DEMONSTRATION FOR INTEGRATION OF GENETIC LINKAGE AND PHYSICAL MAPS OF CATFISH USING BAC-ANCHORED
 MICROSATELLITES

Except where reference is made to work of others, the work described in this thesis is my own or was done in collaboration with my advisory committee. This thesis does not include proprietary or classified information.

Parichart Ninwichian

Certificate of Approval:

Jeffery S. Terhune
Associate Professor
Fisheries and Allied Aquacultures

Nannan Liu
Associate Professor
Entomology and Plant Pathology

Zhanjiang (John) Liu, Chair
Professor
Fisheries and Allied Aquacultures

Huseyin Kucuktas
Research Fellow IV
Fisheries and Allied Aquacultures

[^0]
DEMONSTRATION FOR INTEGRATION OF GENETIC LINKAGE AND PHYSICAL MAPS OF CATFISH USING BAC-ANCHORED MICROSATELLITES

Parichart Ninwichian

A Thesis

Submitted to
the Graduate Faculty of

Auburn University
in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
May 9, 2009

DEMONSTRATION FOR INTEGRATION OF GENETIC LINKAGE AND PHYSICAL MAPS OF CATFISH USING BAC-ANCHORED MICROSATELLITES

Parichart Ninwichian

Permission is granted to Auburn University to make copies of this thesis at its discretion, upon the request of individuals or institutions and at their expense.
 The author reserves all publication rights.

[^1][^2]
VITA

Parichart Ninwichian, daughter of Prajin and Banchuen Ninwichian, was born on November 3, 1981 in Phuket, Thailand. She graduated from high school at Stree Phuket, Thailand in February 2000. She earned her Bachelor of Science in Fisheries Technology from Prince of Songkla University, Pattani, Thailand in April 2004. In January 2007, she enrolled into the Graduate School to pursue a Master of Science in Fish Genetics and Biotechnology at Auburn University.

THESIS ABSTRACT
DEMONSTRATION FOR INTEGRATION OF GENETIC LINKAGE AND PHYSICAL MAPS OF CATFISH USING BAC-ANCHORED MICROSATELLITES

Parichart Ninwichian
Master of Science, May 9, 2009
(B.Sc., Prince of Songkla University, 2004)

129 Typed Pages
Directed by Zhanjiang (John) Liu

Catfish is the major aquaculture species in the United States. The development of genetic linkage maps with high marker densities and the development of physical maps are important steps toward genome-enable genetic improvements. The integration of genetic linkage map and physical map should further enhance genomic research. In this work, sex-specific linkage maps and a sex-averaged genetic linkage map of catfish was constructed using the BAC-anchored microsatellite markers. For female map, a total of 413 markers were used. Of these, 398 were assigned into 29 linkage groups. The total female map size spanned 964.4 cM . For male map, a total of 158 markers were used. Of these, 142 markers were assigned to 19 linkage groups. The total male
map size spanned 276.1 cM . The sex-averaged map was constructed by using 435 microsatellite markers, of which 416 were assigned to 29 linkage groups. The estimated total length of sex-averaged map was 974.1 cM .

It appeared that a greater recombination rate existed in the female than in the male. The female:male recombination ratio was 1.7:1. Mapping of the 416 BACanchored microsatellites allowed mapping of 191 contigs to the genetic linkage map, thereby placing these contigs on the genetic linkage map. Of these, 138 contigs were mapped with at least 2 microsatellite markers, thus allowing orientation of the contigs on the linkage map. Some of the microsatellites from the same contigs were actually mapped to different linkage groups, raising the question of the correctness of the physical map. Considering the duplicated genomes of teleost fish, mapping of BACanchored microsatellites will provide a great tool to verify the quality of the physical map, and allow the correction of any mistakes on the physical map. This work, therefore, serves as a pilot study for integration of genetic linkage map and physical map, contributes to the marker density of the linkage map, and provide guidance to genetic linkage and physical mapping.

ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to my major professor, Dr. Zhanjiang (John) Liu, for his guidance throughout my degree program. I would like to thank Dr. Huseyin Kucuktas for his instruction and guidance throughout this work. I would like to express my gratitude to my Advisory Committee for their directions of my thesis work. I would like to thank many people who have taught and helped me during my graduate education including Benjaporn Somridhivej, Ping Li, Dr. Hong Liu, Yanliang Jiang, Shaolin Wang and Jason Abernathy. I wish to thank all of my friends for helping me get through the difficult times, and for all the emotional support and encouragement. Finally, I would like to thank my parents and all my family members for their love, understanding and support.

Style manual used Aquaculture

Computer software used Microsoft Word 2007, Microsoft Excel 2007, Adobe Photoshop 7.0, Msatfinder 2.0, Joinmap 4.0, Microsoft Access 2007

TABLE OF CONTENTS

LIST OF TABLES xi
LIST OF FIGURES xii
INTRODUCTION 1
MATERIALS AND METHODS 12
Resource Family 12
Genomic DNA Isolation: DNA Isolation. 12
Identification of Microsatellites, Primers and PCR Amplification. 13
Genotyping. 15
Linkage Analysis 16
RESULTS 17
Resource Family and BAC Anchored Microsatellite Markers. 17
Characterized Repeat Types of Informative BAC Anchored Microsatellites. 18
Linkage Maps and Marker Distribution. 18
Difference in Recombination Rate between Male and Female. 20
Integration of Genetic Linkage and Physical Map. 20
DISCUSSION 22
CONCLUSION 25
TABLES 26
FIGURES 29
REFERENCES 77
APPENDIX 92

LIST OF TABLES

1. Summary of the number of microsatellites loci derived from BAC contigbased physical map .. 27
2. Repeat compositions of the polymorphic loci in the $\mathrm{F}_{1} 2 \mathrm{x}$ Channel- 6 resource family ... 28

LIST OF FIGURES

1. Female linkage map of channel catfish based on microsatellite markers. Genetic map distance was given in centimorgans to the left side of the marker positions
2. Male linkage map of channel catfish based on microsatellite markers. Genetic map distance was given in centimorgans to the left side of the marker positions
3. Sex average linkage map of channel catfish based on microsatellite markers. Genetic map distance was given in centimorgans to the left side of the marker positions
4. Female (left) and male (right) linkage map of channel catfish based on microsatellite markers. Genetic map distance was given in centimorgans to the left side of the marker positions. Lines between the markers and the boldfaced markers indicate the common markers between female and male
\qquad
5. The orientations of the contig in the physical map identified from the order of the correlated markers in the genetic linkage map

1. INTRODUCTION

Catfish is the leading aquaculture species in the United States accounting for over 60% of the US aquaculture production. Most of the catfish production is located southeastern United States including Mississippi, Alabama, Louisiana, and with some production in Arkansas, Texas, Georgia, Florida, Missouri, Oklahoma, Idaho, and part of California. In 2003, production of catfish hit a record level of 300,000 metric tons, but the total production has since been declining, and in 2007, the estimated catfish production was approximately 200,000 tons. This decline is mainly caused by the increased prices of fish feed. In addition, keen international competition accounted in part for this decline. The total catfish imports into the USA reached 32,000 tons in the first ten months of 2007 , which is 32% more than in the same period of 2006 (Josupeit, 2007). However, the prices of catfish in the US market have gone up recently, and are predicted to increase further in the coming year due to lower domestic production and strong demand (Josupeit, 2007).

Several problems could have diverse impact on the production of catfish industry; for instance, severe disease outbreaks, poor water quality, off-flavor problems etc. All these problems must be dealt with in order to make the catfish industry profitable, increase the current export figures, decrease the trade deficit, reduce pressure from wild-caught fish, and make the industry grow substantially enough to meet demand.

Genetic improvement is one of the methods that can be used to reduce the production problems in aquaculture. As many production and performance traits are inherited traits, genetic improvement programs can be developed to enhance performance and production traits
such as growth rate, feed conversion efficiency, disease resistance, carcass yield, harvestability, resistance to poor water quality, tolerance to stress, body conformation and reproduction. Traditional selective breeding programs are effective for some of these traits such as growth rates, and genetically enhanced broodstocks have been generated using traditional selective breeding. However, traditional selective breeding programs have their limitations. For instance, the limited information on the availability of genetic variation and the lack of genetic markers to sort inferior and superior genotypes early in the life cycle make traditional selective breeding efforts inefficient, especially if genotype-by-environment interactions unwittingly select different genotypes in different locations or if unrecognized negative genetic correlations among desirable characteristics force trade-offs among traits (Camara and Banowetz, 2005). All these limitations require novel approaches. Genomebased approaches provide promising alternatives such as marker assisted selection (MAS) that can improve the production traits efficiently through the use of traits linked DNA markers for the purpose of selection of broodstocks.

Marker assisted selection is the use of genetic markers for selection of a linked characteristic, such as disease resistance. It has a great potential to improve agricultural products and help to increase accuracy of selection in desired traits. It was successfully implemented in farmed animals, such as cattle (Maillard et al., 2003), swine (Rothschild, 2003), poultry (Malek and Lamont, 2003) and sheep (David and Noelle, 2005). In aquatic species, MAS has not been implemented for the most part although examples of successful marker-assisted selection have been reported (Fuji et al., 2007). For aquaculture species, MAS would be especially valuable for traits that are impossible to record on the candidates for selection such as disease resistance, fillet quality, feed efficiency and sexual maturation. Marker-assisted selection requires the availability of dense genetic maps. Genetic maps have been constructed for a number of aquaculture species, such as tilapia (Oreochromis spp.) (Lee
et al., 2005; McConnell et al., 2000; Agresti et al., 2000; Kocher et al., 1998), channel catfish (Ictalurus punctatus) (Waldbieser et al., 2001 and Liu et al., 2003), giant tiger prawn (Penaeus monodon) (Wilson et al., 2002), kuruma prawn (Penaeus japonicus) (Li et al., 2003), Japanese flounder (Paralichthys olivaceus) (Coimbra et al., 2003), rainbow trout (Oncorhynchus mykiss) (Nichols et al., 2003; Sakamoto et al., 2000 and Young et al., 1998) and Salmonid fish (May and Johnson, 1990). However, the marker densities on these genetic maps are still too low to implement MAS. Due to limited funding and low numbers of available molecular markers in many aquaculture species, MAS has not been extensively used in fish breeding schemes today (Sonesson, 2007). The only successful example is the MAS program in Japanese flounder for the selection resistance against lymphocystis disease (Fuji et al., 2007). The major reason for the successful application of MAS in this species is because the simple Mendelian inheritance of the resistance against the virus, while in most other situations, disease resistance is controlled by a large number of QTLs, and fully understanding of such complex traits requires a comprehensive genetic linkage map.

In order to apply MAS as a tool for genetic improvement, molecular markers are needed to construct genetic maps. Molecular markers are polymorphic pieces of DNA that can be mapped genetically on a genetic linkage map. Upon use of molecular markers in proper reference populations, molecular markers can be mapped and some of the markers should be linked to or are part of a gene associated with a desirable characteristic, such as growth rate or disease resistance. In addition, molecular markers can be used for selecting plants or animals that have desired characteristics in the early stage of life without waiting for them to grow to maturity.

Currently, several types of molecular markers are available including isozymes, restriction fragment length polymorphism (RFLP), mitochondrial DNA (mtDNA), randomly amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP),
expressed sequence tags (EST), single nucleotide polymorphisms (SNP) and microsatellites (Dunham, 2004).

Isozymes are allelic forms of individual enzymes. Analysis of isozymes is easy but the available number of loci and polymorphism are limited. However, the major advantage of isozymes analysis is its technical simplicity. In some cases, correlations of isozyme isoforms with performance traits have been reported. For example, isozyme variation is correlated with growth rate (Hallerman et al., 1986), associated with disease resistance, temperature tolerance, developmental speed and salinity tolerance in channel catfish (Dunham, 1995). Other advantages for isozymes are their mode of inheritance; they are inherited in a co-dominant fashion. This makes hecterozygotes and homozygotes easily distinguishable. Thus, this marker type is useful for tracking inbreeding, stock identification, gene mapping, populationgenetics studies and determining parentage. The major drawbacks for the isozymes are the requirement of a large amount of fresh or frozen samples. Thus, this method requires lethal sampling. Moreover, isozymes can measure only small portion of the genomic variation because of limited number of loci. Mutation that causes from similar amino acid replacement may not be detected by isozyme electrophoresis. Furthermore, the number of isozyme and the polymorphism is low.

Restriction fragment length polymorphism (RFLP) is widely used to construct the genetic map in many species. This method uses restriction endonuclease enzymes that cut DNA at restriction specific sites to generate fragment size polymorphism. The product is separated on the agarose gel and then transferred to a membrane and hybridized with labeled probes to produce DNA fingerprints. Most RFLP markers are co-dominant (both alleles in a heterozygous sample will be detected), size difference is often large, easy to interpret and score. However, the disadvantages of this technique are that it is time consuming, the level of polymorphism is low, it requires sequence information (for PCR analysis), and probes need to
be developed (for Southern blot analysis), it is time consuming to develop marker for species that lack of known molecular information (Dunham, 2004; Liu and Cordes, 2004 and Liu, 2007). Restriction fragment length polymorphisms of mitochondrial DNA (mtDNA) is also widely used for tracking ancestry through maternal lineage and has been used to track the ancestry of many species back hundreds of generations. Mitochondrial DNA has been used to analyze genetic variation in many aquaculture species such as striped bass (Wirgin et al., 1991; Garber and Sullivan 2006), bluegill (Lepomis macrochirus) (Chapman, 1989), red snapper (Lutjanus campechanus) (Pruett et al., 2005), Salmonids (Nielsen et al., 1998; Crespi and Fulton, 2004), walleye (Stizostedion vitreum) (Merker and Woodruff, 1996) and many others. Mitochondrial DNA (mtDNA) is different from nuclear DNA, which is inherited maternally. There is usually no change in mtDNA to offspring. Although mtDNA also recombines, it does so with copies of itself within the same mitochondrion. Because of the maternal inheritance and the high mutation rate of animal mtDNA (Brown et al., 1979), mtDNA is a powerful tool for tracing the species or populations.

Random Amplified Polymorphic DNA (RAPD) markers are DNA fragments from PCR amplification of random segments of genomic DNA with a single primer of arbitrary nucleotide sequence. Unlike traditional PCR analysis, RAPD does not require any specific knowledge of the DNA sequence of the target organism: the identical 10-mer primers will or will not amplify a segment of DNA, depending on positions that are complementary to the primers' sequence. For example, no fragment is produced if primers annealed too far apart, or 3^{\prime} ends of the primers are not facing each other. Therefore, if a mutation has occurred in the template DNA at the site that was previously complementary to the primer, a PCR product will not be produced, resulting in a different pattern of amplified DNA fragments on the gel. The great advantage of RAPD is that it can be applied to any species without prior knowledge. However, RAPD also has its major limitations, nearly all RAPD markers are dominant, i.e. it
is not possible to distinguish whether a DNA segment is amplified from a locus that is heterozygous (1 copy) or homozygous (2 copies); co-dominant RAPD markers, observed as different-sized DNA segments amplified from the same locus, are detected only rarely, PCR is an enzymatic reaction, therefore the quality and concentration of template DNA, concentrations of PCR components, and the PCR cycling conditions may greatly influence the outcome. Thus, the RAPD technique is notoriously laboratory dependent and needs carefully developed laboratory protocols to be reproducible. Mismatches between the primer and the template may result in the total absence of PCR product as well as in a merely decreased amount of the product. Thus, the RAPD results can be difficult to interpret (Williams, 1990; Liu, 1998 and Mbwana, 2006).

AFLP uses restriction enzymes to cut genomic DNA, followed by ligation of complementary double stranded adaptors to the ends of the restriction fragments. A subset of the restriction fragments are then amplified using two primers complementary to the adaptor and restriction site fragments. The fragments are visualized on denaturing polyacrylamide gels either through autoradiography or fluorescence methodologies (Zabeau, 1993 and Vos et al., 1995). AFLP technology has the capability to detect various polymorphisms in different genomic regions simultaneously. It is also highly sensitive and reproducible. As a result, AFLP has become widely used for the identification of genetic variation in strains or closely related species of plants, fungi, animals, and bacteria (Ulrich, 1999). The AFLP technology has been used in criminal and paternity tests, in population genetics to determine differences within populations, and in linkage studies to generate maps for QTL analysis. There are many advantages to AFLP when compared to other marker technologies including randomly amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP), and microsatellites. AFLP not only has higher reproducibility, resolution, and sensitivity at the
whole genome level than other techniques, but it also has the capability to amplify between 50 and 100 fragments at a time. In addition, no prior sequence information is needed for amplification. As a result, AFLP has become extremely beneficial in the study of taxonomy including bacteria, fungi, and plants, where much is still unknown about the genomic makeup of various organisms (Ulrich, 1999). AFLP was used to analyze the genetic diversity in channel catfish (Mickett et al., 2003 and Simmons et al., 2006) and AFLP was also used for genetic linkage map construction in channel catfish (Liu et al., 2003). On the other hand, the disadvantages of AFLP are dominant nature of inheritance, difficulties in transferred information across laboratories, technical demand, special equipment requirements (Liu et al., 1998; Liu et al., 1999; Liu et al., 2005 and Liu, 2007).

Single nucleotide polymorphisms (SNP) are the most common type of genetic variation. A SNP is a single base pair mutation at a specific locus, usually consisting of two alleles (where the rare allele frequency is $\geq 1 \%$). SNPs are often found to be the etiology of many human diseases and are becoming of particular interest in pharmacogenetics. Because SNPs are the most abundant polymorphism in genomes of any species, they have been proposed as markers for use in quantitative trait loci (QTL) analysis and in association studies in place of microsatellites. Significant numbers of SNPs in the aquaculture species have been reported by He et al. (2003) for interspecific hybrid catfish, for salmonid fish, (Ryynänen and Primmer, 2006) for Atlantic salmon (Hayes et al., 2007; Moen et al., 2008) and for Japanese flounder (He et al., 2008). However, large-scale genotyping of SNP markers is still expensive.

Expressed sequence tags or ESTs are single pass sequences of cDNAs. They may be used to identify gene transcripts, and are instrumental in gene discovery and gene sequence determination (Adam et al., 1991). The development of EST resources has proceeded rapidly, with approximately 54 million ESTs now available in public databases for all species and approximately 302,000 sequences for channel catfish and 139,000 sequences for blue catfish
(Ictalurus furcatus) (e.g. GenBank 6/2008). An EST is produced by one-shot sequencing of a cloned cDNA (i.e. sequencing several hundred base pairs from an end of a cDNA clone taken from a cDNA library). The resulting sequence is a relatively short fragment whose length is limited by current technology to approximately 500 to 800 nucleotides. Because these clones consist of DNA that is complementary to mRNA, the ESTs represent expressed genes. They may be present in public databases as either cDNA/mRNA sequence or as the reverse complement of the mRNA, the template strand. ESTs can be mapped to specific chromosome locations using physical mapping techniques, such as radiation hybrid mapping or fluorescent in situ hybridizations (FISH). Alternatively, if the genome of the organism that originated the EST has been sequenced one can align the EST sequence to that genome. The current understanding of the human set of genes (2006) includes the existence of thousands of genes based solely on EST evidence. In this respect, ESTs become a tool to refine the predicted transcripts for those genes, which leads to prediction of their protein products, and eventually of their function. Moreover, the situation in which those ESTs are obtained (tissue, organ, or disease state - e.g. cancer) gives information on the conditions in which the corresponding gene is expressed. ESTs contain enough information to permit the design of precise probes for DNA microarrays that then can be used to determine genome expression files. For aquaculture species, ESTs have been developed from cDNA libraries in a variety of fish and shellfish species (Matinez, 2007). These include Japanese flounder (Nam et al., 2000; Kono and Sakai, 2001 and Nam et al., 2003), winter flounder (Pleuronectes americanus) (Douglas et al., 1999), channel catfish (Liu et al., 1999; Ju et al., 2000; Liu and Feng, 2001; Serapion et al., 2004; Karsi et al., 2002; Kocabas et al., 2002; Cao et al., 2001 and Li et al., 2007), Japanese eel (Anguilla japonica) (Miyahara et al., 2000), rainbow trout (Kono et al., 2000; Rexroad et al., 2005; ; Coulibaly et al., 2005), Atlantic salmon (Salmo salar) (Davey et al., 2001; Martin et al., 2002; Tsoi et al., 2003), Atlantic halibut (Hippoglossus hippoglossus) (Park, 2005),
common carp (Cyprinus carpio) (Savan et al., 2002; Yue et al., 2004) and yellowtail (Seriola quinqueradiata) (Kono et al., 2002). Several of these studies were specifically designed to identify genes involved in innate and acquired immunity.

Microsatellites consists of multiple copies of tandemly arranged simple sequence repeats (SSR) that range in size from 1-6 base pairs (bp) (e.g., AC, CCA, or GATA) (Tautz, 1989). The advantages of microsatellites are their abundance in genomes, relatively even distribution, small locus size facilitating polymerase chain reaction (PCR)-based genotyping, codominant nature of Mendelian inheritance, and high levels of polymorphism. Although they are the top choice markers in genetic studies in economically important crop species, the disadvantages of microsatellites include the requirement for existing molecular genetic information, the large amount of work for their development, and the tedious and laborintensive PCR primer design and selection. Microsatellites were found in various eukaryotic genomes and have been used in field of fisheries research such as genome mapping, parentage identification, kinship analysis, and stock structure analysis (O’Connell and Wright 1997). In channel catfish, microsatellites represent 2.58% of the catfish genome (Xu et al., 2006). Microsatellites can be identified and sequenced directly from genome sequence surveys such as EST analysis and bacterial artificial chromosome (BAC) end sequencing.

Microsatellites are one of the most useful types of molecular markers for constructing genetic linkage maps and QTL maps because microsatellites have high polymorphic rate. In addition, microsatellites are sequence-tagged markers that can be used as probes for integration of different maps such as linkage and physical maps. Microsatellite markers can be easily transferred across the laboratories, and can be used across related species if flanking sequences are conserved (FitzSimmons et al., 1995; Rico et al., 1996; Cairney et al., 2000).

Microsatellite-based linkage maps have been constructed in some economically important aquaculture species such as Arctic charr (Salvelinus alpinus) (Woram et al., 2004),

Atlantic salmon (Moen et al., 2004), channel catfish (Waldbieser et al.,2001), Yellowtail (Ohara et al., 2005), three-spined stickleback (Gasterosteus aculeatus) (Peichel et al., 2001), Nile tilapia (Oreochromis niloticus) (Kocher et al., 1998; Agresti et al., 2000), hybrid O. aureus \times O. niloticus (Lee et al., 2005), rainbow trout (Sakamoto et al., 2000; Nichols et al., 2003), European sea bass (Dicentrachus labrax) (Chistiakov et al., 2005), zebrafish (Danio rerio) (Knapik et al., 1996; Knapik et al., 1998; Woods et al., 2000; Shimoda et al., 1999; Singer et al., 2002), Japanese flounder (Coimbra et al., 2003), ayu (Plecoglossus altivelis) (Watanabe et al., 2004), Pacific oyster (Crassostrea gigas) (Hubert and Hedgecock, 2004), Eastern oyster (Crassostrea virginica) (Yu and Guo, 2003) and common carp (Sun and Liang, 2004).

In order to understand the physical organization of the genome, most studies often study through physical mapping using BAC libraries. BAC-end sequences provide the abundant information that can be used for physical mapping, comparative genome analysis and map integration (Xu et al, 2006) and also provide an unbiased survey of genomic sequences as well as relative abundance of polymorphic microsatellites in an organism (Xu et al., 2007). In catfish, 17.5% of BAC-end sequences contain microsatellites (Xu et al., 2006) making it a valuable source of markers that can be used to construct genetic maps.

