter objParameter = null;
 objParameter = cmdIns.CreateParameter();
 objParameter.Direction =
System.Data.ParameterDirection.Input; //changed from
ParameterDirection.Input
 objParameter.ParameterName = "entryID";
 objParameter.Value = row["EntryID"];
 cmdIns.Parameters.Add(objParameter);

 objParameter = cmdIns.CreateParameter();
 objParameter.Direction =
System.Data.ParameterDirection.Input; //changed from
ParameterDirection.Input
 objParameter.ParameterName = "vulnType";
 objParameter.Value = row["VulnType"];
 cmdIns.Parameters.Add(objParameter);

 objParameter = cmdIns.CreateParameter();
 objParameter.Direction =
System.Data.ParameterDirection.Input; //changed from
ParameterDirection.Input
 objParameter.ParameterName = "lossType";
 objParameter.Value = row["LossType"];
 cmdIns.Parameters.Add(objParameter);

 objParameter = cmdIns.CreateParameter();
 objParameter.Direction =
System.Data.ParameterDirection.Input; //changed from
ParameterDirection.Input
 objParameter.ParameterName = "exploitRange";
 objParameter.Value = row["ExploitRange"];
 cmdIns.Parameters.Add(objParameter);

 objParameter = cmdIns.CreateParameter();
 objParameter.Direction =
System.Data.ParameterDirection.Input; //changed from
ParameterDirection.Input
 objParameter.ParameterName = "clusterNode";
 objParameter.Value = row["EntryCluster"];
 cmdIns.Parameters.Add(objParameter);

 154

 objParameter = cmdIns.CreateParameter();
 objParameter.Direction =
System.Data.ParameterDirection.Input; //changed from
ParameterDirection.Input
 objParameter.ParameterName = "predImpact";
 objParameter.Value = row["PredictedImpact"];
 cmdIns.Parameters.Add(objParameter);

 objParameter = cmdIns.CreateParameter();
 objParameter.Direction =
System.Data.ParameterDirection.Input; //changed from
ParameterDirection.Input
 objParameter.ParameterName = "predFreq";
 objParameter.Value = row["PredictedFrequency"];
 cmdIns.Parameters.Add(objParameter);
 cmdIns.UpdatedRowSource = UpdateRowSource.None;

 SqlDataAdapter da = new SqlDataAdapter(cmdIns);

 conn.Open();
 da.InsertCommand = cmdIns;

 // conn.Open();
 // cmdIns.ExecuteScalar();
 // cmdIns.ExecuteNonQuery();
 da.Update(ds, "Predictions");
 conn.Close();

 }//foreach (DataRow row in
ds.Tables["Predictions"].Rows)
 }// try
 catch (Exception ex)
 {
 //Console.WriteLine("Error: " + e);
 System.Windows.Forms.MessageBox.Show(ex.ToString());

 }// catch
 finally
 {
 conn.Close();
 }

 Close();

 }
 }
}

 155

Appendix D-3 – Data for SSRAM Validation

To validate that there was no statistical difference between SSRAM’s prediction and the

actual result we ran a series of t-test of sample means. We used data reported in January

of 2002 as our test cases. The following tables show the predictions and comparison to

actual scores using the different classification schemes.

