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In this study, a nonparametric discriminant analysis procedure that is less sensi-

tive than traditional procedures to deviations from the usual assumptions is proposed.

The procedure uses the projection pursuit methodology where the projection index is

the two-group transvariation probability. Montanari (2004) proposed and used this

projection index to measure group separation but allocated the new observation using

simple Euclidean distances from projected centers. Our procedure employs a method

of allocation based on the centrality of the new point measured using two versions of

the transvariation probability: a symmetrized two-group transvariation and a smooth

version of point-group transvariation. It is shown by simulation that the procedures

proposed in this study provide lower misclassification error rates than classical pro-

cedures such as linear discriminant analysis and quadratic discriminant analysis and

recent procedures like maximum depth and Montanari’s transvariation-based classi-

fiers under a variety of distributional settings. A different rank-based procedure for
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classification is considered where ranking is applied on classical classifiers as well as

recently introduced classifiers such as the maximum L1 depth and quadratic discrimi-

nant function based on the minimum covariance determinant (MCD) estimates of the

mean and covariance. An extensive simulation study shows that not only does the

ranking method provide balance between misclassification error rates for each group

but also yields lower total probabilities of misclassification and higher consistency of

correct classification for heavy-tailed distributions. A theoretical evaluation of the

influence function shows that this new procedure is robust against local infinitesimal

contaminations.
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Chapter 1

Introduction

Discriminant analysis is the process of devising rules to assign a new individual

data point into one of K (K > 1) known groups. The method is usually based on

previously known information related to the K groups, known as training data whose

correct classification information is known. In this dissertation, the focus would be

on the two-group discrimination problem (K = 2). Classification or discrimination

has a wide range of applications. A very small list of applications includes: spam

filters for an email engine that sends good emails to the inbox and bad emails to a

spam folder; voice recognition software used to distinguish the source of the voice

from among several speakers; methods to distinguish who is a bad risk for credit and

who is credit worthy; methods to classify a patient’s tumor as cancerous or benign.

A discriminant analysis procedure uses all the variables that the training data

contains and use their correct classification information to create a discriminant

model, a discriminant rule or a classifier. Classification is done by feeding new ob-

servations into this classifier or model and getting the group membership to which

the new observation belongs. A classifier is said to be a good classifier if it provides

low misclassification error rates not just for the best of the situations but also under

various conditions such as shape of the groups, number of groups, size of the groups

etc. Fisher (1936) came up with what is considered to be the first scientific discrimi-

nant model. His classifier performs well for data that follow normal distributions, the
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groups share the same covariance structure and if there are no outliers. Violations of

any of these assumptions may make Fisher’s method unstable. There has been a lot of

research done in the field of classification ever since then in an effort to come up with

classifiers that are robust, ones that are not sensitive to violations of certain assump-

tions. A wide range of techniques have been used to develop various such classifiers

that are robust to deviations in the parametric, semi-parametric and nonparametric

realms. Most of the parametric methods become sensitive with deviations from their

underlying assumptions. Researchers devised methods that are more robust to such

deviations using semi-parametric and nonparametric techniques which address issues

that existing methods did not consider.

In this dissertation, we propose modifications to existing semi-parametric classi-

fiers in an effort to create classifiers that are robust to deviations. The first proposed

method provides two nonparametric alternatives for the allocation process provided

in the classifier by Montanari (2004). The second method is a rank based method

where discriminant functions are ranked and we wish to show that ranking can pro-

vide equal misclassification error rates in each group which might be very pertinent

in some situations.

The optimality of our classifiers is shown by comparing the proposed classifier

with existing classifiers. This is done by the use of real data sets and also via extensive

Monte Carlo simulation studies. Sensitivity curves will be used to show the effect

of local and gross perturbations on the probability of misclassification error rate.

2



Influence functions are used to ascertain the robustness of the rank based discriminant

function theoretically.
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Chapter 2

Background

2.1 Introduction

Let us start with the univariate two sample location problem. SupposeX1, . . . , Xnx

are independent and identically distributed (iid) random variables that are normally

distributed with mean µx and variance σ2 (N(µx, σ
2)) and Y1, . . . , Yny iid N(µy, σ

2).

Suppose also that Xi is independent of Yj for i = 1, . . . , nx and j = 1, . . . , ny.

Our desire is to test the hypothesis H0 : µx = µy versus the alternative hypothe-

sis H1 : µx 6= µy. One then may employ the two sample t test that uses the test

statistic

txy =
X̄ − Ȳ

Sp
√

nx+ny
nxny

,

where Sp is the pooled standard deviation, to obtain an estimate of the standardized

separation between the two locations. The null is rejected in favor of the alternative if

|txy| is larger than tα(df), the critical value, where α is the allowable type-I error rate

and df are the degrees of freedom. Alternatively, one may use the non-parametric

counterpart of the two-sample t test known as the Mann-Whitney test (Hollander

and Wolfe, 1999) which uses the test statistic

uxy =
nx∑
i=1

ny∑
j=1

φ(Xi, Yj) , (2.1)
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where φ(r, s) = I{r < s} and I{A} is the indicator function of the set A. Then one

rejects the null if |uxy − (nxny)/2| is larger than a given critical value.

Now consider two d-dimensional populations Πx and Πy with underlying distribu-

tions F and G, respectively, each defined on Rd for d ≥ 1. Suppose we have a random

sample of size nx from Πx given by X = {X1, . . . ,Xnx} and, independent of the first

sample, a random sample of size ny from Πy given by Y = {Y1, . . . ,Yny}. Let Fnx

and Gny represent the empirical distribution functions of X and Y, respectively. We

are now interested in the multivariate two sample location problem of testing the null

hypothesis H0 : µx = µy against the alternative hypothesis H1 : µx 6= µy. H0 is true

iff u′µx = u′µy for all u ∈ Rd and H0 is false if u′µx 6= u′µy for at least one u ∈ Rd.

Under the assumption that the two populations are normal that differ only in the

location parameters, u′µx = u′µy can be tested using the univariate two-sample test

statistic

txy(u) =
u′(X̄− Ȳ)√

u′Spu
(
nx+ny
nxny

) . (2.2)

The rejection region for H0 : µx = µy versus H1 : µx 6= µy is
⋃
‖u‖=1{(X,Y) ∈ Rd →

Rd : |txy(u)| ≥ c} for a chosen constant c. Thus, we reject H0 if max‖u‖=1 |txy(u)| ≥ c

or, equivalently, if max‖u‖=1 t
2
xy(u) ≥ c∗. Under normality, this gives the Hotelling’s

T 2 statistic

max
‖u‖=1

t2xy(u) =
nx + ny
nxny

(X̄− Ȳ)′S−1
p (X̄− Ȳ) .

If the covariance structure is Ip, then u that maximizes t2(u) is the unit vector on

the line that connects the two sample means; that is (X̄− Ȳ)/‖X̄− Ȳ‖. As we will
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see in Subsection 2.2.1, this will play an important role in developing discriminant

analysis procedures.

Classical Discriminant Functions

Now let us consider a classification problem where Z ∈ Πx ∪ Πy is a new obser-

vation that we would like to classify in either Πx or Πy. Suppose we have a function

D such that Z is classified in Πx if

D(Z;F,G) > 0 .

The function D is known as a discriminant function.

The probability of an observation from Πx being misclassified in Πy is

PD
y|x = P {D(Z;F,G) < 0 | Z ∼ F}

and the probability of misclassifying a random variable from population Πy into pop-

ulation Πx is

PD
x|y = P {D(Z;F,G) > 0 | Z ∼ G} .

The total cost of misclassification is then πCxP
D
y|x+(1−π)CyP

D
x|y where π is the prior

probability that an observation comes from Πx and Cx and Cy are the costs of mis-

classification of an observation from Πx in Πy and from Πy in Πx, respectively. Under

the assumption that the priors are equal and that the costs of misclassification being
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equal for the two populations (Cx = Cy = 1), the total probability of misclassification

(TPM) is PD = 1
2
PD
y|x+ 1

2
PD
x|y. Hereafter, we will assume the costs Cx and Cy to equal

1.

The following two definitions describe the notions of optimality and robustness

in the framework of discriminant analysis.

Definition 2.1. We say a discriminant function D∗ is optimal if PD∗ ≤ PD for

any other discriminant function D and we say that D∗ is more optimal than D∗∗ if

PD∗
< PD∗∗

.

Definition 2.2. We say that discriminant function D∗ is more robust to a deviation

from distributional property E than discriminant function D∗∗, if D∗ is more optimal

than D∗∗ under the particular deviation from E.

Fisher (1936) proposed a classifier that looks at a linear combination of the d-

covariates that maximizes the separation or minimizes the overlap between the two

populations Πx and Πy. This is known as Linear Discriminant Function (LDF) and

is given by:

L(z;F,G) ≡ (µx − µy)′Σ−1

[
z− 1

2
(µx + µy)

]
. (2.3)

A new observation Z = z is now assigned to Πx if L(z;F,G) > C and to Πy otherwise.

The cutoff C is usually 0 when the prior probabilities are unknown. This method is

built to be optimal in classifying the new observation Z under the assumption that

F and G are both multivariate normal distributions that are different in location
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but have the same scatter. In particular, if F and G are Nd(µx,Σx) and Nd(µy,Σy),

respectively and under the assumption that Σ = Σx = Σy.

For the situation where Σx 6= Σy is true, the optimal procedure uses a quadratic

combination of the d-covariates that maximizes the separation between the popula-

tions Πx and Πy. This is known as Quadratic Discriminant Function (QDF) which is

given by:

Q(z;F,G) ≡ ln

(
|Σy|
|Σx|

)
− (z− µx)′Σ−1

x (z− µx) + (z− µy)′Σ−1
y (z− µy). (2.4)

This becomes the optimal rule for classification under the conditions where a new

observation Z = z is assigned to Πx if Q(z;F,G) > 0 and to Πy otherwise.

Given the random samples X and Y, the sample versions of LDF and QDF are

given by

L(z;Fnx , Gny) = (x̄− ȳ)′Σ̂−1

[
z− 1

2
(x̄ + ȳ)

]
and

Q(z;Fnx , Gny) = ln

(
|Σ̂y|
|Σ̂x|

)
− (z− x̄)′Σ̂−1

x (z− x̄) + (z− ȳ)′Σ̂−1
y (z− ȳ) ,

respectively, where Σ̂x, Σ̂y, and Σ̂ are the estimators of Σx, Σy, and Σ, respectively.

Linear and Quadratic discriminant functions are optimal under certain conditions

and assumptions and may be very sensitive to any deviation from the assumptions.

Deviations from normality, equal covariance in the case of LDF, existence of outliers
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in the case of QDF are examples where LDF and QDF are not optimal. In fact the

more serious the deviations and the greater the number of deviations, the more sen-

sitive these methods get. Some work that considered the issue of robustness of LDF

and QDF is Lachenbruch et al. (1973), Lachenbruch (1975), Hills (1967), McLachlan

(1992), Anderson (1984), Dillon (1979), Johnson et al. (1979) and Seber (1984). A

number of these authors investigated the robustness of LDF and QDF with respect to

their TPM to some non-linear transformations of the normal distribution suggested

in Johnson (1949). Hills (1967) looked at discrimination in data that are non-normal,

specifically when the data are discrete. Lachenbruch et al. (1973) investigated the

performance of LDF under certain non-normality conditions, specifically, log normal,

logit normal and the inverse hyperbolic sine normal distributions. Optimal misclas-

sification probabilities in these cases are calculated by taking an appropriate inverse

transformation. In such cases, finding the cutoff C theoretically using a minimax rule

is a very difficult problem. So Lachenbruch et al. (1973) determined the value of C,

approximately, by using 25 different discrete points. They also found that the trans-

formation makes the two populations heteroscedastic, so they proposed to assign the

new observation Z = z to Πx if Q(z;F,G) > C and to Πy otherwise. They provided

some theoretical results in addition to presenting a Monte Carlo study. Their work

and the work of others who extended this research, found that both LDF and QDF

are greatly affected by these types of non-normality. As a solution to the sensitivity of

the linear and quadratic discriminant functions, several authors have proposed robust

procedures.
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There are various classifiers, both parametric and nonparametric, which are

proposed in literature, like kernel-based classification rule (Mojirsheibani, 2000), k-

Nearest Neighbor classification rule (Hellman, 1970), decision trees (Ting, 2002),

neural networks (Pao, 1989), logistic regression (Brzezinski, 1999), support vector

machines (Gunn, 1998), combined classifiers (LeBlanc and Tibshirani, 1996; Mojir-

sheibani, 1999, 1997) just to name a few. In this dissertation, we will consider various

rank-based procedures for performing classification in an optimal and robust manner.

2.2 Rank Based Procedures for Classification

In this section we will introduce two types of rank-based procedures for classifica-

tion. The first will be classification based on projection pursuit that uses a rank-based

projection index and the second will be based on multivariate ranking.

2.2.1 Projection Pursuit Based Classifiers

Fisher’s idea of picking a linear or quadratic combination that maximizes the

separation between the two samples is in a way finding the projection that maximizes

the separation between the groups based on a particular criterion. In fact, Fisher’s

LDF could be reframed as finding u, say u0, the projection direction that maximizes

t2(u) =

[
u′(X̄− Ȳ)

]2
u′Spu

(
nx+ny
nxny

)

10



where X ∼ Nd(µx,Σ), Y ∼ Nd(µy,Σ) and S2
p =

(nx−1)s2x+(ny−1)s2y
nx+ny−2

. Here sx and sy are

estimates of standard deviations of X and Y respectively. One observes that this is

the same two sample t test statistic that was given in Equation (2.2).

The data is then reduced to one dimension by projecting it in the direction given

by u0 and one would classify a new observation Z = z into Πx if |Z0−X̄0| < |Z0− Ȳ0|,

where X0i = u′0Xi, Y0j = u′0Yj, and Z0 = u′0Z, i = 1, . . . , nx and j = i, . . . , ny.

Otherwise, one classifies Z into Πy.

When dealing with spherical distributions, the most “interesting direction” hap-

pens to be along the line that connects the means. Fisher’s LDF amounts to classifying

Z = z based on its Euclidean distance from the means. If we are dealing with normal

distributions with Σ 6= kId, for some k > 0, then the most “interesting” direction is

given by

u0 =
S−1
p (X̄− Ȳ)

‖S−1
p (X̄− Ȳ)‖

In other situations, the projection direction is not generally obvious. This search for

“interesting” low dimensional projection of high dimensional data, is more popularly

known as projection pursuit (Friedman and Tukey, 1974; Posse, 1992). “Interesting-

ness” is defined based on a criterion which is measured through a suitable function

known as a projection index. It turns out that the projection index for LDF is the

two-sample t statistic. Friedman and Tukey (1974) in their study used an algorithm

that associated with each direction in high dimensional space, a continuous index

that measures its “usefulness” as a projection axis. The projection direction is then
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varied to maximize the index. The hill-climbing algorithms for maximization given

by Rosenbrock (1960) and Powell (1964) were then used as the projection index was

sufficiently continuous. Posse (1992) used projection pursuit for 2-group discrimina-

tion and he did it using kernel estimation. He used fast fourier transform (FFT) to

solve the kernel estimation problem of finding the projection direction that is most

interesting.

Projection pursuit is a computationally intensive procedure as it is a thorough

process of searching all the projection directions to find the most “interesting” pro-

jection. This method gets complicated further as the dimension increases, but this

technique is gaining popularity with the increased attention given to savvy computer

programming techniques and improvements in computer technology.

Any method that effectively helps reduce the dimension from high to low can

be treated as a form of projection pursuit. Principal component analysis (PCA)

can be treated as a special case of projection pursuit (Huber, 1985). The aim of

classical PCA is to find a linear combinations of the original variables that have

maximal sample variance (Nason, 1995). The first principal component a∗ is the

vector that maximizes the variance of the data X projected along that direction.

i.e. a∗ = arg max Varx{a′X}. Here the projection index happens to be variance of

the projected data. The only other constraint in this method is the need for the

projection directions to be orthogonal to each other. It happens so that the first

principal component has the highest eigenvalue and hence explains the most variance

than any other direction. In that sense, eigenvalues are used as projection indices.
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Jones (1983) and Huber (1985) gave strong heuristic arguments indicating that

a projection is less interesting the more it is normal.

In addition to lowering the dimension, projection pursuit also allows us to over-

come problems associated with sparsity of data in high dimensions (Huber, 1985)

which is also termed “curse of dimensionality” (Goldstein, 1987). With increasing di-

mension, the need for more and more data to meet the requirement of sufficient data

increases like a curse. Many techniques fail to perform well under the conditions of

sparse data. There are also situations where the number of variables or the dimension

(d) is much higher than the amount of data or number of observation (n). These are

more popularly known as datasets with d � n data. As an example (Huber, 1985)

assume that a large number of points is distributed uniformly in the 10-dimensional

unit ball. Then the radius of a ball containing 5% of the points is (0.05)0.1 = 0.74. By

using projection pursuit techniques, one can reduce the dimension to one and elimi-

nate the problem of sparsity of data. As noted in Huber (1985), “Projection pursuit

is the most powerful technique that can lift a one-dimensional technique to higher

dimensions” (Chen, 1989). By this he means that a projection pursuit technique

can be used to reduce the dimension to one and then any one-dimensional statistical

technique can be applied.

