
NEURO-FUZZY SYSTEM WITH INCREASED ACCURACY SUITABLE FOR

HARDWARE IMPLEMENTATION

Except where reference is made to the work of others, the work described in this thesis is
my own or was done in collaboration with my advisory committee. This thesis does not

include proprietary or classified information.

Kannan Govindasamy

Certificate of Approval:

Vishwani Agrawal
James J. Danaher Professor
Electrical and Computer Engineering

Bogdan Wilamowski, Chair
Professor
Electrical and Computer Engineering

Michael Baginski
Associate Professor
Electrical and Computer Engineering

George T. Flowers
Dean
Graduate School

NEURO-FUZZY SYSTEM WITH INCREASED ACCURACY SUITABLE FOR

HARDWARE IMPLEMENTATION

Kannan Govindasamy

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
May 09, 2009

NEURO-FUZZY SYSTEM WITH INCREASED ACCURACY SUITABLE FOR

HARDWARE IMPLEMENTATION

Kannan Govindasamy

Permission is granted to Auburn University to make copies of this thesis at its
discretion, upon the request of individuals or institutions and at

their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation

iii

Vita

Kannan Govindasamy, son of Govindasamy Krishnasamy and Karthiga Govindasamy,

was born on May 29, 1984 in Madurai, Tamil Nadu, India. He graduated in 2005 with a

Bachelor of Engineering degree in Electronics and Communication Engineering from Thi-

agaraja College Engineering, Madurai, India. In the pursuit of enhancing his academic

qualification he joined the M.S. Program at Auburn University in the Department of Elec-

trical and Computer Engineering in August 2006.

iv

Thesis Abstract

NEURO-FUZZY SYSTEM WITH INCREASED ACCURACY SUITABLE FOR

HARDWARE IMPLEMENTATION

Kannan Govindasamy

Master of Science, May 09, 2009
(B.E., Anna University, 2005)

62 Typed Pages

Directed by Bogdan Wilamowski

Fuzzy controllers are easy to design for complex control surfaces but produce rough con-

trol surfaces which might lead to unstable operation. On the other hand neural controllers

are hard and complex to train but they produce very accurate output control surfaces com-

pared to that of fuzzy controllers.The Neuro-Fuzzy controller proposed in this thesis exploits

the fuzzy systems nature of utilizing expert knowledge and also produces smooth surfaces

by implementing it in neural networks.

Monotonic sigmoid membership function is used to make the neural implementation

an easy task. Levenberg-Marquardt algorithm(LM) which is used for feed forward networks

is implemented to train the neurons. A defuzzification with trigonometric approximation

algorithm using LUT-Lookup Table is developed to implement in low cost microcontrollers

to make the control system highly cost effective. It is shown through extensive simulations

that the proposed model produces accurate and smooth control surfaces.

v

Acknowledgments

I take this opportunity to thank my academic advisor Dr. Bogdan Wilamowski, for

his guidance in my research throughout my Masters degree program here in Auburn. I also

have had the privilege of Dr. Vishwani Agrawal and Dr. Michael Baginski taking their

precious time to be in my graduate committee and receiving from them valuable feedback

on my work.

I also would like to thank all my friends who have been helpful throughout my degree.

I wish to dedicate this degree and work to my family who made this possible and for all

their support throughout my life.

vi

Style manual or journal used IEEE

Computer software used Latex together with the departmental style-file aums.sty.

vii

Table of Contents

List of Figures x

1 Introduction 1

2 Neural Network 3
2.1 Introduction . 3
2.2 Historical Background . 3

2.2.1 A Promising and Emerging Technology 3
2.2.2 Period of Frustration and Disrepute 4
2.2.3 Re-Emergence . 4

2.3 Human Brain Working Model . 5
2.4 Artificial Neuron . 5

2.4.1 Components of Neuron . 6
2.5 Types of Neural Network . 7

2.5.1 Applications . 7
2.5.2 Architecture . 7
2.5.3 Learning Methods . 8

2.6 Error Back-Propagation Algorithm . 9
2.7 Advantages of Neural Network . 9
2.8 Limitations of Neural Network . 10
2.9 Conclusion . 11

3 Fuzzy Logic 13
3.1 Introduction . 13
3.2 Historical Background . 13
3.3 Fuzzy System . 13
3.4 Membership Function . 14
3.5 Mamdani and TSK Fuzzy Controllers . 15
3.6 Advantages of Fuzzy Logic . 17
3.7 Limitations of Fuzzy Logic . 17
3.8 Conclusion . 18

4 Proposed Neuro-Fuzzy Model 19
4.1 Introduction . 19
4.2 Limitations of FPGA Implementaion . 23
4.3 Neuro-Fuzzy Model . 23
4.4 Neural Fuzzification Using Monotonic Functions 24
4.5 Conclusion . 28

viii

5 LUT Based Nonlinear Mapping 29
5.1 Introduction . 29
5.2 Defuzzification with Trignometric Approximation Algorithm 29
5.3 Application of Algorithm to 1-Dimension Problem 33
5.4 Extension of Algorithm to 2-Dimension and more 34

6 Simulation Results 38

7 Conclusion 42

Bibliography 43

Appendices 45

A Matlab Code 46
A.1 1-Dimensional LUT algorithm . 46
A.2 2-Dimensional LUT algorithm . 48

ix

List of Figures

2.1 A neuron with n inputs, weights and threshold value 12

3.1 Membership Function . 14

3.2 Fuzzy System . 15

3.3 Block Diagram Mamdani Fuzzy Controller 15

3.4 TSK Fuzzy Controller . 16

4.1 Required Control Surface . 20

4.2 Control Surface Using Triangular TSK Fuzzy system 21

4.3 Control Surface Using Guassian Memberhsip TSK Fuzzy system 22

4.4 Piecewise Linear . 24

4.5 Exponential Sigmoid . 25

4.6 Parabolic . 25

4.7 A Membership Function Implemented Using Exponential Functions F1 and F2 26

4.8 A Membership Function Implemented Using Exponential Functions F1 and F2 27

4.9 Exponential Sigmoid Membership Functions 27

5.1 Defuzzification Block . 29

5.2 Defuzzification with Sinusoidal Approximation 30

5.3 Illustration of Approximation Algorithm . 31

5.4 Double Space Linear Approximation . 34

5.5 Single Space Linear Approximation . 35

5.6 Double Space Sine Approximation . 35

x

5.7 Single Space Sine Approximation . 36

5.8 Error Observed Using LUT Algorithm in 1-D 36

5.9 Application of Algoritm to 2-Dimensional Problem 37

5.10 Application of Algoritm to 2-Dimensional Problem 37

6.1 A plot of the Stored data in LUT . 38

6.2 parabolic with Traditonal TSK Fuzzy system 39

6.3 Exponential with Traditional TSK Fuzzy system 39

6.4 Nonlinear Mapping Using Single Space Linear Approximation 40

6.5 Nonlinear Mapping Using Sinusoidal Approximation 40

6.6 Error plot of Nonlinear Mapping Using Sinusoidal Approximation 41

xi

Chapter 1

Introduction

Control systems for nonlinear system [1] still remains a challenge in modern control