 156

t-Test Results using Naïve Bayes algorithm

 Actual Predicted

Mean 5.577419 6.23709

Variance 5.520473 2.362795

Observations 31 31

Pearson Correlation 0.68273

Hypothesized Mean Difference 0

df 30

t Stat -2.1378

P(T<=t) one-tail 0.020399

t Critical one-tail 1.697261

P(T<=t) two-tail 0.040798

t Critical two-tail 2.042272

CVE-ID Actual
CVE-ID
Predicted

Actual
 Score Predicted Difference

CVE-1999-1081 CVE-1999-1081 3.3 6.292 -2.992

CVE-1999-1091 CVE-1999-1091 3.3 4.8555 -1.5555

CVE-1999-1091 CVE-1999-1091 3.3 5.7886 -2.4886

CVE-2001-0887 CVE-2001-0887 2.3 4.8555 -2.5555

CVE-2001-0891 CVE-2001-0891 7 8.0093 -1.0093

CVE-2001-1457 CVE-2001-1457 7 8.0093 -1.0093

CVE-2002-0002 CVE-2002-0002 7 8.0093 -1.0093

CVE-2002-0005 CVE-2002-0005 10 8.0093 1.9907

CVE-2002-0007 CVE-2002-0007 10 6.72 3.28

CVE-2002-0008 CVE-2002-0008 7 6.72 0.28

CVE-2002-0008 CVE-2002-0008 7 8.0093 -1.0093

CVE-2002-0009 CVE-2002-0009 3.3 5.7886 -2.4886

CVE-2002-0009 CVE-2002-0009 3.3 6.292 -2.992

CVE-2002-0010 CVE-2002-0010 8 5.7886 2.2114

CVE-2002-0010 CVE-2002-0010 8 6.72 1.28

CVE-2002-0010 CVE-2002-0010 8 8.0093 -0.0093

CVE-2002-0011 CVE-2002-0011 3.3 6.292 -2.992

CVE-2002-0038 CVE-2002-0038 3.3 3.3 0

CVE-2002-0043 CVE-2002-0043 7 6.72 0.28

CVE-2002-0044 CVE-2002-0044 4.7 4.8555 -0.1555

CVE-2002-0045 CVE-2002-0045 8 5.7886 2.2114

CVE-2002-0045 CVE-2002-0045 8 8.0093 -0.0093

CVE-2002-0046 CVE-2002-0046 3.3 5.7886 -2.4886

CVE-2002-0047 CVE-2002-0047 3.3 3.3 0

CVE-2002-0077 CVE-2002-0077 7 6.72 0.28

CVE-2002-0077 CVE-2002-0077 7 8.0093 -1.0093

CVE-2002-1594 CVE-2002-1594 7 8.0093 -1.0093

CVE-2002-1595 CVE-2002-1595 3.3 6.292 -2.992

CVE-2002-1596 CVE-2002-1596 3.3 3.3 0

CVE-2002-1597 CVE-2002-1597 3.3 3.3 0

CVE-2002-1600 CVE-2002-1600 3.3 5.7886 -2.4886

 157

t-Test: Paired Two Sample for Means using Neural Networks Classification Algorithm
 Actual Predicted

