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Physical security systems are designed to prevent access to a facility by intruders, 

detect the presence of intruders, or facilitate the capture of intruders once they are 

detected. These systems generally include a combination of physical barriers, human 

guards, and sensor-based detection systems such as video surveillance systems. Because 

of the complex interactions between guard, intruder, and neutral entities as well as the 

interactions between these entities and the environment, analysis of these systems is very 

difficult and is often limited to static "line of sight" and "field of view" models designed 

to help with camera placement. Existing simulation-based analysis methodologies include 

only crude and often hard-coded implementations of human behaviors for the guard, 

intruders, and neutrals. This limits the analysis capabilities of these systems. In response,
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this research develops a computational framework that supports realistic computer 

characters (or agents) that can operate within physical security system simulations. The 

outputs of these simulations can then be used to analyze the effectiveness of the tested 

physical security system configurations and to design more effective physical security 

systems. 

The proposed computational framework is comprised of three components: a 

spatial model, a temporal model, and a representation of the application domain. As the 

spatial model, a conceptual data model named Hierarchical Graph Representation for 

Scenes (HIGHRES) is developed to formally represent the static features of the 

environment in a simulation-friendly structure. A Behavior-Intuition Framework for 

Realistic Agents (ABIRA) is devised as a temporal model to realistically model the 

decision making activities of the agents. A retail store security system is selected as the 

sample application domain to demonstrate the capabilities of the proposed framework 

and furthermore, to validate the behavior emerging from the proposed computational 

models. The primary contribution of this work is twofold: a generic, extensible 

computational framework to emulate realistic human decision making and the integrated 

physical security systems simulation framework. This integrated simulation framework is 

capable of conducting simulation experiments to analyze the effectiveness of different 

physical security configurations that are comprised of both the physical security measures 

themselves and the security policies that manage them. 
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1 INTRODUCTION 

Humans started to use physical security to protect their valuables from threats beginning 

from earlier ages. They have built fences to protect their crops from wild animals and 

erected scarecrows to scare away birds as primitive forms of physical security. Later on, 

watchtowers were constructed to keep areas under surveillance, walls were used to 

prevent trespassing, and locks were designed to prevent unauthorized access. While more 

and more technologically advanced physical security mechanisms have been introduced 

over the years, the main principle of applying physical security mechanisms in layers is 

still commonplace.  

Protection of critical national infrastructure has often been taken for granted by 

countries despite its importance. Until recently, it had been unthinkable for anyone to 

purposely destroy power-plants or to contaminate water supplies (Lewis, 2006). 

However, the developments happening on the ever-changing world made way for the 

unthinkable to happen. On different parts of the world, there have recently been attacks 

against the different types of infrastructure such as sabotaged oil pipes or bombed 

subway stations. These incidents underlined the necessity for protecting the critical
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infrastructure. The U.S. Presidential Decision Directive of 1998 defines critical 

infrastructure as follows1: 

“Critical infrastructures are those physical and cyber-based systems essential to 

the minimum operations of the economy and the government. They include, but are not 

limited to, telecommunications, energy, banking, and finance, transportation, water 

systems and emergency services, both governmental and private.” 

The 2003 U.S. National Strategy document further discusses the issues related 

with security of critical infrastructure within the homeland security concept2. This 

document recommends developing protection standards, guidelines, and protocols across 

sectors and jurisdictions and it promotes the exchange of critical infrastructure and key 

asset protection best practices and vulnerability assessment methodologies. It is also 

stated that potential options for incentives should be explored to encourage public and 

private sector entities to devise solutions to their unique protection impediments, which 

can be facilitated by conducting demonstration projects and pilot programs. 

Lewis (2006) states that the vastness and the complexity of the critical 

infrastructure make the protection of everything almost impossible. Based on this fact, 

the general approach to critical infrastructure protection has involved representing the 

critical infrastructure as a network (Barabasi, 2002) and then to identify the critical nodes 

and links in this network as the candidates for allocating funds to increase security. It is 

important to assess the vulnerabilities of different components of the network in order to 

employ analytical techniques such as model-based vulnerability analysis, fault-tree 
 

1 www.fas.org/irp/offdocs/pdd/pdd-63.htm 
2 http://www.whitehouse.gov/news/releases/2003/02/20030214-7.html 
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analysis, event tree analysis etc. that are used to analyze the vulnerability of the whole 

network (Lewis, 2006). Outcomes of this analysis can then be used to determine the best 

allocation of resources to the nodes of the network. The network based approach in 

protection of physical critical infrastructure is very similar to computer network 

vulnerability analysis and this approach is widely used in the vulnerability analysis of 

critical physical infrastructure such as ports, water supply systems, telecommunication 

networks etc. as well as in the analysis of terrorist organizations and networks (Amin, 

2002; Lambert and Sarda, 2005). Even though this global approach provides guidelines to 

determine the critical components (nodes) on the whole sector network, there is still a 

critical need for methods to assist the reduction of vulnerabilities at the component (node) 

level. 

Typical components in the sector networks include fixed-site facilities such as 

airports, water treatment plants, dams, power plants, government facilities, etc. Physical 

protective systems are built at the critical fixed-site facilities to reduce the vulnerability 

of these critical structures. Game theoretic models (Heal and Kunreuther, 2005), 

optimization techniques (Candalino et al., 2004), and other analytical techniques can be 

used in the design of the physical protective systems. These techniques require models to 

evaluate the effectiveness of the security measures of concern against the vulnerabilities 

to which the systems are subject. However, these systems are complex and it is difficult 

to analytically capture the interactions between the entities of importance. A similar 

perspective is emphasized in 2003 U.S. National Strategy and the use of descriptive 

methodologies (namely modeling and simulation) is promoted for solving some of the 

problems in this area.  
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The overall goal for this research is assessing the vulnerabilities of fixed site 

facilities against both external and internal threats. Physical security systems are the main 

tools to achieve security at these facilities and it is crucial to evaluate the effectiveness 

and robustness of these systems against possible threat scenarios. Complex interactions 

between entities are inherent in these systems since security measures and threats 

compete with each other to achieve their individual goals: to protect the facility and to 

cause harm to the facility, respectively. Analytical modeling techniques appear to be 

difficult to use in this type of analysis, due to the complexity of these systems. 

Furthermore, as discussed in Section 2.2, some of the assumptions for human rationality 

made by classical decision theories do not hold for real life problems. Real life situations 

are complicated; the environments are uncertain and dynamic, problems are ill structured, 

there is not ample time to perform decision making activities, and multiple players exist. 

Therefore, simulation as a descriptive tool looks like a good candidate to perform this 

analysis. 

In this research, modeling and simulation are used to design and analyze the 

physical security systems, protocols, and policies that aim to protect fixed-site facilities 

against intrusions by external threats, as well as unauthorized acts by insiders. However, 

the current understanding of physical security systems shows that realistic and credible 

simulations of such systems require incorporation of complex human behavior models. 

Therefore, it is also necessary to address human behavior representation issues for 

physical security simulations in fixed site facilities.  
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Human behavior models have long interested the researchers from several 

academic disciplines. Researchers in artificial intelligence are interested in development 

of computational models of machines or humans and they mainly focus on modeling the 

problem solving skills of humans. Philosophers and cognitive psychologists are interested 

in the relation between mind and action whereas decision theorists have worked on 

mathematical models of uncertainty, risk, and utility. These models provide methods to 

determine the optimal of the competing alternatives. Psychologists have approached the 

human behavior domain from the perspective of tendencies and customs humans 

demonstrate in different settings of real life situations and they have analyzed how these 

tendencies are affected by the environment.   

Simulation models developed for this analysis are used to investigate the system 

performance in settings which resemble real life situations. This necessitates modeling 

the behavior of human entities (or agents) close to their real life behavior. In real life 

settings, humans can make mistakes, they can make awkward decisions, and they can 

come up with courses of action that are different from courses of action generated with 

extensive analysis. These tendencies are often exacerbated in the presence of stress. The 

assumption is that models of the human reasoning process should incorporate the 

shortcomings and fallacies of human reasoning as well as with its ability to generate 

quick solutions that are “good enough”. This assumption is crucial to correctly and 

completely analyze physical security systems. 

Realistic and credible simulations of physical security systems require 

incorporation of human behavior models that involve situation awareness, cooperative 
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team behavior, planning, and deliberative decision making processes of entities. Two 

interacting subsystems need to be designed in order to achieve the desired capabilities in 

human behavior representation (Kuehne et al., 2005; Brantingham, 2005). The first 

subsystem is the computational representation of the environment in which simulation 

entities operate and the computational models to represent the spatial interactions of 

entities with the environment. The second subsystem encapsulates the temporal aspects of 

the human representation including capabilities to generate possible courses of action and 

to reason about them in order to create realistic behavior. This research addresses both of 

these subsystems.  

Human behavior models are extensively used in computer applications such as 

computer games. As discussed in Section 2.1, the human behavior models developed for 

computer games and other computer applications assume certain conditions, some of 

which conflict with the purposes of this research, and these models require specific 

knowledge of the domain. Unfortunately, there are no human behavioral models 

identified so far for physical security systems to protect critical infrastructures. Moreover, 

there is not much available data on the security of critical infrastructures and most of the 

existing data is classified. The lack of scenarios, models and behavioral data for critical 

infrastructure security systems and limitations in accessing the available information 

require looking at other fields to validate the developed human behavior models. One 

area of particular interest is criminology, which is the scientific study of crime as an 

individual and social phenomenon3. General knowledge in this domain is publicly 

available and various theories on the motivations and behavior of offenders both from 
 

3 http://en.wikipedia.org/wiki/Criminology 
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psychological and sociological perspectives have been developed (Cornish and Clarke, 

1986; Bratingham, 1984). Computational criminology is one of the emerging fields in 

this domain. The general arguments of Brantingham et al. (2005) overlap with the general 

research directions in the physical security systems simulation. It is stated that: 

“Due to the increasing complexity and dynamics and the intricate nature 

of the underlying sociological systems, empirical deduction is not 

sufficient any more: mathematical and computational models are needed 

for reasoning about most likely scenarios.” 

The crime of shoplifting is an interesting subdivision in crime studies and 

countermeasures against shoplifting mainly include physical security systems (Clarke, 

2003). Shoplifting is a major problem for the retail industry and annual loss of U.S. retail 

stores due to shoplifting is estimated to be $10.5 billion (Hollinger and Langton, 2004). 

What makes shoplifting interesting is that the interaction between the offenders and the 

security measures show significant resemblance to the general physical security structure 

presented by Smith et al. (1999) for the protection of fixed-site facilities. In a typical 

shoplifting scenario, offenders try to take merchandise from retail stores and to leave the 

store without getting caught by any of the security measures present in the store. Security 

measures used in retail stores are also similar to the security measures used in protecting 

the critical infrastructures such as guards, surveillance cameras, and sensors (e.g. 

electronic article surveillance). Field studies conducted in retail stores provide valuable 

information on the methods employed by shoplifters along with different classifications 

for shoplifting offenders (Dabney et al., 2004; Ray, 1987; Moore, 1984).  
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The retail store security problem is selected as a sample problem to introduce the 

proposed model since the problem has relatively easy to understand entity interactions. 

This would allow mainly focusing on the conceptual development of a human behavior 

model, which can later be used to analyze different environments. The hypothesis here is 

that if a simulation-based problem solving environment and associated decision support 

tools that assist the general facility and security system design problems can be 

developed, they can be validated to a certain extent using the retail industry’s shoplifting 

problem as a test bed.  

The main objectives of this research are first to develop computational models of 

human behavior that can be incorporated in general physical security systems simulation 

models and then to demonstrate that these simulation models can be used to analyze the 

effectiveness of different configurations of physical security systems. The first objective 

requires understanding the human behavior at a certain abstraction level. In general 

terms, computational human behavior models need to encapsulate both the temporal 

aspects of the human decision making process and the perceptions from the environment 

on which the entities operate. Therefore, computational representations of the 

environment and the interactions between the entities and the environment are integral to 

this research. Two conceptual models are developed in this dissertation to fulfill these 

requirements. First, a computational data model named Hierarchical Graph 

Representation for Scenes (HIGHRES) is developed to formally represent the 

environment. Second, a temporal conceptual model named A Behavior-Intuition 

Framework for Realistic Agents is developed as a model of decision making for agents in 

realistic environments. These models are tested and validated using the shoplifting 
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problem in the retail industry as a sample application domain. Furthermore, retail store 

security domain is used to demonstrate capabilities of the developed conceptual models 

in the analysis of physical security system configurations. 

Background on this research is presented in Chapter 2. Chapter 3 introduces the 

research done. Chapter 4 presents the details of this research and Chapter 5 discusses the 

validation of the models and the results for the sample application. 
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2 BACKGROUND 

This section provides the background for the research conducted. It starts with the 

discussion of various human behavior models used in computer applications and their 

significance for the interests of this research. The next section introduces the perspective 

of various academic fields such as philosophy, cognitive psychology, artificial 

intelligence and economics on human rationality and human reasoning mechanisms. 

Based on these perspectives, agent architectures that are designed to computationally 

model human behaviors are identified in Section 2.3. A literature survey on shoplifting in 

retail industry is provided to construct the domain knowledge on the sample problem in 

Section 2.4. Finally, a summary of the state of the art is presented to conclude the section. 

2.1 Human Behavior Models in Related Computer Applications 

There are two primary uses of simulation technology in vulnerability analysis of fixed 

site facilities: (i) to predict the consequences of possible threats, and (ii) to assess the 

vulnerability of fixed-site facilities to specific threats. 

Consequences of possible threats can be estimated by using simulation 

technology. Visual Interactive Site Analysis Code (VISAC) developed at Oak Ridge 

National Laboratories is an example application to predict and analyze the outcomes of 
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accidents/incidents at various nuclear and industrial facilities4. Another example is the 

MELCOR software developed at Sandia National Laboratories that models the 

progression of accidents in light water reactor nuclear power plants5. Network oriented 

abstract representations of the facility and possible threats can also be used in simulations 

to estimate the success probabilities of threats (Jones et al., 2005). These models are 

capable of analyzing the consequences of several incidents at different abstraction levels 

but they do not interactively capture the effects of counter measures and hence they do 

not include representative human behavior models.  

As stated in a recent National Science Foundation report, “Modeling and 

simulation technology can allow the decision makers to predict not only the 

consequences of threats but also the effects of counter measures” (Oden et al., 2006). 

This capability can be achieved in simulations by modeling the interactions between the 

threats and security measures. Discrete-event simulation has been proposed as an 

alternative to assess the vulnerability of fixed-site facilities by exploring the responses of 

a given physical protection system under various threat scenarios at a moderate cost 

(Jordan et al., 1998; Smith et al., 1999). The general system structure described by Smith 

et al. (1999) defines intruders and guards as simulation entities for physical security 

discrete-event simulation. Intruder entities move through the facility in order to reach or 

acquire a specified target and guard entities try to detect and possibly intercept the 

intruder entities in order to prevent them from achieving their goals. These models 

provide a limited level of interaction between the simulation entities. However, entities in 

 
4 http://visac.ornl.gov 
5 http://melcor.sandia.gov 

http://visac.ornl.gov/
http://melcor.sandia.gov/
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these models do not possess any cognitive capabilities. Instead, entities follow 

predetermined routes and act according to predetermined rules of behavior. Certain 

events such as unauthorized access, combat etc. follow probability distributions and this 

structure provides the randomness in these models.  

Discrete-event simulation for manufacturing systems design and operation is a 

well-established field with a vast number of applications (Smith, 2003). The 

aforementioned discrete-event models for physical security systems demonstrate 

modeling approaches similar to the ones that are seen in manufacturing system simulation 

models. Stochastic events are the main tool to represent the uncertainties in the 

environment and simulation entities acting in the system have very little or no decision 

making capabilities. This is a reasonable approach for manufacturing systems where the 

main simulation entities are the parts being manufactured as parts naturally do not have 

any cognitive capabilities including decision making, except for some basic rules such as 

selecting the shorter queue. However, humans are the main entities in physical security 

simulations and humans interact with each other and with the environment in real life 

situations. Certain cognitive capabilities are required to effectively model the decisions 

and the responses of human entities in physical security systems simulations. Modeling 

approaches that incorporate predetermined action plans ignore the fact that humans can 

deliberate based on their perception of the environment. These deliberations may result in 

the adoption of actions that are more suitable under current conditions towards sought 

goals. This factor has a vital importance in physical security systems since interaction 

with other entities and also with the environment can have significant effects on the 

courses of action of humans in real life situations.  
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Models of human behavior are extensively used in computer games. Game 

developers are primarily interested in generating non-player characters (NPCs) that are 

capable of integrating a wide range of functionalities including sensing the environment, 

reasoning about its spatial layout, planning and executing actions, as well as 

communicating and coordinating with other NPCs or players (Diller et al., 2004). Most of 

the computer games for sale today use finite state machines to enumerate possible actions 

or states for computer controlled characters (Bourg and Seeman, 2004) and actions of 

these characters are generated by scripts that scan all the predetermined rules in order to 

move between different states, developed at significant expense by game programmers 

(Lucas and Kendall, 2006). NPC models in games use rule-based applications of different 

techniques that can be found in the artificial intelligence literature such as perception, 

memory and knowledge representations, learning, and communication in addition to the 

models that control spatial movements.  

Even though these requirements match well with the requirements of human 

behavior models being considered in this research, there is one definite drawback: the 

gaming industry’s objective is to increase the realism perceived by the users, not the 

actual realism in NPCs (Diller et al., 2004). It is a common practice in games to employ 

“cheating”, to collect information on human opponents without actually perceiving them 

in the gaming environment (Bourg and Seeman, 2004). This information can then be used 

by the programming tricks that are employed by NPCs in order to increase the perceived 

realism and the perceived intelligence (Schaeffer et al., 2008).  
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There are some signs of emerging trends in the gaming industry to create NPCs 

that are more “real”, with psychologically valid behavior models, which are more 

adaptive to new situations, less predictable, and more variable (Diller et al., 2004). 

However, these models in computer games are yet to be implemented in the majority of 

computer games (Schaeffer et al., 2008). Some gaming industry experts state that what 

users want is predictable game play and hence it is unnecessary to go after realistic NPCs. 

On the other hand, there are other experts and researchers, who believe that human 

behavior models with cognitive capabilities and more human-like intelligence with goal-

directed reasoning techniques can make games more varied and more enjoyable (Lucas 

and Kendall, 2006).  

Similar to the objectives of this research, the main challenge for computer games 

is to make the NPCs act realistically in addition to looking good and moving naturally. 

That is, they need to plan their actions, find their way around virtual worlds, and learn 

from their mistakes; they need to be smart (Schaeffer et al., 2008). Laird and van Lent 

(2001) reports developing a real time expert system –named SOAR QUAKEBOT- on 

SOAR architecture that has multiple goals an extensive tactics and knowledge of the 

game to act as a NPC in the computer game QUAKE II. As it stated by Laird and van 

Lent (2001): 

“While the SOAR QUAKEBOT explores a level, it creates an internal model of 

its world and uses this model in its tactics to collect nearby weapons and health, 

and set ambushes. It also tries to anticipate the actions of human players by 

putting itself in their shoes (creating an internal model of their situation garnered 
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from its perception of the player) and projecting what it would do if it were the 

human player.” 

Another interesting application is the A.I. of the game F.E.A.R. (First Encounter 

Assault Recon). The designers of F.E.A.R. gave its NPCs different goals such as 

patrolling, killing the player’s character, and taking cover to protect their lives. 

Furthermore, each NPC has a set of possible actions associated with the accomplishment 

of each of its goals. Different NPCs can seek different goals or use different actions 

during the game and the combination of the actions of the NPCs creates a perception that 

looks intelligent that was not explicitly programmed into the game at all6. The advantage 

of this approach is that it saves the developers the burden trying to specify a response to 

every situation that might arise (Schaeffer et al., 2008). 

As stated earlier, the emphasis in computer game AI is on the illusion of 

humanlike behavior for limited situations. However, projections on game AI points 

toward more and more realistic modeling of human characters (Laird and van Lent 2001) 

and there is an increased interest in academic community to make research in this area 

(Spronck 2005; Bryant 2006; Vannakakis 2005; Togelius 2007). 

Military simulations comprise another area in which human behavior models are 

extensively used for both combat modeling and training purposes. Pew and Mavor (1998) 

collected approaches and architectures that are of concern in military simulation 

applications. Several areas of interest including situation awareness, planning, memory, 

learning, and behavior moderators along with the available architectures to model 

 
6 http://web.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf 
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individual combatant are discussed in this work. Furthermore, the authors suggest that 

collection of human performance data and creation of accreditation procedures are vital 

for models of human behavior. Sokolowski’s Ph.D. work (2003), where he models the 

decision process of a Joint Task Force Commander, and crowd behavior models 

developed at Virginia Modeling, Analysis & Simulation Center (Petty et al., 2004) rely 

heavily on the observations made in real-world settings and the experiences of real world 

officers. For example, the cognitive model development for crowd behavior is supported 

by surveys applied to active soldiers and by extensive analyses made on the video 

footages of incidents in 1993 at Mogadishu, Somali, which is known as “Black Hawk 

Down”, and in the 1999 Seattle World Trade Organization Protest. Sokolowski also 

validated his model with the help of an active Joint Task Force Commander.  

Another interesting example in military applications is a simulation system to 

model few on few air combat named Brawler. As documented by Marsh (2004), Brawler 

models a pilot as a fully-functional decision-making entity and targets to create realistic 

behavior for simulated pilots. An interesting feature of Brawler as discussed by Marsh 

(2004) is that each pilot has its own mental status array that contains its perceived state of 

the system and this perceived state is not always perfect such that the simulated may be 

unaware of some aircraft or missiles until it perceives them in the simulation. 

There is also a software tool named EXODUS that is developed to analyze 

building and safety designs in fire evacuations. The EXODUS uses observations from 

real-life situations to create realistic people-people, people-fire, and people-structure 
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interactions and the modeled interactions are validated using the observations in real fire 

evacuations7.  

2.2 Human Behavior and Decision Making: A Philosophical Discussion 

2.2.1 Rationality in Human Decision Making 

The explanation of cognitive abilities or capacities is a central goal of contemporary 

science (Cummins, 1983). Among the many cognitive capacities of interest, the ability to 

describe people’s behavior in intentional terms (e.g. belief and desire) is of specific 

interest for researchers from several disciplines (Stich and Nichols, 1995). Philosophers 

and cognitive psychologists are interested in the relation between mind and action, 

decision theorists have worked on mathematical models of uncertainty, risk, and utility, 

and researchers in artificial intelligence are interested in development of computational 

models that mimic human behavior. Research made in this area helped to explore the 

methodologies used by humans in decision making as well as to better understand the 

limitations in this process. One of the main points that differentiates the researches made 

in different fields is their approach to the question: What is required to call an action 

performed by a human “rational”?  

Discussion on reasonableness or rationality of human decisions can be tracked 

back to the 17th century and it is not a coincidence that probability theory emerged around 

that time. The first definition for reasonableness was to choose the alternative that 

maximizes expected value from the letters on gambling exchanged between Blaise Pascal 

and Pierre Fermat (Hacking, 1975). In the 18th century, Daniel Bernoulli proposed to 

 
7 http://fseg.gre.ac.uk/exodus/index.html 
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change the definition from maximizing expected value to maximizing expected utility, 

which incorporates the psychological fact that money has diminishing returns. Several 

new definitions of expectation such as median or geometric mean as well as the issue of 

variability in the 19th century put a hold on the discussions of reasonableness since 

mathematicians decided that it is not possible to come up with a one mathematical 

definition for reasonableness (Gigerenzer and Selten, 2001). 

After World War II, research on economical systems picked up along with 

changes in the global economic conjuncture. The book named “Theory of Games and 

Economic Behavior” written by von Neumann and Morgenstern in 1944 is accepted as 

the restarting point for research on rationality. von Neumann and Morgenstern discussed 

human choice and utility such that a person’s choices can be modeled as always favoring 

the alternative with the highest expected utility. This book also triggered research in 

psychology where researchers started to conduct empirical tests to see if people actually 

behaved in the manner prescribed by the expected utility theory (Goldstein and Hogarth, 

1997). The second book that had a huge influence in this domain was “The Foundations 

of Statistics” by Leonard J. Savage in 1954. Savage stated that a person’s choices can be 

modeled as always favoring the alternative with the highest subjective expected utility 

dependent on some constraints. This opened a new door for psychological researchers 

since this enlarged the scope from monetary gambles to arbitrary decisions (Goldstein 

and Hogarth, 1997). Utility and subjective utility are still the cornerstones of decision 

theory taught in universities and techniques such as decision trees or optimization are 

applied to economical domain using these theories. 
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Utility and subjective utility along with a few other metrics such as addition of 

utilities, addition of utility differences, elimination by aspects, dominance, number of 

superior features, single feature superiority are used when comparing different possible 

alternatives for a certain task. These aspects can be collected under the general heading 

“rational choice theory”. The Wikipedia definition of rational choice theory8 is: 

“Rational choice theory is a way of looking at deliberations between a 

number of potential courses of action, in which ‘rationality’ of one form or 

another is used either to decide which course of action would be the best 

to take, or to predict which course of action actually will be taken.” 

In this definition, rationality means that according to one of the measures stated 

above, one alternative is superior to others and hence it is the rational choice. Rational 

choice theory holds that individuals must anticipate the outcomes of alternative courses 

of action and calculate that which will be best for them. Rational individuals choose the 

alternative that is likely to give them greatest satisfaction (Scott, 2000). This is perhaps 

the most common way to define human rationality. 

However, several psychological studies reported that humans do not always 

behave as dictated by rational choice theory. Initial discussions for one of the two 

important trends of objections to description of human rationality by rational choice 

theory is made by Ward Edwards (1962) and he concluded that human thought, although 

fundamentally probabilistic, did not exactly follow the rules of probability theory. This 

conclusion is later supported by findings of Amos Tversky – a student of Edwards- and 

 
8 http://en.wikipedia.org/wiki/Rational_Choice 
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Daniel Kahneman who conducted inspiring empirical research on human judgment 

(Goldstein and Hogarth, 1997). The second important trend of objections has been stated 

by Herbert Simon (Simon, 1956). He underlined the cognitive limitations of humans and 

first coined the term “bounded rationality”. Simon discussed that humans make decisions 

by incorporating certain thresholds (aspiration levels) that determine the acceptable 

outcomes and when a “satisficing” action is found, no further exploration is performed. 

Amos Tversky and Daniel Kahneman have contributed to rationality discussions 

probably more than any other previous researchers. Empirical studies performed by 

Tversky and Kahneman formally introduced heuristics and biases that affect human 

judgment under uncertainty. They have described three heuristics that are employed by 

humans to assess probabilities and to predict values (Tversky and Kahneman, 1974) and 

another heuristic for constructing courses of action (Kahneman and Tversky, 1982). The 

first heuristic they have mentioned is the “representativeness heuristic”, which basically 

states that if event A is highly representative of event B, the probability that event A 

originates from event B is judged to be high. The “availability heuristic” is related with 

memory such that perceived probability of an event is assessed by the easiness to bring 

instances or occurrences of this event to mind. The “anchor heuristic” explains how 

humans make estimates starting from an initial point and then adjust the estimates to 

reach a final answer. According to Kahneman and Tversky, two classes of mental 

operations can be used when bringing things to mind. The first operation is recall, which 

is the retrieval of instances, and the second operation is construction, which is the 

construction of examples or scenarios. The “simulation heuristic” is a process for mental 

construction of scenarios and it briefly explains how humans mentally simulate actions to 
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come up with a reasonable course of action. It is important to recall that a simulation does 

not necessarily produce a single story. It is rather used to assess different possible 

outcomes and measures the propensities of one’s model to generate various outcomes 

given the initial conditions and operation strategies. Tversky and Kahneman later 

developed the “prospect theory”, which is inspired from their discussions on 

aforementioned heuristics. The prospect theory aims to fulfill the shortcomings of 

subjective expected utility theory for choices under risk. The prospect theory uses two 

functions –value and weight- and an overall value of an edited prospect is expressed in 

terms of scales of subjective value of outcomes and decision weights. This reflects the 

impact of probability of outcome on the overall value of the prospect. A subjective value 

is defined relative to a reference point and hence it is a measure of the value of deviations 

from the reference point. Kahneman and Tversky hypothesize that a subjective value 

function for changes of wealth is often concave above the reference point and often 

convex below it, as depicted in Figure 1. Decision weights as stated by Kahneman and 

Tversky are not perceived likelihood (or probabilities) of events, Instead, they measure 

the impact of events on the desirability of prospects.  

Herbert Simon argues that there are departures in human behavior from the 

prescription of subjective expected utility theory even in simple choice situations and that 

the principal reason for this is (Simon, 1978): 

“... that human beings have neither the facts nor the consistent structure of 

values nor the reasoning power at their disposal that would be required, 



 

even in these relatively simple situations, to apply subjective expected 

utility theory principles.” 

Losses Gains

Value

Reference Point

 

Figure 1 A Typical Value Function (Tversky and Kahneman, 1986) 

Simon further discusses that a behavioral alternative to subjective expected utility 

theory is required to better model human behavior. He points out that even though human 

brainwork is sequential in nature, it can change its focus and attention as necessities 

emerge. This change of attention is essentially different than handling different objectives 

in utility theory, where concern for different objectives stays until a viable alternative is 

found. Humans can change attention and sometimes earlier considerations can be totally 

forgotten. Each time an objective is considered, there is a need for a mechanism that is 

capable for generating alternatives and another mechanism to acquire facts from the 

environment and a modest capability to draw inferences from facts. Intuitions are 
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significant while generating alternatives and emotions play a major role while selecting 

objectives to consider and while choosing actions to satisfy the objectives. Furthermore, 

Simon states that humans do not exhaustively look for the best possible course of action, 

rather they try to find a “satisficing” action and implement it. This is the general 

framework that he has delineated as a mechanism for bounded rationality. 

Arguments made by Simon, Tversky and Kahneman were significant and 

provided answers to the deviations in human behavior from what subjective expected 

utility theory dictates. Moreover, these are major remarks on why it is not possible for 

humans to have perfect rationality, which is to come up with a course of action that 

maximizes its expected utility given the information acquired from the environment at 

each instant, even if they have infinite processing capabilities. A behavior can be judged 

rational only within the frame it takes place, where the frame consists of goals, 

definitions of the situation, and computational resources (Tversky and Kahneman, 1986) 

and this is very similar to the description of bounded rationality by Simon. 

Even though these views, which have arisen between the late 50s and the early 

80s, are significant criticisms against rational choice theory, Elster (1990) sees them as 

supplements to rational choice theory. He states that the psychological theories of Simon, 

Tversky and Kahneman along with regret theory (Loomes and Sugden, 1982) and 

generalized expected utility theory (Machina, 1983) attempt to explain the observed 

violations of expected utility theory instead of providing a totally new alternative. 