Every traditional projection pursuit methodology mainly differs in the choice of

projection index. There are certain demands of a good projection index (Posse, 1995):

• Robust to deviations

13



• Approximately affine invariant

• Consistent

• Simple enough to permit quick computation even for large data sets.

The problem with Fisher’s LDF is that it uses the t-statistic as a projection index

which is known to be very sensitive to the underlying distributional assumptions. In

an attempt to make Fisher’s LDF more robust to deviations, many researchers have

proposed to use robust version of projection index in place of the t-statistic. Posse

(1990) proposed a projection pursuit technique based on a global optimization algo-

rithm and used a chi-squared projection index to find the most interesting plane (two

dimensional view). This optimization algorithm was later modified by Posse (1995) by

combining it with a structure removal procedure given in Friedman (1987) and used a

modified chi-squared index which satisfies all the demands of a good projection index.

Chen and Muirhead (1994) and Chen (1989) in his PhD dissertation used various ro-

bust estimates in the likes of the median location estimator (Andrews et al., 1972;

Huber, 1981), trimmed location estimator, Huber type location M -estimator, the me-

dian absolute scale estimator and Huber type scale M -estimator. Montanari (2004)

and Chen and Muirhead (1994) used a two-sample Mann-Whitney type statistic as

a projection index to measure group separation. They show that their projection

pursuit methods are not sensitive to deviations from the homoscedasticity and nor-

mality assumptions that are required for the optimality of Fisher’s LDF. The method
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proposed by Montanari was motivated by the idea of what is known as transvariation

(Gini, 1916; Montanari, 2004).

Transvariation

Consider two continuous univariate populations Πx and Πy with distributions F

and G, respectively, defined on R. Suppose we have a random sample X1, . . . , Xnx

from Πx and, independent of the first sample, a random sample Y1, . . . , Yny from Πy.

The two samples are said to transvariate with respect to their measures of centers

mx and my if there is at least one pair (i, j) such that (Xi − Yj)(mx − my) < 0,

i = 1, . . . nx, j = 1, . . . , ny. Any difference satisfying this condition is called a two-

group transvariation. Similarly, the sample X1, . . . , Xnx and a given constant c ∈ R

transvariate with respect to mx, if there is at least one i such that (Xi−c)(mx−c) < 0,

i = 1, . . . , nx. This is known as a point-group transvariation.

The two-group transvariation probability between F and G is defined as

τxy := τ(F,G) = P{(Y −X)(µy − µx) < 0}

=

∫
R

∫
R
I{(y − x)(µ(G)− µ(F )) < 0}dF (x)dG(y) , (2.5)

where X ∼ F , Y ∼ G and µx = µ(F ), µy = µ(G) are the location parameters of

F and G, respectively. If Fnx and Gny be the two empirical distributions of the two
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random samples. Then an estimate of τxy is given as

Txy := τ(Fnx , Gny) =

∫
R

∫
R
I{(y − x)(µ(Gny)− µ(Fnx)) < 0}dFnx(x)dGny(y)

=
1

nxny

nx∑
i=1

ny∑
j=1

I{(Xi − Yj)(mx −my) < 0} ,

where I{A} = 1 if A is true and is 0 otherwise. Here mx = µ(Fnx) and my = µ(Gny)

are estimators of µx and µy, respectively. Txy is a nonparametric estimator of the

overlap between the distributions Fx and Fy. In particular, nxnyTxy gives the number

of observations that need to be interchanged so that there will be no overlap between

the two samples. If we assume without loss of generality that µy < µx, then τxy =

P (X < Y ) which is estimated by

Txy =
1

nxny

nx∑
i=1

ny∑
j=1

I{Xi < Yj} =
uxy
nxny

,

where uxy is the Mann-Whitney statistic given in Equation (2.1). It is easy to see the

connection between uxy and ranks as

uxy =

ny∑
j=1

R(Yj) +
ny(ny + 1)

2
,

where R(Yj) is the rank of Yj in the joint ranking of X1, . . . , Xnx and Y1, . . . , Yny for

j = 1, . . . , ny.
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The point-group transvariation probability between F and a constant c ∈ R is

given by

τx(c) = P{(X − c)(µx − c) < 0}

=

∫
R
I{(x− c)(µ(F )− c) < 0}dF (x) ,

an estimator of τx(c) is

Tx(c) =

∫
R
I{(x− c)(µ(Fnx)− c) < 0}dFnx(x)

=
1

nx

nx∑
i=1

I{(Xi − c)(mx − c) < 0} . (2.6)

Tx(c) measures the centrality of the constant c in the sample X1, . . . , Xnx . In a way,

Tx(c) measures how deep the point c is in the sample X1, . . . , Xnx . The quantity

nxTx(c) is the smallest number of observations in the first sample that c needs to skip

so that all the sample points are to one side of it.

It is difficult to directly generalize the idea of transvariation probability for di-

mensions higher than one. Projection pursuit offers a way to project high dimensional

data into a single dimension where we can compute transvariation probabilities.

Let Fu and Gu be the distributions of u′X and u′Y, respectively, where X ∼

F from population Πx and Y ∼ G from population Πy are d-dimensional random

variables and u ∈ Rd is a unit vector. The overlap between Fu and Gu with respect
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to the transvariation probability is

P (I{(u′X− u′Y)(µ(Fu)− µ(Gu)) < 0})

=

∫
R

∫
R
I{(x− y)(µ(Fu)− µ(Gu)) < 0}dFu(x)dGu(y) ,

where µ(Fu) and µ(Gu) are the location parameters of Fu and Gu, respectively. We

are interested in finding the projection direction that minimizes this overlap between

Fu and Gu; that is

uopt = Argmin
‖u‖=1

{∫
R

∫
R
I{(x− y)(µ(Fu)− µ(Gu)) < 0}dFu(x)dGu(y)

}
.

Given two independent random training samples X1, . . . ,Xnx and Y1, . . . ,Yny from

Πx and Πy, respectively, defined on Rd (d ≥ 1), the estimator of the direction of

minimum overlap is given by

ûopt := Argmin
‖u‖=1

{
1

nxny

nx∑
i=1

ny∑
j=1

I{(u′Xi − u′Yj)(mx(u)−my(u)) < 0}

}
, (2.7)

where mx(u) and my(u) are the locations of the two projected samples u′X and u′Y,

respectively. This vector is assumed to be the direction that gives the most interesting

view of the data in one dimension as it gives the direction of maximum separation as

measured by Gini’s transvariation probability (Gini, 1916).

Once the direction that gives the minimum overlap (maximum separation) ûopt

is found using projection pursuit, the entire data is projected onto that direction and
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a new observation Z = z is allocated into Πx if |Z0 − mx(ûopt)| < |Z0 − my(ûopt)|,

where Z0 = û′optZ. Otherwise, we classify Z into Πy.

Projection pursuit techniques are very suitable when d is not really high as they

sweep the entire space for the best possible view of the data. The biggest problem

with projection pursuit though is that it relays its problems to the various techniques

that are using projection pursuit as the first step to reduce dimension. The problem

is that projection pursuit tries to squish the data into one dimension using a linear

combination. This causes problems when certain kinds of data sets like “Banana

data” (Rätsch et al., 1998; Rätsch, 1998) and the Hardy data (Hardy, 1991) having

certain ‘strange’ shapes that projection pursuit techniques cannot handle. These are

examples of low dimensional data sets which seemingly look and actually are perfectly

separated but there exists no projection direction that can reduce the dimension

to one with complete separation. Another problem with projection pursuit is the

computational complication as the dimension increases; although one can always

decrease the number of projections considered as the dimension increases by using

advanced computational techniques. If done effectively, this is not going to affect the

efficiency of the projection pursuit technique (Filzmoser et al., 2006).

There is still a need for an alternative dimension reduction technique that is

nonparametric and robust but does not necessarily require extensive computation.

Needless to say, the most important aspect should be to somehow eliminate the

drawback with projection pursuit techniques. One such technique is the use of what

are called multivariate ranks.
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2.2.2 Procedures Based on Multivariate Ranking

In the univariate setting, statistical methods that use rank-based nonparametric

techniques do not depend on restrictive distributional assumptions and hence are

robust to deviations from these assumptions. For higher dimensions, an alternative

to projection pursuit is the idea of data depth which is a multivariate version of ranks

(see Eddy (1985); Liu (1992)). Data depths are used to measure the “outlyingness”

or alternatively “centrality” of a given multivariate sample point with respect to its

underlying distribution (Liu et al., 1999; Zuo and Serfling, 2000; Mosler, 2002). In

particular, a depth function assigns higher values to points that are more central with

respect to a data cloud. This naturally gives a center-outward ranking of the sample

points. A number of depth functions are available in the literature. A few popular

depth functions are Mahalanobis depth (Mahalanobis, 1936; Liu and Singh, 1993),

halfspace depth (Tukey, 1974), simplicial depth (Liu, 1990), majority depth (Singh,

1991), projection depth (Donoho, 1982), and spatial or L1 depth (Vardi and Zhang,

2000; Jörnsten, 2004). Definition of some of the more popular depth functions are:

• The L1 or Spatial depth function is given by

D1(x;F ) = 1−
∥∥∥∥EF { x−X

‖x−X‖

}∥∥∥∥ , (2.8)

where X ∼ F and ‖ · ‖ is the Euclidean norm.
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• The Mahalanobis depth function is given by

MD(x;F ) = [1 + (x− µF )Σ−1
F (x− µF )]−1,

where µF and ΣF are the mean vector and dispersion matrix of F , respectively.

The sample version of M is obtained by replacing µF and ΣF with their sample

estimates.

• The half-space depth function is given by

HD(x;F ) = inf
H
{P (H) : H is a closed half-space in Rd,x ∈ H}

It turns out that τx(c) is the half-space depth of c in one dimension with respect

to the population F , that is, τx(c) = HD(c;F ). Half-space depth is sometimes

also referred to as Tukey depth.

We can easily see that 0 ≤ DF ≤ 1, where DF is any depth function, and x1 is

more central to (or deeper in) F than x2 is central in F if DF (x1;F ) > DF (x2;F ).

This is true for any depth function DF . Let F be the class of distributions on the

Borel sets of Rd. A statistical depth function is a bounded, nonnegative mapping

D : Rd ×F → R and there are certain properties that are desired of depth functions

(Zuo and Serfling, 2000; Hoberg, 2003):

• Affine Invariance: The depth of a point x ∈ Rd should not depend on the

underlying coordinate system or, in particular, on the scales of the underlying
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measurements.

DF (Ax + b;FAX+b) = DF (x;FX)

• Maximality at center : For a distribution having a uniquely defined “center”

(e.g., the point of symmetry with respect to some notion of symmetry), the

depth function should attain maximum value at this center. If µ is the center

of F , then

DF (µ;F ) = sup
x∈Rd

DF (x;F )

• Monotonicity relative to deepest point : As a point x ∈ Rd moves away from

the “deepest point” (the point at which the depth function attains maximum

value; in particular, for a symmetric distribution, the center) along any fixed

ray through the center, the depth at x should decrease monotonically.

DF (x;F ) ≤ DF (µ+ α(x− µ);F ) for α ∈ [0, 1]

• Vanishing at infinity : The depth of a point x should approach zero as ‖x‖

approaches infinity.

DF (x;F )→ 0 as ‖x‖ → ∞

The interested reader may find an extensive list of depth functions along with

their definitions in Liu et al. (1999), Zuo and Serfling (2000) or Ghosh and Chaud-

huri (2005). Among the numerous depth functions that are in existence, Mahalanobis
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depth and L1 depth (spatial depth) are two of the most attractive ones due to their

ease of computation. They can be computed exactly for any dimension. The com-

putation of many other depth functions may require algorithms that provide only

approximations. This is especially true for higher dimensional data. For example,

one usually has to construct very complicated approximate algorithms to compute

the halfspace depth of points in three or higher dimensions.

Taking advantage of this notion of ordering multivariate data in a center-outward

manner, Jörnsten (2004) proposed the maximum L1 depth classifier that uses the

discriminant function

S(z;F,G) = D1(z;F )−D1(z;G) =

∥∥∥∥EG{ z−Y

‖z−Y‖

}∥∥∥∥− ∥∥∥∥EF { z−X

‖z−X‖

}∥∥∥∥
=

∥∥∥∥∫
Rd

z− y

‖z− y‖
dG(y)

∥∥∥∥− ∥∥∥∥∫
Rd

z− x

‖z− x‖
dF (x)

∥∥∥∥ . (2.9)

The new observation Z = z is then classified in Πx if S(z;F,G) > 0 and in Πy

otherwise. Despite its computational ease, a major drawback of this classifier is that

it lacks affine invariance because L1 depth is not affine invariant. It can, however, be

made affine invariant by taking Σ
−1/2
x (z−X) and Σ

−1/2
y (z−Y) in place of z−X and

z−Y, respectively, in equation (2.9) (Vardi and Zhang, 2000; Ghosh and Chaudhuri,

2005). Note that one can use any affine equivariant estimators of Σx and Σy when

computing the discriminant function. If the scatter estimator of Tyler (1987) is used,

then the resulting maximum L1 depth classifier is very similar to the classifier given by

Crimin et al. (2007). An alternative method of obtaining affine invariance is to scale
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the data along its principal component directions (PCA-scaling) as given in Hugg

et al. (2006). One could use robust principal component analysis (eg: Robust PCA

given by Croux et al. (2007)) or scale the data with the robust estimate of covariance

structure which will make the L1 depth function affine invariant in addition to making

it robust against deviations.

Once again, for practical purposes, given two independent random training sam-

ples X1, . . . ,Xnx and Y1, . . . ,Yny from Πx and Πy, respectively, defined on Rd (d ≥ 1),

the sample version of D1(x;F ) given in (2.8) can be found by replacing the empirical

cdf in place of F and G resulting in the sample version of S(z;F,G) given by

S(z;Fnx , Gny) =

∥∥∥∥∫
Rd

z− y

‖z− y‖
dGny(y)

∥∥∥∥− ∥∥∥∥∫
Rd

z− x

‖z− x‖
dFnx(x)

∥∥∥∥
=

∥∥∥∥∥ 1

ny

ny∑
j=1

z−Yj

‖z−Yj‖

∥∥∥∥∥−
∥∥∥∥∥ 1

nx

nx∑
i=1

z−Xi

‖z−Xi‖

∥∥∥∥∥ .

It must be noted that the maximum L1 depth classifier is in the class of classifiers

known as maximum depth classifiers (Ghosh and Chaudhuri, 2005) in that any depth

function DF can be used in place of the L1 depth function. The optimality of the

classifier is dependent on the choice of the depth function. The choice of depth

functions could be based on various properties like robustness. You obtain QDF if

Mahalanobis depth is used in place of the L1 depth in (2.9). One would assign the

new observation Z = z in Πx if DF (z;F,G) > 0 and in Πy otherwise.

In Billor et al. (2008), it is shown that the robustness of the maximum depth

classifier can be improved if one considers the largest order of depth instead of just
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the maximum depth. They define the transvariation probability between the depth

of Z and the depth of X relative to the distribution of X as

τx(Z) = P {(DF (X;F )−DF (Z;F ))(DF (µx;F )−DF (Z;F )} < 0)

= P {DF (X;F ) < DF (Z;F )} ,

where the second equality is due to the fact that µx is the point of maximum depth.

Given a random sample X1, . . . ,Xnx , an estimator of τx(Z) is

τ̂x(Z) = P {DF (X;Fnx) < DF (Z;Fnx)} =
1

nx

nx∑
i=1

I{DF (Xi;Fnx) < DF (Z;Fnx)}

Based on these, they define the maximum depth rank discriminant function as

DT (z;F,G) = P {DF (X;F ) < DF (z;F )} − P {DF (Y;G) < DF (z;G)}

=

∫
Rd
I{DF (x;F ) < DF (z;F )}dF (x) −∫

Rd
I{DF (y;G) < DF (z;G)}dG(y)

which is estimated by

DT (z;Fnx , Gny) =
1

nx

nx∑
i=1

I{DF (Xi;Fnx) < DF (z;Fnx)} −

1

ny

ny∑
j=1

I{DF (Yj;Gny) < DF (z;Gny)} .
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The maximum depth rank classifier classifies z into Πx if DT (z;Fnx , Gny) > 0. This

classifier is robust just like most rank-based procedures and can be directly extended

to more than two groups unlike the transvariation-based method.

The use of data depth for classification purposes has also been considered by

Mosler and Hoberg (2003). They define a combination of two existing depth functions

zonoid and Mahalanobis to come up with a new depth function and they call it

zonoid-Mahalanobis depth. Mahalanobis depth is parametric depth function that is

sensitive to deviations, while zonoid depth function is nonparametric and based on

convex hulls. In this regard, halfspace, simplicial and convex-hull peeling depths are

in the same class of depths as zonoid depth. A drawback of such depth functions is

that they vanish outside the convex hull, so points lying outside the convex hulls of

all classes cannot be classified using such depth functions. The zonoid-Mahalanobis

depth function uses a combination as in one would use the zonoid depth as long as

the point lies inside at least one of the convex hulls, else the Mahalanobis depth is

used for classification. Halfspace depth based classification for two populations has

been suggested by Christmann and Rousseeuw (2001) and Christmann et al. (2002).