Mean 5.653125 6.180540625

Variance 5.525796371 2.337423284

Observations 32 32

Pearson Correlation 0.629684793

Hypothesized Mean Difference 0

df 31

t Stat 1.633197931

P(T<=t) one-tail 0.056272384

t Critical one-tail 1.695518742

P(T<=t) two-tail 0.112544769

t Critical two-tail 2.039513438

 Actual Predicted Difference

CVE-1999-1081 CVE-1999-1081 3.3 6.292 -2.992

CVE-1999-1091 CVE-1999-1091 3.3 4.8555 -1.5555

CVE-1999-1091 CVE-1999-1091 3.3 5.7886 -2.4886

CVE-2001-0887 CVE-2001-0887 2.3 4.8555 -2.5555

CVE-2001-0891 CVE-2001-0891 7 8.0093 -1.0093

CVE-2001-1457 CVE-2001-1457 7 8.0093 -1.0093

CVE-2002-0002 CVE-2002-0002 7 8.0093 -1.0093

CVE-2002-0005 CVE-2002-0005 10 8.0093 1.9907

CVE-2002-0007 CVE-2002-0007 10 6.72 3.28

CVE-2002-0008 CVE-2002-0008 7 6.292 0.708

CVE-2002-0008 CVE-2002-0008 7 8.0093 -1.0093

CVE-2002-0009 CVE-2002-0009 3.3 5.7886 -2.4886

CVE-2002-0009 CVE-2002-0009 3.3 6.292 -2.992

CVE-2002-0010 CVE-2002-0010 8 5.7886 2.2114

CVE-2002-0010 CVE-2002-0010 8 6.72 1.28

CVE-2002-0010 CVE-2002-0010 8 8.0093 -0.0093

CVE-2002-0011 CVE-2002-0011 3.3 6.292 -2.992

CVE-2002-0038 CVE-2002-0038 3.3 3.3 0

CVE-2002-0043 CVE-2002-0043 7 6.72 0.28

CVE-2002-0044 CVE-2002-0044 4.7 4.8555 -0.1555

CVE-2002-0045 CVE-2002-0045 8 4.8555 3.1445

CVE-2002-0045 CVE-2002-0045 8 5.7886 2.2114

CVE-2002-0045 CVE-2002-0045 8 8.0093 -0.0093

CVE-2002-0046 CVE-2002-0046 3.3 5.7886 -2.4886

CVE-2002-0047 CVE-2002-0047 3.3 3.3 0

CVE-2002-0077 CVE-2002-0077 7 6.72 0.28

CVE-2002-0077 CVE-2002-0077 7 8.0093 -1.0093

CVE-2002-1594 CVE-2002-1594 7 8.0093 -1.0093

CVE-2002-1595 CVE-2002-1595 3.3 6.292 -2.992

CVE-2002-1596 CVE-2002-1596 3.3 3.3 0

CVE-2002-1597 CVE-2002-1597 3.3 3.3 0

CVE-2002-1600 CVE-2002-1600 3.3 5.7886 -2.4886

 158

t-Test: Paired Two Sample for Means using Decision Tree Classifier
 Actual Predicted