theory, when compared to control system for linear objects. The nonlinear system becomes

more difficult to understand and analyze when the system becomes a function of time. A

nonlinear object is usually linearized before a controller system can be designed for the

system. This is more often done by adding a reverse nonlinear function to compensate

the nonlinear behavior and make the input-output relationship more linear. An adaptive

nonlinear system that has nonlinear characteristics which change with time is better man-

aged by methods of computational intelligence such as neural network and fuzzy systems

[1][3][4][5]. The adaptive nature of these systems enables them to model any dynamic

non-linear behavior of a control system.

Fuzzy systems utilize expert knowledge and perception based information in the form of

set of rules. The dynamics of a system is generally complicated, but sometimes its behavior

can be defined more conveniently using linguistic terms in which case fuzzy logic is the best

option to model the system. Moreover, fuzzy systems are easy to design and implement in

hardware. But, the major drawback of fuzzy controllers is that the control surfaces obtained

from these systems are rough, which can cause unstable operation.

Artificial neural systems, on the other hand are known by their property of perform-

ing complex nonlinear mappings. They also produce smooth control surfaces unlike the

fuzzy systems. Even though neural networks are widely implemented in software many

applications require the hardware implementation. But, these systems require the compu-

tation of tangent hyperbolic activation functions. This involves division algorithms which

are often too complex for simple microprocessors. So, a suitable combination of the neural

architecture and the fuzzy architecture is proposed in this thesis. It exploits the property

1

of producing fine control surfaces from neural architecture and utilizing expert knowledge

from fuzzy logic.

The Neuro-Fuzzy controller proposed in this work uses a fuzzy logic with monotonic

sigmoid membership functions that makes the neural implementation a very easy task.

Levenberg-Marquardt algorithm(LM) [6] which is used for feed forward networks is imple-

mented to train the neurons. Since, the implementation of neural networks in low cost

microcontrollers is a challenging task, a defuzzification with trigonometric approximation

algorithm using LUT [7][8] is developed to implement neurons in low cost microcontrollers

to make the control system highly cost effective.

The rest of the thesis is organized as follows.

Chapter 2 provides the relavent background information about the artificial neural

network. The advantages and limitations of using artificial neural networks, their types,the

structural information and history of neural network are discussed.

Chapter 3 provides the relavent background information about the fuzzy control system.

The two major fuzzy controllers, the Mamdani fuzzy controller and TSK fuzzy controller are

discussed. The advantages and limitations of using fuzzy control system are also discussed.

Chapter 4 provides information about the proposed neuro-fuzzy architechture. The

usage of monotonic membership functions is discussed.

Chapter 5 provides information about the proposed LUT based defuzzification algo-

rithm. The extension of the algorithm to higher dimension is also explained.

Chapter 6 shows the simulations results and chapter 6 concludes the work.

2

Chapter 2

Neural Network

2.1 Introduction

An Artificial Neural Network (ANN) is an interconnected group of nodes similar to

the network of neurons in brain. The information processing system of neural network is

inspired by the functioning model behavior of biological nervous systems, such as the brain.

A key aspect of neural network is that, it has to be trained. The neural network by virtue

does not have the expert knowledge to solve a problem. An artificial neural network much

akin to the human nervous system learns by example. In biological system learning involves

by adjustments to the synaptic connections that exist betweens the neurons. This is true

of artificial neural network as well. An artificial neural network is configured for specific

function [15],[16].

2.2 Historical Background

Neural network simulations appear to be a recent development. However, this field was

established before the advent of computers, and has survived at least one major setback

and several eras.

The history of neural networks consist of the following three periods [15].

2.2.1 A Promising and Emerging Technology

McCulloch and Pitts (1943) gave the first successful simulation model of the logic

based on the working model of biological neurons. These models were based on how simple

neurons worked and how they were akin to simple logic elements with thresholds.

3

This was followed by Rosenblatt‘s (1958) perceptron. The perceptron was a three lay-

ered architecture consisting of an input layer, middle layer and output layer. The middle

layer was also known as the hidden layer or the associate layer. The perceptron had the

ability to learn and associate a set of inputs to output. The other important development

during this initial period of interest in neural network was adaptive linear element (ADA-

LINE) which was developed in 1960 by Widrow and Hoff. The ADALINE used an LMS

(Least-Mean-Square) learning rule and was an analog system [15],[16].

2.2.2 Period of Frustration and Disrepute

The period of initial enthusiasm and high funding was followed by a period of frus-

tration and disrepute. Minsky and Papert published ”Perceptrons: An Introduction to

Computational Geometry” (1969) in which they highlighted the limitations of single layer

Perceptrons to multilayer systems, in other word a perceptrons could only solve linear sepa-

rable functions but not in particular like XOR or XNOR logic. The publication disenchanted

researchers in the field of neural network and was followed by a period of corresponding low

funding [15],[16].

2.2.3 Re-Emergence

Currently significant process has been made and works have surpassed the limitations

highlighted by Minsky and Papert. The adaptive resonance theory (ART) networks by

Steve Grossberg and Gail Carpenter in 1988, the associative techniques of Anderson and

Kohonen and the seminal error back propagation learning algorithm by Paul Werbos 1974,

infused life into neural networks. Since then this field has enjoyed a period of high funding

and significant commercial applications for industry and a financial solution have been

developed [15],[16].

