
ADAPTING EXTREME PROGRAMMING FOR GLOBAL SOFTWARE

DEVELOPMENT PROJECT

Except where reference is made to the work of others, the work described in this thesis is

my own or was done in collaboration with my advisory committee. This thesis does not

include proprietary or classified information.

Yuan Tian

Certificate of Approval:

Kai Chang

Professor

Computer Science and Software

 Engineering

Dean Hendrix

Associate Professor

Computer Science and Software

 Engineering

David Umphress, Chair

Associate Professor

Computer Science and Software

 Engineering

George T. Flowers

Dean

Graduate School

ADAPTING EXTREME PROGRAMMING FOR GLOBAL SOFTWARE

DEVELOPMENT PROJECT

Yuan Tian

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama

May 9, 2009

iii

ADAPTING EXTREME PROGRAMMING FOR GLOBAL SOFTWARE

DEVELOPMENT PROJECT

Yuan Tian

Permission is granted to Auburn University to make copies of this thesis at its

discretion, upon the request of individuals or institutions and

at their expense. The author reserves all publication rights.

Date of Graduation

Signature of Author

iv

VITA

Yuan Tian, daughter of Liaofa Tian and Xiaoheng Zhou, was born on April 20,

1980 in Sichuan, China. She earned her bachelor‟s degree from Chengdu University of

Technology, Chengdu, China in 2002. She was hired by SCU-NESEC Infosec Co.,Ltd

from 2002 to 2003 then joined Beijing Beyondsoft Co.,Ltd in 2004, at where she worked

as Software Engineer until she was admitted in to master program of Department of

Computer Science and Software Engineering of Auburn University in 2006 Fall.

v

THESIS ABASTRACT

ADAPTING EXTREME PROGRAMMING FOR GLOBAL SOFTWARE

DEVELOPMENT PROJECT

Yuan Tian

Master of Science, May 9, 2009

(B.S., Chengdu University of Technology, China, 2002)

87 Typed Page

Directed by David Umphress

Growth of the global economy has led to remarkable changes in the way software

is developed. Global Software Development (GSD) is becoming the norm for many

technology companies. Even though organizations are enjoying the benefit brought by

GSD, communication has been an issue impeding its further growth. Miscommunication

and misunderstanding brought by the distance between development sites happen much

more frequently in GSD projects than co-located projects, which eventually influence the

software quality and customer satisfaction. Cultural distance also exacerbates these

problems. Many studies have been conducted to either find a software process or

develop a software application to facilitate the GSD. Because of its flexibility, Agile

Methods are considered suitable processes for GSD. In our study, we examine the

characteristics of Extreme Programming (XP), the most popular Agile process, and

vi

suggest changes to better support GSD. A prototype Eclipse-based plug-in is designed

to facilitate the implementation of this process.

vii

ACKNOWLEDGEMENTS

I sincerely appreciate my advisor Dr. David Umphress not only for the guidance he has

provided throughout my study at Auburn, but also his encouragement during my frustration. I

would also like to express my gratitude to the advisory committee members, Dr. Kai H. Chang

and Dr. Dean Hendrix.

Above all, I would love to express my deeply appreciation to my wonderful

families and friends. I feel so blessed to have my parents and brother who have been

loving me and supporting me through my life. And I am so grateful for you, Yi Zhang, I

would have never accomplished this without you.

viii

Style manual or journal used: Journal of Surface Mount Technology

Computer Software used: Microsoft Word, Microsoft Excel, Microsoft Picture Manager,

WinSMITH Weibull

ix

TABLE OF CONTENT

LIST OF FIGURES………………….………………………………………………..….xi

CHAPTER 1 INTRODUCTION ...1
1.1 The General Research Area .. 1
1.2 Background .. 3

1.2.1 Global Software Development .. 3
1.2.2 Agile methods and Extreme Programming ... 4

CHAPTER 2 STATEMENT OF PROBLEM ...8

CHAPTER 3 LITERATURE SURVEY ...11

3.1 Global Software Development Challenge And Approaches 11

3.2 Agile Methods And Extreme Programming ... 14

3.3 Applying Agile Methods On Global Software Development 18

3.4 Supporting Tools .. 21

CHAPTER 4: EXTREME PROGRAMMING EXAMINATION25

4.1 Introduction .. 25

4.2 Xp‟S Practices Benefit Communication ... 25

4.3 Xp Practices Examination .. 26

4.3.1 On-Site Customers .. 26

4.3.2 Planning Game .. 27

4.3.3 Small Release .. 29

4.3.4 Simple Design ... 29

4.3.5 Testing... 30

4.3.6 Collective Ownership.. 30

CHAPTER 5 GENERAL APPROACH ..32

5.1 Introduction .. 32

5.2 Project Information Overview .. 32

5.2.1 Description .. 32

5.2.2 Functional Requirement .. 33

5.3 Project Team Member Management .. 34

5.3.1 Description .. 34

5.3.2 Functional Requirements .. 35

5.4 Project Sites Management .. 35

x

5.4.1 Description .. 35

5.4.2 Functional Requirements .. 36

5.5 User Story Management ... 37

5.5.1 Description .. 37

5.5.2 Functional Requirement .. 40

5.6 Project Release Management ... 41

5.6.1 Description .. 41

5.6.2 Functional Requirements .. 42

5.7 Project Iteration Management .. 43

5.7.1 Description .. 43

5.7.2 Functional requirement ... 43

5.8 Project Event Notification .. 44

5.8.1 Description .. 44

5.8.2 Functional Requirements .. 44

CHAPTER 6 IMPLEMENTATION AND VALIDATION ..46

6.1 Prototype Scenario ... 46

6.2 Project Information Overview .. 47

6.3 Team Member Management .. 49

6.4 User Story Management ... 52

6.5 Project Release Management ... 59

6.6 Project Iteration Management .. 64

6.7 Project Event Notification .. 67

6.7.1 Message View ... 67

6.7.2 News View .. 68

6.7.3 Discussion View ... 68

CHAPTER 7 METHODOLOGY VALIDATION ..69

CHAPTER 8 SUMMARY AND FUTURE WORK ...71

8.1 Summary .. 71

8.2 Conclusion .. 71

8.3 Future Work ... 72

BIBLIOGRAPHY..73

xi

LIST OF FIGURES

Figure 1.1: The evolution of Software Development Method.....................................4