Similarly, Gigerenzer and Selten (2001) state that the deviations from rational choice 

theory are mistakenly named as fallacies of human reasoning. Their argument is that 
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rational choice theory does not reflect the structure and representation of information in 

the environment and hence it is not possible to name the deviations from what rational 

choice theory prescribes as irrational. 

The major distinction here is what is chosen to be investigated for the rationality 

assumption. Rational choice theory models accept choice as rational if the outcome is 

rational (Zey, 1992) and they are extensively knowledge focused. They classify all 

behavior that does not produce a rational outcome as irrational. This might make sense 

for problems with limited scope (e.g. in financial domain), however, it is hard to explain 

or prescribe human behavior in other domains where problems lack formal objectives 

such as maximizing profit. However, the deviations from prescriptive models in observed 

human behavior do not necessarily mean that rational choice theories are completely 

wrong; rather, they are incomplete (Yates, 2001). 

In other social sciences such as psychology and philosophy, the conceptualization 

of decision making is rational because of the process it employs (Zey, 1992). The 

emphasis in these fields is on the process by which decisions are made: rational choices 

are achieved by reasoning and contrasted with choices arrived at by emotion, faith, 

authority, or arbitrarily (Brown, 1995). This approach accepts that the outcomes of 

descriptive models that mimic human reasoning process are also rational even if they 

conflict with the outcomes of prescriptive models. Kacelnik (2006) explains the 

difference between the definitions of rationality in different fields by the fact that 

researchers guided by differing goals in various disciplines have reached different 

workable definitions of rationality, which have within-field consensus. Based on this 
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observation, Kacelnik subsumes the meanings of rationality into three categories: 

rationality in economics (E-rationality), rationality in Philosophy and Psychology (PP-

rationality), and rationality in evolutionary biology (B-rationality).  

E-rationality is a conception of rationality that focuses on outcomes in the sense 

of maximizing of some function that is called “subjective expected utility” rather than the 

processes that produce them. According to this conception, only the behavior that 

maximizes subjective expected utility is rational and the selection of maximizing 

behavior alternative is restricted only by formal requirements of consistency between 

preferences. As discussed earlier in this section, there are several objections to this 

conception and there are several studies that show that human behavior is not always E-

rational. Nevertheless, E-rationality is an important conception that allows the 

comparison of observable behavior and patterns of action based on a solid mathematical 

base. Furthermore, subjective expected utility is infinitely flexible and it is not tied to 

environments with any particular structure and it can be regarded as broadly predictive of 

human behavior (Hurley and Nudds, 2006). 

PP rationality requires that beliefs or actions be based on reasoning according to 

Kacelnik’s subsumption. PP-rationality focuses on the process by which the action or 

belief is arrived at, in contrast to E-rationality. The assumption here is that beliefs or 

actions produced in appropriate ways should produce appropriate outcomes (Kacelnik, 

2006). PP-rationality uses concepts from cognitive psychology and philosophy such as 

belief, thought, intention, reasoning etc. and a behavior is judged to be rational if it is 

resultant from a reasoning process that is caused by intentions and beliefs. In this sense, 
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behaviors or actions that fail to bring about their intended outcomes for such reasons are 

not irrational in the conception of PP-rationality. Therefore, an individual can be rational 

in either PP-rationality or E-rationality while being “irrational” in the other.  

The final category of Kacelnik’s subsumption is B-rationality. B-rationality is 

similar to E-rationality since it tries to maximize the inclusive fitness of alleles or 

individuals that carry these alleles, where the inclusive fitness of an allele is defined as 

the degree of success (growth as a proportion of the population) of individuals carrying 

the allele. However, B-rationality is not as flexible as E-rationality since it constrains 

what is to be maximized. Even though B-rationality is very specific to evolutionary 

biology, concepts of B-rationality are used in computational intelligence applications to 

generate actions that maximize certain functions.  

One addition to the subsumption of Kacelnik can be “Ecological Rationality”, 

which is discussed by Gigerenzer and Todd (1999). Gigerenzer is one of the main critics 

of rational choice theory or “subjective expected utility”. He states that rational behavior 

is environmentally situated and the heuristics adapted to environments produce behavior 

with better consequences than reliance on more sophisticated and flexible but costly 

domain-general decision making processes. According to Gigerenzer and Todd (1999), 

the structure of specific environments and the information contained in specific 

environmental processes are highly coupled with the processes that generate rational 

behavior. This coupling is important in the evolution of domain specific heuristics 

generating rational behavior. 
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Hurley and Nudds (2006) specify two distinctive features for rationality. The first 

distinctive feature is that rationality requires some degree of ability to generalize from 

one context to another and it seems to involve recognition of abstract similarities or 

patterns. In other words, as Hurley and Nudds state: 

“The ability to generalize involves ‘decentring’ from me-here-now, and 

entertaining alternative possibilities: taking into account the past, future or 

counterfactual possibilities, other places, different possible actions, and 

other creatures’ perspectives.” 

The second distinctive feature is the capacity to make mistakes or to recognize the 

fact that one can make mistakes. This implies that even in descriptive theories of 

rationality, there is a need for a normative aspect; possible outcomes of an action need to 

be assessed. This is normativity in a weak sense and it is necessary to avoid the case that 

anything an individual might do could count as rational.  

Based on the above discussion, it is possible to define an action as rational if the 

individual believes that taking the action will contribute to achieving a goal that a person 

has. Two elements need to be underlined in this definition. First, success is not 

guaranteed and it is possible that the individual can make mistakes. Second, if the action 

does not contribute to the goal regarding the beliefs of the individual at the time, it can 

not be considered rational. Subsequently, the individual should be concerned with finding 

the best means to a given end or goal, which in turn has a logical relation with the 

individual’s beliefs. This is similar to Bratman’s definition (1987), which is formally 

named as the intention-action principle: 
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“If it is rational of S to have a present-directed intention to A, and S 

successfully executes this intention and thereby intentionally A’s, then it is 

rational of S to A.” 

The process of finding the best means to a given end or goal is investigated in the 

next section with introducing different descriptive models of human reasoning.  

2.2.2 Human Reasoning 

When one with an operations research background is faced with a decision making 

problem, the tendency is to develop a formal mathematical model of the problem that 

would allow reaching all possible solution alternatives. The action following the 

development of mathematical model is to try to find the optimal solution using one of the 

techniques found in operations research literature. If a mathematical model is not 

available, the tendency is to generate alternatives and compare them until the expected 

marginal cost of generating an alternative is more than the expected marginal benefit of 

generating the next alternative. Furthermore, the general assumption is that human 

reasoning works in a similar way. Bayth-Marom et al. (1991) states that: 

“… According to the most general normative model, a person facing a 

decision should (a) list relevant action alternatives, (b) identify possible 

consequences of those actions, (c) assess the probability of each 

consequence occurring (if each action were undertaken), (d) establish the 

relative importance (value or utility) of each consequence, and (e) 

integrate these values and probabilities to identify the most attractive cost 



 

29 

of action, following a defensive decision rule. People who do so 

effectively are said to behave optimally.”  

The statements of Bayth-Marom et al. roughly define the general boundaries of 

classical reasoning techniques found in the literature. Classical reasoning depends on 

normative processes of reasoning such as carrying out explicit probabilistic, logical, or 

decision theoretic inferences in order to reach decisions and judgments (Hurley and 

Nudds, 2006). Classical reasoning is prescriptive and it can be aimed at solving a 

problem, making a decision, planning a course of action, or arriving at a judgment or 

prediction. For example, prescriptive techniques of classical reasoning such as decision 

trees are exemplified by expected utility or subjective expected utility in economics. In 

this context, “rational choice” is the alternative that maximizes the individual’s subjective 

expected utility from a range of alternatives. 

Tversky and Kahneman (1974) conducted research on the cases where human 

decision makers make decisions differently than what classical decision making process 

dictates. They argue that the use of heuristics in cases where there is uncertainty is the 

reason for this deviation since employment of heuristics creates biases in human 

judgment. The heuristics that Tversky and Kahneman define, such as representativeness, 

availability, and adjustment and anchoring heuristics, affect the evaluation of alternative 

courses of action. One can add the “affect heuristic” (Slovic, 2002) to the main list of 

heuristics that bias human judgment. The affect heuristic states that emotional responses 

to external stimuli might alter the human’s judgment and these emotional responses can 

dictate the decision. There are also other psychological heuristics defined in the literature 
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and all of them are used to explain the cognitive biases in human decision making 

process for complex problems, uncertain situations and incomplete information9 . The 

main argument here is that deviations from decisions that are labeled as “rational” by 

classical theories of reasoning can be explained by heuristics and biases. It is important to 

underline the fact that decisions are still considered “irrational” in this discussion if they 

are different than what classical decision theory dictates. However, emotions, faith, and 

social norms can also play a role in the decision making process (Kacelnik, 2006) and 

they can lead to the cases, where “rationality” in classical decision theory is 

systematically violated. 

There have been other objections to the idea that people actually employ 

optimization techniques in their decision making processes. One of the stronger 

objections came from a group of researchers led by Gigerenzer (Gigerenzer and Selten, 

2001). Their main argument is that too many assumptions have to be made in order to 

achieve the necessary conditions for optimization (Klein, 2001). These assumptions are 

mainly required to define a static search space, which is required to be able to thoroughly 

compare the options with each other. Gigerenzer and Selten’s approach is based on the 

argument that people use heuristic methods while making decisions. Their claim is that, 

to the contrary of arguments made by Tversky and Kahneman, employment of heuristic 

methods in decision making can create accurate judgments rather than producing 

cognitive biases. Limitations of the human mind such as limited processing power or 

limited memory can be overcome by the cognitive capabilities of humans according to 

these arguments. They propose that humans use fast and frugal heuristics in decision 
 

9 http://en.wikipedia.org/wiki/Heuristics 

http://en.wikipedia.org/wiki/Heuristics
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making and the success of these heuristics is dependent on their adaptation to the 

structure of the environment.  

One of the most common examples used in describing the power of fast and 

frugal heuristics is the “gaze heuristic”. An example where this heuristic employed is that 

if a human is asked to catch a ball, he or she doesn’t perform complex mathematical 

calculations or solve a system of differential equations to estimate the point where the 

ball will land (Gigerenzer and Selten, 2001). Instead, he or she will keep the angle 

between the eye and the ball constant and will catch the ball while still running. 

Furthermore, they claim that the gaze heuristic performs better than any optimization 

procedure that tries to estimate the landing point of the ball since environmental 

conditions such as wind might not be stable and changes in these conditions results in 

recalculation of the ball’s landing point. Several fast and frugal heuristics are discussed 

such as ignorance based heuristics or take-the-best heuristics, which are sharing 

adaptation to the environment in common for success (Gigerenzer and Todd, 1999). It 

has been reported in several studies that fast and frugal heuristics give better results than 

optimization techniques in real world settings (Czerlinski et al., 1999).  

The use of heuristics is a viable option in modeling and understanding human 

decision processes as demonstrated in the above discussion and by different field studies. 

However, discussion of the term “optimization” by some cognitive psychologists might 

be a little bit misleading since there are different heuristics that are proven to generate 

optimal solutions for certain problems. Furthermore, management science often employs 

heuristic algorithms to generate provably good or optimal solutions for problems where 
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“optimality” is hard to prove. In fields like computer science or management science, 

heuristics are used as a methodology to solve optimization problems and as such, the 

terms “optimization” and “heuristic” are not mutually exclusive.  

The artificial intelligence community also has a natural interest in modeling the 

human decision making process. Earlier studies in artificial intelligence focus on the 

problem solving skills of humans and these skills are modeled using extensive formal 

logic models that are generally applied to toy problems such as the famous prey-predator 

problem or to games such as chess where the search space is relatively well-structured 

(Russell and Norvig, 1995). However, the complexity of real life problems required a 

different approach in modeling the human reasoning process. In general, the artificial 

intelligence community assumes three stages in the human reasoning process. The first 

stage is situation awareness, which is described by Endsley (1997) as: 

“Situation awareness is the perception of elements in the environment 

within a volume of time and space, the comprehension of their meaning, 

and the projection of their status in the near future” 

This is followed by coming up with a sequence of actions that will hopefully 

achieve a goal. This stage is known as the planning stage. Finally, a decision should be 

made on whether or not to implement the plan that has been constructed. This general 

reasoning scheme is supported by formal knowledge representation, learning, perception 

and learning mechanisms. 

One comprehensive model that encapsulates the intuition and reasoning in the 

human decision making process is the two-system view that is described by Stanovich 
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and West (2000). Human behavior scientists agree upon the characteristics that 

distinguish the two types of cognitive processes (Kahneman, 2002), which are labeled as 

System 1 and System 2, represented in Figure 2. This model also encapsulates the 

situation awareness, planning and decision making stages from a cognitive psychology 

standpoint.  

The operations of System 1 in the two-system view are fast, automatic, effortless, 

associative, and difficult to control and modify. The operations of System 2 are slower, 

serial, effortful, and deliberately controlled; they are also relatively flexible and 

potentially rule-governed. System 1 is associated with intuition and captures the 

functionality of situation awareness including external stimuli processing and perception. 

On the other hand, System 2 is associated with judgments which are explicit and 

intentional and hence can be thought as the planning stage.  

The two-system view model is based on the observation that complex judgments 

and preferences are called “intuitive” if they come to mind quickly and effortlessly. 

However, judgments and preferences that are normally intuitive can be modified or 

overridden by a deliberate mode of operation (Kahneman, 2002). The labels “System 1” 

and “System 2” refer to these two modes of cognitive operations. In the model presented 

in Figure 2, the perceptual system and the intuitive operations of System 1 generate 

impressions of the attributes of objects of perception and thought. System 2 is involved in 

all judgments and it uses these impressions while making judgments. If the judgments are 

direct reflections of the impressions, they are accepted as intuitive. Otherwise, judgments 

are the results of deliberate reasoning.  



 

The two-system view model suggests four ways in which a judgment or choice 

may be made: 

1. No intuitive response comes to mind, and the judgment is produced by System 

2. 

An intuitive judgment or intention is evoked, and 

2. is endorsed by System 2; 

3. serves as an anchor for adjustments that respond to other features of the 

situation; 

4. is identified as incompatible with a subjectively valid rule, and blocked from 

overt expression. 
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Figure 2. The two-system view (Kahneman, 2002) 
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This model provides a general guideline on how intuitions and judgment interact 

with each other from a cognitive perspective and it delineates the human reasoning 

system with an abstract view.  

Another trend in modeling human reasoning process that emerged in the last 25 

years is Naturalistic Decision Making (NDM). NDM also focuses on the use of cognitive 

abilities of humans in real life situations. NDM researchers stress a number of key 

contextual factors that affect the way real-world decision making occurs, in contrast to 

their counterparts in the traditional decision research paradigm (Zsambok, 1997): 

1. Ill-structured problems (not artificial, well-structured problems) 

2. Uncertain, dynamic environments (not static, simulated situations) 

3. Shifting, ill-defined, or competing goals (not clear and stable goals) 

4. Action/feedback loops (not one-shot decisions) 

5. Time stress (as opposed to ample time for tasks) 

6. High stakes (not situations devoid of true consequences for the decision 

maker) 

7. Multiple players (as opposed to individual decision making) 

8. Organizational goals and norms (as opposed to decision making in vacuum) 

The existence of these contextual factors is the main reason why traditional 

optimization-based decision research fails in real world settings according to NDM 

researchers. NDM also focuses on the cognitive capabilities of humans and stresses the 

importance of experience in real world problems. Klein, who is one of the leading 

researchers in NDM field, uses chess grandmasters as an example to underline the factors 
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that necessitate NDM research. He states that chess grandmasters seek to find the best 

move, but they do not compare options on a common set of decomposed criteria or use 

multi-attribute utility analysis or make probabilistic analyses (Klein, 2001). Grandmasters 

in chess try to see the overall lines of play and they determine a number of moves that 

look promising at the current state of the game using their experience. After that they 

progressively deepen on these moves in order to analyze possible progresses in the game. 

The promising moves are then evaluated based on the strategy of the grandmaster and the 

move that stands out among others is played.  

NDM research specifically emphasizes experience and argues that experience is 

crucial in determining certain courses of action that probably achieve the goals and in 

eliminating the courses of action that are not promising. A formal definition of NDM is 

given by Zsambok (1997) as: 

“The study of NDM asks how experienced people, working as individuals 

or groups in dynamic, uncertain, and often fast-paced environments, 

identify and assess their situation, make decisions and take actions whose 

consequences are meaningful to them and to the larger organization in 

which they operate.”  

It can be said that there are certain situations where an optimization-based 

approach can be used in the decision making process. Examples can be purchase of real 

estate or economical decisions with long term implications. The common points in these 

examples are relatively longer times available to process the information, the relative 

stability of the decision maker’s values, and the well-defined structure of the 
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environment. However, in most real life situations, where there are too many 

uncertainties, competing goals, and limited time for decision making, there are several 

strong arguments for why people rely on their cognitive abilities to come up with initial 

plans and then deliberately search for a course of action to achieve the goals using the 

initial plans as anchor points.  

As stated by NDM researchers, when there are multiple individuals that compete 

or cooperate with each other in the environment, the scope of the reasoning process 

changes. Classical decision theory concerns mainly “individual rationality”: what an 

individual should do in an environment excluding the individuals also acting in the 

environment. (Hurley and Nudds, 2006). However, most real life situations are more 

complex, where the behaviors of individuals affect other individuals and hence behavior 

is interactive. This social context requires the individuals to have social rationality, which 

is to understand that another agent may have goals and expectations different from one’s 

own, and the use of understanding to predict other’s behavior and to manipulate one’s 

own informational structure (Proust, 2006). From this perspective, game theory is a well 

established domain, which studies the decisions made in environments where several 

individuals interact. Generally, games studied in game theory are well-defined. A basic 

equilibrium concept is sought in game theory and this is a conception of E-rationality in a 

social context: one’s action is rational if it is the best reply to what others do, and others’ 

actions are rational if they are the best reply to what one does. Game theory can be used 

as a descriptive tool in predicting human’s behavior by finding the equilibria of the 

games or as a prescriptive tool since the equilibrium of a game constitutes one’s best 



 

38 

                                                

response to the actions of others10. However, the assumption of E-rationality creates the 

major challenge to the possible use of game theory as a model of reasoning. As discussed 

in the previous section, real humans often act “irrationally” regarding E-rationality or 

might act to maximize the benefits of a group of people. One counter-example that is 

against the use of game theory as a prescriptive tool is the Prisoner’s Dilemma in which 

each individual pursuing their self interests leads to an equilibrium where both 

individuals are worse off than had they cooperated11. Furthermore, in certain cases, it is 

better to use non-equilibrium strategies if there are other individuals using non-

equilibrium strategies. 

Several psychologists propose simulation or the “simulation theory” in their 

terminology as another candidate to model the human reasoning process when social 

rationality is a concern (Davies and Stone, 1996). The simulation theory is based on the 

capability of the human brain to simulate in order to predict and understand an action by 

mentally processing its production in one’s own mind. Stich and Nichols (1995) state that 

simulation theory is one of the only two approaches of significance in description and 

prediction of people’s behavior. Simulation theory is based on the fact that human brains 

and thinking processes are similar and hence if one can make adjustments for relevant 

differences such as situation or emotional state then he/she can use his/her mind to 

simulate mental processes of others in order to describe the other’s behavior and 

furthermore predict these behaviors. This procedure is used cooperatively as well as 

 
10 http://en.wikipedia.org/wiki/Game_Theory 
11 http://en.wikipedia.org/wiki/Prisoner's_Dilemma 

http://en.wikipedia.org/wiki/Game_Theory
http://en.wikipedia.org/wiki/Prisoner's_Dilemma
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competitively: bridge players project themselves into their partner’s shoes whereas chess 

players project themselves into their competitor’s shoes. Gordon (1996) states that:  

“One source of motivation for the simulation theory starts from the 

recognition that, whilst the prediction of the behavior of the others may be 

tricky business, the prediction of our own immediate and near immediate 

actions is usually a simple and accurate matter.“ 

According to simulation theorists, using simulated practical reasoning as a 

predictive device is a possibility that comes via the bridge between practical reasoning 

and prediction. Simulating the appropriate practical reasoning would extend our capacity 

for self-prediction in a way that would enable us to predict our own and other’s behavior 

in hypothetical situations.  It is important to underline the fact that putting yourself in 

other’s shoes is to project yourself into other’s situation but not to attempt to project 

yourself into the other’s mind. It is not the same as deciding what I myself would do but 

to try to make adjustments for relevant differences.  

Simulation theory has been supported by the studies of several researchers from 

different fields. Tversky and Kahneman (1982) defined a heuristic named “simulation 

heuristic” based on their observations in laboratory settings. In this heuristic, they 

described how a person might build a simulation to explain how something might 

happen; if the simulation required too many unlikely events, the person would judge that 

thing to be implausible. NDM researchers also have an interest in simulation theory. 

George Klein, who is one of the founders of NDM research states that simulation theory 

or “mental simulation” as he names it, is central to decision making. He observed that 
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people are constructing mental simulations almost the way one builds a machine (Klein 

and Crandall, 1995). Klein (1998) defines mental simulation as: 

“Mental simulation is the ability to imagine people and objects 

consciously and to transform those people and objects through several 

transitions, finally picturing them in a different way than at start.” 

 An approach similar to “mental simulation”, which is named “look-ahead 

simulation”, is also applied in the real-time control and scheduling of flexible 

manufacturing systems. Wu and Wysk (1989) developed a discrete-event 

simulation based scheduling mechanism to evaluate the performance of different 

dispatching rules in a flexible manufacturing cell for a short planning horizon. 

Smith et al. (1994) applied discrete-event simulation for shop floor control for a 

flexible manufacturing system. In this application, discrete-event simulation 

models actually control the flexible manufacturing system rather than only being 

used as an analysis and evaluation rule. This application has an interesting 

resemblance to mental simulation models since it proposes discrete-event 

simulation as a decision making tool in real-time control of the flexible 

manufacturing cells. At specific intervals, real time data is collected for the shop 

floor and a copy of the simulation is initialized using the current physical system 

state. Afterwards the “look-ahead” simulation or the “copy” of the actual 

simulation model is run in order to evaluate the impact of different dispatching 

rules on the system performance. Based on this assessment, a dispatching rule is 
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selected and the actual simulation model continues to control the flexible 

manufacturing cell by generating tasks for the physical equipment in the cell.  

Section 2.2 discussed the views on human rationality and human 

reasoning in different academic fields. In general, two issues are investigated: (1) 

What makes the human behavior “rational”, and (2) How the reasoning process of 

human can be modeled. Section 2.3 discusses several computational agent 

architectures that can be used in modeling human behavior. 

2.3 Agent Architectures 

Modeling human behavior on a computer requires programming constructs that can 

decide for themselves what they need to do in order to satisfy their design objectives. 

Such constructs are generally known as agents and this term is shared by various 

disciplines even though no universally accepted definition has emerged yet. Wooldridge 

and Jennings (1995) define “agent” as: 

“An agent is a computer system that is situated in some environment, and 

that is capable of autonomous action in this environment in order to meet 

its design objectives.”  

Ferber (1999) describes an agent as: 

“A physical or virtual entity, which is capable of acting in an environment, 

which can communicate, which is driven by a set of tendencies, which 

possesses resource of its own, which is capable of perceiving its 
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environment, which has only a partial representation of this environment, 

and which possesses skill.” 

Wooldridge (1999) further distinguishes between agents and 

intelligent/autonomous agents. His definition of intelligent agents focuses on the 

flexibility in the autonomy of the agent’s actions and flexibility means three things: 

• Reactivity. Intelligent agents are able to perceive their environment, and 

respond in a timely manner to the changes in the environment with respect to 

their design objectives. 

• Pro-activeness: Intelligent agents are able to exhibit goal directed behavior by 

taking the initiative in order to satisfy their design objectives. 

• Social ability. Intelligent agents are capable of interacting with other agents in 

order to satisfy their design objectives. 

There are several other conceptualizations of agency in various disciplines. 

Leaving the conceptual discussion on agency to other researchers, computational 

representations of humans and their behavior will be referred to as “agents” in this 

proposal within the general boundaries of aforementioned definitions.  

An agent is characterized by its architecture. The agent architecture organizes the 

functions that are required by the agent to perform its actions when situated in an 

environment and it provides a foundation to incorporate reasoning. Here, five different 

architectures that are commonly used in agent systems will be discussed. These are: (1) 

Logic-based architectures (2) Reactive architectures (3) Belief-Desire-Intention (BDI) 

Architecture, (4) Recognition-Primed Decision (RPD) Model, and (5) Layered 
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Architectures. The first two types of architectures aim to achieve intelligent behavior 

without any specific emphasis on human reasoning mechanism. They are more or less 

based on defining a set of logical rules in order to map perceptual inputs to actions of the 

agent. The next two architectures have roots in philosophy and cognitive psychology. 

These architectures are intuitive and they provide a clear functional decomposition of 

reasoning into subsystems. They are more focused on replicating the human reasoning 

system with certain abstractions. However, the difficulty for these architectures is to 

know how to efficiently implement the functional decomposition in a computer program. 

Finally, layered architectures aim to combine reactive and pro-active behavior by creating 

separate subsystems to deal with these different types of behaviors.  

2.3.1 Logic-based architectures 

The traditional approach to building artificially intelligent systems requires having a 

symbolic representation of the agent’s environment and its desired behavior, and 

syntactically manipulating this representation (Wooldridge 1999). Logic-based 

architectures use deductive reasoning in which the conclusion is reached from previously 

known facts and rules.  In general, logic-based architectures use symbolic representations 

in the form of logical formulae, and the syntactical manipulation corresponds to logical 

deduction or theorem proving. An agent’s decision making process is encoded as a 

logical theory and hence the process of selecting an action reduces to problem proof. This 

constitutes the sound basis of logic based architectures and the use of simple and elegant 

logical semantics triggered the extensive use of logic-based architectures in earlier 

periods of the artificial intelligence field. However, creating symbolic representations of 

complex, dynamic environments and constructing a logical approach on the top of these 
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representations are extremely hard along with the problem of symbolical representation 

of the agent’s perceptions. Furthermore, dynamic environments change during the 

decision making process. Therefore, an “optimal” solution for an environment state at the 

beginning of the decision process may be no longer optimal for the new state reflecting 

the changes in the environment.  

One of the most well-known architectures based on symbolic representation and 

rules is SOAR, which is a symbolic cognitive architecture, created at Carnegie Mellon 

University12. SOAR was developed to explore the requirements for general intelligence 

and to demonstrate general intelligent behavior. SOAR is based on operators, which are 

similar to reactive plans, and states. SOAR uses explicit production rules, which are 

specified by a series of conditions and a set of actions, to govern its behavior13. A 

problem space is defined as a set of (possible) states and a set of operators, which 

individually transform a particular state within the problem space to another state in the 

set. The transformation on permanent basis is achieved via productions, which are 

defined by the pre-conditions and the set of operators to be used to reach the desired 

state. Problem solving can be roughly described as a search through a problem space for a 

goal state (or sub goal states) using operators that are distributed across productions, 

preferences, and memory objects within the architecture. An operator is selected when 

the preconditions for that operator hold and it is expected from the operator to bring the 

system gradually closer to its goal. 

SOAR’s decision cycle includes three phases: 

 
12 http://en.wikipedia.org/wiki/Soar_(cognitive_architecture) 
13 http://sitemaker.umich.edu/soar 

http://en.wikipedia.org/wiki/Soar_(cognitive_architecture
http://sitemaker.umich.edu/soar
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1. elaboration phase involves bringing a variety of different pieces of knowledge 

bearing the problem to SOAR's working memory,  

2. selection phase weighs what was found in the previous phase and assigns 

preferences (a preference memory is stored in SOAR in order to represent or 

ultimately decide the operator to be taken based on an agent’s current state), 

3. application phase triggers the actions that produce the post conditions of the 

operator (or the outputs).   

The series of steps (or applied operators) from the initial state to a desired state 

forms the solution or behavior path. SOAR defines a sort of low-level machine for 

implementing algorithms. SOAR differs from rule-based systems because SOAR agents 

recognize available options and reason about which option to take. Furthermore, a single 

precondition production can pair with any number of action productions (and vice versa) 

in contrast to rule based systems and hence it is possible to avoid combinatorial explosion 

in rules (Wray and Jones, 2006). Whenever an agent comes to a decision that resolves an 

impasse, a new production with new preconditions and actions is generated. This 

methodology is referred as chunking, which can make the behavior generation process 

efficient, and it is the main learning method in SOAR. SOAR also includes modules for 

truth (or reason) maintenance systems for maintaining state consistency and being 

responsive to the environment. There are several projects ongoing in the SOAR 

community to expand the capabilities of the architecture such as adding episodic and 

semantic memories to SOAR as well as support for emotions14. The SOAR architecture 

has been successfully applied to several large-scale applications in multi-agent contexts 

(Georgeff et al., 1999).  

 
14 http://en.wikipedia.org/wiki/Soar_(cognitive_architecture) 

http://en.wikipedia.org/wiki/Working_memory
http://en.wikipedia.org/wiki/Soar_(cognitive_architecture
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Developers of the SOAR architecture mainly targeted the problems with logic-

based architectures and rule based systems. SOAR provides an effectively working 

mechanism built upon encoded knowledge representations and low-level constraints on 

how planning can occur. Different algorithms and logical deductions can be integrated to 

SOAR using operators. However, the use of operators impedes explicit plan 

representation in SOAR. In order to represent plans in SOAR, one needs to must build 

them from the lower level representation of the architecture. Furthermore, it is hard to use 

different processes for decision making at different abstraction levels since SOAR uses 

only operators for deliberation. Even though it is powerful, the state based approach and 

defining pre conditions for rules can be cumbersome in complex environments. SOAR 

can be very effective for environments that are well defined since it combines different 

algorithms, powerful search strategy, and learning.  

2.3.2 Reactive Architectures 

Problems with symbolic/logical approaches led some researchers to find alternative ways 

to model behavior generation for agents. Two arguments that are essential in the 

development of reactive architectures are (Wooldridge, 1999): 

• The idea that intelligent, rational behavior is seen innately linked to the 

environment an agent occupies – intelligent behavior is not disembodied, but 

is a product of interaction the agent maintains with its environment. 

• The idea that intelligent behavior emerges from the interaction of various 

simpler behaviors.  
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Pure reactive architectures assume no symbolic reasoning and perceptual inputs 

are directly mapped to actions. One of the best known pure reactive architectures is the 

“subsumption architecture”, which is proposed by Brooks (1986). In the subsumption 

architecture, an agent’s behavior is generated by task accomplishing behaviors. Task 

accomplishing behaviors are individual action functions that continually take perceptual 

input and map them to action to perform. Each of these behaviors is expected to achieve 

some particular task without any complex symbolic representations. The subsumption 

architecture allows simultaneous occurrence of behaviors; the modules are thus arranged 

into a subsumption hierarchy, with the behaviors arranged in layers. Lower layers in the 

hierarchy are able to override higher layers. In this hierarchy, lower layers have higher 

priority and higher levels are supposed to represent more abstract behavior.  