4

2.3 Human Brain Working Model

The human brain is still a mystery and it is unclear how the human nervous sys-

tem functions and process a information. A typical neuron consists of three main parts -

dendrites, axons and synapses. A neuron has the amazing capability of transferring electro-

chemical signals. A branch like projections from the cell body collects information in the

form of signals known as dendrites. These signals are carried over the length of cell through

a long cable like projection known as axon. The axon which carries the signal end into

numerous branch like projection called synapse. The synapse converts the signal into elec-

trical activity. When the electrical activity is of sufficient strength the electrical activity

is conveyed to the next neuron. Learning is involved by the adjustment of these synaptic

connections [15],[16].

2.4 Artificial Neuron

Neural network is composed of a large number of highly interconnected processing

elements (neurons) working together to solve specific problems. A single neuron could be

modeled by the equation (1). It is diagrammatically represented as shown in Fig 2.1. The

output of the neuron is given by the sigmoid transfer function. Neural networks cannot be

programmed to a specific task but trained to solve by using various algorithms

net =
n∑

i=1

Wixi +Wn+1 (1)

An artificial neuron has many inputs and one output. The neuron operates in two

modes the using mode and the training mode. In training mode the neuron is trainied to

either fire or not for a particular specified input. In using mode when a specified pattern is

detected at the input the neuron responds by firing the associated output of the specified

value. If the input pattern detected does not match any of the one pattern in the specified

list the firing rule is used to determine whether the neuron fires or not [15],[16].

5

2.4.1 Components of Neuron

The behavior of a neural network depends on the two components, the weights and

the input-output function (transfer function) that is specified for the units. The transfer

function mainly falls into three categories:

• Linear Transfer Function

For linear units, the output activity is proportional to the total weighted output.

• Threshold

For threshold units, the output is set at one of two levels, depending on whether the

total input is greater than or less than some threshold value.

• Sigmoid

For sigmoid units, the output varies continuously but not linearly as the input changes.

Sigmoid units bear a greater resemblance to real neurons than do linear or threshold

units, but all three must be considered rough approximations.

To make a neural network that performs some specific task, it must be choosen how

the units are connected to one another and how to set the weights on the connections

appropriately. The connections determine whether it is possible for one unit to influence

another. The weights specify the strength of the influence.

A three-layer network can be trained to perform a particular task by using the following

procedure:

1. The network is fed with training examples, which consist of a pattern of activities for

the input units together with the desired pattern of activities for the output units.

2. The difference between the actual output of the network and the desired output is

found.

3. The weights of each connection is changed accordingly so that the network produces

a better approximation of the desired output.

6

2.5 Types of Neural Network

Neural Network types can be classified based on following attributes [15],[16]:

2.5.1 Applications

Neural network applications can be grouped in the following categories [15],[16]:

• Clustering:

A clustering algorithm explores the similarity between patterns and places similar

patterns in a cluster. Best known applications include data compression and data

mining [19].

• Classification/Pattern recognition:

The task of pattern recognition is to assign an input pattern (like handwritten symbol)

to one of many classes. This category includes algorithmic implementations such as

associative memory.

• Function approximation:

The tasks of function approximation is to find an estimate of the unknown function

f() subject to noise. Various engineering and scientific disciplines require function

approximation.

• Prediction:

The task is to forecast some future values of a time-sequenced data. Prediction has

a significant impact on decision support systems. Prediction differs from function

approximation by considering time factor.

2.5.2 Architecture

• Feed-forward networks

7

Artificial neural networks that has signals that travel only from inputs to output are

called feed-forward networks. The signals travel only in one direction and there is

no feedback (loops). The output of any layer does not affect that same layer. Feed-

forward artificial neural networks are straight forward networks that associate inputs

with outputs [15],[16].

• Feedback networks

Artificial neural networks that have loops in the network making the signals traveling

in both directions are referred as feed back networks. Feedback networks are very

powerful and can get extremely complicated. The loops make the feedback network

very dynamic. The feedback network changes their state continuously until they reach

an equilibrium point. The network then remains in the equilibrium point until the

input changes and a new equilibrium is found. Single layer feedbacks architectures are

also referred to as recurrent networks; multilayer feedback are referred to as interactive

networks [15],[16].

2.5.3 Learning Methods

• Supervised:

Supervised training has both inputs and the desired outputs. The output of the

training network for the input is compared against the desired outputs to adjust

weights which control the network. The network is adjusted till the resultant outputs

of the network match the desired network.

• Unsupervised:

In unsupervised training the desired outputs are not provided. The system then on

its own must decide to self organize to group the input data. Unsupervised networks

are referred to as self-organizing or adaptive networks.

8

2.6 Error Back-Propagation Algorithm

The most common method of training a neural network is error back-propagation

algorithm. The main technique of error back-propagation is to gradually adjust the neural

network to produce the correct result for an input. This is accomplished through an iterative

process by which the weights between the various nodes are altered until the network as a

whole performs correctly.

In order to train a neural network to perform some task, the weights of each unit must

be adjusted in such a way that the error between the desired output and the actual output

is reduced. This process requires that the neural network compute the error derivative of

the weights (EW). In other words, it must calculate how the error changes as each weight

is increased or decreased slightly. The back propagation algorithm is the most widely used

method for determining the EW.

The basic steps involved in the algorithm are [15],[16]:

1. Assertion of random weights to the network.

2. An input is applied to the network and the results for all nodes are obtained.

3. The errors for each node are calculated by comparing the desired result with obtained

result(starting from the last node and propagating the error backward).

4. The weights of each node are updated based on the error calculated.

5. The steps 1 to 4 are repeated until the desired output is gotten.

2.7 Advantages of Neural Network

A neural network can be assumed to be as expert in the category of information that

it has been trained. The neural network has the ability to interpret meaningful information

from imprecise data, interpret patterns and trends which are very hard and too complex

to be done by other computing techniques. The following are the important features of

artificial neural networks [15],[16].

9

• Parallel Processing:

The parallel processing capability of neural networks allows it to solve problems where

multiple constraints have to be met, which is very much similar to the real biological

nervous system.

• Self-Organization:

A neural network has the ability to self organize while learning. The self-organization

helps in the visualization of low dimensional view of high dimensional data.

• Graceful Degradation:

An important feature of neural network is that partial removal of components only

causes corresponding degradation in the accuracy of output rather than the failure of

the system.

