

THE SCRUM PROCESS FOR INDEPENDENT PROGRAMMERS

Except where reference is made to the work of others, the work described in this thesis is

my own or was done in collaboration with my advisory committee. This thesis does not

include proprietary or classified information.

Ananth Srirangarajan

Certificate of Approval:

__________________________ __________________________

Pradeep Lall, Co-Chair David A. Umphress, Co-Chair

Thomas Walter Professor Associate Professor

Mechanical Engineering Computer Science and

 Software Engineering

__________________________ __________________________

Cheryl Seals George T. Flowers

Assistant Professor Dean

Computer Science and Graduate School

Software Engineering

THE SCRUM PROCESS FOR INDEPENDENT PROGRAMMERS

Ananth Srirangarajan

A Thesis

Submitted To

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama

May 9, 2009

iii

THE SCRUM PROCESS FOR INDEPENDENT PROGRAMMERS

Ananth Srirangarajan

Permission is granted to Auburn University to make copies of this thesis at its discretion,

upon the request of individuals or institutions and at their expense. The author reserves

all publication rights.

 Signature of Author

 Date of Graduation

iv

THESIS ABSTRACT

THE SCRUM PROCESS FOR INDEPENDENT PROGRAMMERS

Ananth Srirangarajan

Master of Science, May 9, 2009

(B.S., Champlain College, 2004)

61 Typed Pages

Directed by David Umphress and Pradeep Lall

 A software process is an attempt to impose structure on the software development

process. The primary goal of a software process is to arrive at a repeatable, predictable

process that will raise the productivity of software developers and enhance the quality of

their work. Over the past few decades, many such processes have been described and

implemented ranging from the traditional Waterfall model to the more recent ones that

are collectively grouped as Agile Processes.

Agile Processes, in particular, have received considerable attention as they are

light-weight, people-centric and relatively easy to understand and implement. However,

almost all agile processes are geared towards development projects involving teams of

programmers working together and ignore the needs of a programmer working alone.

This study describes an attempt to apply the tenets of the Scrum process in

situations where the software development is performed by a single programmer. It was

found that agile principles, as adhered to by Scrum, can be applied to projects with just

v

one programmer, resulting in better forecasts of the work involved, regular releases of

working, verifiable software as well as improvements in quality of the code.

vi

ACKNOWLEDGEMENTS

I would like to thank Dr. David Umphress for guiding me through the process of

writing this thesis. I would like to express my deepest gratitude to Dr. Pradeep Lall, who

funded me throughout my studies at Auburn, and without whom I could have never have

finished my graduate studies. I would also like to thank my committee member, Dr.

Cheryl Seals for her time and cooperation.

I am deeply grateful to my employer Mentor Graphics and my manager Mr. Paul

Batson for facilitating my research work. Thanks are also due to my friends Manoj

Rajagopalan and Santosh Kulkarni for their unfailing support and help.

I would like to take this opportunity to acknowledge all that my parents and sister

have done for me. I am humbled by their faith in me and this work is as much their

achievement as it is mine. Last, but not least, I wish to thank the Lord above for all his

blessings.

vii

Style manual used: ACM Computer Surveys.

Computer software used: Microsoft Office 2003.

viii

TABLE OF CONTENTS

LIST OF FIGURES .. x

1. INTRODUCTION ...1

 1.1 Background ...1

 1.2 Problem Statement ..4

2. LITERATURE REVIEW ...6

 2.1 Software Process Goals ...6

 2.2 Principles of Agile Processes ..6

 2.3 Scrum ..10

 2.4 Extreme Programming ..13

3. SOLUTION ...17

 3.1 Approach ...18

 3.2 Why Scrum and not XP? ...18

 3.3 Scrum for Independent Programmers ..19

 3.3.1 Product Backlog ...20

 3.3.2 Sprint Planning ...21

 3.3.3 Sprint Tracking ...24

 3.3.4 Sprint Review..24

4. SOLUTION VALIDATION..26

 4.1 Case Study 1 ..26

ix

 4.1.1 Case Study 1: Product Backlog ..27

 4.1.2 Case Study 1: Sprint Planning ...27

 4.1.3 Case Study 1: Sprint Tracking ..29

 4.1.4 Case Study 1: Sprint Review ..30

 4.1.5 Case Study 1: Results ...31

 4.2 Case Study 2 ..31

 4.2.1 Case Study 2: Product Backlog...32

 4.2.2 Case Study 2: Sprint Planning ..33

 4.2.3 Case Study 2: Sprint Tracking ..34

 4.2.4 Case Study 2: Sprint Review ..35

 4.2.5 Case Study 2: Results ...36

5. CONCLUSION AND FUTURE WORK ..37

BIBILIOGRAPHY ..39

APPENDIX A..42

APPENDIX B ..47

x

LIST OF FIGURES

Figure 2.1: The Scrum Process ..11

Figure 2.2: Extreme Programming Process ...14

Figure 3.1: Scrum for Teams vs. Scrum for Independent Programmers23

Figure 3.2: Scrum Process for Independent Programmers ..25

Figure 4.1: Scan of document showing Stories to be completed during the Sprint...........28

Figure 4.2: Sprint Backlog at the beginning of the sprint..29

Figure 4.3: Updating the Sprint Backlog during the Sprint to enable tracking30

Figure 4.4: Screenshot of Product Backlog ...32

Figure 4.5: Stories with their points in the Sprint..33

Figure 4.6: Sprint Backlog with stories broken down into Tasks......................................34

Figure 4.7 Burndown Chart with X-axis = Days and Y-axis = Hours...............................35

1

1. INTRODUCTION

1.1 Background

 In the last few decades, the single most important factor shaping the lives of

people has been technology. Technology has completely transformed the way we live,

communication, and work. Technology-led and enabled changes have even changed the

social dynamics of human beings. Technology has permeated into every level of our lives

to an extent where even simple everyday tasks requires that we interface with some form

of computing machine. Of course, the more complicated tasks like weather forecasting,

gene sequencing, air traffic control etc. would be impossible without large amounts of

computing power. Underpinning this technology dependent world are millions and

millions of lines of code: software.

 The earliest pieces of code were produced in an ad-hoc manner which meant there

was almost no way to measure and catalog the quality and performance of the code. This

is fine when the software is only used in research or academic environments. But as more

and more real world tasks become dependent on technology and its underlying software,

ensuring the quality of the software has become a priority. Bad software can be

catastrophic in mission-critical and life-critical situations.

The only way to control the quality of code is to monitor it when it is being

produced, in effect, placing a structure on software development that will ensure the

production of high grade code. This structure imposed on the development of software is

2

called software process or software development process. This structuring has many other

benefits. Overtime enough data can be accumulated from previously executed projects,

which will allow us to predict how long a current software project will take to be

completed, given its scope and complexity. Process also increases the visibility into the

thought process that went into development effort, which in turn makes it possible for the

development effort to continue even when some members of the development team leave

and new ones join in.