Figure 1.2: Comparing Agile Methods..5

Figure 1.3: XP practices and the Circle of life...7

Figure 3.1: Global Requirement Engineering main stakeholder categories..............14

Table 4.1: XP practices benefit communication ... 26

Table 5.1: Change of User Story Status .. 39

Figure 5.1: Project Release Plan and Site Release Plan example 41

Figure 6.1: Prototype scenario ... 46

Figure 6.2: Project Information Overview ... 47

Figure 6.3: Project outline.. 48

Figure6.4: Site outline .. 49

Figure 6.5: Full team member list .. 50

Figure 6.6: Team member detail information .. 51

Figure 6.7: Team member list group by “City” ... 51

Figure 6.8: Team member list for site “Beijing, China” .. 52

Figure 6.9: Project User Story Inventory ... 53

Figure 6.10: User Story Detail Information Window .. 54

Figure 6.11: User Story Detail Information Window .. 55

xii

Figure 6.12: UML tab shows the UML diagram file ... 56

Figure 6.13: Test Case tab shows the unit test case file... 57

Figure 6.14: “Site User Story Inventory” for Beijing development site 58

Figure 6.15: Create a Task for US_3 ... 59

Figure 6.16: “Site Release Plan” for Beijing development site 60

Figure 6.17: Create new Site Release Plan .. 61

Figure 6.18: View/Edit Site Release Plan .. 62

Figure 6.19: Project Release Plan of GSDXP .. 63

Figure 6.20: Project Release Plan Detail View .. 64

Figure 6.21: Iteration tree .. 65

Figure 6.22: Site Iteration List ... 66

Figure 6.23: Iteration detail view ... 66

Figure 6.24: Message view .. 67

Figure 6.25: Reply message ... 67

Figure 6.26: News view .. 68

Figure 7.1: User‟s feedback on plug-in usability.. ...70

1

CHAPTER 1

INTRODUCTION

1.1 The General Research Area

With the growth of the global economy in the past several decades, the software

industry has witnessed a steady trend toward the globalization of business. According to

Gartner[1], globalization of software development has expanded rapidly in recent years

and has brought in its wake changes that impact application development projects. Global

Software Development (GSD) is becoming the norm for many technology companies. A

software project involving different teams located at multiple sites in different cities is no

longer a novelty. A software company could have branches in different cities or in

different countries. Companies also collaborate with each other across the globe through

software outsourcing. According to statistics collected in 2001, 203 of the US Fortune

companies are engaged in offshore outsourcing [2]. Many American organizations are

building their development centers outside the country, and many software shops are

growing outside traditional centers (such as US, Japan) in India, Ireland, Israel, China, etc.

The factors that accelerate this trend include cost savings, proximity to the market,

“around-the-clock” development, and survival from competition, etc.

Economic forces are relentlessly turning national markets into global markets and

spawning new forms of competition and cooperation that reach across national

boundaries. This change is also having a profound impact not only on marketing and

2

distribution but also on the way products are conceived, designed, constructed, tested,

and delivered. Software organizations are required to develop in a high-speed and agile

ways to adapt to the current dynamic business environment. Can we still use traditional

project management techniques? According to Lindstrom and Jeffries[3], the traditional

popular project management techniques focus on developing a plan and sticking to the

plan. This improves coordination but reduces the ability of the project to adapt to new

information regarding requirements or implementation details. However, traditional

project management techniques do not take into account that the customer will be in the

US and the development teams will be in India and China. The problems brought by

distance are not taken into consideration. Moreover, they cannot meet with the dynamic

requirement of the GSD.

The emergence of Agile Methods with their emphasis on flexibility, informal

collaboration, and working code brought fresh air to GSD. Software development

organizations have been striving to blend the GSD projects with Agile Methods to reap

the benefits of both. Among them, Extreme Programming (XP) [31] is the most widely

used one which shares the values exposed by the Agile Manifesto[4] for software

development but goes further. XP is a set of twelve independent software development

practices conceived initially for small development teams working on projects with high

degree of change, and later successfully applied to larger teams. However, XP and GSD

have significant differences in some of their key tenets. Is XP the best development

method for GSD projects? In this study, we examine the nature of XP and GSD projects

to find their common interests and the possible areas in which they can be blended. Based

3

on this study, we propose a new methodology which is XP-based and more adaptive to

GSP projects. An Eclipse-based light-weight IDE plug-in is developed to illustrate the

application of our new methodology in GSD projects.

1.2 Background

In this chapter we provide some background knowledge of our research. It also

explains why among all the Agile methods we chose Extreme Programming for our

research.

1.2.1 Global Software Development

First, Global Software Development does not necessarily involve multiple companies.

It can be a project involving multiple subsidiaries located in different countries. The most

significant difference between one company and multiple companies is that team

members of one company share the same organizational culture. This plays a significant

part in smooth communication and team management. Also, Global Software

Development and Distributed Development are different. Distributed Development is not

necessarily global. It can be multiple development sites within one country. This means

in most cases that software stakeholders are speaking same language. There is no cultural

gap between team members. Since the product is applied within the country, there is no

different requirement from the target market. The more stakeholders that are involved,

the more complicated project environment will be, which affects the project progress.

When the project teams are globally distributed, multiple stakeholders located in different

countries with people with different cultural backgrounds, this situation gets much more

complicated. In our study, we mainly focus on this kind of Global Software Development.

4

1.2.2 Agile methods and Extreme Programming

Over time, software development methods have changed with our society. The

evolution of development from classic Waterfall to Iterative to Agile Methods illustrates

the aim of accommodating the needs of the environment. This evolution is depicted in

Error! Reference source not found.Figure 1.4 with Extreme Programming (XP) as an

example of Agile Methods.

Figure 1.4: The evolution of Software Development Method [31]

Traditional project development processes emphasize the importance of project plans and

documentation. They try to identify all the requirements at the beginning of the project

and control unexpected changes throughout the project. However, in the current dynamic

business environment, major changes in requirements, scope, and technology are often

out of the control of the development team. In [21], the authors identify that the question

often is not how to minimize changes in a project but how to better handle inevitable

changes throughout its life cycle. Agile methods present a possible solution to this

dilemma through their strategies. The Agile Manifesto includes different agile methods

which have been discussed or practiced for a while such as Dynamic systems

5

development method (DSDM) [27, 28], Feature Driven development (FDD) [29],

Internet-speed development (ISD) [30] , Extreme Programming (XP) [31], SCRUM [32],

Crystal [33], Pragmatic programming (PP) [34]. Among these methods, Extreme

Programming is the most widely used agile methodology. Part of the reason can be

explained in Figure 1.5.