• Continuous Adaptivity:

The neural network has the capability to learn from the sample space of the input

vectors.

2.8 Limitations of Neural Network

Neural network is the not the perfect solution of every problem. Neural network can

only be considered as the expert only in the category of information it has been trained and

tasked. Neural networks are limited by problems like the following:

• Accuracy: Neural network is not an hundred percent accurate system. The accuracy

of neural network depends on the amount of training and the size of the network.

Systems which require 100 percent accuracy cannot depend on neural networks.

• Black Box:

Akin to the nervous system the neural network system is like a black box. The system

learns based on training and experience but cannot justify the decision.

10

• Training:

The amount of training needed by neural network is an obstacle, but this problem

has been overcome with the vast amount of data available in the digital world.

Neural network is more of art rather than science, but an art whose results can be

observed and measured.

2.9 Conclusion

The computing world has a lot to gain from neural networks. The ability of neural

networks to learn by example makes them very flexible and powerful. The self-learning and

self-tuning capabilities makes it ideal for industrial application. Furthermore there is no

need to write an algorithm in order to perform a particular task; i.e. there is no need to

understand the internal mechanisms of that task. They are also very well suited for real

time systems because of their fast response and computational times which are due to their

parallel architecture.

Neural networks also contribute to other areas of research such as neurology and psy-

chology. They are regularly used to model parts of living organisms and to investigate the

internal mechanisms of the brain.

Perhaps the most exciting aspect of neural networks is the possibility that some day

conscious networks might be produced. There is a number of scientists arguing that con-

sciousness is a mechanical property and that conscious neural networks are a realistic pos-

sibility.

11

Figure 2.1: A neuron with n inputs, weights and threshold value

12

Chapter 3

Fuzzy Logic

3.1 Introduction

”Fuzzy logic is basically a multi-valued logic that allows intermediate values to be

defined between conventional evaluations like yes/no, true/false, black/white, etc. Notions

like rather warm or pretty cold can be formulated mathematically and processed by comput-

ers.” - Bauer et al. Fuzzy logic provides a means of calculating intermediate values between

absolute true and absolute false with resulting values ranging between 0 and 1. With fuzzy

logic, it is possible to calculate the degree to which an item is a member [13],[14],[17].

3.2 Historical Background

The concept of Fuzzy logic was introduced by Professor Zadeh at the University of

California at Berkeley in the 1960’s. His goal was to develop a model that could more closely

describe the natural language process. Fuzzy logic can be compared to the human decision

making process. Conventional or classic logic is more of boolean conditions (true/false).

Fuzzy logic is a superset of boolean logic, having its own similarities and differences with

boolean algebra [13],[14],[17].

3.3 Fuzzy System

The structure of a Fuzzy system consists of:

• Rule base: selects the set of fuzzy rules

• Database: defines the membership functions used in the fuzzy rules

13

• Reasoning mechanism: performs the inference procedure (derive a conclusion from

facts and rules)

3.4 Membership Function

The membership function represents the degree of truth as an extension of valuation.

The degree of truth is often confused with probabilities. Probability is the likelihood that

something is true. Fuzzy logic is the degree to which something is true (or within a mem-

bership set)

Figure 3.1: Membership Function

The three major types of membership functions are gaussian, triangular and trape-

zoidal.

The basic rules of membership functions are

• Each point of the input should at least belong to one membership function.

• The sum of two overlapping membership function should not exceed 1.

• The accuracy of the fuzzy system can be raised by increasing the number of member-

ship functions, but this affects the stability of the control system.

14

3.5 Mamdani and TSK Fuzzy Controllers

The most important application of fuzzy logic is the fuzzy control system which directly

uses the fuzzy theory. The Mamdani fuzzy controller originally used three steps to create a

fuzzy controlled system.

1. Fuzzification: The process of using membership functions to graphically describe a

situation

2. Rule evaluation: The process of applying the fuzzy rules to fuzzified inputs.

3. Defuzzification: The process of obtaining the crisp or actual results.

The Madmani fuzzy controller consists of the following block shown in fig 3.3,

Figure 3.2: Fuzzy System

Figure 3.3: Block Diagram Mamdani Fuzzy Controller

15

A membership function specifies the effect of the particular variable on the final output.

The block diagram of a typical fuzzy system as proposed by Takagi-Sugeno-Kang (TSK) is

shown in Fig 3.4.

The analog inputs are converted to a set of n fuzzy values by the fuzzifier block.

This process of mapping a single value into an n dimensional space is called fuzzification.

Fuzzification is done by using membership functions; n membership functions are required

to map to n dimensional space. Each analog input belongs to at least one and preferably

two membership functions (overlapping).

Figure 3.4: TSK Fuzzy Controller

The accuracy of the system can be increased by increasing the number of membership

functions. But, very dense functions can lead to frequent controller action (also known as

hunting) and sometimes may lead to instability. The fuzzified values are processed by fuzzy

logic blocks which implement MIN and MAX operations. MIN and MAX operations are

analogous to AND and OR operations in Boolean logic. Boolean logic can be considered as

a subset of fuzzy logic since fuzzy logic is applicable for all the values from 0 to 1, unlike

Boolean logic which operates on 0 or 1 only. TSK architecture does not require a MAX

operator. The MAX operator is replaced by a weighted average which is applied directly to

the values of MIN operation [13],[14],[17].

16

3.6 Advantages of Fuzzy Logic

• Fuzzy logic mimics human decision making to handle vague concepts.

• Computation is faster due to intrinsic parallel processing nature.

• Fuzzy logic has the ability to deal with imprecise information [13],[14],[17].

• Modeling of complex, non-linear problems.

• Fuzzy logic is popular in engineering because of its ability to deal with real-world,

ambiguous problems. Fuzzy logic is mathematical oriented, but also at the same time

emphasizes ambiguity and uncertainty. The main popularity is due to its practicality,

not because of its mathematical rigor. It was developed to address practical problems,

and the math came later. Fuzzy was developed in an atmosphere of application

[13],[14],[17].

• Fuzzy logic does not preclude the idea of absolutes - after all, membership functions

can be equal to 0 or 1. Fuzzy rather adds to the idea of absolutes more levels of

belonging [13],[14],[17].

• Fuzzy logic uses membership functions and rules to approximate any continuous func-

tion to a precision of any degree.