Reactive architectures such as subsumption architecture provide a simple, 

computationally tractable, and robust approach to behavior modeling of agents. However, 

since agents make their decisions based on local information –agents do not have a 

representation of the environment and hence they need to rely on their perceptions of the 

local environment- it is not possible to come up with behaviors with a long term impact. 

In fact, this is the major argument of reactive architectures – intelligent behavior emerges 

from simple interactions with the environment. Unfortunately, there is no principled 

methodology to come up with a subsumption hierarchy (Wooldridge, 1999). Developers 

need to create the hierarchy of task accomplishing behaviors and this process requires a 

laborious process of experimentation, trial, and error to engineer an agent. 
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2.3.3 Belief-Desire-Intention (BDI) Architecture 

The BDI paradigm was originally developed by Michael Bratman (1987) and it is based 

on “folk psychology”. The term “folk psychology” has been widely used as a label for the 

largely tacit psychological theory that underlies the abilities of people in describing and 

predicting each other’s behavior. Philosophy and psychology fields use a standard 

assumption of normal adult beings having a rich conceptual repertoire to explain, predict 

and describe the actions of one another. This rich conceptual repertoire is defined as folk 

psychology and the conceptual repertoire constituting folk psychology includes the 

concepts of belief, desire and their kin such as intention, hope, fear, etc., which are called 

propositional attributes (Davies and Stone, 1995). In other terms, folk psychology is the 

body of beliefs and capacities that we use in everyday life to explain and predict our own 

and other people’s actions (Morton, 1996).  

BDI architecture used the philosophical concept of practical reasoning to model 

human behavior. Practical reasoning is reasoning towards actions and it states that we do 

make decisions moment by moment on what action to perform next in the furtherance of 

goals (Wooldridge 2000). Bratman (1988) defines practical reasoning as: 

“Practical reasoning is a matter of weighing conflicting considerations for 

and against competing options, where the relevant considerations are 

provided by what the agent desires/values/cares about and what the agent 

believes.” 

Human practical reasoning appears to consist of at least two distinctive activities: 

deliberation and means end reasoning. The former one deals with the question what goals 
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we want to achieve, and the latter one involves with how we are going to achieve these 

goals. 

BDI framework uses belief, desire, and intention as propositional attributes to 

model human reasoning along with goals and plans. It is easy to understand these 

attributes since it is accepted that they resemble people’s own descriptions of their 

reasoning and actions in daily life.  In this context, beliefs correspond to information the 

agent has about the environment. Desires represent states of affairs, which are supposedly 

but not necessarily consistent, that the agent wishes to consider. Goals are the resultant 

states if the desires are achieved. Intentions represent desires that the agent has 

committed to achieving and intentions held should be consistent. Furthermore, an agent 

should believe that the goals of the intentions held are achievable for realism (Levesque 

and Cohen, 1990). Finally, plans can be considered as recipes for achieving intentions 

(Wooldridge 1999). 

BDI architecture tries to achieve a balance between reactive and proactive 

behavior of agents. Proactive behavior is mainly achieved via the use of intention and 

plans. Levesque and Cohen (1990) argue that intention is a choice with a commitment. 

General BDI architecture allows the intentions to be present or future-directed. 

Furthermore, Bratman (1987) lists three types of intentions based on how they are 

achieved. The first type of intention is the deliberative intention, in which it is formed on 

the deliberation whether to commit to a choice at a certain time. Non-deliberative 

intentions are formed without any deliberation. For example, a future-directed intention 

that is formed earlier can become a present-directed intention with no deliberation even 
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though there might be temporal updates on this intention. The third type of intention is 

policy based intention. Policy based intentions reflect the cases where one has a certain 

policy to act in certain sorts of ways in certain kinds of circumstances.  

Intention can be seen as a future path that an agent chooses to follow (Rao and 

Georgeff, 1991). These paths are realized as plans in BDI architecture. A plan is a 

sequence of actions and/or sub-goals to achieve (Norning et al., 2000). Plans of action 

have a hierarchical structure (Bratman, 1999), where general intentions embed more 

specific intentions. Such hierarchically structured plans are typically partial and hence, it 

is not necessary to specify a complete plan before beginning to act. This means that the 

details of the plan will be filled as the plan progresses with sub-plans that are at least as 

extensive as the agent believes necessary to achieve means-end coherency (Bratman, 

1988). This structure forms the backbone of BDI architecture since partial specification 

of the plans can later be used to constrain further practical reasoning (Pollack, 1992). For 

example, if one individual defines a partial plan for a meeting at a certain time, this 

intention and the regarding plan will constrain any reasoning that concerns the specific 

time frame. Based on the assumption that an agent looks for courses of action that are not 

necessarily optimal but “satisficing”, sticking to earlier commitments might be a valuable 

tool to model the bounds of cognitive resources of human reasoning. 

Agent architectures using the BDI paradigm typically contain four key data 

structures: beliefs, goals, intentions and a plan library (d’Inverno et al. 1997). Procedural 

Reasoning System (PRS) (Georgeff and Lansky, 1987) and its successor dMars 

(d’Inverno, 1997) implements these data structures and they include predetermined plan 



 

libraries for the tasks of concern. These architectures have been deployed in many major 

industrial applications with success (d’Inverno et al., 1997) and they formally specify the 

components of a plan. Plans in dMars are composed of six components: 1) the invocation 

condition, 2) the pre-conditions, 3) the maintenance conditions (specify the circumstances 

that must remain true while the plan is executing), 4) the body of the plan (consisting 

sub-goals and primitive actions), 5) the internal actions if the plan succeeds, and 6) the 

internal actions if the plan fails. Based on this structure, when an intention is acquired, a 

plan from the plan library is selected to achieve the goal associated with the intention. 

This general process is depicted in Figure 3. 
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Figure 3 The Structure of a BDI Agent (Norling et al., 2000) 

Rao and Georgeff (1991) define three commitment strategies for intentions. The 

first one is the blind commitment, where the agent maintains the intentions until he/she 

51 



 

52 

actually believes that he/she has achieved them. A basic single-minded agent maintains 

the intention if the intention remains as an option until the agent believes that he/she 

realized the intention. The third commitment strategy specifies that an agent maintains 

the intention if the intention stays as a goal until the intention is believed to be achieved.  

So far the discussion is based on the proactive nature of the BDI architecture. 

However, it is necessary to reach a balance between proactive and reactive behavior. 

Perceptual inputs gathered from the environment are continuously used to update the 

beliefs of the agents. In the BDI architecture, the interaction between the updated beliefs 

and the current intentions is achieved via a mechanism named reconsideration. 

Reconsideration is basically the decision whether to reconsider a plan that is being 

executed. Bratman (1987) specifies three varieties of reconsideration. The first one is 

non-reflective reconsideration in which the decision to reconsider depends on the 

underlying habits, skills and dispositions of the agent. The deliberate reconsideration is 

the second variety where the agent deliberates in order to decide whether to reconsider. 

The third variety is the policy based reconsideration in which the agent uses 

predetermined policies to make the reconsideration decision.  

From a computational perspective, it is important to specify when to perform the 

deliberate reconsideration. There are three general types of agents that are defined in the 

BDI literature to model this phenomenon (Pollack, 1992): a “bold” agent that commits 

strongly to its plans; a “normal” agent somewhat more open to reconsideration; and a 

“cautious” agent that is prone to reconsideration. Figure 4 represents the agent loop that 

is defined by Wooldridge (2000).  
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This agent loop demonstrates the general cycle that a BDI agent goes through 

while performing the actions and it starts with an agent generating its options and then 

committing to achieve one of these options with a plan. After committing to an intention, 

the agent starts to perform the actions in sequential order until the goal is achieved or it is 

impossible to continue the plan. While performing the actions of the plan, the agent 

continuously updates its beliefs and it stays committed to the plan as long as the plan is 

sound given its beliefs. If the plan is no longer appropriate to achieve the current 

intention, then it engages in further means-end reasoning to find an appropriate plan. 

Finally, reconsideration of desires and intentions when the agent is committed to a plan is 

dependent on the boldness of the agent. If the agent is cautious, it will stop to reconsider 

its intentions before performing an action. If the agent is bold, it will stick to its current 

commitment until it achieves its goal or the goal becomes impossible. In this 

representation, B denotes beliefs; D denotes desires; I denotes intentions; Π represents 

plans; p denotes perceptions; brf denotes the belief revision function; a represents the 

primitive actions in a plan, hd function returns the first primitive action from a plan, and 

tail function returns the remaining part of the plan.  



 

 

Figure 4 The Agent Control Loop (Wooldridge, 2000) 

The popularity of SOAR and BDI architectures pushed researchers to find ways to 

increase the interaction between separate set of researchers with similar interests. As a 

result of this effort, Georgeff et al. (1999) defined an abstract mapping between SOAR 

and BDI architectures: 

• Intentions are selected operators in SOAR 

• Beliefs are included in the current state of SOAR 

• Desires are goals, and 

• Commitment strategies are strategies for defining operator termination 

conditions. 
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Furthermore, selected operators (intentions in BDI) constrain the new operators 

that the agent is willing to consider by constraining the problem space. This fact is also 

similar to the general concept in BDI architecture, in which intentions are used as inputs 

in practical reasoning.  

2.3.4 Recognition-Primed Decision Model 

Several models of naturalistic decision making have been proposed (Lipshitz, 1993) and 

one of the best known models is the Recognition-Primed Decision Model (RPD) (Klein, 

1998). The RPD model describes the decision process of experts operating in 

environments with naturalistic characteristics, which were previously discussed. The 

RPD model is based on the idea that individuals that are operating in the area of their 

expertise spend very little time on decision making; rather they focus on understanding 

and assessing the situation. Klein (1998) states that choosing the course of action is 

virtually automatic for experienced decision makers, once the situation is recognized. 

Studies conducted in different fields such as firefighting also support this argument. This 

model assumes that experts learn to recognize subtle differences in situations that suggest 

one course of action over others. 

Sokolowski (2003) identifies three key decision making attributes that influence 

the use of the RPD model. These attributes are experience or expertise with the decision 

situation, situational awareness, and mental simulation. As depicted in Figure 5, the 

decision maker first comprehends the situation. This comprehension has four by 

products: 

• Expectation of certain things to occur but not others 
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• Certain cues to support the diagnosis 

• Plausible goals to achieve  

• Actions which are likely to succeed  

Once a decision maker has diagnosed the problem and generated expectancies, the 

decision maker uses mental simulation to sequentially evaluate the courses of action. 

Based on this evaluation, modifications can be applied to the courses of action in order to 

improve the solution or the next course of action is taken into consideration. If a certain 

course of action satisfies the situation, the decision maker commits to that course of 

action and he/she starts to implement it. Once the course of action is selected, the 

situation is monitored to make sure it remains as expected. If there are violations of 

expectancies, alternate courses of action can be considered. In other words, the fewer the 

number of expectancies satisfied, the less confident a decision maker would be about the 

accuracy of the courses of action being implemented. 

Comparison of options in natural settings is not present in the RPD model. 

Instead, the RPD model assumes the “satisficing” principle as proposed by Simon (1957) 

and courses of action are evaluated on their own merits.  

Norling (2000; 2004) identifies certain overlaps between the RPD model and the 

BDI architecture such as goal-directed behavior and commitment to a course of action. 

Furthermore, she defines a mapping between the RPD model and the BDI architecture 

where; 

• Changing the context in RPD means change of beliefs in BDI, 



 

• Situation recognition, relevant goals, and cues in RPD are plan selection in 

BDI 

• Possible actions in RPD are represented by an applicable set of the plan 

library in BDI 

• Expectancy violation in RPD is plan failure in BDI. 

Based on this mapping, Norling (2000; 2004) argues that integrating the RPD 

model in BDI architecture is possible in such a way that the RPD model is used to find 

applicable plan(s) in the BDI architecture. 
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Figure 5 The Recognition-Primed Decision Making Model (Klein, 1998) 
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2.3.5 Layered Architectures 

Reactive, proactive, and social behavior capabilities are desired in multi-agent systems. 

Layered architectures represent a natural decomposition of these functionalities: reactive, 

proactive, and social behavior can be generated by their respective layers in a layered 

architecture. Typically, there will be at least two layers in a layered agent architecture to 

deal with reactive and proactive behaviors, respectively. Furthermore, information and 

control flows between these layers need to be defined to handle the balance between 

different types of behavior. Wooldridge (2000) specified two types of control flow in 

layered architectures: 

• Horizontal layering: Each software layer is directly connected to sensory 

input and action output. Each layer itself acts as an agent and produces 

suggestions on what the agent should do next. Horizontal layering is 

represented in Figure 6(a).  

• Vertical layering: Information and control are passed between layers. In one 

pass architectures, control flows sequentially through each layer, until the 

final layer generates an action output. In two pass architectures, information 

flows up the architecture in the first pass, and the control flows down the 

architecture in the second pass. One pass and two pass architectures are shown 

in Figure 6(b) and 6(c), respectively. 

Sycara (1998) states that most “real” layered architectures find three layers 

sufficient. The lowermost layer makes decisions on what to do based on the raw sensor 

input and hence, it handles the reactive behavior. The middle layer abstracts from the 



 

lowermost layer and deals with proactive behavior. The uppermost layer tends to deal 

with the social aspects of the environment. The way those three layers interact differs 

from architecture to architecture.  
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Action
Output
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Layer 1

Action
Output

Perceptual
Input

Layer n

...

Layer 2

Layer 1

a) Horizontal layering b) Vertical layering
 (One pass control)

b) Vertical layering
 (Two pass control)

 

Figure 6 Information and control flows in three types of layered agent architecture 

(Muller, 1995) 

One example for vertically layered three level architectures is INTERRAP 

(Fischer et al., 1996). INTERRAP is an approach to model resource-bounded, interacting 

agents by combining reactivity with deliberation capabilities. INTERRAP is a two-pass 

architecture and the three control layers along with the interactions between them are 

depicted in Figure 7. 
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Action
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Perceptual
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Figure 7 INTERRAP-Vertically layered two-pass agent architecture (Wooldridge, 

2000) 

The INTERRAP agent architecture aims at combining the advantages of BDI 

style architectures with those of the layered ones (Fischer et al., 1996). Each layer in the 

INTERRAP architecture implements two general functions. The first one is a situation 

recognition and goal activation function. It works similarly to the option generation 

function defined in the BDI paradigm such that it maps the knowledge base of the layer 

of concern and current goals to a new set of goals. Planning and scheduling function is 

the second general function and it is responsible for selecting which plans to execute, 

based on the current plans, goals, and the knowledge base of that layer. 
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There are two main types of interaction between layers in the INTERRAP 

architecture (Wooldridge, 2000). The bottom-up activation is triggered when a lower 

level passes control to a higher layer because it is not competent to deal with the current 

situation. The top-down execution occurs when a higher layer posts activation requests 

for patterns of behaviors to a lower layer.  

Layered architectures are the most popular general class of agent architectures 

available (Wooldridge, 2000). However, layered architectures may not have semantically 

clear representation as logic-based architecture have since it is hard to achieve clear 

representation of the interactions between different layers.  

In Section 2.3, five different agent architectures are introduced. Each one of the 

agent architectures approaches the computational modeling of human behavior from a 

different angle. The advantages/disadvantages of these architectures, as well as the 

similarities between different architectures, are discussed in respective subsections. The 

BDI architecture and the RPD model focus on the process of human reasoning and they 

try to emulate the actual human reasoning process, whereas logic based architectures and 

reactive architectures focus more on the outcomes. Layered architectures provide a mean 

to integrate different approaches within a formal structure.  

Section 2.4 introduces the testbed shoplifting problem in retail industry and 

discusses several issues related with this problem.  
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2.4 Shoplifting 

2.4.1 What Is Shoplifting? 

One of the major problems of the retail industry is to detect and prevent inventory 

shrinkage (or inventory shortage). This shrinkage is the financial lost attributable to a 

combination of employee theft, shoplifting, administrative error, and vendor fraud 

(Hollinger and Langton, 2004). Based on the data collected in calendar years 2003 and 

2004, National Retail Security Survey reports that estimated annual loss for U.S. retailers 

is approximately $31 billion. $14.6 billion of this figure is attributed to employee theft 

(47%), $10.5 billion to shoplifting (34%), $4.2 billion to administrative errors (14%), and 

$1.7 billion to vendor fraud (5%). 1997 National Security Survey reports an annual loss 

of $21 billion of which $10.5 billion is attributed to employee theft and $9.1 billion is due 

to shoplifting (Hollinger et al., 1997). Inventory shrinkage rate, which is the rate of 

inventory loss over total annual sales, was 1.54% in 2004 and 1.77% in 1997 (Hollinger 

and Langton, 2004). Hollinger and Langton (2004) also states that average inventory 

shrinkage rates have remained relatively stable in the last 13 years despite the measures 

taken against the inventory shrinkage problem; however, there seems to be a declining 

trend in the last few years. Nevertheless, it can be still said that inventory shrinkage is 

still a big problem for U.S. retailers and shoplifting plays a main role in this shortage 

even though the retail industry invests in loss prevention systems and technologies. 

Shoplifting is also a problem for countries other than the U.S.A. Tonglet (2002) 

states that annual U.K. shoplifting losses consistently exceed $1.1 billion. Furthermore, it 

is estimated that U.K. retailers are spending more than $850 million annually on crime 
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prevention. Even though it is a rough figure, annual retail theft is estimated around $700 

million in Australia (Nelson and Perrone, 2000). These figures show that shoplifting 

constitutes a problem for the retail industry all over the world. 

Shoplifting does not only hurt the retailers but it also hurts the other shoppers 

through the inevitable price increase. Furthermore, increases in retail security may 

negatively affect the shopping experience of other customers (Tonglet, 2002). 

2.4.2 Shoplifters 

Ray (1987) stated that one out of 12 shoppers have recently shoplifted based on the 

survey conducted. Dabney et al. (2004) state a similar rate (8.5%) based on their 

experiment performed at a drug store in Atlanta. In this research, 1243 persons are 

observed and 105 of them were clearly seen by the observers committing an act of 

merchandise theft. Farrington’s research provides the figure that 4-5 % of the population 

up to age 40 is convicted for shoplifting in U.K (Farrington, 1999). Klemke (1992) states 

that 60% of consumers have shoplifted at some point in their lives and Clarke (2003) 

states that only one in 150 shoplifting incidents leads to offender apprehension. These 

figures are interesting since they show that shoplifting is a common crime within the 

population even though it has been perceived as a minor misdemeanor by the public 

(Schneider, 2003). 

The first comprehensive study of shoplifting was probably done by Cameron in 

1964 (Krasnovsky and Lane, 1998). Cameron classified shoplifters as boosters and 

snitches. In this classification, boosters referred to shoplifters who steal to sell. Snitches, 

whereas, do not resell the items they steal and they are otherwise respectable citizens. 
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Moore extended Cameron’s classification and came up with the following classification 

(Moore, 1984): 

• Impulse shoplifter (15.4%): Their shoplifting had not been planned, and they 

typically took one inexpensive, yet tempting, item. They avoid any sort of risk 

and can be easily deterred by any sign of security measures. 

• Occasional shoplifter (15%): Shoplifting activities are not planned but can use 

more complicated techniques when compared to impulse shoplifters. They can 

take a little risk but generally risk averse. 

• Episodic shoplifter (1.7%): This group has severe psychological problems. 

They can try to shoplift any item and do not use any complicated techniques. 

They can easily take risks. 

• Amateur shoplifter (56.4%): They make conscious decisions to steal and are 

aware of its illegality. They tend to steal small items that are easy to conceal; 

shoplifting techniques are simple and they realistically assess relative risks 

and benefits. Their activities are planned, and they may try to shoplift the item 

more than once based on the environment situation. If they feel any risk, they 

tend to leave the item. 

• Semi-professional shoplifters (11.7%): They employ more skilled techniques 

in their shoplifting and they target financial gain, e.g. reselling the 

merchandise. Their activities are planned and they may change the course of 

action within the store. Under risk, they may try to run away or leave the item. 
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Generally, there are two types of shoplifters: experts and novices. Novice 

shoplifters steal items when they see an opportunity and they can be quickly deterred 

(Carroll and Weaver, 1986; Dabney et al., 2004). Expert shoplifters demonstrate a 

planned behavior and they search for ways to overcome the security measures (Carroll 

and Weaver, 1986). Shoplifters who have psychological problems constitute only a small 

portion and merchandise is stolen by people from every race, sex, and age group. Some 

researchers state that adolescents have tendency to shoplifting (Nelson and Perrone, 

2000). However, Dabney et al. (2004) state that there is no significant difference between 

different races or age groups based on the research they conducted in 2001.  

Carroll and Weaver (1986) discuss that there is fairly a high degree of rationality 

in the decisions of both expert and novice shoplifters. They state that both types of 

shoplifters pay attention to the surrounding that may affect the consequence of their 

actions. However, this decision process can be labeled as a heuristic instead of normative 

or optimal. Shoplifters process the information they collected and evaluate the possible 

outcomes and risks and then they make a decision. Hence, this decision demonstrates the 

characteristics of PP-rationality. 

Retail shoplifting experts also have observed that offenders often leave the store 

without making any purchase (Helena, 1996). This strategy is thought to minimize 

attention to them and to prevent personal contact with store employees, thereby reducing 

the likelihood of apprehension. Shoplifters are also thought to operate commonly in 

organized groups or teams (Hayes, 1993). In the 2004 National Retail Security Survey, 

Hollinger and Langton state that there is an increase in dollars per shoplifting case but 
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there is a decrease in shoplifting cases. They believe that this increase is a reflection of 

the harm caused by organized retail crime rings (Hollinger and Langton, 2004). 

2.4.3 Different Ways of Shoplifting 

Most common methods for shoplifting are grabbing the item and run, concealing of 

goods on the person, and concealing of goods in bags, baby prams, etc. (Nelson and 

Perrone, 2000). Another form of shoplifting involves the taking of merchandise without 

proper payment. This can happen by means of switching price tags (Budden, 1999). 

Removal of packaging, which is then discarded in the store, thereby removing the tag and 

giving the appearance that the item is used, is also a way to defraud the store (Clarke, 

2003). Retail stores with fitting rooms can suffer from shoplifters that wear the items 

under their current dress. It is also possible to trick the cashier by leaving some items in 

the shopping cart on purpose and hence not paying for them. Introduction of self check-

out terminals in grocery store may lead to not scanning some items while paying for the 

others. Clarke also states a few ways to beat electronic article surveillance systems such 

as peeling off the tag, which can sometimes be done despite strong adhesives, holding the 

item-and the tag- tightly against the body, walking out closely behind someone, holding 

items outside the reach of the electronic surveillance, using products to deactivate tags, 

and putting items in insulated bags (Clarke, 2003). 

2.4.4 Identifying and Detaining Shoplifting Suspects 

Shoplifting can be defined as taking of retail merchandise without proper payment 

(Budden 1999). Most states’ statutes empower the merchants to detain suspects for 

questioning or investigating a potential intent to steal merchandise. This is called 
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“merchant’s privilege”. The merchant’s privilege allows detention of persons suspected 

of shoplifting only if there is reasonable cause to believe a person has shoplifted. When 

reasonable cause ceases to exist, merchant’s privilege is no longer effective. Statutes of 

several states allow law enforcement officers, store managers, and store employees to 

detain suspects, whereas, few states extend this protection to third part security guards 

and other agent. It should be noted that reasonable force should be used in apprehension 

and detention of suspects and reasonable force does not usually involve threats of bodily 

harm since merchants do not arrest shoplifters but simply detain them for police 

authorities.  

Detainment should be for a reasonable length of time. A few states’ statutes 

approach the duration of a legal merchant detention in a specific manner, as does 

Louisiana’s, which allow merchants to detain shoplifting suspects for sixty minutes. 

Some states allow cursory searching of suspects, especially the items they carry 

such as shopping bags, handbags etc. However, statutes do not generally provide 

merchants the right to search inside suspect’s clothing.  

As an example, Alabama’s law on shoplifting is presented next.  

Alabama’s Law on Shoplifting (AL ST § 15-10-14) 

(a) A peace officer, a merchant or a merchant’s employee who has 

probable cause for believing that goods held for sale by the merchant 

have been unlawfully taken by a person and that he can recover them 

by taking the person into custody may, for the purpose of attempting to 
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effect such recovery, take the person into custody and detain him in a 

reasonable manner for a reasonable length of time. Such taking into 

custody and detention by a peace officer, merchant or merchant’s 

employee shall not render such police officer, merchant or merchant’s 

employee criminally or civilly liable for false arrest, false 

imprisonment or unlawful detention. 

(b) Any peace officer may arrest without warrant any person he has 

probable cause for believing has committed larceny in retail or 

wholesale establishments. 

(c) A merchant or a merchant’s employee who causes such arrest as 

provided for in subsection (a) of this section of a person fro larceny of 

goods held for sale shall not be criminally liable for false arrest or 

false imprisonment where the merchant or merchant’s employee has 

probable cause for believing that the person arrested committed 

larceny of goods held for sale. 

Some state statutes make detentions a little easier to call, as they statutorily 

declare that concealment of goods can be considered evidence of willful concealment on 

the part of the customer, and stores are privileged to investigate. For example, Arkansas’s 

state merchant protection specifies that  
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5-36-102. Consolidation of offenses - Shoplifting presumption - Amount 

of theft. 

(b) The knowing concealment, upon his person or the person of another, of 

unpurchased goods or merchandise offered for sale by any store or other 

business establishment shall give rise to a presumption that the actor took 

goods with the purpose of depriving the owner, or another person having 

an interest therein.  

It is important to note that merchants should have reasonable cause to detain a 

customer. It is not possible to detain a customer based on clothing, race, and sex. 

Witherspoon Security Consulting recommends that shoplifter should be observed 

approaching the merchandise, selecting the merchandise, concealing or carrying away the 

merchandise and failing to pay for the merchandise to establish the probable cause and if 

all of these steps are observed then the shoplifter is detained15. It is further recommended 

that suspects should be under constant and uninterrupted observation for the suggested 

practice. Furthermore, company or store policies may further restrict the actions to detain 

suspects such as limiting pursuing suspects beyond company property. These sorts of 

practices are important since if the merchant fails to establish the reasonable cause or 

does not release the suspect when reasonable cause ceases to exist or a reasonable period 

of time for detain expires, suspects can sue the merchant. 

Dabney et al. (2004) discuss behavioral cues that are associated with shoplifting. 

These visible cues are (1) individual is aware of or looking for anti-shoplifting measures, 
 

15 www.security-expert.org/shoplift.html 

http://www.security-expert.org/shoplift.html
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(2) individual is performing repeated head and neck movements that are signs of 

scanning the store, or (3) individual is playing with the product packaging to reduce its 

size, or to remove security tags. It has been discussed that these behavioral cues are 

shown by the majority of the shoplifters and hence they are closer to shoplifting when 

compared to other customers. Closer attention to a customer who shows these behavioral 

cues might increase the chance to establish the reasonable cause to detain the suspects. 

2.4.5 Prevention of Shoplifting 

Clarke suggests that crime will be prevented by either reducing the opportunities for 

crime or by increasing the risks of apprehension and these approaches form the basis of 

the current situation crime prevention theory. Situational crime prevention departs from 

other crime prevention theories since it is focused on the settings for crime, rather than 

upon those committing criminal acts. Basically, it introduces managerial and 

environmental change to reduce the opportunities for crimes to occur (Clarke 1997). In a 

report, prepared for U.S. Department of Justice, Clark lists following precautions against 

shoplifting (Clarke 2003). 

1. Improving store layout and displays 

2. Tightening stock controls 

3. Upgrading retail security 

4. Posting warning notices on high risk merchandise 

5. Hiring more and better trained sales staff 

6. Hiring store detectives 

7. Hiring security guards 
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8. Installing and monitoring CCTV 

9. Using electronic article surveillance (EAS) 

10. Attaching ink tags to merchandise 

Security measures that are most used are live visible and hidden closed circuit 

television, digital video recording systems, secured display fixtures and shoplifting 

deterrence signage (Hollinger and Langton, 2004). 

Security measures listed above can be taken to diminish the losses, however, 

some of these security measures are also costly and it is hard to estimate the returns. 

Clarke proposes that after the implementation of security measures, statistics should be 

collected to evaluate the effectiveness and modifications might be performed on the 

applied security measures based on the results.  

2.5 Summary of the state-of-the-art 

This section presented an overview of the different aspects of human behavior 

representation in computational environments and it portrayed shoplifting as a possible 

application domain. It is further discussed that shoplifting is a representative environment 

of physical security systems to study human behavior and complex entity interactions. 

Until the late 1980’s, human decision characterization was dominated by classical 

decision theory, which assumes human’s decisions are E-rational. Classical decision 

models focus on the decision outcome itself rather than the process that generates the 

decision. Utility theory is incorporated in these models to represent the differences 

between individual risk preferences. However, classical decision theory is questioned by 

various researchers and it is shown that human decisions are not always E-rational. In 
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real life settings, few people perform decision optimization calculation except for mid-

term or long-term economical decisions. Furthermore, it is also hard to mathematically 

represent many decision episodes.  

Cognitive psychologists and philosophers have a natural interest in how decisions 

are made by humans. These researchers are not particularly interested in the outcomes of 

the decisions or how “good” they are but the processes that humans incorporate to make 

those decisions. Researchers that focus on the process of human decision making state 

that intuition is an integral part of the decision making process. Naturalistic Decision 

Making theory especially focuses on the intuitive steps that a person follows in reaching 

decisions with a particular emphasis on the experience of the individual regarding similar 

situations. The two-system view also presents a similar approach. Intuitive courses of 

action (or plans) are first considered unless they are modified or deliberately overridden 

by the human reasoning process. In general, heuristics and mental simulation are the 

processes that are believed to be used by humans to evaluate the possible scenarios for 

the decision in question. Moreover, it is not possible to assume every single piece of 

information is available to individuals in real situations. Therefore, perceptions from the 

environment and situation awareness are major components of any decision making 

episode. 

The Belief-Desire-Intention paradigm and the Recognition-Primed Decision 

Model present powerful and yet robust models to deal with the complexity of human 

reasoning without having to explain the mechanics of how the brain works. These models 

have folk psychological foundations and they are capable of representing a wide-range of 
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complex behaviors. They are especially powerful when individuals must interact with 

other individuals, who can be unpredictable. However, these models are not the solution 

for all types of human behavior representations. BDI paradigm’s abstraction level can be 

too high for certain cases. Certain high-level conscious processes -such as emotions, 

memory and learning- require adjustments in order to incorporate them into the BDI 

framework. On the other hand, the RPD model does not cover teams or organizations and 

comparison of options in natural settings is not present in RPD.  