Donoho and Gasko (1992) showed that the computation of HD in higher dimensions

can be performed using the projection pursuit method. In particular, the sample

half-space depth in one-dimension is defined as

HD1(x;X) = min(#{i : Xi ≤ x},#{i : Xi ≥ x})
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and for x ∈ Rd the sample half-space depth is defined as,

HDd(x; X) = min
‖u‖=1

HD1(u′x; u′X) (2.10)

where the dataset u′X is the one-dimensional projection of the d-dimensional dataset

X.

This means that the maximum depth classifier based on the half-sapce depth

(Ghosh and Chaudhuri, 2005) is equivalent to using projection pursuit with point-

group transvariation (Montanari, 2004) and allocating using a minmax rule. To

that end, let F and G be the data generating distributions and Fu and Gu be the

distributions of the projected data as defined above. Then using the definition given

in Equation (2.6) we can define the discriminant function

Dpgt(z;F,G) = min
‖u‖=1

∫
R
I{(x− u′z)(µ(Fu)− u′z) < 0}dFu(x) −

min
‖u‖=1

∫
R
I{(y − u′z)(µ(Gu)− u′z) < 0}dGu(y)

and allocate z in Πx if Dpgt(z;Fnx , Gny) > 0.

2.3 Classifiers Based on Robust Estimators of Location and Scale

The reason LDF and QDF are sensitive to deviations from underlying assump-

tions is due to the fact that the estimators of mean and covariance that they use

are sensitive to such deviations. So a natural idea is to replace these quantities with
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robust quantities to attain robustness in the classifier. Perhaps the earliest such pro-

cedure was proposed by Randles et al. (1978b) where Huber’s M estimates of the

mean vector and covariance matrix (Huber, 1977) are used in place of the mean and

covariance used in LDF and QDF.

2.3.1 M Estimators

We will give a brief discussion of Huber’s M estimates in the following. M

estimates are solutions, θ̂, that maximize

n∑
i=1

ρ(xi, θ) ,

where ρ is a function that depends on the sample and a vector of parameters θ. The

properties of this function are discussed below. Often it is simpler to differentiate

with respect to θ and solve for the root of the derivative. When this differentiation

is possible, the M -estimator is said to be of ψ-type. Otherwise, the M -estimator is

said to be of ρ-type.

ρ type

For positive integer d, let (X ,Σ) and (Θ ⊂ Rd, S) be measure spaces. θ ∈ Θ is a

vector of parameters. An M -estimator of ρ-type T is defined through a measurable

function ρ : X × Θ → R. It maps a probability distribution F on X to the value
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T (F ) ∈ Θ (if it exists) that minimizes
∫
X ρ(x, θ)dF (x) :

θ̂ = T (F ) := arg min
θ∈Θ

∫
X
ρ(x, θ)dF (x) .

ψ type

If ρ is differentiable, then the computation of θ̂ is usually much easier. An M -

estimator of ψ-type T is defined through a measurable function ψ : X ×Θ→ Rd. It

is assumed that the true parameter θ satisfies
∫
X ψ(x, θ)dF (x) = 0. Then a ψ-type

M estimator T (F ) is defined implicitly as the solution of the vector equation

∫
X
ψ(x, T (F ))dF (x) = 0 .

For many choices of ρ or ψ, no closed form solution exists and an iterative approach

to computation is required. It is possible to use standard function optimization algo-

rithms or an iteratively re-weighted least squares fitting algorithm typically happens

to be the preferred method.

2.3.2 S Estimators

S-estimator based classifiers are given by He and Fung (2000) and Croux and De-

hon (2001). S estimators were first defined in the context of regression by Rousseeuw

and Yohai (1984). Let ∆(x; a,C) = {(x− a)′C−1(x− a)}
1
2 for any x ∈ Rd, a ∈ Rd

and C ∈ S(d), where S(d) is the set of all symmetric positive definite matrices in
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Rd × Rd. Let s(a,C) be the solution of

1

m

m∑
i=1

ρ

{
∆(xi; a,C)

s(a,C)

}
= E

{
ρ(||x||

1
2 )
}
,

where ρ is such that ρ(0) = 0, where ρ is symmetric about 0 and ρ is nondecreasing

on (0, c) and constant on (c,∞) for some constant c > 0. Here the expectation on

the right hand side is taken at the standard d-variate normal distribution. Now let

(a∗,C∗) be the minimizers of s(a,C) subject to det(C) = 1, then

µ̃S = a∗ and

Σ̃S = s(a∗,C∗)C∗

are the S-estimators of µ and Σ.

2.3.3 MCD Estimators

The MCD (Maximum Covariance Determinant) based LDF and QDF given in

Hubert and Van Driessen (2004), the classifier based on a robust version of the

Lawley-Hotelling test uses the spatial median estimator of Hettmansperger and Ran-

dles (2002) and the related scatter estimator of Tyler (1987) given by Crimin et al.

(2007).

Hubert and Van Driessen (2004) used the re-weighted MCD estimate of mul-

tivariate location and scale (Rousseeuw, 1984, 1985), because of its good statistical
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properties and the FAST-MCD algorithm (Rousseeuw and Van Driessen, 1999) which

provides an efficient algorithm of computing the estimates for large data sets.

For the X sample, the MCD estimator is defined as the mean µ̂x,0 and the

covariance matrix Sx,0 of the hx observations (out of nx) whose covariance matrix has

the lowest determinant. The quantity hx should be larger than b(nx − p + 1) = 2c

and nx−hx should be smaller than the number of outliers in the X population. With

this choice the MCD attains its maximal breakdown value of b(nx − p + 1) = 2c ≈

50%. The breakdown value of an estimator is defined as the largest percentage of

contamination it can withstand (Rousseeuw and Leroy, 1987). If one suspects, less

than 25% contamination in the X sample, it is advised to take hx ≈ 0.75nx as this

yields a higher finite-sample efficiency (Croux and Haesbroeck, 2000). Based on the

initial estimates µ̂x,0 and Sx,0 one computes, for each observation xi, its (preliminary)

robust distance (Rousseeuw and Vanzomeren, 1990)

RD0
xi

=
√

(xi − µ̂x,0)′S−1
x,0(xi − µ̂x,0) , i = 1, . . . , nx

They assign weight 1 to xi if RD0
xi
≤
√
χ2
p,0:975 and weight 0 otherwise. The

reweighted MCD estimator is then obtained as the mean µ̂x,MCD and the covari-

ance matrix Σ̂x,MCD of those observations with weight 1. It is shown by Croux and

Haesbroeck (2000) that this reweighting step increases the finite-sample efficiency of

the MCD estimator considerably, whereas the breakdown value remains the same.

This can also be used to flag outliers and so can be used to detect outliers.
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The Robust Quadratic Discriminant Rule (M) is: Z = z ∈ Πy if dM2 (z) > dM1 (z)

where

dMx (z) = −1

2
ln|Σ̂x,MCD| −

1

2
(z− µ̂x,MCD)′Σ̂−1

x,MCD(z− µ̂x,MCD) (2.11)

and z ∈ Πx otherwise. The quantity dMy (z) is defined analogously as dMx (z).

Robustified Fisher’s linear discriminant rule (RLDR), which can be described as

z ∈ πx if

(µ̂x − µ̂y)′Σ̂−1(z− (µ̂x − µ̂y)/2) > 0;

and z ∈ πy otherwise.

To construct RLDR they first look for initial estimates of the group means and

the common covariance matrix, denoted by µ̂x,0, µ̂y,0 and Σ̂0. This will already yield

a discriminant rule based on d̂RLx (z, µ̂x,0, Σ̂0) and d̂RLy (z, µ̂y,0, Σ̂0). We will then also

consider the reweighting procedure based on the robust distances

RD0
xi

=

√
(xi − µ̂x,0)′Σ̂−1

0 (xi − µ̂x,0) , i = 1, . . . , nx

and

RD0
yj

=

√
(yj − µ̂y,0)′Σ̂−1

0 (yj − µ̂y,0) , j = 1, . . . , ny

For each observation in X sample, let wxi = 1 if RD0
xi
≤
√
χ2
p,0:975 and wxi = 0

otherwise. wyj are defined similarly for the Y sample. The final estimates are then

obtained as the mean and the pooled covariance matrix of the observations with
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weight 1, i.e.

µ̂x =

∑nx
i=1 wxixi∑nx
i=1wxi

, µ̂y =

∑ny
j=1wyjyj∑ny
j=1wyi

,

Σ̂ =

∑nx
i=1 wxi(xi − µ̂x)(xi − µ̂x)′ +

∑ny
j=1 wyj(yj − µ̂y)(yj − µ̂y)′∑nx

i=1 wxi +
∑ny

j=1wyj
(2.12)

and the resulting linear discriminant rule is then based on d̂RLx (z, µ̂x, Σ̂) and

d̂RLy (z, µ̂y, Σ̂).

To obtain the initial covariance estimate Σ̂0, they consider three different meth-

ods. The first approach is straightforward, and has been applied by Chork and

Rousseeuw (1992) using the Minimum Volume Ellipsoid estimator (Rousseeuw, 1984),

and Croux and Dehon (2001) using S-estimators (Rousseeuw and Yohai, 1984). The

MCD estimates µ̂x,MCD, µ̂y,MCD, Σ̂x,MCD and Σ̂y,MCD are obtained, and then the

individual covariance matrices are pooled, yielding

Σ̂PCOV =
nxΣ̂x,MCD + nyΣ̂y,MCD

nx + ny

For the second approach, they adapt one of the proposals of He and Fung (2000)

who use S-estimators to robustify Fisher’s linear discriminant function. The idea is

based on pooling the observations instead of the group covariance matrices.

The third estimator combines the two previous approaches and is aimed to find a

fast approximation to the Minimum Within-group Covariance Determinant criterion

of Hawkins and McLachlan (1997). Instead of applying the same trimming proportion

to each group, they proposed to find the h observations out of the whole data set of
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size n, such that the pooled within-group sample covariance matrix Σ̂H has minimal

determinant. The algorithm described in Hawkins and McLachlan (1997) is very

time-consuming because it is based on pairwise swaps. Hubert and Van Driessen

(2004) proposed the fast approximation for two groups which is much faster than

the algorithm given in Hawkins and McLachlan (1997). It has to be noted that this

algorithm can fail if some of the groups are very small where there is a possibility

that the final subset H does not contain p+ 1 observations from each group, making

those group covariance matrices singular.

Similar to Hubert and Van Driessen (2004), Joossens and Croux (2004) performed

simulation studies to compare LDF and QDF with the MCD based LDF and QDF

as well as the S-estimator based classifiers.

2.3.4 Other

There are other estimates like the R-estimates and the L-estimates (Serfling,

1980) which could also be used in classification in a similar fashion.

An issue that was discussed in Lachenbruch et al. (1973) is the problem of im-

balance between the two misclassification error rates PD
y|x and PD

x|y resulting from the

use of D = QDF and D = LDF when the parent populations are non-normal. Ideally

one would want PD
y|x = PD

x|y or a situation where a classifier can definitely confirm

to provide lower misclassification rates for the samples of choice. Since this is not a

possibility, the only logical option is to maintain the balance in tact. A remedy for

this undesirable property of classifiers was given in Randles et al. (1978a) and Ng and
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Randles (1983). In these papers, it is shown that balance is attained (asymptotically)

through ranking of discriminant functions such as LDF and QDF while keeping the

TPM relatively low. Randles et al. (1978b) use this ranking technique on robust

linear and quadratic discriminant functions that use M estimates and they showed

that the resulting classifier is robust compared to LDF and QDF and balance.
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Chapter 3

Proposed Robust Projection Pursuit Based Allocation Schemes

3.1 Introduction

There are two main aspects of a projection pursuit technique - a projection

index and the most efficient way to search for the best projection direction. Works

in two-dimensional projection pursuit are discussed in Friedman and Tukey (1974),

Jones (1983), Jones and Sibson (1987) and Friedman (1987), and suggestions are

made by Yenyukov (1988), Yenyukov (1989). An effective algorithm for the same

was provide by Posse (1990). He uses the chi-square measure as his projection index.

He uses random search for projection directions to find local optima and restart the

search process repeatedly to make sure they find the optimum. The two-dimensional

problem might not be as complicated for the modern computational power, but as the

dimension increases there is a need for more efficient projection pursuit algorithms.

Posse (1992) used the algorithm given in Huber (1989) which is similar to that given

by Posse (1990). A quickly generated random walk on the d-dimensional hypersphere

Sd sweeps the entire space where areas of interest are identified to find the local

optima. This happens to be very efficient as it saves computational time while still

maintaining the efficiency of the algorithm.

For our projection pursuit based classifier, we use two-group transvariation (Gini,

1916) as projection index. We use similar principles of Posse (1992) where we sweep
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the high dimensional space and then find the projection direction that maximizes

separation by minimizing two-group transvariation. In order for the sweep to be suc-

cessful, the projection directions need to be uniformly distributed on the hypersphere.

One such method that allows us to do this is NT-net given by Fang and Wang (1994).

3.2 NT-Net

To perform projection pursuit in Rd we need points that are “uniformly scat-

tered” on the surface of the unit hypersphere Sd−1 as given in Fang and Wang (1994).

• If W ∼ NIDd(0, Id), then

(W′W)−1/2W

is uniformly distributed on Sd−1.

• If V1, . . . ,Vk is a number theoretic net (NT-net) on the d− 1 dimensional unit

cube Cd−1, then

{Wi = S(V1, . . . ,Vk) , i = 1, . . . , k} ,

where S is the spherical coordinate transformation operator, is an NT-net on

Sd−1.

Let Φ = (φ1, . . . , φd−1) be a point on Cd−1. We use the spherical coordinate

transformation

Xj =

j−1∏
i=1

SiCj, j = 1, ..., d− 1,
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Xd =
d−1∏
i=1

Si,

where

Si = sin(πφi), Ci = cos(πφi) i = 1, ..., d− 2,

Sd−1 = sin(2πφd−1), Cd−1 = cos(2πφd−1.)

Then X = (X1, . . . , Xd) is a point on Sd−1. If Φ1, . . . ,Φk forms an NT-net on

Cd−1, then X1, . . . ,Xk forms an NT-net on Sd−1. For example, to obtain an NT-net

for d = 3, if {(vi1, vi2) , i = 1, . . . , k} is a NT-net on [0, 1]2, then {(wi1, wi2, wi3) , i =

1, . . . k} is a NT-net on S2 as given in Figure 3.1, where

wi1 = 1− 2vi1

wi2 = 2
√
vi1(1− vi1) cos(2πvi2)

wi3 = 2
√
vi1(1− vi1) sin(2πvi2)

To measure whether the points on the hypersphere are uniformly distributed,

measures such as F -Discrepancy are used (Fang and Wang, 1994). Let F (x) be a cdf

in Rd and ℘ = xk, k = 1, ..., n be a set of points on Rd, then

∆∗F (n, ℘) = sup
x∈Rd
|Fn(x)− F (x)|

is called the F -Discrepancy of ℘ with respect to F (x), where Fn(x) is the empirical

distribution of x1, ..., xn. F -Discrepancy is a measure of the representation of ℘ with
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Figure 3.1: An NT-net on S2
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respect to F (x). We chose to use NT-net to provide us with our projection directions

for our projection pursuit method because of this property.

The interested reader may find alternative ways of generating projection direc-

tions in Marsaglia (1972), where three different Monte Carlo point picking methods

are given.

It is well known that projection pursuit based methods are computationally ex-

pensive. Although, advanced computational techniques can be effectively used to

minimize the number of projections considered without affecting the efficiency of the

technique (Filzmoser et al., 2006). Inspired by Posse (1992), we provide one such al-

gorithm that would briefly sweep the entire space using a small number of projection

directions and then localize to find the best projection direction that optimizes the

projection index. We use two-group transvariation as a projection index as given in

Montanari (2004).

Algorithm:

Step 1: Uniformly spread points that cover the entire unit hyper cube Cd−1 are

generated.

Step 2: These points on the unit hyper cube are spherically transformed onto a unit

hyper sphere Sd−1 as described above. These points are uniformly distributed

as given in Fang and Wang (1994) using the F -discrepancy criteria.

Step 3: The projection index for each of the projections on the hyper sphere is calcu-

lated and the projection that provides the optimum projection index is chosen.
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The optimum projection is the direction that produces maximum separation or

minimum overlap between the training samples.

Step 4: In the case of more than one projection direction providing the optimum

projection index, the projection direction that provides the most spread for the

data is considered. One can choose a robust version of spread to make the

algorithm more robust.

Step 5: The point on the unit hyper sphere that provides the projection direction in

‘Step 4’ is identified and easily traced back to the point on the unit hyper cube.

In the unit hyper cube, the points immediately surrounding this point are used

to create more points. The number of points generated here could be the same

as in ‘Step 1’.

Step 6: A grid of uniformly spread points is now generated on this localized region

of the unit hyper cube.

Step 7: These points on the localized region of the unit hyper sphere are spherically

transformed, which now form a unit hyper arc instead of a unit hyper sphere.

This gives a localized view of the region that gave the optimum projection

direction in the previous iteration.