BAC-anchored microsatellites are a valuable resource for genetic and physical map integration because they are identified through BAC-end sequencing and their location can be identified by BAC contig construction. After they are mapped into genetic linkage map, they allow integration of linkage map and the BAC-based physical maps. In addition, BAC-end sequencing can be used to study about evolutionarily conserved syntenies (Xu et al., 2007).

The objectives of this project are to identify microsatellites from BAC end sequences in order to generate polymorphic microsatellite markers in our resource family for genetic linkage map construction and integration of genetic linkage map with physical map by using

BAC contig-based physical map of the channel catfish. The mapping of microsatellites to linkage maps should enhance the density of markers and therefore increase the usefulness of the linkage map; integration of the physical map with genetic linkage maps should allow verification of the correctness of the physical map, laying ground for whole genome sequencing in catfish. The results from this project will be one step further toward developing a marker-assisted selection program in catfish. The application of genome-based technologies in catfish should enhance the genetic enhancement programs.

2. MATERIALS AND METHODS

2.1. Resource Family

The resource family used in this study was developed as previously published (Liu et al., 2003). Briefly, channel catfish females with blue catfish males were mated to make F_{1} interspecific hybrid catfish. F_{1} (channel catfish x blue catfish) hybrid catfish, channel catfish and blue catfish were screened prior to the 1997 spawning season to determine which mating of these parents were most informative. Backcross families were made in spawning season of 1997 by mating the F_{1} fish with channel catfish (channel catfish backcross). A specific family, $\mathrm{F}_{1}-2 \times$ Channel catfish-6, was used for this project. The resource family was reared in 1,000- liter tanks until collection of blood samples for genotyping. Individuals sampled for genotyping were heat branded for future identification.

2.2. Genomic DNA Isolation: DNA Isolation

DNA was extracted from 64 samples plus their 2 parents from resource family $\mathrm{F}_{1}-2 \mathrm{x}$ Channel catfish-6. Blood samples (0.5 to 1 ml) were collected in 1-ml syringe and immediately expelled into a $50-\mathrm{ml}$ tube containing $20-\mathrm{ml}$ of DNA extraction buffer (100 mM $\mathrm{NaCl}, 10 \mathrm{mM}$ Tris, $\mathrm{pH} 8,25 \mathrm{mM}$ EDTA, 0.5% SDS, and freshly added proteinase K 0.1 $\mathrm{mg} / \mathrm{ml}$), and DNA was isolated by using the Puregene DNA Isolation Kit (Gentra Systems, Minneapolis, MN) following the instruction manual from manufacturer.

2.3. Identification of Microsatellites, Primers and PCR Amplification

BAC end sequences were generated by Xu et al. (2006). BAC end sequences (BES) stored in a local database at the Fish Molecular Genetics and Biotechnology Laboratory were used for microsatellite mining. Channel catfish BAC-based physical map, web FPC viewer version 2.1: AU 02-20 (http://titan.biotec.uiuc.edu/webAGCOL/AU02-20/webFPC) was used to obtain clones containing microsatellites which were previously identified by Msatfinder program. Clones containing microsatellites that fit the criteria described below were selected from both ends of the contig to test polymorphism. Since the contigs that contain polymorphic microsatellite(s) on both ends are useful for map integration, if a clone positioned at either end of a contig did not have microsatellite, the next microsatellite containing clones were selected. Clones located at the center of the contigs, and contigs containing clones without microsatellites were ignored.

A Perl-based script Msatfinder (http://www.genomics.ceh.ac.uk/msatfinder/; Thurston and Field, 2005), was used for microsatellite mining. Program parameters were set to design a maximum of 5 forward and reverse primers flanking the microsatellite region from these BES. The primer mining and design methods were conducted according to procedures provided in Msatfinder manual.

The BES containing microsatellites were examined to determine whether they had sufficient flanking sequences for primer design by harboring at least 50 bp of flanking sequences on either side of microsatellites. They were excluded if the flanking sequences are less than 50 bp (flanking sequences were calculated from the total lengths of BES minus the sequence lengths before/after finding microsatellites sequences). Thus, the remaining BES containing microsatellites were regarded as microsatellites with enough flanking sequences for primer designs. Tab-delimited outputs containing microsatellite information from Msatfinder were then imported into excel spreadsheets. One of the primer pairs with closer Tm values
was selected and all primer sequences were subjected to the following criteria: primers containing simple sequences and primers with low G / C content were removed because they are not useful. Although G / C content was considered suitable when it was between $40 \%-60 \%$, primers with low G/C content (minimum 33\%) were also considered acceptable. Primers were designed to amplify product sizes between 100-250 bp. However, in some instances, if the sequences were very rich in microsatellites and Msatfinder parameters did not allow primer design, longer PCR product sizes were accepted. A 19 bp tail sequence (GAGTTTTCCCAGTCACGAC) was added to the 5^{\prime} end of the upper primer (Oetting et al., 1995). A primer whose sequence is complementary to tail sequence is used as the label (labeled with infrared dye (IRD)-IRD700 or IRD800 from LI-COR Biosciences, Lincoln, NE). All primer pairs and the labeled primer were ordered from Invitrogen (Carlsbad, CA). PCR reactions were performed on a Mastercycler (Eppendorf NA, NY) or on a DNA Engine Thermocycler PTC 200 (Bio-Rad Hercules, CA) using the following amplification profiles: a final volume of $5 \mu \mathrm{l}$ reaction mixture contained $1 \mu \mathrm{l}$ of $50 \mathrm{ng} / \mu \mathrm{l}$ Genomic DNA, $0.5 \mu 1$ of 10 X PCR buffer, $0.3 \mu \mathrm{l}$ of $25 \mathrm{mM} \mathrm{MgCl} 2,0.4 \mu \mathrm{l}$ of $2.5 \mathrm{mM} \mathrm{dNTP's}, 0.2 \mu 1$ of 100 $\mathrm{ng} / \mu 1$ upper primer (with tail), $0.3 \mu \mathrm{l}$ of $100 \mathrm{ng} / \mu \mathrm{l}$ lower primer, $0.1 \mu \mathrm{l}$ of $100 \mathrm{pmol} / \mu \mathrm{l}$ labeled tail primer, and 0.25 units of JumpStart Taq polymerase (Sigma, Saint Louis, MO). PCR amplifications were conducted using 384 well plates to reduce the variation as much as possible. Two step PCR profile were used for amplification. An initial denaturation step at $94^{\circ} \mathrm{C}$ for 3.5 minutes is followed by a first denaturation at $94^{\circ} \mathrm{C}$ for 30 seconds, first annealing step at $57^{\circ} \mathrm{C}$ for 30 seconds, and a first extension at $72^{\circ} \mathrm{C}$ for 30 seconds. This first step was repeated 20 cycles and 15 cycles of second step had the following parameters: denaturation step at $94^{\circ} \mathrm{C}$ for 30 seconds, an annealing step at $53^{\circ} \mathrm{C}$ for 30 seconds, an extension step at $72^{\circ} \mathrm{C}$ for 30 seconds followed by a final extension step at $72^{\circ} \mathrm{C}$ for 15 minutes. The samples were
held at $4^{\circ} \mathrm{C}$ for 15 minutes. In this two-step PCR profile, the annealing temperature window can be accommodated to determine the best Tm for the primer pairs. PCR products were analyzed on 7\% polyacrylamide gel by using LICOR 4300 DNA Analyzer (LICOR Biosciences, Lincoln, NE). After gel electrophoresis, the polymorphic microsatellite bands were scored and genotyped based on the allele segregation within the resource family.

2.4. Genotyping

After running through the LI-COR automated sequencers, genotypes were called by recording the amplified fragment sizes (in base-pairs) in an excel spreadsheet. The fragment sizes were determined by using labeled size markers (LICOR Biosciences, Lincoln, NE). Loci that did not show any polymorphism is recorded as "non-polymorphic". The complex loci and parental type microsatellites were also recorded. Chi-square goodness-of-fit test used to assess the departures from the expected Mendelian allele segregation patterns. Genotype configurations of markers were categorized into three expected segregation types when nullallele segregation was allowed: 1:1:1:1-ratio type (q x $\delta^{\lambda}: \mathrm{AB} \times \mathrm{CD}$ or AB x AC), $1: 1 q$ type (AB x AA or CC), and 1:1 δ^{λ} type (AA or CC x AB). Segregation data from expected 1:1:1:1type markers into 1:1 \uparrow - and 1:1 δ-type were partitioned by creating maternal and paternal datasets using JoinMap 4.0 (Kyazma, Wageningen, Netherlands) to perform linkage analysis for each sex (Jacobs et al., 1995; Viruel et al., 1995). This option in JoinMap 4.0 creates maternal and paternal genotypes by converting genotypes from 1:1:1:1-ratio type ($\ell \mathrm{x} \delta^{\lambda}: \mathrm{AB}$ x CD or $\mathrm{AB} x \mathrm{AC}$) to $1: 1 q$ type (AB x AA or CC), and $1: 1$ § type (AA or CC x AB). All the statistical analyses were made using JoinMap version 4.0 software (Van Ooijen, 2006) with the cross-pollinating (CP) coding scheme, which handles the data containing various genotype configurations with unknown phase (Sekino et al., 2006).

2.5. Linkage Analysis

Linkage between markers was examined by estimating LOD scores for recombination rate (Θ) and map distances were calculated using Kosambi mapping function. JoinMap first calculates the G^{2}-statistic for independence of segregation; then obtained G^{2} is multiplied by a constant of $0.5 \times \log _{10}{ }^{e}$ to convert the G^{2}-value into the normal LOD scale. Significance of marker linkage was determined at a LOD threshold of 3.0 , a threshold Θ of 0.6 was set to detect suspect linkage possibly resulting from allele-coding errors. Six individuals of fish were omitted from analyses because of many missing data points from them.

Markers were linearly aligned in each linkage group, converting the recombination rates into the Kosambi's map distance (centimorgans). The position of markers was explored on the basis of the sequential buildup of the map (Stam, 1993). First, the most informative pair of markers was selected, followed by sequential addition of other markers. The "ripple" was performed each time after adding one marker. The best fitting position of an added marker was searched on the basis of the goodness-of-fit test (chi-square) for the resulting map. When a marker generated a negative map distance in the map or a large "jump" value in goodness-of-fit, which is the normalized difference in chi-square value before and after adding the marker, the marker was removed, and map calculation was continued to construct a firstround map. After the first-round marker ordering, the previously removed markers were added to the first-round map and again subjected to the goodness-of-fit testing. In this manner, the marker ordering was continued up to the third round until an optimum order of markers was found.

3. RESULTS

3.1 Resource Family and BAC Anchored Microsatellite Markers

The microsatellite markers used for mapping and integration of genetic linkage and physical maps were BAC-anchored microsatellite markers. In order to identify BAC-anchored microsatellite markers, BAC end sequences were first generated. While all identified microsatellites are useful for genomic and genetic work, only the informative polymorphic BAC-anchored microsatellites were useful for genetic linkage mapping and integration of the linkage map with the physical map constructed with BAC contigs (Xu et al., 2007). Therefore, the usefulness of the BAC-derived microsatellites was evaluated by PCR analysis using the resource family.

Each BAC contig contains a variable number of BAC clones, and only some BAC end sequences contain microsatellites (Xu et al., 2006). In this study, 207 BAC contigs were used. BAC clones harboring microsatellites were selected on both ends of each contig (to increase the possibility of recombination between the microsatellites within the same contig) for the design of PCR primers. Successful PCR amplification of the selected microsatellites, along with their polymorphism in the resource family would allow them to be mapped on the genetic linkage map. As their location on the physical map was known, their mapping to genetic linkage map would allow alignment (integration) of the BAC contigs with the genetic linkage map. For orientation of the contigs on the genetic linkage map, at least two polymorphic microsatellites are needed in order to detect any possible recombination between them. A total of 555 primer pairs was designed from the 207 contigs and tested for PCR amplifiability. Of
the 555 unique loci, 539 pairs of primers produced PCR products, and 16 pairs of primers did not generate any PCR products. Of the 539 amplified PCR loci, 431 were polymorphic in the resource family (77.66\%) (Table 1).

3.2 Characterized Repeat Types of Informative BAC Anchored Microsatellites

Variable polymorphic rates were observed with various types of microsatellites. Of 431 selected polymorphic microsatellites, 216 were di-nucleotide repeats (e.g., AC, TA); 119 were tri- nucleotide repeats (e.g., ACC, TAA); 88 were tetra- nucleotide repeats (e.g., AGAT, TATT) and 8 were penta-nucleotide repeats (e.g., TATAT, AATTG) (Table 2). It appeared that di-nucleotide repeats had a slightly higher polymorphic rate at 50.12%, followed by trinucleotide repeats (27.61% success rates) while the penta-nucleotide repeats had the lowest polymorphic rate at 1.86%.

3.3 Linkage Maps and Marker Distribution

The genetic linkage map of catfish was constructed by using an interspecific hybrid, $\mathrm{F}_{1}-2 \times$ Channel-6, resource family and the polymorphic BAC-anchored microsatellite markers. From 431 polymorphic primer pairs, of which 462 microsatellite markers were generated, 435 of them can be used to analyze in this program. The remaining 27 microsatellite loci cannot be analyzed by JoinMap 4.0 because of the characteristics of their genotypes that were difficult to determine their mode of inheritance. Sex-specific linkage maps and sex-averaged genetic linkage maps were constructed based on the segregation data.

For the female map, the LOD score was initially set at 8.0 in order to generate the linkage groups based on the segregation data. A total of 413 markers were used for the female map, of which 398 were assigned into 29 linkage groups. The remaining 15 were unlinked markers. The total female map size was 964.4 cM . The average inter-marker distance was 2.4
cM . The size of individual linkage groups ranged from 3.4 to 97.9 cM . The number of markers on 29 linkage groups varied from 2 to 23 markers. The largest linkage group spans 97.9 cM with 21 markers (Figure 1).

For the male map, there were only 158 markers that could be used to construct the map because a large number of markers were not polymorphic with the male parent. Of the 158 polymorphic markers used for the male map, 142 markers were assigned to 19 linkage groups at a LOD of 5.0. The remaining 16 were unlinked markers. The total male map size was 276.1 cM . The average inter-marker distance was 1.9 cM . The size of individual linkage group ranged from 3.1 to 45.3 cM . The number of markers on 19 linkage groups varied from 2 to 14 , and the largest linkage group spans 45.3 cM with 7 microsatellite markers (Figure 2). Because a relatively small number of polymorphic markers were used for the construction of the male map, it is expected that the male map should be incomplete.

The sex-averaged genetic linkage map was constructed by using all polymorphic markers segregating in both the female and the male parents. The sex-averaged map was constructed by using 435 microsatellite markers, of which 416 were assigned to 29 linkage groups, while the remaining 19 were unlinked. The estimated total length of sex-averaged map was 974.1 cM . The average size of the inter-marker distance was 2.3 cM . The length of the individual linkage groups ranged from 3.4 to 93.5 cM . The number of the markers per group ranged from 2 to 23 (Figure 3). It is apparent that many of the linkage groups contained only markers from the female map, once again a reflection of the incompleteness of the male map due to small numbers of polymorphic markers.

3.4 Difference in Recombination Rate between Male and Female

The recombination rate appeared to be higher in the female than in the male. As presented above, the female map has 29 linkage groups whereas the male map has 19 linkage groups. The linkage groups with which a common set of markers were mapped should allow a comparison of recombination rates among markers in different sexes (Figure 4). The shared markers that were present in both female and male map were calculated for the recombinant rates between adjacent microsatellite markers. Apparently, the recombination rates were greater in the female than in the male. On average, the ratio of recombination rate of the female over that of the male was $1.70: 1$, i.e., on average, recombination occurred 70% more frequent in the female than in the male.

3.5 Integration of Genetic Linkage and Physical Map

Integration of genetic linkage map and physical map is an important step to enhance genomic research and genetic improvement using marker assisted selection. Genetic linkage mapping using polymorphic markers derived from BAC clones whose location is already known on physical map should allow integration of the linkage and physical maps. The 416 mapped microsatellites on the genetic linkage map allowed placement of 191 contigs to the linkage map. Clearly, each linkage group in genetic linkage map contained more than one contigs (Figure 3). Mapping of these contigs would allow the inter-relationship of these contigs to be revealed for the establishment of super scaffolds. In addition, of the 191 mapped contigs, two or more microsatellites were from 138 contigs of the 191 contigs, allowing positioning of the contigs with correct orientations (Figure 5). However, some of the markers that belong to a given contig were mapped into several linkage groups, i.e., contig 9, 193, 442 etc. (Figure 3). This suggested that the contigs were erroneously constructed, and mapping of all the BAC-associated microsatellites, therefore, not only integrate the linkage and physical
maps, but also provide a critical examination of the BAC contig-based physical map.
Apparently, mistakes in the physical map can then be corrected.

4. DISCUSSION

Previous studies were conducted for the construction of genetic linkage maps in channel catfish by using microsatellite (Waldbieser et al, 2001) and AFLP (Liu et al, 2003). Unfortunately, those studies did not bring the number of linkage groups to equal to the number of chromosome pairs in channel catfish. The most likely explanation for this discrepancy is the insufficient numbers of markers used. In the case of AFLP, the dominant nature of AFLP may have further reduced the genetic information. The low markers density could also cause an inflated map distance (Yu and Guo, 2003). For instance, in medaka (Oryzias latipes), a map distance of 2,480 cM in 29 linkage groups was generated using 170 markers (Wada et al., 1995) whereas a map distance of $1,354.5 \mathrm{cM}$ in 24 linkage groups was generated using 663 markers (Naruse et al., 2000). Similarly, in channel catfish 293 microsatellite markers produced a map size of $1,958 \mathrm{cM}$ (Waldbieser et al., 2001) while 418 AFLP markers covered $1,593 \mathrm{cM}$ (Liu et al., 2003). In this study, 416 microsatellite markers were used for the production of the sex-averaged map. This map had a map size of 974.1 cM . For female map, 398 microsatellite markers were used, producing a female map with 964.4 cM . In both sexaveraged map and the female map, the microsatellite markers were assigned into 29 linkage groups that equal to the number of haploid chromosome number in channel catfish (Wolters et al., 1981) and blue catfish (Legrande et al., 1984). The total map distance was reduced in this case by using a larger number of microsatellites markers than previously reported. However, in this study, an interspecific reference family was used while in the previous study, an intraspecific resource family was used (Waldbieser et al., 2001). A direct comparison may
prove to be difficult unless the same set of microsatellites is used in both interspecific and intraspecific resource families.

The linkage map of the male was relatively incomplete because of the small number of polymorphic markers. The male linkage map had only 19 groups. In order to cover all 29 chromosome pairs, additional markers are needed.

The mapping of a common set of markers on both the female and male maps should allow a direct comparison of recombinant frequencies in the male and female. In most vertebrates, significant differences in recombination rates have been reported, with greater recombination frequencies in the female (Barendse et al., 1994; Ellegren et al., 1994; Dib et al., 1996; Dietrich et al., 1996). In aquatic species, such as zebrafish (Knapik et al., 1998), sea horse (Jones et al., 1998), rainbow trout (Sakamoto et al., 2000), Atlantic salmon (Gilbey et al., 2004; Moen et al., 2004; McClelland and Naish, 2008), Arctic charr (Woram et al., 2004), eastern oyster (Yu and Guo, 2003), Pacific oyster (Li and Guo, 2004; Hubert and Hedgecock, 2004), Ezo Awabi abalone (Liu et al., 2006) etc., the recombination ratio is higher in females than in males. However, the opposite with greater recombination frequency in the male have also been reported such as in the case of Japanese flounder (Coimbra et al., 2003). In this study, the recombination frequency was greater in the female than in the male; the recombination ratio (Female:Male) was 1.70:1, which is similar to the cases reported from most aquatic species. The lower recombination in the male may have been caused by heterogametic sex (Haldane, 1922), and the recombination is prevented by maleness itself (Matsuda et al., 1999).

The determination of sex differences in recombination has very important implications for implementation of marker assisted selection using QTL-marker associations, since the sex with lower recombination rates is expected to transmit marker QTL associations in tighter linkage (Coimbra et al., 2003).

The mapping of BAC-anchored markers allows integration of genetic linkage and physical maps. In this study, microsatellites from 191 contigs were genetically mapped, allowing these contigs to be placed into linkage groups. For complete integration of genetic linkage and physical maps, markers need to be developed from all and each of the contigs. Clearly, this would be a very major project that requires mapping of at least one microsatellite per contig. This would translate into mapping of 3,307 microsatellites. In addition, for many larger contigs, more than one marker per contig would be required to provide orientation of the contigs on the linkage map. Therefore, many more than 3,307 markers are needed.

In addition to integration of genetic linkage and physical maps, mapping of BACanchored microsatellites also allow detection of mistakes on the physical map. In this study, 43 contigs were assigned into more than one linkage groups, suggesting mistakes on the physical map. Work is needed to evaluate the correctness of these contigs. Perhaps a greater level of stringency is needed for the assembly of the "problematic" contigs ($\mathrm{Xu}, 2007$).

5. CONCLUSION

This work allowed mapping of 416 BAC -anchored microsatellites to the genetic linkage map. That represented a significant increase in marker density. The use of BACanchored microsatellites allowed integration of 191 contigs to the linkage map. However, full integration of the genetic linkage and physical maps require thousands of BAC-anchored microsatellites, but this work demonstrated that it is possible to integrate a large proportion of contigs with genetic linkage maps without too much trouble. However, in approximately one third of contigs, 1,099 out of 3,307 , contain no microsatellites. Other approaches will have to be considered. One way is to develop BAC end-anchored SNPs followed by mapping of such BAC-anchored SNPs to genetic linkage maps. Integration of genetic linkage map with physical map will greatly enhance the capacity of genome analysis, paving the way for genetic improvement programs and marker-assisted selection.

TABLES

Table 1. Summary of the number of microsatellite loci derived from BAC contig-based physical map.Total tested primer pairs555
Total primer pairs that produced PCR product 539

- Polymorphic microsatellite loci 431
Number of polymorphic markers 462
- Not polymorphic microsatellite loci 72
- No segregation 14
- Duplication 22
No product 16
Percentage of polymorphism in resource family 77.7

Table 2. Repeat compositions of the polymorphic loci in the $\mathrm{F}_{1} 2 \times$ Channel- 6 resource family.

Repeat type	Amount	Percent (\%)
Dinucleotide microsatellites	216	50.12
Trinucleotide microsatellites	119	27.61
Tetranucleotide microsatellites	88	20.42
Pentanucleotide microsatellites	8	1.86
Total	431	

FIGURES

1
2
$\left.\begin{array}{l}0.0 \\ 0.4 \\ 0.5 \\ 3.0 \\ 4.3 \\ 5.6 \\ 6.0 \\ 6.2 \\ 6.3 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \\ 8.4 \\ 9.0\end{array}\right]\left[\begin{array}{l}\text { AUBES3378 } \\ \text { AUBES3109 } \\ \text { AUBES2635 } \\ \text { AUBES3163 } \\ \text { AUBES2593 AUBES3553 } \\ \text { AUBES3405 } \\ \text { AUBES3059 } \\ \text { AUBES3406 } \\ \text { AUBES2565 } \\ \text { AUBES3148 } \\ \text { AUBES3456 } \\ \text { AUBES3187 AUBES2591 } \\ \text { AUBES3198 } \\ \text { AUBES3192 } \\ \text { AUBES3156 } \\ \text { AUBES3167 }\end{array}\right.$

Figure 1. Female linkage map of channel catfish based on microsatellite markers. Genetic map distance was given in centimorgans to the left side of the marker positions.

Figure 1. Continued.

Figure 1. Continued.

| 10 |
| :---: | :---: |
| 0.0 |

11

12

Figure 1. Continued.

13

14

15

Figure 1. Continued.

16
17

35

18

Figure 1. Continued.

19

36

20

21

Figure 1. Continued.

22

37

24

Figure 1. Continued.
25

26
27

29
ω_{∞}
0.0 AUABES3571 AUBES3572

Figure 1. Continued.