Domain specific knowledge is important in representing human behavior. 

Shoplifting is a relatively well-known domain that employs physical security systems. 

Although there are no computational models identified for shoplifting, several papers 

provide descriptions for the major actors and their actions in the retail stores, where 

physical security systems are used. Based on the domain specific information extracted in 

Section 2.4, there are two main facts that make shoplifting interesting for this research. 

First, shoplifting is a significant issue for the retail industry and physical security systems 

are extensively used in retail stores. Second, there is inherent cooperation and 

competition between the actors. Security measures and shoplifters compete against each 

other and security personnel and potential shoplifters can cooperate among themselves.  
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3 RESEARCH PROBLEM 

Garcia (2001) defines intrusion detection as the detection of a person or vehicle 

attempting to gain unauthorized entry into an area that is being protected by someone 

who is able to authorize or initiate an appropriate response. Intruder detection analysis 

involves assessing a facility’s susceptibility to intrusion/breach by unauthorized people. 

Clearly, understanding a facility’s susceptibility is a precursor to designing effective 

physical security systems to prevent unauthorized access to the facility. The ultimate goal 

of this research is to develop a simulation-based problem solving environment and 

associated decision support tools to assist with the general facility and security system 

design problems. The facility and security system design goal is to identify a security 

configuration that minimizes a facility’s vulnerability to intrusion at minimum cost. In 

this context, a security configuration includes the physical structure of the facility, the set 

of sensors included in the facility, and the set of guards and their respective 

operating/patrol strategies. Modeling and simulation can be cost effective tools in the 

design and analysis of the physical security systems. In this research, an agent-based 

simulation test-bed is being developed for general physical security systems analysis and 

design. This test-bed will form the basis to analyze the effectiveness and cost of various 

forms of security policies in physical security systems. However, to improve realism, 

credibility, and variability in physical security systems simulation models, 

operating/patrol strategies need to involve situation awareness, cooperative team
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behavior, planning, and deliberative decision making processes of the entities. Achieving 

this improvement requires the development of simulation-based computational models of 

human behavior, which is a major component of the research being conducted. 

Viewing a physical security system as a multi-agent simulation model requires 

explicit formal definition and specification of the environment and organizational design 

of the system. The development of a formal modeling system is one of the research 

contributions of this research. Some of the basic definitions that will be used include: 

• Facility – a set of buildings and other structures (fences, walls, etc.) within a 

well-defined geographical region. 

• Sensor – a device that can detect the presence or absence of a person, or 

object in a defined region. 

• Participants – people that have various responsibilities and roles in the 

facility. Four classes of participants are defined: 

Guards – Human participants whose responsibilities involve 

protecting the facility by detecting and potentially intercepting 

intruders. 

Intruders – Human participants that are trying to gain unauthorized 

access to specific locations within the facility. “Access” in this context 

can mean a variety of things from simply reaching a location, to 

reaching and remaining undetected at a location for a given time 

period.  
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Workers – Human participants whose responsibilities do not involve 

the protection or intrusion of a facility, but who are present and 

working in the facility. 

Neutrals – Human participants whose actions are associated with 

neither intrusion nor protection such as regular passengers at an airport 

or shoppers at a retail store. 

The facility itself constitutes the interaction environment for the agents that are 

participating in the physical security systems simulation. There are two fundamental 

contributions of this research. First, formal computational models representing the 

environment, the spatial interactions of the agents with the environment, and the temporal 

aspects of the agent behavior are developed. Second, an agent simulation based analysis 

methodology employing the formal computational models of human behavior is designed 

to identify “effective” physical security configurations. The environment and the agents 

are further discussed in Sections 3.1 and 3.2 and this discussion will provide a conceptual 

basis to develop computational behavioral models for the agents of concern. However, 

this conceptual basis only points out the general structure of the participants of physical 

security systems simulation. An implementation of this conceptual basis requires domain 

specific information to be able to model the temporal features of agent behavior in the 

specific context of the implementation. Section 3.3 suggests the shoplifting problem in 

retail industry as a possible application domain and it provides conceptual temporal 

models of the shoplifting problem participants that can be used to implement the 

aforementioned conceptual basis. 
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3.1 Environment 

Static aspects of the facilities (i.e. the structure and location of walls, rooms, shelves, etc.) 

are used by the agents mainly in two forms. First, mobile agents should consider the 

static features of the environment to find a path to different locations in the facility and 

second, vision, which is the main medium for perception, can be obstructed by static 

objects. These requirements necessitate a formal definition of the environment to enhance 

the spatial information extracted from the sketches or drawings of the environment. For 

this purpose, Hierarchical Graph Representation for Scenes (HIGHRES), which is a 

conceptual data model that completely and unambiguously describes the environment (or 

the scene), has been developed as part of this research. HIGHRES (detailed in Section 

4.1) enables the user to model a physical facility at different levels of detail and to 

explicitly incorporate interactions among the components of the facility. Furthermore, 

HIGHRES facilitates the capture of the spatial features of the environment and it 

provides a hierarchical data model to store the scene information. This scene information 

is then consumed by different modules of the simulation model either directly or through 

the use of different graphical constructs such as Zone Movement Graphs (Section 4.1.2) 

and Portal Visibility Graphs (Section 4.1.3) that are interfaced with HIGHRES.  

3.2 Agents 

Capabilities that an agent might have include mobility, perception, autonomous behavior, 

and communication. Mobile agents can move within the environment and they have the 

capability to find paths to different locations within the facility. Immobile agents have 

fixed locations in the facility. Perception is mainly dependent on the vision of agents, and 
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visual percepts form the basis for agent behavior and communication. Communication 

provides a medium for agents to exchange information on the state of the environment. 

In a real life physical security system setting, it is possible to observe proactive 

and reactive behavior as well as communication and coordination between the 

participants. Based on the discussion in Section 2.3, layered architectures appear to be a 

good candidate for an agent architecture, which encapsulates different aspects of 

reasoning mechanisms that are employed by the participants of the agent-based 

simulation model. Figure 8 represents the three-layered vertical agent architecture 

proposed for the agents in the testbed. The bottom layer is the reactive layer, which 

provides the interface with the environment for the agent. The deliberation layer is 

responsible for generating possible courses of action and reasoning about them in order to 

deliberately determine the actions of the agent. The cooperation layer overlooks the 

deliberation layer and it is responsible for managing the interactions of the agent with 

other agents. Intruders and guards employ all three levels of the architecture, whereas 

neutrals, workers, and sensors operate only at the reactive layer. Intruders and guards are 

the only types of agents that have autonomous behavior capability based on the 

discussion made in Section 2.3. Therefore, they are referred to as autonomous agents and 

workers and neutrals are referred to as simple agents. Initial focus is given to the design 

of reactive and deliberation layers in this section.  

The communication module in the reactive layer provides agents a message-

passing medium to interact with other agents in the environment. Agents with 

communication capabilities can broadcast a message to all other agents or can use direct 

routing mechanisms to send a message to a specified agent. An example for 



 

communication is that a worker watching the video streams coming from the surveillance 

cameras. The worker may perceive a criminal activity in the facility. S/he then broadcasts 

this information as a message to the security personnel and they perform the necessary 

actions defined in their control module to deal with this new state. This mechanism is 

encapsulated in the conceptual designs of different types of agents.  

 

Figure 8 Agent Architecture 
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The perception/action module in the reactive layer captures the ability to observe 

the environment to facilitate gathering the requisite information used in the decision 

making process. Vision is the primary method that is used to perceive the environment 

and it is realized by performing Line of Sight (LoS) calculations between entities. Results 

of the LoS calculations are then fed into a cognitive recognition function in order to 

determine the detection. A basic cognitive recognition function takes into account only 

the results of the LoS calculations. However, it is also possible to define more 

complicated cognitive recognition functions that consider different factors present such as 

the illumination level in the environment or the alertness and/or stress level of the looking 
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agent. Details of the perception mechanism and its uses in the simulation model are 

discussed in Section 4.1.3.  

The perception/action module models the spatial interactions with the 

environment. The workers and the neutrals use the action module to simply follow their 

predetermined courses of action. In certain types of applications, it is possible to allow 

the workers and the neutrals to have perception and communication capabilities. 

Depending on the application domain, it is possible to have neutrals and workers to react 

to certain activities such as a worker detecting an intruder and reporting it to the security 

personnel and airport passengers having limited situational awareness and reporting 

capabilities (i.e., the ubiquitous “Please report any unusual activities or unattended bags 

to any airport personnel”.).  

Autonomous agents can make independent decisions through the control module 

in the deliberation layer and hence their actions are under their own control. This 

autonomous decision making capability partly involves the use of “mental simulations”. 

Agents using the deliberation layer evaluate different courses of action by running mental 

simulation for likely scenarios. This process uses the agent’s perceptions on other agent 

and requires the agents putting themselves in other agents’ shoes. Running mental 

simulations in the control module requires development of simulation models on the fly 

and initialization of these simulation models based on the perceptions of the agent on the 

environment and other agents. Capability of running mental simulations is shared by 

different types of agents that use the control module for deliberation as further discussed 

in Sections 3.2.1 and 3.2.2. 
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At this point, it is important to underline the fact that discussions on mental 

simulation models in the literature are rather at a theoretical level. Implementation of 

mental simulation capability requires a formal framework to generate, initialize and run 

simulation models on the fly. This is a novel approach and the mental simulation 

framework introduced in Section 4.2 is one of the important contributions of this 

research. 

The action module is responsible for performing the actions dictated by the 

control module if the deliberation layer exists for the agent of concern. In addition to this 

functionality, the action module is capable of performing movements within the facility. 

This capability is achieved by defining the interactions between the agents and 

HIGHRES. This structure is explained in Section 4.1.2.  

Finally, the cooperation layer provides another medium to achieve interaction 

between agents. In addition to the communication ability, cooperation protocols allow 

agents to distribute and coordinate the performance of tasks.  

Intruders and guards autonomously control their activities and they are able to 

perform goal-directed behavior. The deliberation layer in the agent architecture is 

handled separately for intruders and security personnel. Conceptual bases for the control 

of the activities of the intruder and the guard agents are presented in the next two 

subsections. 
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3.2.1 Intruders 

The intruders will demonstrate both proactive and reactive capabilities. These capabilities 

are captured in the deliberation layer of the agent architecture. The proactive nature in the 

intruder agents’ decision process is modeled using a blend of the BDI framework 

(Section 2.3.3) with the RPD model (Section 2.3.4) and the two-system view (Section 

2.2.2) similar to the suggestion of Norling (2000; 2004). The proposed methodology uses 

the propositional attributes of the BDI architecture as the main data to represent the state 

of the mind of an agent. As recalled from Section 2.3.3, the major components of BDI 

architecture are beliefs, desires (or options), intentions, goals, and plans. Beliefs pertain 

to the information the agent has about the environment. Desires represent states of affairs 

that the agent wishes to consider, and goals are the resultant states if desires are achieved. 

Intentions represent desires that the agent has committed to achieve. A plan is a sequence 

of activities of which the final is the goal activity.  

In the proposed methodology, aforementioned propositional attributes are first 

used by the control module in the deliberation layer of an intruder to pick an option 

(desire) that is consistent with beliefs that are updated by the perception/action module. 

This selection is performed via simple heuristics that define the mechanism to choose 

between different alternatives. Based on the discussion in Section 2.2, this is an “E-

rational” behavior since the agent is only concerned with the outcome. When the agent is 

committed to this option, it becomes the intention of the agent, and it uses its means-end 

reasoning function to generate a plan for accomplishing the goal. This function will be 

implemented similar to the mechanisms that are discussed in the two-system view and the 

RPD model. Therefore, the agent will intuitively come up with an initial plan and then 
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iteratively modify this plan throughout its execution. Each plan will be evaluated 

employing mental simulations and the agent will implement the plan if there is one that 

satisfies the intruder’s goal. This will make the agent “PP-rational” because of the 

process employed. 

After committing to an intention, the agent starts to perform the actions in 

sequential order until the goal is achieved or until the agent determines that it is 

impossible to continue the plan. The actions dictated by the control module are continued 

to be performed by the perception/action module unless there is a need for 

reconsideration. Intentions will be reconsidered in two cases: 1) if there are violations of 

the expectancies that are generated during the mental simulation of current plan, and 2) at 

regular intervals defined by the agent’s degree of boldness. The degree of boldness 

specifies the maximum number of plan steps the agent executes before reconsidering its 

intentions. These two reconsideration mechanisms will provide the agent an ability to 

react to the perceived changes in the environment and hence they model the reactive 

nature in intruder agents’ decision making process.  

 Details of the deliberation layer of shoplifters are discussed in Section 4.2. 

3.2.2 Guards 

The guard agents in this model are reactive. They do not possess proactive skills and they 

simply react to the events occurring in the environment. Guard movements in the facility 

are specified by the security policy. Whenever a guard agent perceives an input that is of 

concern from the environment, the guard agent basically reacts to it. However, the 

reaction of the guard agents is modeled differently than the classical reactive behavior, in 
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which perceptual inputs are taken continually and are mapped to actions to perform. In 

this model, guards can deliberate on the actions that they are going to perform based on 

the goals as dictated by the security policy of the facility. In this context, it can be said 

that the guards carry policy based intentions.  

The reactive behavior of the guard agents can be handled directly at the reactive 

layer by the perception/action module or the control of the reactive behavior can be 

passed to the control module in the deliberation layer. Basic reactions to perceptions are 

directly handled at the reactive layer. One example for this can be that if a guard is 

following an intruder, the guard changes his/her movement reactively based on his/her 

perceptions about the intruder movement. However, some of the perceptions require 

deliberation by the guard agents and hence, they are handled by the control module in the 

deliberation layer. Differentiation between basic reactive behavior and deliberation based 

reactive behavior is domain specific and it is dictated by the security policy exercised by 

the guard agents. 

Deliberation for the guards will be modeled similarly to the RPD model and two-

system view described in Sections 2.3.4 and 2.2.2, respectively. Even though the guard 

agents demonstrate goal-directed behavior, their goals are not the result of a proactive 

deliberation process. Instead, the guard agents commit to goals (e.g. following a potential 

shoplifter) as a reaction to the perceived events in the environment. Therefore, the 

constructs of the BDI architecture can be excluded from the guard agents’ decision 

making process. Whenever a perception from the environment makes it necessary to 

commit to a certain action such as chasing and following, an intuition based plan, which 
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is comprised of simple action components, is generated. After the generation of an initial 

plan, subsequent plans are iteratively evaluated using mental simulation. If a “satisficing” 

plan is found, it is implemented. Otherwise, the current plan is modified and the new plan 

is evaluated using mental simulation. The details of this process are presented in Section 

4.2. 

3.3 Sensors 

There are different types of sensors that can be used in intrusion detection inside and 

outside the facilities such as pressure, vibration, electromechanical sensors etc. Garcia 

(2001) classifies the sensors under five categories: 

• Passive or active 

• Covert or visible 

• Line-of-sight or terrain-following 

• Volumetric or line detection 

• Application (i.e. buried line, fence associated, freestanding) 

Passive sensors detect some type of energy that is emitted by the target of interest; 

whereas active sensors transmit some type of energy and detect a change in the received 

energy. Covert sensors are hidden from the view of the intruder and visible sensors are in 

plain view to the intruder. Line-of-sight sensors require a clear line-of-sight for detection. 

On the other hand, terrain following sensors can detect equally well on flat and irregular 

terrain. Volumetric sensors detect intrusion in a volume of space and line detection 

sensors detect along a line. Application determines how the sensors are applied in the 

facility. In the context of this research no differentiation is made between passive and 
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active sensors. The remaining four characteristics need to be defined for each sensor 

used.  

Furthermore, Garcia (2001) specifies three performance characteristics: 

• Probability of Detection 

• False Alarm Rate 

• Vulnerability to Defeat 

Probability of detection is basically the probability of detecting an activity of 

interest. The probability of detection can vary based on the settings and the type of the 

activity of interest. False alarm rate is defined as the function of the nuisance alarms over 

a given time period by Garcia (2001). Two general ways to defeat a sensor are: (1) 

Bypass and (2) Spoof. Sensors used in the sample application are further discussed in 

Section 4.3.2. 

3.4 A Testbed Application: Shoplifting in Retail Stores 

Security systems used in a typical retail store are good examples of physical security 

systems that one encounters everyday in daily life. There are several precautions that 

include hiring store detectives, using electronic article surveillance, installing and 

monitoring CCTV, etc. against shoplifting. These security measures can be taken to 

diminish the losses, however, some of these security measures are also costly, and it is 

often difficult to estimate the economic returns associated with the investment.  

In this section, the conceptual temporal models underlying the multi-agent model 

of the retail security system analysis are presented. The effects of locations of security 
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cameras, movement patterns of security personnel and security personnel with and 

without communication capabilities on the effectiveness of the security policy will be 

examined using the realization of this conceptual model in Chapter 4. 

The facility used in the test-bed is a hypothetical retail store, which is comprised 

of aisles, shelves, fitting rooms, check-out lanes and doors. Separate doors for entry and 

exit are defined as well as doors to access each fitting room. The layout of this 

hypothetical retail store is depicted in Figure 9. The HIGHRES model for the 

hypothetical retail store is presented in Section 4.1.1. 

Information on possible behavior patterns is extracted from the literature survey 

conducted on retail store security systems and shoplifter behavior. These behavioral 

patterns of the entities are represented using UML Activity Diagrams in the following 

sections. These diagrams will be used to implement the temporal models of the agents 

(Section 4.2), which constitute the control module in the deliberation layer. Constructs of 

the activity diagrams are then interpreted to simulate agent behavior. This interpretation 

mechanism will be explained in Section 4.3. The entities used in the testbed model along 

with their capabilities are shown in Table 1. 

The entities in the testbed application relate to the definitions of the participants in 

a general physical security system. Here, the shoplifters represent the intruders, the 

security personnel are the guards, the regular customers are the neutrals, the surveillance 

camera is a sensor, and the workers are named the same. 
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Table 1 System Entities in the Testbed Application 

 Mobility Perception Type Communication 

Regular customer Mobile No Simple Not capable 

Shoplifter Mobile Yes Autonomous Not capable 

Security personnel Mobile Yes Autonomous Capable 

Surveillance 

camera Fixed Yes Simple Not capable 

Worker Fixed Yes Simple Capable 

 

3.4.1 Regular Customers, Surveillance Cameras, and Workers  

Customers are passive agents that roam in the store and shop. The importance of regular 

customers from the model’s perspective is that security personnel might be suspicious of 

regular customers since they can not outwardly differentiate between regular customers 

and shoplifters. Customers arrive at the store with a static plan that is comprised of 

shopping activities that will be performed by the customer (like a shopping list). 

Customers move in the store in order to pick up items that are on their shopping list and 

upon completion of the shopping list, they pay for the picked-up items and leave the 

store. Pick up and pay activities of regular customers might raise suspicion with some 

probability, which is defined as the false alarm rate, and hence it is possible for security 



 

personnel to mistakenly detain regular customers. The general action loop for regular 

customers is presented in Figure 10. 

C
as

hi
er

 1

D
el

i

C
as

hi
er

 2

C
as

hi
er

 3

Beverage

Fr
ui

ts
 a

nd
 V

eg
et

ab
le

s

Fr
oz

en
 fo

od

Dairy Products General Merchandise

C
lo

th
in

g

El
ec

tro
ni

c 
Pr

od
uc

ts

G
en

er
al

 G
ro

ce
ry

D
ru

gs

C
D

s

Sh
oe

s

C
os

m
et

ic
s

M
ag

az
in

es

EntranceExit Fitting Rooms

Aisle 1

A
is

le
 2

A
is

le
 3

A
is

le
 4

A
is

le
 5

A
is

le
 6

Aisle 7

Entrance

Exit

Fitting
Rooms

A B C

 

Figure 9 Hypothetical Retail Store 

In real life applications, surveillance cameras continuously record the 

surroundings in their vision. In this conceptual model, it is assumed that only the relevant 

activities are captured by the computational models of the surveillance cameras. 

Therefore, the surveillance cameras basically check for the events related with 

shoplifting, namely picking up item, concealing item, and entering the exit zone with an 

unpaid item. Surveillance cameras are assumed to have storage capabilities and hence the 

cameras record these events if seen. Implementation of this conceptual model captures 

the interaction between the surveillance cameras and the workers as follows: when a 

critical event is in the view of a surveillance camera, a message is sent to the worker(s) 
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watching the surveillance monitor in order to trigger his/her perception mechanism. The 

activity diagram for surveillance cameras is presented in Figure 11. 

Perception mechanisms of workers are triggered by regular customers/shoplifters 

or surveillance cameras. Video streams of surveillance cameras can be watched by a 

worker and he/she broadcasts this information if he/she detects the illegal activity (e.g. 

concealment of an item). Workers on the retail floor broadcast information on critical 

activities if they are not busy and can see the occurrence of the activity. The activity 

diagram of a worker is shown in Figure 12. 
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Figure 10 Activity Diagram for Customers 

90 



 

Monitor

Check LOS

[not detected]

[detected]

Store information

Check Video

[simulation end]

Worker

X

Shoplifter.Critical
Activity

Customer.Critical
Activity

 

Figure 11 Activity Diagram for Surveillance Cameras 
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Figure 12 Activity Diagram for Workers 

3.4.2 Shoplifters 

Shoplifters extend the activity diagram of regular customers by adding new actions to 

represent the shoplifting activities. Conceal item, unconceal item, and give-up are three 

actions that are introduced by shoplifters, in addition to the regular customer actions. 

From a security perspective, three important activities that need to be tracked are picking 

up an item to steal, concealing that item, and leaving the store without paying for the 

item. In order to detain a customer, it is important to detect these activities. Hence, it is 

important to capture this interaction in the implementation of the conceptual data model. 

In this implementation, each time a shoplifter agent performs one of the three important 
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activities; respective signals are sent to the security personnel agents, worker agents and 

surveillance camera objects. Receipts of these implementation specific signals trigger the 

respective perception mechanisms of the security agents in order to determine whether 

the critical activities are detected. A general agent control logic loop is shown in Figure 

13. 

A shoplifter’s perceptions are focused on the security measures available at 

different parts of the retail store. For this purpose, a shoplifter agent performs line-of-

sight calculations using its perception subsystem to collect information on the locations 

and look directions of surveillance cameras, workers and security personnel. The 

collected information is mapped to different areas of the retail store and allows the 

intruder to assess the level of security around the shelves of concern. The collected 

information is the basis for the beliefs of a shoplifter agent. In basic form, a shoplifter 

agent can believe: 

• An area is permanently safe/unsafe 

• An area is temporarily safe/unsafe 

• S/he is being followed. 

During the course of simulation, a shoplifter agent might have the following 

desires: 

• Pickup item i (with shoplifting purpose) without being detected. 

• Conceal the item without being detected in zone Z, area A. 

• Give up (unhide the previously picked up/concealed item). 
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• Leave the store with shoplifted item. 

As discussed in Section 3.2.1 each desire is associated with completion of the 

final activity of the plan, which represents the accomplishment of the goal. Whenever an 

agent completes the final activity of a plan, accomplishment of the goal is established. 

For example, an agent might have an intention to conceal the item in Aisle 6 and if the 

agent is in Aisle 2, its plan is comprised of one go to activity from Aisle 6 to Aisle 2 and 

one conceal activity. Completion of the conceal activity represents the accomplishment 

of the goal. The main goal for a shoplifter is to leave the store which is contingent on 

accomplishment of sub-goals (i.e., concealment of item i).  

3.4.3 Security Personnel 

The security personnel’s goals are dictated by the security policy of the store, which 

basically defines certain rules such as the conditions required to commit to follow or 

detain a potential shoplifter in addition to the movement patterns of the guards. The 

security personnel’s activity cycle starts with patrol activity, which continues until a 

specific event happens. There are two types of events that particularly interest security 

personnel while patrolling. The first type of event of interest is receipt of a critical 

activity signal originated by a shoplifter or customer activity, which might be part of a 

shoplifting activity sequence. A critical activity signal triggers the perception mechanism 

of the security personnel. Detection of a critical activity results in committing to follow 

the agent that sent the critical activity signal. The second type of event that interrupts the 

patrol activity is receipt of an update message coming either from other security 

personnel in the store or workers. The update message basically signals the security 



 

personnel on a critical activity that happened somewhere in the retail store. This signal 

may also result in committing to follow the entity that performed the critical activity. The 

described control flow is represented by an interruptible activity region, which represents 

the activities that can be interrupted by receiving a signal and is shown as a dashed box 

on the activity diagrams.  
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Figure 13 Activity Diagram for Shoplifters 
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The second interruptible activity region on the security personnel activity diagram 

includes the follow activity. If any of the specific events described above occur when the 
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security personnel is following a person, a set of conditions is checked to decide whether 

to continue the current commitment, to change commitment, to cancel the current 

commitment or to detain the shoplifter (or customer). An activity diagram that shows the 

activities of the security personnel along with the rules that determine the control flow is 

presented in Figure 14.  

3.5 Discussions and Validation Methodology 

Simulation is an appropriate methodology to investigate general facility and security 

system design problems. This chapter first discussed the necessity to develop a data 

model that formally defines the static features of a physical security system. It then 

introduced the conceptual behavioral model for the participants in a general physical 

security systems simulation. Computational representations of the data model and the 

behavior model are integral to the simulation models that are used to analyze and design 

physical security systems. The general structure is then applied to a testbed application 

demonstrate facility and security system analysis and design in retail stores against the 

shoplifting problem using simulation.  

The main participants of a physical security system simulation within the 

described context of this research are computational models of intruders, guards, workers 

and neutrals. These computational models are designed to emulate the behavior of their 

real life human counterparts. Consequently, effective modeling of decision making 

processes of the agents that participate in physical security systems simulation is critical 

for the credibility of simulation-based analysis.  
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Figure 14 Activity Diagram for Security Personnel 

The agent based conceptual model discussed in this research provides a 

conceptual basis for general physical security systems analysis and design. This model 

will facilitate conducting several simulation experiments to analyze the performance of 

different security settings and effect of factors such as communication and cooperation 
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between both the guards and the intruders, completeness of the information that the 

intruders have on the facility and the operational security policies that the guards exercise 

on the effectiveness of the security system. Furthermore, it will be possible for the 

computational reasoning models of the agents to capture specific human traits like 

boldness and cautiousness and then to incorporate the effects of these human traits to the 

courses of action that are generated and executed by the intruders. 

The primary deliverables of this research will be: 

1. An agent based simulation testbed that can be used to analyze and design 

physical security systems situated at different environments. 

2. Computational human behavior models that can be plugged into 

simulation models. 

Several components of significance will be developed in this research in order to 

realize the aforementioned deliverables. These components are:  

(1) A conceptual facility configuration meta-model (HIGHRES) that is used for 

flexible instantiation of environmental settings in which agents (i.e., 

customers, including shoplifters, workers, and security personnel) are situated,  

(2) A novel line-of-sight mechanism for realizing the visual perception subsystem 

of agents,  

(3) Models of reactive as well as deliberate decision making processes of agents, 

(4) Development of mental simulation models, 
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(5) A mapping that will allow running agent-based simulation models on a 

discrete-event simulation engine.  

(6) Basic cooperation models for security personnel and intruders. 

These components will allow the simulation testbed to meet the goals set for this 

research. As it is stated earlier, it is important to use realistic human behavior models for 

a robust analysis of physical security systems. In real life problems, human behavior is 

complex and furthermore, human behavior shows significant variability. It is important to 

encapsulate this variability in the simulation models of concern. Different fields provide 

insights on this issue and the computational human behavioral models developed in this 

research aims to achieve a reasonable realism and variability of behavior demonstrated by 

the agents in the simulation testbed.  

The major difficulty in validating the computational human behavioral models is 

that there is often no simple quantitative measure of the benefits of these models. It is 

essential to consider why the realistic representation is important. If it was to develop 

computational human behavior models that allow accomplishing given tasks in simulated 

environment, validation is relatively straightforward; agents can be given a set of tasks 

and then the accuracy of task accomplishing behaviors can be measured. However, if it 

was for realism, the validation is not straightforward anymore. Since the realistic 

behavior is a goal of this research, the validation process of realistic behavior or the 

assessment of the reasonableness of the agent behavior needs to include humans. 

There are two commonly accepted faces of the validation process. The first one is 

evaluating the conceptual validity of the behavioral models. The argument that can be 
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made regarding this face is the proposed conceptual models of human behavior are based 

upon the cognitive psychology models presented in the literature. Even though 

computational human behavior models represented in this research are novel, they are 

conceptually inspired from the cognitive models that are discussed in different academic 

fields. Furthermore, domain specific information, which is an integral part of the 

implementations of the proposed computational human behavior models, is extracted 

from the literature. The proposed models of human behavior models are conceptually 

valid from this perspective. Verification of the mapping of these proposed models from 

the conceptual domain to the implementation domain will be achieved via incorporating 

the techniques such as animating and tracing the behavior of the agents in the simulation 

environment. Therefore, the verification process will involve observing the behavior of 

the agents in the simulation environment and then comparing the observed behavior with 

the proposed conceptual models.  

The second face for the validation process is the operational validity. As 

discussed earlier, the assessment of the operational validity of the computational behavior 

models is hard and it requires the involvement of humans if the desired goal is achieving 

realistic behavior. Here, the perspective is that if the behavior of computational agents is 

reasonable from a human perspective then the proposed computational behavior models 

are valid. It is important to emphasize the fact that the goal here is realism and variability 

in human behavior. Therefore, humans involved in the validation process will be asked 

whether the behavior of agents in the simulated environment makes sense. For this 

purpose, a validation protocol will be developed and this protocol will capture essentially 

two validation techniques that can be found in the literature. The first technique is face 
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validity, where humans will observe the agent behavior in the simulation environment 

and they will provide their assessment on the observed behavior. Face validity 

experiment will be conducted with five to ten human participants. This group of human 

participants will be comprised of academicians, graduate students and security 

consultants. After the simulation model is introduced, human participants will follow the 

animations of different scenarios and they will be asked to scale the reasonableness of the 

behavior demonstrated by the agents at different decision points. These answers will be 

later used to validate the computational reasoning models of the agents. 