Step 8: ‘Step 3’ through ‘Step 7’ are then repeated until a convergence criterion is

reached. If transvariation probability is used as a projection index, the conver-

gence criterion could be to continue until the projection index stops decreasing.
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It has to be noted that the convergence criterion will take you to the projection

direction that gives a local optimum projection index. For data that follows a certain

unimodal shape, there will only be a global optimum for the projection index and

the algorithm takes you to the projection direction that achieves this global opti-

mum. Since transvariation is discrete, the algorithm ensures that there exists only

one projection direction that provides the least two-group transvariation.

The number of points needed per dimension for this algorithm depends on the di-

mension under consideration and the computational power. While a thorough search

would confirm an optimum projection index, Monte Carlo simulations done at the

end of this chapter have shown us that for certain unimodal distributions, 5 projec-

tion directions per dimension seem to be more than sufficient. We tried the process

with 7 and 9 projection directions per dimension but did not see any noticeable im-

provement. If 5 projection directions per dimension are used, the total number of

projection directions would be 5d−1, which means that as the dimension increases,

the number of projection directions required also increases. The beauty of using NT-

net for projection directions is that you do not have to look at the entire region of

space at one time. You could break the entire space that needs to be explored into

regions, which can be controlled easily by controlling the points on the unit hyper

cube.

Once the vector ûopt that gives us the most interesting view of the data in a

single dimension is found using (2.7), we project the test samples in this direction
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and allocate the new observation into one of the two groups based on a particular

allocation scheme.

3.3 Allocation Schemes

We will consider four different schemes of allocation in this study. The first

method was proposed by Montanari (2004) and is based on projected distances of the

new observation from the centers of the training samples. The second is a suggestion

given in Montanari (2004), wherein a nonparametric allocation scheme was proposed

and immediately abandoned. We will discuss the reason why she had to abandon her

suggested scheme and we will provide two alternative allocation schemes which are

completely nonparametric. These are based on the positions of the projected points

relative to the projected centers of the training samples.

It must be noted that all the procedures given in this chapter are affine invariant.

Invariance to translations is immediate. Moreover, any rotation of the data will result

in the same rotation of the projection direction that gives the “most interesting”

view and the resulting projected data do not depend on the coordinate system used.

A formal argument showing the affine invariance of these procedures is found in

Lemma 2.1 of Donoho and Gasko (1992) and Theorem 2.1 of Zuo and Serfling (2000).

3.3.1 Allocation Based on Distance

Given two independent random training samples X1, . . . ,Xnx and Y1, . . . ,Yny

from Πx and Πy, respectively, defined on Rd (d ≥ 1), a new observation Z = z is
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classified in Πx if |û′optZ−mx(ûopt)| < |û′optZ−my(ûopt)|, otherwise classify it in Πy.

Here mx(ûopt) and my(ûopt) are centers of the two projected groups. One may take

either the mean or the median as a measure of location. We considered the median

as given in Montanari (2004). Hereafter the classifier obtained using this allocation

method will be referred to as Transvariation-Distance (TD) classifier.

This allocation scheme is based on distances from the projected center of the data

from the projected new observation, which makes this allocation scheme parametric.

Without regard for the shape of the distribution the data follows, the center is used

as a reference for allocation. There seems to be no problem in allocation when the

distributions under consideration are symmetric but as the distributions get away

from this assumption of symmetry, the dependence of the method on parameters

makes the scheme sensitive to this assumption. Montanari (2004) was aware of this

problem and tried to fix this with a non-parametric version that she suggested in her

research.

3.3.2 Allocation Based on Point-Group Transvariation

A nonparametric allocation option suggested by Montanari (2004) is based on

the ranking of the new observation among the two samples. This utilizes the point

group transvariation defined by Gini (1916) between the projected new observation

and projected X and the projected new observation and projected Y. Allocate a new
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observation Z = z into Πx if Tx(Z) > Ty(Z); otherwise, it is assigned to Πy where

Tx(Z) =
1

nx

nx∑
i=1

I{(û′optXi − û′optZ)(mx(ûopt)− û′optZ) < 0} and

Ty(Z) =
1

ny

ny∑
i=1

I{(û′optYi − û′optZ)(my(ûopt)− û′optZ) < 0} (3.1)

As argued earlier, this allocation scheme is based on ranks. This gets rid of

the non optimality problem that TD has when skewed distributions are considered.

Although this allocation scheme makes this method completely nonparametric and

works better than TD for skewed distributions, it does not perform as well for data

with unequal sample sizes. This is due to the fact that an equal prior restriction is

imposed by counting and we neglect group two(one) when we find the ranking of the

new point in group one(two). So the priors are not necessarily taken into account and

the effect shows in the misclassification error rate especially when the sample sizes

are unequal. Montanari (2004) abandoned this scheme for this very reason. Adding

to the problem of priors that this allocation scheme has is another problem of rather

high likelihood of ties between Tx and Ty given in (3.1). The likelihood of ties is the

most noticeable in equal sample sizes cases and these cases happen to be the only

cases that this allocation scheme works efficiently. This problem of ties requires some

kind of a tie breaking strategy. The one employed by us is to randomly assign the

observation into one of the groups using a coin flip. The classifier obtained using this

allocation scheme will be referred to as Point-Group Transvariation (PGT) classifier.
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3.4 Proposed Symmetrized Allocation Scheme

The schemes, TD and PGT, one being parametric and the other being nonpara-

metric, still have problems with skewed cases and problems with unequal sample

size cases, respectively. In spite of being nonparametric, the PGT scheme did not

include any information about the second group when finding point-group transvari-

ation between the new observation and the first group. We needed to come up with a

new allocation scheme that considers both the groups while finding a nonparametric

alternative to the existing schemes.

We had a nonparametric way of looking at two groups at the same time: the

two-group or group-group transvariation defined by Gini (1916). The next issue we

faced was to somehow include the new observation in the calculation of the group-

group transvariation and be able to use it for allocation. So we propose a new

nonparametric alternative that is based on ranking of the new observations in the

groups while considering both the groups.

To allocate a new observation Z, we define X∗ = {X1, . . . ,Xnx ,Z} and similarly

define Y∗ = {Y1, . . . ,Yny ,Z}. The idea is to find Tx∗y, the transvariation probability

between X∗ and Y given by

Tx∗y =
1

(nx + 1)ny

∑
x∗∈X∗

∑
y∈Y

I{(û′optx∗ − û′opty)(mx(ûopt)−my(ûopt)) < 0} (3.2)
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and Txy∗ , the transvariation probability between X and Y∗ given by

Txy∗ =
1

nx(ny + 1)

∑
x∈X

∑
y∗∈Y∗

I{(û′optx− û′opty
∗)(mx(ûopt)−my(ûopt)) < 0} (3.3)

and see the effect of the new observation on the quantities Tx∗y and Txy∗ . These two

quantities have Txy in common, where

Txy =
1

nxny

∑
x∈X

∑
y∈Y

I{(û′optx− û′opty)(mx(ûopt)−my(ûopt)) < 0} , (3.4)

is the transvariation probability between X and Y as given in (2.5). The quantity

(nx + 1)nyTx∗y − nxnyTxy is the number of observations in group X with which the

new observation transvariates. Similarly, the quantity nx(ny + 1)Txy∗ − nxnyTxy is

the number of observations in group Y with which the new observation transvariates.

So, the difference Tx∗y − Txy is due to the addition of the new observation Z in X

and the difference Txy∗ − Txy is due to the addition of the new observation Z to

Y. These differences can be thought of as the contributions that Z makes towards

the transvariations if it were to belong in the groups in which it is placed. These

differences could be positive or negative based on the location of the new observation

but cannot both be positive or both negative for a particular new observation. If Z

belongs to the group it was placed in, it will not contribute to the transvariation with

the other group and thus creating a negative difference, else it would create a positive

difference.
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A negative difference indicates that the new observation Z is placed in the correct

group. So a new observation Z = z is allocated to Πx if Tx∗y − Txy < Txy∗ − Txy,

else it is allocated to Πy. Since both the differences contain Txy, regardless of the

differences, we allocate the new observation to Πx if Tx∗y < Txy∗ , else we classify it in

Πy.

This classifier takes care of the problems that the previous two allocations schemes

could not take care of: the unequal sample sizes problem of PGT (this is done by

considering both the groups) and the deviations from symmetric distributions prob-

lem of TD (this is done in the same way PGT did it). We will call this classifier

Group-Group Transvariation (GGT) classifier.

3.5 Proposed Smoothed Allocation Scheme

As discussed above, PGT is a definite improvement in terms of dealing with the

skewed distribution cases, but the problem of unequal sample sizes remains. One way

of looking at it is to say that PGT does not consider both the groups at the same

time and we came up with GGT. Another way of looking at the issue with PGT is to

say that PGT looks at transvariations, which lacks smoothness in the sense that the

individual votes are either 0 or 1 (Mojirsheibani, 2000). For instance, in Equation

(3.1), the vote of each X in Tx(z) is either 0 or 1/nx while the vote of each Y in Ty(z)

is either 0 or 1/ny. Obviously, this presents a problem when nx 6= ny. A flexible

procedure where the votes are allowed to take values between 0 and 1 in a way that

is optimal is more appropriate.
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Once the data is projected onto the optimum projection using projection pur-

suit, let us consider the point-group transvariation between a point c and a group

X1, . . . , Xnx and without loss of generality let us say that mx < c. Then the sample

version of the point-group transvariation between c and X is given by

Tx(c) =
1

nx

nx∑
i=1

I{Xi − c < 0}

which is a sign statistic (Hollander and Wolfe, 1999), a one-sample nonparametric

test statistic. The problem is that an observation is treated as a transvariation re-

gardless of whether X is barely greater than c or much higher than c. There seems

to be no weight associated to the location. Similar argument can be made for non-

transvariations where an observation is treated as a non-transvariation regardless of

whether X is more or barely smaller than c.

There is a need for a function that weighs in the distance and the location as

well to assign a number in the interval (0, 1). That is, a function that gives each

transvariation a value between 0 and 1 based on the distance. So the indicator

function needs to be replaced by a function that is always between 0 and 1 and

continuous. The difference between a transvariation which is 0 or 1, and a smooth

function that provides values between 0 and 1 is shown in Figure 3.2. A CDF seems

to be a natural choice as a function here, although other functions can be used.
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Classify Z = z in Πx if Tx(z) > Ty(z) where

Tx(c) =
1

nx

nx∑
i=1

[
1−Kx{(û′optXi − û′optz)(mx(ûopt)− û′optz)}

]
and

Ty(c) =
1

ny

ny∑
j=1

[
1−Ky{(û′optYj − û′optz)(my(ûopt)− û′optz)}

]
, (3.5)

else classify it in Πy.
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Figure 3.2: Graphical Depiction of Transvariation and Smoothed Transvariation

Kx and Ky need not necessarily be CDFs. They can be taken to be functions that

satisfy certain requirements or any CDF defined on R with pdf kx and ky, respectively,

50



that is continuous on (−δ, δ) for some δ > 0 and kx(0) > 0 and ky(0) > 0. It is not

a requirement that both the samples need to follow a certain shape. Note that PGT

uses the CDF of the bernoulli random variable I(X ≥ 0).

The conversion of a 0 or 1 transvariation into a number in the interval (0, 1) is

based on a smoothing parameter. Smoothing works well in avoiding the problem that

PGT had with allocation in the case of unequal sample sizes. Kernel smoothing was

used for classification by Mojirsheibani (2000). In our study, we use the CDF of the

t-distribution for K with degrees of freedom (df) as the smoothing constant. This

gives us a wide range of CDFs with varying scale that could be used to fit various

distributions.

For a data set with training and testing samples, the process of finding the

optimum smoothing constant (df) is as follows:

Algorithm

Step 1: After finding the optimum projection direction using NT-net, the data are

projected onto this direction. You would then allocate the testing sample using

equation (3.5).

Step 2: To allocate, you need the df that defines the t-CDF, which provides the best

smoother for that particular shape of data. It makes a lot of sense to use two

different smoothing df , one for each group of data. We use the training sample

to train and find the best smoother for each group.
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Step 3: Finding the smoother theoretically is a very difficult problem. In fact, there

exists no closed form solution when the t-CDF is used in place of the indi-

cator function in transvariation. Instead we use a bivariate grid, containing

df(df1, df2), one for each group.

Step 4: We then use the training data and apply leave-one-out cross validation to

find the probability of misclassification for each possible pair of df . The combi-

nation that provided the least probability of misclassification is then picked as

the pair of smoothing constants.

Step 5: We finally use equation (3.5) with the smoothing constants found in Step 4,

to find the total probability of misclassification for this data.

When the data are presented as a single sample, as is the case for real data

sets, we remove one observation from the data and try to use the rest of the data

as a training sample to allocate this observation. This is like leave-one-out cross

validation. So, we end up using a double one-at-a-time cross validation, once for

finding the misclassification for the data and again to find the best set of smoothing

df for the training sample.

We tried the normal cdf which worked really well for distributions that are normal

or near normal. As the distributions deviated from normality, the efficiency of the

normal cdf with the spread as the smoother went down. Based on our simulations,

this was partly because normal distribution with sigma as a smoother, lacks the range

to cover a variety of distributions. This was evident when most of the smoothing
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constants ended up being very close to zero, which makes the normal distribution

almost like a point mass and hence a transvariation. In such cases, smooth becomes

PGT. We chose to use t-cdf with df as a smoother for its wide range. We are convinced

that a better smoother exists out there and we leave the solution of finding it as an

open problem.

We refer to the classifier that uses this allocation scheme as smooth-PGT (SPGT).

This classifier has all the positives of PGT but gets rid of the problem with PGT, that

is, with unequal sample sizes. By counting transvariations, PGT puts a restriction of

equal priors. As discussed above, transvariation with one group is scaled by 1
nx

, while

the transvariation with the other group is scaled by 1
ny

. This creates a problem when

the sample sizes are not equal, especially when the sample sizes are highly unequal.

In the case of the SPGT allocation scheme, each transvariation is smoothed, in our

case using a t-CDF. This takes care of the shape of the distributions by weighing each

point based on their relative position and the distance from the new observation. The

two smoother df ′s defining the t-CDf’s, which provide the least misclassification are

found using the training samples. This process of finding the best smoother that

smoothes the data, closes the gap between the difference in sample sizes.

3.6 Application on Real Data and Monte Carlo Simulation

We would like to show the optimality of the proposed classifiers by applying the

methods on some real data sets and a variety of simulation settings.
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3.6.1 Application on Real Data Sets

The data sets that we chose to consider are

Leukemia : This dataset is given by Golub et al. (1999) and comes from a study of

gene expression in two types of acute leukemias: acute lymphoblastic leukemia

(ALL) and acute myeloid leukemia (AML). The dataset is available at

http://www.genome.wi.mit.edu/MPR

Gene expression levels were measured using Affymetrix high-density oligonu-

cleotide arrays containing 7129 human genes. The data are comprised of 47

cases of ALL (38 B-cell ALL and 9 T-cell ALL) and 25 cases of AML. We used

the method of gene selection given by Nguyen and Rocke (2002) that uses a

t-statistic to select expressed genes. After preprocessing, the data are sum-

marized by a 72x1751 matrix. To reduce the dimension of the data set, we

considered the first 10 principal components.

Colon : This data set contains gene expression in 40 tumor and 22 normal colon

tissue samples analyzed with an Affymetrix oligonucleotide array (Alon et al.,

1999). The expression level of 6500 genes were measured and the 2000 genes

with the highest minimal intensity were retained. We again applied the gene

selection method given by Nguyen and Rocke (2002) to select the genes that

exhibit maximum variation among the 62 tissues. The resulting data matrix

contained 250 genes. We then kept the first 9 principal components for the

purpose of classification.
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Fisher’s Iris : This is the classic Iris dataset given by Fisher (1936). It consists of

three species (Setosa, Versicolor, and Virginica) of Iris flowers with 50 observa-

tions of each species. The dataset contains four variables: sepal length, sepal

width, petal length, and petal width. We wish to identify a new Iris flower as

Versicolor or not based on measurements on these four variables. We considered

the original data as well as a contaminated version where the contamination is

done by placing a single outlier in the Versicolor group in a similar manner as

Crimin et al. (2007).

We will consider the proposed methods, GGT and SPGT and as comparison

we will consider the allocation scheme, TD, proposed by Montanari (2004) and her

suggested allocation, PGT. We will also consider maximum depth classifier, MaxD,

based on L1 depth given by Ghosh and Chaudhuri (2005) and Jörnsten (2004) and the

classical LDF and QDF. The results are presented in Table 1 given in the appendix.

• For the original Iris data, QDF and MaxD gave the lowest TPM at 3.33%. The

least optimal performer was TD with a misclassification error rate of 31.33%.

When a cluster of five outliers was added to the Iris data, GGT gave the lowest

TPM at 3.87% with PGT really close at 3.97%. The misclassification error rate

for SPGT went down slightly, while the error rates for MaxD, LDF and QDF

exploded. For LDF and MaxD, the error rate was doubled and for QDF, the

error rates increased almost 4 times.
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• For the Leukemia data, GGT happened to be the method that provided the

least TPM of 1.39%; The SPGT method had the next best misclassification

error rate at 2.78%. PGT is close with 2.9% while TD happened to be the least

optimal among the methods considered with an error rate of 11.11%. MaxD,

LDF and QDF shared the same error rate at 4.17%.