Figure 1.5: Comparing Agile Methods [35]

Figure 1.5 shows the comparison of these Agile Methods. In this figure, each method is

divided in three bars which separately indicate its support for project management, a

description of whether a process through which the software production proceeds is

described pertaining to software development life-cycle analysis, and whether it provides

concrete guidance separately from top to the bottom. A shaded bar indicates that the

6

method covers the perspective while an unshaded bar indicates lack of such support. The

length of the bar shows which phases of the life cycle are supported by the method. We

can see that each method has both similarities as well as differences. The reason XP is

widely adopted can be described in following aspects: First, XP covers most of software

development life cycle; second, XP supports situation appropriateness, meaning it can be

tailored to suit the needs of individual projects; third, also the most important reason,

while most of methods lack of real empirical support, XP is well supported by concrete

experiences. Matching these advantages against the characteristics of GSD makes XP a

viable approach in our research. We did notice that XP does not fully support project

management. This is also a problem we target in our research.

In our context, XP is a set of twelve independent software development practices

which include: Planning game, Small release, Metaphor, Simple design, Tests,

Refactoring, Pair programming, Continuous integration, Collective ownership, On-site

customer, 40-hours weeks, and Open workspace. It is initially designed for small teams

working on projects of high degree of change. It is a discipline of software development

based on values of simplicity, communication, feedback and courage. In [22] it is clearly

illustrated: “The essence [of XP] truly is simple. Be together with your customer and

fellow programmers, and talk to each other. Use simple design and programming

practices, and simple methods of planning, tracking, and reporting. Test your program

and your practices, using feedback to steer the project. Working together this way gives

the team courage.” The twelve practices can be described as a cycle of activities as

showed in Figure 1.6. The inner circle describes the tight cycle of practices carried out by

programmers. The outer loop describes the planning cycle that occurs between customers

7

and programmers. The middle loop shows practices that help the team communicate and

coordinate the delivery of quality software.

Figure 1.6: XP practices and the Circle of life [3]

Are all twelve practices suitable for distributed development? In the chapter 2, we discuss

the possible problems when applying XP on GSD projects. Chapter 3 contains the

investigation of related work. In Chapter 4 we examine XP practices, identifying which

practices need to be tailored. Chapter 5 describes our methodology. In Chapter 6 we

present prototype software, GSDXP, which is used to help applying our methodology.

Chapter 7 contains our methodology validation. Conclusions and future work are

discussed in Chapter 8.

8

CHAPTER 2

STATEMENT OF PROBLEM

Compared to traditional co-located projects, what is different about GSD? Herbsled

writes, “The fundamental problem of GSD is that many of the mechanisms that function

to coordinate the work in a co-located setting are absent or disrupted in a distributed

project.”[5] In traditional co-located projects, team members working together have

already built a common, recognized environment and a number of ways of coordinating

work. They share the same view of the project by using a common vocabulary and

process. The frequent informal and formal communication among team members ensures

everyone has a clear picture of project. Also, misunderstanding is minimized when

people share a common native language and cultural background. All these benefits of

co-located projects diminish in GSD. Physical separation among project teams and

members has diverse effects on many aspects. Among them, the most critical issue is the

communication and coordination between the development sites which includes:

 Decreased frequency of communication. Instead of immediate face-to-face

communication in a co-located project, people in a GSD project have to rely on

communication media that are not always dependable. People are more reluctant

to initiate the communication. According to a study by Tom Allen [6], people 30

meters away do not communicate more often than those are miles away.

 Difficult to initiate communication. When communication is infrequent, team

9

members often lose the vision of the project. The situation is worsened when

more than one development site or organization is involved. “Who to contact

about what” is the common question among GSD projects.

 Miscommunication. Although miscommunication results from communication

media itself, the primary cause of miscommunication in a GSD project is cultural

differences. When team members do not share a common native language,

miscommunication happens much more frequently. Cultures differ on many

critical dimensions, namely the need for structure, attitudes toward hierarchy,

sense of time, and communication styles.

 Increased communication cost- time, money, and staff. Communication among

remote sites incurs a cost not only in financial terms, but also in human terms.

This needs to be considered in project budgets. Even though telecommunication is

cheap, time to initiate the communication should also be considered. Sometimes

each project site needs a special person in charge of coordinating with other sites.

 Time difference. When a project site is located in a different time zone,

especially one more than eight hours away, person-to-person communication

becomes logistically difficult. This problem also increases the possibility of

miscommunication and slows down the project progress.

GSD requires a prompt response to changes, which is hard to fulfill because of the

communication gap brought by the reasons listed above. XP is reported as one of the best

suitable development method for GSD projects because it is a discipline of software

development based on values of simplicity, communication, feedback, and courage. The

simple and agile nature of XP enables it meet the dynamic requirement of GSD projects.

10

But, XP also emphasizes frequent customer-centered communication that GSD can not

promise. Moreover, in a GSD project in which more than one organization is involved,

across-site coordination is another issue that needs to be considered because it is also

impacted by communication deficiency. How to blend the XP and GSD projects together,

while at the same time maintaining agility and alleviating the communication impedance

to improve the project success is a vital issue, and is the focus of our study.

As stated earlier, XP does not provide concrete guidelines for project management.

The practices provide the guidance for specific activities. There is no method to glue

them together as a whole. How are user stories well managed as they grow in number?

How are iterations and releases managed when the project is growing? How are project

resources and human resources managed so that programmers know where to find what?

Our research is focused on solving above problems.

11

CHAPTER 3

LITERATURE SURVEY

Many studies have been conducted about Global Software Development, focusing

primarily on distance, which is a major factor in communication and coordination

problems. Scientific research and empirical studies of Extreme Programming and its

applicability in different environments are also available. Both successful experience and

lessons are reported from the GSD projects practicing XP. The problems and challenges

presented by this research provide the theory basis for our study.

3.1 Global Software Development Challenge And Approaches

There is a wealth of literature that notes the challenges in Global Software

Development. According to Challenges of Global Software Development [7], difficulties

include interdependencies among distributed work items, difficulties in coordination,

difficulties in dividing the work into modules that could be assigned to different locations,

conflicting implicit assumptions that are not noticed as fast as in collocated work, and

communication challenges.