3

Figure 2. Male linkage map of channel catfish based on microsatellite markers. Genetic map distance was given in centimorgans to the left side of the marker positions.

4

。

Figure 2. Continued.

6

7

8

Figure 2. Continued.

N
Figure 2. Continued.

12

14

\pm

Figure 2. Continued.

Figure 2. Continued.

出
Figure 2. Continued.

F6_M1

46

$\left.\begin{array}{l}14.4 \\ 15.1\end{array}\right]\left[\begin{array}{l}\text { AUBES3364Mcon. } 276 \\ \text { AUBES3366con. } 442\end{array}\right.$

Figure 3. Integration of sex average map and physical map in channel catfish based on microsatellite markers. Genetic map distance was given in centimorgans to the left side of the marker positions. Con. represented contig.

F2_M3

F8_M4

Figure 3. Continued.

F3_M5

Figure 3. Continued.

F7_M6

0.0	[AUBES3154con. 442
1.37	F AUBES3608con. 1487
3.1	\% AUBES3638con. 676
3.4	AUBES3575Ucon. 939
4.17	AUBES3576con. 939 AUBES3197con. 281
	AUBES2633Mcon. 170 AUBES2633Ucon. 17
	AUBES2600con. 68
6.0	AUBES3639con. 676
6.4	AUBES3376con. 170
6.7 N	AUBES3468con. 1598
7.8	AUBES3575Lcon. 939
7.94	- AUBES3143con. 68
8.74	- AUBES2617con. 442
11.4	- AUBES3607 con. 1487

F15_M7

F23_M8

Figure 3. Continued.

F17_M9

F22_M10

Figure 3. Continued.

F18_M11

.

F20_M12

Figure 3. Continued.

F21_M13

\(\left.\begin{array}{c}0.0

0.5

1.7

2.6

2.7

3.2

4.2

4.8

13.9\end{array}\right]\)| AUBES3486con. 401 |
| :--- |
| AUBES3440con.652 |
| AUBES3110con. 59 |
| AUBES3557con. 738 AUBES3339Ucon. 652 |
| AUBES3149con. 199 AUBES3392con. 79 |
| AUBES3060con. 32 |
| AUBES3476M. 251 AUBES3475(4)con. 251 |
| AUBES2637con. 59 |
| AUBES3393con. 79 |
| AUBES2609con. 199 |
| AUBES3475(1)con. 251 |

F19_M15

N

F26_M14

F16_M17

\backsim

F12_M18

Figure 3. Continued.

F10_M19

	AUBES3213con. 58 AUBES 3437 con. 604 AUBES3347con. 454 AUBES3374con. 50 AUBES3583con. 1034 AUBES3346con. 454 AUBES2605con. 726 AUBES3379con. 9 - AUBES3466con. 1509 AUBES3221con. 885 AUBES3609con. 1575 AUBES3439Lcon. 652 AUBES2604con. 13 AUBES3085con. 13 AUBES3168con. 139 AUBES2636con. 139 AUBES3551con. 604 - AUBES2616con. 885 HAUBES3579con. 987 AUBES2567con. 790 HAUBES3454con. 997 AUBES3222con. 885 - AUBES 3465 con. 1509

1

Figure 3. Continued.

4

Figure 3. Continued.

9	
0.0	AUBES3433con. 590 AUBES3164Mcon 45 AUBES3398con 229
3.0	AUBES 3384 con. 278 AUBES 3397 con. 229
3.5 AUBES 3359con. 29	
3. AUBES3457con. 1031 AUBES2623con. 37	AUBES3457con. 1031 AUBES2623con. 37
19 AAUBES3613con. 1635 AUBE	
	AUBES3423con. 470
4.4. HAUBES3097con. 193 AUBES 3355 con. 27	
6.0	- AUBES3591 con. 1090
	-AUBES3103con. 370
30.1	- AUBES3066con. 206

K 24

Figure 3. Continued.

11

25
0.0 AUBES3592con. 1093
0.8 - AUBES3593con. 1093
$3.8-$ AUBES3153con. 403
4.3 AUBES3095con. 403
4.5
10.9 YAUBES2615Ucon. 403 AUBES2615Lcon. 403

27
0.0 AUBES3159con. 74
$1.8-$ AUBES2625con. 74 3.4 AUBES3217con. 211
6.7 AUBES3188con. 211

28

0.0 AUBES3571con. 844 AUBES3572con. 844
3.2 AUBES3231con. 9 AUBES3462con. 1196
3.6 AUBES3212con. 58
6.0 YAUBES3372con. 154 AUBES2629con. 154

Figure 3. Continued.

Figure 4. Female (left) and male (right) linkage map of channel catfish based on microsatellite markers. Genetic map distance was given in centimorgans to the left side of the marker positions. Lines between the markers and the boldfaced markers indicate the common markers between female and male maps.

Figure 4. Continued.

2
3

Figure 4. Continued.

Figure 4. Continued.

Figure 4. Continued.

7
6

Figure 4. Continued.

26

14
\checkmark

Figure 4. Continued.

Figure 4. Continued.

Figure 4. Continued.

```
    0.0
    10.0 / AUBES3648
    13.2] 14.4] [ AUBES2610
    14.4 - AUBES3090
    14.7 - AUBES3474
    16.0 AUBES3578
    16.1 A AUBES3577
    17.4 AUBES2601
    18.3 AUBES3473
心
```