• Smooth-PFT, GGT, TD and LDF shared the lowest TPM at 12.9%. The least

optimal method being MaxD with a misclassification error rate of 17.74%.

3.6.2 Monte Carlo Simulation

The common simulation settings used by authors in literature looks at normal

distributions and as a deviation they include outliers, look at distributions with heavy

tail and log-normal distribution as a case of skewed distribution. In all those cases,

most often than not, authors choose to use the same distributions for both the groups

and/or keep most of the other aspects simple. We perform a very extensive Monte

Carlo simulation to study the optimality (in terms of misclassification error rates) of

the proposed classification procedures under a variety of distributional settings:

• Homoscedastic (vs) Heteroscedastic

• Equal sample sizes (vs) Unequal sample sizes

• Same distributions (vs) Different distributions for the two groups

• Symmetric (vs) Skewed distributions
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• Normal tail (vs) Long tailed symetric distributions

• Combinations therein

The simulation study follows the same setup given in Montanari (2004). We start

off by generating training samples of the given sizes which are used to formulate the

classification rules. Testing samples of size 1000 from each group are then generated

and the misclassification error rates are calculated by computing the proportion of

misclassified testing sample observations in each group. This process is then repeated

50 times and the mean and standard error of the misclassification error rates are

computed.

We consider Cauchy (C, which is t with 1 degree of freedom), t with 2 degrees of

freedom (t2), Normal (N) distributions, and log-normal (LN) distributions. Train-

ing samples of equal (150, 150) and unequal (50, 250) sizes were generated from the

distributions.

We consider four-dimensional distribution to generate the data. We consider

centers (0, 0, 0, 0)′ and (2, 0, 0, 0)′ and covariance matrices I = I4 and

W =



1 −1 −1 1

−1 2 2 .25

−1 2 3 .5

1 .25 .5 4


.
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In the reporting of the results we use the notation K(A), H(B) to represent distribu-

tions K and H (K and H are C, t2, N or LN) with covariance matrices A and B (A

and B are I = I4, W ), respectively. We consider all the methods as mentioned in the

real data sets. A summary of the results is given in Table 2 given in the appendix.

The following observations are noted:

• A look at the results for the PGT classifier indicates that it is not optimal

for almost all of the unequal sample size cases confirming Montanari’s suspicion

that led her to abandon the point-group transvariation allocation scheme. GGT

and SPGT classifiers have error rates comparable for equal sample size cases

compared to the PGT classifier, lower error rates in almost all cases for the

unequal sample size cases and much lower error rates in most cases for the

unequal sample size cases. For these reasons, we will not be considering PGT

as a contender for misclassification error rate.

• Considering the standard errors of the unequal sample size cases, MaxD and

PGT classifiers are less precise than the other classifiers, MaxD being the least

precise classifier. Except in a few cases, PGT is less precise than GGT and

SPGT.

• Error rates for GGT and SPGT classifiers are comparable to TD for symmetric

and same distributions. GGT, SPGT and TD have better error rates compared

to LDF, QDF and MaxD for heavy tailed distributions (Cauchy and t(2)) while
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for the normal case, GGT and SPGT have error rates comparable with LDF,

QDF and TD classifiers but superior to MaxD classifier.

• For skewed but same distribution cases, SPGT and GGT are the best meth-

ods among the methods considered in terms of misclassification error rate and

standard error. The error rates and standard errors of SPGT and GGT are

comparable.

• For different but homoscedastic distributions, there are cases where SPGT is the

best method, where GGT is the best method, where TD is the best method.

One of the three methods SPGT, GGT or TD is the best method in these

cases. Best in terms of misclassification error rate and standard error. For

these settings, it can also be noted that GGT acts up for the unequal sample

size cases. The error rates for GGT decreases for some cases with unequal

sample sizes and increases substantially for some other cases.

• For different and heteroscedastic distributions, it can be noted that QDF does

fairly better than it usually does. As mentioned in Chapter 2, QDF works

better for heteroscedastic cases, but the different distributions inflates the error

rates in some cases. Except for QDF, SPGT happens to be the best method

among the methods considered. The only exception is GGT for some unequal

sample size cases and where log-normal distribution is considered with equal

sample sizes.
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Chapter 4

Robust and Balanced Classification

4.1 Introduction

Extensive research has been done in the area of classification. To name a few of

the main categories that authors looked at are parametric methods, non-parametric

alternatives to the parametric methods, using robust estimates in place of the sensitive

ones. These methods try to create a method that provides the lowest possible TPM.

Not much has been done in regard to the issue of balance of the misclassification

error rates within each group. This issue was briefly talked about in Lachenbruch

et al. (1973) and then a solution was provided by Ng and Randles (1983) where they

rank LDF and QDF to create balance in the misclassification error rates, that is,

PD
y|x = PD

x|y.

The issue of balance needs more importance than it has been given in literature

in terms of research done on this topic. The issue of balance becomes very pertinent

in situations where one of misclassifications (PD
y|x, P

D
x|y) is costlier than the other. For

example, in a two group classification problem with a group of patients having cancer

and the another group not having cancer, a misclassification of a cancer patient

into a noncancerous group could prove costly in terms of life. Ideally there is a

need for a method that can control the ratio of the misclassification error rates at

a required level. When the investigator does not have any information on the costs
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of misclassification and prior probabilities, then it is best to maintain the balance

between the two misclassification error rates. Some existing methods can provide a

low TPM but there are not many methods, especially robust methods that can create

this balance while minimizing the overall misclassification error rate. We propose one

such method that can maintain the balance in the two misclassification error rates

while controlling the overall TPM. We show that balance can be achieved as long

as ranking is incorporated and both groups are considered while allocating the new

observation (Randles et al., 1978a).

4.2 Ranking Discriminant Function

Given two independent random training samples X of size nx given by X1, . . . ,Xnx

from population Πx with distribution F and Y of size ny given by Y1, . . . ,Yny from

Πy with distribution G, defined on Rd (d ≥ 1). Let Fnx and Gny be the empirical

distribution functions of X and Y, respectively. Suppose, as before, that we have

an absolutely continuous and real valued discriminant function D such that Z = z

is classified in Πx if D(z;F,G) > 0 and in Πy otherwise. Now let us define a rank

discriminant function RD as

RD(z;F,G) = P {D(z;F,G) ≥ D(X;F,G) | X ∼ F}

− P {D(z;F,G) ≤ D(Y;F,G) | Y ∼ G} . (4.1)
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Naturally, one classifies Z = z in Πx if RD(z;F,G) > 0 and in Πy otherwise. This

classifier is looking at whether the new observation belongs more to X or to Y and

the calculation depends on how D(.) is chosen.

To define the sample version, we will form two augmented samples by placing

the new observation Z = z in X forming X∗ = {X1, . . . ,Xn1 ,Z} and in Y forming

Y∗ = {Y1, . . . ,Yn2 ,Z}. Let F ∗nx+1 and G∗ny+1 be the empirical distribution functions

of X∗ and Y∗, respectively. We then have

RD(z;Fnx , Gny) =
1

nx + 1

∑
x∈X∗

I
{
D(z;F ∗nx+1, Gny) ≥ D(x;F ∗nx+1, Gny)

}
− 1

ny + 1

∑
y∈Y∗

I
{
D(z;Fnx , G

∗
ny+1) ≤ D(y;Fnx , G

∗
ny+1)

}
,

(4.2)

where I{A} is the indicator function of the event A. We would then allocate Z = z

to Πx if RD(z;Fnx , Gny) > 0 and to Πy otherwise.

Under certain mild regularity conditions given in Section 4 of Ng and Randles

(1983), the two misclassification error rates of RD(z;Fnx , Gny) are asymptotically

equal or controlled to be a specific constant r. In particular, assume the regularity

conditions given below are true:

1. The sample versions of the discriminant functions must be symmetric in their

argument. That is,

D(·|X1, . . . ,Xnx ; Y1, . . . ,Yny) = D(·|Xs1 , . . . ,Xsnx ; Yt1 , . . . ,Ytny )
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for any permutation (s1, . . . , snx) of (1, . . . , nx) and (t1, . . . , tny) of (1, . . . , ny)

2. For each z ∈ Rd,

D(z;Fnx , G)
P−→ D(z;F,G) and D(z;F,Gny)

P−→ D(z;F,G) ,

where D(·) is a real valued function defined on Rd.

3. For all z1, z2 ∈ Rd, we have

D(z1;F,G) < D(z2;F,G) iff D(z1;G,F ) > D(z2;G,F ) .

4. Z, Xi’s and Yj’s are all mutually independent

5. The random variables D(X;F,G) and D(Y;F,G) are absolutely continuous

6. The equalities

P
{
Fnx(D(X;F,G)) = rGny(D(X;G,F )))

}
= 0 , and

P
{
Fnx(D(Y;F,G)) = rGny(D(Y;G,F )))

}
= 0 ,

hold for some r ∈ R+.

Then we have

P{RD(Z;F,G) < 0 | Z ∼ F} = rP{RD(Z;F,G) > 0 | Z ∼ G} .
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The rank discriminant functions that we will study are:

RL: This uses the LDF L(z;F,G) given in (2.3) in place of D(z;F,G) in (4.1). This

would be the method proposed by Randles et al. (1978a) where he ranks LDF.

RQ: This uses the QDF Q(z;F,G) given in (2.4) in place of D(z;F,G) in (4.1).This

would be the method proposed by Randles et al. (1978a) where he ranks QDF.

RS: This uses the ranking of the L1 depth function defined in (2.8). However, to com-

ply with the regularity conditions of Ng and Randles (1983) regarding effective

sample separating ability of the discriminant function, we will use

S̃(z;F,G) =
1

D1(z;G)
− 1

D1(z;F )

in place of D(z;F,G) in (4.1). This is compatible with all the other discriminant

functions we use since 1/D1 is some kind of a measure of distance from the

center of the distribution. If Mahalanobis depth is used the distance measure

would become Mahalanobis distance and the classifier using this distance would

exactly be RQ. In fact any robust affine invariant measure of distance can be

used in place of this distance and the method still works. The more robust the

distance, the more robust the classifier.

RM: Here we use the QDF given in (2.4) in place of D(z;F,G) in (4.1). However,

in the sample version, we will use the minimum covariance determinant (MCD)

estimators of location and covariance matrix (Rousseeuw, 1984, 1985) as done in
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Hubert and Van Driessen (2004). The quadratic discriminant function of Hubert

and Van Driessen (2004) will be denoted by M(z;F,G) as given in Equation

(2.11). We use the FAST-MCD algorithm of Rousseeuw and Van Driessen

(1999) with the default number of observations 0.75nx and 0.75ny for MCD

computations. This assumption is safe to assume as long as you do not suspect

more than 25% of the data to be outliers. The MCD estimates are essentially

trimmed mean and covariance structure as they are looking at the central 75%

of the data only. A very good property of MCD estimates is that a method

using these estimates will remain affine invariant as the MCD estimates are

affine invariant.

RL and RQ are ranking LDF and QDF respectively as given in Randles et al.

(1978a). Although ranking is nonparametric, the base, as in the quantities being

ranked are completely parametric. That makes this method semi-parametric. We

prove via simulation in Section 4.3 that although ranking makes the method ro-

bust, the quantities being ranked matters and controls the overall TPM. Inspired by

Randles et al. (1978a), we prove via simulation that the ranked methods are more

balanced than the unranked counterparts. We also show that RS and RM are more

robust than RL and RQ due to the fact that RL and RQ have a parametric base that

is sensitive to deviations and can only be so much better under deviations.
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4.3 Application on Real Data and Monte Carlo Simulation

We would like to show the optimality of the proposed classifiers by applying the

methods on some real data sets and a variety of simulation settings.

4.3.1 Application on Real Data Sets

We will use the same three datasets as described in Subsection 3.6.1. We will

consider the proposed classifiers, RM and RS, which are robust ranked versions of the

unranked classifiers, M and S. M is the classifier created by replacing the parametric

quantities in QDF with MCD estimates. S is the maximum depth classifier based on

L1 depth given by Ghosh and Chaudhuri (2005) and Jörnsten (2004). We consider

the classical L (LDF) and Q (QDF) and their ranked versions RL and RQ given by

Randles et al. (1978a). The results are shown in Table 3 given in the appendix.

• For the original Iris data, Q gave the lowest TPM at 4% but the two mis-

classification error rates remain unbalanced at 1% and 10%. The method that

provided the most balance was RM where each misclassification error rate is

equal to 6%. The worst performer was L with misclassification error rates of

28% and 26%. When an outlier was added to the Iris data, M and RM gave

the lowest TPM at 8% with RM giving greater balance (8%, 7.8%) than M

(6%, 11.8%).

• For the Leukemia data, RL and L gave the lowest TPM of 4.2%; however, the

error rates of L were unbalanced (2.1%, 8%) compared to those of RL (4.3%,
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4%). All the remaining ranked discriminant functions gave a TPM of 8.3%.

The method that performed poorly for this data was M with TPM of 12.5%.

• Considering the Colon data, both RM and M yielded TPM equal to 9.7%

outperforming all other classifiers. Once again, RM had balanced error rates

(9.1%, 10%) compared to M (13.6%, 7.5%). The least optimal method for this

data was S with unbalanced error rates (40.9%, 10%) giving a TPM of 21%.

We also performed leave-one-out cross validation for the Leukemia and Colon

data after using the gene selection scheme given by Dudoit et al. (2002) as well as

one that uses a Wilcoxon statistic in place of the t-statistic. The results were very

similar and hence not reported here.

4.3.2 Monte Carlo Simulation

For the same reasons mentioned in Subsection 3.6.2, we perform a very exten-

sive Monte Carlo simulation to study the optimality (in terms of misclassification

error rates) of the proposed classification procedures under a variety of distributional

settings:

• Homoscedastic (vs) Heteroscedastic

• Equal sample sizes (vs) Unequal sample sizes

• Same distributions (vs) Different distributions for the two groups

• Normal tail (vs) heavy tailed symmetric distributions
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• Sparse data (vs) Dense data

• Combinations therein

The simulation study follows the same setup given in Montanari (2004). We start

off by generating training samples of the given sizes which are used to formulate the

classification rules. Testing samples of size 1000 from each group are then generated

and the misclassification error rates are calculated by computing the proportion of

misclassified testing sample observations in each group. This process is then repeated

50 times and the mean and standard error of the misclassification error rates are

computed.

We considered a two-dimensional case in addition to the four-dimensional case

considered for the projection pursuit methodology to study the effect of data abun-

dance with the misclassification error rate.

We consider Cauchy (C, which is t with 1 degree of freedom), t with 2 degrees of

freedom (t2), and Normal (N) distributions. Training samples of equal (50, 50) and

unequal (25, 75) sizes were generated from the distributions.

In the two-dimensional setting, we used centers (0, 0)′ and (2, 0)′ for the two

distributions whereas the covariance matrices considered are the independence case

I2 and a correlated data case

V =

 1 1

1 4

 .
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For the four-dimensional study we considered centers (0, 0, 0, 0)′ and (2, 0, 0, 0)′ and

covariance matrices I4 and

W =



1 −1 −1 1

−1 2 2 .25

−1 2 3 .5

1 .25 .5 4


.

In the reporting of the results we use the notation K(A), H(B) to represent distri-

butions K and H (K and H are C, t2, or N) with covariance matrices A and B (A

and B are I2, I4, W , or V ), respectively. Thus, in our study, the two groups could

come from the same distribution with different means and the same covariance matrix

(homoscedastic), the same distribution with different means and different covariance

matrices (heteroscedastic), and/or two different distributions.

A summary of the results for the two-dimensional case is given in Table 4 whereas

Table 5 (given in the appendix) contains the results from the four-dimensional study.

We infer the following from the results:

• S versus RS: S is heavily unbalanced, especially when the sample sizes are

not the same, the tail thickness of one or more of the distributions increases,

the distributions are heteroscedastic, or the two groups do not share the same

distribution. The balance of RS is not affected by any of these situations. RS

generally has lower TPM than S, and the difference is pronounced when at least

one of the distributions is t2 or Cauchy. Moreover, RS has better consistency
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of correct classification in that the standard errors of its misclassification error

rates are generally much lower in comparison to S.

• L versus RL: As expected, L gives poor performance in the case of heteroscedas-

tic populations. Outside of balancing the misclassification error rates, RL does

not appear to improve the TPM of L with the exception of the Cauchy distribu-

tion cases. In fact, RL gives worse TPM than L when two different distributions

are considered and one of the distributions is normal.

• Q versus RQ: The misclassification error rates of Q are severely unbalanced

especially when one of the distributions is heavy tailed. In addition to providing

balance, RQ gives lower error rates than Q in heavy tailed (C or t2) situations.

The standard errors of the misclassification error rates of Q are three to four

times higher than those of RQ when both distributions are heavy tailed.

• M versus RM : The TPM of RM is generally lower than that of M in the case

of heavy tailed distributions. This is especially visible in the more sparse four-

dimensional case. Otherwise, the TPMs of RM and R are comparable, with

RM doing a better job of maintaining the balance between the misclassification

error rates. The imbalance between the error rates of M increases when the two

distributions are different and at least one of them is heavy tailed. Moreover,

the standard errors of the misclassification error rates of M are 1.5 to 2 times

larger than those of RM in the cases where a Cauchy distribution is involved.
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• In general, RM and M provide superior performance in terms of TPM when a

heavy tailed distribution is involved. RM gives the best performance of all the

methods studied in terms of TPM, balance, and standard errors when both the

distributions are Cauchy. This is true in both homoscedastic and heteroscedastic

cases.