Second technique that will be incorporated in the validation protocol is predictive 

validation and this experiment will involve security consultants and academicians 

preferably with domain knowledge. For this technique, certain decision episodes will be 

generated and the limitations (or the possible basic actions that can be demonstrated by 

the agents) will be explained to the human participants. Furthermore, the human 

participants will only be provided the information that the agent has about the 

environment. Then, the human participants will be asked to develop a certain number of 

courses of action regarding the information they have on the environment and the 

particular goals of the agents in the simulation environment. Afterwards, the courses of 

action developed by human participants will be compared against the courses of action 

taken by the agents in the simulation. If there is a certain level of match, it can be argued 

the proposed computational models of human behavior are valid.  
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4 COMPONENTS OF THE PROPOSED PHYSICAL 

SECURITY SYSTEMS SIMULATION MODEL 

Deliverables of the proposed research will constitute the underlying structure for physical 

security systems analysis software that facilitates the agent simulation based problem 

solving environment.  The general structure of this software is depicted in Figure 15.  In 

this structure, the discrete-event simulation engine (DES) is used to run the multi-agent 

simulation models.  The visualization tool is responsible for visually presenting the static 

environment and the animation of the agents.  The scenario analysis tool will use the 

analysis and design methodology developed in this research to control the simulation 

experiments.  

The agent model needs to address two interacting functionalities: (1) the spatial 

interactions with the environment and (2) temporal activities to create realistic behavior.  

For this purpose, a conceptual spatial data model named “Hierarchical Graph 

Representation for Scenes” (HIGHRES) is devised first and this model along with spatial 

interactions with the agent model is discussed in detail in Section 4.1. A general agent 

framework named “A Behavior-Intuition Mechanism for Realistic Agents” (ABIRA) 

captures the temporal aspects of the agent’s behavior model. The ABIRA framework is 

detailed in Section 4.2.  The third component of the software that is directly related with 



 

behavior represents the characteristics of the application domain that the agents are acting 

upon. This general representation and its realization for the “Shoplifting in Retail 

Stores”example are discussed in Section 4.3. The ABIRA framework is capable of 

adapting the behavior of respective agents by accessing the application domain data using 

behavior templates, which provide formal and generic interfaces to the specifications of 

the domain. These templates are also provided in Section 4.3. Finally, the general 

software is introduced in Section 4.4. 

 

 

Figure 15 Physical Security Systems Analysis Software 

4.1 Spatial Model- Hierarchical Graph Representation for Scenes 

(HIGHRES) 

This section describes the conceptualization of the static aspects of a facility such as 

geometry, structure, etc. and defines the relations between these aspects and the active 
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entities in the simulation of physical security systems. One inherent feature in physical 

security system simulation is its explicit attention to spatial features and spatial behavior. 

Hence, it is important to formally define a conceptual infrastructure to represent the 

spatial features of the facilities that would then allow modeling these aspects in an object-

oriented design. Precise reflection of spatial features is of vital importance for physical 

security system simulations since most of the cognition and decision making activities of 

the entities will be based on these spatial features. 

In this section, a data model is presented first to enable the user to model a 

physical facility at different levels of detail and interactions among the components of the 

facility. Second, a methodology to model human vision is suggested. This methodology 

constitutes the main perception mechanism for the entities in the physical security 

systems simulation. 

4.1.1 Conceptual Data Model  

Static aspects of the facilities (i.e. structure and the location of buildings, other objects 

present within the area, properties of the materials) will be used by several components of 

the simulation software and hence a common data structure should be used in order to 

increase the overall effectiveness of the system. This common data structure might also 

be thought of as a standard that dictates design rules for different components of the 

simulation software. The data model described in this section defines the conceptual 

relationships between different types of data and provides a conceptual tool to extract 

information from facility drawings. Moreover, it provides a representation hierarchy, 

which allows a way to describe the facility at different levels of abstraction.  
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HIGHRES is inspired from a natural hierarchical leveling such as, at the top level 

there is the whole facility, and as we go deeper in the hierarchy there are buildings, 

floors, rooms and objects in the rooms, walls, floors, etc. However, this natural 

representation is not sufficient to have an effective and unambiguous computational 

representation of the facility that is to be used by the simulation software.  The 

HIGHRES model that we propose enhances this natural decomposition.  HIGHRES 

defines three specific data types along with three specific relation types to represent the 

static features of a facility and describe the relationships between these data types.  To 

simplify the physical modeling, all data types use an 8-point convention (e.g. cubes, 

cuboids, trapezoidal prisms etc.) to define the corner points of any object.  The 

HIGHRES data types are: 

• A solid object is any 3-dimensional solid shape. 

• A zone is a 3-dimensional volume that is described by its bounding objects. 

Its distinction from a solid object is that zones allow entity movement in them. 

Hence, a zone is basically a hollow shape either empty or filled with 

something that allows entity movement (e.g. water). 

• A portal is a 3-dimensional shape that is included in a bounding object that 

connects two or more zones either visually or permitting movement between 

zones (e.g. windows, doors etc.). Portals are initially implemented as 2D 

objects and the switches between zones are instantaneous. 

 The HIGHRES model is represented in the form of a tree-like structure; the root 

node (starting node) of the tree corresponds to the highest level of abstraction (lowest 
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level of detail); as one goes further down the tree, the level of abstraction decreases 

(higher level of detail). There are several levels in the data model and these levels 

determine the desired precision (fidelity) in the simulation. For example, one may want to 

deal with a building as a solid object. A higher level of detail may be defining the object 

as a hollow 3-dimensional object, which is defined by a zone in this data model. The next 

level of detail may be partitioning the building into rooms and so on. Each structure in 

the facility may have different representations at different levels. For example, the whole 

facility may be represented as a solid cube object in level 0 and it may be represented as a 

hollow cube (zone) in level 1 representation.  

There are primarily two reasons to have different levels of abstraction in the 

HIGHRES model: (1) the simulation is set to run at a certain abstraction level; for 

example, if the entities are not allowed to move within the buildings, a higher level of 

abstraction is used and hence, only the outside building structure is defined in the 

simulation, and (2) within the simulation run, different levels of abstractions are used to 

speed up the computations. 

There are three types of relations that define the connections between different 

data types in the data hierarchy either vertically or horizontally. These relations are: 

• Bounding relation: This relation is used to define a zone using some other 

objects (referred to as bounding objects) as the boundaries for the zone. This 

relation is a horizontal relation in the data hierarchy. 

• Inclusion relation: Inclusion defines a different type of relation for different 

data types.  



 

107 

o Zone-object: Objects can be related to zones by inclusion relation. 

This is a horizontal relationship. Defines the objects that are included 

in a volume. (e.g. desk in a room) 

o Zone-zone: Zones can include other zones in a horizontal relationship. 

The information desk area in a foyer can be an example of this 

relationship. 

o Object-portal: This relationship can only be defined for bounding 

objects. It connects a portal to an object. (e.g. door in a wall). This is 

again a horizontal relationship.  

• Parent-child relation: This type of relation connects different data types at 

different hierarchical levels. Hence, this is a vertical relation. There are three 

different types of parent-child relationships. 

o Zone-zone: A zone can be represented as a combination of different 

zones in a lower hierarchical level. This relation defines an exact 

partitioning and hence the combination of zones used in the lower 

hierarchical level should exactly form the zone in the higher 

hierarchical level. Multiple rooms comprising a floor of a building can 

be an example of this type of relationship. 

o Object-object: An object can be defined as a combination of different 

objects in a lower hierarchical level. (e. g. at the higher level, a table 

can be defined as a solid cube which can be represented by 8-points. 

This solid cube is then represented as a combination of 5 different 

objects in the lower level, one top and four legs. The important point 
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here is any combination of these five objects does not necessarily give 

the cube that is used to represent the table at the higher level.) 

o Object-zone: An object can be represented as a zone in a lower 

hierarchical level. An example for this type of relationship is having a 

building defined as an object in the higher hierarchical level and as a 

zone bounded by walls, a floor and a ceiling in the lower hierarchical 

level. 

In this context, relationships between objects at different levels in the tree 

structure represent vertical relationships.  A vertical relationship in this sense is a 

partitioning of an object into smaller pieces in order to obtain better fidelity.  Inclusion 

and bounding relationships are horizontal relationships and they represent the 

relationships between objects at the same level in the hierarchy.  In this context, the 

Zone-Zone parent-child relation is conceptually different from the Zone-Zone inclusion 

relation even though they both involve the same types of objects.  The main difference is 

that the zones are in different hierarchical levels in the parent-child relationship while 

they’re both in the same level in the inclusion relation.  Therefore, the designer of the 

simulation may choose to define the whole floor as a single zone at a higher level of 

abstraction in which the rooms in a floor are not significant and the designer may opt to 

define all rooms on a floor in a lower level of abstraction using Zone-Zone parent-child 

relation.  On the other hand, the designer of the simulation may opt to define only the 

room of interest at the current abstraction level ignoring the other rooms on the floor 

using Zone-Zone inclusion relationship.  This allows the designer of the simulation the 
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flexibility of having certain zones in certain hierarchical levels based on the precision 

requirements of the design of the simulation experiment. 

A simple example facility is used to illustrate the conceptual data model 

described. This sample facility (Figure 16) is comprised of two buildings and one 

building is divided into two rooms. The first building has a door (D1) and a window 

(W1). The second building has a main entrance door (D2) and two windows (W2, W3). 

There is also another door that is located in the wall that separates the two rooms in this 

building.  

This sample facility is conceptually described using the data model defined in this 

section. There are three hierarchical levels in this conceptual description. The first level 

shows the whole facility as a single solid object, which is the root of the conceptual 

description tree. The second level introduces three zones. The first zone (Zone 1) covers 

the whole facility excluding the two buildings. Zone 2 and Zone 3 present the two 

buildings in the facility and these zones are included in Zone 1. Each zone is bounded by 

solid objects. These bounding objects are simply walls for the buildings. The bounding 

objects for Zone 1 represent the boundaries for the facility. One of the bounding the 

objects of Zone 2 includes a door (D1) and another one includes a window (W1) as 

portals. Bounding objects for Zone 3 include a door (D2) and two windows (W2, W3) as 

portals. For simplicity, only one bounding object for each zone is presented in Figure 17. 

In this representation, zones, solid objects, and portals are depicted as cloudy objects, 

rectangles, and circles, respectively. Relations are represented by connections with a 



 

small rectangle in the middle. These small rectangles carry the first letter of the relation 

they are representing.  
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Figure 16 Sample Facility 

At level 3, Zone 3 is partitioned into two zones (Zone 4 and Zone 5). Zone 4 and 

Zone 5 share all of the bounding objects with Zone 3 except one. Both Zone 4 and Zone 5 

are also bounded by the separator wall, which includes a door (D3) as a portal. 

 This conceptual description facilitates running our simulations at different fidelity 

levels. For example, if the simulation is running at Level 1, only Zone 1 will be present in 

the simulation along with its bounding objects (facility borders) and two buildings 

(Building 1 and Building 2) that are included in Zone 1.  At this level, entities in the 

simulation can only move within Zone 1 and buildings will be simply obstacles that 

impede movement and visibility.  Zone 1, Zone 2, and Zone 3 will be present in the 

simulation along with their bounding and included objects if the simulation is running at 

Level 2.  If we need a higher precision, simulation can be run at level 3, in which Zone 1, 
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Zone 2, Zone 4 and Zone 5 will be present along with their associated objects.  In this 

context, higher precision means more detail which requires more computational power.  

If the desired conceptual simulation model only allows entity movements outside the 

buildings, running the simulation at Level 1 provides sufficient level of detail.  

Furthermore, the simulation runs faster, since the walls, doors and windows of the 

buildings are excluded from computation (Only Building 1 and Building 2 solid objects 

are included in computation). 

The hypothetical retail store (Figure 9) is represented using two hierarchical 

levels. In the top hierarchical level, the retail store is defined as a single solid object. The 

next level (Level 1) is comprised of zones, boundaries of these zones, solid objects (e.g. 

shelves) included in these zones and portals that allow movement or vision between 

zones. 16 zones are defined for the retail store. There are seven aisles, one exit area, one 

entrance area, one fitting room area including three fitting rooms and three cashier areas 

defined as zones in this layout. A basic conceptual data model, which only includes zones 

in the facility, is presented in Figure 18. 

In Figure 18, all the zones have a parent-child relation with the Level 0 retail store 

object and the union of all zones in Level 1 gives the total volume of the retail store 

object. There are inclusion relations between the fitting room area and 3 fitting rooms as 

well as between the exit area and 3 cashier areas. A more detailed representation of the 

entrance zone is presented in Figure 19. The entrance zone is bounded by the fitting room 

wall, bottom wall of the facility (according to the sketch in Figure 9), entrance barrier, 

and the portal between the entrance zone and Aisle 7. This zone includes the magazine 
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shelf object. Finally, the bottom of wall of the facility includes two portals, entrance door 

and exit door. 

4.1.2 Action Model 

Spatial features of the environment will affect the entities in two general ways. First, they 

will limit the movements of the entities and secondly, they will obstruct vision. These 

interactions are captured using two different graphs. The former graph represents the 

possible movements available to an entity while the latter (Section 4.1.3) represents the 

possibility of visibility allowed by the environment. 

Both of these graphs can be defined by means of “portals”. For example, consider 

the facility in Figure 16. In this facility, there are three doors that can allow movement 

and visibility between zones and three windows that can allow visibility between zones 

depending on their states. There can be several states for a portal, some of them can be 

accepted as “open” states (that allow movement and/or visibility through) and some of 

them can be accepted as a “closed” state (movement and/or visibility is not allowed). 
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Figure 17 Sample Facility HIGHRES Model 
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Figure 18 HIGHRES Model of the Hypothetical Retail Store 
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Figure 19 HIGHRES Model for the Entrance Zone 

A movement module is designed and implemented to model the agent movements 

in the facility. The zone movement graph defines the possible movements between zones. 

Zones are the vertices in the zone movement graphs and there is an edge between vertices 

if there is a portal between two zones. Entities in the simulation can move from one zone 

to another zone if there is an edge between these two zones and the conditions for this 

edge are satisfied. Entities can move freely within the zones (not colliding with the 

objects that are in the zone), however, movements between zones will be controlled using 

the zone movement graph. The zone movement graph for example facility is shown in 

Figure 20. 
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Figure 20 Zone Movement Graph 

Figure 21 shows the access paths to the different zones of the facility. From Zone 

1, Zones 2, 3, and 4 are accessible, and Zone 5 is accessible through Zone 4 only. It 

should also be noted that Zone 3 decomposes to Zone 4 and Zone 5 in a higher level of 

detail. Zone movement graph for the hypothetical retail store is shown in Figure 21. 

Each time an agent wants to move within the facility, zones for start and 

destination are found. Then, a path planning algorithm can be used to find the shortest 

path from start to destination. One of the example path planning algorithms that can be 

used is the A* algorithm (Russell and Norvig 2003). 

A* requires a graph that represents the environment and it keeps two lists while 

looking for a path: (1) the open list, and (2) the closed list. The closed list represents the 

positions that the algorithm has already checked and it is initially empty. A* search starts 

with the initial state (starting node) in the open list. For each node within the open and 

closed lists, A* maintains two heuristic values: g(n), the best-known minimum cost, and 

h(n), the estimate of the cost to a goal state. The best node to examine at any point in the 

algorithm has the lowest estimated cost: f(n) = g(n) + h(n).  
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Figure 21 Zone Movement Graph for the Hypothetical Retail Store 

The A* algorithm is an iterative process. In each step, A* takes the best state from 

the open list and moves it to the closed list. The neighbors of the best state are examined 

in turn. If a neighbor does not appear in either the open or closed list, then the neighbor is 

added to the open list. However, if the neighbor already appears in either list, it is 

necessary to check whether the minimum cost g(n) has decreased. If g(n) decreases, the 

neighbor node must be deleted from its current location and reinserted into the open list.  

 The A* algorithm is primarily applied using the zone movement graphs. In a basic 

implementation, the cost value, g(n), is the actual distance traveled so far and the 

heuristic value, h(n), is the linear distance between the current state and the destination. 

The cost metric used calculating the shortest path can also represent different things. In 

addition to the distance, number of surveillance cameras in a zone, number of guards in 
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the zone can be part of the cost metric definition. Cost metrics are revisited while 

discussing the temporal model in Section 4.3. The heuristic, h(n), is critical for the 

performance of the A* algorithm. If the heuristic, h(n) never overestimates the cost of 

travelling to the goal state, A* is guaranteed to generate the least cost or optimal solution 

the first time the goal node is generated.  

 Agents follow the path generated by the A* algorithm to move from one zone to 

another through portals. By definition, zones are convex and hence agents can move 

within a zone without hitting any walls or in our context any bounding objects. However, 

obstacle avoidance algorithms are required to avoid objects inside the zones to prevent 

collision. For this purpose, the A* algorithm is employed once again, however, it uses a 

different graph this time.  

 A cellular decomposition approach is employed for obstacle avoidance similar to 

the one defined by Kuffner (2000). This approach entails representing the zones as a grid, 

finding the cells in the grid spanned that intersect with the objects in the zone and 

creating a graph using the remaining cells. This graph is referred to as the In-Zone Graph 

and it basically connects the cells to which the agent can freely roam. An agent is 

approximated by a cuboid and the dimensions of this cuboid dictate the minimum cell 

size in the grid. After the graph of the cells is created, the A* algorithm can be employed 

to find a collision-free path in the cells. The cellular decomposition of the hypothetical 

retail store is depicted in Figure 22. The obstructed cells are marked with red, whereas 

the free cells are colored as gray in this figure. 
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 In the basic implementation of the cellular decomposition approach, the A* 

algorithm is run using distance for the costs. However, the security scores introduced in 

Section 4.3.4 can also be used in finding a path that has minimal exposure to security 

measures in the zone. Using bigger cells speed up the computations and hence, the cell 

sizes can vary for different types of agents.  

 The current implementation of the cellular decomposition approach ignores the 

low obstacles (that can be stepped on) and the overhangs (which the agent can duck 

under). Collisions with other agents are also ignored at this stage of the implementation. 

In a future research phase, the current approach may be augmented to add these 

capabilities to this approach.  

 As a summary, the A* algorithm is employed at two different levels. The 

implementation of the A* algorithm on the zone movement graph can either use distance 

as the cost metric or use the outcome of another A* algorithm run on In-Zone graphs as 

the cost metric. When the agents get into a zone, they use the A* algorithm on In-Zone 

graphs to find collision free paths in the zone.  

4.1.3 Perception Model 

Line of Sight (LOS) visibility computations form an important aspect of simulation 

models for physical security systems. The basic question is to determine all entities that a 

particular entity can see; indeed, in a simulation model, such visibility questions arise at 

every simulation step, and these need to be answered a large number of times. The 

answer to visibility questions determines an entity’s future behavior, and so it is 

important that LOS computations be as accurate and efficient as possible. As noted in 



 

Darken (2004), LOS detection is basically a problem of visibility of an entity’s surface. 

Furthermore, in a 3-dimensional simulation model, visibility calculations need to take 

into account not only the attributes of the entity (such as how far can it see), but other 

facility characteristics such as any barriers (walls for instance) that obstruct the view.  

 

Figure 22 Cellular Decomposition 

The line-of–sight module described by Smith et al. (1999) uses planar barriers and 

the entities in this module are represented by a single point. Visibility calculations in this 

module are performed by basic point-to-point ray casting and checking whether or not 

this ray intersects with any planes that are representing the barriers. As noted earlier, the 

models of the environment (such as buildings and rooms) described in this paper consist 

of 3-dimensional shapes (represented by eight points) and entities are defined by multiple 
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points. Line-of-sight calculations discussed in this paper use these 3-dimensional 

definitions. 

The field of vision of an entity is defined by three parameters – the looking 

direction, LOS range, and the cone half-angle. The LOS range determines how far the 

entity can see, and the looking direction is defined by a vector (in 3-dimensional space) in 

which the entity is looking; lastly, the actual region of view is represented as a 3-

dimensional cone (with the vertex at the viewpoint of the entity) that is centered around 

the looking direction vector, with a half cone-angle specified by the third parameter 

above. Visibility detection then reduces to finding all entities that are within the field of 

view (the 3-dimensional cone) of an entity. 

The Multiple Ray Casting Approach similar to the one discussed in Darken 

(2004) is followed to determine if an entity i can see entity j. Here, the visibility of 

multiple candidate points on entity j’s surface is computed by casting rays from the 

viewpoint of entity i; if all of the candidate points are not visible, then it is concluded that 

entity j is not visible, and if at least one candidate point is visible, it is concluded that 

entity j is visible. As per the precision level desired, a predetermined number of points 

representing the target entity j are chosen (these can be the positions of the entity’s arms, 

feet, head, and so on). Thus, the basic assumption here is that if a sufficiently large 

number of points representing entity j are chosen, they will correctly represent the 3-D 

object(s) representing the entity in the model. 

Now the LOS visibility algorithm is briefly described. The algorithm starts by 

forming a list of all possibly visible target entities; this list contains all entities that are 
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within the cone of view of the viewing entity (the ‘source’ entity). For each entity in this 

list, a check is done to determine if any candidate point representing the entity is visible; 

a candidate point might not be visible if there is a barrier obstructing its view. This 

basically calls for checking if the ray cast from the source entity’s viewpoint to a 

candidate point of a target entity intersects any barrier in the environment. The list of 

possibly obstructing barriers is then constructed, mainly to speed up the overall 

algorithm. This is done by first translating/rotating the 8 corners of a barrier and then 

applying front and back clipping procedures to determine if the barrier can obstruct the 

view; these clipping procedures also determine the exact portions of a barrier that may 

possibly obstruct the view. After the list of possibly obstructing barriers is formed, the 

algorithm then loops through each barrier in the list and checks if the barrier obstructs 

any of the candidate points of the target entity; if all candidate points are obstructed by 

some barrier, then the target entity is not visible, otherwise the algorithm concludes that 

(a portion of) the target entity is visible. The computations to determine if a barrier 

actually obstructs vision are rather involved, and they are briefly described next. 

The main idea here is to define a plane perpendicular to the ‘looking direction’ 

vector, and then project all barriers from the set of obstructing barriers to this plane; this 

plane is called the Viewing Plane. The candidate points of a target entity are also 

projected onto the viewing plane, and a check is made to see if the projected points are 

within the boundaries of any of the projected barriers. If all of the projected candidate 

points are within the boundaries of a (projected) barrier, then the barrier obstructs the 

view, otherwise not. Here, Perspective Projection is performed, since it more realistically 

models practical situations. It remains to determine if a candidate point lies within any 
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projected barrier; and this is accomplished by first determining the convex hull of the 

projected corners of the barrier by using Graham’s Scan algorithm (Cormen et al. 1990), 

and then using the Crossing Number algorithm (Cormen et al. 1990) to determine if a 

particular candidate point is within the convex hull polygon corresponding to a barrier. 

Thus, LOS computations form a major part of overall computations performed in 

a simulation model for physical security systems. The proposed visibility detection 

methodology uses techniques from computational geometry and carefully optimizes and 

blends these together, resulting in an efficient and effective LOS visibility algorithm. 

A demonstration of vision in this context is depicted in Figure 23. Here, an agent 

is looking towards another agent, which is represented by 6 points, sitting on the top of a 

wall. The looking agent can see only 4 out of 6 points since the wall obstructs the view of 

two points, which are representing the feet of the sitting agent. However, seeing 4 out of 

6 possible points does not necessarily mean that the looking agent has detected the sitting 

agent. Based on the cognitive recognition function used, the conclusion can vary. The 

result of a very basic cognitive reaction function that requires seeing a single point for 

recognition would be detection, whereas the result of another basic cognitive recognition 

function that requires seeing all points for recognition would not be detection.  

Since LOS calculations are one of the most intensely used components of the 

simulation package, the execution time of the LOS visibility algorithm is of vital 

importance. In order to obtain a basic idea on the computational time requirement of the 

algorithm, the algorithm is tested using randomly generated test cases. Results are 

summarized in the following Table 2. 
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Figure 23 Perception Mechanism 

In Table 2, n denotes the number of barriers in each test case. Note that the test 

problems are generated such that all the barriers created randomly within the cone of 

view. The LOS visibility algorithm is coded with Java and executed using a PC with a 

Pentium-IV 3 GHz processor and 512 MB of RAM running a Windows XP operating 

system. 

Table 2 Computational Time 

 

n Avg (in seconds) CV
10 0.0006 7.7645
20 0.0007 8.4203
30 0.0006 8.5912
50 0.0008 6.7139
75 0.0009 6.0339

100 0.0024 5.3497
150 0.0032 4.4853
200 0.0033 3.6408
250 0.0033 3.5069
300 0.0036 3.2191
400 0.0045 2.8980
500 0.0058 2.7095
600 0.0064 2.5243
800 0.0076 2.0492

1000 0.0089 2.0931
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The computational time requirement changes linearly with respect to the number 

of barriers in the cone of view as depicted in Figure 24. The trend line fitted to the plot 

has an R2 value of 96%. Even with a number of barriers of 1000, the execution of the 

LOS visibility algorithm does not take more than 0.01 seconds. Based on this, it can be 

claimed that the LOS visibility algorithm is fast enough to be accommodated within the 

simulation package. 
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Figure 24 Average LOS Visibility Algorithm Execution Time (in seconds) 

Teller (1992) introduced the concept of potentially visible sets, which try to 

identify the objects possibly visible before any extensive calculation, and discussed the 

importance of their application in virtual environments with a high degree of occlusion. 

Portal Visibility Graph is proposed as a similar approach and it shows which portals are 

visible from a certain portal. This information is important for the line of sight 

calculations. Portal Visibility Graph decreases the number of objects that are incorporated 

in visibility calculations and hence the computation required to perform line of sight 

calculations. Portal Visibility Graphs are constructed in the pre-processing stage by 
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casting lines from several points in a portal to other portals. If any of these lines can reach 

the target portal then an edge is added to the Portal Visibility Graph between the vertices 

that are representing these two portals. An example Portal Visibility Graph for the sample 

facility is depicted in Figure 25. 

Figure 25 can be read as follows: from the location of door 1, D1, there is a 

possibility of visibility through door D2, and windows W1 and W3. Now assume that 

there is an entity in the simulation which is in Zone 1 and it can only see the portal W2. 

Through portal W2, it may see portals W3, D2 and D3 but portals D1 and W1 are 

invisible to this specific entity. The first immediate conclusion is nothing inside Zone 2 is 

visible to this entity. The second conclusion is Zone 2 can be treated as a single object 

instead of using the bounding objects of Zone 2 in line of sight calculations for this 

entity. 

The discussion on the spatial model concludes here. In this section, a formal 

meta-model named HIGHRES to computationally represent the environment is defined 

and the interaction between the agents and environment is discussed. Next section, the 

temporal model for the agents is introduced. 
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Figure 25 Portal Visibility Graph 

4.2 Temporal Model: A Behavior-Intuition Framework for Realistic 

Agents (ABIRA) 

The previous section summarized the HIGHRES model as a spatial model for the 

environment and it depicted the underlying mechanisms of interaction between the 

HIGHRES model and the agents. This section focuses on the temporal model of the 

agents. In other words, this section proposes a formal framework to model the decision 

making process of the agents. After this general framework is laid out, the details on how 

a mental representation of the system (environment and other participants) is constructed 

for each agent and how this mental representation is used in the decision making process 

of the agents will be provided. 

 As stated previously, one of the main motivations in this research is to create 

realistic behavior. Several researchers in cognitive psychology discuss the fact that the 

human decision making process is not outcome oriented in real life situations. Instead of 

listing and comparing relevant action alternatives, humans first rely on their intuitions 
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and the process they employ to generate actions. The commonly accepted two-system 

view approach also highlights this phenomenon. As described in Section 2.2.2, the two-

system defines two types of cognitive processes; intuition and reasoning. Intuition is the 

first cognitive process that is evoked and the reasoning cognitive process is used to either 

evaluate the response generated by the intuition cognitive process or to perform effortful 

reasoning if there is no intuitive response. The two-system view provides a general 

outline to model the human reasoning process rather at an abstract level. In order to 

capture the details of the human reasoning process, two architectures that have folk 

psychology roots have been benchmarked: Belief-Desire-Intention (BDI) architecture and 

Recognition-Primed Decision (RPD) model. The BDI architecture primarily involves the 

interaction between beliefs, desires and intentions, whereas the RPD model tries to 

encapsulate situation awareness within the reasoning process. Both architectures provide 

important insights and these architectures are interleaved to devise a decision framework 

for the purposes of this research.  

 The devised decision framework named ABIRA- A Behavior-Intuition 

Framework for Realistic Agents16 primarily involves the methods that the humans use in 

the decision making process. Similar to the BDI architecture, this framework also 

suggests two distinctive activities: deliberation and means-end reasoning. The former is 

basically selection of goals to pursue and the latter generates courses of actions that 

supposedly achieve these goals. The deliberation process is outcome oriented; it is 

practically a belief-based comparison of achievability between different desires that an 

 
16 Abira is the creator god in the mythology of the Antioquia of Colombia 
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agent might have and committing to a one that looks promising. The proposed means-end 

reasoning process on the other hand is a blend of intuition and analysis.  

The ABIRA framework is depicted in Figure 26 as an etching on the reactive and 

deliberation layers of the proposed agent architecture. The decision cycle for each agent 

starts from an initial state, which is denoted with a circle labeled “0” in the figure. The 

first process employed by the agents is the deliberation process, in which the agents 

commit to a goal. As outlined in BDI architecture, there are three inputs to the 

deliberation process: desires/policies, beliefs, and the goals that the agent is currently 

committed to. The result of the deliberation process is formation of an intention that the 

agent is committed to achieving. As described in Section 2.3.3, goals are the resultant 

states if the intention is achieved and the outcome of the deliberation process is stored as 

a goal by the agent. There are two different methodologies that can be employed in the 

deliberation process. First one is used to form policy based intentions and the second one 

is used to form deliberative intentions. Formation of policy based intentions is driven by 

a policy that an agent might have. An example for this is that security personnel in 

physical security systems should generally follow certain rules dictated by a governing 

security policy. These policies distinctively describe the goals the agent should pursue 

under certain specific conditions. For example, a security policy might prescribe 

patrolling in the facility on a predetermined route and following a person if a suspicious 

activity happens with the goals of finishing loop in the store and of staying within a 

certain distance of the suspect for a certain period of time, respectively. Formation of 

deliberative intentions is driven by the desires an agent might have. Desires are evaluated 
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by employing simple rules and the agent forms intentions based on this evaluation. 

Deliberative intention will be revisited later in this section.  

 The successor of the deliberation process is the means-end reasoning and it is an 

intuition based approach as suggested by the two systems view. The Oxford English 

Dictionary defines intuition as “the immediate apprehension of an object by the mind 

without the intervention of any reasoning process”. In other words, intuition is 

“immediate knowledge” or “almost immediate situation understanding”17. Intuition is an 

integral part of the methodology employed by humans especially in real-life settings. Any 

time an individual needs to develop a course of action in daily life settings, intuition is 

the primary initial mechanism to suggest a feasible course of action. The ABIRA 

framework proposes that the primary component in modeling intuition is a set of 

heuristics that are separately generated (sometimes shared) for each application domain. 