 Many different software development processes have been defined and employed

both by the industry and academia including those that belong to the agile family. But

before any discussion about processes, it would be useful to understand most basic way

in which structure is imposed on software development, namely, the Waterfall Model.

 The Waterfall Model divides the whole lifecycle of software development into

separate phases. These phases are: Requirements Analysis, Software Design, Software

Implementation, Testing, Installation and Maintenance [Parekh 2005]. This model is still

widely used and has many advantages. First, the phased development cycle enforces

discipline with clear start and end points and markers for progress. Second, since the

requirements are clearly defined at the beginning, there is minimal wastage of time and

effort when actual coding starts. Also, it is much easier to catch and correct flaws at the

design stage than at the testing phase because tracking down an error after all components

have been integrated is not a trivial task [Contributor Melonfire 2006].

The Waterfall model has come to face a lot of criticism, though. Among the

drawbacks that are listed most often is that most of the time customers have only a vague

idea of what they want. So, the requirements may change or evolve over time, but the

3

model insists that the requirements document written in the beginning is iron-clad and not

open to change. The Waterfall model is, thus, too linear and not very flexible [Parekh

2005].

The agile family of processes attempt to structure software development effort by

embracing a much more light-weight, fluid and adaptable methodology. The Agile

Manifesto declares the four values that must be given high prominence in all agile

processes [Beck et al. 2001].

First, individuals and interactions are of more value than processes and tools

[Beck et al. 2001], which implies that though process and tools are important, interaction

of skilled individuals working on the project is of even greater significance [Fowler and

Highsmith 2001].

Second, producing working software is more useful than a creating

comprehensive documentation [Beck et al. 2001]. The focus must be on delivering the

final product which is the working software. The amount and details of documentation

that must be produced is completely up to the people working on the product [Fowler and

Highsmith 2001].

Third, customer collaboration is of more value than contract negotiation [Beck et

al. 2001], which means that while contract negotiations, where everyone’s rights and

responsibilities are clearly laid out, is important, it cannot replace communication.

Successful developers work closely with their customers, they invest considerable effort

to discover what their customers need, and they educate their customers along the way

[Ambler 2006].

4

Agile processes must be geared towards responding to change rather than just

following a plan [Beck et al. 2001] because more often than not the customer’s priorities

may change. While having a project plan is useful, the plan must be malleable.

Otherwise, in the event of a change in the requirements the plan quickly becomes

irrelevant [Ambler 2006].

Agile processes are being used widely in the software industry today with

considerable success. Some of the most widely used agile process models are Extreme

Programming (XP) [Beck 2000], Lean Development [Poppendieck and Poppendieck

2003], Crystal [Cockburn 2002] and Scrum [Schwaber and Beedle 2002].

1.2 Problem Statement

 It is important for any software project to adhere to a process. Following a well-

defined process gives developers clear goals, the order of the tasks that must completed

to achieve these goals and a way to measure the progress being made to attain these goals

[Tyrrell 2000].

 Agile processes, which are becoming increasingly popular, are usually used for

projects that involve small teams of developers, testers, designers etc. In fact, literature

about agile processes talks exhaustively about teams: team building, team self-

organization, daily meeting of team members, meetings between team members and

customers, pair programming and so on. This is clearly a result of the emphasis placed on

individuals and interactions as per the values listed in the Agile Manifesto [Beck et al.

2001]. But all this attention paid toward teams misses the important fact that there are

5

still many software projects and programs being written and maintained by independent

programmers.

 An agile process when used by independent programmers can still adhere to all

the core values of the agile movement. An individual programmer would, in most cases,

prefer to produce working software over writing a long requirements document. He or

she can easily collaborate with their customer. In fact, it may easier to coordinate with a

customer when only one programmer is involved. And an individual programmer can

respond to a change in the customer’s requirements.

 This work attempts to apply the agile process Scrum to the development effort of

an individual programmer. Using Scrum will help independent developers because by its

very nature, Scrum is very adaptable and not heavy. A developer can quickly learn and

use this process which will result in improvements in planning, scheduling and quality of

code along with the improvements in the developer-client communication.

6

2. LITERATURE REVIEW

2.1 Software Process Goals

Before taking a more detailed look at Agile Processes, it may be beneficial to look

at software processes in general and their purpose. Any software process is only useful

when it helps streamline and quantify the software development effort. To this end it

must meet certain goals, which are effectiveness, maintainability, predictability,

repeatability, quality, improvement and tracking [Tyrrell 2000]. A process is only

effective when it produces software meets the requirements of the customer. It must

allow for changing requirements and other such problems that may make it to necessary

to go back and review previously completed work. It must be able to predict the length of

the development effort by taking into account the available resources. A process must

lend itself for reuse in other similar projects. It must ensure a high quality product and

lastly must allow the managers, developers and customers to track the status of the

project [Tyrrell 2000].

2.2 Principles of Agile Processes

 The goals described in the previous section are the goals that all software

processes must strive for. In order to achieve these goals, agile processes follow a set of

principles. The Agile Manifesto, a document written by founders of the agile movement,

lists twelve principles that form the basis of agile processes [Beck et al. 2001]. An

7

understanding of each of these principles is essential in order to successfully apply and

use an agile process.

• “The highest priority of agile processes must to be to satisfy the customer through

early and continuous delivery of valuable software” [Beck et al. 2001]. The

customers only concern when initiating any software project is that the end

product works. So, any other artifacts produced along the way like requirements

documents, class diagrams etc., while useful, are of little value from the

customer’s perspective. Also, since modern projects must often deal with

changing requirements, the initial project plan may have to be revised constantly.

This shows that only working code can be seen as the measure to progress rather

than meeting the original project plans [Fowler and Highsmith 2001].

• Secondly, agile processes welcome changing requirements, irrespective of when

this change occurs. Agile processes actively welcome change and use it to

increase the customers’ competitiveness in a fast changing market place [Beck et

al. 2001]. Surviving in a cut-throat market place requires that businesses be

adaptable. This means that software development teams working to meet the

needs of these businesses must also be ready to meet changing requirements.

Instead of resisting changes, agile process must enable developers to manage the

change [Fowler and Highsmith 2001].

• Thirdly, agile processes attempt to deliver working software as often as possible,

ranging from a couple of weeks to a couple of months [Beck et al. 2001].

Frequent delivery of working software provides stakeholders with a clear way of

8

measuring progress. Being able to see the software actually working will also

enable them to provide better guidance to the development team [Ambler 2006].

• Agile processes must enable collaboration between customers and the developers

throughout the development cycle [Beck et al. 2001]. Such close collaboration is

necessary in order for the developers to get constant feedback.

• Projects must be built around motivated individuals by giving them the

environment and support they need [Beck et al. 2001]. No process will be

effective if the people using it are not motivated and committed to using it. So, all

support must be extended to those who know the project best and these

individuals must be allowed to make key decisions about the direction of the

project [Fowler and Highsmith 2001].