Erran Carmel and Ritu Agarwal propose three tactical approaches to alleviate the

distance influence in Tactical Approaches for Alleviating Distance in Global Software

Development [8] including reducing intensive collaboration, reducing the culture distance,

and reducing the temporal distance. This research suggests that collaboration intensity

decreases when a foreign entity (an organization that is in a different nation from its

parent) assumes the low complexity task or full responsibility for a product. There are

12

 four ways to reduce the culture distance. The first one is called the 75/25 rule which

means that 75 percent of project work occurs offshore while the remaining 25 percent

occurs onshore in order to maintain the closeness to the customer through face-to-face

communication. Secondly, open internal-to-the-firm foreign software centers can reduce

the organizational culture distance because these centers are trained in the corporate

methodologies and policies and have the access to all the organization resources. The

third method is that of a project manager or key executive acting as a culture liaison to

travel back and forth between the key stakeholder sites. In doing so, they facilitate the

cultural, linguistic and organizational flow of communication and bridge cultures,

mediate conflicts and resolve cultural miscommunications. The last one includes such

things as giving a language course to employees to reduce the impact of cultural distance

brought by language. Carmel and Agarwal also suggest using synchronous

communication to reduce the temporal distance. While this study makes sense generally,

there are some situations in which these four approaches are hard to implement. For

instance, letting a foreign entity do the full project development may be too risky because

of its distance from the target market. A frequently traveling project manager is not

efficient because all the communication relies on one person. Language training can be

time-consuming. Also synchronous communication eliminates the advantage of follow-

the-sun type work that requires large difference in time zones.

In Stakeholders in Global Requirements Engineering: Lessons learned from

Practice [9], Daniela Damian suggests a relationship of organizations in Global Software

Development as Figure 3.2.

13

Figure 3.2: Global Requirement Engineering main stakeholder categories [9]

The stakeholders‟ ability to communicate globally is challenged by GSD in three ways.

First, designers have less opportunity to seek out relevant knowledge from the multiple

stakeholders, making knowledge sharing and integration across sites and functional

groups problematic. Second, process differences inherent in inter-organizational

partnerships lead to difficulties in aligning requirement engineering processes and

supporting tools, preventing management practices from being effectively implemented

across sites. Third, lack of informal communication in global teams negatively impacts

relationship building and inadequate channeling of changes to requirements across sites

leads to difficulties in coordination.

Damian also suggests two sets of strategies to alleviate these challenges. The first is

to support interorganizational structures by defining a clear organization structure with

communicating responsibilities for the distributed projects; establishing peer-to-peer links

at all levels across distributed sites; partially synchronizing interorganizational process by

performing frequent iterations and deliveries; and establishing culture liaisons. The

14

second is to support communication practices by maintaining open communication lines

between well-defined stakeholder roles and frequently informing and monitoring

progress on commonly defined artifacts. Although her study is mainly focused on

requirement engineering because it has the highest communication density, her findings

can be extended to global software development in general.

3.2 Agile Methods And Extreme Programming

Since the emergence of Agile Methods, both theoretical and empirical researches

have been conducted within this field. Kahkonen and Abrahamsson build the theoretical

base for Extreme Programming in their paper, Digging into the Fundamentals of Extreme

Programming [25]. They discuss the rational of practicing XP using an acknowledged

scientific framework designed to explain how knowledge is created when several

communities are present. Their 5-A model [26] defines three modes of knowledge

creation: articulation, appropriation, and anticipation; and two processes: accumulation

and acting. They observe that when XP is analyzed using the 5-A model, most XP

practices are enhancing knowledge creation through immediate (or frequent) and mutual

articulation and appropriation. The practices help to accumulate knowledge by utilizing

external cognitive tools, such as concepts, words, language, signs, tools, documents or

social practices. Anticipation is done for short intervals only and XP practices are action-

oriented. While not all the XP practices fit into the model, this analysis gives a good

initial understanding and a more solid scientific basis for further research.

In Extreme Programming: A Survey of Empirical Data from a Controlled Case

Study [37], Abrahamsson and Koskela report on a survey of the empirical data obtained

from a controlled case study on Extreme Programming in practical settings. According to

15

their data, the XP practice of “user involvement” in the system development process has

a positive impact on subsequent system adoption and use. The majority of the customer‟s

involvement is required on the planning game and acceptance testing during the project.

Even though the customer does not develop automated acceptance tests, the mere

presence of the customer is highly valued by the development team. They also found that

user involvement is one of the reasons for low defect density because customer

representatives collected suggestions and bugs report frequently, thus generating the

feedback for development team. Customer involvement also plays a positive role on

customer satisfaction even when delay happens because involvement minimizes surprise.

This argument is supported from another perspective as well. In Recognizing and

Responding to “Bad Smell” in Extreme Programming [36], Elssamadisy and Schalliol

note that they “failed to push the customer hard enough early in the process to be an

actual partner in the planning and acceptance of the development”. They argue that the

customer must provide honest and substantial feedback from the very beginning of the

development process. Abrahamsson and Koskela follow up on this by noting that a one-

week release cycle to end-user testing is seen as disturbing to users and is not appreciated.

Delivering a system that satisfies customer requirements and which is on time and

within budget with few defects is the ultimate goal of any software development activity.

When customers are not satisfied there is a gap between customer expectation and

experiences. The principles behind the Agile Methods include specific strategies for

satisfying the customer through involving the customer regularly, relying on face-to-face

communication, responding to evolving requirements and providing early and regular

feedback. In XP, there is an explicitly-defined role for the customer in development team

16

so customer can work with developer closely. Communication impacts the customer

satisfaction as well. In Customer Relationships and Extreme Programming [39], Grisham

and Perry examines XP from the perspective of customer satisfaction. They point out that

with its high degree of communication, rapid feedback, and constant adjustments, XP

should prevent expectations gaps from becoming unmanageable; but this depends on the

quality of the communication between the customer and the development team. They also

mention that there is a risk of high transparency that the customer could perceive daily

chaos of the development process. Risky situations such as schedule slippages and

technical difficulties are more difficult to hide from customer. More research on

overcoming communication obstacles when applying XP on GSD projects and the level

of customer involvement is needed.