For the retail store security problem, one can generate basic heuristics for avoiding 

surveillance cameras or avoiding security personnel. For example, a basic heuristic for 

avoiding security personnel might be always keeping a certain distance from each known 

security officer. Based on this proposition, ABIRA includes pattern matching functions 

that identify a heuristic based on the goals and the beliefs of the agent. These pattern 

matching functions represent the experience of the agent. This basic approach employed 

by ABIRA is the representation of System I of the two systems view. After the selection 

of the heuristic, the selected heuristic is used to generate a course of action. The 

generated course of action is then analyzed using mental simulations and if the result is 

acceptable, the agent implements the course of action. If no appropriate heuristic is found 
 

17 www.capyblanca.com 
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by experience, the agent has to go through the reasoning process, in which different 

heuristics in the agent’s repertoire are tried with the hope of generating a feasible course 

of action for the current goal. If a feasible course of action cannot be found, the agent 

concludes that the goal is not achievable and drops the goal.  

This general overview of the ABIRA framework leads the way to introducing the 

processes and the data types in more detail.  This detailed introduction is categorized in 

five main topics: (1) Perception, Beliefs, and Information Acquisition; (2) Goals and 

Deliberation; (3) Intuitions, Heuristics, and Reasoning; (4) Analysis by Mental 

Simulation, Expectancies, and Reconsideration; and (5) Action and Communication. 

4.2.1 Perception, Beliefs, and Information Acquisition 

Vision is the primary perception mechanism used by the agents. The ABIRA framework 

models the vision mechanism by employing visual cues; a type of sensory cue. A sensory 

cue is a signal that can be extracted from the sensory input by a perceiver 

(http://en.wikipedia.org/wiki/Sensory_cue). In the ABIRA framework, any object or 

agent is defined by a set of points and the sensory input is the set of points that define the 

object or the agent. Line-Of-Sight calculations defined in Section 4.1.3 are then 

performed using these points and the points that are visible to the agent are regarded as 

visual cues. The agent then uses a recognition function to determine whether the agent 

recognizes the individual objects, the agents or the actions of the agents using the visual 

cues.  



 

 

Figure 26 ABIRA-Agent Decision Framework 

The sensory input for an object is comprised of the eight points that define the 

object in the HIGHRES model plus the center point of the object. Similarly, the sensory 

input for an agent is composed of six points: one for the head, one for the torso, two for 

the hands and two for the feet. If an object or an agent is of any interest, Line-of-Sight 

calculations are performed and the points that are visible from the sensory input are fed to 

the recognition function. Currently, two types of recognition functions are defined in the 

ABIRA framework (if necessary, new recognition functions can be added to the 

framework). Each object, agent or process that might be of interest should be associated 

to a recognition function. The first recognition function is based strictly on the number of 
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visual cues – if there is certain number of visual cues then the subject is recognized. The 

second type of recognition function differentiates between the visual cues. For example, 

points representing the hands of an agent in addition to other possible points need to be 

seen in order to recognize the fact that the agent is concealing an item.  

 Results of the recognition process are then used to construct the beliefs of the 

agent.  As it is defined earlier in Section 2.3.3., beliefs correspond to the information the 

agent has about the environment.  In other words, beliefs are assimilated information or 

conclusions that the agent believes to be true. However, the beliefs can be inaccurate or 

partial in realistic environments. Therefore, there is a need for a mechanism that 

differentiates between the real world and the agent’s world. Each agent stores a mental 

representation of the environment, which is updated each time the agent’s beliefs are 

updated.  This mental representation is then used while analyzing any possible course of 

action. In order to construct a realistic mental representation of the environment, an agent 

needs to construct beliefs on: (1) static objects in the environment, and (2) other agents in 

the environment.  

4.2.1.1  Beliefs on Static Objects 

The beliefs on the static objects in the environment are represented with the type of the 

objects and the coordinates of the objects. At the initialization stage, instantiation of each 

agent’s knowledge base includes information about 4 different types of objects of the 

HIGHRES model: zones, portals, and solid objects. In addition to the HIGHRES objects, 

sensors are also of importance to the agents and hence, they need to be represented in the 
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agents’ beliefs. Each agent’s knowledge base is created separately so the following 

discussion is applied to each agent separately. 

There are three cases that are defined to describe agent’s information on zones: 

1. The agent does not know about the zone  

2. The agent knows about the zone but doesn’t have any information about 

the coordinates of the zone. 

3. The agent has full coordinate information on the zone and the bounding 

objects of the zone. In this case, the agent might still have incorrect/partial 

information about the objects included in the zone or the portals that are 

connected to this zone. 

 Agent’s information on portals and solid objects is defined in a similar fashion. 

However, there are five cases while defining the agent’s information on portals and solid 

objects: 

1. The agent has full coordinate information on the portal/solid object. 

2. The agent assumes that there is a portal/solid object that is not actually in 

the environment. 

3. The agent does not know about the portal/solid object. 

4. The agent knows about the portal/solid object but doesn’t have any 

information about the coordinates. 

5. The agent has incorrect coordinate information on the portal / solid object. 
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Information on sensors is also defined in a similar fashion. There are three cases 

while defining the sensors: 

1. The agent has full coordinate and parameter information on the sensor. 

2. The agent assumes that there is sensor that is not actually in the 

environment. 

3. The agent does not know about the sensor. 

Parameters of the sensors represent the capabilities of the sensor. For example, a 

surveillance camera is defined by the look direction, the range and the half-cone angle in 

addition to the coordinates of the sensor. The inaccurate information on sensors is 

represented by using a sensor that is not actually in the environment. For example, if the 

agent has inaccurate information on the look direction of a surveillance camera, this will 

be represented as a non-existent surveillance camera in the agent’s mental representation. 

This belief can later be updated when the agent discovers the existent camera.  

The beliefs on static objects are captured in the agent’s mental representation 

using two graph constructs: (1) the Zone Movement Graph and (2) the In-Zone Graphs 

(Cellular decomposition). Zone Movement Graphs represent the associations between the 

zones in the facility. Each zone has an associated In-Zone Graph and this In-Zone Graph 

is used in generating/analyzing movements within a zone.  Zone Movement Graphs are 

constructed using the information on zones and portals. In-Zone Graphs are constructed 

using information on the zone, the solid objects and sensors included in the zone and the 

portals that are bounding the zone. These graphs are constructed for each agent using the 

cases defined above for each static object. 
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A few examples of the representation of beliefs on static objects are given below 

using the hypothetical retail store layout in Figure 9: 

• Agent does not know about Aisle 1: Zone Movement Graph wouldn’t include 

Aisle 1. 

• Agent does know not the coordinates of Aisle 1: Zone Movement Graph 

would include Aisle 1 but no In-Zone Graph would be created for Aisle 1.  

• Agent does not know about “Opening 1” (Portal): Aisle 1 and Aisle 2 

wouldn’t be connected in Zone Movement Graph. 

• Agent does not know about Pallet 1: In-Zone Graph for Aisle 3 wouldn’t 

include Pallet 1. 

• Agent thinks that there is a portal between Entrance and Exit: A non-existent 

portal would be created. Entrance and Exit zones would be connected in the 

Zone Movement Graph. 

• Agent thinks Fitting Rooms Door at a different location (still between Aisle 7 

and Fitting Rooms though). Parameter “-1” would be used. Aisle 7 and Fitting 

Rooms would be connected in Zone Movement Graph but the paths created 

would be using the wrong coordinates. Agent needs to discover this 

information and correct its path. 

4.2.1.2  Beliefs on Agents 

Agents hold beliefs about other agents in the environment and these beliefs are then 

employed in the mental representation of the environment. There are three types of 

beliefs on other agents: 
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• Positions of other agents, 

• Activities of other agents, 

o Multiple step activities such as movement,  

o Single step activities such as picking up item. 

• Types of other agents.  

An agent needs to know about the positions and activities of other agents in the 

environment in order to project the other agents’ anticipated movements. In other words, 

the agents in the ABIRA framework should have the capability of putting themselves in 

other agents’ shoes. The primary difference between single step and multiple step 

activities is that the agent needs to combine multiple perceptions in order to construct 

beliefs on multiple step activities of other agents. One example for multiple step activity 

is movement. In order to construct beliefs such as the other agent is moving in a certain 

direction or the other agents is patrolling in the facility on a certain route, the agent needs 

to recognize the agent of concern’s presence multiple times at different positions. 

Beliefs on types of other agents are constructed based on the other beliefs 

previously constructed. Four different types of agents are defined for physical security 

systems in Chapter 3: guards, intruders, workers, and neutrals. Observations of certain 

activities help the agents to construct beliefs on the types of other agents. For example, an 

agent can be labeled as an intruder (or shoplifter in the retail store example) if a 

concealment activity is observed. The details of these assessments are application 

specific. Detailed information for the retail store application will be provided in Section 

4.3.2 on the rules and methodology to construct these beliefs.  
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4.2.1.3 Information Acquisition 

The aforementioned beliefs are constructed by employing the perception/recognition 

mechanisms. Agents collect position information about other agents and objects of 

interest during the simulation. Furthermore, the agent activities of importance defined by 

the application domain are also perceived.   

 Information acquisition is a computationally intensive task. Therefore, it is 

necessary to use computationally efficient information acquisition. One way to do this is 

triggering the perception mechanism of the agents either when there is something 

interesting happening or when there is potential to discover new objects or to update 

beliefs that are inaccurate instead of running the perception mechanism continuously. The 

Portal Visibility Graph defined in Section 4.1.3 is the primary tool to limit the number of 

objects that need to be checked. As described in Section 4.1.3, the Portal Visibility Graph 

stores the information on which other portals are potentially visible from a given portal. 

The purpose here is to find the zones that the agent can potentially see and then run the 

perception mechanism only for the objects and agents that are in the potentially visible 

zones at the time. The basic algorithm used for this purpose is as follows: 

1. Find all the portals that are bounding the zone that the agent is in, 

2. Find the portals that are visible to the agent from the portal list found in Step 1 

(this step incorporates the details on the current position of the agent, the 

agent’s looking parameters that are look direction, range, and cone angle), 

3. Find all the portals that are potentially visible from the portals found in Step 2, 

4. Find all the zones that are bounded by any of the portals found in Step 3. 
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The algorithm presented above finds all the zones that are potentially visible to 

the agent. After finding all the potentially visible zones, it is required to find all the 

objects in these zones that either the agent does not know about or has inaccurate 

information about in the belief set. Perception/recognition process is then executed and 

the necessary updates are performed on the belief set for the objects recognized.  

Information acquisition on the position of other agents of interest is run in a 

similar fashion. For the agents of interest in potentially visible zones, the 

perception/recognition process is executed and the belief set on the agents is updated 

using the results of the perception/recognition process. The question here is that which 

agents are of interest for the agent of concern. Even though the exact answer is dependent 

on the application domain and the type of the agent, a few general examples are listed 

below: 

• The guards do not store beliefs about the workers or neutrals. 

• An intruder might choose not to store beliefs about the workers or neutrals. 

• Neutrals do not store any beliefs. 

• Workers might store beliefs on intruders. 

It is important that the type of the agent is not always revealed to other agents. For 

example, a guard may not differentiate between intruders and neutrals unless a significant 

activity is performed by the intruder. Therefore, the type check and hence belief 

formation is only possible if the agent knows the type of the agent of interest. This 

mechanism will be detailed in Section 4.3, when the details of the retail store example are 

presented. 
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The next fundamental question is how frequently is the perception/recognition 

process is triggered. The quick answer is each time the agent moves to a new cell in the 

cellular decomposition model described in Section 4.1.2. This approach will provide the 

necessary precision for the information acquisition process. 

The information acquisition on the activities of the other agents is triggered 

separately. When an agent performs an interesting activity, the perception/recognition 

process of all the agents that are in the potentially visible zones at the time and that are 

interested in the perceiving this activity is triggered. Interesting activities are application 

specific and details on interesting activities for physical security systems will be provided 

Chapter 5. One caveat at this point is that the potentially visible zones should be found 

using all the portals that are bounding the zone of the agent performing the activity. In 

other words, Step 2 is skipped in the algorithm for finding potentially visible zones. The 

information on who is interested in which activity is again application specific and the 

details will be provided in Chapter 5 for the retail store application. 

4.2.2 Goals and Deliberation 

As it is stated in Section 2.3.3, desires are the states of affairs that the agent wishes to 

consider. In general life situations, humans can have a variety of desires. Deliberation is 

the process of selecting a desire that the agent wants to achieve. However, it is necessary 

to limit the number and types of desires that the agents can have for feasibility depending 

on the application domain. Obviously, desires can vary between different application 

domains. In this section, the focus is given on the physical security systems to better 

describe the deliberation mechanism in the ABIRA framework. Therefore, a number of 
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desires are first introduced that are essential in physical security systems and then the 

deliberation mechanisms employed by different types of agents are discussed.  

 Another distinction has been made in the way different types of agents attain 

desires. The desires of the intruders are general; whereas the desires of the guards are 

dictated by the security policy. Therefore, it is more appropriate to label the states of 

affairs considered by the guards as policies.  

 The guards are primarily responsible from performing spatial activities as dictated 

by the policies. These spatial activities can be: 

• Standing still; 

• Patrolling; 

• A combination of standing and patrolling. 

In addition to these spatial activities, the guards can also be responsible from 

routine activities involved with physical security equipment. Monitoring the surveillance 

video streams is an example of this type of activity. This type of activity is combined 

with the spatial activities and they are dictated by the security policies. Finally, the guards 

react to the activities of potential intruders. Based on certain conditions specified by the 

security policy, the guards may follow or try to detain the potential intruders. It is 

important to underline the fact that the check on the conditions of the security policy is 

performed by the guards and hence it is based on the beliefs of the guard on other agents. 

When a guard commits to any of these policies, the guard needs to generate a 

course of action that potentially achieves the goal, which is the resultant state if the 
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requirements of the policy are satisfied. For example, the guard needs to generate a 

course of action that potentially leads the guard close to the intruder if the guard decides 

to detain the potential intruder. The generation of this course of action is handled by an 

intuition based means-end reasoning process, which is detailed in the next section.  

As stated earlier, the deliberation mechanism of the guards is based on policies. 

The policy based intention mechanism for the guards requires committing to desires as 

prescribed by the security policy. The intruders, on the other hand, employ deliberative 

intention. The deliberative intention mechanism for the intruders requires committing to 

desires with maximum potential benefit. In other words, the intruder evaluates different 

desires that are held at the moment and commits to one that looks promising. In general, 

six different types of desires are defined for the intruders (shoplifters): 

• Shoplift item I, 

• Pick up item I at location X, 

• Conceal item I at location X, 

• Leave the store via cashiers (paying for some or all of the items in 

possession), 

• Leave the store directly (not paying for any of the items in possession), 

• Unconceal the item I at location X. 

Deliberation is basically committing to one of these desires with item and location 

information. Clearly, current intentions also play a role in this deliberation process. For 

example, if the agent is not committed to shoplifting item I or has not picked up item I 

yet, the desire of concealing item I is irrelevant.  
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As discussed in Section 2.4.2., there are different classifications of shoplifters that 

can be found in the literature. Certain types of shoplifters predetermine the items that are 

interest to them and other types of shoplifters act on impulses. If there are predetermined 

items to shoplift, the desire to shoplift those items is immediately considered. If the 

shoplifter acts on impulse, beliefs should meet certain criteria to take the desire of 

shoplifting an item into consideration. Furthermore, some shoplifters prefer only picking 

up the items to shoplift and then leaving the store without paying for any item; where as 

some shoplifters prefer paying for some items while shoplifting others.  

The decision to commit to a desire is basically handled similarly to what BDI 

Architecture proposes. First a filtering function is used to find a desire to evaluate and 

then this desire is evaluated to decide whether to commit. Filtering function is primarily 

responsible from prioritizing the desires that are taken into consideration and returning 

the one with the top priority. The evaluation function is responsible for making the 

decision of whether the desire is promising or not. The primary metric used by the 

evaluation function is security score. The security score is a number that is assigned to a 

certain volume in the store using the beliefs of the agent on the security measures in the 

facility. The most common volume unit used in this research while assigning security 

scores is the cell. This is the same unit employed by A* algorithm to find feasible paths. 

The agent using the beliefs calculates the exposure the cell has to the security measures in 

the facility and assigns a security score to the cell. The security scores will be further 

discussed in Section 4.3.4.  
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As an example, let’s assume that an intruder with a predetermined item to shoplift 

arrived at the facility. The top priority desire would be shoplifting this item and hence, it 

is selected out of the filtering process. The evaluation function checks whether the total 

security score of the zone that includes the item I is below a threshold value (the degree 

of risk seeking in zone assessment). If this is the case, the agent commits to the desire of 

shoplifting item I. If the desire to be considered is picking up item I (assuming that the 

agent is committed shoplifting item I), the evaluation function checks the security scores 

of the cells that have access to item I. If the minimum score is below the agent’s 

threshold value, which is determined by the risk aversion of the agent and named the 

degree of risk seeking in cell assessment, the agent commits to picking up the item using 

the cell (or location) with the minimum security score. The degrees of risk seeking values 

are part of the agent’s personality definition and this definition is further discussed in 

Sections 4.2.3 and 4.3.1. 

After committing to a desire, the agent needs to find a course of action that 

potentially achieves the desire. This process is explained in Section 4.2.3. 

The deliberation process is not used for workers or neutrals. They only perform 

predetermined list of activities. However, they share some of the mechanisms used to 

generate course of actions with the guards and the intruders. 

4.2.3 Intuitions, Heuristics, and Reasoning 

After committing to a goal, the question to answer is how to achieve the goal. For 

this purpose, the agent needs to generate a course of action that potentially achieves the 

goal. The proposed mechanism to model means-end reasoning process involves the 
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methodology that the humans use in daily life. The primary argument is that humans 

employ different methods when they encounter different situations. The methods 

employed by humans are mostly simple sets of efficient rules or heuristics. Gigerenzer 

and Todd (1999) stated that these heuristics should be fast and frugal in order to be 

applicable in real life situations. The terms heuristic and method are used interchangeably 

to refer to the general set of methods employed by the agents in the ABIRA framework. 

The means-end reasoning process in the ABIRA framework captures this 

methodology. Assuming there is a pool of heuristics at its disposal, the agent tries to find 

a heuristic after committing to a goal. The process of selecting a heuristic is affected by 

the personality and the experience of the agent and this process targets to find the 

heuristic that fits the most to the current situation as it is perceived by the agent. The 

selected heuristic is then used to generate a course of action and the agent analyzes the 

generated course of action by mental simulations. If the generated course of action is 

favored, it is used by the agent. If not, there are few options for the agent to consider, 

which will be discussed later in this section. This scheme basically represents the 

modeling of intuition in the ABIRA framework. This phenomenon is probably best laid 

out with the comment made by Cuban world class chess player Jose Raul Capablanca, 

who once said that: “I see only one move. Always the best one,”18when asked how he 

tries to look ahead and analyze an evolving chess game.  

The selection of a heuristic for a particular situation requires the agents to 

understand the situation and then make a selection using the personality and the 

 
18 http://www.intuition-sciences.com/introduction 
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experience of the agent. Personality of an agent is defined by three parameters: the degree 

of risk seeking, the boldness, and the tendency for certain tactics. The degree of risk 

seeking is comprised of three values (1) the degree of risk seeking in zone assessment, (2) 

the degree of risk seeking in cell assessment and (3) the degree of risk seeking in course 

of action assessment. The first two values are used in the deliberation process as 

discussed in Section 4.2.2. The degree of risk seeking in course of action assessment is 

mainly used while deciding whether to favor a course of action generated by a certain 

heuristic. The boldness is mainly used in the reconsideration process. These two factors 

are determined by the type of the agent as classified in the application domain. The 

primary parameter of personality in selecting a heuristic is the tendency for certain 

tactics. As discussed earlier, the intruders can use different tactics while seeking to 

achieve their goals. The tactics of stealth, deceit, and force are associated with the 

personality of the agents, which are encapsulated in the types of intruders that are defined 

for different application areas. An agent using stealth as a tactic would try to apply 

heuristics that serve this purpose. Therefore, predefined heuristics should be classified 

based on their tactical requirements.  

Experience of the agent is the other factor of importance while selecting a 

heuristic for a particular situation. The experience of an agent is basically represented by 

the success ratio of a heuristic for a certain goal under certain circumstances. There are 

three circumstantial factors of interest that are taken into consideration while building up 

experience for agents: (1) The type and number of other agents that are present in the 

area; (2) The activities of these agents; and (3) The static objects in the area. These 

success ratios can be either built up through simulation runs or can be set manually. For 
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example, an intruder’s assessment of a situation can be: (1) There are two guards, (2) 

Both of them are patrolling, and (3) There are 2 surveillance cameras. If the intruder is 

using stealth tactic, a heuristic that previously gave better results for this situation will be 

favored during the heuristic selection process.  

Faced the same situation, two humans may or may not choose the same heuristic 

to generate a course of action for analysis depending on their personalities and 

experiences. However, even using the same heuristic does not necessarily generate the 

same course of action. These heuristics are applied on the current beliefs of the individual 

and hence it is quite possible that a different course of action is generated by the same 

heuristic. One final note is that the agents using the ABIRA framework are bounded by 

the heuristics employed by them. In other words, their solution generation capabilities are 

limited with the heuristics that are available to them.  

If the agent finds a heuristic intuitively using the process described above, this 

heuristic is employed by the agent to generate a course of action. The generated course of 

action is then evaluated by running mental simulations, which are explained in the next 

section. If there is no heuristic immediately favored by the agent, the agent goes through 

the reasoning process. The reasoning process is similar to the System 2 of the two-system 

view. The reasoning process is a slow and serial process and it involves sequentially 

trying a set of heuristics in the agent’s repertoire to generate courses of action and 

analyzing each course of action by mental simulations until finding a favorable course of 

action or concluding that it is not possible to achieve the goal. Each evaluation will 
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require a certain amount of simulation time and hence the reasoning process will take a 

longer time to finish.   

4.2.4 Analysis by Mental Simulations, Expectancies, and Reconsideration 

The course of action devised by a heuristic is comprised of a sequence of activities that 

the agent is projecting to perform. In most cases seen in physical security systems, the 

activities only involve movements and physical activities such as picking up items, 

opening doors, monitoring surveillance camera streams etc. After generating a sequence 

of activities, the agent needs further analysis to assess the potential to achieve the goal 

sought. Considering the stochastic nature of some of these activities in addition to the 

necessity of taking into account other agents’ activities, the agent generally needs to 

consider a set of possible sample paths. As discussed in Section 2.2.2., mental simulation 

is the process that is used by humans in performing the projection of future activities and 

assessing the likelihood of success in achieving the goal. Mental simulations require 

predicting the behavior of other agents, which requires projecting the agent into other 

agent’s environment. For example, if an intruder uses force to open a door such that it is 

punctured, a guard that perceives the punctured door would likely check the situation. 

Therefore, mental simulations should be capable of modeling reasonable behavior on 

other agents’ part. However, if the intruder opens the door with a key and leaves the door 

closed, the expected guard behavior would likely not involve checking the situation.  

Mental simulations are run using the beliefs of the agent. Therefore, only the 

objects that are known to the agent with the known parameters are used in running the 

simulations. Anticipation of other agents’ behavior is primarily generated by using the 
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beliefs on other agents, which are discussed in Section 4.2.1.2.  The primary output 

metric of the mental simulations is the proportion of the successful replications to the 

total number of replications in achieving the goal. Mental simulations are run and the 

output is used in making the decision whether to endorse the proposed course of action. 

The approach taken at this point is similar to the two-system view. As it is stated in 

Section 2.2.2., there are three cases; (1) direct endorsement of the course of action, (2) 

using the course of action as an anchor for adjustments, and (3) rejecting the course of 

action. This decision is made by comparing the agent’s degree of risk seeking in course 

of action assessment by the result of mental simulation. The degree of risk seeking in 

course of action assessment, which is part of the agent personality definition, has two 

parameters: (1) direct endorsement and (2) accepting as an anchor. Therefore, if the 

probability of success, which is the result of the mental simulation run, is greater than the 

first parameter, the course of action is endorsed and implemented. If it is greater than the 

second parameter but less than the first parameter, the course of action is used as anchor 

to perform modifications that potentially increases the probability of success. Otherwise, 

the agent tries to find another heuristic that hopefully better fits the current situation.  

 When the agent chooses to make adjustments using the course of action in hand as 

an anchor, the agent first identifies the problematic activities. Based on this assessment, 

the agent applies an operator to the anchor course of action. Some of the example 

operators are: 

• Wait: The agent waits at one of the points that is visited; 

• Hide: The agent tries to hide behind a solid object in the facility; 
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• Add, remove, change zone: The agent changes one of the zones visited, or 

adds a new zone to visit, or removes a zone from the course of action. 

 An example for this adjustment process is given next. In this configuration, there 

are two surveillance cameras and a security guard in a retail store. There is one intruder at 

the entrance of the retail store. The goal of the intruder is to get an item from the second 

aisle on the left. In order to achieve the goal successfully, the intruder should not be seen 

while picking up this item. The intruder believes that there are two surveillance cameras 

in the store. In addition, the intruder believes that the security guard is patrolling in the 

store and the security guard is currently at the top right corner of the retail store. This 

situation is depicted in Figure 27.  

 Assume that the intruder agent developed a course of action using a heuristic that 

finds the shortest path to target point. This course of action is demonstrated in Figure 27. 

At time 1, the intruder is at the door. At time 2, the intruder gets out of the entrance area. 

At time 3, the intruder arrives at the lower end of the second aisle from the left and at 

time 4, the intruder arrives at the target point where the intruder picks up the item. Based 

on this course of action, the intruder agent can run mental simulations (or generate 

sample paths) to further investigate the situation. Based on the beliefs of the agent, the 

security guard is moving from right to left with a certain speed, which might differ in 

different replications of the simulation. One of the possible sample paths for the security 

guard’s movement is also depicted in Figure 27. Based on this mental simulation, the 

intruder is not visible to the surveillance cameras while picking up the item if the 

intruder’s beliefs on the surveillance camera locations are correct. However, the intruder 

assesses that there is a possibility that it is seen by the guard while picking up the item.  



 

Assuming that the proportion of successful replications is less than the first degree 

of risk seeking parameter but greater than the second one, the agent performs a 

modification using the current course of action as an anchor. In this modification, the 

agent simple adds the fourth zone from the left to its path. This new situation is presented 

in Figure 28. The mental simulation process is rerun and if the proportion of successful 

replications is greater than the first degree of risk seeking parameter, the agent 

implements the modified course of action. 

 

 

Figure 27 Initial Course of Action 

 Mental simulation is run similarly for the guards. The agent generates 

expectancies while running the mental simulations based on the successful replications. 

There are three types of expectancies that are generated by the agents: 
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• Position of the agent at time t, 

• Position of other agents at time t. 

• Number of times seen by security measures 

The reason for expectancy generation is that the implementation of the course of 

action might be different than the projection. Therefore, the agent needs a mechanism to 

detect deviations from the situations occurring in the mental simulation. As stated in 

Section 4.2.3., one of the parameters that define the personality of an agent is the 

boldness. When a deviation from the expectancy occurs, the agent needs to make a 

decision on whether to reconsider the current course of action. The bolder the agent is the 

more deviation the agent can tolerate. If the situation requires reconsideration, the agent 

first checks whether the goal is still achievable. This is done by calculating the security 
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Figure 28 Course of Action Adjustment 

score of the zone. The desire becomes invalid if security score exceeds the risk seeking 

value in zone assessment. If the goal is not achievable, the agent needs to perform a new 

deliberation. Otherwise, the agent updates the timing information on the current course of 

action and runs a certain number of mental simulation replications to check whether the 

course of action is still acceptable. If this is the case, the agent continues with the updated 

course of action. If not, the agent performs means-end reasoning starting with selection of 

a heuristic. 

Acquisition of new information on static objects also needs to be taken into 

consideration. Assume that the intruder has discovered that there is a pallet in the second 

aisle from the left at time 6 (based on the course of action depicted in Figure 28). The 

mental representation of the intruder on the static objects at time 6 is presented using an 

In-Zone Graph construct in shown Figure 29. In this figure, the red cells represent the 

obstruction of movement by static objects, yellow cells are the cells seen by the 

surveillance cameras, and the gray cells are the cells that the intruder can go based on the 

intruder’s beliefs on the object locations and the look direction of the surveillance 

cameras. The pallet blocks the original path devised for moving between locations at time 

6 and at time 7. Therefore, the agent needs generate a new path that turns the corner 

around the pallet. This new course of action needs to be evaluated again by running 

mental simulations. 



 

4.2.5 Action and Communication 

The action module is primarily responsible for implementing the course of action that is 

generated in the deliberation layer of the ABIRA framework. However, the generated 

course of action is rather a sketch of what the agent anticipates as happening. Therefore, 

the action module needs to check the feasibility of the activities being performed as 

dictated by the course of action and to react to the changes in the environment by 

modifying the movements of the agent if necessary. Furthermore, the action module is 

also responsible for performing the activities such as opening a door such that the time 

required to perform these activities is also handled by the action module. 

 

Figure 29 Intruder’s Mental Representation at Time 6 
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 The activities dictated by the course of action are developed using the beliefs of 

the agent. It is possible that the actual environment is different than the agent’s mental 

representation of the environment. It is possible that there is solid object that the agent 

was not aware of that potentially blocks the movement of the agent or there is a 

possibility of colliding with other agents. If the next point in the movement sequence 

is inaccessible, the action module checks the remainder of the sequence for an accessible 

point. When such point is found, the action module runs the A* heuristic to update the 

path of the agent and to make it feasible. If no such point is found, the plan is assumed to 

be invalid and the means-end reasoning process restarts.  

 Communication between agents simply serves the purpose of belief update in the 

current ABIRA framework. Agents can update the other agents’ beliefs using the 

communication mechanism. Communication between guards and between guards and 

workers is dictated by the security policy. Communication between intruders may take 

place if the intruders work in teams. Teams are not currently present in the ABIRA 

framework.  

4.3 Application Domain Representation 

The spatial and temporal models for the agents are captured in HIGHRES model and 

ABIRA framework, respectively. The final element of importance in agent’s behavior is 

the application domain specific information. In this section, “Shoplifting in Retail Stores” 

example is used to demonstrate the application domain representation. The application 

domain representation is comprised of four parts: (1) Behavior characteristics for the 

participants and (2) Operational characteristics of the sensors including the guards, (3) 
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The recognition functions for the agents, and (4) .The security scores as metrics for 

security assessment. 

4.3.1 Participants 

4.3.1.1 Intruders 

Definition of intruders specific to the application domain is a two step process. First, the 

desires and their respective goals (goal is a resultant state of a desire; showing that the 

desire is achieved) and the activities that are used to accomplish the goals need to be 

defined. Second, the types of intruders that are acting in the environment need to be 

formally introduced. 