• Agile processes prefer that teams convey information in face-to-face

conversations [Beck et al. 2001]. Direct communication is better than any

requirements document or UML diagram in ensuring that everyone on the team

has a clear understanding of what must be done in order to successfully complete

a project.

• “Working software is the primary measure of progress used by agile processes”

[Beck et al. 2001]. This ensures that there are no last minute problems when the

final product is delivered as throughout the cycle the product has been developed

using increments of working code.

• Agile processes must promote sustainable development. This means that teams

must be able to work at a constant pace indefinitely [Beck et al. 2001]. This

principle comes from the fact that it is not possible to successfully develop

9

software by forcing people to work overtime [Ambler 2006]. Instead the process

strives to set a steady and sustainable pace of development work.

• Agile processes require that continuous attention be paid to technical excellence

and good design [Beck et al. 2001]. It is easier and less time consuming to

maintain and build on high-quality software than it is to do the same with code of

inferior quality [Ambler 2006].

• Simplicity is the next principle that agile approaches value [Beck et al. 2001].

There's a strong taste of minimalism in all the agile methods [Fowler and

Highsmith 2001]. Any software development task can be approached with a host

of methods, but it's particularly important to use simple approaches, because

they're easier to change. It's easier to add something to a process that's simple.

• Agile processes encourage self-organizing teams as the best architectures,

requirements and designs emerge from teams which are highly integrated and

open to communication [Beck et al. 2001] [Fowler and Highsmith 2001].

• The last principle of agile processes states that development teams must reflect on

how to become more effective at regular intervals and adjust its behavior

accordingly [Beck et al. 2001]. Thus, agile processes enable process improvement

by encouraging the team itself to take the lead in making changes and adaptations

to the process.

The processes that are part of the agile family attempt to meet these twelve principles

in a variety of different ways. An understanding of a couple of agile processes will be a

helpful in understanding how for individual programmers can reap the benefits of using

10

agile processes. The two processes that were studied for this purpose were Scrum and

Extreme Programming (XP). These two were selected because they are among the most

popular agile processes in use today [Davidson 2008], in addition to being widely

discussed in agile literature.

2.3 Scrum

 Scrum in among the oldest of the agile processes. The initial idea of Scrum came

from a paper about how to set up self-organizing teams and the management’s role in the

process [Takeuchi and Nonaka 1986]. The process was then formalized in 1995 by Dr.

Jeff Sutherland and Ken Schwaber [Sutherland and Schwaber 2007].

 Scrum is a simple process used to organize teams and get work done more

productively with higher quality. It is a light-weight approach to software development

that allows teams to choose the amount of work to be done and decide how best to do it.

Scrum divides the whole development cycle into a series of iterartions called

Sprints. Each sprint is usually 1 – 4 weeks in length. The length of the sprint is fixed and

it is not changed even if the work is not completed [Deemer and Benefield 2007]. These

iterations are continued until the project is completed. The Scrum process is illustrated in

Figure 2.1.

11

Figure 2.1: The Scrum Process [Cohn 2005]

 The first step in Scrum is to arrive at a preliminary vision for the product. This

vision is then converted into a rudimentary requirements document which lists all the

features the system must have ranked according to the priority assigned to it by the

customer. This is called the Product Backlog, and it evolves over the lifetime of the

project [Deemer and Benefield 2007].

 In the next step, the development team goes through the product backlog starting

from the top and picks the items that they think they can complete during the forthcoming

sprint. This list of items to be completed during the sprint is called the Sprint Backlog

and it is never changed during the course of the sprint. This is one of the key practices in

Scrum: rather than the managers deciding how much the team must complete, the team

12

itself arrives at a consensus regarding the workload they will take on [Deemer and

Benefield 2007].

 During the course of the Sprint, the development team gathers everyday to report

and update each other on their progress. This progress is tracked using metrics such as the

Burndown rate and/or through the use of simple charts called Burndown Charts which

indicate the work that has been done and the tasks as yet unfinished [Deemer and

Benefield 2007].

 At the end of the Sprint, the development team meets with customers; a meeting

that is referred to as the Sprint Review. In the sprint review, the team demonstrates the

working code that they have worked on during the sprint and gathers feedback from the

customers [Deemer and Benefield 2007].

 The team uses the feedback that it received in the Sprint Review and from any

problems it may have encountered during the sprint as the input for the Sprint

Retrospective. This is an inspection of project progress at the end of the every Sprint. The

goal is to improve development process by introducing new practices, changing existing

practices, etc.

 Thus, it can be clearly observed that Scrum meets all the principles of an agile

process. The focus on delivering working software at the end of regular intervals, the

constant communication between the team and the customers ensures that customers are

kept satisfied and are always in the loop about the progress of the project. The evolution

of the product backlog allows the team to adapt to changing requirements. The consensus

within team that decides how much workload is assumed in a sprint allows for self-

organizing teams and leaves key decisions to them. The daily meeting facilitates regular

13

communication maintaining the cohesion within the team and this repetitive cycle can be

maintained indefinitely.

2.4 Extreme Programming

 Extreme Programming (XP) is one of the more popular members of the agile

family of processes. It was formalized by Kent Beck starting from 1995 and popularized

by his book - Extreme Programming Explained: Embrace Change [Beck 2000]. XP gets

its name because it takes common sense principles and practices, such as unit tests and

code reviews to the extreme, leading to practices such as test-driven design and pair

programming [Beck 2000] [Miller 2002]. XP is typically recommended only for teams of

roughly 2 – 10 people who are co-located and have experience working with each other

[Highsmith 2000]. XP lists a set of practices that attempts to eliminate the unnecessary

artifacts of most heavyweight processes and allows the development team to focus on the

coding without any distractions [Miller 2002].

XP refers to the process of defining the project scope and deciding what tasks

need to be completed in any given iteration as the Planning Game. The whole project is

divided into releases, each of which is actually rolled out to all the customers to be used

in real-world situations. The details about what items will be in any given release and

when the release will occur depends on the customers. The development team only

focuses on completing the functionality needed for the current iteration [Beck 1999]. XP

is shown diagrammatically is Figure 2.2.

14

Figure 2.2: Extreme Programming Process [Wells 2000]

 The releases that are rolled out to the customers are kept quite small. The system

is released to the customers every few months even before the whole solution is in place.

New releases are made often—anywhere from daily to monthly [Beck 1999]. This allows

for feedback to be gathered when the system is put to real-world use.

 The entire structure of the system is described by a ‘metaphor’ that is agreed upon

by the both the programmers and the customers [Beck 1999]. Individual features are

described as ‘stories’, which are gathered by simply asking the customers to explain the

various features they would like in the system [Highsmith 2000].