• Not surprisingly, as shown in Randles et al. (1978a), ranking provides balance

between the group misclassification error rates. Moreover, in the cases where

heavy tailed or two different distributions are considered, ranking itself appears

to provide added optimality (smaller TPM and standard errors) even when the

original method is robust.
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Chapter 5

Influence Function

5.1 Introduction

The focus of this chapter is the analysis of the influence functions of some of

the discriminant functions that were introduced in earlier chapters. As discussed in

Hubert and Van Driessen (2004), the robustness of a classifier directly depends on the

robustness of the discriminant function used. The influence on the LDF of a single

point of perturbation added to one of the two populations was studied by Campbell

(1978). Croux and Dehon (2001) studied the influence function of the LDF where

the underlying distributions are assumed to be multivariate normal and where both

populations are contaminated. Croux et al. (2008) followed a similar approach but

with a penalty term included to make the classifier optimal. Recently Huang et al.

(2007) studied the pair-perturbation influence function of the LDF where a pair of

points of perturbation are included in one of the two populations.

On the other hand, the influence function of quadratic discrimination appears

to be slightly more complicated. Croux and Joossens (2005) studied the influence

of perturbing a point in one of the populations on the misclassification error rate of

quadratic discriminant analysis. Although more complex, this is QDF version of the

work of Croux and Dehon (2001) where underlying normality is assumed.
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The purpose of this chapter is two-fold: to provide the influence function for

the QDF thus filling this gap in the literature and to provide the influence function

for the rank based discriminant function introduced in Chapter 4. Both of these are

given without making any underlying distributional assumptions.

We will suppose that both distributions are ε-contaminated (Van Ness and Yang,

1998) and define

Fy,ε = (1− ε)F + ε∆y and Gy,ε = (1− ε)G+ ε∆y ,

where ∆y is the distribution function of the point mass at y. Now if T (F,G) is a

functional, then the influence function is defined as

IF (y;T (F,G)) = lim
ε↓0

T (Fy,ε, Gy,ε)− T (F,G)

ε
. (5.1)

5.2 IF for QDF

The quadratic discriminant function is given in Equation (2.4) that we will re-

produce here using a functional notation for convenience

Q(z;F,G) = ln

(
|Σ(G)|
|Σ(F )|

)
−(z− µ(F ))′[Σ(F )]−1(z− µ(F ))+

(z− µ(G))′[Σ(G)]−1(z− µ(G)) .
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Define the function

φF (x,v) = (x− µ(F ))′[Σ(F )]−1(v − µ(F )) .

The following theorem gives the influence function of the QDF.

Theorem 5.1. For a fixed value of z, the influence function of Q(z;F,G) is given by

IF (y;Q(z;F,G)) = φG(z, z)− 2φG(z,y)− φ2
G(z,y)− φF (z, z) + 2φF (z,y)+

φ2
F (z,y) + φG(y,y)− φF (y,y) .

Proof. Write

Q(z;Fy,ε, Gy,ε) = ln

(
|Σ(Gy,ε)|
|Σ(Fy,ε)|

)
− φFy,ε(z, z) + φGy,ε(z, z) .

Straight forward algebra shows that µ(Fy,ε) = µ(F ) + ε(y − µ(F )) and Σ(Fy,ε) =

(1 − ε)Σ(F ) + ε(y − µ(F ))(y − µ(F ))′. As shown in Campbell (1978), writing µ =

µ(F ),Σ = Σ(F ), and w = y − µ(F ), we have

[Σ(Fy,ε)]
−1 = (1− ε)−1

[
Σ−1 − εΣ−1ww′Σ−1

(1− ε) + εw′Σ−1w

]
= (1 + ε)Σ−1 − εΣ−1ww′Σ−1
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up to order ε. Thus

φFy,ε(z, z) = {(z− µ)− εw}′
[
(1 + ε)Σ−1 − εΣ−1ww′Σ−1

]
{(z− µ)− εw}

= (1 + ε)φF (z, z)− 2ε(1 + ε)φF (z,y) + ε2(1 + ε)φF (y,y)− εφ2
F (z,y)+

2ε2φF (z,y)φF (y,y)− ε3φ2
F (y,y) .

This gives [
∂

∂ε
φFy,ε(z, z)

]
ε=0

= φF (z, z)− 2φF (z,y)− φ2
F (z,y) . (5.2)

Using similar steps

[
∂

∂ε
φGy,ε(z, z)

]
ε=0

= φG(z, z)− 2φG(z,y)− φ2
G(z,y) . (5.3)

Now using a result of Golberg (1972) [p. 1125, Equation (9)] we find

∂

∂ε
|Σ(Fy,ε)| = tr

(
Σ−1(Fy,ε)

∂

∂ε
Σ(Fy,ε)

)
|Σ(Fy,ε)| .

Moreover

∂

∂ε
Σ(Fy,ε) = ww′ − Σ ,
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where w and Σ are as defined above. Thus

∂

∂ε
ln |Σ(Fy,ε)| =

1

|Σ(Fy,ε)|
tr

(
Σ−1(Fy,ε)

∂

∂ε
Σ(Fy,ε)

)
|Σ(Fy,ε)|

= tr
([

(1 + ε)Σ−1 − εΣ−1ww′Σ−1
]

(ww′ − Σ)
)

that gives

[
∂

∂ε
ln |Σ(Fy,ε)|

]
ε=0

= tr
(
Σ−1(ww′ − Σ)

)
= φF (y,y)− d . (5.4)

Similarly [
∂

∂ε
ln |Σ(Gy,ε)|

]
ε=0

= φG(y,y)− d . (5.5)

Putting equations (5.2), (5.3), (5.4), and (5.5) together gives the desired result.

It is clear that IF (y;Q(z;F,G)) is unbounded in y. In fact it is a quadratic in

y. This shows that quadratic discriminant analysis is a non-robust procedure and

may provide misleading results if the data are contaminated.

5.3 IF for RD

Recall the rank based discriminant function given in Equation 4.1

RD(z;F,G) = PF {D(z;F,G) ≥ D(X;F,G)} − PG {D(z;F,G) ≤ D(Y;F,G)} ,
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where D(X;F,G) is a discriminant function. We will restrict our attention to the

cases where D(z;F,G) is defined as a difference between the Type D depth of z in F

and z in G

D(z;F,G) = DF (z;F )−DF (z;G) .

The Type D depth of the point z in F is defined as (Zuo and Serfling, 2000)

DF (z;F ) = inf{PF (C) : z ∈ C ∈ Γ}

where Γ is a specified class of subsets of Rd. For instance, if Γ is the class of halfspaces

in Rd, then DF is the halfspace depth. As in Wang and Serfling (2006), we assume

that

1. If C ∈ Γ, then Cc ∈ Γ, and

2. maxzDF (z;F ) < 1,

where Ac and A denote the complement and the closure of the set A.

Let

HF (t;F,G) = PF {D(X;F,G) ≤ t} and HG(t;G,F ) = PG {D(X;G,F ) ≤ t} .

Note that

RD(z;F,G) = HF (D(z;F,G);F,G)−HG(D(z;G,F );G,F ) .
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Theorem 5.2. If D(v;F,G) is continuous in v, then the influence function of

HF (t;F,G) for a fixed t is given by

IF(y;HF (t;F,G)) =


t ∗ hF (t)−HF (t) if D(y;F,G) > t

1 + t ∗ hF (t)−HF (t) if D(y;F,G) ≤ t ,

where hF (t) = dHF (t)/dt.

Proof. It is easy to see that for Type D depth functions DF ,

D(z;Fy,ε, Gy,ε) = (1− ε)DF (z;F ) + ε− (1− ε)DF (z, G)− ε = (1− ε)D(z;F,G) .

Then following an approach similar to Wang and Serfling (2006) we obtain

HFy,ε(t;Fy,ε, Gy,ε) = PFy,ε {(1− ε)D(X;F,G) ≤ t}

= (1− ε)PF {(1− ε)D(X;F,G) ≤ t}+ εI {(1− ε)D(y;F,G) ≤ t}

= (1− ε)PF {(1− ε)D(X;F,G) ≤ t ∩ X ∈ Sy}+

(1− ε)PF {(1− ε)D(X;F,G) ≤ t ∩ X /∈ Sy}+

εI {(1− ε)D(y;F,G) ≤ t} ,

where Sy = {x : D(x;F,G) ≥ D(y;F,G)}. Consider the following two cases:
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(1) D(y;F,G) > t : For ε > 0 sufficiently small

{v : D(v;F,G) ≤ t/(1− ε)} ∩ Sy = ∅

{v : D(v;F,G) ≤ t/(1− ε)} ∩ Scy = {v : D(v;F,G) ≤ t/(1− ε)}

y /∈ {v : D(v;F,G) ≤ t/(1− ε)}

Thus

HFy,ε(t;Fy,ε, Gy,ε) = (1− ε)HF (t/(1− ε))

which gives

IF(y;HF (t;F,G)) =
∂

∂ε
HFy,ε(t;Fy,ε, Gy,ε)

∣∣∣∣
ε=0

= t ∗ hF (t)−HF (t) .

(2) D(y;F,G) ≤ t : Once again for ε > 0 sufficiently small

{v : D(v;F,G) ≤ t/(1− ε)} ∩ Sy = {v : D(y;F,G) ≤ D(v;F,G) ≤ t/(1− ε)}

{v : D(v;F,G) ≤ t/(1− ε)} ∩ Scy = {v : D(v;F,G) ≤ D(y;F,G)}

y ∈ {v : D(v;F,G) ≤ t/(1− ε)}

Thus

HFy,ε(t;Fy,ε, Gy,ε) = (1− ε)HF (t/(1− ε)) + ε
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which gives

IF(y;HF (t;F,G)) =
∂

∂ε
HFy,ε(t;Fy,ε, Gy,ε)

∣∣∣∣
ε=0

= 1 + t ∗ hF (t)−HF (t) .

The influence function of HG(t;G,F ) may be obtained following similar steps.

We now give the influence function of the rank discriminant function.

Theorem 5.3. If D(z;F,G) is continuous, then the influence function of RD(z;F,G)

is

IF(y;RD(z, F,G)) =



HG(D(z;G,F );G,F )−HF (D(z;F,G);F,G) + 1 ,

if D(y;F,G) < D(z;F,G)

HG(D(z;G,F );G,F )−HF (D(z;F,G);F,G) ,

if D(y;F,G) = D(z;F,G)

HG(D(z;G,F );G,F )−HF (D(z;F,G);F,G)− 1 ,

if D(y;F,G) > D(z;F,G) .
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Proof. Following steps that are similar to the proof of Theorem 5.2 and some algebraic

manipulation, we have

RD(z;Fy,ε, Gy,ε) = HFy,ε(D(z;Fy,ε, Gy,ε);Fy,ε, Gy,ε)−

HGy,ε(D(z;Gy,ε, Fy,ε);Gy,ε, Fy,ε)

= (1− ε) [HF (D(z;F,G);F,G)−HG(D(z;G,F );G,F )] +

ε[I {D(y;F,G) ≤ D(z;F,G)}−

I {D(y;G,F ) ≤ D(z;G,F )}] .

Note that I {D(y;G,F ) ≤ D(z;G,F )} = I {D(y;F,G) ≥ D(z;F,G)} and therefore

I {D(y;F,G) ≤ D(z;F,G)}− I {D(y;G,F ) ≤ D(z;G,F )} equals 0, 1, or -1 depend-

ing on whether D(y;F,G) = D(z;F,G), D(y;F,G) < D(z;F,G), or D(y;F,G)| >

D(z;F,G), respectively. Differentiating with respect to ε and letting ε = 0 gives the

desired result.

Since HF and HG are CDFs, this influence function remains bounded in y as long

as the Type D depth function used is continuous. As IF(y;RD(z, F,G)) is a step

function, RD has finite gross error sensitivity but infinite local shift sensitivity. This

behavior is similar to the behavior of the influence function of univariate quantiles.
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5.4 Sensitivity Curves for the Projection Based Classifier

To view the effect of a single point contamination introduced into the training

sample on the probability of misclassification error graphically, one needs a sample

version of the influence function provided in Equation (5.1). The quantity:

SCn(y) = n [Tn(y1, . . . ,yn−1,y)− Tn−1(y1, . . . ,yn−1)] , (5.6)

where y1, . . . ,yn−1 represents the training samples and y is a new point that is intro-

duced into each of the two training samples (Tukey, 1971). Tn is the probability of

misclassification error. SCn is known as the sensitivity curve and it shows the effect

of the added new point on the classifier as the value of this new point changes. The

sensitivity curve of a robust procedure is bounded in much the same way the influence

function is bounded.

We use a simple case where two groups with training sample of sizes 100 each

and testing samples of sizes 1000 each are generated from four dimensional normal

distributions with means (0, 0, 0, 0) and (2, 0, 0, 0). To simplify things further, we

used the identity covariance structure for both the distributions. We introduced a

single point (i, 0, 0, 0), i = −200, . . . , 200 into both the training samples and for each

point we calculate the probability of misclassification error with and without the

added point using a leave-one-out cross validation for the uncontaminated testing

samples. The sensitivity of the probability of misclassification for each classifier is

then calculated using the Equation (5.6) and all these values are plotted in a graph.
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Figure 5.1: Sensitivity Curve for the Projection Based Methods
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Figure 5.2: A Zoomed View of the Sensitivity Curve for the Projection Based Methods
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The sensitivity curve in Figure 5.1 clearly shows that the classifiers LDF and QDF

appear to have an unbounded misclassification error sensitivity. As the magnitude

of the new point increases, so does the sensitivity of the misclassification error for

these classifiers. On the other hand MaxD and all the projection based classifiers:

SPGT, GGT, PGT and TD seem to be bounded. Although they are affected by the

presence of the outlier, their sensitivity is eventually bounded. A zoomed-in view

of the plot when the newly added point is around the origin is shown in Figure 5.2.

It shows that the sensitivity curves for the projection based methods are bounded,

with PGT being the least affected. A theoretical evaluation of the influence function

of these projection based classifiers appears to be extremely complicated although

the sensitivity curves give us a strong indication that the influence function will be

bounded.
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Chapter 6

Conclusion

Two types of nonparametric procedures for discriminant analysis were consid-

ered; one based on transvariation probabilities and the other based on ranking dis-

criminant functions.

The first method is a nonparametric discriminant analysis procedure that uses

the method of projection pursuit in tandem with the idea of transvariation probabil-

ities. In particular, group separation is measured using the two-group transvariation

probability (Gini, 1916) as a projection index. Allocation of the new observation is

performed either using a symmetrized group-group transvariation probability or a

smoothed version of point-group transvariation. These procedures are shown to give

smaller misclassification error rates compared to linear and quadratic discriminant

functions and maximum L1 depth classifier when the training samples are drawn

from symmetric and skewed distributions and especially when the difference between

the training sample sizes gets larger. Moreover these methods give smaller misclassi-

fication error rates compared to Montanari’s (Montanari, 2004) transvariation based

classifier that uses distances to allocate the new observation when the training samples

are drawn from skewed distributions. An extensive simulation study and applications

on three real data sets (Fisher’s IRIS, Leukemia and Colon datasets) are used to

illustrate this behavior.
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Although computation time can be a hinderance for projection pursuit tech-

niques, especially for large dimensions, we were able to optimize our computation

by generating projection directions using a multiscale procedure. To begin with, we

proceed by first generating a few points on the hypercube, that are projected onto

the hypersphere and then repeatedly “zooming-in” to interesting hyperarcs on the

surface of the d-dimensional hypersphere where more directions are considered. We

took five lattice points per dimension on the hypercube. No significant improvement

in misclassification error rate was noticed when seven or nine lattice points were used

instead of five. We have found that this makes for a faster computation time without

compromising the results.

To illustrate the robustness of the proposed procedures, we provide sensitivity

curves (Tukey, 1971) where a new point is introduced into each training sample.

Then this new point is changed and its effect on the misclassification error rate is

measured. The curves provided in Chapter 5 show that the newly proposed classi-

fiers have bounded sensitivity to the inclusion of the new point with respect to the

misclassification error rate.

The second method is another nonparametric method that is based on rank-

ing discriminant functions. In discriminant analysis, when an investigator has no

prior reason to prefer one population to another, balance among the groups in terms

of the probabilities of correct classification is a desirable property of a discriminant

function. We asked ourselves whether the method of ranking discriminant functions
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given in Randles et al. (1978a) would work in balancing the probabilities of cor-

rect classification for the recently proposed maximum L1 depth classifier (Jörnsten,

2004) and MCD (Minimum Covariance Determinant) based quadratic discriminant

function (Hubert and Van Driessen, 2004). Not surprisingly, our extensive simula-

tion study showed that balance between the probabilities of correct classification is

achieved, while maintaining the overall robustness of the procedure under a variety

of distributional settings.

As it turns out, ranking discriminant functions does more than just provide bal-

ance between the the probabilities of correct classification while maintaining the total

probability of misclassification error at the level of the original discriminant functions.