AUBES3204

```


Figure 4. Continued.

12
18

74


Figure 4. Continued.


Figure 4. Continued.

5


Contig 1062

Figure 5. The orientations of the contig in the physical map identified from the order of the correlated markers in the genetic linkage map.

\section*{REFERENCES}

Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H., Merril, C.R., Wu, A., Olde, B., Moreno, R.F., 1991. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651-1656.

Agresti, J.J., Seki, S., Cnaani, A., Poompuang, S., Hallerman, E.M., Umiel, N., Hulata, G., Gall, G.A.E., May, B., 2000. Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture 185, 43-56.

Barendse, W., Armitage, S.M., Kossarek, L.M., Shalom, A., Kirkpatrick, B.W., Ryan, A.M., Clayton, D., Li, L., Neibergs, H.L., Zhang, N., 1994. A genetic map of the bovine genome. Nature Genetics 6, 227-235.

Brown, W.M., George, M., Wilson, A.C., 1979. Rapid evolution of animal mitochondrial DNA. National Acadamy of Sciences 76, 1967-1971.

Cairney, M., Taggart, J.B., Hoyheim, B., 2000. Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Molecular Ecology 9, 2175-2178.

Camara, M., Banowetz, G., 2005. Genetic characterization and improvement of shellfish breeding stocks for the Pacific northwest. Available from http://www.ars.usda.gov[3/8/08].

Cao, D., Kocabas, A., Ju, Z., Karsi, A., Li, P., Patterson, A., Liu, Z., 2001. Transcriptome of channel catfish (Ictalurus punctatus): initial analysis of genes and expression profiles of the head kidney. Animal Genetics 32, 169-188.

Chapman, R.W., 1989. Mitochondrial and nuclear gene dynamics of introduced populations of Lepomis macrochirus. Genetics 123, 399-404.

Chistiakov, D.A., Hellemans, B., Haley, C.S., Law, A.S., Tsigenopoulos, C.S., Kotoulas, G., Bertotto, D., Libertini, A., Volckaert, F.A.M., 2005. A microsatellite linkage map of the European sea bass Dicentrarchus labrax L. Genetics 170, 1821-1826.

Coimbra, M.R.M., Kobayashi, K., Koretsugu, S., Hasegawa, O., Ohara, E., Ozaki, A., Sakamoto, T., Naruse, K., Okamoto, N., 2003. A genetic linkage map of the Japanese flounder. Aquaculture 220, 203-218.

Coulibaly, I., Gharbi, K., Danzmann, R.G., Yao, J., Rexroad, C.E., 2005. Characterization and comparison of microsatellites derived from repeat-enriched libraries and expressed sequence tags. Animal Genetics 36, 309-315.

Crespi, B.J., Fulton, M.J., 2004. Molecular systematics of Salmonidae: combined nuclear data yields a robust phylogeny. Molecular Phylogenetics and Evolution 31, 658-679.

Davey, G.C., Caplice, N.C., Martin, S.A., Powell, R., 2001. A survey of genes in the Atlantic salmon (Salmo salar) as identified by expressed sequence tags. Gene 263, 121-130.

David, R.N., Noelle, E.C., 2005. Opportunities for detection and use of QTL influencing seasonal reproduction in sheep: a review. Genetics Selection Evolution 37, S39-S53.

Dib, C., Faure, S., Fizames, C., Samson, D., Drouot, N., Vignal, A., Millasseau, P., Marc, S., Hazan, J., Seboun, E., 1996. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152-154.

Dietrich, W.F., Miller, J., Steen, R., Merchant, M.A., Damron-Boles, D., Husain, Z., Dredge, R., Daly, M.J., Ingalls, K.A., O'Connor, T.J., 1996. A comprehensive genetic map of the mouse genome. Nature 380, 149-152.

Douglas, S.E., Gallant, J.W., Bullerwell, C.E., Wolff, C., Munholland, J., Reith, M.E., 1999. Winter flounder expressed sequence tags: establishment of an EST database and identification of novel fish genes. Marine Biotechnology 1, 458-464.

Dunham, R.A., 1995. The contribution of genetically improved aquatic organisms to global food security. Available from http://www.fao.org[16/8/08].

Dunham, R.A., 2004. Aquaculture and Fisheries Biotechnology: Genetic Approaches. CABI Publishing. 392 pp.

Ellegren, H., Chowdhary, B.P., Johansson, M., Marklund, L., Fredholm, M., Gustavsson, I., Andersson, L., 1994. A primary linkage map of the porcine genome reveals a low rate of genetic recombination. Genetics 137, 1089-1100.

FitzSimmons, N.N., 1995. Conservation and dynamics of microsatellite loci over 300 million years of marine turtle evolution. Molecular Biology and Evolution 12, 432-440.

Fuji, K., Hasegawa, O., Honda, K., Kumasaka, K., Sakamoto, T., Okamoto, N., 2007. Markerassisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus). Aquaculture 272, 291-295.

Garber, A.F., Sullivan, C.V., 2006. Selective breeding for the hybrid striped bass (Morone chrysops, Rafinesque \(\times\) M. saxatilis, Walbaum) industry: status and perspectives. Aquaculture Research 37, 319-338.

Gilbey, J., Verspoor, E., McLay, A., Houlihan, D., 2004. A microsatellite linkage map for Atlantic salmon (Salmo salar). Animal Genetics 35, 98-105.

Haldane, J.B.S., 1922. Sex ratio and unisexual sterility in animal hybrids. Heredity 73, 101109.

Hallerman, E.M., Dunham, R.A., Smitherman, R.O., 1986. Selection or drift-isozyme allele frequency changes among channel catfish selected for rapid growth. The American Fisheries Society 115, 60-68.

Hayes, B., Laerdah1, J.K., Lien, S., Moen, T., Berg, P., Hindar, K., Davidson, W.S., Koop, B.F., Adzhubei, A., Hoyheim, B., 2007. An extensive resource of single nucleotide polymorphism markers associated with Atlantic salmon (Salmo salar) expressed sequences. Aquaculture 265, 82-90.

He, C., Chen, L., Simmons, M., Li, P., Kim, S., Liu, Z.J., 2003. Putative SNP discovery in interspecific hybrids of catfish by comparative EST analysis. Animal Genetics 34, 445448.

He, F., Wen, H.S., Dong, S.L., Shi, B., Chen, C.F., Wang, L.S., Yao, J., Mu, X.J., Zhou, Y.G., 2008. Identification of single nucleotide polymorphism cytochrome P450-c 19a and its relation to reproductive traits in Japanese flounder (Paralichthys olivaceus). Aquaculture 279, 177-181.

Hubert, S., Hedgecock, D., 2004. Linkage maps of microsatellite DNA markers for the Pacific oyster Crassostrea gigas. Genetics 168, 351-362.

Jacobs, J.M.E., Eck, H.J., Arens, P., Verkerk-Bakker, B., Lintel Hekkert, B., Bastiaanssen, H.J.M., El-Kharbotly, A., Pereira, A., Jacobsen, E., Stiekema, W.J., 1995. A genetic map of potato (Solanum tuberosum) integrating molecular markers, including transposons, and classical markers. TAG Theoretical and Applied Genetics 91, 289300.

Jones, A.G., Kvarnemo, C., Moore, G.I., Simmons, L.W., Avise, J.C., 1998. Microsatellite evidence for monogamy and sex-biased recombination in the western Australian seahorse Hippocampus angustus. Molecular Ecology 7, 1497-1505.

Josupeit, H., 2007. Catfish Market Report - December 2007. Available from http://www.thefishsite.com/articles/373/catfish-market-report-december [14/4/08]

Ju, Z., Karsi, A., Kocabas, A., Patterson, A., Li, P., Cao, D., Dunham, R., Liu, Z., 2000. Transcriptome analysis of channel catfish (Ictalurus punctatus): genes and expression profile from the brain. Gene 261, 373-382.

Karsi, A., Cao, D., Li, P., Patterson, A., Kocabas, A., Feng, J., Ju, Z., Mickett, K.D., Liu, Z., 2002. Transcriptome analysis of channel catfish (Ictalurus punctatus): initial analysis of gene expression and microsatellite-containing cDNAs in the skin. Gene 285, 157168.

Knapik, E.W., 1996. A reference cross DNA panel for zebrafish (Danio rerio) anchored with simple sequence length polymorphisms. Development 123, 451-460.

Knapik, E.W., Goodman, A., Ekker, M., Chevrette, M., Delgado, J., Neuhauss, S., Shimoda, N., Driever, W., Fishman, M.C., Jacob, H.J., 1998. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nature Genetics 18, 338-343.

Kocabas, A.M., Li, P., Cao, D., Karsi, A., He, C., Patterson, A., Ju, Z., Dunham, R.A., Liu, Z., 2002. Expression profile of the channel catfish spleen: analysis of genes involved in immune functions. Marine Biotechnology 4, 526-536.

Kocher, T.D., Lee, W.J., Sobolewska, H., Penman, D., McAndrew, B., 1998. A Genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics 148, 12251232.

Kono, T., Sakai, M., LaPatra, S.E., 2000. Expressed sequence tag analysis of kidney and gill tissues from rainbow trout (Oncorhynchus mykiss) infected with infectious hematopoietic necrosis virus. Marine Biotechnology 2, 493-498.

Kono, T., Sakai, M., 2001. The analysis of expressed genes in the kidney of Japanese flounder, Paralichthys olivaceus, injected with the immunostimulant peptidoglycan. Fish \& Shellfish Immonology 11, 357-366.

Kono, T., Okamoto, K., Sakai, M., 2002. Analysis of expressed sequence tags from a yellowtail, Seriola quinqueradiata (Temminck \& Schlegel), head kidney cDNA library. Aquaculture Research 33, 291-297.

Lee, B.Y., Lee, W.J., Streelman, J.T., Carleton, K.L., Howe, A.E., Hulata, G., Slettan, A., Stern, J.E., Terai, Y., Kocher, T.D., 2005. A second-generation genetic linkage map of tilapia (Oreochromis s). Genetics 170, 237-244.

LeGrande, W., Dunham, R.A., Smitherman, R.O., 1984. Comparative karyology of three species of north American catfishes (Siluriformes: Ictaluridae: Ictalurus) and four of their hybrid combinations. Copeia 1984, 873-878.

Li, Y., Byrne, K., Miggiano, E., Whan, V., Moore, S., Keys, S., Crocos, P., Preston, N., Lehnert, S., 2003. Genetic mapping of the kuruma prawn Penaeus japonicus using AFLP markers. Aquaculture 219, 143-156.

Li, L., Guo, X., 2004. AFLP-Based Genetic linkage maps of the Pacific oyster Crassostrea gigas Thunberg. Marine Biotechnology 6, 26-36.

Li, P., Peatman, E., Wang, S., Feng, J., He, C., Baoprasertkul, P., Xu, P., Kucuktas, H., Nandi, S., Somridhivej, B., Serapion, J., Simmons, M., Turan, C., Liu, L., Muir, W., Dunham, R., Brady, Y., Grizzle, J., Liu, Z., 2007. Towards the ictalurid catfish transcriptome: generation and analysis of 31,215 catfish ESTs. BMC Genomics 8, 177-185.

Liu, Z., Nichols, A., Li, P., Dunham, R.A., 1998. Inheritance and usefulness of AFLP markers in channel catfish (Ictalurus punctatus), blue catfish (I. furcatus), and their F1, F2, and backcross hybrids. Molecular \& General Genetics 258, 260-268.

Liu, Z., Li, P., Kucuktas, H., Nichols, A., Tan, G., Zheng, X., Argue, B.J., Dunham, R.A., Yant, D.R., 1999. Development of amplified fragment length polymorphism (AFLP) markers suitable for genetic linkage mapping of catfish. Transactions of the American Fisheries Society 128, 317-327.

Liu, Z., Karsi, A., Dunham, R.A., 1999. Development of polymorphic EST markers suitable for genetic linkage mapping of catfish. Marine Biotechnology 1, 437-447.

Liu, Z.J., Feng, J.N., 2001. Gene mapping and marker-assisted selection in channel catfish (Ictalurus punctatus). Acta Agrieulturae Bore-alioccidentalis Siniea, 110-114.

Liu, Z., Karsi, A., Li, P., Cao, D., Dunham, R., 2003. An AFLP-based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics 165, 687-694.

Liu, Z.J., Cordes, J.F., 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238, 1-37.

Liu, Y.G., Chen, S.L., Li, B.F., Wang, Z.J., Liu, Z., 2005. Analysis of genetic variation in selected stocks of hatchery flounder, Paralichthys olivaceus, using AFLP markers. Biochemical Systematics and Ecology 33, 993-1005.

Liu, X., Liu, X., Guo, X., Gao, Q., Zhao, H., Zhang, G., 2006. A preliminary genetic linkage map of the Pacific abalone Haliotis discus hannai. Marine Biotechnology 8, 386-397.

Liu, Z., 2007. Aquaculture genome technologies. Wiley-Blackwell. 551 pp .

Maillard, J.C., Berthier, D., Chantal, I., Thevenon, S., Sidibe, I., Stachurski, F., Belemsaga, D., Razafindraibe, H., Elsen, J.M., 2003. Selection assisted by a BoLA-DR/DQ haplotype against susceptibility to bovine dermatophilosis. Genetics Selection Evolution 35, 193200.

Malek, M., Lamont, S., 2003. Association of INOS, TRAIL, TGF-beta2, TGF-beta3 and IgL genes with response to Salmonella enteritidis in poultry. Genetics Selection Evolution 35, 99-112.

Martin, S.A., Caplice, N.C., Davey, G.C., Powell, R., 2002. EST-based identification of genes expressed in the liver of adult Atlantic salmon (Salmo salar). Biochemical and Biophysical Research Communications 293, 578-585.

Martinez, V., 2007. Marker-assisted selection in fish and shellfish breeding schemes; Chapter 17. FAO Rome (Italy), 329-362.

Matsuda, M., Sotoyama, S., Hamaguchi, S., Sakaizumi, M., 1999. Male-specific restriction of recombination frequency in the sex chromosomes of the medaka, Oryzias latipes. Genetics Research 73, 225-231.

May, B., Johnson, K.R., 1990. Composite linkage map of salmonid fishes (Salvelinus, Salmo, Oncorhynchus). Genetic Maps: Locus Maps of Complex Genomes, 309-317.

Mbwana, J., Bölin, I., Lyamuya, E., Mhalu, F., Lagergård, T., 2006. Molecular characterization of Haemophilus ducreyi isolates from different geographical locations. Clinical Microbiology 44, 132-137.

McClelland, E.K., Naish, K.A., 2008. A genetic linkage map for coho salmon (Oncorhynchus kisutch). Animal Genetics 39, 169-179.

McConnell, S.K.J., Beynon, C., Leamon, J., Skibinski, D.O.F., 2000. Microsatellite marker based genetic linkage maps of Oreochromis aureus and \(O\). niloticus (Cichlidae): extensive linkage group segment homologies revealed. Animal Genetics 31, 214-218.

Merker, R.J., Woodruff, R.C., 1996. Molecular evidence for divergent breeding groups of walleye (Stizostedion vitreum) in tributaries to western Lake Erie. Great Lakes Research 22, 280-288.

Mickett, K., Morton, C., Feng, J., Li, P., Simmons, M., Cao, D., Dunham, R.A., Liu, Z., 2003. Assessing genetic diversity of domestic populations of channel catfish (Ictalurus punctatus) in Alabama using AFLP markers. Aquaculture 228, 91-105.

Miyahara, T.A., Hirono, I., Aoki, T.A., 2000. Analysis of expressed sequence tags from a Japanese eel Anguilla japonica spleen cDNA library. Fisheries Science 66, 257-260.

Moen, T., Hoyheim, B., Munck, H., Gomez-Raya, L., 2004. A linkage map of Atlantic salmon (Salmo salar) reveals an uncommonly large difference in recombination rate between the sexes. Animal Genetics 35, 81-92.

Moen, T., Hayes, B., Baranski, M., Berg, P.R., Kjoglum, S., Koop, B.F., Davidson, W.S., Omholt, S.W., Lien, S., 2008. A linkage map of the Atlantic salmon (Salmo salar) based on EST-derived SNP markers. BMC Genomics 9, 223-236.

Nam, B.H., Yamamoto, E., Hirono, I., Aoki, T., 2000. A survey of expressed genes in the leukocytes of Japanese flounder, Paralichthys olivaceus, infected with Hirame rhabdovirus. Developmental and Comparative Immunology 24, 13-24.

Nam, B.H., Hirono, I., Aoki, T., 2003. Bulk isolation of immune response-related genes by expressed sequenced tags of Japanese flounder Paralichthys olivaceus leucocytes stimulated with Con A/PMA. Fish \& Shellfish Immunology 14, 467-476.

Naruse, K., Fukamachi, S., Mitani, H., Kondo, M., Matsuoka, T., Kondo, S., Hanamura, N., Morita, Y., Hasegawa, K., Nishigaki, R., 2000. A detailed linkage map of medaka, Oryzias latipes, comparative genomics and genome evolution. Genetics 157, 17731784.

Nichols, K.M., Young, W.P., Danzmann, R.G., Robison, B.D., Rexroad, C., Noakes, M., Phillips, R.B., Bentzen, P., Spies, I., Knudsen, K., 2003. A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). Animal Genetics 34, 102-115.

Nielsen, J.L., 1998. Population genetics and the conservation and management of Atlantic salmon (Salmo salar). Fisheries and Aquatic Sciences 55, 145-152.

O'Connell, M., Wright, J.M., 1997. Microsatellite DNA in fishes. Reviews in Fish Biology and Fisheries 7, 331-363.

Oetting, W.S., Lee, H.K., Flanders, D.J., Wiesner, G.L., Sellers, T.A., King, R.A., 1995. Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics 30, 450-458.

Ohara, E., Nishimura, T., Nagakura, Y., Sakamoto, T., Mushiake, K., Okamoto, N., 2005. Genetic linkage maps of two yellowtails (Seriola quinqueradiata and Seriola lalandi). Aquaculture 244, 41-48.

Park, K.C., Osborne, J.A., Tsoi, S.C.M., Brown, L.L., Johnson, S.C., 2005. Expressed sequence tags analysis of Atlantic halibut (Hippoglossus hippoglossus) liver, kidney and spleen tissues following vaccination against Vibrio anguillarum and Aeromonas salmonicida. Fish \& Shellfish Immunology 18, 393-415.

Peichel, C.L., Nereng, K.S., Ohgi, K.A., Cole, B.L., Colosimo, P.F., Buerkle, C.A., Schluter, D., Kingsley, D.M., 2001. The genetic architecture of divergence between three spine stickleback species. Nature 414, 901-905.

Pruett, C.L., Saillant, E., Gold, J.R., 2005. Historical population demography of red snapper (Lutjanus campechanus) from the northern Gulf of Mexico based on analysis of sequences of mitochondrial DNA. Marine Biology 147, 593-602.

Rexroad Iii, C.E., Rodriguez, M.F., Coulibaly, I., Gharbi, K., Danzmann, R.G., DeKoning, J., Phillips, R., Palti, Y., 2005. Comparative mapping of expressed sequence tags containing microsatellites in rainbow trout (Oncorhynchus mykiss). BMC Genomics 6, 54-61.

Rico, C., Rico, I., Hewitt, G., 1996. 470 Million years of conservation of microsatellite loci among fish species. The Royal Society 263, 549-557.

Rothschild, M.F., 2003. From a sow's ear to a silk purse: real progress in porcine genomics. Cytogenetic and Genome Research 102, 95-99.

Ryynänen, H.J., Primmer, C.R., 2006. Single nucleotide polymorphism (SNP) discovery in duplicated genomes: intron-primed exon-crossing (IPEC) as a strategy for avoiding amplification of duplicated loci in Atlantic salmon (Salmo salar) and other salmonid fishes. BMC Genomics 7, 192-202.

Sakamoto, T., Danzmann, R.G., Gharbi, K., Howard, P., Ozaki, A., Khoo, S.K., Woram, R.A., Okamoto, N., Ferguson, M.M., Holm, L.E., 2000. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics \(155,1331-1345\).

Savan, R., Sakai, M., 2002. Analysis of expressed sequence tags (EST) obtained from common carp, Cyprinus carpio L., head kidney cells after stimulation by two mitogens, lipopolysaccharide and concanavalin-A. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 131, 71-82.

Sekino, M., Kobayashi, T., Hara, M., 2006. Segregation and linkage analysis of 75 novel microsatellite DNA markers in pair crosses of Japanese abalone (Haliotis discus hannai) using the 5'-tailed primer method. Marine Biotechnology 8, 453-466.

Serapion, J., Kucuktas, H., Feng, J., Liu, Z., 2004. Bioinformatic mining of type I microsatellites from expressed sequence tags of channel catfish (Ictalurus punctatus). Marine Biotechnology 6, 364-377.

Shimoda, N., Knapik, E.W., Ziniti, J., Sim, C., Yamada, E., Kaplan, S., Jackson, D., de Sauvage, F., Jacob, H., Fishman, M.C., 1999. Zebrafish genetic map with 2000 microsatellite markers. Genomics 58, 219-232.

Simmons, M., Mickett, K., Kucuktas, H., Li, P., Dunham, R., Liu, Z., 2006. Comparison of domestic and wild channel catfish (Ictalurus punctatus) populations provides no evidence for genetic impact. Aquaculture 252, 133-146.

Singer, A., Perlman, H., Yan, Y.L., Walker, C., Corley-Smith, G., Brandhorst, B., Postlethwait, J., 2002. Sex-specific recombination rates in zebrafish (Danio rerio). Genetics 160, 649-657.

Sonesson, A.K., 2007. Possibilities for marker-assisted selection in aquaculture breeding schemes. FAO Rome (Italy), 309-328.

Stam, P., 1993. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. The Plant Journal 3, 739-744.

Sun, X., Liang, L., 2004. A genetic linkage map of common carp (Cyprinus carpio L.) And mapping of a locus associated with cold tolerance. Aquaculture 238, 165-172.

Tautz, D., 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleics Acids Research 17, 6463-6471.

Tsoi, S.C.M., Cale, J.M., Bird, I.M., Ewart, V., Brown, L.L., Douglas, S., 2003. Use of human cDNA microarrays for identification of differentially expressed genes in Atlantic salmon liver during Aeromonas salmonicida infection. Marine Biotechnology 5, 545554.

Ulrich, G.M., LaReesa, L.V., 1999. AFLP genotyping and fingerprinting. Trends in Ecology \& Evolution 14, 389-394.

Van Ooijen, J.W., 2006. JoinMap 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma, Wageningen, Netherlands.

Viruel, M.A., Messeguer, R., Vicente, M.C., Garcia-Mas, J., Puigdomènech, P., Vargas, F., Arús, P., 1995. A linkage map with RFLP and isozyme markers for salmonid. Theoretical and Applied Genetics 91, 964-971.

Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van De Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 4407-4414.

Wada, H., Naruse, K., Shimada, A., Shima, A., 1995. Genetic linkage map of a fish, the Japanese medaka Oryzias latipes. Molecular Marine Biology and Biotechnology 4, 269-274.

Waldbieser, G.C., Bosworth, B.G., Nonneman, D.J., Wolters, W.R., 2001. A microsatellitebased genetic linkage map for channel catfish, Ictalurus punctatus. Genetics 158, 727734.

Watanabe, T., Fujita, H., Yamasaki, K., Seki, S., Taniguchi, N., 2004. Preliminary study on linkage mapping based on microsatellite DNA and AFLP markers using homozygous clonal fish in ayu (Plecoglossus altivelis). Marine Biotechnology 6, 327-334.

Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., Tingey, S.V., 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531-6535.

Wilson, K., Li, Y., Whan, V., Lehnert, S., Byrne, K., Moore, S., Pongsomboon, S., Tassanakajon, A., Rosenberg, G., Ballment, E., 2002. Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture 204, 297-309.