Mean 5.76129 6.102877

Variance 5.636452 2.316325

Observations 31 31

Pearson Correlation 0.658869

Hypothesized Mean Difference 0

df 30

t Stat -1.06461

P(T<=t) one-tail 0.147773

t Critical one-tail 1.697261

P(T<=t) two-tail 0.295546

t Critical two-tail 2.042272

CVE-ID Actual Predicted Difference

CVE-1999-1081 CVE-1999-1081 3.3 5.7886 -2.4886

CVE-1999-1091 CVE-1999-1091 3.3 4.8555 -1.5555

CVE-1999-1091 CVE-1999-1091 3.3 6.292 -2.992

CVE-2001-0887 CVE-2001-0887 2.3 4.8555 -2.5555

CVE-2001-0891 CVE-2001-0891 7 8.0093 -1.0093

CVE-2001-1457 CVE-2001-1457 7 8.0093 -1.0093

CVE-2002-0002 CVE-2002-0002 7 8.0093 -1.0093

CVE-2002-0005 CVE-2002-0005 10 8.0093 1.9907

CVE-2002-0007 CVE-2002-0007 10 6.72 3.28

CVE-2002-0008 CVE-2002-0008 7 6.72 0.28

CVE-2002-0008 CVE-2002-0008 7 8.0093 -1.0093

CVE-2002-0009 CVE-2002-0009 3.3 5.7886 -2.4886

CVE-2002-0010 CVE-2002-0010 8 5.7886 2.2114

CVE-2002-0010 CVE-2002-0010 8 6.292 1.708

CVE-2002-0010 CVE-2002-0010 8 6.72 1.28

CVE-2002-0010 CVE-2002-0010 8 8.0093 -0.0093

CVE-2002-0011 CVE-2002-0011 3.3 5.7886 -2.4886

CVE-2002-0038 CVE-2002-0038 3.3 3.3 0

CVE-2002-0043 CVE-2002-0043 7 6.72 0.28

CVE-2002-0044 CVE-2002-0044 4.7 4.8555 -0.1555

CVE-2002-0045 CVE-2002-0045 8 4.8555 3.1445

CVE-2002-0045 CVE-2002-0045 8 5.7886 2.2114

CVE-2002-0045 CVE-2002-0045 8 8.0093 -0.0093

CVE-2002-0046 CVE-2002-0046 3.3 5.7886 -2.4886

CVE-2002-0047 CVE-2002-0047 3.3 3.3 0

CVE-2002-0077 CVE-2002-0077 7 6.72 0.28

CVE-2002-1594 CVE-2002-1594 7 8.0093 -1.0093

CVE-2002-1595 CVE-2002-1595 3.3 5.7886 -2.4886

CVE-2002-1596 CVE-2002-1596 3.3 3.3 0

CVE-2002-1597 CVE-2002-1597 3.3 3.3 0

CVE-2002-1600 CVE-2002-1600 3.3 5.7886 -2.4886

 159

Mean -0.4385

Std Dev 1.7385

df 35.0000

t -1.51354

Entry-ID
Cluster
 Node

Actual
Score

Predicted
Impact Difference

CVE-1999-1081 Cluster 2 3.3 5.1 -1.770

CVE-1999-1091 Cluster 5 3.3 3.8 -0.518
CVE-1999-1091 Cluster 3 3.3 2.4 0.893

CVE-2001-0887 Cluster 5 2.3 3.8 -1.518

CVE-2001-0887 Cluster 5 2.3 3.8 -1.518

CVE-2001-0891 Cluster 1 7 8.1 -1.058

CVE-2001-1457 Cluster 1 7 8.1 -1.058

CVE-2002-0002 Cluster 1 7 8.1 -1.058

CVE-2002-0005 Cluster 1 10 8.1 1.942

CVE-2002-0007 Cluster 6 10 5.6 4.387

CVE-2002-0008 Cluster 1 7 8.1 -1.058

CVE-2002-0008 Cluster 6 7 5.6 1.387

CVE-2002-0009 Cluster 2 3.3 5.1 -1.770

CVE-2002-0009 Cluster 2 3.3 5.1 -1.770

CVE-2002-0010 Cluster 3 8 2.4 5.593

CVE-2002-0010 Cluster 6 8 5.6 2.387

CVE-2002-0010 Cluster 2 8 5.1 2.930
CVE-2002-0010 Cluster 1 8 8.1 -0.058

CVE-2002-0011 Cluster 2 3.3 5.1 -1.770

CVE-2002-0038 Cluster 7 3.3 3.3 0.000

CVE-2002-0043 Cluster 6 7 5.6 1.387

CVE-2002-0044 Cluster 5 4.7 3.8 0.882

CVE-2002-0044 Cluster 5 4.7 3.8 0.882

CVE-2002-0045 Cluster 5 8 3.8 4.182

CVE-2002-0045 Cluster 2 8 5.1 2.930

CVE-2002-0045 Cluster 1 8 8.1 -0.058

CVE-2002-0045 Cluster 1 8 8.1 -0.058

CVE-2002-0046 Cluster 2 3.3 5.1 -1.770

CVE-2002-0047 Cluster 7 3.3 3.3 0.000

CVE-2002-0077 Cluster 6 7 5.6 1.387

CVE-2002-0077 Cluster 6 7 5.6 1.387

CVE-2002-1594 Cluster 1 7 8.1 -1.058

CVE-2002-1595 Cluster 2 3.3 5.1 -1.770

CVE-2002-1596 Cluster 7 3.3 3.3 0.000

CVE-2002-1597 Cluster 7 3.3 3.3 0.000

CVE-2002-1600 Cluster 2 3.3 5.1 -1.770

 160

Appendix E-1 – Microsoft’s TAMT Listing of Vulnerabilities

This appendix shows the report generated from using Microsoft’s Threat Analysis and

Modeling Tool.

Confidentiality Threats

Unauthorized disclosure of <creates a unique ballot for his/herself> using <speech user
interface> by <Validated voter>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are
mapped to filenames

Unauthorized disclosure of <creates a unique ballot for his/herself> using <Graphical user
interface> by <Validated voter>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are
mapped to filenames

Unauthorized disclosure of <completes ballot choices> using <speech user interface> by
<Validated voter>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are
mapped to filenames

Unauthorized disclosure of <completes ballot choices> using <Graphical user interface> by
<Validated voter>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are
mapped to filenames

Unauthorized disclosure of <prints ballot entry> using <Printer> by <Validated voter>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are
mapped to filenames

Unauthorized disclosure of <deletes his/her's ballot entry> using <speech user interface> by
<Validated voter>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are

 161

mapped to filenames

Unauthorized disclosure of <deletes his/her's ballot entry> using <Graphical user interface> by
<Validated voter>

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are
mapped to filenames

Unauthorized disclosure of <Create Ballot counter> using <Secure counter> by <ballot tally>

Countermeasures

Buffer Overflow : Use safe functions such as strncpy, strncat instead of strcpy,
strcat