Ranking also gives smaller and more consistent total probabilities of misclassification

error rates in cases where the underlying distributions are heavy tailed. This is

reminiscent of the use of ranking in univariate and certain multivariate problems to

arrive at procedures that are robust against a variety of violation of assumptions

(Hettmansperger and McKean, 1998). A somewhat surprising revelation was that

this benefit persisted even when the underlying discriminant function itself was ro-

bust such as the one given by Hubert and Van Driessen (2004). In particular, in

the simulation settings that we investigated, the ranked version of the MCD based

classifier of Hubert and Van Driessen (2004) gives the best performance of all the

methods studied in terms of total probability of correct classification, balance, and

standard errors when the two underlying distributions are Cauchy.
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In Chapter 5 we derived the influence function for the quadratic discriminant

function as well as the rank based discriminant function that is given in Chapter 4.

The influence function for the quadratic discriminant function is unbounded, as ex-

pected, but the influence function for the rank based discriminant function is a step

function and hence robust against gross error contamination.

Future Work

The work presented in this dissertation is by no stretch of imagination complete.

A plethora of things can be done taking the work presented here as a starting point.

For the projection based classifiers, more efficient projection pursuit techniques

that would let one classify observations from dimensions much higher are desired.

Projection indices that are robust and at the same time amenable to a more efficient

method of searching for the most interesting view of the data will make projection

pursuit based classification more appealing. Moreover, each transvariation in the

GGT classifier can be smoothed as in the SPGT classifier. A better smoothing func-

tion that works better than the t-CDF proposed in SPGT classifier can be found.

Finding the optimal smoother for the t-CDF or for any other function theoretically

is also an interesting problem.

For the rank based classifiers, one can always find robust distance measures that

are more robust to deviations that we can then rank. That way the ranked version

would be that much better and balanced. As mentioned in Ng and Randles (1983),

the ratio of the misclassification error rates for the two samples can be controlled.
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This idea could be applied to classify data from the medical field where the ratio of

false-positive to false-negative can be controlled at any desired level.

Both types of classifiers only consider the two group classification. The extension

to more than two groups is not immediate and is interesting. Theoretically, the

influence function for the discriminant function can be derived for the projection

based classifiers. This will confirm the results that are seen in the sensitivity curves.

Finally, the training data breakdown point could be another theoretical result that

could be found for both types of classifiers.
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Table 1: Application on Real Data: Performance of Projection Based Methods Using
Leave-one-out Misclassification Error Rates

Dist SPGT PGT GGT TD MaxD LDF QDF
Iris

Original 0.0933 0.0467 0.0400 0.3133 0.0333 0.1067 0.0333
Outliers 0.0774 0.0397 0.0387 0.2968 0.0774 0.2129 0.1226

Leukemia 0.0278 0.0290 0.0139 0.1111 0.0417 0.0417 0.0417

Colon 0.1290 0.1525 0.1290 0.1290 0.1774 0.1290 0.1613
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Table 2: Performance of Projection Based Methods Using Monte Carlo Simulation:
Average Misclassification Error Rates and Standard Errors on 50 Replications of 1000
Test Cases per Group

Dist SPGT PGT GGT TD MaxD LDF QDF
N(I),N(I) 0.1641 0.1625 0.1624 0.1624 0.1665 0.1635 0.1659
(150,150) 0.0091 0.0086 0.0087 0.0083 0.0079 0.0075 0.007

N(I),N(I) 0.1638 0.1953 0.1696 0.1607 0.1711 0.1623 0.1685
(50,250) 0.0097 0.015 0.0122 0.0094 0.0114 0.0085 0.0098

t(I),t(I) 0.2165 0.216 0.2137 0.213 0.2932 0.2465 0.3698
(150,150) 0.0097 0.0109 0.011 0.0107 0.0372 0.0405 0.0738

t(I),t(I) 0.2258 0.4075 0.2227 0.2177 0.3093 0.26 0.3833
(50,250) 0.018 0.0711 0.0177 0.0151 0.0387 0.0501 0.0673

C(I),C(I) 0.2617 0.2643 0.2565 0.2557 0.4208 0.4492 0.5
(150,150) 0.0116 0.0152 0.0114 0.0116 0.0468 0.0777 0.0056

C(I),C(I) 0.2747 0.4938 0.2659 0.2615 0.4201 0.4501 0.4984
(50,250) 0.024 0.0239 0.0218 0.0208 0.0482 0.072 0.0095

LN(I),LN(I) 0.1595 0.1588 0.1581 0.1783 0.2361 0.2576 0.2273
(150,150) 0.0104 0.0099 0.0088 0.0119 0.0338 0.0243 0.0249

LN(I),LN(I) 0.1644 0.1971 0.1713 0.1856 0.2713 0.2761 0.2426
(50,250) 0.0106 0.0173 0.0139 0.0112 0.0405 0.0362 0.0338
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Table 2 Continued

Dist SPGT PGT GGT TD MaxD LDF QDF
N(I),N(W) 0.0954 0.1033 0.105 0.1003 0.0663 0.0969 0.0656
(150,150) 0.0095 0.0124 0.012 0.0088 0.0062 0.007 0.0059

N(I),N(W) 0.0993 0.1001 0.0974 0.1039 0.0698 0.0999 0.0686
(50,250) 0.012 0.0171 0.0124 0.0111 0.0052 0.0086 0.0051

t(I),t(W) 0.2095 0.2093 0.2043 0.2045 0.247 0.2222 0.3152
(150,150) 0.012 0.015 0.0131 0.0119 0.054 0.0425 0.0693

t(I),t(W) 0.2151 0.337 0.2093 0.2077 0.267 0.2249 0.3313
(50,250) 0.0145 0.0818 0.0119 0.0129 0.0553 0.0354 0.0554

C(I),C(W) 0.2601 0.2567 0.2531 0.2505 0.4007 0.4264 0.4888
(150,150) 0.0145 0.0173 0.0141 0.0131 0.0542 0.0706 0.0176

C(I),C(W) 0.2645 0.4967 0.2546 0.2525 0.3728 0.4326 0.4675
(50,250) 0.0191 0.0186 0.0132 0.0126 0.0478 0.1004 0.0207

LN(I),LN(W) 0.1271 0.1253 0.1258 0.1493 0.1729 0.2273 0.2382
(150,150) 0.01 0.01 0.0093 0.0141 0.0228 0.0216 0.0293

LN(I),LN(W) 0.132 0.144 0.1313 0.1537 0.1889 0.2376 0.2339
(50,250) 0.0136 0.0144 0.0137 0.0139 0.036 0.0284 0.039
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Table 2 Continued

Dist SPGT PGT GGT TD MaxD LDF QDF
N(I),t(I) 0.1817 0.1932 0.19 0.1851 0.3331 0.2054 0.207
(150,150) 0.0115 0.0163 0.0108 0.0117 0.0623 0.0443 0.0251

N(I),t(I) 0.1868 0.4262 0.2093 0.1893 0.3418 0.2022 0.2123
(50,250) 0.0104 0.0688 0.0132 0.0097 0.0458 0.0184 0.0267

N(I),C(I) 0.1844 0.2312 0.2213 0.2074 0.4516 0.3288 0.2356
(150,150) 0.0099 0.0253 0.0133 0.0082 0.0505 0.0841 0.0263

N(I),C(I) 0.1884 0.5016 0.2366 0.2057 0.4691 0.3314 0.2357
(50,250) 0.0171 0.0044 0.0172 0.0091 0.0341 0.0819 0.0238

LN(I),N(I) 0.131 0.1293 0.1286 0.131 0.1506 0.1506 0.2098
(150,150) 0.0091 0.0085 0.0087 0.0083 0.0169 0.0143 0.0256

LN(I),N(I) 0.1487 0.1529 0.1715 0.1375 0.1523 0.1522 0.2004
(50,250) 0.0163 0.0141 0.0153 0.0156 0.0248 0.0202 0.0271

t(I),C(I) 0.2333 0.2434 0.2392 0.2354 0.4077 0.3543 0.3918
(150,150) 0.0108 0.0212 0.0088 0.0084 0.0534 0.0796 0.0154

t(I),C(I) 0.2341 0.5024 0.2429 0.233 0.399 0.3405 0.3841
(50,250) 0.013 0.002 0.0159 0.0106 0.0532 0.0882 0.0177

LN(I),t(I) 0.1979 0.2032 0.204 0.1894 0.2268 0.2077 0.2452
(150,150) 0.0156 0.0154 0.0161 0.0125 0.0279 0.017 0.0709

LN(I),t(I) 0.225 0.2483 0.3979 0.1993 0.2546 0.2158 0.263
(50,250) 0.0234 0.023 0.0717 0.0204 0.04 0.0246 0.0653

LN(I),C(I) 0.2532 0.2789 0.2742 0.2433 0.3916 0.2805 0.3628
(150,150) 0.0233 0.0188 0.0253 0.0225 0.0426 0.0446 0.016

LN(I),C(I) 0.3024 0.3286 0.5018 0.2698 0.4091 0.3232 0.3608
(50,250) 0.0327 0.0328 0.0013 0.0374 0.0411 0.0765 0.0203
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Table 2 Continued

Dist SPGT PGT GGT TD MaxD LDF QDF
N(W),t(I) 0.1552 0.1793 0.1782 0.1655 0.1908 0.1746 0.0848
(150,150) 0.0248 0.0156 0.023 0.0182 0.0417 0.0305 0.0104

N(W),t(I) 0.1566 0.1672 0.139 0.157 0.1741 0.1502 0.0807
(50,250) 0.026 0.0164 0.0303 0.0195 0.0498 0.0242 0.0072

N(W),C(I) 0.1804 0.2203 0.2194 0.205 0.4146 0.3474 0.1149
(150,150) 0.0185 0.0163 0.0302 0.0139 0.0566 0.0985 0.0228

N(W),C(I) 0.1861 0.2189 0.1689 0.2046 0.3866 0.3238 0.0991
(50,250) 0.0291 0.0181 0.0288 0.0168 0.0741 0.0991 0.0232

LN(W),N(I) 0.0145 0.0141 0.0116 0.0681 0.0733 0.1327 0.047
(150,150) 0.004 0.0042 0.0043 0.0142 0.0247 0.027 0.0106

LN(W),N(I) 0.0155 0.0188 0.0177 0.0725 0.0886 0.1417 0.0483
(50,250) 0.0047 0.0076 0.0084 0.0128 0.0353 0.026 0.0149

t(W),C(I) 0.2296 0.2365 0.2406 0.231 0.3288 0.3734 0.4131
(150,150) 0.0145 0.012 0.022 0.0105 0.0512 0.0875 0.0183

t(W),C(I) 0.2425 0.238 0.3266 0.2331 0.3274 0.3587 0.4031
(50,250) 0.0154 0.0135 0.0734 0.0104 0.0535 0.0996 0.0349

LN(W),t(I) 0.0584 0.0555 0.0551 0.084 0.1107 0.1532 0.2045
(150,150) 0.0075 0.0063 0.0065 0.0134 0.0239 0.03 0.0487

LN(W),t(I) 0.0637 0.0594 0.0599 0.0915 0.1125 0.159 0.1933
(50,250) 0.0106 0.0119 0.0135 0.0159 0.0246 0.0292 0.0428

LN(W),C(I) 0.1193 0.1156 0.1145 0.1373 0.1648 0.2324 0.4103
(150,150) 0.0135 0.0125 0.0127 0.0204 0.0427 0.0573 0.0735

LN(W),C(I) 0.1277 0.1493 0.2292 0.1445 0.1814 0.2564 0.4515
(50,250) 0.0187 0.0201 0.0495 0.0288 0.0561 0.0741 0.0369
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Table 3: Application on Real Data: Performance of Rank Based Methods Using
Leave-one-out Misclassification Error Rates

Data RS1 RS2 RS S1 S2 S RL1 RL2 RL L1 L2 L
Iris

Original .060 .040 .053 .000 .500 .167 .270 .260 .267 .280 .260 .273
Outlier .130 .098 .119 .010 .549 .192 .510 .451 .490 .490 .294 .424

Leukemia .064 .120 .083 .064 .160 .097 .043 .040 .042 .021 .080 .042

Colon .136 .200 .177 .409 .100 .210 .091 .125 .113 .091 .125 .113

Table 3 Continued

Data RQ1 RQ2 RQ Q1 Q2 Q RM1 RM2 RM M1 M2 M
Iris

Original .060 .040 .053 .010 .100 .040 .060 .060 .060 .060 .100 .073
Outlier .110 .137 .119 .010 .843 .291 .080 .078 .080 .060 .118 .080

Leukemia .064 .120 .083 .064 .160 .097 .064 .120 .083 .106 .160 .125

Colon .136 .175 .161 .273 .100 .161 .091 .100 .097 .136 .075 .097
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Table 4: Performance of Rank Based Methods Using Monte Carlo Simulation: Av-
erage Misclassification Error Rates and Standard Errors for Bivariate Data on 50
Replications of 1000 Test Cases per Group

Dist RS1 RS2 RS S1 S2 S RL1 RL2 RL L1 L2 L
N(I2),N(I2) .168 .166 .167 .160 .175 .167 .163 .165 .164 .159 .166 .162

(50,50) .036 .037 .010 .037 .045 .012 .035 .038 .009 .024 .027 .009

N(I2),N(I2) .157 .177 .167 .184 .154 .169 .153 .173 .163 .159 .164 .162
(25,75) .038 .039 .011 .047 .038 .015 .036 .035 .009 .028 .028 .009

t2(I2),t2(I2) .268 .267 .268 .276 .261 .268 .252 .242 .247 .241 .254 .248
(50,50) .060 .063 .035 .100 .099 .037 .083 .073 .061 .082 .094 .059

t2(I2),t2(I2) .250 .279 .265 .292 .246 .269 .233 .259 .246 .269 .226 .248
(25,75) .065 .053 .030 .114 .109 .039 .083 .076 .054 .114 .082 .063

C(I2),C(I2) .350 .337 .343 .363 .330 .347 .385 .397 .391 .417 .412 .415
(50,50) .067 .072 .046 .127 .114 .050 .149 .143 .136 .242 .224 .102

C(I2),C(I2) .345 .352 .349 .427 .282 .354 .371 .397 .384 .433 .363 .398
(25,75) .070 .082 .056 .154 .151 .056 .140 .138 .126 .240 .228 .102

N(I2),N(V) .126 .134 .130 .190 .077 .133 .146 .150 .148 .162 .129 .145
(50,50) .035 .035 .008 .042 .026 .011 .036 .041 .009 .028 .027 .008

N(I2),N(V) .133 .141 .137 .216 .072 .144 .149 .156 .152 .168 .128 .148
(25,75) .044 .047 .011 .052 .024 .018 .044 .053 .012 .029 .028 .009

t2(I2),t2(V) .237 .237 .237 .342 .145 .244 .236 .239 .238 .236 .240 .238
(50,50) .041 .055 .029 .100 .063 .032 .052 .062 .044 .062 .081 .044

t2(I2),t2(V) .237 .261 .249 .383 .127 .255 .234 .228 .231 .246 .213 .230
(25,75) .064 .054 .026 .116 .055 .042 .075 .054 .046 .078 .069 .041

C(I2),C(V) .318 .320 .319 .409 .237 .323 .342 .375 .358 .357 .409 .383
(50,50) .058 .053 .040 .163 .135 .050 .114 .121 .110 .237 .227 .089

C(I2),C(V) .320 .378 .349 .490 .227 .358 .380 .418 .399 .449 .392 .421
(25,75) .077 .078 .049 .204 .142 .068 .155 .148 .144 .295 .263 .089

111



Table 4 Continued

Dist RQ1 RQ2 RQ Q1 Q2 Q RM1 RM2 RM M1 M2 M
N(I2),N(I2) .166 .165 .165 .162 .166 .164 .172 .165 .169 .165 .169 .167

(50,50) .038 .037 .009 .026 .029 .010 .043 .036 .012 .034 .037 .012

N(I2),N(I2) .171 .159 .165 .166 .164 .165 .176 .168 .172 .180 .158 .169
(25,75) .046 .042 .011 .029 .031 .012 .051 .047 .013 .038 .031 .012

t2(I2),t2(I2) .276 .287 .282 .289 .347 .318 .257 .244 .250 .252 .253 .253
(50,50) .065 .070 .049 .165 .210 .080 .048 .045 .026 .050 .053 .023

t2(I2),t2(I2) .268 .280 .274 .324 .315 .320 .259 .247 .253 .265 .238 .251
(25,75) .070 .074 .049 .207 .188 .085 .064 .058 .028 .044 .048 .027

C(I2),C(I2) .405 .395 .400 .526 .436 .481 .344 .335 .340 .348 .340 .344
(50,50) .099 .084 .068 .376 .379 .044 .058 .057 .037 .108 .077 .056

C(I2),C(I2) .388 .435 .411 .312 .648 .480 .356 .332 .344 .391 .312 .351
(25,75) .094 .090 .078 .303 .316 .033 .076 .071 .039 .125 .102 .055

N(I2),N(V) .128 .135 .131 .133 .120 .126 .130 .137 .133 .138 .124 .131
(50,50) .035 .039 .010 .027 .027 .006 .040 .048 .011 .028 .027 .009