Wirgin, II, Grunwald, C., Garte, S.J., Mesing, C., 1991. Use of DNA fingerprinting in the identification and management of a striped bass population in the southeastern United States. Transactions of the American Fisheries Society 120, 273-282.

Wolters, W.R., Chrisman, C.L., Libey, G.S., 1981. Lymphocyte culture for chromosomal analysis of channel catfish, Ictalurus punctatus. Copeia 1981, 503-504.

Woods, I.G., Kelly, P.D., Chu, F., Ngo-Hazelett, P., Yan, Y.L., Huang, H., Postlethwait, J.H., Talbot, W.S., 2000. A Comparative map of the zebrafish genome. Genome Research 10, 1903-1914.

Woram, R.A., McGowan, C., Stout, J.A., Gharbi, K., Ferguson, M.M., Hoyheim, B., Davidson, E.A., Davidson, W.S., Rexroad, C., Danzmann, R.G., 2004. A genetic linkage map for Arctic char (Salvelinus alpinus): evidence for higher recombination rates and segregation distortion in hybrid versus pure strain mapping parents. Genome 47, 304-315.

Xu, P., Wang, S., Liu, L., Peatman, E., Somridhivej, B., Thimmapuram, J., Gong, G., Liu, Z., 2006. Channel catfish BAC-end sequences for marker development and assessment of syntenic conservation with other fish species. Animal Genetics 37, 321-326.

Xu, P., Liu, Z., 2007. Physical map construction and physical characterization of channel catfish genome. Available from http://repo.lib.auburn.edu/Send\%2002-0408/XU_PENG_49.pdf [10/1/08].

Young, W.P., Wheeler, P.A., Coryell, V.H., Keim, P., Thorgaard, G.H., 1998. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics \(148,839-850\).

Yu, Z., Guo, X., 2003. Genetic Linkage map of the eastern oyster Crassostrea virginica Gmelin. Biological Bulletin 204, 327-338.

Yue, G.H., Ho, M.Y., Orban, L., Komen, J., 2004. Microsatellites within genes and ESTs of common carp and their applicability in silver crucian carp. Aquaculture 234, 85-98.

Zabeau, M., Vos, P., 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. EP Patent \(0,534,858\).

APPENDIX

Appendix. Identification of microsatellite loci from BAC end sequences in resource family by using PCR.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 443 & ta. 17 & AU2552 & 211 & 570C/15cycles,53oC/20cycles & TCAACTCAGTCAGCATTTTAAGG & TCAACTCAGTCAGCATTTTAAGG & Polymorphic \\
\hline 411 & gt. 10 & AU2553 & 240 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGTTAGTGCTGAACGAAATGC & CGTCCAGAGAGAGGAATGGA & Polymorphic \\
\hline 189 & taa. 7 & AU2554 & 230 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGCCCTtTAAGGAATGATGA & TTGGCACCCCTATGAATTAAG & No product \\
\hline 480 & tct. 16 & AU2555 & 197 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ACTGTTGTTGCTGTTGTTGTTG & GCACAAACTGACAAACAGATTCA & Polymorphic \\
\hline 207 & ata. 18 & AU2556 & 213 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCCGTTTCATTATGTTGTCC & CACCCTAACCAGGGTGTCC & Polymorphic \\
\hline 190 & taa. 6 & AU2557 & 255 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CGTGTTTGTGTAAATGCGTGT & ATTGCAACTGGGTGAATGTG & Polymorphic \\
\hline 159 & ag. 24 & AU2558 & 215 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TCCAGAAGGTGTGCACTGAC & TtTCAGGCAGGTTCTGAGGT & No product \\
\hline 15 & at. 32 & AU2559 & 163 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ACATTTCATGCAGGAGCAGTT & TAATTGCAGGGAATGGAAGG & Polymorphic \\
\hline 495 & ac. 8 & AU2560 & 223 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCATGCTGTtGCACCTAATG & CCCTAACCGCTAATCACCAG & No product \\
\hline 490 & ca. 13 & AU2561 & 203 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TCGAGGTGTCCAACAGTGAG & ACAAGAAGTGATGCGCTCTG & Polymorphic \\
\hline 275 & ttg. 5 & AU2562 & 210 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ATTAGTGGTCTGGGCGCTTT & GAACAGCAAAATGTCACCAAA & Polymorphic \\
\hline 246 & aac. 12 & AU2563 & 200 & 570C/15cycles,53oC/20cycles & TGGCAAACTTTTGTTTGAACC & CATCACGTGAACCAGCTCAT & Polymorphic \\
\hline 209 & att. 13 & AU2564 & 210 & 57oC/15cycles,53oC/20cycles & CCTGATTCAGAAGTGCTGACC & AGAGACGATGGTGCCACTTT & Polymorphic \\
\hline 107 & ct. 9 & AU2565 & 202 & 570C/15cycles,53oC/20cycles & GCCAAAGAGCCACTTCAACT & GCTCCTTGTGCTCTCCAGAC & Polymorphic \\
\hline 1363 & ac. 12 & AU2566 & 175 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TCCCATGTAATTGCACCATC & CAAAGCCAATGGAAAAGGAA & Polymorphic \\
\hline 790 & ttta. 10 & AU2567 & 181 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGGCTGATCGGTGTAGAGC & TACTGGCAGTGATTGGCTGA & Polymorphic \\
\hline 408 & tatt. 9 & AU2568 & 190 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & AAAAGCAACCTCTGGCAAAA & AAACCCAAAGGGGAATTCAA & Not polymorphic \\
\hline 274 & tca. 16 & AU2569 & 204 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & tTGGACTCATGGTAGCACAGA & TCCACAACTTCACAGCATCTtT & Not polymorphic \\
\hline 2 & tat. 9 & AU2570 & 231 & 570C/15cycles,53oC/20cycles & CCATGCTGCAACATATCCAG & GCTCATGTTGGAGACGTGAA & Polymorphic \\
\hline 518 & aata 5 & AU2571 & 200 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GACTGGTGATGGAAAAGCTG & GTGGAGATTCACCCCTTCTT & Polymorphic \\
\hline 316 & tg. 8 & AU2572 & 112 & 570C/15cycles,53oC/20cycles & GTGTGTGTGAGAGAGAGAGAGACAG & AGCTGAGGAGTGCAAACACA & Not polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 262 & ttgtt. 5 & AU2573 & 200 & 570C/15cycles,53oC/20cycles & CTTTGCATCAGCACTGGACT & TTCAGAACCTTCACCCTGATG & Not polymorphic \\
\hline 258 & taaa. 8 & AU2574 & 200 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCTGCTAAAGGTGGCACAA & CAGAATCCCGGACCTTTTCT & No product \\
\hline 227 & ga. 17 & AU2575 & 190 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGCAGGGTACAAACACTTGG & TGCAAGTTTTAAGAGGAATCTGC & No segregation \\
\hline 206 & ac. 8 & AU2576 & 232 & 570C/15cycles,53oC/20cycles & CATGGTCTGAGCCTGAAGGT & atattgcceagccetantce & Polymorphic \\
\hline 194 & ag. 9 & AU2577 & 191 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & aAagTGCATCGCATCCTTCT & GattigGgagatticatgigc & No segregation \\
\hline 5 & tc. 19 & AU2578 & 257 & 570C/15cycles,53oC/20cycles & TGGTATTCTCACAAGGCAGATG & CATACCAATTGCAGGTTCCA & Polymorphic \\
\hline 609 & gca. 5 & AU2579 & 191 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAGGTCCTGGGTGGAATGTA & CAAACAAGCCCAGAACCAGT & Polymorphic \\
\hline 436 & tc. 15 & AU2580 & 213 & 570C/15cycles,53oC/20cycles & TGACATCAAAGATGCCCTCA & CAAGGCGTCAAAGAGGATTC & Polymorphic \\
\hline 214 & attc. 9 & AU2581 & 209 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGTGTAATGGGATTCTCATGC & CCTCGTGTGGCTAAATGTGA & Polymorphic \\
\hline 34 & gag. 5 & AU2582 & 198 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCATGGGAGGCATATCTCAG & CTGACCTTCCTGGCTGTTCT & Polymorphic \\
\hline 890 & aaat. 5 & AU2583 & 166 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & accagctiangacagcagca & aAGACCTTCTACACTACAGTGATCTTT & Polymorphic \\
\hline 130 & ag. 27 & AU2584 & 197 & 570C/15cycles,530C/20cycles & GAACAGGCCCCTTTTGAA & AGAATCCATGCTGAGCTGTG & No product \\
\hline 97 & tcat. 5 & AU2585 & 186 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TAGATGTGGTGGGTTGCTCA & CCGGTATGTGGATTGGTCAC & Polymorphic \\
\hline 58 & att. 6 & AU2586 & 212 & 570C/15cycles,530C/20cycles & CCCCAATTTTGCAAGTTGTC & CAGACAACCACACACCCAAT & Not polymorphic \\
\hline 55 & ag. 9 & AU2587 & 215 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGCTTCTGATGATGGGATGA & TCACCACGGTTGTAAAGAATGA & Not polymorphic \\
\hline 169 & tttg. 5 & AU2588 & 126 & 570C/15cycles,53oC/20cycles & TgGttagtgtgaggagttge & AAACAACGTTGGTCCTGTCC & Polymorphic \\
\hline 121 & aat. 5 & AU2589 & 217 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CACGGTATATAGGACCGCAAA & AGAGCCGGGCAATATGATG & Not polymorphic \\
\hline 454 & aga. 5 & AU2590 & 209 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGGATTGTGAAGTTGAACAGC & GCCCTTCTGCAAGGTTCTTA & Not polymorphic \\
\hline 404 & ag. 9 & AU2591 & 199 & \(570 \mathrm{C} / 15\) cycles,53oC/20cycles & GACGCAGCTAAGTGCCAGAT & TGTGCTGGTTAGCCAAGGAT & Polymorphic \\
\hline 216 & ag. 30 & AU2592 & 188 & 570C/15cycles,53oC/20cycles & GGAGCATAATCCCAGAGCAC & TGTTCACCTTTATACTTCCATCTTATT & Polymorphic \\
\hline 135 & taa. 12 & AU2593 & 257 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & AGGCTAAAATGGCTGGGTtT & CCTGGAAATGAGCTTCATCC & Polymorphic \\
\hline 38 & aaat. 5 & AU2594 & 201 & 570C/15cycles,53oC/20cycles & GCATAAATGTATGTGCCCTGTC & ACCATGGTGAGCAGAAAAGC & Polymorphic \\
\hline 335 & ct. 16 & AU2595 & 199 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCGGGTCTCTCAGTCTCTCA & GTGCAGACATCTCCAACACC & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 306 & ag. 9 & AU2596 & 228 & 57oC/15cycles,53oC/20cycles & TTTCACCAGCCACTGTTCTG & AATTTCCTGTCACTCTTCTCTCTC & Polymorphic \\
\hline 236 & ga. 12 & AU2597 & 212 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAGCAGCTCCAGAAAGAGGT & TCGGCATGCTGCTAAAAAC & Polymorphic \\
\hline 6 & aaac. 5 & AU2598 & 213 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ACATGGGTGATAGGTGTTGGA & TCTTTGCTCCATCCTGATtTC & Not polymorphic \\
\hline 116 & ga. 26 & AU2599 & 208 & 57oC/15cycles,53oC/20cycles & AAGGGCCTTTGTCACATGAT & CACTCCAGTTTCTGGCCAAC & Polymorphic \\
\hline 68 & ggat. 7 & AU2600 & 204 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CATAAGTCAAACACCCTGTCCA & GGGCAATGAATtTCCACAAA & Polymorphic \\
\hline 20 & tttg. 5 & AU2601 & 210 & 57oC/15cycles,53oC/20cycles & tTCCGAAGGAGTCTCCAGTG & GGTTGCAACAGCTACGAACA & Polymorphic \\
\hline 278 & tta. 14 & AU2602 & 180 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCGCAATGACAGCTTAAACA & TTACACCTGGCGGCATATTT & Polymorphic \\
\hline 455 & ta. 9 & AU2603 & 208 & 57oC/15cycles,53oC/20cycles & ACCCACTGCTGGGTTAAAGG & CAATGCATGTGCCGTtTTAT & Polymorphic \\
\hline 13 & at. 38 & AU2604 & 252 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TCATtGTCTTTAGACTTGCTTGTAATG & ATACCCCAGGGAAATTGGAC & Polymorphic \\
\hline 726 & ac. 57 & AU2605 & 172 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CACATCTCATAGCCTCATACATGG & TGCATCTGCTTCAGGTGTTC & Polymorphic \\
\hline 29 & gaa. 13 & AU2606 & 181 & \(57 \mathrm{oC/15cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GATCTTTTTCGGTCTCCCATC & GTCTGCCAACAGGAGTGTCA & Polymorphic \\
\hline 183 & tc. 10 & AU2607 & 187 & 57oC/15cycles,53oC/20cycles & AATGCCAAGGGTGTCAGAAT & TCGATTCCTCTCTGCTCACAT & Polymorphic \\
\hline 222 & taaa. 5 & AU2608 & 198 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & AAGGTGACTGGATCTTCCACA & AGGTTTTGCACTGTGCTITG & Polymorphic \\
\hline 199 & gt. 8 & AU2609 & 183 & 57oC/15cycles,53oC/20cycles & GCaCATGACCAGAGCACATT & AGGTtTTTGCCAAACTGCAC & Polymorphic \\
\hline 161 & ttta. 5 & AU2610 & 215 & \(57 \mathrm{oC/} 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & aACCAATAGACCAAACAAATCAG & GGCACCAATGCCAGTCTATC & Polymorphic \\
\hline 241 & att. 5 & AU2611 & 268 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GATGGGTGATGAGGGTATGC & GGGTTCCTAAAAATGAAGTGGA & Polymorphic \\
\hline 181 & ct. 12 & AU2612 & 143 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GTGTGAGATGTTGTtTCGTTGAG & GGGACAGCAGTCACACACAC & Polymorphic \\
\hline 276 & ac. 24 & AU2613 & 202 & 57oC/15cycles,53oC/20cycles & ATTTCCCCACAAAGGCAAA & TAAAGGAAGCAGGGGGAAAT & Polymorphic \\
\hline 155 & ga. 24 & AU2614 & 207 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGGAAAAGCTTCCAGTGACC & AGCGGGACTGTTTTTGGCTTA & Can't score \\
\hline 403 & taaa. 8 & AU2615 & 181 & \(57 \mathrm{oC/15cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TCATGATGTTCAGTAAGTTCAAAGG & CATTTGTTGTGTGAGCAACATT & Polymorphic \\
\hline 885 & taa. 15 & AU2616 & 198 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ACAAGCCTCGTGGTATGCTC & GCATTGGAACCTTTGTTTCAG & Polymorphic \\
\hline 442 & ag. 33 & AU2617 & 190 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGGTCACTAACTCAGGTGTGG & AGGTACAAAATGCCTTGACG & Polymorphic \\
\hline 193 & gt. 15 & AU2618 & 203 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & atgctitgacagatcgettg & AGATCTGGCAGTCCACAAGAA & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 39 & tct. 5 & AU2619 & 204 & 57oC/15cycles,530C/20cycles & AATGCCCATTTGTCTTCACC & GCTTGTAAACCAAGCCATCC & Polymorphic \\
\hline 101 & at. 26 & AU2620 & 210 & 57oC/15cycles,53oC/20cycles & tTCACCCTGCCATGTGATTA & GGGTGGAGTCTTCCTTTAACC & Polymorphic \\
\hline 392 & atcc. 5 & AU2621 & 205 & 57oC/15cycles,530C/20cycles & TGTGGGTtTGAGGGGATTAC & TGAGATAGGCTCCAGGTTCC & Polymorphic \\
\hline 104 & at. 11 & AU2622 & 198 & 57oC/15cycles,53oC/20cycles & TGGTCGAGGTCATTTCTCATC & CAGTAGTTTTAGGCAGCACGTT & Polymorphic \\
\hline 37 & tc. 18 & AU2623 & 197 & 57oC/15cycles,53oC/20cycles & aCCTAGCGTGGATTCAGCAC & CTGCTTCCGTCCACTCCTT & Polymorphic \\
\hline 177 & gaca. 5 & AU2624 & 160 & 57oC/15cycles,530C/20cycles & ttgGgatttttaccaiatgang & TGTCTGTCCAGCTATCTATCTACCTA & Polymorphic \\
\hline 74 & att. 9 & AU2625 & 195 & 57oC/15cycles,53oC/20cycles & CCAAAGCCGGTACCATAAAA & ACAGCTGTGACGTTGGACAC & Polymorphic \\
\hline 281 & aag. 5 & AU2626 & 219 & 57oC/15cycles,530C/20cycles & GAGGCTTTCAAAGGTGGTCA & CGATGTGTTCGTCACTCCTG & Not polymorphic \\
\hline 370 & ac. 30 & AU2627 & 223 & 57oC/15cycles,53oC/20cycles & CCATACCCAGATGTCTGCAA & ATTGGCCCTGGTTATGAATG & Polymorphic \\
\hline 200 & aaat. 5 & AU2628 & 202 & 57oC/15cycles,530C/20cycles & AGAGCCTAGGTGGTGGAATG & CCCGATAGGTCACGGACTAA & Polymorphic \\
\hline 154 & tga. 9 & AU2629 & 193 & 57oC/15cycles,53oC/20cycles & GATTAAACTAATGGATGGAGAATCG & GCGAAGTCATTCAGCGTTAG & Polymorphic \\
\hline 252 & tg. 14 & AU2630 & 227 & 570C/15cycles,53oC/20cycles & GGCATGAATCAGGCACTTG & TGACGGGAACGTCTAAATGG & No product \\
\hline 50 & tc. 19 & AU2631 & 202 & 57oC/15cycles,530C/20cycles & ACTGAAACGCACGACTCCTC & CTGGCCGACAGTTTGTAGGT & Not polymorphic \\
\hline 45 & tta. 11 & AU2632 & 225 & 570C/15cycles,53oC/20cycles & GGAGCTCTGTGAAAAGCTGTG & Gactigantcgctggatgac & Polymorphic \\
\hline 170 & ca. 11 & AU2633 & 167 & \(57 \mathrm{OC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & tTatGctttggaganaianag & ATtGGAAGGTCCGCACAAG & Polymorphic \\
\hline 42 & ta. 17 & AU2634 & 126 & 57oC/15cycles,53oC/20cycles & TCCTGAGCTGCTGTGAGTTG & TGGTGTCCAGGAAGTGTTCA & Polymorphic \\
\hline 166 & tta. 15 & AU2635 & 194 & 57oC/15cycles,53oC/20cycles & TAACGTTTCAATGGGTGCTG & GGTTGTGTGACAAAAACGACAC & Polymorphic \\
\hline 139 & tta. 12 & AU2636 & 182 & 570C/15cycles,53oC/20cycles & CAACGCGTGTATGCATTGTT & TGATAAATCCCACACGTTGC & Polymorphic \\
\hline 59 & ac. 9 & AU2637 & 205 & 57oC/15cycles,53oC/20cycles & TGCACAGAGGCAAAATTACG & GACCAAAGGTTCCCACAAAG & Polymorphic \\
\hline 534 & ca. 45 & AU2638 & 214 & 57oC/15cycles,53oC/20cycles & CTGCTTGGACTGTGTTGCAT & GCACTCCAGCCAGCTTAGTC & Polymorphic \\
\hline 9 & cta. 5 & AU2639 & 206 & 57oC/15cycles,53oC/20cycles & aACCCTCACTAATGGCTAATGC & TAGCAGCAGTGGTTGAATGG & Polymorphic \\
\hline 443 & ca. 23 & AU3051 & 203 & 570C/15cycles, \(530 \mathrm{C} / 20 \mathrm{cycles}\) & ttcactactttcctccaacc & gCcacatancaggaccagtg & Polymorphic \\
\hline 480 & ac. 9 & AU3052 & 221 & 57oC/15cycles,530C/20cycles & GCACAGCTGCTCAGTTTGAC & TGAACATGCtTCAGGGAAAA & Not polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & Primer Name & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 207 & gt. 9 & AU3053 & 188 & 57oC/15cycles,53oC/20cycles & TGGAGCTGAATGCCCTACTT & CACAGCCTAGTGTGACCGTACT & Not polymorphic \\
\hline 15 & aac. 5 & AU3054 & 209 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & AAATGGGAATTCGGTACGTG & GTGGTGTCGAATCAACATGG & Polymorphic \\
\hline 490 & aga. 6 & AU3055 & 199 & 57oC/15cycles,530C/20cycles & ACTGAACACCAGTCCGTTCC & CACACTTCCATCTGAAAGACACA & Polymorphic \\
\hline 275 & ac. 21 & AU3056 & 205 & \(57 \mathrm{C} / 15\) cycles, \(53 \mathrm{oC} / 20\) cycles & CATGAAAGCAGGAAAGTCAGG & CAAGCAAACATCAGGCTCTTC & Polymorphic \\
\hline 266 & ttca. 5 & AU3057 & 227 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & CTGGCCAGTCAATtTTCAGC & TAGCtTGATGGTGGTCATGC & Not polymorphic \\
\hline 246 & ag. 8 & AU3058 & 201 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGTCCACAAGCAGGACTCAG & GGACCGTCATCCTCCTACAG & Not polymorphic \\
\hline 107 & ac. 34 & AU3059 & 203 & 57oC/15cycles,53oC/20cycles & TGGCAGATCTCAGGTAGCAA & AGCCACAGGTTTAGTCTCAAAT & Polymorphic \\
\hline 32 & aat. 6 & AU3060 & 205 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & CATCCAATCAGAGAGCAGCA & GCGGTCACAGTTGTGCtTAT & Polymorphic \\
\hline 1363 & tg. 8 & AU3061 & 203 & \(57 \mathrm{OC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & AAGTAGCGCGTGTTGCTGTA & GTGCCTGGACCAGCTAGAGA & Not polymorphic \\
\hline 790 & ta. 13 & AU3062 & 205 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCAGTGTCTTGACAAATGGACT & TTGCACAAATTCTCACTTGGA & Polymorphic \\
\hline 2 & ttga. 7 & AU3063 & 173 & 57oC/15cycles,53oC/20cycles & TGTCACATGCCTATGTTGAGG & TGGTCCCACAAGGGAAATTA & Polymorphic \\
\hline 518 & ac. 11 & AU3064 & 200 & 57oC/15cycles,53oC/20cycles & TCTGGTCACTGGTTGTGCAT & GGATGGTGTCAGTGAAAGCTG & No product \\
\hline 227 & ttta. 7 & AU3065 & 180 & 57oC/15cycles, \(530 \mathrm{C} / 20 \mathrm{cycles}\) & TGTTGAGGTGTCTAGGATGCTG & AAAAGGGCCTGGCTAATTGT & Polymorphic \\
\hline 206 & aaag. 9 & AU3066 & 230 & 57oC/15cycles,53oC/20cycles & CATCAACTGCCTCGGTTTTT & CGGAAGGAGTCTCCAGTGTT & Polymorphic \\
\hline 194 & ta. 12 & AU3067 & 192 & \(57 \mathrm{OC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & TCTGAGAAACGGGATTCCAC & GCtGgGacactgaggagana & No product \\
\hline 5 & ac. 11 & AU3068 & 210 & 57oC/15cycles,53oC/20cycles & TTAAGTGCATGAGCCCACAC & TGTCCATCATGATTCCCAAA & Polymorphic \\
\hline 609 & ca. 19 & AU3069 & 204 & 57oC/15cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAGTTTTATTCCGGGTCACG & CCTCCCAGAAACATTCCAGT & No segregation \\
\hline 436 & att. 5 & AU3070 & 209 & 57oC/15cycles,53oC/20cycles & GCACATCCCAGAACAACCT & ACTGTGCCCTGTAGTTTTGGA & Polymorphic \\
\hline 214 & gt. 12 & AU3071 & 198 & 57oC/15cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & TTGTTGGGAAACACTTCAACAG & AGCCTATCCCAGGGGACTC & Polymorphic \\
\hline 34 & ac. 13 & AU3072 & 208 & 57oC/15cycles,53oC/20cycles & CGGGGTCAGTCAGATCAGTT & AGAGGATGCAGGTGGTTACG & Polymorphic \\
\hline 890 & ta. 34 & AU3073 & 237 & 57oC/15cycles, \(530 \mathrm{C} / 20 \mathrm{cycles}\) & GCAGCGTGACACGGTTTAT & CCCCTGCTACTTCACCATTC & Polymorphic \\
\hline 97 & tcat. 5 & AU3074 & 193 & 57oC/15cycles,53oC/20cycles & GGAAGTTACCTGCAAAACACC & TGCttTCAACAGTGTTTCCAAC & Polymorphic \\
\hline 404 & aat. 5 & AU3075 & 152 & 57oC/15cycles,53oC/20cycles & CGAGTAACTGCGTGAATTGC & CTGCCCTTCAGACGCTAAAT & Not polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 216 & tg. 11 & AU3076 & 224 & 570C/15cycles,53oC/20cycles & GGAGCAATGCAAACGAAATC & CAGGCTGGGCTAAGTCTGTT & Polymorphic \\
\hline 135 & agat. 5 & AU3077 & 259 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCCACTAAAAGGGCTGAGAG & AGCCACTAAAAGGGCTGAGAG & No product \\
\hline 335 & ca. 24 & AU3078 & 189 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ttacacgccatacagcctga & GACTCTGAGCCACGGAAGTT & Polymorphic \\
\hline 306 & ta. 39 & AU3079 & 250 & 570C/15cycles,53oC/20cycles & CATCATGTTTGAAGGCAGGA & CATGCAAAAATGTGCAAAGA & Polymorphic \\
\hline 236 & ca. 11 & AU3080 & 197 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TCCTCTGGAAGGCTCTCAAC & tTCTGCTTGCACCAAATCAG & Polymorphic \\
\hline 116 & tta. 5 & AU3081 & 227 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCagatttttcctttattatcca & GGCAATGACCATAATTCCAAA & Not polymorphic \\
\hline 68 & ata. 10 & AU3082 & 192 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TACACACAGCCTTCCCATCA & TGAACATCCAGCCCAGTTATC & Polymorphic \\
\hline 278 & at. 9 & AU3083 & 238 & 570C/15cycles,53oC/20cycles & CATGTGGTCCCTGCATTTTA & TGTGTGTGTGCGTGCATCTA & Not polymorphic \\
\hline 455 & aaac. 7 & AU3084 & 226 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CTGGATGATGGTTGGCTGTA & AAGTGCGACCCAACTGTTTC & Polymorphic \\
\hline 13 & at. 38 & AU3085 & 241 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAGCtTGGGCAATtTATGAGG & ACTGCGGTGACACAAATGAA & Polymorphic \\
\hline 726 & ac. 8 & AU3086 & 232 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ACCCTGTGCAGGATAAGCAG & GCCAGCTTGTCTCACATCAA & Polymorphic \\
\hline 183 & gtt. 5 & AU3087 & 194 & 570C/15cycles,530C/20cycles & ttantggancgangtgigat & GCCAAAACTGTCAGCCTTTC & Polymorphic \\
\hline 222 & ca. 9 & AU3088 & 195 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ACGGAGTTCGCATGTTCTCT & TGCTCACGATGGCAAGTTAG & Polymorphic \\
\hline 199 & atga. 7 & AU3089 & 207 & 570C/15cycles,530C/20cycles & CCCAAAAAGGCTCTCTGTAGAA & AGTAGGAAAGCAACGCTGGA & Polymorphic \\
\hline 161 & atg. 6 & AU3090 & 200 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GAAATTGAAACGGCTCTTGC & GATGCTtTGCCATGCTtTAAC & Polymorphic \\
\hline 40 & tc. 8 & AU3091 & 196 & 570C/15cycles,53oC/20cycles & ACTCTGAGCCTGAGGGGAAA & TGGAAGAAATATGAGGATTCTGAC & Polymorphic \\
\hline 181 & ta. 30 & AU3092 & 171 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGCAAGCAACCTTTTAAATCTG & CAGCATTAATGGCGCACTAC & Polymorphic \\
\hline 276 & tcg. 5 & AU3093 & 219 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & AGGCCGTCTCATTGACAGAC & AGAATCCAAGCGTGCAGTG & Not polymorphic \\