Even though XP practices are designed for small development teams, does it fit

large-scale projects? Proponents of XP claim that using this method has advantages over

traditional approaches including higher team productivity, lower management overhead,

and better customer satisfaction. However, the applicability of agile approaches is

constrained by several factors such as project size and type, experience level of project

personnel, and access to committed customers. In Get Ready for Agile Methods, with

Care[39], Boehm argues that agile methods are difficult to scale up to large projects

because of the lack of sufficient architecture planning, over-focusing on early results, and

low levels of test coverage. He also recommends that agile methods not be used in

mission-critical software development. However, large projects also face constantly

changing business environments that can be addressed by agile methods. In How extreme

does extreme programming have to be? Adapting XP practices to large-scale projects

17

[40], Cao et al argue that Agile Methods such as XP can be adapted to large-scale

projects. They propose some general guidelines on tailoring agile development

methodologies to make them suitable for the development of large, complex software

system. The guidelines include seven practices: Designing upfront which combines

design upfront in traditional approaches with agile practices such as short release, pair

programming and refactoring; Short Release cycles with a layered approach; Surrogate

customer engagement; Flexible pair programming that applies pair programming only in

the analysis, design, and test phases; Identifying and managing developers; Reuse with

forward refactoring to yield reuseable systems; and Flatter hierarchies with controlled

empowerment to improve communication between stakeholders and increase productivity.

Cao et al also point out that organizations need to be very careful at tailoring lightweight

methodologies like XP to ensure their suitability.

XP approaches have been successfully applied on various software development

projects, but should we follow all the practices exactly as they are described? In

Recognizing and Responding to “Bad Smell” in Extreme Programming [36],

Elssamadisy and Schalliol note “The software development process (XP) that purportedly

„embraces change‟ must itself embrace changes to its own specific implementation as

needed it is to succeed.” In this article, the authors describe a large software development

project that used a modified XP approach after a more traditional approach proved

ineffective. They identify poor XP practices and discuss the solution implemented to

correct them. They conclude that XP is a valuable and effective approach to software

development so long as one recognizes that 1) it cannot succeed without conscientious

18

participants, and 2) it must be adapted as necessary for projects that do not fit the “small

team” limits recommended by its founders.

3.3 Applying Agile Methods On Global Software Development

In traditional software development, many projects are divided into different modules,

integrating them in “a big bang” at the end. This approach is challenging in GSD because

the integration may cause serious problems that may not be expected. In Leveraging

Resources in Global Software Development [10], Battinet al suggest an incremental

integration solution that is based on clusters and shared incremental milestones to avoid

“big bang” integration. This strategy was tested successfully in Motorola successfully. In

Surviving Global Software Development[11], Ebert and De Neve also report successfully

using incremental development in Alcatel. Each increment is developed within one

dedicated team and the project progress is based on tracking successfully integrated and

tested customer requirements. The study reports that increments toward a stable build are

proven to be one of the key success factors. Globally-applied continuous builds improve

the project cycle time as well. There is also evidence that even very frequent builds are

possible in distributed development. In Daily Build and Feature Development in Large

Distributed Projects[11], Karlson et al report their successful experience of using very

frequent builds and feature-based development in Distributed projects.

In Internationally Agile[13], Simon suggests that an iterative model may fit into

internationally distributed projects to help alleviate some of the problems brought by

distribution. Frequent integration and test phases enable problems to be solved early, thus

avoiding serious problems at the end of the project. Iterative development with frequent

deliveries also provides good vision to the project, giving team members and customers

19

an accurate sense of the project progress. In Using Agile Software Process with Offshore

Development[14], Fowler also points out that a continuous integration and test process

flushes out many integration problems quickly so they can be fixed before they become

hard to find. He discusses suitable iteration lengths for GSD projects and concludes that a

two-week interval is the minimum because of the communication overhead. Incremental

integration and frequent deliveries are the core practices in agile methods. Both Fowler

and Simons point out that the major benefit of using an agile method in their project has

been the fast response to changes and fast delivery of business value, benefits which have

outweighed the challenges of global distributed development. Thus, it seems that at least

agile method principles are suitable for GSD projects.

A few studies have presented the use of Extreme Programming in distributed software

development. In his article Fowler [14] gives a detailed discussion of his experience in

using XP in projects distributed in US and India. Both onshore and offshore teams using

Agile/XP practices and agile communication principles were applied in these highly

distributed projects. The successfully-used practices include continuous integration,

sending business-oriented ambassador to the offshore team, using test scripts to help

understand requirement, using regular builds to get feedback on functionality, using

regular short status meetings, using user short iterations, using an iteration planning

meeting that is tailored for remote sites and separate teams by functionality not activity.

In two articles Extreme Programming In Global Software Development[15] and Agile

Methods handling Offshore Software Development Issues[16], Yang et al and Nisar and

Hameed, respectively, discuss their experience in using XP in GSD projects in which

offshore teams collaborate with onshore customers. The projects mentioned in both

20

papers describe development teams located in China and Pakistan, with customers

located in the US, UK, etc. The reason why Yang‟s project adopted XP was to reduce the

communication delay and improve communication quality, which he identified as the

major obstacles in GSD projects. Nisar and Hameed report eight XP principles they

followed and benefited from. These principles include: client satisfaction should be on

the top most priority; always welcome the change and incorporate the change usually in

next iteration; frequent development iterations (maximum 2 weeks); “working software”

is the primary measure of progress; frequent communication with offshore clients

(minimum once in two days); continuous attention to the technical excellence; user of

pair programming for critical project modules and sections; iteration planning. Both Yang

et al and Nisar and Hameed conclude that the principles of XP have been proven

successful in their projects. Yang et al reported that their project was completed on time

and with a cost-saving of at least 60% compared with doing the project entirely onshore.

Nisar and Hameed‟s projects gained a 100% rate of client satisfaction. The application of

XP on large distributed projects also has been reported in Karlsson et all‟s paper, Daily

Build and Feature Development in Large Distributed Projects[17], and Farmer‟s Agile

Development in a Large, Distributed Team[18], although they restricted their use of XP

to continuous builds and unit tests, small releases, continuous integrations, and automatic

testing. Both papers found that applying an agile process is useful but hard to implement

due to the problems of GSD introduced by distance discussed above.

In general, all these reported experiences about the use of XP in global distributed

projects are successful according to the respective authors. This leads us to conclude that

XP process can benefit the GSD projects either in communication or client satisfaction to

21

improve the software quality, even though we need to define carefully how we implement

these principles in practice when handling offshore projects.