• Fuzzy logic simplifies design complexity by using experience and knowledge in simple

linguistic like rules. The input - output relations are not modeled by complex math

equations and can be even used by non-experts [13],[14],[17].

3.7 Limitations of Fuzzy Logic

• Highly abstract and heuristic.

• Need experts for rule discovery (data relationships).

• lack of self-organizing and self-tuning mechanisms of neural network [13],[14],[17].

17

• The most important drawback of fuzzy logic is that it’s not always accurate. The

results are perceived as guesses, so the results cannot be as widely trusted as that of

classical logic.

• Fuzzy logic is often confused with probability theory, and the terms are used in-

terchangeably. While they are similar concepts, they do not say the same things.

Probability is the likelihood that something is true. Fuzzy logic is the degree to which

something is true [13],[14],[17].

• The traditional low respectability of the fuzzy logic is the biggest problem. Though

fuzzy logic is the superset of all logic, it’s not been widely accepted as classical logic

because of the lack of precision.

3.8 Conclusion

Fuzzy logic is an alternative design methodology for control system which is simpler

and faster. Fuzzy logic reduces the complexity of the design for control system and reduces

the design time. The tuning of the control system is done by adjusting the membership

function rather than redesigning the control system. Fuzzy logic is a better solution to the

non-linear control system because it has better control performance than linear, peiceise

linear and lookup table techniques.

18

Chapter 4

Proposed Neuro-Fuzzy Model

4.1 Introduction

Control systems for nonlinear system [1],[18] still remains a challenge in modern control

theory, when compared to control system for linear systems. An adaptive nonlinear system

that has nonlinear characteristics which change with time is better managed by methods of

computational intelligence such as neural network and fuzzy systems. Fuzzy systems utilize

expert knowledge and perception based information in the form of a set of rules. The

dynamics of a system is generally complicated, but sometimes its behavior can be defined

more conveniently using linguistic terms in which case fuzzy logic is the best option to model

the system. Moreover, fuzzy systems are easy to design and implement in hardware. But,

the major drawback of fuzzy controllers is that the control surfaces obtained from these

systems are rough, which can cause unstable operation [18].

Fuzzy set system theory was introduced by Zadeh [9]. The fact that a decision (output)

might depend on several factors (variables) is implemented using membership functions.

A membership function specifies the effect of the particular variable on the final output.

The block diagram of a typical fuzzy system as proposed by Takagi-Sugeno-Kang (TSK) is

shown in Fig 3.4.

The analog inputs are converted to a set of n fuzzy values by the fuzzifier block.

This process of mapping a single value into an n dimensional space is called fuzzification.

Fuzzification is done by using membership functions; n membership functions are required

to map to n dimensional space. Each analog input belongs to at least one and preferably

two membership functions (overlapping) [18].

19

Figure 4.1: Required Control Surface

20

Figure 4.2: Control Surface Using Triangular TSK Fuzzy system

21

Figure 4.3: Control Surface Using Guassian Memberhsip TSK Fuzzy system

22

The accuracy of the system can be increased by increasing the number of membership

functions. But, very dense functions can lead to frequent controller action (also known as

hunting) and sometimes may lead to instability.

The fuzzified values are processed by fuzzy logic blocks which implement MIN and

MAX operations. MIN and MAX operations are analogous to AND and OR operations in

Boolean logic [18]. Boolean logic can be considered as a subset of fuzzy logic since fuzzy

logic is applicable for all the values from 0 to 1, unlike Boolean logic which operates on

0 or 1 only. TSK architecture does not require a MAX operator. The MAX operator is

replaced by a weighted average which is applied directly to the values of MIN operation. Fig

4.1 depicts a required control surface, Fig 4.2, 4.3 gives a control surface from traditional

triangular and Gaussian membership function [18].

4.2 Limitations of FPGA Implementaion

The TSK defuzzification architecture is not suitable for FPGA implementation because

it requires normalization, which is very computational intensive. Mamdani architecture is

also not suitable because its gives a very rough control surface and the architecture requires

division in defuzzification which makes it a tough task to implement [18].

4.3 Neuro-Fuzzy Model

The proposed neuro-fuzzy architecture consists of two blocks. The first block does the

fuzzification and is implemented using a neural network. The second block which does the

processing of fuzzified values and defuzzification is done through a LUT based sinusoidal

approximation algorithm, which makes a FPGA or microcontroller implementation a simple

and easy task [18].

23

Figure 4.4: Piecewise Linear

4.4 Neural Fuzzification Using Monotonic Functions

The control surface obtained using the triangular, trapezoidal and Gaussian member-

ship functions are not smooth and accurate. And moreover, these membership functions are

difficult to be modeled and trained in a neural network. So, a neuro-fuzzy model with mono-

tonic membership functions is proposed and used in this work which is easier to implement

in a neural network [18].

Three monotonic membership functions are used in this model. One of them is a

exponential sigmoid function Fig 4.5. and is given by the formula:

f(net) = 1/(1 + exp(−net)) (2)

The other two monotonic functions are piecewise linear Fig 4.4. and parabolic sigmoid

Function Fig 4.6.

The reasons for choosing monotonic functions are:

• A sigmoid with a exponential function is the characteristic transfer function of bipolar

differential transistor pair.

• A MOS differential transistor has similar characteristics as first half of Fig 4.6.

24

Figure 4.5: Exponential Sigmoid

Figure 4.6: Parabolic

25

• A piecewise linear function could be easily generated in a microcontroller and DSP

chips.

Hence a single neuron could be could be easily modeled in hardware using these mono-

tonic functions. Now membership functions can be constructed by mirror imaging the

sigmoid monotonic functions as shown in Fig 4.8. The membership function is gotten by

subtracting two functions F1 and F2 , where F1 and F2 are two sigmoid monotonic functions

[18].

The membership functions are constructed from these basic functions. This member-

ship function can be implemented using two neurons. One of the neurons output gives the

first half of the membership function and the negated output of the second neuron imple-

ments the second half of the function. Extending this idea a set of neurons is trained to

give the required number of sigmoid membership functions. The output of a trained neural

network for a sample application is shown in 4.9.