\hline 155 & aat. 10 & AU3094 & 218 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAGGCGGACCTATTGTTTGT & TGGAAAAGGACATGCATCAG & Polymorphic \\
\hline 403 & att. 7 & AU3095 & 197 & 570C/15cycles,53oC/20cycles & ACTGCTGCATGTTCTGGATG & TGACGCCTTCTGTTTTCTGA & Polymorphic \\
\hline 885 & tttg. 5 & AU3096 & 234 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & aCtTCCAAACCCATCAGCAG & tGccattccttagctitgat & Not polymorphic \\
\hline 193 & at. 13 & AU3097 & 235 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & AAGCATTGTGAGTCCCTAGCTC & tgcattgcteanctctantacac & Polymorphic \\
\hline 101 & ac. 10 & AU3098 & 182 & \(570 \mathrm{C} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCACGCTCTCGTACAGTCAA & CCCTTCTACTGTCCTACATATCCT & Not polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 392 & ac. 10 & AU3099 & 201 & 570C/15cycles,53oC/20cycles & ACCTCGATGCACAAGGAAAT & TCACCAGGAGGGGATAGAAA & Polymorphic \\
\hline 104 & ac. 27 & AU3100 & 189 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCTGAAATCTTTCCTGTtTTTG & GCGGTCATGTTACCTITGGT & Polymorphic \\
\hline 177 & aaag. 6 & AU3101 & 213 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGGGGAAATTTCATTTGACTT & GCTTCAGTGCTGTGCAGTtT & Polymorphic \\
\hline 74 & tta. 15 & AU3102 & 201 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGAAGTAACATGGACCCAGAGA & AGGAATCAAATCCCCAAACC & Polymorphic \\
\hline 370 & ata. 5 & AU3103 & 215 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GTGTTCAGATGGTGGTCCAA & GTtTGAAGGCAACTGCACCT & Polymorphic \\
\hline 200 & ta. 15 & AU3104 & 177 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAATATCCGACTGTGTCAGCA & TAAAGAACGTtTGGGCACCT & Polymorphic \\
\hline 154 & tat. 13 & AU3105 & 190 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GAGCTCTGGAAAGGCCCTA & AAAACGCTTGCAGACCAATC & Polymorphic \\
\hline 45 & tc. 13 & AU3106 & 181 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TTTCAAACGGATGCAAACTG & CAACTGGAGTGGAGGAGCAT & Polymorphic \\
\hline 170 & ctat. 13 & AU3107 & 173 & 570C/15cycles,53oC/20cycles & TTGACGCGTTCAACCCTTAT & TCATGAAAATCCCATACATTCAG & Polymorphic \\
\hline 42 & at. 8 & AU3108 & 204 & 570C/15cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCATGGGCTGCGTAGTTTA & ACCCGTGTtTTCCGATACAG & Polymorphic \\
\hline 166 & at. 43 & AU3109 & 244 & 570C/15cycles,53oC/20cycles & TCACCTGCATCCAATTCAGA & TGGCACCCTTGGTAAATCA & Polymorphic \\
\hline 59 & ag. 9 & AU3110 & 199 & 570C/15cycles,53oC/20cycles & GTtTCTTTCTCCCCGAGCTT & GGCTtTCAGAGTCGGAAGTG & Polymorphic \\
\hline 534 & ac. 29 & AU3111 & 205 & 570C/15cycles,53oC/20cycles & CAGAAATACACCCTGGAGCTG & CCCATGGCTCAGCTTGTAA & Polymorphic \\
\hline 9 & ctt. 5 & AU3112 & 214 & 570C/15cycles,53oC/20cycles & CGCCGCAAATTTGGTtTAAT & TTACATCCAGCACGCACAAT & Polymorphic \\
\hline 189 & ttta. 7 & AU3114 & 161 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCACCAATAGGAGGACGGTA & CAAAGCCGTCTGACAGGAAT & No segregation \\
\hline 159 & at. 32 & AU3115 & 199 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TAACCCAGCACTGCCTTTG & GCAAGATCTTCACATGAGAAACATAA & Polymorphic \\
\hline 495 & ac. 8 & AU3117 & 164 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TACACTGGCAGATGCCTTCA & TGTGTTTCTTGCATGACGTGT & Polymorphic \\
\hline 490 & aaat. 12 & AU3118 & 220 & 570C/15cycles,53oC/20cycles & CGGGGCAATTAGTTTTCACA & TTTGGATAAACCCGTGTTCTG & Polymorphic \\
\hline 790 & at. 12 & AU3121 & 194 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CACATTGGTCATTCAGGCTCT & TGGATATTCCAGTCCGCATT & Polymorphic \\
\hline 518 & gt. 15 & AU3124 & 197 & 570C/15cycles,53oC/20cycles & TTGAATGCCGTGAAAATGTC & GCAACTGGCCCATTATCCT & Polymorphic \\
\hline 258 & caa. 6 & AU3125 & 186 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ATGTGTCACCTGTTCCCTGAG & GAGGAACTGCTGGATGATGC & Can't score \\
\hline 194 & taa. 12 & AU3127 & 190 & 570C/15cycles,53oC/20cycles & TCAGAAGCATTTGGTTGCAG & CAAAGGCAACCTGTGTAAGC & Not polymorphic \\
\hline 609 & ac. 13 & AU3129 & 262 & \(570 \mathrm{C} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGGCTGGTGGACTGTATGAA & TCGAGAACGGACACTTTCAA & Not polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 214 & ga. 8 & AU3131 & 228 & 57oC/15cycles,53oC/20cycles & GCCTGAGGTTGCTTCAAAAG & GCTCTGTGCAATTTGTGTGC & Polymorphic \\
\hline 890 & ac. 16 & AU3132 & 190 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCCATGCACGTGATATTGAT & TGGTCATGACTCACTGGACTG & Polymorphic \\
\hline 130 & aac. 5 & AU3133 & 227 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GAATGCTtttgactaggagctig & TGGGGCTTCTCATTGTGACTTT & Polymorphic \\
\hline 216 & ag. 30 & AU3136 & 198 & 57oC/15cycles,53oC/20cycles & GCCCATGCCTAAGAGGATTA & CCACAGCCCTGTGTAGGATA & Polymorphic \\
\hline 135 & aat. 8 & AU3137 & 164 & \(57 \mathrm{oC} / 15\) cycles,53oC/20cycles & CGTCGCCACtGGATTAAGAG & CTCACATGACCATGCCAATC & Not polymorphic \\
\hline 335 & ta. 34 & AU3139 & 198 & 57oC/15cycles,53oC/20cycles & TCATGATCAGGGTTCATCACA & GTGTCCGCTTAGTGGGTTTC & Polymorphic \\
\hline 182 & act. 7 & AU3142 & 238 & \(57 \mathrm{oC} / 15\) cycles,53oC/20cycles & GTTTGGGTAGCTCCATGGTC & CCGGCCTAGATAAGATGTGC & Polymorphic \\
\hline 68 & ac. 19 & AU3143 & 230 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TCCAATGTAGCAATTTGACAGA & CCATGAGCTATAAGCCGTTATCA & Polymorphic \\
\hline 455 & ag. 25 & AU3144 & 173 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGGCtGagGagctagagcat & GAAGTCCCATCACCAGCAAT & Polymorphic \\
\hline 183 & ac. 10 & AU3147 & 197 & 57oC/15cycles,53oC/20cycles & CAAATCCAGAGAGGGGACAA & CCTTTCGTCTGAGGGTCACT & Polymorphic \\
\hline 222 & ct. 14 & AU3148 & 171 & 57oC/15cycles,53oC/20cycles & ACCCCTGTGAACAAGTAGGC & CAGAGGCTTGAGCCAATGA & Polymorphic \\
\hline 199 & ca. 22 & AU3149 & 200 & 57oC/15cycles,53oC/20cycles & TGTGAACCTCTAGGATAAGAGTCA & CTTCAGGGGTTTCCTCCAGT & Polymorphic \\
\hline 161 & at. 13 & AU3150 & 217 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGGGCAAGGTACATGAGAGT & GATGACCTCCCGAGCTGTAG & Can't score \\
\hline 241 & aac. 11 & AU3151 & 280 & 57oC/15cycles,53oC/20cycles & GAGGATGCAGTGAGGACACC & TGTGCACCGAGTGTGTTGTA & Polymorphic \\
\hline 155 & ttta. 12 & AU3152 & 192 & 57oC/15cycles,53oC/20cycles & CAATGTGAGGAAGCCTGGTC & GTGTTTTTGGTTGCCCAGA & Polymorphic \\
\hline 403 & ag. 10 & AU3153 & 204 & 57oC/15cycles,53oC/20cycles & CCCTGGCCATCTCAAAGTAA & CTGCTGTAATGTCGCAAAATG & Polymorphic \\
\hline 442 & ct. 8 & AU3154 & 196 & 57oC/15cycles,53oC/20cycles & CGGACGTCACAGAACTCAAG & GCTTAGACGCGCAGAGTGAT & Polymorphic \\
\hline 193 & ac. 24 & AU3155 & 196 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & AAGGCTGGCTCAGAAAAGTG & CTACCAGCTTGCTCCTCTGC & Polymorphic \\
\hline 39 & attct. 5 & AU3156 & 278 & 57oC/15cycles,53oC/20cycles & GCTCGATAAAAGGTTGACAAAG & CCCACTATGAAAACACACAATTT & Polymorphic \\
\hline 392 & ta. 9 & AU3157 & 201 & 57oC/15cycles,53oC/20cycles & TGAGGACTTCTGCATGGTTTC & AGGAAAACAGGGTGCTGTGA & Polymorphic \\
\hline 104 & tc. 13 & AU3158 & 197 & 57oC/15cycles,53oC/20cycles & CGGTGATGGAAATGTACACG & CAGTACGGGGAAGTGTTTTGA & Polymorphic \\
\hline 74 & ca. 21 & AU3159 & 197 & 57oC/15cycles,53oC/20cycles & GTTGGAGAAAGACCGCACAT & ATGTGGGAGAGCCCACTAAA & Polymorphic \\
\hline 370 & tta. 17 & AU3160 & 188 & 57oC/15cycles,53oC/20cycles & TCATGTCATGGAGGGTTTTT & CTCCACTCAGACATGGGACA & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 200 & ttg. 6 & AU3161 & 228 & 57oC/15cycles,53oC/20cycles & CCTTCATGGCTGAACAGGAC & GCAAAACATGTCCCACCATT & Polymorphic \\
\hline 154 & ca. 14 & AU3162 & 169 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ACACTGCGTGCTGAACAGAG & TTGCCCACGTGACATTTAGT & Polymorphic \\
\hline 252 & tg. 14 & AU3163 & 169 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCACTACCCTCCAGTGCTTT & AGTACCTTGGGCAGCATCAG & Polymorphic \\
\hline 45 & ag. 18 & AU3164 & 191 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGTAACGCGTGACGATTCTC & GAGGCAGGCTTGAAACAACT & Polymorphic \\
\hline 170 & ac. 19 & AU3165 & 249 & 57oC/15cycles,53oC/20cycles & GCTCTCCCAGTCCATCATGT & GCTTTGGGCGTCTTCTTACA & No segregation \\
\hline 42 & tg. 8 & AU3166 & 181 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GTCTCGAGCAGGTGATAGCC & AGACGTCCTGTCTCGGAAAA & Polymorphic \\
\hline 166 & tta. 15 & AU3167 & 192 & 57oC/15cycles,53oC/20cycles & AACGTTTCAATGGGTGCTGT & GGTTGTGTGACAAAAACGACA & Polymorphic \\
\hline 139 & atcc. 5 & AU3168 & 204 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GACGCAGCGGAATAACTGA & CATTACGCTCCAGCCAGAGT & Polymorphic \\
\hline 59 & ttaa. 13 & AU3169 & 246 & 57oC/15cycles,53oC/20cycles & AACAGGTTAAATGCTGCTTATGA & TCGAATAAGACATGGCAGCTAA & Polymorphic \\
\hline 534 & atcc. 5 & AU3170 & 203 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCCATTGCCAGTATTGGTATC & CGGTGACCCTGTGTAGGATAA & Polymorphic \\
\hline 9 & taga. 6 & AU3171 & 195 & 57oC/15cycles,53oC/20cycles & GGAAAAAGTGAAGCACTGTGAA & CCAGCTGTCTTCGGTCAAAT & Polymorphic \\
\hline 9 & at. 26 & AU3172 & 182 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CGAGATATCTGGGGGAACATT & TCTGACTGTCTCTGCGCATC & Polymorphic \\
\hline 189 & acaa. 6 & AU3173 & 240 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & atgctttgccatgtctatca & CCTTTGGGCATGCTTTCTAC & Not polymorphic \\
\hline 207 & ata. 18 & AU3174 & 214 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GTGCCGTtTCATTATGTTGC & CACCCTAACCAGGGTGTCC & Can't score \\
\hline 246 & gt. 17 & AU3175 & 198 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & AAAGGGCCGAGAGAAGCTC & TGCTGTCCTAAAGCAAATTCC & Can't score \\
\hline 1363 & aaat. 5 & AU3176 & 201 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TCACAGGGTtGCaCtacagc & Atttttgaccgaghgtgiat & Polymorphic \\
\hline 274 & aaat. 13 & AU3177 & 259 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGCAATGAAGACAGTGCAAA & GAGATGCAGAGCCTGGAAGT & Not polymorphic \\
\hline 316 & tc. 14 & AU3178 & 195 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & gTGACAGGAAATGCAGCAGA & CACTACTGTTTGTCGCCAGAAT & Polymorphic \\
\hline 262 & ttg. 7 & AU3179 & 222 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CACTAGATGCAGCACTGGTAAG & GGATGCCTGTTGCACTTCTA & Polymorphic \\
\hline 258 & caa. 6 & AU3180 & 170 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGTGTCACCTGTTCCCTGAG & GATGCATGTCAACAGCGACT & Can't score \\
\hline 130 & atcc. 6 & AU3181 & 199 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ATGGAAAGAAGCCAGGAATG & ATTGTGCCCTGTGATGGACT & Not polymorphic \\
\hline 58 & at. 36 & AU3182 & 160 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGCAGTTTAGCGTGTGCCTA & GCACATATTCACTGTCCATAGCC & Can't score \\
\hline 55 & attr. 8 & AU3183 & 213 & 57oC/15cycles,53oC/20cycles & GAAGCATTGTGGTGCATTGT & CCAGTGTTTTCCAGGGTCAT & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 121 & ttgt. 6 & AU3184 & 267 & 57oC/15cycles,53oC/20cycles & TGGGAGTTAACCAGGGAAAG & GAGGTTTTTCTCCCCAGTTG & Polymorphic \\
\hline 454 & aga. 5 & AU3185 & 205 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCATGGGATTGTGAAGTTGA & CTGCAAGGCCCTTAACACTC & Not polymorphic \\
\hline 404 & aat. 5 & AU3186 & 152 & \(57 \mathrm{oC} / 15\) cycles,53oC/20cycles & CGAGTAACTGCGTGAATTGC & CTGCCCTTCAGACGCTAAAT & Not polymorphic \\
\hline 135 & aaac. 8 & AU3187 & 203 & 57oC/15cycles,53oC/20cycles & TACCTTGTTGGCACAGCAGA & TTTGAATCGACTGTTGCTCAG & Polymorphic \\
\hline 211 & acag. 5 & AU3188 & 191 & 57oC/15cycles,53oC/20cycles & CAACAAATCTCGTGGGAACA & GTGTGAAAGCGCTCATCTGT & Polymorphic \\
\hline 182 & ata. 12 & AU3189 & 222 & 57oC/15cycles,53oC/20cycles & GGGCTTTGATTGAATGCTGT & GGGCGAGTCAGGAGAAAAA & No product \\
\hline 6 & tca. 5 & AU3190 & 201 & 57oC/15cycles,53oC/20cycles & CCCTTCCCTATGACCTCCTC & GGTtAAGAGGATTTGCATCCAT & Polymorphic \\
\hline 116 & att. 13 & AU3191 & 214 & 57oC/15cycles,53oC/20cycles & CCCCATACAAGGTAAAGTGCT & CAGAGGCAGTCAGCTTTTCA & Polymorphic \\
\hline 29 & gt. 17 & AU3192 & 208 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GTACATCACCTGAGGGCACA & GGGAGCCAAGTGCATAAGAC & Polymorphic \\
\hline 276 & ata. 10 & AU3193 & 231 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & tTCATTGCAGACAGCTGAAAG & TGGGGAATATCACAAAGTTCCT & Polymorphic \\
\hline 885 & taga. 10 & AU3194 & 197 & 57oC/15cycles,53oC/20cycles & TCCTAACATGATTTCCACTGAGG & GTAACCAAGGGCTGGATGTG & Polymorphic \\
\hline 140 & gt. 12 & AU3195 & 216 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & acttcacgcaggatgtctat & GCCGTGTACCGGTTTAATCT & Polymorphic \\
\hline 101 & ag. 18 & AU3196 & 198 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCCTCTGGGTGAGCAAAATA & ATGGCCAAACAGAGACAGGT & Polymorphic \\
\hline 281 & ga. 8 & AU3197 & 246 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGGTGGACATCCTCCTCTG & CGTGTCCCAAATGTAGCCTAA & Polymorphic \\
\hline 252 & \(\operatorname{tg} .8\) & AU3198 & 185 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GATGTGGTTCCAACCTCGTTA & GGACTTGGCAGATGTGCTtT & Polymorphic \\
\hline 72 & gt. 9 & AU3199 & 200 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CGCTGTATCTGAGCGATGAC & AGTTGGGGGACACCCTAGAC & Polymorphic \\
\hline 50 & ct. 9 & AU3200 & 200 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & agGGTCCATCATGCTtTCTC & GGGTAAAGTGCTATGCCTGTG & Polymorphic \\
\hline 166 & ca. 10 & AU3201 & 196 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCTCCAGGAGCTTGAGATTG & GGCCATAGCGATAAGAGCAC & Polymorphic \\
\hline 534 & ac. 12 & AU3202 & 204 & 57oC/15cycles,53oC/20cycles & CCTGAGGCCTGAAACTGAGA & GAAAAGCAGCCCAGTTCATT & Polymorphic \\
\hline 189 & ata. 10 & AU3203 & 198 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCTGGGTACTCTGGTTACACAA & AACAGCTTTAACCCCGATGA & Polymorphic \\
\hline 266 & tg. 10 & AU3204 & 209 & 57oC/15cycles,53oC/20cycles & GTTTCCTCCCACAGTCCAAA & GTGAAATCCTGGAGGGACTG & Polymorphic \\
\hline 246 & ca. 22 & AU3205 & 262 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TCACACGGCCACATtagGta & CAGAAGGGGCAGAAGGTACA & Polymorphic \\
\hline 246 & agtg. 5 & AU3206 & 195 & 57oC/15cycles,53oC/20cycles & CAACAGACTGTGCCGGAGT & ACGTGGTCGATAAGGCATTC & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{aligned}
& \text { Repeat } \\
& \text { Type }
\end{aligned}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 274 & act. 6 & AU3207 & 168 & 570C/15cycles,53oC/20cycles & GAAGCGTGCCAATAATTCTGA & GTCTTTTGACCAAATATGAGAACA & Not polymorphic \\
\hline 274 & tg. 19 & AU3208 & 199 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TCATGTCAACAAGCGGTCTG & TCAGACGCTGCATtTtTCTG & Polymorphic \\
\hline 316 & tg. 27 & AU3209 & 187 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CATGAATGAGAGGGCATCAG & GATGCCAATCAAAGCAGGAT & Polymorphic \\
\hline 609 & aat. 5 & AU3210 & 252 & 570C/15cycles,53oC/20cycles & CGGTCGTAGTGAACCATGC & CTTGCTGAGCTTACGGGTGT & Can't score \\
\hline 130 & tta. 6 & AU3211 & 153 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & tgGtgttcactttatccacagc & GTGCTTTTCAGTTTCTCTGCAA & Not polymorphic \\
\hline 58 & at. 34 & AU3212 & 188 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & tGCAGTtTAGCGTGTGCCTA & CCACCCATACTGTTATCTGCTC & Polymorphic \\
\hline 58 & tatc. 6 & AU3213 & 201 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GTCTACTGCCAATCCTTAAGAGC & GCTCCTGCATCGGTAAAGTC & Polymorphic \\
\hline 55 & tta. 15 & AU3214 & 209 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCGCACCAAACTAACAGACA & TGAGTGGGCGCTATGATAAG & Polymorphic \\
\hline 121 & at. 8 & AU3215 & 202 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & tgtgtagccagaiatacagatgc & GACAGCCAGGCACAGAGATA & Polymorphic \\
\hline 404 & ttta. 5 & AU3216 & 201 & 570C/15cycles,53oC/20cycles & GTGAGGCGGAAATGCTACTT & AATGCCTTGACAGCATGTTC & Polymorphic \\
\hline 211 & ataa. 11 & AU3217 & 213 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAGATCCTTCCCAGTCTCCA & CCAAAATGGGGAAATCACAA & Polymorphic \\
\hline 182 & ta. 39 & AU3218 & 206 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & tTCCCTAATGTGCCTGACATC & ACCCAACCCTGAAAGTGTGA & Polymorphic \\
\hline 6 & ac. 9 & AU3219 & 202 & 57oC/15cycles,53oC/20cycles & CACGGCAGACCTTAGCAATA & CAGAGCTGCTGCAACGTAGA & Polymorphic \\
\hline 181 & aaat. 5 & AU3220 & 199 & 570C/15cycles,53oC/20cycles & TCATATTGGTGAAAGGTGTTGC & TAGTTCACGTGCGCTGAAAG & Not polymorphic \\
\hline 885 & tg. 13 & AU3221 & 198 & 570C/15cycles,53oC/20cycles & CAGCTAACCTGCACAGACCA & CACAGCCAACAATGAGTGCT & Polymorphic \\
\hline 885 & aac. 8 & AU3222 & 180 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCGTTGAATTATTTCACTCACAA & TGACCGGAGCTTTATTTATGC & Polymorphic \\
\hline 140 & gt. 9 & AU3223 & 211 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & AAAGCGGTTTACTGTACTTCCAA & GTGTACGAGCTGAGGAGTGCT & Not polymorphic \\
\hline 101 & tcta. 5 & AU3224 & 202 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TTGGTTTATCTGTGGGTAGGAAA & TTTCGCAAACTTTCAAGCAC & Polymorphic \\
\hline 37 & aaat. 6 & AU3225 & 223 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGAACCTTGCTAACAAAACGAA & CtTAAGCTGTATTGCAAAAATAGGA & Polymorphic \\
\hline 177 & ttta. 5 & AU3226 & 208 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAAAGGGTCGTCACACCAA & CCAAACGCATCCTACACACA & Polymorphic \\
\hline 281 & ac. 10 & AU3227 & 210 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & AGGGGATTACACCTCCAAGC & ttgttgacaigaccatacaca & Polymorphic \\
\hline 281 & ac. 36 & AU3228 & 209 & 570C/15cycles,53oC/20cycles & CCATTGTCCCTACATGAAAGC & ATGTGCTCTGAACAGACATGC & Polymorphic \\
\hline 72 & ata. 6 & AU3229 & 214 & 570C/15cycles,53oC/20cycles & ACCGCTCCTCCACAGACTAA & CCCAGTTCCTGTAGGTTTGC & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \begin{tabular}{l}
Repeat \\
Type
\end{tabular} & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 72 & ac. 10 & AU3230 & 192 & 57oC/15cycles,53oC/20cycles & GTGTCTGAAGGGCCAAAGAG & CGCTAATCAGTCTAAATGCTTTC & Polymorphic \\
\hline 9 & ctt. 5 & AU3231 & 195 & 570C/15cycles, \(530 \mathrm{C} / 20 \mathrm{cycles}\) & CTTGAGCAAGGCCTTTAACC & TGGCTGTGATTGATGAGTGC & Polymorphic \\
\hline 9 & ta. 32 & AU3232 & 181 & 57oC/15cycles, \(530 \mathrm{C} / 20 \mathrm{cycles}\) & TGACTAGGCTAAAGGCTCAACA & TGACTGTTTCGCATCCTCAG & Polymorphic \\
\hline 609 & tc. 16 & AU3233 & 164 & 57oC/15cycles, \(530 \mathrm{C} / 20 \mathrm{cycles}\) & CTGCTTGAAAAGCAAGATGAAA & GACACCCATGATTGCGTCTA & Polymorphic \\
\hline 130 & gt. 12 & AU3234 & 204 & 57oC/15cycles,530C/20cycles & GCGAGGAGCAGCTCATAAAA & CAAGGTCTCTCCTCAGTGGTG & Polymorphic \\
\hline 140 & att. 19 & AU3235 & 233 & 57oC/15cycles,530C/20cycles & CCACCACTGAAATCACCATT & CGCATGTTCCATGTTTTGTT & Can't score \\
\hline 281 & aaat. 5 & AU3236 & 181 & \(57 \mathrm{C} / 15\) cycles, \(530 \mathrm{C} / 20\) cycles & GGGTGATAGATGTTGGGTCAC & AAGTATTTGCCCCATCCTGA & Polymorphic \\
\hline 534 & at. 8 & AU3237 & 194 & 570C/15cycles, \(530 \mathrm{C} / 20 \mathrm{cycles}\) & GTGCAGATCCACATAAGTCCA & GGATAAACCCGTGTTGTGGT & Polymorphic \\
\hline 443 & catc. 7 & AU3324 & 169 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 530 \mathrm{C} / 20\) cycles & TGCAAATTGCCCCAAGTAGT & CCCTGGGATAGGTTCCAGTT & Polymorphic \\
\hline 189 & ca. 17 & AU3325 & 279 & \(57 \mathrm{CC} / 15\) cycles, \(530 \mathrm{C} / 20 \mathrm{cycles}\) & CATGTGCTTACTCTTTCTCTCTCG & TGTGGGTTCCCATGGATATT & Not polymorphic \\
\hline 189 & ttta. 5 & AU3326 & 206 & 57oC/15cycles,530C/20cycles & GTTAGAGGCCAAGGCGAAAT & GGATTTGCATGTCCAAAATG & Polymorphic \\
\hline 480 & gat. 5 & AU3327 & 206 & \(57 \mathrm{CC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCCCGTAAAGGATtTGTTCA & ACGATCCCATCCACACTGAG & Polymorphic \\
\hline 480 & ga. 20 & AU3328 & 188 & 57oC/15cycles, \(530 \mathrm{C} / 20 \mathrm{cycles}\) & AAGGAGTCTCCAGTGTCAGCA & TGAGGAACATCCAAGAGTTTCA & Polymorphic \\
\hline 191 & taaa. 10 & AU3329 & 198 & 57oC/15cycles,530C/20cycles & GACTGGGTGTAAACAGAATGACC & GCCATCAGCCATTCATGTAG & Polymorphic \\
\hline 191 & tta. 5 & AU3330 & 195 & 57oC/15cycles, \(530 \mathrm{C} / 20 \mathrm{cycles}\) & GCCGTGAGAAAAAGCACACT & TGTTGATGTACACGCAGCATT & No segregation \\
\hline 190 & ga. 8 & AU3331 & 201 & 57oC/15cycles,530C/20cycles & GCTCTTCCAATCAGCTGGAC & CCAGAGTGTTTCAGCCTCCT & Not polymorphic \\
\hline 159 & ga. 20 & AU3332 & 182 & \(57 \mathrm{C} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCCTATCCATCATGCTTTGC & agGcgctghanatghatatt & Polymorphic \\
\hline 275 & ca. 17 & AU3333 & 205 & \(57 \mathrm{CC} / 15\) cycles, \(530 \mathrm{C} / 20 \mathrm{cycles}\) & GCAAACCCAAGGAAGTGTTG & CCTTGCTGCTACGTCTTTGA & Polymorphic \\
\hline 266 & ca. 9 & AU3334 & 204 & \(570 \mathrm{C} / 15\) cycles, \(530 \mathrm{C} / 20\) cycles & CTCAGTAGATCCCCCAATGC & tgatg gGanacgccatacat & Polymorphic \\
\hline 246 & tta. 7 & AU3335 & 246 & \(57 \mathrm{CC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAGAGCCTCCGAATGTTACC & GCTTTCTGTGAGGATGCATTT & Polymorphic \\
\hline 209 & ttta. 7 & AU3336 & 179 & \(57 \mathrm{C} / 15\) cycles, \(530 \mathrm{C} / 20 \mathrm{cycles}\) & GGTTCCAGTTGTTCCACGTT & ACATGTTTGTGAAGTGCTGGA & Polymorphic \\
\hline 1363 & ac. 13 & AU3337 & 210 & 570C/15cycles, \(530 \mathrm{C} / 20 \mathrm{cycles}\) & AGGAGTCTCGGTGCACTAGC & CTCCATGTGACACGTATGGTG & Not polymorphic \\