 XP encourages teams to keep the design of the software as simple as possible by

focusing on delivering the functionality for the current iteration without any thought

given to any future functionality [Highsmith 2000]. The design must meet all required

tests and communicate everything that the developer wants communicated [Beck 1999].

 XP places heavy emphasis on testing to such an extent that it requires the whole

design to be test-driven. XP uses two types of testing: unit testing and functional testing.

Units tests are written by the programmers before they even code a story or feature

15

[Highsmith 2000]. Further, the unit tests should be automated in order to receive instant

feedback. Functional tests are written by the customers who use these tests to check the

entire feature or a group of features [Beck 1999].

One of XP’s unique practices is refactoring. Refactoring allows the system to be

in a constant state of redesign [Highsmith 2000]. This ensures that the project can easily

absorb changes.

 XP advocates team members to code in pairs i.e., all production code is written by

two people at one screen/keyboard/mouse. This collaborative programming allows for

two minds to be actively engaged in looking over the code. This acts as a sort of code

review and results in more defects being caught at the development stage itself

[Highsmith 2000]. The code is collectively owned by the entire team, which allows any

programmer to change any code when he or she sees an opportunity for improvement

[Beck 1999]. The customer or at least a representative of the customer must be part of the

team and must be available to answer questions or issue clarification to the team at any

time [Beck 1999].

 The new code that produced must be continuously integrated with the code

written earlier. This is done in order to avoid integration errors which can create serious

problems later on in the cycle. The integrated code must then pass all the tests, both unit

and functional, failing which the changes are discarded [Beck 1999].

 XP is a rather radical process model which is sometimes criticized as being too

difficult to adopt and use, but it does clearly meet all the requirements for being an agile

process. The small releases and the presence of customers as part of the teams allows for

the customers to be part of the development process where they can clearly see their

16

system taking shape. The focus on simple design, pair programming, constant testing and

integrations ensures high quality code working code and refactoring allows for

developers to be prepared for changing requirements.

17

3. SOLUTION

3.1 Approach

 A software process that will be of use for individual programmers presents a

unique set of challenges. To begin with, developers working on their own must be

convinced that using a process would be highly beneficial to them. Most of these

developers simply work ad-hoc. All the requirements, design details etc. are held as a

mental map by the developer alone, which makes it very difficult for someone else to

read the code and make any changes or enhancements. Also, working ad-hoc makes it

very difficult for the developer himself to estimate how long a project may take to finish

or how difficult it might be.

 Individual developers also suffer from the fact there are very few software

processes that pay attention to their needs. One of the few that does is the Personal

Software Process (PSP). However, PSP is a very heavy-weight. This results in very few

people actually adopting and actively using PSP. Even those who do try to use it often

give up when they are not required to do so. This is mainly because of two reasons: the

high overhead of PSP-style metrics collection and analysis, and the requirement that PSP

users need to constantly switch between product development and process recording

which often breaks the their concentration [Johnson et al. 2003].

 Therefore, the most important factor that was taken into account when choosing a

process for individual programmers in this study is that it be as light-weight as possible;

18

it must not involve too much overhead in terms of time and it must not distract the

developer from this primary task: coding. At the same time it must allow the developer to

gather some basic data that will allow him to track progress, gather feedback from the

customer and over-time is able to estimate the duration of any given project that comes

his or her way based on the track record from the previous ones. Such a process, with its

light foot print, will be able to overcome the resistance that most lone programmers have

towards following a structured development process.

 A process based on agile principles is ideal in this situation, as by definition, they

are light-weight. The process was used in this study is agile process Scrum.

3.2 Why Scrum and not XP?

 Of all the agile process that are defined and in use today, the two that were

researched for this study were Scrum and Extreme Programming (XP), because they are

the two most popular and widely used agile processes [Davidson 2008]. However, the

process that was used in the single programmer environment of this study was Scrum. XP

though highly effective has certain practices which are difficult to follow when only one

programmer is involved in the development.

 The first and the most obvious problem with using XP is that it promotes pair

programming which is altogether impossible in a single developer environment. This

problem may be overcome by having some other person go through a developer’s code

but this reduces the activity to a simple code review without any of the benefits of the

pair programming. Scrum, however, does not have any stipulation pertaining to

programming in pairs.

19

 Secondly, XP advocates test-driven design. Though, this is an excellent practice,

some independent developers may not be inclined to write tests for each and every unit.

Also, XP calls for any changes that do not meet the tests to be discarded, something that

single programmers will probably not do.

 Thirdly, XP, in its purest form, requires the customers to be a part of the team. In

a single developer environment, it is too much to expect the customer to be available all

the time. On the other hand, Scrum, which allows for customers to be available in case

developers have any questions or to issue clarifications, lends itself to be more easily

adapted to a single programmer environment.

 After taking into account the above factors, it was felt that Scrum is better as a

candidate for a process for individual programmers. Scrum has proved that it can handle

enormously complicated software development efforts. The literature on Scrum talks of

projects involving hundreds of programmers, designers, testers etc. both co-located and

geographically dispersed that have been successful. Though this focus on teams is a

recurring theme, many of Scrum’s core practices are such that they can be easily

modified to work in a single programmer environment. The remaining sections in this

chapter describe the how the core practices of Scrum were adapted to a single developer

environment.

3.3 Scrum for Independent Programmers

 The scaled down version of the Scrum process described in this study is meant to

be used primarily by programmers working on their own. Using Scrum will help lone

developers manage their software development lifecycle. The adapted version of Scrum

20

described here only defines the basic practices that must be followed leaving many of the

internal decisions such as which metrics need be tracked and how they are tracked to the

will of the user of the process. This allows the process to be flexible and adaptable and

ensures that a broad array of users will be able to use it; from students to software

professionals. This flexibility is essential as individual programmers’ work practices vary

widely; if the process is too cumbersome, it will dramatically increase the chances that

users will abandon using it. The process must consume as little time as possible while

attempting to capture at least some basic artifacts from each cycle that will be helpful to

the user in later life cycles. The core practices of the Scrum process as applied in single

programmer environments is explained in the following sections. Figure 3.1 shows a

table comparing the use of Scrum by a team vis-à-vis Scrum as applied by independent

programmers.

3.3.1 Product Backlog

 The first step in Scrum is to arrive at the vision for the project and what it will do.

All the requirements that are necessary for this vision to be realized are then put together

as a list with the highest priority features at the top. This list is not absolute and final. It is

continuously updated and refined by the developer and the customer together. The

Product Backlog will include a variety of items, such as features, development

requirements, exploratory work, and known bugs. Each of these requirements may be

referred to as “stories”: simply a descriptive way of presenting a requirement that makes

sense to both the developer and the customer.