The retail store security model is used to demonstrate the intruder definition 

process. Desires of the shoplifters were introduced in Section 4.2.2, while discussing 

goals and deliberation. Each desire is defined with the goal state (the desire is 

accomplished) and the interaction with other desires: 

• Shoplift item I: This desire represents the agent’s commitment to shoplift item I. 

The goal is to leave the store with item I without being detained by the guards. 

This would at least require the agent to pick up item I and leave the store.  

• Pick up item I at location X: This desire is handled in two different ways; if the 

agent does not have a desire to shoplift item I, the goal is simply going to the 

location X and picking up the item I. If the agent does have a desire to shoplift 

item I, the goal is going to the location X and picking up the item I without being 

detected by a security measure. 
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• Conceal item I at location X: This desire is considered if and only if the agent 

has a desire to shoplift item I and already picked up item I. The goal is going 

to location X and concealing item I without being detected by a security 

measure. 

• Unconceal item I at location X: This desire is considered when the agent has 

concealed item I but dropped the commitment to desire “shoplift item I” for 

some reason. The goal can be either going to location X and unconceal item I 

without being detected by a security measure or the goal can simply be 

unconcealing the item I. This preference is dependent on the agent type. 

• Leave the store via cashiers: The goal is going to the cashiers and paying for 

the items in possession except for the items that the agent has commitments to 

shoplift. The agent commits to this desire if there are no desired items to pick 

or conceal or unconceal. 

• Leave the store directly: This desire is handled in two different ways; if the 

agent does not have a desire to shoplift any item, the goal is simply going to 

the exit door. If the agent does have a desire to shoplift any item, the goal is 

getting to the exit door without being detained. 

The agent needs to perform activities to accomplish the goals that they have. The 

general flow of the activities for the intruders is depicted in Figure 13 using an activity 

diagram. Each activity requires some time to perform and this duration can vary. As 

stated in Section 2.4.4, some of the activities are critical in the sense that the guards need 

to detect these activities to confidently detain a shoplifter. The activities defined for the 
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intruder are going to a location, picking up an item, concealing an item and unconcealing 

an item. The activities are denoted as critical if they are associated by shoplifting and 

hence they are candidates for detection by the security measures in the store. The 

conditions for being critical for each type of activity are listed as: 

• Picking up an item: If the item is picked up while a desire for shoplifting the 

item is present, the activity is accepted as critical. The rationale behind this 

argument is that humans demonstrate some behavioral cues while picking up 

items for shoplifting as stated by Dabney (2004). 

• Concealing an item: Concealing an item is definitely a visual cue if detected 

by the security measures in the store. 

• Unconcealing an item: If the agent drops the goal of shoplifting the item, the 

agent can unconceal an item that is concealed. If possible, this needs to be 

caught by the security measures to prevent false detainments and hence 

avoiding the costs associated with false detainments. 

• Paying: The activity of paying for the items is important from the security 

perspective, if the agent is paying for some items and not for the others. 

Therefore, it is important for the security measures to actually detect the agent 

not paying for the item. This also aims preventing false detainments. 

• Going to the exit area: If a shoplifter has possession of item(s) and the 

shoplifter is getting into the exit area, the guards should approach the 

shoplifter and detain the shoplifter before the shoplifter leaves the store. 

Therefore, it is important to detect the suspects approaching the exit area. 
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The conditions for detection by the detection mechanisms in the store are 

discussed in Section 4.3.2. The mechanism to handle the interaction between the sensors 

and critical activities is explained in detail while discussing the simulation model in 

Section 4.4.  

Second step in defining the intruders is classification of the intruders for the 

particular application domain, which, in this case, are the shoplifters. Before introducing 

the types of shoplifters used, one more definition needs to be done: the security score. As 

stated in Section 4.2.2, the security score is the perceived security of a certain area in the 

facility. Security scores can be assigned to zones or the cells, which are defined in 

Section 4.1.2. The security score for a cell is a function of number of cameras visible 

from the cell, number of guards becomes visible from the cell in X time units, and 

number of workers becomes visible from the cell in X time units. The security score for a 

zone is a function of the total security score of the cells in the zone and the average 

number of regular shoppers in the zone over X time units. 

Definition of each type of intruder includes personality, desires and experience. 

An overall layout of the personality definition is as follows: 

• The degree of risk seeking 

o The degree of risk seeking in zone assessment 

o The degree of risk seeking in cell assessment 

o The degree of risk seeking in course of action assessment 

 Direct endorsement: A value between 0 and 1. 
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 Using as an anchor: A value between 0 and 1. Less than direct 

endorsement. 

• The boldness: A value between 0 and 1. Five levels are defined:  

o Extremely bold- 0.9 

o Very bold- 0.7 

o Bold – 0.5 

o Cautious – 0.3 

o Very cautious – 0.1 

• The tendency for certain tactics:  

o Stealth: Concealing of goods on the person including wearing the 

items under the current dress, pick up and conceal location are 

different. May or may not pay for other items. 

o Deceit: Switching price tags or removal of packaging. Conceal activity 

is used to model these activities and they happen at pick up location. 

Pay for other items. 

o Force: Simply grabbing the item and running away. Does not get any 

other items and hence does not pay for anything. 

Ray (1987) and Dabney (2004) stated that approximately 8.5% of shoppers are 

shoplifter. Furthermore, Moore (1984) provided a classification of shoplifters as 

discussed in Section 2.4.2. Based on that discussion, different personalities are assigned 

to the shoplifter types in Moore’s classification. This assignment is presented in Table 3. 

In this table, degree of risk seeking is abbreviated as DRS, zone assessment as ZA, cell 

assessment as CA, and course of action assessment as CAA. The first personality 
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parameter “impulse” determines whether the shoplifter is an impulse shoplifter or has a 

predetermined item(s) before arriving at the store. The column “Activity Duration” 

represent how much time the shoplifters spend while performing activities. As discussed 

in Section 4.3.2, longer activity duration times increase the probability of detection. The 

column “Replan” determines whether the agent will try to shoplift again, if for some 

reason the agent drops the initial shoplifting intention.  

Table 3 Intruder classification 

Type\Personality Impulse Tactics Boldness 

DRS

-ZA 

DRS

-CA 

DRS-

CAA1 

DRS-

CAA2 

Activity 

Duration 

Re-

plan 

Impulse Yes Deceit 

Very 

Cautious N/A 0.2 0.1 0.2 Long No 

Occasional No Stealth Cautious 0.8 0.2 0.15 0.2 Medium No 

Episodic Yes Force 

Extremely 

Bold N/A 0.9 N/A N/A Short No 

Amateur No 

Stealth, 

Deceit Bold 0.6 0.4 0.2 0.4 Short Yes 

Semi-pro No 

Stealth, 

Deceit, 

Force Very Bold 0.5 0.4 0.3 0.4 

Very 

Short Yes 
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Different types of heuristics can be employed by the shoplifters: Some examples are: 

• Minimum distance: Force, Later stages (while leaving the store) of deceit and 

stealth. 

• Minimum security score: Stealth 

• Avoid the guards: Force and stealth 

• Avoid the cameras: Deceit 

Heuristics defined for the developed scenarios are further discussed in Chapter 5. 

As discussed earlier, experience plays a role in the selection process of the 

heuristics. Different mechanisms for learning such as reinforcement learning can be used 

to build up experience for the agents. However, experience models have not been 

implemented within this research. A further discussion on experience is made in Chapter 

6, where future work is discussed.  

4.3.1.2 Guards 

A general outline for guard activities is presented in Figure 14 and further discussed in 

Section 4.2.2. There are four types of activities present in this discussion: 

• Regular Activities: Patrolling, standing still, combination of patrolling and 

standing still, and watching surveillance video streams. 

• Sensory Activities: Perceive 

• Decision Activities:  Decision to commit (state of being suspicious of a 

customer), decision to changing/dropping a commitment, and decision to 

detain. 
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• Planned Activities: Follow and Chase (and detain if caught the suspect) 

• Communication Activities: Broadcast 

Security policy dictates the rules for activities of type: (1) Regular, (2) Decisions, 

and (3) Communication; whereas the guard is solely responsible from sensory and 

planned activities as well as implementing the activities dictated by the security policy.  

In general terms, a security policy should specifically define the rules for 

aforementioned three activity types. In addition, a guard can be wearing a uniform (and 

hence visible to shoppers) or disguised as a regular shopper (and hence covert). Each 

guard working in the facility should be using a security policy and there can be more than 

one security policy for different guards. 

For sensory activities, the guards use their perception. This activity is further 

detailed in Section 4.3.2. 

For planned activities, the guards use means-end reasoning. 

An example security policy is: 

• Regular: Continuously patrol in the store for two hours. 

• Decision:  

o Commit when a critical activity is detected or broadcasted if not 

committed already. 

o Drop commitment if expectancies (developed in mental simulations) 

are violated. 

o Detain if the committed suspect reaches the exit area. 
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• Communication: When a critical activity is detected, broadcast this 

information to all guards in the store. 

The goal in chase is catching the suspect before the suspect reaches exit. The goal 

in follow is to have the suspect visible all the time. 

4.3.1.3 Workers 

Workers’ role defined in this research is primarily standing still at various locations in the 

retail stores (as if they are helping customers or working as cashiers). Workers may 

detect critical activities of potential shoplifters and let the guards know via 

communication. The detailed role descriptions for workers in the developed scenarios are 

provided in Chapter 5. 

4.3.1.4 Neutrals 

Neutrals are regular shoppers in the retail store security application. They try to shop for 

the items that are in their shopping list, which is randomly generated. The primary role of 

regular shoppers from the physical security perspective is that they can create false 

alarms. In other words, some pick up activities of regular shoppers are probabilistically 

labeled as critical activities and if these activities are recognized by the security 

measures, the guards act under the assumption that the regular shopper is a potential 

shoplifter unless something conflicting with this assumption is recognized. 

4.3.2 Sensors 

A classification on sensors of interest was presented in Section 3.3. The sensors used in 

the application are defined following this sensor classification. As it was stated, there are 
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two ways to defeat a sensor: (1) Spoofing, and (2) Bypassing.  No spoofing techniques 

are defined for the sensors in current state of this research. Bypassing is possible and this 

behavior needs to be generated by the intruders as described in the ABIRA framework 

and in Section 4.3.1.1. 

Detection in the retail store security model is a little different than the other 

intrusion detection systems. First of all, the guards need to collect evidence in order to 

successfully detain the suspects. Therefore, the detection in the retail store security 

context refers to detecting critical activities which create suspicion. There are two types 

of sensors and both of them involve guards. Both types are responsible for detecting 

suspicious activities; the first one is the guards on the retail floor and the second one is 

the guards watching video camera surveillance stream. The next two sections detail the 

descriptions of these types of sensors. 

4.3.2.1 Guards on the retail floor 

As discussed earlier, there can be security guards in the retail store. These guards work as 

sensors and they try to detect suspicious activity. They are visible to other agents; 

however, not all the security guards wear uniforms. Therefore, security guards without a 

uniform can be accepted as covert. They primarily use vision as the detection mechanism 

and as discussed in Section 4.1.3., they use Line-Of-Sight for vision calculations. A range 

for vision and visibility cone half angle should be specified for these agents to perform 

volumetric Line-Of-Sight calculations. 

 Probability of detection for the guards on the retail store varies between different 

activities and depends on a certain number of factors. As stated in Section 4.1.3, there are 
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two general types of recognition functions: (1) based on number of visual cues and (2) 

based on the type of visual cues. However, the critical activities that are defined in 

Section 4.1.1.1 require human comprehension to correctly interpret the activities 

happening in the environment. Tickner and Poulton (1973) discuss the factors that affect 

the detection probability of humans on certain activities from surveillance video streams. 

Important factors in detecting an activity are: 

• Distance of the location of the activity to the camera (or looking point), closer 

to the activity better detection 

• Duration of the activity, longer the activity better detection 

• Hours worked by the guard, less hours worked by the guard better detection 

These factors are encapsulated in the probability of detection model for guards on 

the retail floor. Each critical activity that is defined for the intruders is associated with 

these factors: 

• Pick-up (with the purpose of shoplifting): Hands need to be seen. Distance, 

duration, and hours worked are important.  

• Conceal: Hands need to be seen. Distance, duration, and hours worked are 

important. 

• Unconceal: Hands need to be seen. Distance, duration, and hours worked are 

important. 

• Pay: Only the number of visual cues is important. 

• Reach exit area: Only the number of visual cues is important. 
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False alarms can be caused by regular customers (neutrals). The only activity that 

can cause a false alarm is the pick-up activity. Some of the pick-up activities of regular 

customers are candidates for a false alarm. If the hands of a regular customer performing 

the candidate pick-up activity are visible to the guard, this activity can raise a false alarm 

with a probability that is dependent on the distance, duration and hours worked (i.e. the 

farther the location of the activity, the higher the probability of a false alarm). 

4.3.2.2  Guards watching the surveillance camera streams 

Surveillance cameras located in the retail store have two functionalities: (1) Record the 

(critical) activities in the store for later review and (2) Stream the videos to the monitors 

that are watched by security guards. For the second case, security guards use the 

surveillance camera streams to perform detections. The guards watching the surveillance 

camera streams have lower probability of detection compared to the guards on the retail 

floor. The study performed by Tickner and Poulton (1973) reports that a group of people 

watching 16 monitors was able to detect the critical activities 59% of the time in an 

experimental study. They also state that decreasing the number of monitors can increase 

the percent detections such that the same group watching 8 monitors this time was able to 

detect the critical activities around 80% of the time.  

 The guards watching the surveillance camera systems are less likely to detect the 

critical activities when compared with the guards on the retail floor since it is harder to 

perform assertions from a motion picture. Detection probability model for guards 

watching the surveillance camera stream use the same factors that are introduced for 
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guards on the retail floor. However, the number of monitors being watched is added as a 

factor such that the more monitors being watched the less probable is the detection. 

4.3.3 Recognition 

Agents use perception mechanisms to develop beliefs on other agents. The perception 

mechanism involves two consecutive activities: vision and recognition. Each agent in 

ABIRA framework is represented by a set of points and the Line-of-Sight calculations 

used to model the vision find how many points of the set representing the other agent are 

visible to the looking agent. This information is then fed to the recognition function to 

determine whether the looking agent recognizes the other agent (i.e., a recognition has 

occurred). Successful recognitions are used to update the beliefs of the looking agent. 

 As we have discussed in Section 4.2.1.2, there are 3 types of beliefs constructed 

on other agents: positions, types, and activities. Activities are further classified as either 

single step or multiple step activities. The agents use these beliefs for deductions on other 

agents’ goals and to generate anticipations on agents’ upcoming activities.  

 In the ABIRA framework, factors introduced in Section 4.3.2 are used to estimate 

the likelihood of recognition, which can be interpreted as probability of recognition. This 

probability is then used to determine whether recognition has occurred; a uniform (0, 1) 

random variate is generated and compared with the likelihood of recognition. The 

estimation process to determine the likelihood of recognition is discussed next. Note that 

the estimation process is specific to the problem domain and so is specific to the retail 

store security application for this dissertation. It is necessary to develop different 
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mechanisms for the likelihood of recognition estimations for different application 

domains.  

4.3.3.1 Positions of the agents 

Recognition of the position of an agent involves basically detecting the presence of an 

agent at a certain location. Position recognition does not imply the type of the agent is 

detected; it is merely the construction of the belief on an agent’s presence. However, if 

the type of the agent is known – this belief can be incorrect-, position information is 

associated with the agent type.  

 Likelihood of recognition for the position of the agent is calculated as: 

kଵ כ ሺ 
# of points visible

 Total # of points representing the agent
ሻ  ൅  kଶ כ ሺ

ሺRange െ Distanceሻ
Range

  ሻ 

(note that this likelihood is only valid when the agents are closer than the range 

(Distance < Range). 

 For the guards watching surveillance camera streams, number of monitors being 

watched is also important. As it is stated by Tickner and Poulton (1973), the likelihood of 

recognition decreases when the number of video streams being watched is increased. This 

is modeled by defining coefficient based on the maximum number of cameras can be 

monitored and the number of cameras being monitored. If the maximum number of 

cameras that can be monitored is 16, the likelihood of recognition function is defined as: 



 

൬
# of points visible

Total # of points representing the agent
൰
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Assuming all points of the agent are visible to the camera, the likelihood of 

recognition as a function of number of videos monitors is plotted in Figure 30 for the case 

where the maximum number of video streams can be monitored is 16. 
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Figure 30 Likelihood of recognition as a function of number of video streams 

monitored 

Guards collect position information only on potential shoplifters. Workers do not 

check shoplifter positions unless such a request is broadcasted by the store security 

personnel. Regular shoppers do not collect position information. Shoplifters check the 

positions of all other agents in the store. 
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4.3.3.2 Types of the agents 

Recognition of the agent type is dependent on recognition of activities or the presence of 

other agents and hence it can be stated that recognition of the type is a by-product of 

other recognitions. Nevertheless, it is extremely important to correctly recognize the 

types of other agents within the context of the retail store application.  

 In the retail store security application, guards, workers, and regular shoppers need 

to recognize the shoplifters. For workers and regular shoppers, this does not mean 

tracking the shoplifters but informing the store security on recognized activities. The 

guards, on the other hand, should be able to label agents as potential shoplifter based on 

observed activities. Initial labeling of agents as potential shoplifter would only mean that 

these agents need to be tracked. Decisions on detain will be made based by assessing the 

activities observed by the agents labeled as potential shoplifters. 

 The shoplifters also need to differentiate between guards, regular shoppers, and 

workers. Even though the presence of workers or regular shoppers around would deter 

the shoplifters, the shoplifters are mostly interested in which agents are guards. As stated 

before, guards can be in uniform or not and this implies recognition of different things to 

recognize the type of the agent as guard. In parallel to the general approach in the ABIRA 

framework, the type of the agent is not always correctly recognized and the beliefs 

constructed using agent type recognitions effect further mental processes.  

Table 4 summarizes what triggers the recognition of which type of agent and who 

can be mistakenly recognized as a different type of agent. As it is stated, in Section 

4.3.1.1, it is assumed that guards can recognize shoplifters while they are picking-up 
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items even though it is possible to recognize regular shoppers as shoplifters. However, 

this is only limited to the guards; workers or regular shoppers need to detect a conceal 

activity to recognize agents as shoplifters. 

Table 4 Agent type recognition 

Detecting Agent Type Of Agent 

Required 

recognitions False recognitions 

Shoplifter Guard in uniform Presence None 

Shoplifter 

Guard without 

uniform Follow activity 

Workers and 

regular shoppers 

Shoplifter Worker Presence None 

Shoplifter Regular shopper Presence None 

Guard Shoplifter 

Pick-up or conceal 

activities Regular shoppers 

Workers Shoplifter Conceal activity None 

Regular shoppers Shoplifter Conceal activity None 

 

4.3.3.3 Activities of the agents 

As it is stated in Section 4.2.1.3, two types of activities are specified: single step and 

multiple steps. In single step activities, the belief is constructed only by recognizing the 
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activity itself, whereas in multiple step activities, the agent needs to infer a belief from 

multiple recognitions of the presence of other agents. Furthermore, the belief is 

continuously updated in multiple step activities as new recognitions of the presence 

occur. All critical activities are assumed to be single step activities; picking up item, 

concealing an item, unconcealing an item, paying for items and going to the exit area are 

all single step activities. Example multiple step activities are patrolling, following, and 

chasing.  

 For the single step case, the objective is to determine whether the activity is 

recognized anytime during its duration. Important parameters in recognizing a single step 

activity are the duration of the activity, number of points seen on the subject agent, and 

distance to the subject agent. For guards, fatigue level also plays a role in recognition. For 

surveillance stream monitoring guards, the number of video streams being watched also 

plays a role in recognition.  

 The approach used in modeling the likelihood of recognition for single step 

activities is that there will be a number of check points during the duration of the activity. 

At each check point, the looking agent generates a value for likelihood of recognition, 

which also takes into account earlier checks. In general, the longer is the duration of the 

activity, the higher is the number of check points. As it is going to be demonstrated later, 

increase in the number of checkpoints also increases the likelihood of recognition when 

everything else remains constant. It is assumed that for each activity, there is a fixed 

number of check points and this is dictated by the type of the activity.  
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 For guards there are three components of the likelihood of recognition function: 

the vision component, the distance component, and the fatigue component. If the guard is 

watching a surveillance camera video stream, the vision component is updated in a way 

that the number of surveillance video monitors is taken into account. For shoplifters, 

workers and neutrals, the fatigue component is dropped out of the likelihood of 

recognition function. Final value for the likelihood of recognition is a weighted average 

of the components used.  

The vision component of the overall likelihood of recognition function is defined 

as: 

൬∑ ݅ ݄݇ܿ݁ܿ ݊݅ ݊݁݁ݏ ݏݐ݊݅݋݌ ݂݋ ݎܾ݁݉ݑ݊
ݐ݊݁݃ܽ ݄݁ݐ ݃݊݅ݐ݊݁ݏ݁ݎ݌݁ݎ ݏݐ݊݅݋݌ ݂݋ ݎܾ݁݉ݑ݊ ݈ܽݐ݋ݐ

௡௨௠௕௘௥ ௢௙ ௣௢௦௦௜௕௟௘ ௖௛௘௖௞௦
௜ ൰

ݏ݄݇ܿ݁ܿ ݈ܾ݁݅ݏݏ݋݌ ݂݋ ݎܾ݁݉ݑ݊  

 In order to visually demonstrate this function, assume that an activity defines ten 

check points. The subject agent is represented by 6 points and the looking agent sees only 

1 point of the subject agent in the first 20 % of the checks, 2 points in the second 20% of 

the checks, 2 points in the third 20% of the checks, 4 points in the fourth 20% of the 

checks, and 5 points in the final 20% of the checks. The likelihood of recognition based 

on only the vision component is depicted in Figure 31. 

 As stated in Section 4.2.1, a differentiation is made between the visual cues in 

recognition. For some activities, only the number of visual cues is important for 

recognition, whereas for other activities, certain visual cues need to be seen for 

recognition.  At each check point, recognition is possible if the agent sees at least one 



 

visual cue. If the agent needs to see a certain set of points (e.g. hands) for recognition 

then at least one of the visible points should be from the set of points that is associated 

with the activity.  
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Figure 31 Likelihood of recognition at check i only using the vision component 

The cumulative likelihood of recognition is shown in Figure 32. Based on the 

sequence of number of points seen of the subject agent, there is an approximate 7% 

chance that the activity of the subject agent will not be recognized by the looking agent. 
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Figure 32 Cumulative probability of recognition after i checks only using the 

vision component 
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If the number of checks is increased to 30 given that the sequence of number of 

points seen is same, the chance of the activity being unrecognized drops to 0.1%. The 

cumulative likelihood of recognition for both cases is demonstrated in Figure 33. 
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Figure 33 The cumulative likelihood of recognition for 10 and 30 check points 

after i checks only using the vision component 

If the guard is not on the retail floor but watching surveillance video stream, the 

vision component of the likelihood of recognition function needs to be updated. The 

vision component for this case is defined as: 

ቀ∑ ೙ೠ೘್೐ೝ ೚೑ ೛೚೔೙೟ೞ ೞ೐೐೙ ೔೙ ೎೓೐೎ೖ ೔
೟೚೟ೌ೗ ೙ೠ೘್೐ೝ ೚೑ ೛೚೔೙೟ೞ ೝ೐೛ೝ೐ೞ೐೙೟೔೙೒ ೟೓೐ ೌ೒೐೙೟

೙ೠ೘್೐ೝ ೚೑ ೛೚ೞೞ೔್೗೐ ೎೓೐೎ೖೞ
೔ ቁ ௡௨௠௕௘௥ ௢௙ ௣௢௦௦௜௕௟௘ ௖௛௘௖௞௦ൗ

௡௨௠௕௘௥ ௢௙ ௩௜ௗ௘௢ ௦௧௥௘௔௠௦ ௪௔௧௖௛௘ௗାଵ
  

Assume, for example that the activity defines 30 check points and all six points of 

the subject agent are visible to the camera all the time. The cumulative likelihood 

functions of recognition for the vision component in cases of different numbers of 

surveillance video streams being monitored are depicted in Figure 34. As it can be read 

from the figure, the likelihood of recognizing the activity for the eight monitors is 
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approximately 83% and for the 16 monitors is 60%. These numbers are close to the 

results of the experimentation of Tickner and Poulton (1973) as discussed in Section 

4.3.2.2. 
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Figure 34 The cumulative likelihood of recognition for 1,2,4,8,16 monitors cases 

using only the vision component 

The distance component of the overall likelihood of recognition function is 

defined as: 

ሺܴܽ݊݃݁ െ ሻ݁ܿ݊ܽݐݏ݅ܦ ܴܽ݊݃݁⁄  

where range is the maximum distance that can be effectively seen by an agent. 

The fatigue component of the overall likelihood recognition function is defined 

as: 

ሺ݄݂݄ܵ݅ݐ݈݃݊݁ ݐ െ ሻ݀݁݇ݎ݋ݓ ݕ݀ܽ݁ݎ݈ܽ ݏݎݑ݋ܪ ⁄݄ݐ݈݃݊݁ ݐ݂݄݅ܵ  
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The overall likelihood of recognition function is then: 

݇ଵ כ ݐ݊݁݊݋݌݉݋ܥ ݊݋݅ݏܸ݅ ൅ ݇ଶ כ ݐ݊݁݊݋݌݉݋ܥ ݁ܿ݊ܽݐݏ݅ܦ ൅  ݇ଷ כ  ݐ݊݁݊݋݌݉݋ܥ ݁ݑ݃݅ݐܽܨ

Where k1+k2+k3=1, k2=0 for guards watching the surveillance video stream, and 

k3=0 for shoplifters, workers, and regular shoppers. 

For multi step activities, two different approaches are employed. First one follows 

a similar logic as the single step activities; a number of check points are created for the 

activity and if the activity is recognized then the agent recognized the activity correctly as 

a whole. The second approach requires on the agent part the ability to develop an 

understanding of other agents’ actions. For example, chase and follow activities are 

recognized if a shoplifter recognizes the presence of a guard for a certain number of 

consecutive checks. Another example is devising a patrolling path for the guard based on 

the locations of the guard agent, where its presence is recognized. 

4.3.4 Security Scores 

Security scores are used for intruders (shoplifters for the retail store application) in the 

ABIRA framework and they represent the perceived security of a certain area in the 

facility. Higher security scores represent a high level of perceived security and the 

intruders try to avoid high security areas in general.  

 The security score for any area is dependent on the number of guards, surveillance 

cameras, workers and neutrals around that area for a specified time interval. In the 

ABIRA framework, security scores vary in the range of zero to 1 and are comprised of 

four components; guard security score, surveillance camera security score, worker 
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security score, and neutral security score. The overall security score is a weighted 

average of these individual security scores. 

 The retail store application defines two types of areas that security scores are 

calculated for: zones and cells. Cells are the result of the cellular decomposition applied 

to areas as discussed in Section 4.1.2. Basically, a zone is comprised of a number of cells. 

Each cell is a cuboid defined by 8 points. In the discussion of security score, the center of 

the cell is also used and hence, there are 9 points of concern for each cell. The security 

score for a zone is calculated by averaging the security scores of randomly selected cells 

that are in the zone. In the current application, the percentage of cells used in zone 

security score calculation is around 20%. 

 Security scores are based on the exposure of the cells to the security measure. 

Assuming that the primary perception mechanism is vision, the security score of a cell is 

a reflection of the intersection of the cell with the cones of view of security measures. 

The visibility of the cell’s 9 points to the security measures is used in calculating security 

scores as an approximation of volumetric intersections in the retail store security 

application.  

 Time plays an important role in security score calculations. The shoplifters are 

more interested in the exposure of the cells to the security measures during the planned 

time interval of the activity. In the retail store security application, only the surveillance 

cameras have fixed locations but even the surveillance camera’s look direction can 

change in the case of a scanning surveillance camera. Therefore, the security score of a 
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cell can vary by time depending on the positions, look directions and movements of other 

agents and surveillance cameras.  

 The security score of a cell is calculated for a certain integer time interval and this 

time interval is approximately double the time required to perform the activity. The 

security score calculation basically involves checking the exposure of the cell at discrete 

instants during the time interval and it uses the beliefs of the agent to anticipate the 

locations of other agents. The security score of a cell for a single security measure (e.g. 

guard) is calculated as: 

log୲୧୫ୣ ୧୬୲ୣ୰୴ୟ୪ ቌ1

൅ ෍ ௡௨௠௕௘௥ ௢௙ ௚௨௔௥ௗ௦݃݋݈ ቌ1
௧௜௠௘ ௜௡௧௘௥௩௔௟

௜ୀ଴

൅ ෍ ଵ଴ሺ1݃݋݈
௡௨௠௕௘௥ ௢௙ ௚௨௔௥ௗ௦

௝ୀଵ

൅  ቍቍ݆ ݀ݎܽݑ݃ ݕܾ ݅ ݁݉݅ݐ ݐܽ ݈ܾ݁݅ݏ݅ݒ ݏݐ݊݅݋݌ ݈݈݁ܿ ݂݋ ݎܾ݁݉ݑ݊

 For a single time unit evaluation with one guard, the change of security score as a 

function number of points visible is depicted in Figure 35. As it can be seen from the 

figure, this is a concave function and marginal contribution to the security score is bigger 

for smaller number of points visible. 
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Figure 35 Security score as a function of points visible – single guard, one time 

unit case 

 For a single time unit evaluation with two guards, the change of security score as 

a function number of points visible by each guard is demonstrated in Figure 36. 

Overall security score for a cell can then be calculated as: 

݇ଵ כ ݁ݎ݋ܿݏ ݕݐ݅ݎݑܿ݁ݏ ݀ݎܽݑ݃ ൅ ݇ଶ כ ݁ݎ݋ܿݏ ݕݐ݅ݎݑܿ݁ݏ ܽݎ݁݉ܽܿ ݈݈݁ܿ݊ܽ݅݁ݒݎݑݏ ൅ 

݇ଷ כ ݁ݎ݋ܿݏ ݕݐ݅ݎݑܿ݁ݏ ݎ݁݇ݎ݋ݓ ൅ ݇ସ כ  ݁ݎ݋ܿݏ ݕݐ݅ݎݑܿ݁ݏ ݈ܽݎݐݑ݁݊

Where k1+k2+k3+k4=1 and k1>k2>k3>k4 
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regular shopper checks for a worker. If there is one visible, the regular shopper informs 

the working by going near the worker and telling.  If no workers are visible, the regular 

shopper continues his/her regular path until he/she sees a guard or a worker. The action is 

taken based on who is seen first. If the regular shopper informs a worker, this information 

is broadcasted by the worker. 