\hline 274 & tta. 9 & AU3338 & 221 & 57oC/15cycles, \(530 \mathrm{C} / 20\) cycles & CCTCCAGCTCTACCCCTTTT & CTCGGCAGCACCTGTACATA & No product \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \begin{tabular}{l}
Repeat \\
Type
\end{tabular} & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 2 & gt. 11 & AU3339 & 196 & 570C/15cycles,530C/20cycles & AGGAGTGCCAATGGTAGTGG & CCACCAGCACATGCAAATAC & Polymorphic \\
\hline 262 & tatat. 11 & AU3340 & 225 & 57oC/15cycles, \(530 \mathrm{C} / 20\) cycles & CATGATTGAGGGGAACACTG & GGCTCTCGCTTGATCCTATG & Polymorphic \\
\hline 262 & aaat. 8 & AU3341 & 206 & \(57 \mathrm{C} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGGAAGACCGATCTCCAGTT & GGCAACCTGAACAAACACAA & Polymorphic \\
\hline 194 & ag. 9 & AU3342 & 207 & 57oC/15cycles, \(530 \mathrm{C} / 20\) cycles & GCCATtTACCGAGAGTGGAG & ATTCCCGTACAGCAGAGCAC & Polymorphic \\
\hline 194 & ag. 8 & AU3343 & 215 & 570C/15cycles, \(530 \mathrm{C} / 20\) cycles & CGTATCGGACTTCCTTCTGC & CTCTTATTGCCAGCACAGCA & Polymorphic \\
\hline 130 & ag. 32 & AU3344 & 204 & 570C/15cycles, \(530 \mathrm{C} / 20\) cycles & CAGCAATGTGAACAGGCTCT & AATCCATGCTGAGCTGTGTG & Not polymorphic \\
\hline 169 & acc. 5 & AU3345 & 219 & 57oC/15cycles, \(530 \mathrm{C} / 20 \mathrm{cycles}\) & CCGCACCTTAGTAGCAGTGT & TGGGCATtTTGATGAAACCT & Polymorphic \\
\hline 454 & aga. 5 & AU3346 & 215 & 57oC/15cycles, \(530 \mathrm{C} / 20 \mathrm{cycles}\) & GACCATGGGATTGTGAAGTTG & GCCCTTCTGCAAGGTTCTTA & Polymorphic \\
\hline 454 & aga. 5 & AU3347 & 205 & \(57 \mathrm{CO} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCATGGGATTGTGAAGTTGA & CTGCAAGGCCCTTAACACTC & Polymorphic \\
\hline 38 & ag. 10 & AU3348 & 207 & \(57 \mathrm{C} / 15\) cycles, \(53 \mathrm{oC} / 20\) cycles & ACATGCCTTAACCTCCCACA & CGACCTGTCCTTTAGGCAAC & Polymorphic \\
\hline 211 & ga. 18 & AU3349 & 204 & 57oC/15cycles, \(530 \mathrm{C} / 20 \mathrm{cycles}\) & GCAGCAAACAAAATAAAACCTG & CGTTTCTACGGCTCTTCACA & No segregation \\
\hline 149 & ga. 16 & AU3350 & 177 & \(57 \mathrm{C} / 15\) cycles, \(53 \mathrm{oC} / 20\) cycles & GTACCGATGCCACCAAAAGT & GTGTGCGTtTAGGAATGCAG & Polymorphic \\
\hline 149 & tg. 8 & AU3351 & 193 & \(57 \mathrm{CO} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & GACCGGCATCTCAATCTTGT & GATCAGGTGACGATGCAAAT & No product \\
\hline 182 & ata. 20 & AU3352 & 214 & \(57 \mathrm{CO} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGGCTTTGATTGAATGCTGT & CAGGTGTGAAAATGCCTGAA & Polymorphic \\
\hline 6 & tttg. 7 & AU3353 & 231 & \(57 \mathrm{C} / 15\) cycles, \(53 \mathrm{oC} / 20\) cycles & GCCAGGATATCTCGCTTACA & GTGCTTCAGCTGCTTCAAGA & Polymorphic \\
\hline 116 & tca. 7 & AU3354 & 197 & \(57 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ATCGCCCCAACTTTCGTTTA & CTCACTCTCGCCACGTGATA & Polymorphic \\
\hline 278 & tcta. 9 & AU3355 & 197 & \(570 \mathrm{C} / 15\) cycles, \(530 \mathrm{C} / 20\) cycles & GGATGTGTAAAGCCCCAGTG & ACTGGTGCTCCCAACTTCAA & Polymorphic \\
\hline 278 & ac. 11 & AU3356 & 187 & \(57 \mathrm{C} / 15\) cycles, \(530 \mathrm{C} / 20\) cycles & CTCACCGGGAGAAGAATGAG & CATCCCGGAAATGAATGACT & Not polymorphic \\
\hline 455 & ag. 23 & AU3357 & 169 & \(57 \mathrm{C} / 15\) cycles, \(53 \mathrm{oC} / 20\) cycles & TGGCTGAGGAGCTAGAGCAT & GAAGTCCCATCACCAGCAAT & Polymorphic \\
\hline 13 & aaat. 5 & AU3358 & 224 & \(57 \mathrm{C} / 15\) cycles, \(530 \mathrm{C} / 20\) cycles & TGTGCAAAAGTCTGAGACACG & CTTGCAGCTCATTTCCTTGA & Not polymorphic \\
\hline 29 & tca. 5 & AU3359 & 200 & \(57 \mathrm{C} / 15\) cycles, \(530 \mathrm{C} / 20\) cycles & AGAAGGGCAATTTGTGCAAT & CAGCAGACCTGTTTGGAGGT & Polymorphic \\
\hline 183 & ctt. 7 & AU3360 & 245 & \(57 \mathrm{C} / 15\) cycles, \(530 \mathrm{C} / 20\) cycles & GCAGACGTATTGCGTCATTT & GGCAGTAGATTGGCAGGAAA & Polymorphic \\
\hline 222 & ta. 36 & AU3361 & 218 & 57oC/15cycles,530C/20cycles & TGATCCGGGGTTGTGTATATC & ACCCTTTCCATGCAAGTGAC & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 241 & tta. 12 & AU3362 & 205 & 57oC/15cycles,53oC/20cycles & CAACCTCATGTGGGGTCAC & GAGAGCGTGTTGGACTTGGT & Polymorphic \\
\hline 181 & tg. 8 & AU3363 & 211 & 57oC/15cycles,530C/20cycles & AAGAGGGAAAATTCGGAGGA & CTGGGTtTCAGAGAGGGAGA & No product \\
\hline 276 & atcc. 5 & AU3364 & 205 & 57oC/15cycles,53oC/20cycles & AGGGTATCCCAAAGGTCTCC & CTGGGATAGGCTCCAGGTTC & Polymorphic \\
\hline 885 & aat. 10 & AU3365 & 217 & 57oC/15cycles,53oC/20cycles & TCAAATGATGCCCAGGAAAT & GGCCTGCCAGAATCTACTGA & Polymorphic \\
\hline 442 & tcceg. 5 & AU3366 & 199 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & GTtTCGGCAGACCAATAGGA & CCACCATTGCCGTCTAAAAC & Polymorphic \\
\hline 193 & ta. 17 & AU3367 & 191 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAGGAGGAGCTGGACTCTGT & TCATTACCCAGGGTTGCATT & No product \\
\hline 101 & aaat. 7 & AU3368 & 194 & 57oC/15cycles,530C/20cycles & CACATGGGTGTTGGATCACT & GCTGCTACTGAAAGTGCACAA & Polymorphic \\
\hline 281 & tatt. 5 & AU3369 & 209 & 57oC/15cycles,530C/20cycles & GGGACAAAGGCAATtTGAGT & CAGCGCTGTGAAAGACTGAT & No segregation \\
\hline 370 & ta. 18 & AU3370 & 196 & 57oC/15cycles,53oC/20cycles & GGTGTCAGGTGACTTTAATGTGATT & CTCCCATTCAATTGCAACAA & Polymorphic \\
\hline 200 & attc. 5 & AU3371 & 174 & 57oC/15cycles,53oC/20cycles & TTGGATCTGTCAGCTTCGTCT & TGACCCCGACCAGAATAAAG & Not polymorphic \\
\hline 154 & tga. 8 & AU3372 & 192 & 57oC/15cycles,53oC/20cycles & GATTAAACTAATGGATGGAGAATCG & GCGAAGTCATTCAGCGTTAG & Polymorphic \\
\hline 72 & ag. 8 & AU3373 & 174 & 57oC/15cycles,530C/20cycles & TCGTTCCTCTCCTCCATCTG & CAGATCAGATTCCCCGTCTC & Polymorphic \\
\hline 50 & ttat. 9 & AU3374 & 224 & 57oC/15cycles,530C/20cycles & CCCCTTTTCCTTGCATTACC & TGAAGTGCTGCTTGAATGGT & Polymorphic \\
\hline 50 & tg. 11 & AU3375 & 191 & 57oC/15cycles,53oC/20cycles & CGTGTGCtttattigacaga & GGACCGAGTACCTGTTCCAG & Polymorphic \\
\hline 170 & acag. 5 & AU3376 & 197 & 57oC/15cycles,53oC/20cycles & CATGAGCTGCACACACTCG & TGTCAAACCCCAATACTGAGAG & Polymorphic \\
\hline 170 & gt. 10 & AU3377 & 181 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & CTCCGAGTTGTtTTCACATTG & TTGGTCCCCTGGAGTTTGTA & No product \\
\hline 166 & tta. 15 & AU3378 & 192 & 57oC/15cycles,53oC/20cycles & AACGTTTCAATGGGTGCTGT & GGTTGTGTGACAAAAACGACA & Polymorphic \\
\hline 9 & tcc. 9 & AU3379 & 176 & 57oC/15cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & ACCCTTGTTCTGTGCAGGTC & CCTTGTGCAAACACAACAGC & Polymorphic \\
\hline 189 & agat. 13 & AU3380 & 300 & 57oC/15cycles,53oC/20cycles & CTGACATGTTTCTGATGGATACAA & CGCATCTGCATTACACAAAC & Polymorphic \\
\hline 207 & ac. 12 & AU3381 & 194 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & GACCCTGAGGACTTGGATTG & TCCCCAGTAATCCACACTCTG & Polymorphic \\
\hline 130 & ca. 25 & AU3382 & 196 & 57oC/15cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & ATGTGGACACCTGACCATGA & GTAGTAGCAGGGCAGTTGCTG & Polymorphic \\
\hline 211 & aagtc. 27 & AU3383 & 216 & 57oC/15cycles,530C/20cycles & CAGGTCAGGTCAGGTCAGGT & CAACCTGGCACCATTATTCA & Polymorphic \\
\hline 278 & atct. 20 & AU3384 & 195 & 57oC/15cycles,53oC/20cycles & CGAATTGCACCTACAGAGATGA & CGTGCACCTGAAACGTAATTT & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 40 & ca. 14 & AU3385 & 221 & 570C/15cycles,53oC/20cycles & CACAGAATGCCATGGAGAAA & CTACCAGGAGCCTTGACTGC & Not polymorphic \\
\hline 181 & aaat. 8 & AU3386 & 292 & \(57 \mathrm{oC/} 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CATCAGCATtTCCTGAAGATCA & ATCCGTGCTAATGCCAGAAG & Can't score \\
\hline 276 & taga. 5 & AU3387 & 207 & \(57 \mathrm{oC/} 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCCATATTGGAGGAGACCAG & CATTCATGTCCATACCTGTCC & Not polymorphic \\
\hline 140 & ac. 8 & AU3388 & 200 & 570C/15cycles,53oC/20cycles & AAGAGTGTAGGTGGACGGTCA & CCCCTtTTCTGTACCCCATAC & Can't score \\
\hline 140 & caa. 6 & AU3389 & 227 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCCGCAAGATtTtTCCAAT & ATACCTGCAACCTGGAATGG & Can't score \\
\hline 281 & tta. 15 & AU3390 & 207 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CTGCCCCCATCATTAGACAT & GACAATTGAAATCATATGGTGGA & Polymorphic \\
\hline 200 & taaa. 5 & AU3391 & 196 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGTTTAAAGCCGGATGTCCT & CCTGTCCTGATGACAAACTGG & Polymorphic \\
\hline 79 & aata. 5 & AU3392 & 250 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCCAAAGCCTTGAGCTACTG & TGCTACTGTtTACTGCTCTTTTGG & Polymorphic \\
\hline 79 & ag. 25 & AU3393 & 200 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & gTCCCCACAGCACAGAGTtT & TGGATGTGTCGAATACTTCCTG & Polymorphic \\
\hline 145 & ca. 22 & AU3394 & 197 & 57oC/15cycles,53oC/20cycles & GTGTTGACGCTGTAACACACA & AGCGAATTTATCTGGGGCTA & Polymorphic \\
\hline 145 & gt. 14 & AU3395 & 231 & 57oC/15cycles,53oC/20cycles & GCCAAAATGTCTTTGGAGGA & CTACGGTGACATTTGGGTCA & Polymorphic \\
\hline 217 & tta. 11 & AU3396 & 226 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & tTGGATTCTCTGGGAAGGTG & CCATGTGTACACTGCAGAAAAA & Not polymorphic \\
\hline 229 & aat. 5 & AU3397 & 189 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GAGGCCACTGCTTAGTGACG & CACGGAATTCCAGCATTCTT & Polymorphic \\
\hline 229 & tta 5 & AU3398 & 194 & 57oC/15cycles,53oC/20cycles & CACGGAATTCCAGCATTCTT & TGTAGTTTGAGGCCACAGCTT & Polymorphic \\
\hline 267 & tc. 22 & AU3399 & 215 & \(57 \mathrm{oC/} 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ttgtcccaaccttaccattc & ATGAGCAAGCGGTAATGGAG & Polymorphic \\
\hline 267 & tcca. 5 & AU3400 & 219 & 57oC/15cycles,53oC/20cycles & CTAGCAGCACAATTGGCATT & TTCCCTGTGACCCTGAAAAG & Polymorphic \\
\hline 339 & aatg. 5 & AU3401 & 167 & \(57 \mathrm{OC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & Aattgcatgttcceagtattc & CATGGTCGTGTTATGTGCTG & Not polymorphic \\
\hline 339 & cac. 9 & AU3402 & 221 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CTCGGTCAGCTGATGGGTAG & TTCTCCCAATCTGACGTGCT & Polymorphic \\
\hline 351 & ga. 9 & AU3403 & 245 & 57oC/15cycles,53oC/20cycles & GCCGTTGGAGTCTTTGACAT & CCCTTTGCTITCTCTCTCCA & Polymorphic \\
\hline 351 & att. 7 & AU3404 & 219 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & AACGCTGCAATGTGGATTTT & CGGTGTTCTTTATGTCCACCA & Polymorphic \\
\hline 358 & gt. 13 & AU3405 & 234 & 57oC/15cycles,53oC/20cycles & CACCCTAATGGCATCGATTT & TGTGCAGACAGGTGGGAATA & Polymorphic \\
\hline 358 & tc. 11 & AU3406 & 194 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCTCTGGATAATGAGGGTGTG & GGTCGAGCAGAACAACGTCT & Polymorphic \\
\hline 363 & ag. 8 & AU3407 & 180 & 57oC/15cycles,53oC/20cycles & GCCTCAAAGCCTTCTGTTTG & GATTGTGCTCCAGTCATCCA & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 369 & at. 8 & AU3408 & 190 & 57oC/15cycles,53oC/20cycles & CAGAAATATGCGTGCAAACC & GCGCCCTAAATATGGGAGAT & Polymorphic \\
\hline 369 & ttg. 7 & AU3409 & 234 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CACCTGAGGTCAAATCACCA & GTGCGTtTGGGCTATAAAGTG & Polymorphic \\
\hline 377 & tgga. 5 & AU3410 & 206 & \(570 \mathrm{C} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & GATGAGTTGGCACCTTGTCC & GCCTTACATCAGCGTTTTTCA & Not polymorphic \\
\hline 377 & tcta. 7 & AU3411 & 200 & 57oC/15cycles,53oC/20cycles & ttcttgcccaancacagtttc & GATCCCAAAGGAAATTCTTGC & Polymorphic \\
\hline 381 & taa. 13 & AU3412 & 228 & 57oC/15cycles,53oC/20cycles & TTATTCCAAAAGGCCTGGTC & CAGTTGATTGCTGATGCCTTC & Polymorphic \\
\hline 381 & ttta. 7 & AU3413 & 206 & 57oC/15cycles,53oC/20cycles & GCATtTTGGATCAGTTGCAG & GGCACATTAACGTTACCATCG & Not polymorphic \\
\hline 406 & ct. 15 & AU3414 & 200 & 57oC/15cycles,53oC/20cycles & TTGACCCAGGACCTCAGTG & CTGCTTAAGAGCGAGGAAGC & Polymorphic \\
\hline 406 & ga. 21 & AU3415 & 198 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ACGTGGGCCTCTGTAATCAG & GTCTTGCATGCTCAGCTGTC & Polymorphic \\
\hline 441 & gaa. 5 & AU3416 & 200 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CTGCAGGTTGCTGAGACTGT & AGGTGCGCATAGACACACTG & Polymorphic \\
\hline 441 & attr. 6 & AU3417 & 208 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CTGCGTTCTAAAGAATTCAGCA & CTCCGTGGACTtTCGGAATA & No segregation \\
\hline 451 & ac. 10 & AU3418 & 214 & 57oC/15cycles,53oC/20cycles & GATGGCTTGGTTTCAGTGCT & CTGTGGGACAAGTGAGCAAG & No segregation \\
\hline 451 & ac. 10 & AU3419 & 214 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GATGGCTTGGTtTCAGTGCT & CTGTGGGACAAGTGAGCAAG & Polymorphic \\
\hline 468 & ag. 37 & AU3420 & 193 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCGCTTAAAAGCAAATAGATTG & GGGCATGCCTTGGTTATATG & Polymorphic \\
\hline 468 & ca. 11 & AU3421 & 195 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ttcttcatgccttactctang & GGGCATGCCTTGGTTATATG & Polymorphic \\
\hline 470 & ggt. 5 & AU3422 & 207 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & AGTGTCTGGAGGAGGACGTG & ttgtatggagcagcacagta & Not polymorphic \\
\hline 470 & ggt. 5 & AU3423 & 235 & 57oC/15cycles,53oC/20cycles & TCGCACTCTCATAAGGACCA & CACTCAGCCCCAGTCCTAAC & Polymorphic \\
\hline 471 & ttta. 10 & AU3424 & 243 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TACAAAATGGTGCCCACAGA & CGAGCTACAAATTGGGGTGA & Polymorphic \\
\hline 471 & gtga. 5 & AU3425 & 193 & \(570 \mathrm{C} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAGCTTTCCCGAAACGTAAA & GTGCATTGAGAAAGGCACAG & Polymorphic \\
\hline 526 & ata. 12 & AU3426 & 209 & 57oC/15cycles,53oC/20cycles & TCACCCTGACATTACCTGGTT & CATCATGCTTCTGCAACTTCA & Polymorphic \\
\hline 526 & tatt. 5 & AU3427 & 205 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAGCTTGGAACGCTATCAGA & GAGGGGAATCCATGACACC & Not polymorphic \\
\hline 538 & ttg. 8 & AU3428 & 179 & 57oC/15cycles,53oC/20cycles & GTGCAGCGAAACTGAATCAA & AAACTGCTGCGGGTCTACTG & Can't score \\
\hline 581 & aat. 22 & AU3429 & 221 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGTTTCTTGATGAAGCACCTG & TCGTGTTTCTGCTTGGAGTTT & Can't score \\
\hline 581 & aat. 5 & AU3430 & 200 & 57oC/15cycles,53oC/20cycles & GAGGACGCTGATGGAGTCAT & CCGGAAATTGGATTCTGGAT & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 588 & aat. 7 & AU3431 & 187 & 57oC/15cycles,53oC/20cycles & GGCCGTTGACGTTACCTTTA & GTCCCAACCTGTGAGCTGTT & Polymorphic \\
\hline 588 & aaat. 6 & AU3432 & 204 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TCTGTCTCAAATGCTCGGTCT & GTGCCAAATGTTCAAAGCAA & Polymorphic \\
\hline 590 & tg. 13 & AU3433 & 174 & \(57 \mathrm{oC/} 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GTGGGGGAGAAAATCCATTC & ACAAGCACACATTCCCTCGT & Polymorphic \\
\hline 590 & ga. 20 & AU3434 & 201 & 57oC/15cycles,53oC/20cycles & agccacagtgtatccagact & CTGCtTCATCGCTCTGTCAA & Polymorphic \\
\hline 595 & att. 5 & AU3435 & 228 & 57oC/15cycles,53oC/20cycles & ACATCCCCCTGGCTCTTAAT & TGGGAATTGGAGTAGAACAGG & Polymorphic \\
\hline 595 & tg. 10 & AU3436 & 209 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCGAGGGCAAGGAGTATCT & TGATGCACCAGAGAACCAGA & Polymorphic \\
\hline 604 & tta. 19 & AU3437 & 201 & 57oC/15cycles,53oC/20cycles & TCACCCATTAACCAGCACAA & CTTCCAGAGTCGGTTCCACA & Polymorphic \\
\hline 604 & atga. 5 & AU3438 & 200 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAAGGCCACAGAGGACATtT & GTGCACAATTGTTTTCACCTG & Not polymorphic \\
\hline 652 & attt. 11 & AU3439 & 256 & 57oC/15cycles,53oC/20cycles & GCTGAAATGCGTCACATGAT & GGGTTAGGGCTGCTTGATTA & Polymorphic \\
\hline 652 & tat. 8 & AU3440 & 194 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGAATGAAAACGCTCAAACG & GATGCTCGGCTTGGATAGAG & Polymorphic \\
\hline 653 & attt. 5 & AU3441 & 215 & 57oC/15cycles,53oC/20cycles & CAGAGTGATTTCAATCAATGTAGC & GGTGCTGCTTGAGTGTGGATA & No segregation \\
\hline 653 & attr. 5 & AU3442 & 242 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCCCAACTCTAACCATAAATCC & CTGATtTCATCTtTGGAGCAA & No segregation \\
\hline 702 & ca. 16 & AU3443 & 212 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAACCTGCagcacanacatt & aACAGGCAGCTGCATTCAT & Polymorphic \\
\hline 702 & tc. 10 & AU3444 & 214 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGGAAGCGGTAACGAAACTT & CGTGAACTGAGGAGTGGCTA & Polymorphic \\
\hline 853 & ata. 8 & AU3445 & 205 & \(57 \mathrm{oC/15cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCTGGAATACTGGGCTCAAA & CGATAAGCAAATGACAGTACAACA & Polymorphic \\
\hline 853 & tta. 6 & AU3446 & 235 & 57oC/15cycles,53oC/20cycles & GCACACTCCTACCAGCCCTA & GTAATGCAACGCAATGTTCG & Polymorphic \\
\hline 875 & atgg. 5 & AU3447 & 200 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCAGGTTGTCACCTCCTTGT & CCACTGTTGTAGGTGGGTCCT & Not polymorphic \\
\hline 875 & ta. 27 & AU3448 & 191 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCTGCTGAGAGTGGTGGTAA & AAAAATGTGAGGGGTGTACTCA & Polymorphic \\
\hline 918 & tat. 11 & AU3449 & 200 & 57oC/15cycles,53oC/20cycles & GCGAATAAAGCACTGTTTCCA & CCATAAGACGACACGCACAT & Polymorphic \\
\hline 918 & tg. 17 & AU3450 & 248 & \(570 \mathrm{C} / 15\) cycles,53oC/20cycles & CATATGGCGGGTTTGTTTCT & TTGGGACACTATGGAAAATGC & No product \\
\hline 949 & ta. 19 & AU3451 & 195 & 57oC/15cycles,53oC/20cycles & GCATAAAGGAACAGAAAATTACCC & TCTGTTGAATACAGCACCAGAA & Polymorphic \\
\hline 949 & tg. 18 & AU3452 & 193 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGGTAAGCCTCTGTTGAGTGA & GGTGTAGGCAGTTCCAGCTT & Polymorphic \\
\hline 997 & ag. 37 & AU3453 & 173 & 57oC/15cycles,53oC/20cycles & TTGTCCATTGCTGTTCCAAT & CAGTCATAACATCGCTCTCG & Not polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & Primer Name & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 997 & at. 33 & AU3454 & 237 & 57oC/15cycles,53oC/20cycles & GAACAGCTTTCGCTCATTCA & CGTGAAAAATTGCCGGTATC & Polymorphic \\
\hline 1017 & ttce. 6 & AU3455 & 224 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGTGGAGACTGCAGAGTTTGTT & GCGTCTGACAAATGCCATAA & Not polymorphic \\
\hline 1017 & ttta. 9 & AU3456 & 186 & 57oC/15cycles,53oC/20cycles & GGATTCCTCTGCATTTCTGC & GTGAAGTATCAACCTAATCATTGACA & Polymorphic \\
\hline 1031 & taa. 12 & AU3457 & 186 & 57oC/15cycles,53oC/20cycles & tGAACACCAGGACAACATGAA & GGTAACCACTACGCCACCAT & Polymorphic \\
\hline 1031 & atga. 5 & AU3458 & 179 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGGTGTCCCAGATAGGGTGT & CTTAAACCCCTGGACCCACT & Polymorphic \\
\hline 1178 & aaat. 5 & AU3459 & 238 & 57oC/15cycles,53oC/20cycles & GCTCCATGGATGGAATtTGT & CGTCAGTTGCTGGGATtTTT & Can't score \\
\hline 1178 & aaat. 5 & AU3460 & 238 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCTCCATGGATGGAATtTGT & CGTCAGTTGCTGGGATtTTT & Can't score \\
\hline 1196 & tta. 5 & AU3461 & 219 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGTGAATGACCTTGAGTTGGA & GCATTCAGTAGCCTGCATCA & Not polymorphic \\
\hline 1196 & ga. 16 & AU3462 & 235 & 57oC/15cycles,53oC/20cycles & TAGCAGGAAATTAGCGGTCA & CACTTGCACAAATGCTTCCT & Polymorphic \\
\hline 1490 & tta. 9 & AU3463 & 203 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & CGTAGATTGCTGTTGCGACT & GGTCGCGTGCACACTATTT & Polymorphic \\
\hline 1490 & ta. 16 & AU3464 & 186 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCGCCTAATGTTGATATTCGT & CAGTAGGCGAAATGCATGTAA & Polymorphic \\
\hline 1509 & ata. 19 & AU3465 & 202 & \(57 \mathrm{C} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & AAGCTGAAGAGTGCAAATGAGA & TCCTTGAGCtTGTGGAAAGG & Polymorphic \\
\hline 1509 & gt. 9 & AU3466 & 196 & 57oC/15cycles,53oC/20cycles & GCTCTGTTAATGACCCGTGAA & ATGACTGCCGCTCACTGTAA & Polymorphic \\
\hline 1598 & acaa. 6 & AU3467 & 191 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TACACAGTTGGGTGTAAGTAAGGTA & GCCCAAAGTTCAGGGTtTCT & Polymorphic \\
\hline 1598 & ga. 18 & AU3468 & 211 & 570C/15cycles,53oC/20cycles & TCCCAACATTCCGTAGTAGACC & CAAATTGTGTGAGGGAGAACAA & Polymorphic \\
\hline 1800 & taaa. 9 & AU3469 & 213 & 57oC/15cycles,53oC/20cycles & TGGTCGGAAGGTGTTCCTAT & CGACGCAGCATTCTGTAAAA & Polymorphic \\
\hline 1800 & ca. 10 & AU3470 & 206 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCACGCTCATGTGAAAACAC & TCACACTGTCCGACGTGACT & Polymorphic \\
\hline 57 & ata. 16 & AU3471 & 229 & 570C/15cycles,53oC/20cycles & TCCCCGTGAAGTCTGTGATA & GCAAGCTTGGCTTGTTGATT & Polymorphic \\
\hline 220 & tc. 17 & AU3472 & 180 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & GATCTGACAGCCCGACATTC & CATTAAAACGGGGGAACCTT & Can't score \\
\hline 225 & ta. 24 & AU3473 & 230 & 570C/15cycles,53oC/20cycles & GGCCCTGTTTCAAAGATGAT & GGGGGTGAGCAATACGACTA & Polymorphic \\
\hline 225 & ga. 11 & AU3474 & 180 & \(57 \mathrm{oC} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCGCTGAACAGAACTGGATT & CCCAAGAACCACTGAGGAAA & Polymorphic \\
\hline 251 & ttgtt. 5 & AU3475 & 201 & 570C/15cycles,53oC/20cycles & AGTCTCCAGTGCCAGTGCTT & CCTTCACCAGCCTTTCTTGT & Polymorphic \\
\hline 251 & ttgtt. 5 & AU3476 & 197 & 57oC/15cycles,53oC/20cycles & CCAGTGCCAGTGCTTTGTAA & TCCTTCACCAGCCTTTCTTG & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 261 & ta. 30 & AU3477 & 266 & 570C/15cycles,53oC/20cycles & GGAAAAAGTGAAGCGCTGTG & GCTCCATGTATATGCCCAAA & Not polymorphic \\
\hline 261 & ata. 20 & AU3478 & 274 & \(57 \mathrm{oC/} 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGTCTGTTTTTACTCTCGCTGA & TGTCACCCAAGTCCATTAACA & Polymorphic \\
\hline 282 & tc. 20 & AU3479 & 190 & 570C/15cycles,53oC/20cycles & TGTACGTCTGCGAGGCTATG & TACACCGTAACGCTGGGAGT & Polymorphic \\
\hline 282 & gaaa. 10 & AU3480 & 207 & 570C/15cycles,53oC/20cycles & TCCACTCCAGCATGTTTCAT & GCCGTGTATTGGTGGAATGT & Polymorphic \\