Buffer Overflow : Validation on input should be performed on the input

Canonicalization : Only accept primitive typed identified (e.g., integers) which are
mapped to filenames

Cryptanalysis Attacks : Use well-known implementations of well-known
cryptographic algorithms

Cryptanalysis Attacks : Use cryptographically generated random keys

Cryptanalysis Attacks : Utilize platform supplied feature to store secret key (e.g.,
DPAPI)

Cryptanalysis Attacks : Utilize SSL or IPSec w/ Encryption to establish a secure
communication channel

Format String : Use a managed language

Integer Overflow/Underflow : Use Language features

Unauthorized disclosure of <reads ballot counter> using <Secure counter> by <ballot tally>

Countermeasures

Buffer Overflow : Use safe functions such as strncpy, strncat instead of strcpy,
strcat

Buffer Overflow : Validation on input should be performed on the input

Canonicalization : Only accept primitive typed identified (e.g., integers) which are
mapped to filenames

Cryptanalysis Attacks : Use well-known implementations of well-known
cryptographic algorithms

Cryptanalysis Attacks : Use cryptographically generated random keys

 162

Cryptanalysis Attacks : Utilize platform supplied feature to store secret key (e.g.,
DPAPI)

Cryptanalysis Attacks : Utilize SSL or IPSec w/ Encryption to establish a secure
communication channel

Format String : Use a managed language

Integer Overflow/Underflow : Use Language features

Unauthorized disclosure of <updates ballot counter> using <Secure counter> by <ballot tally>

Countermeasures

Buffer Overflow : Use safe functions such as strncpy, strncat instead of strcpy,
strcat

Buffer Overflow : Validation on input should be performed on the input

Canonicalization : Only accept primitive typed identified (e.g., integers) which are
mapped to filenames

Cryptanalysis Attacks : Use well-known implementations of well-known
cryptographic algorithms

Cryptanalysis Attacks : Use cryptographically generated random keys

Cryptanalysis Attacks : Utilize platform supplied feature to store secret key (e.g.,
DPAPI)

Cryptanalysis Attacks : Utilize SSL or IPSec w/ Encryption to establish a secure
communication channel

Format String : Use a managed language

Integer Overflow/Underflow : Use Language features

Unauthorized disclosure of <creates imposter file> using <imposter file> by <ballot tally>

Countermeasures

Buffer Overflow : Use safe functions such as strncpy, strncat instead of strcpy,
strcat

Buffer Overflow : Validation on input should be performed on the input

Canonicalization : Only accept primitive typed identified (e.g., integers) which are
mapped to filenames

Cryptanalysis Attacks : Use well-known implementations of well-known
cryptographic algorithms

 163

Cryptanalysis Attacks : Use cryptographically generated random keys

Cryptanalysis Attacks : Utilize platform supplied feature to store secret key (e.g.,
DPAPI)

Cryptanalysis Attacks : Utilize SSL or IPSec w/ Encryption to establish a secure
communication channel

Format String : Use a managed language

Integer Overflow/Underflow : Use Language features

Unauthorized disclosure of <reads imposter file> using <imposter file> by <ballot tally>

Countermeasures

Buffer Overflow : Use safe functions such as strncpy, strncat instead of strcpy,
strcat

Buffer Overflow : Validation on input should be performed on the input

Canonicalization : Only accept primitive typed identified (e.g., integers) which
are mapped to filenames

Cryptanalysis Attacks : Use well-known implementations of well-known
cryptographic algorithms

Cryptanalysis Attacks : Use cryptographically generated random keys

Cryptanalysis Attacks : Utilize platform supplied feature to store secret key
(e.g., DPAPI)

Cryptanalysis Attacks : Utilize SSL or IPSec w/ Encryption to establish a secure
communication channel

Format String : Use a managed language

Integer Overflow/Underflow : Use Language features

Unauthorized disclosure of <updates imposter file> using <imposter file> by <ballot tally>

Countermeasures

Buffer Overflow : Use safe functions such as strncpy, strncat instead of strcpy,
strcat

Buffer Overflow : Validation on input should be performed on the input

Canonicalization : Only accept primitive typed identified (e.g., integers) which are
mapped to filenames