21

 The Product Backlog is not a formal requirements document. It is meant to be

dynamic; it is updated to reflect the changing needs of the customers, changes

necessitated because of feedback from customers after they view the work from previous

iterations, technical hurdles that appear, and so forth. Each of the stories is then analyzed

and the developers arrive at a rough estimation of how much effort it will take to finish a

particular story. These estimations need not be in any real-world unit like hours but using

a system of points, where certain number of points roughly translates into the difficulty

level of the story [Deemer and Benefield 2007]. The use of points is, however,

discretionary. The customer takes these estimations into consideration when prioritizing

the stories.

The stories in the Product Backlog can vary significantly in size, ranging from

ones that can may take a few days work to ones that take a couple of hours; however, the

larger ones can often be broken into smaller pieces during Sprint Planning, and the

smaller ones may be consolidated. The amount of detailed specifications that is written

for each story is up to the customer and the developer. The detail in the specification may

also vary from one Product Backlog story to the next.

3.3.2 Sprint Planning

 Since Scrum is an agile process the work is done in a series of iterations. A single

iteration is referred to as a Sprint. A typical sprint should last anywhere from one – four

weeks. Before the start of every sprint the developer and customer meet to discuss the

Product Backlog and prepare for the forthcoming sprint. This meeting is called as Sprint

Planning.

22

 The first step is for the developer to determine how many hours a day he can

dedicate to the project. This number should be realistic and take into account things like

answering emails, lunch breaks or if the developer is a student, his or her class schedule.

This is an important step as the work done during the sprint is tracked using hours

required to complete each story.

 During Sprint Planning, the developer selects the stories from the Product

Backlog to commit to complete by the end of the Sprint, starting at the top of the Product

Backlog and working down the list. In others words, stories that are of the highest

business value for the customer are considered first before going on to the ones lower

down in the Backlog. This is done until all the developer’s available hours are used up.

This is an important as it allows the developer to decide which stories he will complete

during the coming Sprint. This list of stories that he or she commits to finished by the end

of the sprint is called as the Sprint Backlog. The Sprint Backlog is never changed as long

the Sprint is still in progress. This ensures that the customer does not interfere in

development work by adding new stories to the sprint which will definitely be disruptive

to the programmer.

 As a further step, the developer can break down the individual stories into tasks.

This can be beneficial if story is quite large or if he or she would like better visibility into

the steps required in completing a story. The hours assigned to the story is divided up

among the tasks in this case, with each task carrying the hours it would take to complete

it. But this step is optional, with the decision left up to the developer’s discretion. Once

the Sprint Backlog is completed the sprint commences in earnest.

23

Process Element Scrum for Teams
Scrum for Independent

Developers

Duration of Iteration � Sprints of 1 – 4 weeks � Sprints of 1 – 4 weeks

Participants

� Scrum Team

� Scrum Master

� Product Owner

� Developer

� Customer

Product Backlog

� List of requirements

(stories) ranked

according to

customer’s priority

� Points used to size

individual stories

� List of requirements

(stories) ranked

according to

customer’s priority

� Use of points optional

Sprint Backlog

� List of stories to be

completed during a

given sprint

� Fixed for duration of

the Sprint.

� Each story in sprint

broken down into tasks

� List of stories to be

completed during a

given sprint

� Fixed for duration of

the Sprint

� Breaking up stories into

tasks optional

Sprint Tracking

� Daily Standup

meetings where the

team provides updates

� Burndown

charts/graphs used to

track progress

� No daily meeting

� Burndown

charts/graphs used to

track progress

Sprint Review

� Work done during

sprint demoed

� Customer feedback

gathered to be

considered for next

sprint

� Work done during

sprint demoed

� Customer feedback

gathered to be

considered for next

sprint

� Sprint Retrospective

conducted after demo

Sprint Retrospective

� Completed sprint

inspected to see if any

improvements/changes

to process is required

� No separate

retrospective meeting.

Figure 3.1: Scrum for Teams vs. Scrum for Independent Programmers

24

3.3.3 Sprint Tracking

 Once a sprint commences, Scrum allows for the progress made towards

completion of each story to be tracked. At the end of each day the developer updates the

number of hours he or she will have to put in order to complete a story (or task, if the

stories were broken down). This data is logged in the sprint backlog and can be

maintained using simple spreadsheets or defect tracking systems or any number of

software products designed specifically for agile processes. An example of a sprint

backlog with tracking information can be seen in Figure 4.3 in section 4.1.3. The number

of hours left to finish each story is then added up and the resulting number is called the

Burndown rate.

 As a further step, the burndown rate can be represented graphically using the

Burndown chart. This graphs maps the number of hours completed against the number of

days left until the end of the sprint.

 If points were used to size the stories, the relationship between the points awarded

to a story can be correlated with the number of hours it took to complete it. This metric

can be used to estimate the duration for similar stories in later Sprints. However, this

metric only makes sense when it is gathered over a considerable period of time. The

relationship between points and hours is usually very misleading during the first few

sprints.

3.3.4 Sprint Review

 After the Sprint ends, there is the Sprint Review, where the developer demos what

has been built during the Sprint to the customer. This review provides the customer with

25

a chance to actually view the system in action and also to provide any feedback to the

developer. This demo at the end of each sprint ensures that the customer is always in the

loop and is aware of the progress made in the project. The sprint review also allows for

the developer to reflect on the successes and failures during the course of the sprint and

make any adjustments to the process that will enable the next sprint to be smoother and

more productive.

 The Sprint Review can continue into the Sprint Planning meeting. This will

enable the customer to add any new features or enhancements, which he or she may deem

necessary after seeing the software demoed, to the Product Backlog. This allows for the

feedback from the demo to be instantly taken into account for the next Sprint.

 The scaled down version of the Scrum process for independent programmers is

shown below in Figure 3.2.

Product
Backlog

Sprint Backlog

Potentially Shippable
Increment

1 – 4
weeks

Product
Backlog

Sprint BacklogSprint Backlog

Potentially Shippable
Increment

1 – 4
weeks

Figure 3.2: Scrum Process for Independent Programmers

26

4. SOLUTION VALIDATION

 The scaled down version of the Scrum process described in section 3.3 was

applied to two distinct projects. The first case study involved the author as the developer

and his professor acting as the customer. The second case study was conducted under the

auspices of Mentor Graphics Corporation with the author once again acting as the

developer while Mentor Graphics acted as the customer.

4.1 Case Study 1

 The scaled down Scrum process was used by the author during the development

effort of the Online Simulation Tools for the Center for Advanced Vehicle Electronics

(CAVE) at Auburn University. This center is dedicated to working with industry in

developing and implementing new technologies for the packaging and manufacturing of

electronics with special emphasis on the cost, harsh environment and reliability

requirements of the vehicle industry. The CAVE Online Simulation Tools is designed to

be used for trade-off studies, evaluation of What-IF scenarios, and development of

system requirements. The CAVE software tool is an ongoing project that is being

spearheaded by Dr. Pradeep Lall, a professor at the Mechanical Engineering department

of Auburn University. The author, working as a Graduate Research Assistant for Dr. Lall

applied the Scrum to development of the tool. Thus, Dr. Lall acted as the customer and

27

the author as the developer. The details about how the core practices of Scrum as they

were applied in this case-study and the corresponding artifacts are explained in the

following sections.