\hline 295 & ttat. 8 & AU3481 & 188 & 570C/15cycles,53oC/20cycles & agacaccatcgiatcgcatt & GACTCTCCACAGGCATCACC & Polymorphic \\
\hline 326 & aaac. 5 & AU3482 & 169 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCAACTTTGAACCACATTGC & TACCGGATGCTTTCCAACAG & Not polymorphic \\
\hline 326 & aac. 5 & AU3483 & 170 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCAACtttganccacattgc & ATACCGGATGCTTTCCAACA & Not polymorphic \\
\hline 388 & ac. 12 & AU3484 & 224 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & AACAGCATGGGTGATCATAGG & GCACAGGTGCCTGTCAGTAA & Polymorphic \\
\hline 388 & gaat. 5 & AU3485 & 201 & \(57 \mathrm{oC/} 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCACCTGGAGTGAACTGAATG & tttccattgcatctattcgi & Polymorphic \\
\hline 401 & ac. 9 & AU3486 & 184 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & agGcticgigcagacacac & TGGTGCCGGAGAACTTTAAC & Polymorphic \\
\hline 429 & ca. 13 & AU3487 & 196 & 57oC/15cycles,53oC/20cycles & TCTCCCTCTTGGACATCTGC & GCAGTCCAAGGACAAACCAT & Polymorphic \\
\hline 429 & ga. 14 & AU3488 & 200 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CTGAGGATGGTGGTtTtTGC & AAGTGGCGGTGGATATGGT & Polymorphic \\
\hline 469 & tg. 16 & AU3489 & 165 & \(57 \mathrm{oC/} 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGCTCTGTGTTACGTGTtTTCA & GACTTCAGGCTCTGGAATGG & Polymorphic \\
\hline 469 & ca. 36 & AU3490 & 243 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCTAGTGCCCCTGAAGTTTG & GGTGACAGACCCTTCAGAGC & No segregation \\
\hline 477 & gga. 5 & AU3491 & 200 & \(57 \mathrm{oC/} 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CaCctgangatgagcganc & TGTCACAGTAAGCCTCCGGTA & Polymorphic \\
\hline 537 & tag. 5 & AU3492 & 215 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCtTGTTCGACGCGTATTCT & GATGGATGGATAGAGCCTGTG & No segregation \\
\hline 537 & taa. 19 & AU3493 & 198 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGGGTTTATGGCTGAAGACAC & CTGCTCATGGTGCCGTTAAT & Polymorphic \\
\hline 580 & ta. 31 & AU3494 & 188 & \(57 \mathrm{oC/} 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGGCACTGTATGTGCATGTT & AGTGAAGGGTGTGGGACACT & Polymorphic \\
\hline 586 & gt. 14 & AU3495 & 202 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TCCTCCAACAGTCCGAAGAC & CGCTTATCCTACACAGGGTCA & Not polymorphic \\
\hline 596 & tct. 5 & AU3496 & 206 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CGTCTCCGAGAAACACCGTA & CCATtaggtgacgatancac & Polymorphic \\
\hline 596 & aaac. 5 & AU3497 & 201 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & AGGGTGTGAACGACTGTGTTT & GAATTCATCGAGGTGCCAAT & Polymorphic \\
\hline 618 & ac. 18 & AU3498 & 215 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCAGGTCTCAGAGCGTAGGT & CGGACACTITCAAACACACC & Polymorphic \\
\hline 618 & ac. 16 & AU3499 & 185 & 57oC/15cycles,53oC/20cycles & ACACACAGCCCACCTCTTTC & GTTATGCAAATTGGCCCTGA & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 625 & tc. 10 & AU3500 & 201 & 570C/15cycles,53oC/20cycles & GCACGCACACATACAAACCT & TGGGATTCTGGGAGCATTTA & Polymorphic \\
\hline 625 & ca. 11 & AU3501 & 191 & 570C/15cycles,53oC/20cycles & CATTCATCAATGCAGCCAGT & TGTCATTGTTGCTGCCATTT & Polymorphic \\
\hline 695 & tta. 10 & AU3502 & 202 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CTTGACCCTGATTGGGTTACA & CCCCTCTTTATGGGAAGCTC & Polymorphic \\
\hline 695 & tg. 8 & AU3503 & 195 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ACCAGGAGCTTGTTGACTGG & TTCGTTCAGGAATCCAAACA & Polymorphic \\
\hline 227 & ac. 8 & AU3536 & 184 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CATTCCCTTGCTCCTTCATC & TTGAAATGGATTTCCCATAGC & Polymorphic \\
\hline 161 & at. 10 & AU3537 & 188 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCCTTCTTGTGCACTCCATA & CTTCAGCGTTGTCACATGAA & Can't score \\
\hline 181 & tg. 12 & AU3538 & 209 & \(570 \mathrm{C} / 15\) cycles,53oC/20cycles & CAATTGGGCGTtttattigg & ATGAAGCGTTGGATGGATTC & Polymorphic \\
\hline 276 & ttg. 8 & AU3539 & 217 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCagTCagcatanagtgccata & CCAAACTTCAGCAGGTTTTGT & Polymorphic \\
\hline 140 & ac. 8 & AU3540 & 197 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GTGTAGGTGGACGGTCAACTAAG & CCCCTTTTCTGTACCCCATA & Polymorphic \\
\hline 140 & tg. 20 & AU3541 & 200 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGCAGACAGGGAGGAGAAAT & CCTCGTCCTGCAAAGTATCC & Polymorphic \\
\hline 217 & aaat. 9 & AU3542 & 230 & 570C/15cycles,53oC/20cycles & CTTCTGAGCCCATGTCACCT & GCCTGTCTCTCTTCAAAAGCA & Polymorphic \\
\hline 339 & aatg. 5 & AU3543 & 157 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TCCCAGTGTTCCCTGGATAA & CATGGTCGTGTTATGTGCTG & Not polymorphic \\
\hline 377 & ga. 25 & AU3544 & 193 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGGAAATATCACAGCCAGGA & AACGTTCATCCCATGTCTCC & Polymorphic \\
\hline 381 & tg. 21 & AU3545 & 219 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CTGCGTCACATtTTCAGCAC & CTGACACCTGCCATCAAAAA & Polymorphic \\
\hline 441 & at. 8 & AU3546 & 196 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCACTGCATGGTCAAGTtTT & CATGGACAGCTCATTGCCTA & Polymorphic \\
\hline 451 & ac. 10 & AU3547 & 213 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CGGACATGGTACTGGTGATG & GCAGTGAGAGGGAGACCATT & Polymorphic \\
\hline 470 & ggt. 5 & AU3548 & 204 & 570C/15cycles,53oC/20cycles & GTCTGGAGGAGGACGTGAAG & TTGTATGGGGCAGCACAGTA & Not polymorphic \\
\hline 526 & ga. 13 & AU3549 & 182 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TATGTGCAAGCAGCCTTCAG & CCATGAACCCATGAACTTCC & Polymorphic \\
\hline 581 & aat. 5 & AU3550 & 229 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20\) cycles & CTGCATGAGATTTAAAGGGGTTA & CTGGAACGCTTCATTTCCTC & Polymorphic \\
\hline 604 & ta. 17 & AU3551 & 158 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCACATGTGACTCTGATCGT & GCTGGTTTCCTGAAGGTTTG & Polymorphic \\
\hline 918 & ca. 8 & AU3552 & 236 & 570C/15cycles,53oC/20cycles & CCCTGCTGATAGGGATTTTG & TGAGATTGGATGCAGGTGTG & Polymorphic \\
\hline 1017 & aac. 11 & AU3553 & 188 & 570C/15cycles,53oC/20cycles & TGCCTCTATTTGCCTGTTTC & TGTATAAAGTGCCTTGAGAAGCTG & Polymorphic \\
\hline 261 & ata. 20 & AU3554 & 252 & 570C/15cycles,53oC/20cycles & GGTCTGTTTTTACTCTCGCTGAA & TCTTCCTAAACCTCCTTCCTG & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & Repeat
Type & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 401 & cg. 8 & AU3555 & 160 & 570C/15cycles,53oC/20cycles & CATGGGTTCATAATTATTGGTTCA & TGTGCTTTCACACACACTCG & Polymorphic \\
\hline 586 & gat. 5 & AU3556 & 196 & 570C/15cycles,53oC/20cycles & GTGGGTCATtTAGGCAAAACA & TGCTAAATACGGGCTCTGCT & Polymorphic \\
\hline 738 & tat. 5 & AU3557 & 191 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAGTGGCATCACGCATTACT & ttgtgatghantaghgctaga & Polymorphic \\
\hline 738 & taa. 6 & AU3558 & 296 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGTCAACTGGCAACTCTGGA & GCTCTCTGTGGCACCGTTA & Not polymorphic \\
\hline 752 & ata. 5 & AU3559 & 178 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ATGGGTGCATATGGGAGTTG & GGCTAGAATGATGATGCACAG & Not polymorphic \\
\hline 752 & gt. 15 & AU3560 & 184 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & taAcGCaCagctaggcacac & GCTGTGGGCTCGTAATTAAA & Polymorphic \\
\hline 761 & tatt. 5 & AU3561 & 171 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CTGAAGTCGTGGCTTCACAT & TCCACAGGCTAAACCGCTAT & Not polymorphic \\
\hline 761 & agat. 11 & AU3562 & 193 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & AGCTTGTGGTGGCCTAACAG & ATCATCCCAGACCCAAAGGT & Polymorphic \\
\hline 762 & taaa. 8 & AU3563 & 225 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CGTtCCGTtatcatcgtgta & CATGCAATGCAGGTtTGAGT & Polymorphic \\
\hline 762 & gt. 11 & AU3564 & 196 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CTTCACGTCCAGCAGAGACA & GCtGGGTATTGGATCTGAGC & Polymorphic \\
\hline 767 & ga. 22 & AU3565 & 197 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCCATGATTGGCTAATGTCTCT & CGGGACTCCATGAGCACTA & Polymorphic \\
\hline 767 & tatat. 11 & AU3566 & 183 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCGAAAGTGGACCTTTCAAC & CAAATATGGAAAGGAGGCTGT & Polymorphic \\
\hline 772 & tg. 22 & AU3567 & 164 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & acticagccattgaghagga & CCATCTCACATGTTGCTTCC & Polymorphic \\
\hline 772 & tg. 22 & AU3568 & 164 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & acttcagccattgaghagas & CCATCTCACATGTTGCTTCC & Polymorphic \\
\hline 780 & aaat. 6 & AU3569 & 201 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GATCATtTTCCGGAAGGACA & GGGAGCATGTCACCAATCAT & Polymorphic \\
\hline 780 & ta. 8 & AU3570 & 239 & 570C/15cycles,53oC/20cycles & TGTTGAAGTATGCCACCCATC & AGAAATGGAGCTGCAACGAT & Can't score \\
\hline 844 & aaat. 6 & AU3571 & 234 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCCTCACTGGGTAACTTGCT & CAGTTGACATtTTGCTGACG & Polymorphic \\
\hline 844 & aaat. 6 & AU3572 & 234 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCCTCACTGGGTAACTTGCT & CAGTTGACATTTTGCTGACG & Polymorphic \\
\hline 895 & ttta. 6 & AU3573 & 201 & 570C/15cycles,53oC/20cycles & GACACCCAGTCAGTTGTGGA & CAGTGTTTGGTAGGGTTGCAT & Polymorphic \\
\hline 895 & ta. 29 & AU3574 & 280 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGTtTGTCCCGGTACTATGTTG & CCTTCATGAACCATGATCTGC & Polymorphic \\
\hline 939 & ac. 27 & AU3575 & 216 & 570C/15cycles,53oC/20cycles & CCTTCCTCGCCGTCTAAACT & GGGCCTGTGAGATCCGTAA & Polymorphic \\
\hline 939 & ctg. 5 & AU3576 & 199 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCACCATCCCGTACAGTTTC & TGTCGCATTTGGATAAGACG & Polymorphic \\
\hline 941 & attc. 9 & AU3577 & 206 & 570C/15cycles,53oC/20cycles & TTGTCTCAGCCAAGAACAGG & GGGACCAGGGTAAAGCAGTT & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 941 & tg. 36 & AU3578 & 241 & 570C/15cycles,53oC/20cycles & CATTTGACAGGAAACAGCCTCT & GGACTAGCAGCAGTGAGACAAA & Polymorphic \\
\hline 987 & gag. 8 & AU3579 & 193 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGGCAGGCCTAATTTCTGTC & AGGAGACTTCGTCCGGAAAT & Polymorphic \\
\hline 987 & taa. 14 & AU3580 & 201 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCACTGGGCTTCTAGTGGAC & GTGGCTTGAAAGTGGGAACT & Polymorphic \\
\hline 1033 & gt. 9 & AU3581 & 219 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CTGGACAGTTGAAGCATGGA & GTCGATGAAGGAGGGAAACA & Polymorphic \\
\hline 1033 & tc. 8 & AU3582 & 217 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCACTGCTTTTCACCTGCTA & GCTGATGAGTGTTTGGCTGT & Polymorphic \\
\hline 1034 & atg. 5 & AU3583 & 178 & 570C/15cycles,53oC/20cycles & CATGCTCAAGCAATtTTTGG & TCATTTCAATCTTCTGCTTTCTG & Polymorphic \\
\hline 1046 & gt. 11 & AU3584 & 197 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ACACCAGTCTGCTCCTCCAG & CACTGCAGGCATTCTTCTCA & Polymorphic \\
\hline 1046 & tta. 11 & AU3585 & 261 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGGGGAGAAACACCAAGAAT & CACTCCCGGTCAAAAGTTTA & Polymorphic \\
\hline 1062 & at. 11 & AU3586 & 214 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGCGCTCAAGAGTTGCACTA & TGGAGATGCATTGAGGAGAA & Polymorphic \\
\hline 1062 & gt. 16 & AU3587 & 172 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CGCCAATCATTCTGGAGTTT & CACTTGGCAGCATCAAGAAA & Polymorphic \\
\hline 1076 & ttat. 5 & AU3588 & 208 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GTGTTGCGCTtTCTGAGATG & CCCACAACAGTCTCTAGCGTTT & Can't score \\
\hline 1076 & ac. 22 & AU3589 & 180 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGCTTCCCATACCAGTGTGA & ATGCCAATGAAAGGTCCTCA & Polymorphic \\
\hline 1090 & gt. 11 & AU3590 & 207 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CGCttTGTACATGCAGTGTTG & CATCCTGATTAGGGCTGTGG & Polymorphic \\
\hline 1090 & ag. 28 & AU3591 & 208 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAAATCTGGGCCAAATGAAG & GAGGAGTTGCCTCAGGAAGA & Polymorphic \\
\hline 1093 & ttta. 6 & AU3592 & 200 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CaCGCCCTtTCACAGTACAA & CTGCCACCCATCCTTCTATC & Polymorphic \\
\hline 1093 & ta. 16 & AU3593 & 198 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGACGTGTGGTTGCTTAAAGA & GACCGATGTTCCTTCACCAT & Polymorphic \\
\hline 1209 & att. 6 & AU3594 & 205 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCACCAATAGGGCAAGTCTG & CTCCGAATCTGGTGACGATT & Polymorphic \\
\hline 1209 & tg. 8 & AU3595 & 218 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & aACACCCGACTCTCCATCAG & GCACTGGGCTACCTACTTGC & Polymorphic \\
\hline 1234 & ca. 13 & AU3596 & 185 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & Cttgcagttttgcagcaatc & GCTACAGCCTGCACCATTCT & Polymorphic \\
\hline 1234 & ta. 17 & AU3597 & 206 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGAAGCATGAAGCAGCAAAG & GCAAACCTTTTGGGAGAATG & Not polymorphic \\
\hline 1289 & ac. 11 & AU3598 & 218 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & AGCACAAAACTGTGCAGGTG & TCGGATTCTCCAGTAACTCCA & Polymorphic \\
\hline 1289 & \(\operatorname{tg} .8\) & AU3599 & 177 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GTCCTCTTTGCCAAGGTTTG & CTAGGTCTTGCTGGGCACTC & Not polymorphic \\
\hline 1315 & aat. 10 & AU3600 & 219 & 570C/15cycles,53oC/20cycles & GGTCTCGCTCCCAAATGTAA & TGGAAGATTTTAAGGCAGTGG & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 1315 & aat. 5 & AU3601 & 195 & 570C/15cycles,53oC/20cycles & GGTTGGATTCTCTGCTGGAC & TTGCAAGGACCTGATTTATCG & Polymorphic \\
\hline 1421 & ttg. 5 & AU3602 & 205 & 570C/15cycles,53oC/20cycles & GGCACCACCAGTGAAAAGAT & GGGTtGTTGGAGGAAACAGA & Polymorphic \\
\hline 1421 & gt. 19 & AU3603 & 204 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCCTTTTGCAAGGTGTCTTT & CACTCTCAGACAACCACACG & Polymorphic \\
\hline 1481 & aac. 7 & AU3604 & 213 & 570C/15cycles,53oC/20cycles & CCACTTGATGAAGACAACTAGTCAG & GACTATCTCCATCCCCCATGT & Not polymorphic \\
\hline 1484 & att. 8 & AU3605 & 217 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & agcacttgcattgganacat & CGtttatgctacticagtic & Not polymorphic \\
\hline 1484 & aat. 15 & AU3606 & 188 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GACCTCACCTGTCGATCTCC & GAGGAGGTGGCTGTCTATCG & Polymorphic \\
\hline 1487 & tta. 5 & AU3607 & 236 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CATGCGACCCTtTGTAGGAT & TCAGCCAAAGGAAAATGTCA & Polymorphic \\
\hline 1487 & att. 5 & AU3608 & 189 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TCTGCAAATCCAGTTCACCA & AACCTTTTCTGGCTCTGGAA & Polymorphic \\
\hline 1575 & cta. 14 & AU3609 & 174 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCCTAGACGCCGAAGAATtT & AAGTCCAACCTAGATACAATAGGC & Polymorphic \\
\hline 1575 & tttg. 5 & AU3610 & 206 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GTACCGAACGGTCGACAATC & CACTAATGGAAACACGCATTG & Not polymorphic \\
\hline 1592 & att. 7 & AU3611 & 273 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CTCTGCCCTTTATGGGCTTT & CCCACTAAGCAACCCTGAAA & Can't score \\
\hline 1592 & gtt. 5 & AU3612 & 197 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GAGGATGCCTTGTCCTAACAT & TGGCATTTTGCTGCTGAATA & Polymorphic \\
\hline 1635 & agat. 10 & AU3613 & 192 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & ACGGCAAAAGGAAACTGATG & GCCAGCTAACGCATTCTCAC & Polymorphic \\
\hline 1635 & cat. 5 & AU3614 & 188 & 570C/15cycles,53oC/20cycles & GGTCGCTAATACCCTCATCG & CTGGAAAATCACGAATTGGA & Polymorphic \\
\hline 156 & at. 35 & AU3615 & 197 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGGTGATGAACATGAAACAGAAG & ttttgaccatantcatgcag & Polymorphic \\
\hline 156 & aat. 13 & AU3616 & 208 & 570C/15cycles,53oC/20cycles & GGTGGCAGCTGGTTAATATTGT & AGCCTTGCTCTTTAGCATCG & Polymorphic \\
\hline 175 & ac. 21 & AU3617 & 252 & 570C/15cycles,530C/20cycles & CCACTGTTGTGCCAAAGAGA & CCATCCTGGGTGATTCTTACA & Polymorphic \\
\hline 175 & ac. 21 & AU3618 & 164 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCACTGTTGTGCCAAAGAGA & TTGAGACCATCCAAGAATGC & Polymorphic \\
\hline 208 & ac. 9 & AU3619 & 198 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20\) cycles & GGACGACGTCTCCTTCAGAT & CTGTCAACCAGTGGAGTCAGA & Polymorphic \\
\hline 208 & att. 5 & AU3620 & 264 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGAGGGGAAATGACATCATACT & CCACAAAGTTTTGGCACAGA & Polymorphic \\
\hline 228 & tttc. 14 & AU3621 & 287 & 570C/15cycles,53oC/20cycles & agcatgtcacaccctacata & GATGGCTACCGGATTCAACA & Polymorphic \\
\hline 228 & ta. 12 & AU3622 & 231 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GGTGCTTTTTGTGCATCCAT & TCAGGCACCATCAGACAAAG & Polymorphic \\
\hline 294 & at. 11 & AU3623 & 212 & 570C/15cycles,53oC/20cycles & CCGATACCAGTCACAGAACCA & CCTCACTCTTTCTCGGTGCT & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ctg_ID & \[
\begin{gathered}
\hline \text { Repeat } \\
\text { Type }
\end{gathered}
\] & \begin{tabular}{l}
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 294 & at. 11 & AU3624 & 212 & 57oC/15cycles,53oC/20cycles & CCGATACCAGTCACAGAACCA & CCTCACTCTTTCTCGGTGCT & Polymorphic \\
\hline 337 & ac. 11 & AU3625 & 199 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAGAGCTACGAGCAGAGCAT & CCGTACTGGAGCGGAGTAAG & Polymorphic \\
\hline 337 & aat. 8 & AU3626 & 195 & \(570 \mathrm{C} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & atgcatgcantttacciaca & CCCTAAGGCTCCAATAAGTGC & Polymorphic \\
\hline 407 & taa. 10 & AU3627 & 207 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & AGTCTGGTGAACGGGTTTGA & CAACACCTACCATTAGCCACCT & Polymorphic \\
\hline 407 & taa. 12 & AU3628 & 191 & 57oC/15cycles,53oC/20cycles & AGCCAATGTtTCTGGACTCG & CTGGAAACAGACTCCACACTGA & Polymorphic \\
\hline 427 & aata. 7 & AU3629 & 175 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCAGGCCACCTCAATATGAT & AAGGAACTTACACAAACAACTTTGC & Polymorphic \\
\hline 427 & ca. 8 & AU3630 & 202 & 57oC/15cycles,53oC/20cycles & CCTGAGTtTTGGGTGCAAAG & AACAAAAGCCCCTCACACAC & Polymorphic \\
\hline 458 & gt. 16 & AU3631 & 188 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCATTGGGATAACGTGGTCT & GAGATAGCCGGTGGCACTT & Polymorphic \\
\hline 458 & tta. 12 & AU3632 & 189 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CGTGGTGGTTGAGCAGATtT & ATCGAGACGATCTTGCCACT & Polymorphic \\
\hline 544 & aattg. 5 & AU3633 & 231 & 57oC/15cycles,53oC/20cycles & GTCGGGTTCCTCTCAAGGTT & ttgcanacacaicacagtgc & Polymorphic \\
\hline 544 & gt. 9 & AU3634 & 222 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CTCGGACTAACCGCTGTGTT & TCCATGAAATGTCCGCATAA & Not polymorphic \\
\hline 562 & ac. 15 & AU3635 & 234 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & TGCCTGGTtTTGTTGACCTT & AGGCAATCTCTGCCTGTCAT & Not polymorphic \\
\hline 562 & ac. 12 & AU3636 & 227 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & GCCTGGTTTTGTTGACCTTT & AGGCAATCTCTGCCTGTCAT & Not polymorphic \\
\hline 644 & taga. 9 & AU3637 & 233 & 57oC/15cycles,53oC/20cycles & CACCTGAGAGATCATGAAAACA & ACACCGGAACTGTCACTGGT & Polymorphic \\
\hline 676 & tgg. 5 & AU3638 & 231 & \(57 \mathrm{oC} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CAGCTTGTtGCtttccctic & GCGGCTGTATCATTTCAGAG & Polymorphic \\
\hline 676 & ca. 12 & AU3639 & 205 & 57oC/15cycles,53oC/20cycles & CAGCTCAAGGGTTGTCATCA & ACGGTGACAGGAAAGAGGTG & Polymorphic \\
\hline 710 & ag. 25 & AU3640 & 201 & 57oC/15cycles,53oC/20cycles & gTGCCACACATTGAGGAAAG & AATGCATGCAATGTCCAAGA & Polymorphic \\
\hline 710 & tga. 6 & AU3641 & 192 & \(570 \mathrm{C} / 15\) cycles, \(53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCAGCACGGCTCTGTTTTAT & GAAACATGCAGTGGAACAGC & Can't score \\
\hline 742 & taga. 8 & AU3642 & 238 & 57oC/15cycles,53oC/20cycles & CATTGATGAAGTCAAGATAGCTAGAGA & AagGGacaittgatgctgaa & Polymorphic \\
\hline 742 & tat. 7 & AU3643 & 149 & 57oC/15cycles,53oC/20cycles & CCTTGAGCTCAGGAAAAGCA & TTGGGATAGATTGACTGCTTGA & Polymorphic \\
\hline 770 & gt. 10 & AU3644 & 214 & 57oC/15cycles,53oC/20cycles & CAGCTACTGCTTTGCTGCTG & TTCGGCACGCTATACGAAG & Polymorphic \\
\hline 770 & at. 35 & AU3645 & 269 & \(570 \mathrm{C} / 15 \mathrm{cycles}, 53 \mathrm{oC} / 20 \mathrm{cycles}\) & CCAACATGAAAACCTGTACCA & GGCATAAAGGCTGGATTTACC & Polymorphic \\
\hline 789 & ttat. 7 & AU3646 & 236 & 57oC/15cycles,53oC/20cycles & TGTAACGGCAACGGTTTGTA & GCTATGGTTAACGAGCTGGA & Polymorphic \\
\hline
\end{tabular}
\begin{tabular}{cccccccc}
\hline ctg_ID & \begin{tabular}{c} 
Repeat \\
Type
\end{tabular} & \begin{tabular}{c} 
Primer \\
Name
\end{tabular} & Size & Temperature & Upper Primer Sequence & Lower Primer Sequence & Polymorphic \\
\hline 789 & tg. 18 & AU3647 & 191 & 570 C/15cycles,530C/20cycles & TCTTGAGCATTTCCCAGGAT & CGACACACATGGCATACACA & Polymorphic \\
793 & tg. 9 & AU3648 & 204 & \(570 \mathrm{C} / 15\) cycles,530C/20cycles & ATCAGATTGGCGAGGTGAAC & CAATTCGACCCCTGTAAAGC & Polymorphic \\
793 & ta.28 & AU3649 & 205 & \(570 C / 15\) cycles,530C/20cycles & CCAGCAAATGTCAGGGGTTA & CTGTGAATGGGCTGTTGCTA & Polymorphic \\
813 & ca.15 & AU3650 & 212 & \(570 C / 15 c y c l e s, 530 C / 20 c y c l e s ~\) & TGTTTTATTGGCACACCACA & ATCTGAGCCACAAGCAGGTC & Polymorphic \\
813 & ttcaa.5 & AU3651 & 209 & \(570 C / 15\) cycles,530C/20cycles & TGGGCAGGTCAAATACAGAA & GTTGGGATAAATTCGCACCT & Not polymorphic \\
\hline
\end{tabular}```


[^0]:    George T. Flowers
    Dean
    Graduate School

[^1]:    Signature of Author

[^2]:    Date of Graduation