Cryptanalysis Attacks : Use well-known implementations of well-known

 164

cryptographic algorithms

Cryptanalysis Attacks : Use cryptographically generated random keys

Cryptanalysis Attacks : Utilize platform supplied feature to store secret key (e.g.,
DPAPI)

Cryptanalysis Attacks : Utilize SSL or IPSec w/ Encryption to establish a secure
communication channel

Format String : Use a managed language

Integer Overflow/Underflow : Use Language features

Unauthorized disclosure of <Prints total tallies for ballots entered> using <Printer> by <Poll
Worker >

Countermeasures

Canonicalization : Only accept primitive typed identified (e.g., integers) which are
mapped to filenames

 165

Appendix E-2 – Prime III Data
ID Name VulnType Loss Type Exploit Range

Threat-1 Canonicalization input Avail user_init

Threat-1 Canonicalization input Avail local

Threat-1 Canonicalization input Int user_init

Threat-1 Canonicalization input Int local

Threat-1 Canonicalization input Conf user_init

Threat-1 Canonicalization input Conf local

Threat-2 Buffer Overflow access Int user_init

Threat-2 Buffer Overflow input Int user_init

Threat-2 Buffer Overflow access Int local

Threat-2 Buffer Overflow input Int local

Threat-2 Buffer Overflow access Avail user_init

Threat-2 Buffer Overflow input Avail user_init

Threat-2 Buffer Overflow access Avail local

Threat-2 Buffer Overflow input Avail local

Threat-2 Buffer Overflow access Conf user_init

Threat-2 Buffer Overflow input Conf user_init

Threat-2 Buffer Overflow access Conf local

Threat-2 Buffer Overflow input Conf local

Threat-3 Cryptanalysis env Avail local

Threat-3 Cryptanalysis access Avail local

Threat-3 Cryptanalysis env Avail local

Threat-3 Cryptanalysis access Avail local

Threat-3 Cryptanalysis env Int local

Threat-3 Cryptanalysis access Int local

Threat-3 Cryptanalysis env Int local

Threat-3 Cryptanalysis access Int local

Threat-3 Cryptanalysis env Conf local

Threat-3 Cryptanalysis access Conf local

Threat-3 Cryptanalysis env Conf local

Threat-3 Cryptanalysis access Conf local

Threat-3 Cryptanalysis env Sec_Prot local

Threat-3 Cryptanalysis access Sec_Prot local

Threat-3 Cryptanalysis env Sec_Prot local

Threat-3 Cryptanalysis access Sec_Prot local

Threat-4 Format String design Avail user_init

Threat-4 Format String design Avail local

Threat-4 Format String design Int user_init

Threat-4 Format String design Int local

Threat-4 Format String design Conf user_init

Threat-4 Format String design Conf local

Threat-5 Integer
Overflow/Underflow

input Avail user_init

Threat-5 Integer
Overflow/Underflow

input Int user_init

Threat-5 Integer
Overflow/Underflow

input Conf user_init

 166

Appendix E-3 – Prime III Predictions

This appendix shows the result of making predictions for our case study using the

different classification schemes. We ran the predictions based on two separate historical

data sources (1996 – 2001, 2003 – 2005). We performed predictions for 2002 and 2006

based on the same vulnerability listing.

The resulting predictions are shown in this appendix along with the confidence interval

for the two separate historical basis for predictions.

A. Using 2003-2005 data as training for 2006 Predictions with Neural Network

algorithm for classification

The prioritized list shows Integer overflow/underflow has the highest loss expectation

based on the impact score and predicted frequency. Countermeasures for dealing with

integer overflow/underflow, such as making sure that the programming language features

that deal with minimizing overflow/underflow, should be employed. Canonicalization,

Buffer Overflow and Format String would be considered of the same priority given the

 167

confidence interval for the historical data (2003 – 2005) used for the prediction. Since

these are above 5.0, the first four vulnerabilities would be considered medium to high risk

elements and, as such, require that countermeasures to ameliorate them be given.