3.4 Supporting Tools

Besides theoretical research, there have been some tools developed to help

application of Agile Methods. Some of them come from project management perspective.

Some are focused on one or some of practices of Agile Methods.

For the tools targeting a single agile technique, we found a prototype user story

software tool called DotStories purposed by Rees in his paper A Feasible User Story Tool

for Agile Software Development [24]. The author introduces DotStories, a web-based tool

that can be applied in distributed team. DotStories offers any number of web sites with

the intention that each web site corresponds to a single software development project.

Each web site contains a collection of user story groups or web pages. A web page

contains any number of user stories. Each user story page contains the basic information

required by XP practices. User stories are categorized as Complete User Stories, Future

Stories, and Archived Stories. They can be browsed in different mode for user-friendly

purposes. DotStories is mainly implemented as a website containing a large body of

Jscript functions embedded in a series of HTML pages with some.asp pages to manage

the XML files on the server. They are accessible from anywhere using Internet Explorer

5.5 or a later version. We found DotStories to be limited in its applicability on big

projects. For example, the categorization schema makes finding user stories difficult

when there is a large inventory of user stories. Also it does not support multi-site

development.

22

Another user story tool with much wider capabilities is called Storm User Story Tool.

It is under development as an Open-source project at Sourceforge.net [23], and provides

features such as access control within and between accounts; release management with

user stories sorted by various properties; linking remote files to a user story; and user

story version control. These features are very impressive but the tool itself suffers from a

complex interface. This could drive users away from the simple, lightweight nature of XP.

As with DotStories, it does not support multi-site development.

There are some tools designed to solve project management difficulty. In Enabling

Collaboration In Distributed Requirements Management[19], VibhaSinha,

BikramSengupta, and Satish Chandra introduce a tool by IBM called EGRET, which is

an Eclipse-based global requirements tool for distributed requirements management.

EGRET aims to support change management, knowledge management, awareness and

informal collaboration in teams that subscribe to the communication about a particular

requirement. The potential users include business analysts and architects who interface

with the customer and elicit high-level requirements, as well as system engineers; testers

and other members of distributed development teams who help refine these requirements

and define validation criteria for them. EGRET is based on an Eclipse client

communicating with back-end repositories. It uses MySQL as the repository for data,

CVS as the version-controlled repository, and an experimental collaboration server

developed by IBM for synchronous communication. EGRET interface consists of a set of

views: Artifact Explorer shows the hierarchical structure of project requirements;

Communication Record lets user initiate conversation or accesses all the conversations

they participated in; Project Stakeholders lists all stakeholders along with their roles and

23

status; and Traceability shows the requirement‟s traceability. EGRET was tested on 12

practitioners from three projects and was proven to aid distributed teams in supporting

informal collaboration, managing changes, promoting awareness and managing

knowledge. The authors also suggest some guidelines when building such tools:

 The tools should be able to plug into existing collaboration mechanisms.

 User authentication and access to various collaboration services should be

uniform.

 The tool should be interoperable with other tools belonging to subsequent parts of

life-cycle

 A web interface is essential for the tool to be widely accessible.

 This research validates that a deep integration of appropriate collaboration support

with a requirement management tool can greatly aid distributed teams. The authors also

point out that while the preliminary evaluation of EGRET is encouraging, it involved

only a few practitioners. There is no proof that EGRET fits other projects outside of IBM.

Moreover, this tool is focused on requirement engineering instead of the whole life cycle.

Interoperability with other tools in different parts of life cycle needs to be considered

when choosing it for requirement engineering management. Tool that supports the whole

software development life cycle is more desirable.

Another project, which is still under development by IBM, is called Jazz. According

to the IBM website [20], “Jazz is an IBM Rational project to build a scalable, extensible

team collaboration platform for integrating work across the phases of the development

lifecycle.” As a provider of collaborative capabilities to development teams, Jazz breaks

24

new ground by in incorporating collaborative tools into the IDE instead of using stand-

alone collaboration tools such as instant messenger. Jazz also can:

 Handle connections to the server infrastructure to support messaging and source

control

 Place hooks in Eclipse to track developers‟ interactions with source code and

source control

 Integrate the user interfaces that developer use to communicate with each other

The goal of Jazz is to find a way to address the needs of a broad spectrum of end

users using different processes, which makes it very powerful. But it is not customized

for any specific software process such as XP, even though some XP principles are

included such as iterations; consequently some of functionality is not necessary for XP

users. Our Eclipse plug-in is built specifically for XP. Part of it will be patterned after

Jazz, but will be lighter in weight.

25

CHAPTER 4

EXTREME PROGRAMMING EXAMINATION

4.1 Introduction

In this chapter we examine the XP practices within Global Software Development

context and discuss which practices can fit into GSD and which cannot. We identify

aspects of XP that are necessary for adapting it to GSD projects. We propose a

methodology for tailoring XP to fit into GSD.

4.2 Xp’S Practices Benefit Communication

Communication is important throughout the entire software development lifecycle.

There are several kinds of communication we needed:

 Communication between project manager and customers;

 Communication between developers and customers;

 Communication between developers and project manager;

 Communication between developers;

 Communication between customers.

Communication is also one of the core values of XP discipline. XP‟s practices focus

on improving these kinds of communication. Table 4.1 shows a collective generalization

of what XP practices benefit what kind of communication (without considering GSD). As

we can see most of XP practices can benefit from communication. When it comes to the

globally distributed software development, some of the benefits become hard to achieve

26

due to the kinds of reasons stated earlier.

Table 4.1: XP practices benefit communication

We exam the practices which may be problematic to practice under GSD environment.

We identify which aspect needs to be tailored to fit in GSD background as the theory

basis for the methodology we propose in the next chapter.

4.3 Xp Practices Examination

4.3.1 On-Site Customers

We first examine on-site customer practices because it provides the major premise for

our following discussion. XP recommends that a customer sit with the team full time

Practices Benefit

Planning game Benefit communication between project manager, developer

and customers.

Small release
Benefits rapid feedback between developer and customers.

Metaphor Provides easy understandable communication platform for

developers, project manager and customers.

Simple design Facilitates communication within developers, and between

developers and project manager.

Tests
Provide rapid feedback between customers and developers.