The security guards are primarily responsible for the follow and detain activities 

and they recognize all types of critical activities. The detain activity includes chasing the 

potential shoplifter and detaining him/her if caught. If a security is not already committed 

to a following a potential shoplifter, recognition of any type of critical activity results in 

the security guards committing to following the potential shoplifter. If there are multiple 

not committed security guards (in the case of critical activity is broadcasted), the security 

guard closer to the location of the critical activity commits to following the potential 

shoplifter. If all the security guards are committed, it is possible for one security guard to 

change commitment. In this case, the following priority criteria are used in order to 

change commitment.  

1. Go to exit area 

2. Pay ( recognition of not paying for certain items) 

3. Conceal 

4. Pick-up 

For example, if a security guard is following a potential shoplifter of whose only 

recognized activity is pick-up, recognition of an activity conceal overrides the initial 

commitment (if there are no other security guards available). 
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Table 5 Responses to critical activities 

Critical Activity/ 

 Type of Agent Surveillance Camera Worker Regular Shopper 

Pick-up Broadcast No No 

Conceal Broadcast Broadcast Inform 

Unconceal Broadcast Broadcast 

Inform, if detected 

conceal 

Pay Broadcast 

Broadcast, if 

notified No 

Go to exit area Broadcast 

Broadcast, if 

notified No 

 

Detain is possible if and only if the potential shoplifter is headed to exit (in the 

exit zone). Basis of this argument was laid out in Section 2.4.4. The security guards 

detain potential shoplifter in cases of following sequences of critical activities: 

• Pick-up- Go to exit area; 

• Pick-up- Conceal- Go to exit area; 

• Pick-up-Pay- Go to exit area; 

• Pick-up-  Conceal- Pay- Go to exit area; 
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• Conceal- Go to exit area; 

• Conceal- Pay- Go to exit area. 

Recognition of Pay activity in this context actually means that the security 

measures recognize that the potential shoplifter is not paying for some items while paying 

for the others. 

Commitment to following a potential shoplifter is dropped if an unconceal 

activity is recognized (for the item of concern).  

One addition to the defined security policy is having the option to check the 

records of surveillance cameras for earlier activities of potential shoplifter. For example, 

the security guards watching the surveillance video streams can check the recorded video 

streams for earlier pick-up activities of a potential shoplifter if he/she is headed to the exit 

area. However, this functionality is not incorporated in the security policy of the current 

scenarios. 

This section defines the security policy that is used for sample scenarios defined 

in Chapter 5 for the hypothetical retail store example. It is definitely possible to define 

different types of security policies but for demonstration purposes, the defined security 

policy is sufficient. 

4.4 Simulation Model 

The general simulation and the mental simulations run on a Discrete Event Simulation 

(DES) engine that is developed based on the descriptions by Schriber and Brunner (1997) 

and Law and Kelton (2000). Agents move in the facility on paths which are discretized 
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by points. Heuristics employed to generate paths use the In-Zone Graph representation 

and the generated path is comprised of the center points of the visited cells. In the DES 

representation, arrival to each of these points is an event and hence, the discrete event 

approach can be used for simulating the movements of all of the agents. 

 The activities of the agents are modeled with two instantaneous events; the start 

of the activity and the end of the activity. Before the agent starts an activity, the start and 

the end of the activity events are scheduled and pushed into the Future Event List (FEL). 

The critical component in the discrete event representation is the recognition component. 

As it is stated in Section 4.3.3, the looking agents perform multiple observations during 

the duration of the activity and the results of these are observation are fed to the 

recognition function. This phenomenon is modeled by generating observation events for 

the agents that are potentially interested in recognizing the activity. For example, before a 

shoplifter starts a critical activity (e.g. conceal), multiple events are scheduled for the 

sensors in the facility (e.g. guards and surveillance cameras) throughout the duration of 

the critical activity. These sensors then perform Line-Of-Sight calculations and the results 

are fed to the respective recognition functions.  Similarly, the observations on movements 

are performed at discrete points arrived along the path of the subject agent.  

As described previously, the primary activities for agents are go to a location, 

pick-up, conceal, unconceal, pay, go to exit, follow, chase, inform, and standing still. The 

go to location activity is comprised of mainly a sequence of points which constitutes the 

path of the agent. Each arrival to a point is modeled as an event and movement of the 

agent occurs on discrete steps. 
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Pick-up, conceal, unconceal, and pay activities are similar from an event oriented 

perspective. Each activity is modeled with a starting and an ending event. These activities 

are all critical activities and hence, recognition events are created for other agents that are 

interested in these activities. These recognition events are created for the duration of 

activity and the number of recognition events created is dependent on the type of activity.  

Inform activity of the regular shoppers is modeled in two different ways 

depending on who is being informed. If it is a security guard being informed, the regular 

shopper waits for the security guard to come near and informs the security guard. If it is a 

worker, the regular shopper goes near to the worker and informs the worker. 

Standing still is an activity in which the agents wait for a certain period of time. 

Standing still activities are used in inform and follow activities as well as in go to 

location activities. Even though the agents stand still while performing critical activities, 

standing still activity has a different meaning for intruders; they can use this activity as a 

mean to avoid being exposed to security measures. Therefore, a go to location activity 

can include several standing still activities. 

Follow and chase activities are composed of several arrive location events. In 

addition, a follow activity can include stand still activity. Both of these activities are 

planned primarily based on the anticipated movements of other agents and heuristics are 

employed to generate the events to model these activities. 
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4.5 Chapter Summary 

This chapter formally defines the spatial and the temporal models for the agents. The 

HIGHRES model is developed as a formal computational representation of the facility 

and the ABIRA framework suggests a formal framework to generate realistic agent 

behavior. Finally, the application domain information is defined for the hypothetical 

retail store security application. These three components together are required to run 

simulation experiments for assessing the vulnerability of a facility, which in this case the 

hypothetical retail store. In Chapter 5, multiple scenarios are developed and run to 

demonstrate the capabilities of the proposed model and to validate the generated agent 

behavior. 
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5 EXPLORATORY RESULTS AND VALIDATION 

The HIGHRES model, the ABIRA framework and the hypothetical retail store security 

application were conceptually defined in Chapter 4. These conceptual definitions are used 

to develop the physical security systems analysis software. A number of scenarios have 

been developed in order to validate and demonstrate the conceptual models discussed. 

The exploratory results generated from sample runs of the scenarios are presented and a 

brief discussion of the effects of security policies on agent behavior is provided in 

Section 5.2. The exploratory results along with the execution of the scenarios are used to 

demonstrate the achieved variety in agents’ behavior. Finally, validation of the 

computational framework is presented using the validation scheme discussed in Section 

3.5. Animations of interesting interactions in-between agents and between the agents and 

the environment are captured as videos from various simulation runs and they are used to 

support various discussions in this chapter. These videos are presented with the attached 

digital media or can be obtained from http://www.volkanustun.com.  

5.1 Scenarios 

 A pool for security system measures is generated first. In this pool, patrolling 

paths for two security guards, locations for eight surveillance cameras, and locations for 

three workers are defined. Each scenario developed uses a combination of the security 

measures defined in this pool. Locations for the cameras, locations of the workers, and

http://www.volkanustun.com/


 

the patrolling paths for the security guards are shown in Figures 37, 38, 39, and 40. One 

addition to the visual representation of guard patrolling paths is that the guards stop and 

look towards the mid-aisles while passing by during their patrols. Table 6 presents the 

five different security configurations developed for testing and experimentation purposes. 

All surveillance cameras are mounted to the ceiling and are all visible to the shoppers in 

the store. The “look direction” of cameras 1, 2, 5, 6, 7, and 8 is downwards. The camera 3 

looks towards the top aisle and the camera 4 looks towards the dressing rooms. 
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Figure 37 Surveillance camera locations 
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Figure 38 Worker Locations 
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Figure 39 Patrolling Path of Guard 1 
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Figure 40 Patrolling Path of Guard 2 

 

Table 6 Security System Configurations 

 Guards Used Surveillance 

Cameras 

Workers Shoppers 

Scenario 1 1 1,2,3,4 None No false alarms 

Scenario 2 2 1,2,3,4 1 No false alarms 

Scenario 3 1 1,2,3,4 1 False alarms 

Scenario 4 1-2 1,2,3,4 All False alarms 

Scenario 5 1-2 All All False alarms 

 

 In recognizing positions of the other agents, all types of agents use 0.8 as the 

value of k1 (associated with number of points visible) and 0.2 as the value of k2 
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(associated with distance to the target agent). The coefficients used in activity recognition 

are listed in Table 7.  

 The coefficients that shoplifters use for calculating security scores are tabulated in 

Table 8. 

Table 7 Coefficients for Activity Recognition 

Type of Agent/ 

Coefficients 

Guard/Worker Stream Watching Guard Shoplifter/Shopper 

k1-Vision 0.8 0.8 0.8 

k2-Distance 0.15 0.0 0.2 

k3-Fatigue 0.05 0.2 0.0 

 

Table 8 Coefficients for security scores 

Shoplifter type/ 

Coefficients 

Impulse Occasional Episodic Amateur Semi-pro 

k1-guard 0.4 0.4 1.0 0.5 0.35 

k2-surveillance 

camera 0.3 0.4 0.0 0.4 0.6 

k3-worker 0.2 0.15 0.0 0.1 0.05 

k4-neutral 0.1 0.05 0.0 0.0 0.0 

A number of heuristics have been defined for the use of different types of agents 

in these scenarios. All agents use A* algorithm while creating movement paths. 

However, the cost structure used by different types of agents can be different based on 

the goals and the tactics of the agent. Guards and regular shoppers employ the A* 

algorithm with physical distance as the cost metric. The shoplifters’ cost metric also 
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includes exposure to surveillance cameras, workers, and neutrals in addition to the 

physical distance component. The shoplifters committed to shoplifting and using the 

stealth tactic use the updated version of cost metric while running A* algorithm. 

Shoplifters that are impulsive (impulse and episodic shoplifters) use the following 

basic heuristic while deciding whether to shoplift an item: 

– If the activities of all detected guards are recognized (only for impulse 

shoplifters, episodic shoplifters do not perform this check), 

• After picking up an item, look around. 

• If there is no guard visible and the security score is below the 

degree of risk seeking, commit to shoplifting the item. 

Guard agents’ follow heuristic is defined as:  

– If target is visible 

• If the target is more than 20 distance units away, move to 20 units 

distance. 

• If not, look towards the target 

– If not 

• Move to the last known location of the target 

• If still not visible 

– Look around 
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– If still not visible, stop the “follow” activity 

Guard agents’ chase heuristic is as follows: 

– Run immediately to the exit door  

• If the potential shoplifter has not arrived yet, wait for the potential 

shoplifter to arrive and detain. 

• If the potential shoplifter already left, stop the “chase” activity. 

The locations of different items in the hypothetical retails store were depicted in 

Figure 9. These items and their hypothetical average dollar values are presented in Table 

9. The scenarios defined in this section are used to get some exploratory results in the 

next section. Furthermore, they form the basis for the validation discussion in Section 

5.3.  

Table 9 Hypothetical Retail Store Items and Their Dollar Values 

Item Dollar Value  Item Dollar Value 

Beverage $2  Drug $15 

Fruit $1  CD $15 

Dairy $5  Electronic $50 

General $10  Grocery $4 

Clothing $15  Deli $3 

Shoe $25  Frozen $4 

Cosmetic $20  Magazine $5 
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5.2 Exploratory Results 

Following output metrics are defined for the hypothetical retail store security problem:  

A. Number of shoplifters that successfully shoplifted an item, 

B. Number of shoplifters detained, 

C. Number of false detains, 

D. Number of potential shoplifters deterred,  

E. Total value of shoplifted items. 

F. Percentage of successful shoplifters 

All scenarios are run for a 2-hour shift for 5 replications. Inter-arrival times of 

customers are exponentially distributed with a mean of 3 minutes. Arrivals are cut at 1 

hour of simulation time and 2 hours of run time was enough for all agents to leave the 

store. Each customer’s shopping list size is uniformly distributed between 1 and 15 

except for episodic shoplifters, who have shopping list size of 1 (they grab an item and 

leave the store without paying for it). 30% percent of customers are potential shoplifters. 

These scenarios are run with only impulse and episodic shoplifters and 80 % of potential 

shoplifters are impulse shoplifters, whereas the rest are episodic shoplifters. There is a 

0.05 chance for each pick-up activity belonging to a regular customer to be considered as 

critical and hence, the recognition functions of the security measures are triggered for 

these activities. There is a 75% chance that a shoplifter knows about the location of a 

surveillance camera and the surveillance cameras are not visible from the retail floor. The 

average results of 5 replications and the half width of the 95% confidence interval on the 

mean are presented in Table 10. 
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Table 10 Results of exploratory simulation runs 

Avg. Metric Values/ 

Scenarios 

A B C D E F 

Scenario 1 1.4±1.0 1.2±1.14 1.2±0.96 2.2±1.14 20.4±22.81 0.22±0.12

Scenario 2 3.2±1.69 1.8±1.69 1.8±0.73 1.4±1.0 58.8±52.36 0.39±0.15

Scenario 3 2.6±0.78 2.0±1.07 1.2±0.39 1.8±1.14 33.6±18.60 0.37±0.14

Scenario 4 1.8±1.14 1.6±1.71 2.6±1.0 2.4±1.59 17.0±27.00 0.23±0.17

Scenario 5 1.2±0.96 2.2±1.14 2.0±0.88 1.0±0.62 16.4±21.9 0.16±0.13

  

The main assumption made in these scenarios is that the recognition of 

“PayAllItems” or “PaySomeItemsDoNotPayOthers” activities requires recognition of at 

least 75% of the all pick up activities. As can be seen from the results, the lowest 

percentage of successful shoplifters seems to be with Scenario 5 (more replications 

needed to show statistical difference). Overall, episodic shoplifters seem more successful 

than the impulse shoplifters: over all scenarios and replications 72% of the episodic 

shoplifters were successful, whereas only 44% of the impulse shoplifters were successful.  

 The relatively high number of false detain is mainly associated with the 

assumption made with the recognition of “PayAllItems” or 

“PaySomeItemsDoNotPayOthers”. With this assumption, the security policy dictates to 

detain the potential shoplifters if there is suspicion. A more lenient security policy can be 

not detaining the potential shoplifters if a pay activity is recognized, but whether the 

potential shoplifter is paying for all the items picked up cannot be determined, unless 

there is a recognized “conceal” activity of the potential shoplifter. 5 replications for 

scenario 5 are run with this more lenient security policy and as expected, no false detains 
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occurred. However, the percentage of successful shoplifters appears to increase in this 

case; the average is 0.33 and the half width of the 95% confidence interval on the mean is 

0.07. The software tool provides the capability for discussions of this kind and supports 

the analysis of different security system configurations.   

The significant point here is not the results themselves but the demonstrated 

variety of agent behaviors. This variety is not merely the result of different random 

numbers used; it is the result of the deliberate course of action generation process used by 

the agents. Agents use their intentions and beliefs while generating courses of actions that 

potentially achieve their goals. The beliefs about the environment and other agents are 

constructed by recognizing the environment. Different courses of actions are generated 

by applying heuristics on the perceived environment (the mental representation), which 

creates interactions and behaviors that are difficult to anticipate and impossible to 

enumerate in advance. Therefore, even with a limited number of heuristics, it was 

possible to observe a wide variety of potential activity sequences and interactions 

between agents that cannot be easily foreseen.  

Two animations captured while running replications for Scenario 3 are provided 

(Scenario3_1.avi and Scenario3_2.avi) to support these arguments. In both cases, black 

solid circles represent guards (one is patrolling and one is monitoring the surveillance 

streams), blue solid circles represent the impulse shoplifters, the green solid circles 

represent the episodic shoplifters, and the white solid circles represent the regular 

shoppers. The light blue solid circles that are not moving represent the locations of the 

surveillance cameras in the retail store. The impulse shoplifters (blue solid circles) 
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change color when they consider shoplifting an item after pick up; they either turn yellow 

if they commit to shoplifting the item or turn purple if the perceived security is higher 

than their risk seeking parameters. Furthermore, if an expectancy violation occurs, the 

impulse shoplifters turn purple from yellow representing the fact that they have given up 

on shoplifting the item. Immediately after this color change, the impulse shoplifters 

perform the “unconceal” activity. Guards go to the exit door if they have decided to 

detain a potential shoplifter; if they go to the exit door for a purple or white color agent, 

these are false detains. If they go to the exit door for a yellow or green color agent, this is 

a detain activity that is right on the target. If purple color agents leave the store without 

being detained, they are .considered as deterred shoplifters.  

In Scenario3_1.avi, the single patrolling guard follows impulse shoplifters and 

mostly deters them from committing to shoplifting an item. There is only one impulse 

shoplifter that commits to shoplifting at animation time 1:10. The conceal activity of this 

impulse shoplifter is not recognized (the location of conceal is outside the area covered 

by surveillance cameras). When this impulse shoplifter is about the leave the store at 

animation time 1:43, this activity is recognized by the guard that is monitoring the 

surveillance stream and a message is broadcasted. Per the original security policy, the 

patrolling guard heads to the exit door but the patrolling guard cannot get to the exit door 

before the impulse shoplifter leaves the store. There is also a false detain that happens at 

animation time 1:56. 

In Scenario3_2, false alarms mostly keep the patrolling guard busy; the pickup 

activity of a regular shopper at animation time 0:51 falsely recognized as a critical 
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activity by the guard monitoring the surveillance stream. While the patrolling agent is 

involved with following the regular shoppers, an episodic and an impulse shoplifter 

leaves the store unrecognized with stolen items. 

As shown in these sample animations, there is a significant variety in behaviors 

exhibited by the agents. This clearly demonstrates that the computational framework 

introduced in this dissertation is capable of creating different and reasonable behaviors as 

required by the agents’ perceptions of the environment. As a result, the differences in 

agent behaviors are caused not only by the randomness typical in most simulation 

models, but also by the computational behavior models included in the ABIRA 

framework. 

5.3 Validation 

The hypothetical retail store security application has provided a realistic platform to 

validate the computational human decision making framework. As discussed in the 

validation scheme, a number of interesting interactions between agents are captured as 

animations and they are used to validate the computational decision making framework. 

This is done by first asking human subjects whether the actions in the captured videos are 

reasonable given the goals and knowledge of the decision making agent and the heuristics 

available to them (Face Validation). Secondly, human subjects are asked what they would 

do anything different if they were in the same situation as the decision making agent was 

(Predictive Validation). Ten human subjects were shown the captured animations. The 

actions in these animations are found to be reasonable by all the human subjects. 

Furthermore, no human subject could think of a course of action different than the one 
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taken by the agents in the animations. Brief descriptions are provided next for the 

captured animations that are used in validation. 

5.3.1 Camera Discovery  

This case can be seen in cameras.avi. Light blue circles represent the surveillance 

cameras. The agent is at the entrance of the retail store at the beginning of the video and 

the agent is trying to go to the top aisle with minimum exposure to the surveillance 

cameras. The agent has information on a single surveillance camera and the initial plan is 

made with this information. However, as the agent tries to move according to the plan, 

the agent recognizes other cameras and the plan changes each time a new camera is 

discovered (cameras are discovered at animation times 0:02, 0:04, 0:08, 0:12, and.0:14). 

Finally, using the A* algorithm with a camera exposure factor included in the metric, the 

agent selects the path with minimal expected exposure to the surveillance cameras to 

reach the destination point. 

5.3.2 Zone Discovery  

This case can be seen in NoZoneInfo.avi. The agent has coordinate information on the 

destination point but the agent does not know the existence of the zone that the 

destination point is located. The agent selects the zone from its knowledge base that is 

closest to the destination point. While going to the selected zone, the agent discovers the 

zone that includes the target point (at animation time 0:03). Agent changes paths as it 

moves along since the agents try to minimize its exposure to surveillance cameras. 
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5.3.3 Object Information Update  

This case can be seen in WrongInfoSolidObject.avi. The agent has incorrect information 

on the size of the object that is located in Aisle 3 (second aisle from the left in Figure 9) 

such that the agent believes that the object blocks Aisle 3. Therefore, when it is planning 

the path to reach the destination point in the top aisle, the agent avoids Aisle 3. When the 

agent reaches its destination point, it realizes that the object actually does not block Aisle 

3 (at animation time 0:10) and hence, on its way back to the entrance area, it uses Aisle 3 

since the path through Aisle 3 is shorter than the path used to get to the point.  A similar 

case of object information update would be when an agent plans a path to a target and 

does not know about an object blocking the aisle (e.g., a store clerk unloading a pallet 

and blocking the aisle).  In this case, the agent would re-plan the path after seeing the 

object and incorporating the newly seen object into its mental representation of the 

environment. 

5.3.4 Guard Following Potential Shoplifter  

This case can be seen in guardfollow.avi. Here, the blue circle represents the impulse 

shoplifter, the white circle represents the regular shopper, and the black circle represents 

the guard. The impulse shoplifter uses the heuristic defined in Section 5.1 to decide 

whether to shoplift an item. The guard recognizes the pick-up activity of the potential 

impulse shoplifter (at animation time 0:16). The guards finds this pick-up activity 

suspicious and starts following the potential shoplifter. The potential shoplifter 

probabilistically decides to look around after some pick-up activities (and at each time 

the potential impulse shoplifter sees the guard and hence, it cannot commit to shoplifting 
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any item (the color of the agent turns to purple if the potential shoplifter considers 

shoplifting but he/she can not commit to shoplifting the item after looking around). The 

potential shoplifter leaves the store without any attempt to shoplift an item when the 

shopping list is completed. The guard returns back to patrol activity after the potential 

shoplifter leaves.   

5.3.5 Guard Detains Shoplifter  

This case can be seen in detain.avi. The blue circle again represents the impulse 

shoplifter. The potential shoplifter checks several times to shoplift an item. Eventually at 

animation time 0:43, the potential shoplifter perceives an opportunity (the agent looks 

around and perceives no security measures). While evaluating this opportunity, the 

potential shoplifter runs a mental simulation (detainMentalSimulation.avi) for the 

expected duration of the conceal activity using the anticipated movements of the guard 

(the recognized patrol activity). The potential shoplifter decides to commit to the 

shoplifting activity (the color of the agent turns yellow) and starts the activity of 

concealing the item. However, the guard recognizes the conceal activity and starts 

following the impulse shoplifter. When the guard recognizes that the impulse shoplifter is 

not paying the full amount and is headed to the exit door, the guard runs to the exit door 

and the guard detains the impulse shoplifter before the shoplifter leaves the store. After 

the detain activity, the guard continues to patrol the store. 

5.3.6 Shoplifter Shoplifts Item  

This case can be seen in shoplift.avi. The potential shoplifter picks up several items and 

probabilistically decides to try shoplifting the last item in the shopping list. The potential 
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shoplifter looks around after picking up the item and recognizes no security measures. 

The agent then runs a mental simulation (shopliftMentalSim.avi) at animation time 0:50 

and assesses that the guard wouldn’t be able to recognize the conceal activity (The 

“conceal” activity for an impulse shoplifter involves changing the price tags of the item 

or removing the package of the item). The impulse shoplifter conceals (e.g. changes the 

prices tags) the item, goes to the cashiers, pays for the other items in the shopping list 

(and pays less for the shoplifted item. Recall that the impulse shoplifter uses the deceit 

tactic and it involves changing the tags for the shoplifted. So practically the impulse 

shoplifter pays less for the shoplifted item and leaves the store. The security system in the 

store was unable to detain the impulse shoplifter in this case.  

5.3.7 Expectancy Violation for Conceal Activity 

This case can be seen in expectancyviolation.avi. In this case, the impulse shoplifter does 

not know the presence of Surveillance Camera 3 and at animation time 1:13, the impulse 

shoplifter commits to shoplifting an item that is just picked. After the commitment, the 

first activity performed is the “conceal” activity and the expectancy for the impulse 

shoplifter is not seeing any guards while performing the “conceal” activity (based on the 

mental simulations run). However, the “conceal” activity is recognized by the guard 

monitoring surveillance stream and this information is broadcasted as a message to the 

patrolling guard. The patrolling guard goes to the “conceal” location to check the 

situation. The “concealing” impulse shoplifter recognizes the patrolling guard (between 

animation times 1:18 and 1:22) and since this conflicts the expectancies previously 

constructed, the impulse shoplifter gives up on shoplifting and performs the “unconceal” 

activity (and hence its color turns purple).  This is an example of a highly complex 
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behavior (determining expectations, observing reality, identifying the conflicts between 

expectation and reality, and replanning), that seems relatively simple. 

5.3.8 Reconsideration of Commitment to Shoplifting an Item 

This case can be seen in reconsideration.avi. An impulse shoplifter decides to “conceal” 

an item at animation time 0:06. The “conceal” activity is recognized by the surveillance 

camera monitoring guard and this information is broadcasted. The patrolling guard goes 

to the “conceal” location to check the situation. The guard agent arrives at the “conceal” 

location towards the end of the “conceal” activity and even though the “concealing” 

impulse shoplifter recognizes the guard, this does not violate the expectancies (guard 

recognized for only short amount of time during conceal and the impulse shoplifter can 

tolerate that). However, the impulse shoplifter later recognizes that the guard is following 

(at animation time 0:17). Reconsidering the situation, the impulse shoplifter decides to 

give up the intention of shoplifting and performs the “unconceal” activity (and hence its 

color turns purple). 

5.4 Chapter Summary 

In this chapter, different security configurations have been defined for the hypothetical 

retail store application and these configurations are used to collect evidence to validate 

the computational human decision making framework. As suggested by the human 

subjects, the computational human decision framework is capable of emulating the 

human decision making process and the generated course of actions are realistic and 

reasonable. Furthermore, agents exhibit a variety of different behaviors when they face 

different situations as discussed in Section 5.2. None of the responses in these 
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demonstrated behaviors are preprogrammed; they are the results of the computational 

agent decision making process that uses the agents’ beliefs and intentions. All these 

evidences point in the direction that the developed computational human decision making 

framework is valid. Furthermore, it is also capable of creating different courses of actions 

that actually reflect the current mental representation of the environment by the agent. 
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6 CONCLUSIONS AND FUTURE RESEARCH 

Two recent articles published in mainstream newspapers19,20 report increased shoplifting 

activities for the retail store amid the current recession. These recent articles further 

discuss that retail stores are not only investing in technologies to prevent shoplifting but 

also investing in development of knowhow and better tactics to deal with the increased 

shoplifting activities. One of the main reasons for this change is the formation of 

shoplifting crime rings and the perception of shoplifting becoming more of a professional 

activity than just being crime of the adolescents and drug addicts. These crime rings work 

in teams and their activities are planned better than random acts of shoplifting. 

 The author of this dissertation believes that developed computational models of 

human behavior and devised model to represent retail store security application domain 

can be valuable for the retail stores to analyze their current and planned physical security 

systems. Furthermore, the computational models in this dissertation can be utilized to 

design more effective physical security configurations. These security configurations of 

concern are not merely comprised of physical security tools and technology but also 

tactics and policies that are integral to the overall physical security of the retail stores. In 

addition, the proposed methodology provides a medium to the retail stores to better

 
19http://www.nydailynews.com/news/us_world/2008/08/24/2008-08-
24_targets_target_theft_as_economy_sinks_an.html 
20 http://www.washingtonpost.com/wp-dyn/content/article/2008/12/23/AR2008122302585.html?sub=new 

http://www.nydailynews.com/news/us_world/2008/08/24/2008-08-24_targets_target_theft_as_economy_sinks_an.html
http://www.nydailynews.com/news/us_world/2008/08/24/2008-08-24_targets_target_theft_as_economy_sinks_an.html
http://www.washingtonpost.com/wp-dyn/content/article/2008/12/23/AR2008122302585.html?sub=new
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estimate the returns on investment of physical security systems tools and technology. For 

example, it is possible to estimate the indirect benefits of security system configurations 

in deterring potential shoplifters. Therefore, the author believes that the proposed 

methodology can be employed by the retail stores if the general idea and structure of the 

proposed methodology can be conveyed to the security system managers of these retail 

stores. 

 The success of the proposed methodology depends on the realism and the variety 

of behavior that is generated by the ABIRA framework. The ABIRA framework is 

extendable in this sense since it uses heuristics to model human intuition. Introduction of 

different heuristics directly relates to the emerging behavior. In addition, applying these 

heuristics on the perceived environment (the mental representation) creates interactions 

and behaviors that are difficult to anticipate in advance. Therefore, even with a limited 

number of heuristics, it is possible to observe a wide variety of potential activity 

sequences and interactions between agents that cannot be easily foreseen. The deliberate 

choice of modeling intuition by heuristics relies on the findings in the literature as well 

on the way the author visualizes his own planning activities in real life situations. In most 

real life cases, the author believes that he uses simple heuristics to generate plans for his 

daily activities and then he uses reasoning (via mental simulation) to assess whether these 

plans can work within the perceived environment. 

The HIGHRES model and the interaction between the HIGHRES model and the 

ABIRA framework capture the visual cognition of the agents. The central role of visual 

cognition on agent behavior and the difficulty of explicitly incorporating this visual 
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cognition in simulation models is a major cause of the limited use of complex and 

realistic behavior in simulation models. The difficulty of representing the spatial features 

of the environment is a significant component in the difficulty of modeling visual 

cognition. The HIGHRES model was an important milestone for this dissertation since it 

allows to formally define the environment and to effectively incorporate the spatial 

features of the environment for visual cognition. Performance tests conducted for the 

line-of-sight algorithm generated good results and this algorithm is used extensively for 

visibility calculations in physical security system simulations. Vision is used as the 

primary perception mechanism by the agents. Recognition is dependent on vision and is 

modeled as a probabilistic function in which recognition probability is dependent on 

certain factors such as the percentage of visible volume on the target entity and number 

of successful observations made over the duration of the activity, the fatigue level of the 

looking agent etc. Recognitions are then used to construct and to update the internal 

representation of the environment and other agents and they use this model while making 

decisions. 

Physical security systems used in banks, retail stores, and buildings are possible 

application domains for implementation of the research and tools described in this 

dissertation. However, the described methodology is quite generic and it can be plugged 

into a wide variety of simulation models such as simulation-based games and evacuation 

models that use human entities and are particularly concerned with the interactions of 

these entities. Application of computational models to a different domain also provides 

an interesting opportunity to test the adaptability of the proposed models to different 

application domains. Furthermore, it provides a chance to develop better formalisms to 
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define the application domain. Current application domain descriptions need refining to 

make them more accommodating.  

 As in retail stores, several physical security systems face intruders that work as 

teams and they also include guard team that collaborate effectively. Current models in 

this dissertation use communication as a medium to support collaboration but integration 

of formal collaboration frameworks would contribute to the value of the proposed 

computational models. 

 Experience is another area that the proposed models need to incorporate. Different 

learning techniques can be employed to build up experience for the agents and then 

agents can use their experience in effectively finding heuristics that are more appropriate 

to the perceived situation.    
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