B. Using 2003-2005 data as training for 2006 Predictions with Decision Tree
algorithm for classification

Using the decision tree algorithm, Buffer Overflow would be considered the highest risk

element, due to its high predicted impact while Canonicalization and Integer

Overflow/Underflow would be of the same level of priority. Although Format String has

a higher impact factor, the predicted number of occurrences warrants it to be placed at a

lower priority. Cryptanalysis in both measures was given the lowest priority.

 168

Training Data by Clusters (2003 - 2005)
With 95%

Confidence Interval

Number
in

Cluster

Avg
Score

Std
Deviation

Margin
of
Error

Cluster
Node

Lower Upper

2083.000 7.599 1.673 0.072 Cluster 2 7.527 7.671

1430.000 6.967 0.831 0.043 Cluster 1 6.924 7.010

1616.000 5.379 2.075 0.101 Cluster 3 5.277 5.480

371.000 4.159 2.088 0.212 Cluster 7 3.947 4.372

17.000 3.300 0.000 0.000 Cluster 8 3.300 3.300

1031.000 3.124 0.776 0.047 Cluster 4 3.077 3.172

1764.000 3.013 0.551 0.026 Cluster 6 2.987 3.039

669.000 2.631 0.932 0.071 Cluster 5 2.561 2.702

Confidence Interval for Predictions on 2006 data based on 2003-2005 data

C. Using 1996-2001 data as training for 2001 Predictions with Neural Network

algorithm for classification

The prioritized list for 2001 shows Integer Overflow/underflow as the highest

vulnerability risk element for January 2001. Canonicalization, Cryptanalysis and Buffer

Overflow would be interpreted as having the same level of priority given the confidence

interval data for the training period.

 169

Using Decision Tree Classification Algorithm

Using decision tree, Format String would be considered the element of highest risk due to

the predicted number of occurrences, though Canonicalization, Buffer Overflow and

Integer Overflow and Underflow all had higher impact predictions. These three would be

considered of the same priority level also.

To actually predict for data not within our training data, we predicted for January 2002.

Using the neural network classification algorithm we found that, Integer

 170

Overflow/Underflow, Canonicalization, and Buffer Overflow were predicted with high

impact scores of the same level of priority, while Format String and Cryptanalysis though

of lower priority still had impact scores in the medium to high range. In this case, we

would recommend that all the vulnerabilities’ countermeasures be considered in the

priority listed but, in essence, allow the decision makers to understand why they should

all be addressed.

Training Data by Clusters (1996 - 2001) With 95% Confidence
Interval

NumInCluster CVSS_Score StdDev Margin of
Error

Cluster Lower Upper

1257 8.2541 1.8124 0.1002 Cluster 2 8.1539 8.3543

719 7.0872 1.7984 0.1315 Cluster 4 6.9557 7.2186

107 7 0 0 Cluster 7 7 7

765 5.5393 2.0795 0.1474 Cluster 5 5.3919 5.6867

1298 5.3409 1.9665 0.107 Cluster 1 5.2339 5.4478

1250 4.3934 2.0171 0.1118 Cluster 3 4.2816 4.5052

735 4.3105 1.6957 0.1226 Cluster 6 4.1879 4.4331

 171

Appendix F- Vulnerability Classification

Kindoms

[Tsipenyuk et al. 2005]

Vulnerability Class

[NVD]

19 Sins

[Howard et al. 2005]

OWASP

Input validation and

representation

Input validation error

– (boundary condition

error, buffer overflow)

Buffer overflows,

command injection,

cross-site scripting,

format string problems,

integer range errors,

SQL injection

Buffer overflows,

cross-site scripting

flaws, injection

flaws, unvalidated

input

API abuse Trusting network address

information

Security features Access validation error Failing to protect

network traffic, failing to

store and protect data,

failing to use

cryptographically strong

random numbers,

improper file access,

improper use of SQL, use

of weak password-based

systems, unauthenticated

key exchange

Broken access

control, insecure

storage

Time and State Race condition Signal race conditions,

use of “magic” URLs and

hidden forms

Broken

authentication and

session management

Errors Exceptional condition

error

Failure to handle errors Improper error

handling

Code quality Design error Poor usability Denial of service

Encapsulation Information leakage

Environment Environmental error Insecure

configuration

management

 Other error