Refactoring Makes it easy to communicate between customers and

developers.

Pair programming
Provides instant communication between paired developers.

Continuous integration Provides developers with rapid feedback on the quality of the

code.

Collective ownership
Benefits communication between developers

On-site customer Benefits communication between project manager, developer

and customers.

40-hour weeks
Not identified

Open workspace

Benefits communication between developers, and developers

and project manager.

27

during the entire life cycle. This practice requires that the customer have a thorough

understanding of the desired software. In [36], the authors identified this “bad smell”

when practicing XP as well. They noted that the customer must be coached sufficiently to

provide honest and substantial feedback from the very beginning of development process.

In most cases, one customer cannot fully provide requirements to the development team;

there will be multiple customers involved. When the project is globally distributed, it is

costly to set up on-site customers. Plus, there are other issues involved, such as

international visa, travel time, etc. A timely customer presence, especially when an

emergency happens, can hardly be guaranteed. When the project is distributed across

multi-sites, customers have to travel between the sites, which decreases productivity and

increases costs. As a consequence, a tool that can provide the customer‟s virtual on-site

presence is needed to apply this practice to GSD projects. E-mail, Instant Messenger, and

conference calls are good options to help facilitate communication among customers and

development teams that are globally distributed. For teams more than five time zones

away, telecommunication can be held at the beginning and the end of each release and

iteration, or as necessary. Even though e-mail is less efficient than face-to-face

communication, it can be responded to within 24 hours. Moreover, when there is a

language difference, people tend to feel more comfortable communicating in writing than

through oral means.

4.3.2 Planning Game

In the planning game, customers decide the scope and timing of the release based

on estimates provided by the developers. Developers implement in any one iteration only

the functionality demanded by the stories. In XP, there are two kinds of planning games:

28

Release Planning and Iteration Planning. After customers finish editing the user stories, a

meeting is set up to create the release plan which lays out the overall project. The idea of

this meeting is for developers to estimate how long in programming days it will take to

finish each user story, and for customers to then decide which user stories to complete.

The release plan is then used to create iteration plans for each individual iteration. In this

way, every team member has clear goal of project progress. GSD throws a wrinkle into

this process. First, as we stated before, when there is no on-site customer present it is

difficult to organize a release plan meeting. A conference call may be the best option, but

still has its limits. Especially at the beginning of project, a meeting is inevitably going to

last longer than it is in the latter part of project because of negotiation between

development team and customers, such as requirement clarification. Another problem is

the more stakeholders involved, the more unorganized the negotiation tends to be. A role

such as a project manager for each development team is necessary to ensure the meeting

goes smoothly. The project manager collects the estimate from developers. Discussions

or meetings can be conducted before release plan meeting if the project manager feels the

developers‟ estimates are problematic. After gathering all information, the project

manager attends the meeting as the representative of team to negotiate with customer.

When necessary, the project manager brings back the customer‟s feedback to discuss

with specific developers. This systematic communication enables release plan meeting to

be more organized and efficient.

Another communication issue that needs to be considered is the format of the user

story. In traditional XP practice, the user story is written on a physical card. Together,

developers and customers move the cards around on a large table to create a set of stories

29

to be implemented as the first (or next) release. In the GSD environment where there is

no on-site customer, a virtual large table that gives the customer and the development

team synchronized access to virtual user story card is needed. A tool support this

functionality will benefit both communication and project management.

4.3.3 Small Release

The development team needs to release frequent iterative versions of the system to

the customer. This is critical in getting valuable feedback in time to have an impact on

the system's development. Declaring the introduction of important features shortens the

implementation time. How to control the releases in GSD needs to be further considered.

When a release plan includes user stories from multiple development sites, a

methodology that makes the plan easily understandable for all development teams and

customers helps relieve the misunderstanding problem we stated before.

4.3.4 Simple Design

XP emphasizes keeping things as simple as possible. It frees the developers‟ from

the requirement of heavy documentation in an effort to focus more attention on the design

itself. Simple design eases communication among developers, and between developers

and the project manager. We suggest using a standard design language such as UML

diagrams for better communication in GSD projects especially in cross-site

communication. As we stated before, developers tend to have miscommunication

problems when they come from different cultural backgrounds. The frequency of cross-

sites communication drops for the same reason as well. A standard design methodology

such as UML remains a design simplicity that all developers understand. “Where to find

who” is also a common problem in GSD. A methodology that helps development team

30

members to easily locate the partner they want to communicate with should also be

applied in GSD project.

4.3.5 Testing

The acceptance test for each user story is conducted by the customers and a test

score is given after that. This practice provides fast feedback between the development

team and the customers. This convenience should not be jeopardized by the

communication gap in GSD projects. What is the convenient way to transmit the

feedback from customer to development team without introducing too much overhead?

How to make sure developer will be notified timely without interference from the time

and special distance? A methodology that provides timely notification of test feedback is

required here.

4.3.6 Collective Ownership

In XP, the practice of collective ownership means that every programmer improves

any code anywhere in the system at any time. It benefits communication between

developers because, in this way, everybody can learn from each other. For co-located

development teams, it is easier to trace back to the author who made the change when the

defect is introduced by such change. Co-owners can initiate the communication easily.

There is also no copyright issue involved. For globally distributed development teams, it

may cause legal issue if one site modified the source code of other side that belongs to

other company. Even there is a mutual agreement on source code ownership. It is hard for

developers to accept the fact that a stranger from other company can make changes to

software they authored. The traceability of changes across sites decreases significantly as

31

well. Therefore, we suggest collective ownership to be practiced within each

development site, but not practiced among development sites.

32

CHAPTER 5

GENERAL APPROACH

We propose a methodology for adapting XP practices to a GSD project by using a

project management tool. We identify the aspects of developing this kind of software that

are necessary for global distributed development. We are mainly targeting solving the

communication problem and weak project management support of XP as stated in

Chapter 2. The methodology is illustrated in a project management perspective because

we believe a good management can facilitate systematic communication.

5.1 Introduction

In a GSD project, an important thing is to make sure globally-distributed teams are

on the same page during the project. A project management tool that supports

information sharing and promptly information update is required.