4.1.1 Case Study 1: Product Backlog

 The Product Backlog for the CAVE tools was maintained by the customer. The

Backlog was made up of feature requests by the sponsors of CAVE who would be the

ultimate end-users. The backlog was constantly updated when additions of new

functionality were deemed necessary and also with feature enhancements and bug fixes.

The latter was mainly as a result of feedback gathered from previous Sprints.

4.1.2 Case Study 1: Sprint Planning

 In this case study, each sprint was of duration of one week. During the Sprint

Planning meeting at the start of the sprint, the developer and the customer discussed the

stories that need to be completed in this sprint. The stories that were selected were the

highest priority items from the Product Backlog. The list of stories derived from this

meeting was usually a simple hand-written document as shown in Figure 4.1. This list

was then transformed into a Sprint backlog. This Sprint backlog contained the stories

themselves and the time estimated to complete each of them. The remaining columns

which are empty in the beginning of the sprint show the day to day progress made

towards completion of each story. A sample of such a sprint backlog at the beginning of

the sprint is shown in Figure 4.2.

28

Figure 4.1: Scan of document showing Stories to be completed during the Sprint

29

 Hours of work to be completed

Story
Estimate

(in hrs)

Day

1

Day

2

Day

3

Day

4

Day

5

Day

6

Day

7

User Manual for

Flex BGA, PBGA

and Flip-Chip

16

Implementation of

CCGA and CBGA

models

16

Implementation of

PCR models for

Flip-Chip

8

User Manual for

Environment

Library

16

Total 56

Figure 4.2: Sprint Backlog at the beginning of the sprint

 The total hours listed under the column “Estimate” gives the total number of

hours that the developer has committed to the sprint. As can be seen, for this sprint the

developer committed a total of 56 hours over the period of seven days which is the length

of the sprint.

4.1.3 Case Study 1: Sprint Tracking

 The progress during the sprint was tracked simply by updating the Sprint backlog

table as shown in Figure 4.2 with the number of hours remaining for a particular story to

be completed. At the end of each day the total number of hours left for all stories was

30

added. This figure represents the burndown rate, that is, it represents the number of hours

left till all the stories in the sprint are completed. Figure 4.3 shows the how Sprint

Tracking worked during the course of the sprint.

 Hours of work to be completed

Story
Estimate

(in hrs)

Day

1

Day

2

Day

3

Day

4

Day

5

Day

6

Day

7

User Manual for Flex

BGA, PBGA and Flip-

Chip

16 16 16 16

Implementation of

CCGA and CBGA

models

16 11 5 0

Implementation of

PCR models for Flip-

Chip

8 8 8 8

User Manual for

Environment Library
16 13 13 9

Total 56 48 42 33

Figure 4.3: Updating the Sprint Backlog during the Sprint to enable tracking

4.1.4 Case Study 1: Sprint Review

 At the end of the sprint the work done during the week was demoed to the

customer. Any feedback and critique provided by the customer was added to the Product

Backlog as feature requests, feature enhancements or bug fixes. These new stories were

then considered for the next sprint depending on its priority. The Sprint Review then

continued on to the Sprint Planning meeting for the next sprint.

31

4.1.5 Case Study 1: Results

 The artifacts presented in the sections above are those collected from a single

sprint. The same sequence was applied to numerous sprints. The data gathered from three

sprints can be seen in Appendix A. The burndown chart for all three sprints shows the

number of hours spent on each story during everyday of the sprint, from which the

burndown rate was calculated. This data was the transformed to a burndown chart for

each of the sprints. The burndown chart and the burndown graph clearly show the rate at

which work is being completed, something that is essential for tracking progress. The

effect of underestimating the effort needed for a story and changing requirements can be

also been seen here. This is further explained in Appendix A.

4.2 Case Study 2

 The second case-study into the effectiveness of the Scrum when used by

individual programmers was conducted by applying it to the development and

maintenance work done on the build system at Mentor Graphics Corporation.

 It must be noted here that work on this system was performed by a team which

used Scrum. However, the workload was distributed in such a way that each team

member was able to work independently without the need for any input or collaboration

with other team members. This meant that each team member can be construed as an

independent programmer. This allowed the author to use Scrum in order to manage and

track his work. Thus, the author acted as the developer while Mentor Graphics

32

Corporation took on the role of the customer. The artifacts collected from a single sprint

of this case study as described in the following sections.

4.2.1 Case Study 2: Product Backlog

 The Product Backlog for this study was maintained for the entire team. However,

since both the team and the author took stories from the same Backlog, the Product

Backlog for the whole team was considered as valid for the single developer as well.

 In this case study, the Product Backlog was captured in a web-based tool. It was

constantly updated with new feature requests, bud fixes, etc. by Mentor Graphics

Corporation. A screenshot showing the product backlog is shown in Figure 4.4.

Figure 4.4: Screenshot of Product Backlog

33

4.2.2 Case Study 2: Sprint Planning

 During the Sprint Planning, the stories that had the highest priority were discussed

the developer committed to completing these stories by the end of the sprint which in this

case study was of 3 weeks in duration.

 In addition to the estimating the amount of time required to complete a story,

every story was given a relative size estimate in points. Any one story was assumed to be

a baseline and all the other stories were awarded points relative to this story. The stories

taken in for one sprint along with their points is shown in Figure 4.5.

Story
Points

Estimate

Resolve variable button on Tag SOD from profile page disappears 5.00

Numbers show up in Tag SOD from profile lists 3.00

When multiple tags, all but last one lost 5.00

Create tag profile doesn't allow variables 5.00

SQL error when editing a profile 3.00

Figure 4.5: Stories with their points in the Sprint.

 Also in this case study each of the above stories were broken down into tasks.

This provided more clarity into the each of stories. Each task for every story was then

assigned hours depending on the estimation of how long it would take to complete the

task. The sum total of the hours required to complete all tasks in a story is the amount of

the time it would take to complete the story itself. The Sprint Backlog showing the

34

breakdown of stories into tasks and the corresponding time estimates is shown in Figure

4.6.