N(I2),N(V) .122 .141 .131 .148 .118 .133 .152 .120 .136 .154 .116 .135
(25,75) .030 .036 .010 .032 .028 .011 .040 .038 .015 .038 .036 .012

t2(I2),t2(V) .255 .252 .253 .242 .368 .305 .226 .217 .221 .214 .246 .230
(50,50) .059 .061 .041 .204 .197 .085 .047 .050 .021 .032 .074 .032

t2(I2),t2(V) .250 .253 .251 .222 .371 .296 .231 .218 .225 .238 .213 .225
(25,75) .054 .072 .039 .150 .165 .062 .047 .053 .020 .040 .056 .025

C(I2),C(V) .358 .384 .371 .391 .541 .466 .303 .314 .308 .277 .379 .328
(50,50) .082 .087 .066 .374 .347 .051 .051 .060 .029 .038 .106 .047

C(I2),C(V) .362 .405 .384 .300 .649 .475 .301 .316 .309 .331 .333 .332
(25,75) .100 .097 .079 .354 .326 .026 .053 .065 .034 .088 .114 .040
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Table 4 Continued

Dist RS1 RS2 RS S1 S2 S RL1 RL2 RL L1 L2 L
N(I2),C(I2) .197 .221 .209 .651 .045 .348 .335 .352 .344 .144 .499 .321

(50,50) .056 .044 .025 .170 .029 .072 .136 .141 .133 .134 .221 .100

N(I2),C(I2) .179 .243 .211 .633 .046 .339 .336 .392 .364 .131 .498 .314
(25,75) .056 .050 .025 .149 .022 .065 .149 .180 .157 .102 .231 .109

N(I2),t2(I2) .194 .215 .205 .356 .112 .234 .204 .215 .210 .170 .239 .204
(50,50) .052 .042 .019 .116 .038 .043 .062 .044 .032 .054 .049 .031

N(I2),t2(I2) .206 .239 .223 .410 .105 .257 .206 .235 .221 .177 .247 .212
(25,75) .051 .052 .029 .134 .035 .054 .061 .069 .045 .049 .059 .044

C(I2),t2(I2) .328 .276 .302 .131 .508 .320 .380 .354 .367 .472 .242 .357
(50,50) .065 .055 .036 .062 .145 .054 .143 .151 .142 .196 .150 .110

C(I2),t2(I2) .344 .276 .310 .199 .468 .334 .357 .318 .338 .498 .184 .341
(25,75) .080 .063 .042 .132 .193 .068 .144 .120 .115 .217 .096 .091

N(I2),C(V) .140 .183 .161 .620 .028 .324 .301 .327 .314 .111 .477 .294
(50,50) .043 .039 .017 .193 .018 .088 .148 .128 .129 .106 .214 .092

N(I2),C(V) .143 .223 .183 .648 .027 .338 .308 .382 .345 .113 .486 .300
(25,75) .065 .049 .029 .190 .021 .086 .151 .140 .135 .097 .215 .086

N(I2),t2(V) .144 .176 .160 .359 .065 .212 .178 .209 .193 .151 .228 .189
(50,50) .042 .033 .014 .125 .025 .052 .050 .032 .024 .046 .048 .021

N(I2),t2(V) .153 .191 .172 .420 .052 .236 .185 .215 .200 .167 .221 .194
(25,75) .052 .047 .024 .121 .024 .051 .047 .059 .035 .045 .049 .029

C(I2),t2(V) .288 .259 .273 .213 .344 .278 .358 .349 .354 .445 .277 .361
(50,50) .047 .053 .033 .086 .128 .040 .122 .135 .121 .198 .154 .120

C(I2),t2(V) .323 .269 .296 .258 .346 .302 .340 .325 .332 .480 .216 .348
(25,75) .067 .061 .049 .127 .158 .051 .131 .123 .117 .235 .127 .107
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Table 4 Continued

Dist RQ1 RQ2 RQ Q1 Q2 Q RM1 RM2 RM M1 M2 M
N(I2),C(I2) .197 .218 .208 .027 .457 .242 .177 .179 .178 .109 .236 .172

(50,50) .044 .034 .020 .031 .113 .043 .054 .033 .020 .031 .055 .020

N(I2),C(I2) .195 .229 .212 .025 .468 .246 .201 .165 .183 .139 .232 .185
(25,75) .050 .043 .023 .024 .100 .040 .071 .038 .027 .056 .058 .030

N(I2),t2(I2) .200 .201 .200 .113 .285 .199 .190 .182 .186 .146 .221 .183
(50,50) .053 .029 .020 .037 .072 .025 .049 .030 .017 .030 .037 .014

N(I2),t2(I2) .204 .225 .215 .125 .310 .217 .207 .189 .198 .190 .212 .201
(25,75) .066 .041 .024 .053 .090 .030 .068 .042 .025 .065 .043 .029

C(I2),t2(I2) .333 .294 .313 .723 .093 .408 .272 .268 .270 .323 .230 .277
(50,50) .069 .057 .043 .135 .134 .040 .059 .051 .029 .094 .041 .039

C(I2),t2(I2) .318 .316 .317 .681 .110 .395 .279 .263 .271 .370 .205 .287
(25,75) .060 .080 .046 .169 .100 .058 .062 .044 .029 .112 .047 .043

N(I2),C(V) .161 .163 .162 .010 .414 .212 .154 .129 .142 .067 .215 .141
(50,50) .057 .030 .022 .011 .077 .034 .056 .030 .023 .026 .044 .018

N(I2),C(V) .144 .194 .169 .013 .418 .216 .151 .138 .144 .097 .202 .149
(25,75) .040 .042 .021 .017 .084 .036 .053 .040 .022 .053 .055 .019

N(I2),t2(V) .151 .161 .156 .061 .275 .168 .155 .137 .146 .111 .177 .144
(50,50) .034 .034 .015 .025 .072 .027 .045 .031 .016 .030 .033 .012

N(I2),t2(V) .140 .185 .163 .080 .256 .168 .166 .149 .157 .113 .177 .145
(25,75) .045 .041 .016 .040 .091 .030 .052 .046 .021 .043 .043 .013

C(I2),t2(V) .354 .308 .331 .654 .143 .398 .269 .240 .254 .301 .216 .259
(50,50) .080 .086 .069 .197 .185 .056 .040 .046 .019 .053 .053 .029

C(I2),t2(V) .333 .291 .312 .634 .165 .399 .290 .253 .272 .326 .206 .266
(25,75) .066 .061 .049 .236 .189 .070 .058 .062 .029 .080 .056 .038
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Table 5: Performance of Rank Based Methods Using Monte Carlo Simulation: Aver-
age Misclassification Error Rates and Standard Errors for 4D Data on 50 Replications
of 1000 Test Cases per Group

Dist RS1 RS2 RS S1 S2 S RL1 RL2 RL L1 L2 L
N(I4),N(I4) .186 .171 .179 .190 .169 .180 .177 .159 .168 .169 .163 .166

(50,50) .039 .039 .014 .048 .054 .017 .038 .034 .012 .031 .027 .011

N(I4),N(I4) .188 .185 .187 .243 .143 .193 .168 .169 .169 .177 .162 .170
(25,75) .039 .040 .014 .073 .042 .022 .032 .033 .010 .029 .027 .011

t2(I4),t2(I4) .317 .326 .321 .349 .302 .325 .270 .273 .271 .262 .280 .271
(50,50) .065 .054 .039 .151 .132 .046 .073 .081 .060 .065 .095 .060

t2(I4),t2(I4) .322 .329 .326 .408 .261 .335 .277 .286 .282 .314 .251 .283
(25,75) .067 .057 .039 .148 .126 .039 .075 .078 .060 .090 .080 .061

C(I4),C(I4) .420 .423 .422 .440 .396 .418 .418 .410 .414 .415 .425 .420
(50,50) .069 .077 .050 .150 .150 .045 .081 .112 .083 .158 .169 .080

C(I4),C(I4) .414 .441 .427 .509 .349 .429 .425 .457 .441 .560 .343 .452
(25,75) .073 .070 .048 .164 .163 .043 .109 .115 .092 .233 .213 .069

N(I4),N(W) .079 .077 .078 .100 .047 .073 .103 .118 .111 .177 .030 .104
(50,50) .020 .033 .009 .020 .023 .008 .021 .046 .016 .028 .025 .012

N(I4),N(W) .081 .080 .081 .115 .033 .074 .096 .119 .108 .184 .016 .100
(25,75) .025 .037 .010 .026 .016 .008 .019 .048 .018 .030 .011 .011

t2(I4),t2(W) .245 .246 .246 .402 .111 .257 .245 .252 .248 .263 .235 .249
(50,50) .057 .062 .037 .134 .073 .052 .072 .076 .060 .061 .100 .055

t2(I4),t2(W) .246 .271 .258 .463 .086 .274 .244 .268 .256 .296 .203 .250
(25,75) .043 .060 .032 .139 .055 .054 .085 .091 .075 .111 .067 .070

C(I4),C(W) .363 .408 .386 .547 .246 .396 .409 .435 .422 .382 .477 .430
(50,50) .065 .067 .042 .186 .137 .055 .118 .094 .088 .204 .172 .078

C(I4),C(W) .352 .413 .383 .573 .196 .385 .400 .443 .421 .492 .372 .432
(25,75) .074 .077 .049 .191 .138 .058 .129 .129 .117 .247 .183 .104
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Table 5 Continued

Dist RQ1 RQ2 RQ Q1 Q2 Q RM1 RM2 RM M1 M2 M
N(I4),N(I4) .177 .176 .176 .180 .171 .175 .188 .192 .190 .177 .197 .187

(50,50) .038 .036 .015 .034 .033 .013 .043 .047 .017 .038 .040 .017

N(I4),N(I4) .183 .186 .185 .215 .161 .188 .215 .212 .213 .223 .172 .198
(25,75) .045 .048 .018 .045 .029 .017 .064 .054 .029 .070 .038 .026

t2(I4),t2(I4) .336 .324 .330 .359 .416 .387 .293 .304 .298 .308 .303 .306
(50,50) .071 .074 .051 .236 .218 .063 .050 .052 .028 .058 .069 .036

t2(I4),t2(I4) .322 .335 .329 .366 .393 .380 .317 .315 .316 .400 .268 .334
(25,75) .081 .067 .051 .203 .206 .063 .065 .063 .036 .093 .063 .042

C(I4),C(I4) .443 .444 .443 .499 .481 .490 .408 .403 .405 .420 .440 .430
(50,50) .082 .082 .056 .345 .347 .024 .067 .065 .043 .118 .126 .044

C(I4),C(I4) .452 .459 .456 .323 .654 .489 .415 .416 .415 .535 .340 .438
(25,75) .069 .081 .051 .261 .275 .023 .088 .079 .034 .123 .104 .046

N(I4),N(W) .078 .077 .077 .094 .051 .072 .082 .084 .083 .097 .056 .076
(50,50) .023 .037 .012 .016 .018 .007 .023 .042 .014 .020 .019 .009

N(I4),N(W) .074 .092 .083 .102 .044 .073 .096 .087 .091 .107 .052 .080
(25,75) .021 .038 .012 .020 .016 .007 .031 .040 .022 .024 .020 .011

t2(I4),t2(W) .234 .285 .259 .216 .379 .297 .214 .213 .214 .203 .236 .220
(50,50) .050 .058 .037 .144 .152 .059 .038 .064 .024 .038 .057 .026

t2(I4),t2(W) .258 .285 .272 .213 .386 .299 .226 .226 .226 .249 .190 .220
(25,75) .056 .068 .040 .075 .133 .041 .054 .069 .031 .043 .055 .028

C(I4),C(W) .389 .421 .405 .360 .581 .471 .326 .364 .345 .301 .407 .354
(50,50) .071 .085 .055 .347 .322 .033 .045 .057 .033 .072 .101 .036

C(I4),C(W) .388 .440 .414 .213 .702 .458 .354 .346 .350 .393 .351 .372
(25,75) .064 .063 .031 .190 .183 .024 .071 .068 .029 .095 .095 .042
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Table 5 Continued

Dist RS1 RS2 RS S1 S2 S RL1 RL2 RL L1 L2 L
N(I4),C(I4) .159 .225 .192 .899 .007 .453 .344 .402 .373 .151 .495 .323

(50,50) .045 .033 .023 .091 .007 .043 .120 .114 .110 .106 .164 .087

N(I4),C(I4) .159 .264 .212 .884 .009 .446 .314 .442 .378 .097 .554 .326
(25,75) .062 .049 .029 .138 .012 .063 .124 .126 .115 .082 .171 .079

N(I4),t2(I4) .177 .241 .209 .627 .046 .337 .215 .256 .236 .172 .282 .227
(50,50) .049 .039 .021 .177 .033 .075 .078 .068 .056 .060 .074 .053

N(I4),t2(I4) .195 .291 .243 .658 .040 .349 .201 .270 .235 .186 .259 .222
(25,75) .072 .052 .038 .159 .023 .069 .076 .068 .053 .057 .067 .047

C(I4),t2(I4) .384 .303 .343 .087 .705 .396 .393 .340 .367 .487 .214 .351
(50,50) .047 .057 .036 .076 .175 .064 .111 .103 .094 .170 .100 .083

C(I4),t2(I4) .402 .315 .359 .154 .665 .410 .431 .353 .392 .609 .161 .385
(25,75) .073 .065 .037 .137 .214 .060 .115 .115 .106 .178 .092 .078

N(I4),C(W) .108 .174 .141 .881 .002 .442 .314 .401 .357 .085 .509 .297
(50,50) .037 .034 .017 .137 .004 .067 .128 .137 .124 .066 .191 .079

N(I4),C(W) .107 .227 .167 .911 .002 .457 .341 .453 .397 .104 .526 .315
(25,75) .054 .051 .026 .108 .003 .053 .122 .152 .118 .087 .173 .078

N(I4),t2(W) .121 .150 .135 .529 .013 .271 .174 .218 .196 .164 .226 .195
(50,50) .041 .036 .018 .191 .013 .091 .054 .080 .058 .047 .103 .057

N(I4),t2(W) .123 .190 .156 .618 .009 .313 .179 .224 .201 .172 .209 .190
(25,75) .044 .043 .017 .163 .010 .078 .069 .073 .051 .055 .078 .048

C(I4),t2(W) .346 .291 .319 .121 .585 .353 .397 .381 .389 .485 .278 .381
(50,50) .069 .063 .043 .106 .171 .059 .113 .117 .107 .172 .120 .108

C(I4),t2(W) .335 .284 .310 .190 .476 .333 .378 .347 .362 .539 .188 .363
(25,75) .063 .070 .044 .105 .175 .057 .133 .115 .112 .194 .095 .104
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Table 5 Continued

Dist RQ1 RQ2 RQ Q1 Q2 Q RM1 RM2 RM M1 M2 M
N(I4),C(I4) .165 .203 .184 .007 .396 .201 .142 .171 .156 .077 .233 .155

(50,50) .055 .039 .022 .009 .063 .028 .050 .038 .021 .036 .042 .020

N(I4),C(I4) .162 .233 .197 .012 .411 .211 .179 .170 .174 .141 .206 .174
(25,75) .066 .042 .028 .019 .073 .030 .064 .032 .027 .067 .052 .027

N(I4),t2(I4) .207 .217 .212 .090 .314 .202 .190 .192 .191 .158 .228 .193
(50,50) .047 .036 .024 .042 .081 .025 .058 .037 .025 .050 .054 .028

N(I4),t2(I4) .221 .244 .233 .130 .307 .218 .227 .209 .218 .230 .219 .224
(25,75) .070 .047 .029 .065 .074 .031 .073 .047 .039 .082 .054 .040

C(I4),t2(I4) .385 .325 .355 .665 .088 .376 .327 .303 .315 .406 .246 .326
(50,50) .046 .056 .038 .067 .032 .022 .065 .053 .021 .081 .050 .029

C(I4),t2(I4) .389 .303 .346 .664 .115 .389 .343 .308 .325 .432 .220 .326
(25,75) .073 .067 .041 .119 .125 .036 .081 .057 .034 .085 .047 .028

N(I4),C(W) .111 .154 .132 .003 .293 .148 .103 .101 .102 .035 .171 .103
(50,50) .040 .033 .017 .009 .058 .027 .035 .029 .014 .018 .033 .013

N(I4),C(W) .119 .170 .145 .004 .297 .151 .137 .114 .125 .094 .140 .117
(25,75) .053 .040 .022 .005 .041 .019 .057 .032 .022 .063 .039 .231

N(I4),t2(W) .131 .144 .137 .041 .241 .141 .111 .114 .112 .086 .139 .113
(50,50) .040 .036 .019 .021 .061 .023 .039 .033 .015 .028 .039 .014

N(I4),t2(W) .129 .186 .157 .070 .222 .146 .131 .126 .128 .140 .131 .136
(25,75) .053 .036 .019 .044 .081 .026 .052 .047 .028 .063 .043 .029

C(I4),t2(W) .370 .314 .342 .646 .114 .380 .243 .256 .250 .271 .233 .252
(50,50) .074 .066 .056 .103 .044 .037 .053 .057 .031 .070 .053 .032

C(I4),t2(W) .360 .308 .334 .643 .115 .379 .287 .232 .259 .331 .182 .257
(25,75) .076 .084 .060 .162 .105 .054 .068 .042 .028 .069 .031 .030
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