Figure 4.7: A Membership Function Implemented Using Exponential Functions F1 and F2

All the neurons use unipolar activation function and if designed properly any fuzzy

system can be easily modeled. It can be observed that there was no training process

required for this architecture. If training is allowed the network architecture is significantly

simplified. LM (Lavenberg-Marquardt) [6] is used in this work to train the network. This

algorithm is implemented in MATLAB. Cross layer weights have been introduced to make

26

Figure 4.8: A Membership Function Implemented Using Exponential Functions F1 and F2

Figure 4.9: Exponential Sigmoid Membership Functions

27

the feed forward network [6] more accurate. Thus the above idea shows, how a fuzzifier

block can be implemented through neural network by consciously choosing the membership

functions [18].

4.5 Conclusion

Thus the limitation of implemnting a fuzzy control system identifed can be succesfully

negotiated by using a neural network to implement a fuzzy system by consciously choosing

the membership Function.

28

Chapter 5

LUT Based Nonlinear Mapping

5.1 Introduction

Using the established methods for defuzzification results in rougher control surface

also hardware implementation of defuzzification by a neural network is very expensive and

requires more processing capability. Micro controllers like Motorola HC 11 which is 8-bit

processor is incapable of doing such processing. These limitations warrant the use of a LUT

based solution for high precision and cost effective control system [18].

Figure 5.1: Defuzzification Block

5.2 Defuzzification with Trignometric Approximation Algorithm

A LUT based model which is suitable for FPGA implementation is shown in Fig 5.1.

The inputs to the system are the digital values of the fuzzified values from the first neural

fuzzification block. The digital values are obtained using an analog to digital (A/D) con-

verters in the FPGA. In this approach, the model consists of a ROM and address of which

29

is determined by the 3 most significant bits of the fuzzified values. Weighted average is

done using the values stored in the LUT [18].

This method results in higher precision and smoother control surface. However the

major disadvantage is if the number of input is increased the size of LUT increases expo-

nentially. To handle this problem the size of LUT is kept constant and least significant bits

are used for finer calculation, but essentially the size of LUT is kept constant. In this model

we use a (4,4) LUT for the simulation.

The advantage of this method is the efficient usage of a very small lookup table (LUT),

which minimizes the hardware requirement; hence, easier implementation and also the error

produced by this approach is very minimal resulting in a very smooth control surface [18].

The values from the LUT are defuzzified by a second order sinusoidal approximation

algorithm which is better than the Second order defuzzification algorithm (SODA) [12][13].

The algorithm is explained by Fig 5.2. The single space approximation is a linear approx-

imation; the double space approximation needs the value of ’y’ from the LUT, but gives

higher resolution output. The single space sinusoidal approximation is the one which this

thesis deals with. The value of ’y’ is found by fixing a sine curve.

Figure 5.2: Defuzzification with Sinusoidal Approximation

Consider the equation

30

Figure 5.3: Illustration of Approximation Algorithm

y(x) = ax+ b+ csin(π∆x/x) (3)

Considering 4 points

separated by x1, x2, x3 and x4 distance x. Suppose x is a point between x2 and x3 at

a distance ∆x from x2 .The corresponding Y values are y1, y2, y3 and y4 which are gotten

respectively from the LUT

At x2 and x3 the value of sine is zero

y(x2) = ax2 + b (4)

y(x3) = ax3 + b (5)

Solving equation (4) and equation (3) gives ′a′ and ′b′

The first derivative is

δy/δx = a+ ccos(π∆x/x) (6)

31

At x2 and x3 the value of cos is +1 and -1 respectively

Therefore,

y,(x2) = a− c (7)

y,(x3) = a+ c (8)

Equation(8) - equation(7) gives:

y,(x3)− y,(x2) = 2c (9)

The slopes are determined by

Slope of y at x2

y31 = y3 − y1/2x (10)

Slope of y at x3

y42 = y4 − y2/2x (11)

Slope of y at x

y32 = y3 − y2/x (12)

Substituting equation (10) and equation (11) in equation (9)

c = 0.25(y4 + y1 − y2 − y3) (13)

The second derivative

32

∆y1 = y31 − y32/2 (14)

∆y2 = y42 − y32/2 (15)

Substituting equation(13), equation (14), equation (15) in equation(3)

y(x) = y2 + (y3 − y2)∆x+ sin(π∆x/x)∆y1 + sin(π∆x/x)∆y2 (16)

The first two terms of equation (16) gives the linear approximated value. These sin

values are also retrieved from the LUT.

5.3 Application of Algorithm to 1-Dimension Problem

To compare the performance of the new algorithm with SODA, consider the equation:

y(x) = xsin(x) (17)

Linear approximation is applied and the result is shown in Fig 5.4. Results obtained

by the new algorithm are depicted in Fig 5.6.and Fig 5.7. Error pattern observed by the

new algorithm is shown in Fig 5.8. The total error is less than the total error of SODA by

25

The difference between the single space approximation and the double space approxima-

tion is that the double space algoritm uses a (4,4) LUT while the single space approximation

uses a (8,8) LUT.

33

Figure 5.4: Double Space Linear Approximation

5.4 Extension of Algorithm to 2-Dimension and more

The same approach is extended for the 2-dimensional problem. 4 values from the LUT

are required to find the linear approximation shown in Fig 5.9.

The algorithm is extended to 2-dimension by solving both x-axis and y-axis. The Fig

5.10 depicts the approximation is done along the four direction and the average is found.

12 adjacent points are required to find the value of ′y′. In the same manner, the algorithm

could also be extended to more than 2-dimension problems [18].

34

Figure 5.5: Single Space Linear Approximation

Figure 5.6: Double Space Sine Approximation

35

Figure 5.7: Single Space Sine Approximation

Figure 5.8: Error Observed Using LUT Algorithm in 1-D

36

Figure 5.9: Application of Algoritm to 2-Dimensional Problem

Figure 5.10: Application of Algoritm to 2-Dimensional Problem

37

Chapter 6

Simulation Results

In this section the performance of the proposed membership functions are compared

with traditional triangular and gaussian membership functions. Fig 6.1 shows the given data

points from which the control surface has to be constructed. Fig 6.2- Fig 6.5 shows the

control surfaces constructed using various methods. The TSK with the parabolic monotonic

functions has better control surface Fig 6.2. It can be observed that the exponential Fig

6.3 gives an even more smoother control surface when compared to triangular, Gaussian,

piecewise linear and parabolic membership functions.