Backlog Item / Story Tasks Estimate

Debug code 6.00 Numbers show up in Tag Sod

from profile lists Test changes 3.00

Research Solution 6.00

Implement Solution 6.00
When multiple tags, all but last

one lost
Test changes 3.00

Update existing code to allow for

variables
12.00

Description on the Tag field that it

supports variable now
1.00

Create tag profile doesn't allow

variables

Test changes 4.00

Determine all of the issues with the

resolve variables button
6.00

Fix issues with the resolve variables

button (will be broken up after we

determine the issues)

12.00

Test Fixes 3.00

InstallId field gets reset when I hit

Show My BuildId checkbox.
1.00

Resolve variable button on Tag

Sod from profile page

disappears

Save Profile doesn't save - Wrong

GISA Tag(s) description.
1.00

Research the code 12.00

Code and debug 6.00
mysql error when editing a

profile
Test the solution 6.00

Figure 4.6: Sprint Backlog with stories broken down into Tasks

4.2.3 Case Study 2: Sprint Tracking

 The progress in the sprint was tracked in the same way as in the previous case

study. At the end of each day, the hours for each task in the Sprint Backlog was updated

to reflect the amount of work that still needs to be done in order to complete it. The

35

resulting burndown rate is represented graphically in Figure 4.7. Here, the x-axis

corresponds to the days in the sprint while the y-axis corresponds to hours.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Days

H
o

u
rs

 l
e
ft

Figure 4.7 Burndown Graph with X-axis = Days and Y-axis = Hours

4.2.4 Case Study 2: Sprint Review

 At the end of the sprint, the work was demoed to the customers and their feedback

was solicited. This feedback was then added to the Product Backlog to be taken up during

the next Sprint Planning meeting. Also, once the demo was done some time was set aside

to conduct a retrospective of the process. Any problem that may have occurred was noted

and ways to rectify them identified so that these changes may be incorporated into the

next sprint.

36

4.2.5 Case Study 2: Results

 The data gathered from three sprints of this case study can be seen in Appendix B.

This data shows the stories taken on during each sprint, the breakdown of the stories into

tasks and hours assigned to each task. Once the sprint commenced, the hours left at the

end of each day was noted in a burndown chart which was then transformed into a

burndown graph. It was found that breaking down stories into tasks helps in improved

estimations for each task and correspondingly each story. This conclusion can be arrived

at by observing the task breakdowns tables and the burndown graphs of Appendix B. In

the first iteration shown, the stories were poorly broken down into tasks which meant that

the estimate to complete each task was underestimated. The result of this underestimation

can be seen in the burndown graph which shows the burndown rate going up rather than

down. However, in the later iterations shown, the task breakdown improved. This, in

turn, led to better estimates which resulted in a smoother burndown rate.

37

5. CONCLUSION AND FUTURE WORK

 In this work, we first looked at the importance of adhering to a process whether

working as a team or independently. We then saw the goals that processes aim for and the

principles that agile processes, in particular, adhere to in order to reach these goals. This

was followed by an overview of the two most popular agile processes, Scrum and XP.

 We then looked at how the Scrum process can be adapted to be used a

programmer working independently. This scaled down version of Scrum was applied in

two case-studies. The first case-study was conducted in an academic and research

environment while the second was conducted within the software industry. The data

gathered from the two case-studies shows that Scrum can be successfully by individual

programmers. It shows how requirements of a project can be broken down into concise

stories, a group of which can then be incorporated into a sprint to form the Sprint

Backlog. This ensures that the developer carefully estimates the time available and takes

on only as much work as can be completed in that time. Also, the results from the second

case study show how breaking down stories into tasks can improve the estimates for time

required to complete the task and, thus, the story. The tracking of progress once is an

important goal for a process and this goal is met through the use of burndown charts and

graphs in every sprint. The demo conducted at the end of every sprint allowed the

customers’ to gain visibility into the progress of the project and it also allowed to

38

developer to gather feedback at regular intervals. Scrum, being an agile process, had very

low overhead, i.e. it did not distract the developer from coding. The developer only had

to spend a few minutes gathering the data necessary for the burndown charts and graphs.

The process was also highly flexible, allowing the developer to make key decisions while

providing a basic structure to follow during the development cycle.

 The area which calls for further research is the necessity to arrive at a good

correlation between the size of a story (as described by points) and the time it would take

to complete it. It was observed during the first few sprints that the size of a story seemed

to have no relation with the time it took to finish it. However, as the developer gained

more experience with the process, the estimations showed improvements. Using Scrum

over an extended period of time and analyzing the data from all the sprints during this

time period will result in a useful metric to estimate the time required for stories similar

to the ones in previous iterations.

This study and its results clearly show that consistent use of the Scrum will

definitely help individual programmers in their development work, and thus, deliver

high-quality software.

39

BIBLIOGRAPHY

“CONTRIBUTOR MELONFIRE”, Understanding the pros and cons of the Waterfall

Model of software development, http://articles.techrepublic.com.com/5100-10878_11-

6118423.html, (22 September 2006).

AMBLER Scott W., Examining the Agile Manifesto, http://www.ambysoft.com/essays/

agileManifesto.html, Last Accessed: August 19, 2006.

BECK Kent, BEEDLE Mike, BENNEKUM Arie van, et al., Manifesto for Agile

Software Development, http://agilemanifesto.org/, 2001.

BECK Kent, Embracing Change with Extreme Programming, IEEE Xplore,

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00796139, (October 1999).

BECK Kent, Extreme Programming Explained: Embrace Change, Addison-Wesley,

2000.

COHN Mike, The Scrum Development Process,

http://www.mountaingoatsoftware.com/scrum, 2005.

DAVIDSON Michelle, Survey: Agile Interest High, But Waterfall Still Used by Many,

http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92_gci1318992,00.

html, (27 June 2008).

40

DEEMER Pete, BENEFIELD Gabrielle, The Scrum Primer: An Introduction to Agile

Project Management with Scrum, http://www.rallydev.com/documents/scrumprimer.pdf,

2007.

FOWLER Martin, HIGHSMITH Jim, The Agile Manifesto,

http://www.ddj.com/architect/ 184414755, (1 August 2001).

HIGHSMITH Jim, Extreme Programming,

http://rockfish-cs.cs.unc.edu/COMP290-agile/xp-highsmith.pdf, (February 2000).

JOHNSON Philip, KOU Hongbing, AGUSTIN Joy, et al., Beyond the Personal Software

Process: Metrics Collection and Analysis for the Differently Disciplined,

http://csdl.ics.hawaii.edu/techreports/02-07/02-07.pdf, 2003.

MILLER Roy, Demystifying Extreme Programming: “XP distilled” Revisited, IBM

developerWorks, http://www.ibm.com/developerworks/java/library/j-xp0813/, (13

August 2002).

PAREKH Nilesh, The Waterfall Model Explained, http://www.buzzle.com/editorials/1-5-

2005-63768.asp, (5 January 2005).

POPPENDIECK Mary, POPPENDIECK Tom, Lean Software Development: An Agile

Toolkit, Addison-Wesley, 2003.

SCHWABER Ken, BEEDLE Mike, Agile Software Development with Scrum, Prentice

Hall 2001.

SUTHERLAND Jeff, SCHWABER Ken, The Scrum Papers: Nuts, Bolts and Origins of

an Agile Process, http://www.crisp.se/scrum/books/ScrumPapers20070424.pdf, (22

March 2007).