Fig. 6.5 shows the control surface constructed using trigonometric approximation al-

gorithm. This algorithm produces a surface which is very close to the expected one and

demonstrated to be better than all the other membership functions [18].

Figure 6.1: A plot of the Stored data in LUT

38

Figure 6.2: parabolic with Traditonal TSK Fuzzy system

Figure 6.3: Exponential with Traditional TSK Fuzzy system

39

Figure 6.4: Nonlinear Mapping Using Single Space Linear Approximation

Figure 6.5: Nonlinear Mapping Using Sinusoidal Approximation

40

Figure 6.6: Error plot of Nonlinear Mapping Using Sinusoidal Approximation

41

Chapter 7

Conclusion

In this thesis a simple yet accurate implementation of a neuro-fuzzy system was pro-

posed. Sigmoid membership functions were used in fuzzy logic so that they could be im-

plemented using neural networks. A LUT (Lookup Table) algorithm was introduced to

implement it in the FPGA. This LUT algorithm in itself can be used to model a non-linear

control surface with sufficient accuracy. It was demonstrated using MATLAB simulations

that the proposed neuro-fuzzy model produces accurate and smooth control surfaces avoid-

ing the instability problem in fuzzy systems

42

Bibliography

[1] Shouling H. Relf, K. Unbehauen, R, Neural approach for control of nonlinear systems
with feedback linearization Neural Networks, IEEE Transactions on On page(s): 1409-
1421, Volume: 9, Issue: 6, Nov 1998

[2] Deutsch, S. and Deutsch, A., Understanding the NerwusSjmem: An Engineering Per-
spective, IEEE Press, Piscataway, NJ, 1993.

[3] Zurada, J., Intrudiiction to Artifkid Naira1 Systems, West Publishing Company, 1992.

[4] Wilamowski, B. M. Jaeger, R. C. and Kaynak, M. 0., ”NewFuzzy Architecture for
CMOS Implementation” IEEE Trun,sucrion on 1,xfuWial Electrunia, vol. 46, No. 6,
pp. 1132-1136, Dec. 1999.

[5] Wilamowski, B. M. Chen, Y.,”Efficient Algorithm for Training Neural Networks with
one Hidden Layer”, in IJCNN. Proc. 1999 International Joint Conference Vol. 3,
page(s): 1725-1728. Discovery,” Decision Support Systems J., vol. 35, no. 1, pp. 129-
147, 2003.

[6] Tan H. Sandige, R. and Wilamowski, B. M., ”Hardware implementation of PLD based
fuzzy logic controllers using Look-up table technique”, proc ANNIE ’94, Nov -1994,
vol. 4, pp.89-94.

[7] Tikk, D. and Baranyi, P., ”Comprehensive Analysis of a New Fuzzy Rule Interpolation
Method IEEE Transaction on Fuzzy System, vol. 8, no.3 page(s). 281-296, JUNE 2000
281.

[8] Zadeh, L. A, Fuzzy sets. Information and control, New York, Academic Press vol 8,
pp. 338-353, 1965.

[9] Takagi, T. and Sugeno, S, Derivation of Fuzzy Control Rules from Human Operator’s
Control Action . Proc. of the IFAC Symp. On Fuzzy Info Knowledg Representation
and Decision Analysis, pp. 55-60, July 1989.

[10] Ying, H, ” General SISO Takagi-Sugeno Fuzzy Systems with Linear Rule Conse-
quent are Universal Approximators”, IEEE Transaction on Fuzzy System, vol.6, no.4,
Page(s):582-587 November.

[11] Dharia, Gownipalli, N. Kaynak, J. Wilamowski, B.M., Fuzzy controller with second or-
der defuzzification algorithm., in IJCNN ’02. Proc. 2002 International Joint Conference
Vol. 3, page(s): 2327-2332.

43

[12] Dharia, Gownipalli, N. Wilamowski B.M, Kaynak O.Multi dimensional second order
defuzzification algorithm (M-SODA), IECON ’02, Industrial Electronics Society, Nov.
2002,Vol. 4, page(s): 3215- 3220.

[13] http://www.doc.ic.ac.uk/ nd/surprise96/journal/vol4/sbaa/report.html

[14] http://www.makhfi.com/tutorial/introduction.htm

[15] http://www.doc.ic.ac.uk/ nd/surprise96/journal/vol4/cs11/report.html

[16] http://www.zaptron.com/literature/neurofuzzy.htm

[17] http://www.aptronix.com/fide/whyfuzzy.htm

[18] Govindasamy, K. Neeli, S. Wilamowski, B.M. Fuzzy System with Increased Accuracy
Suitable for FPGA implementaion, proc. 2008 IEEE, Intelligent Engineering Systems
Confenrce (INES), 25-29 Feb, page(s): 133-138

[19] Neeli, S. Govindasamy, K. Wilamowski, B.M. Malinowski, A., Automated Data Mining
from Web Servers Using Perl Script, proc. 2008 IEEE, Intelligent Engineering Systems
Confenrce (INES), 25-29 Feb, page(s):191 - 196

44

Appendices

45

Appendix A

Matlab Code

A.1 1-Dimensional LUT algorithm

clc;
clear all;
total=1200;
t=40;
figure(1);clf;
for i=1:total
p(i)=i-1;
x(i)=(pi*p(i))/180;
y(i)=(i/1000)*sin(x(i));
end
plot(p,y);
figure(2);
stem(p,y);
for i=1:t:total
a(i)=p(i);
b(i)=y(i);
end
figure(3);
stem(a,b);
for i=1:total-t
c(i)=p(i);
modx=mod(i-1,t);
if (modx==0)
d(i)=b(i);
else
y1=b(i-modx);
temp=i+(t-modx);
y2=b(temp);
d(i)=y1+((y2-y1)*(1/t)*modx);
end
end
hold on;
figure(4);
plot(c,d,’g’);

46

for i=1:t
j1(i)=i-1;
temp1=(i-1)*(180/t);
k1(i)=sin(pi*temp1/180);
end
figure(5);
stem(j1,k1);
for i=1:total-(2*t)
c1(i)=p(i);
modx=mod(i-1,t);
if i¡=t
if (modx==0)
d1(i)=b(i);
else
y1=b(i-modx);
temp=i+(t-modx);
y2=b(temp);
d1(i)=y1+((y2-y1)*(1/t)*modx);
end
else
if (modx==0)
d1(i)=b(i);
else
y1=b(i-(modx+t));
y2=b(i-modx);
temp=i+(t-modx);
y3=b(temp);
y4=b(temp+t);
y11=(y3-y1)/(2*t);
y21=(y3-y2)/t;
y31=(y4-y2)/(2*t);
dely=(((y11-y21)/2)-((y31-y21)/2));
dely1=(dely*k1(modx));
dely2=((((y11-y21)/2)+((y31-y21)/2))/2)*k1(modx);
d1(i)=y2+((y3-y2)*(1/t)*modx)+((t/4)+4)*dely1+dely2;
end
end
end
plot(c1,d1,’r’);
for i=1:total-(2*t)
d2(i)=y(i)-d1(i);
d3(i)=y(i)-d(i);
end
figure(7);
plot(c1,d2);

47

figure(8);
plot(c1,d3);

A.2 2-Dimensional LUT algorithm

clc;
clear all;
[j,k] = meshgrid(-3:.1:3);
l = j.2 + k.2;
figure(1);clf;
mesh(j,k,l);
xlabel(’x’);
ylabel(’y’);
zlabel(’z=x2 + y2′);
total1=320;
t=40;
v=0;
for i=1:total1
x(i)=i-total1/2;
for j=1:total1
y(j)=j-total1/2;
z(i,j) = x(i).2 − y(j).2;
end
end
figure(1);clf;
mesh(x,y,z);
clc; clear all;
for i=1:20:500
a(i)=i-250;
for j=1:20:500
b(j)=j-250;
c(i,j) = a(i).2 + b(j).2;
end
end
figure(3);clf;
mesh(a,b,c);
for i=1:t:total1
a(i)=x(i);
v=v+1;
for j=1:t:total1
b(j)=y(j);
c(i,j) = z(i,j);
end
end
figure(2);clf;mesh(a,b,c);

48

for i=1:t
j1(i)=i-1;
temp1=(i-1)*(180/t);
k1(i)=sin(pi*temp1/180);
end
for i=1:t
j1(i)=i-1;
temp1=(i-1)*(180/t);
k2(i)=sin(2*pi*temp1/180);
end
figure(3);clf;
plot(j1,k1);
for i=1:(total1-(2*t))
d1(i)=x(i);
for j=1:(total1-(2*t))
e1(j)=y(j);
if i¡=t — j¡=t
flag=0;
modx=mod(i-1,t);
mody=mod(j-1,t);
if (modx =0)—(mody =0)
a1=c(i-modx,j-mody);
a2=c(i+(t-modx),j-mody);
a3=c(i-modx,j+(t-mody));
a4=c(i+(t-modx),j+(t-mody));
k=(1/t)*modx;
l=(1/t)*mody;
flag=1;
end
if flag==1
f1(i,j)=a1*(1-k)*(1-l) + a3*(l)*(1-k) + a4*(k)*(l) +a2*(k)*(1-l);
else
f1(i,j)=c(i,j);
end
else
flag=0;
modx=mod(i-1,t);
mody=mod(j-1,t);
if (modx =0)—(mody =0)
a1=c(i-modx,j-mody);
a2=c(i+(t-modx),j-mody);
a3=c(i-modx,j+(t-mody));
a4=c(i+(t-modx),j+(t-mody));
k=(1/t)*modx;
l=(1/t)*mody;

49

a11=c(i-modx-t,j-mody);
a12=c(i-modx,j-mody-t);
a21=c(i+(t-modx),j-mody-t);
a22=c(i+(t-modx)+t,j-mody);
a31=c(i-modx-t,j+(t-mody));
a32=c(i-modx,j+(t-mody)+t);
a41=c(i+(t-modx),j+(t-mody)+t);
a42=c(i+(t-modx)+t,j+(t-mody));
slop11=(a2-a11)/(2*t);
slop21=(a22-a1)/(2*t);
slop31=(a4-a31)/(2*t);
slop41=(a42-a3)/(2*t);
slop12=(a3-a12)/(2*t);
slop22=(a32-a1)/(2*t);
slop32=(a4-a21)/(2*t);
slop42=(a41-a2)/(2*t);
mslop12=(a2-a1)/t;
mslop34=(a4-a3)/t;
mslop13=(a3-a1)/t;
mslop24=(a4-a2)/t;
dely1=(((slop11-mslop12)/2)-((slop21-mslop12)/2))*k1(modx+1);
dely2=(((slop31-mslop34)/2)-((slop41-mslop34)/2))*k1(modx+1);
delz1=(((slop12-mslop13)/2)-((slop22-mslop13)/2))*k1(mody+1);
delz2=(((slop32-mslop24)/2)-((slop42-mslop24)/2))*k1(mody+1);
dely11=(((slop11-mslop12)/2)+((slop21-mslop12)/2))*k2(modx+1);
dely21=(((slop31-mslop34)/2)+((slop41-mslop34)/2))*k2(modx+1);
delz11=(((slop12-mslop13)/2)+((slop22-mslop13)/2))*k2(mody+1);
delz21=(((slop32-mslop24)/2)+((slop42-mslop24)/2))*k2(mody+1);
flag=1;
end
if flag==1
y1=a1+((a2-a1)*(1/t)*modx)+(t/4)*dely1;
y2=a3+((a4-a3)*(1/t)*modx)+(t/4)*dely2;
z1=a1+((a3-a1)*(1/t)*mody)+(t/4)*delz1;
z2=a2+((a4-a2)*(1/t)*mody)+(t/4)*delz2;
f1(i,j)=(y1+y2+z1+z2)/4;
avg1=(dely1+dely2+delz1+delz2)/4;
avg2=(dely11+dely21+delz11+delz21)/4;
f1(i,j)=(a1*(1-k)*(1-l) + a3*(l)*(1-k) + a4*(k)*(l) +a2*(k)*(1-l))+(((t/4)+10)*avg1);
else
f1(i,j)=c(i,j);
end
end
end
end

50

figure(4); clf;
mesh(d1,e1,f1);
error calculation...
for i=1:total1-2*t
for j=1:total1-2*t
err(i,j)=f1(i,j)-z(i,j);
end
end
figure(5);clf;
mesh(d1,e1,err);

51