41

TAKEUCHI Hirotaka, NONAKA Ikujiro, The New New Product Development Game,

Harvard Business Review, (1 January 1986).

TYRRELL Sebastian, The Many Dimensions of the Software Process, Crossroads: The

ACM Student Magazine, http://www.acm.org/crossroads/xrds6-4/software.html, (2000).

WELLS Donovan, Extreme Programming: A Gentle Introduction,

http://www.extremeprogramming.org/, 2000.

42

APPENDIX A

Case Study 1

Iteration # I

 Hours of work to be completed

Story
Estimate

(in hrs)

Day

1

Day

2

Day

3

Day

4

Day

5

Day

6

Day

7

Change Layout of the

main screen as

discussed

3 0 0 0 0 0 0 0

Mechanism for

creation of auxiliary

local database; ‘Load’

command should

allow user to upload

CSV data

24 24 24 24 18 12 18 15

Environment Library

menu must be visible

from all pages; not just

the first webpage

6 6 1 0 0 0 0 0

Semiconductor

Database incomplete;

Populate

Semiconductor

database

6 6 6 5 0 0 0 0

Total 39 36 31 29 18 12 18 15

Iteration # I: Burndown Chart

43

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7

Days

H
o

u
rs

 l
e
ft

Iteration # I: Burndown Graph

The effect of underestimating the time required to complete a story can clearly be

seen in the results of this iteration. When it was realized that completing a story would

require a lot more time, the number of hours was correspondingly increased. This is

reflected in the burndown graph where the line goes up. This particular story

(“Mechanism for creation of auxiliary local database”) was not completed during this

sprint and was carried over to the next sprint, the results of which can be seen in the next

section.

44

Iteration # II

 Hours of work to be completed

Story
Estimate

(in hrs)

Day

1

Day

2

Day

3

Day

4

Day

5

Day

6

Day

7

Bug: Menu should

appear without offset

irrespective of screen

resolution

3 0 0 0 0 0 0 0

Populate Tools menu

in Environment

Library with Add,

Delete and Modify

features

12 12 12 12 12 12 10 0

Restrict access to Add,

Delete and Modify

features to Super-users

only

3 3 3 3 3 3 3 3

Complete field set of

properties for all

materials in database.

Include mechanical,

thermal and electrical

properties

6 6 3 3 0 0 0 0

Mechanism for

creation of auxiliary

local database; Provide

Excel template and

convert it to CSV file

15 15 15 9 6 0 0 0

Total 39 36 33 27 21 15 13 3

Iteration # II: Burndown Chart

45

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7

Days

H
o

u
rs

 l
e
ft

Iteration # II: Burndown Graph

This sprint had a story that was incomplete in the previous sprint (“Mechanism

for creation of auxiliary local database”). The requirement that was described by this

story also changed which is reflected description provided for the story in the burndown

chart. This shows that Scrum, even when used by independent programmers is capable of

handling a change in requirements without adversely impacting the schedule of the

project.

46

Iteration # III

 Hours of work to be completed

Story
Estimate

(in hrs)

Day

1

Day

2

Day

3

Day

4

Day

5

Day

6

Day

7

User Manual for Flex

BGA, PBGA and Flip-

Chip

16 16 16 16 16 16 6 0

Implementation of

CCGA and CBGA

models

16 11 5 0 0 0 0 0

Implementation of

PCR models for Flip-

Chip

8 8 8 8 8 1 0 0

User Manual for

Environment Library
16 13 13 9 9 9 9 0

Total 56 48 42 33 33 26 15 0

Iteration # III: Burndown Chart

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7

Days

H
o

u
rs

 l
e
ft

Iteration # III: Burndown Graph

47

APPENDIX B

Case Study 2

Iteration # I

Story (Points) Tasks Estimate

Create Database Schema for

Promote Profile (1)

Create Database Schema
3.00

Populate Database Manually 3.00
Populate Database for promote

Profile (3)
Link database to existing Managers

Page
12.00

Add ‘Save Profile’ Button 3.00
Save Promote Profile (2)

Handle ‘Save Profile’ action 8.00

Show Loaded Promote Profile

(3)

Modify page to handle the situation

when PromoteProfileID is passed in
12.00

Add ‘Edit Profile’ Button – The Save

Profile button must change to Edit

Profile when PromoteProfileID is

available

4.00

Edit Promote Profile (2)

Handle ‘Edit Profile’ action 8.00

Modify ‘Publish’ Page 12.00 Add capability to handle

publishes/promotes without

units list (5) Modify ‘Promote’ Page 12.00

Document Functionality (1)
Write Documentation for Promote

Profiles
4.00

Iteration # I: Task Breakdown

48

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Days

H
o

u
rs

 l
e
ft

Iteration # I: Burndown Graph

 This sprint was one of the first ones conducted as part of this case study. Being

inexperienced at task breakdowns at this point, these weren’t very effective. This in turn

affected the estimate for each of the tasks which meant that some of them were

underestimated. This is reflected in the burndown graph with the spikes in the line

showing the point during the sprint when the underestimations were discovered.

49

Iteration # II

Story (Points) Tasks Estimate

Research the Code 12.00

Modify function call to pass Build_ID

information.
12.00

Modify function to accept Build_ID

information.
3.00

Modify Email function to include the

Build_ID, Tag etc in the Email.
6.00

Test on local system 18.00

Move to Development system for QA

testing
2.00

Comment code to flag changes 3.00

Emails for tags need to include

information such as Build_ID,

tag, and the original attach to

(8)

Review acceptance throughout process 6.00

Iteration # II: Task Breakdown

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Days

H
o

u
rs

 l
e
ft

Iteration # II: Burndown Graph

50

 The number of hours for this sprint available for this sprint was is considerable

lower for this sprint than others though the duration of the sprint was still the same. This

was because the developer took part in mandatory training sessions on alternate days

which reduced the time that could be set aside for development work. The points in the

burndown graph where the line flattens shows the days in which no work was done.

Iteration # III

Story (Points) Tasks Estimate

Add Edit Install Profile option to the

‘Select Command’ drop-down in

managers page

4.00

Create GUI to for Edit Install Profile

page for clean install type
12.00

Add capability to handle tasks &

machines option
18.00

Add functionality to save edited

profile.
6.00

Test Edit functionality for clean

profiles
6.00

Create GUI for Update/Patch install

profiles
12.00

Add functionality to save edited

Update/Patch install profiles.
6.00

Test Edit functionality for

Update/Patch profiles
6.00

Add ‘Reset’ functionality 6.00

Edit Install Profile from

Managers Page (15)

Test ‘Reset’ functionality 3.00

Iteration # III: Task Breakdown

51

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Days

H
o

u
rs

 l
e
ft

Iteration # III: Burndown Graph

 The data from this iteration shows a significant improvement in task breakdowns.

This resulted in better time estimates for each task and enabled the developer to complete

the one story that was part of the sprint to be completed successfully.