5.2 Project Information Overview

5.2.1 Description

Awareness is a problem we need to tackle in GSD. Customers normally do not

involve themselves in development but they always want to know the project status so

that they can adjust their plans. If they observe that the project is going faster than

scheduled, they can add more user stories in the next release. A delay also can be

detected at an early stage so customers will not be surprised. This helps to improve

customer satisfaction. The project manager wants to monitor the site‟s progress as well

33

concrete project progress data helps in negotiating reliable goals with customers. Team

members normally focus on their own module and, as a consequence, lose the big picture

of the whole project. The system shall provide users with overall project information and

the access to detailed information. The system shall provide visibility to the project

progress of each project site. The detail project information shall be organized in the site

manner.

5.2.2 Functional Requirement

REQ1-1: The system shall display the project name the user is working on and current

available information.

REQ1-2: Project abstract information shall be displayed appropriately.

REQ1-3: The access point to detailed project information shall be displayed.

REQ1-4: The system shall provide appropriate information about Team Members, User

Stories, Release Plans and Iteration Plans for each site.

REQ1-5: Both graphic and text project release plan, if available, shall be displayed

REQ1-6: Users shall be able to view team member information grouped by team

properties.

REQ1-7: Users shall be able to view user story information grouped by its properties.

REQ1-8: Users shall be able to view release plan information grouped by its properties.

REQ1-9: Users shall be able to view iteration information grouped by its properties.

REQ1-10: Project information can only be modified by the user who has Edit privilege,

otherwise it is only viewable.

34

5.3 Project Team Member Management

5.3.1 Description

A team member management function can help all project members easily locate

who is where and who is working on what, which caused the “hard to initiate

communication” problem of GSD. Besides distance, people normally find it difficult to

communicate with somebody they do not know. This barrier especially exists in cross-

site communication among different companies. A personal picture will help remove this

barrier. The system shall record every team member‟s information including:

• First, Last Name

• Personal image

• Site

• Role

• Assigned User Stories

The system shall let project team member information be accessible to the entire project

team. Only those who have Add/Update/Remove privilege may update the list.

As we stated before, instant messenger tools can help solve the “Decrease frequency

of communication” problem between distributed team members. An embedded instant

messenger in the system will be convenient for users so they do not need to rely on third-

party software. Therefore, the system shall allow users to initiate conversations whenever

they want. A copy of the conversation‟s content shall be saved automatically as a record

for future use.

When distributed teams are more than five time zones away, team members from

different sites have small time overlaps. A messenger that can display messages received

35

received when the user is absent is very helpful to speed up project progress.

5.3.2 Functional Requirements

REQ2-1: The system shall display the Project Team member information for all team

members.

REQ2-2: The system shall let the team member who has update(add/remove/update)

privilege to update project team member information

REQ2-3: The system shall notify all project managers when team member information is

updated

REQ2-4: The system shall let a team member to initiate a conversation with one or more

other team members.

REQ2-5: The system shall let a conversation participant save a copy of the conversation

content.

REQ2-6: The system shall let the conversation participant choose the person they want

to inform about the conversation content.

5.4 Project Sites Management

5.4.1 Description

How project information is organized influences project management and

communication significantly. Imagine if there is only one database table with hundreds of

user stories how difficult it is to dig out who is working on which story and what is its

status. When a project spans multiple development sites, it is more complicated to

maintain a big picture of project progress for customers and project manager. In our

approach, besides project information overview, we suggest organizing project resources

in a site fashion. Each site contains its own people, user story, and release/iteration plan.

36

It is editable for each team member of the site, and viewable for other sites. Development

site information not only enables customer to observe each site‟s progress without being

physically present, but also facilitates team members‟ communication and cross-site

communication by providing a big picture perspective of project. It contributes to solving

almost every communication issues in GSD. To implement this functionality, the system

shall record information include at a minimum:

 Site basic information (Location, Development team size, Development velocity)

 Team members

 User stories assigned to

 Project schedule (release plan)

 Iterations

 Releases

By browsing the above information, customers can monitor project progress remotely so

as to save communication cost, time, money and staff. Because information is available

on the server, accessibility is not limited by time zone differences. Project managers and

developers also can get an idea where they are and who is doing what during the project.

5.4.2 Functional Requirements

REQ5-1: The system shall organize project information by site

REQ5-2: The system shall let site information be visible to the entire project team

REQ5-3: The system shall be able to distinguish site member and site visitor

REQ5-4: The system shall be able to distinguish which site information is editable based

on the user‟s role

37

REQ5-5: The system shall inform site members of any project updates and notification

of the site they belong to

REQ5-6: The system shall allow communication between team members and different

sites

5.5 User Story Management

5.5.1 Description

When practicing XP, the user story is a part that has high communication density.

From the planning game to implementation to test, user story information is needed in

most XP practices. In the planning games, developers need to estimate the programming

time for each user story. At the planning meeting, customers and project managers

discuss them to set up the release plan and the iteration plan. The clear images of which

user stories have been completed and which are incomplete at what priority is crucial. In

design, developers may need to know who is working on a user story that is similar to

theirs, who is the author of the user story when the requirement is not clear. In a small

release, project members need to be aware which user stories are included in each release.

In testing, the developer needs to get feedback from customers if the user story he is in

charge of is accepted or has failed a test. There is a lot of communication required in a

background full of communication obstacles. The crucial problem is when an on-site

customer is not available. We need a methodology that can bring customers, project

managers and developers into one virtual room, thus efficiently accomplishing the XP

practices with as little face-to-face communication as possible. Information can be

transmitted timely and accurately.

38

We propose two key approaches here: “User Story Inventory” and “User Story

Status”. There are two kinds of “User Story Inventory”. A “Project User Story Inventory”

consists of all the user stories created by customers. Since project information is

organized by sites in our approach, a “Site User Story Inventory” lists all the user stories

assigned to this development site. Generally, every user story has following properties:

 Unique ID

 Name

 Description

 Author

 Estimate Programming Day

 Actual Programming Day

 Developer

 Priority

 Iteration ID (which is assigned to)

 Release Version (which is assigned to)

 Status

 “User Story Status” indicates the status of a user story during project. It can be one of the

following:

 Not Started – User story is created by customer

 Assigned – User Story has been assigned to specific developer

 In Progress – User story is in the implementation phase

 Complete – User story implementation is complete

39

 Accepted – User story is accepted by customer in acceptance test

 Test Failed - User story is not accepted by customer in acceptance test

 Released – User Story has been released

Events User Story Status

Customer creates an user story Not started

Developer picks up user story Assigned

Developer starts implementation In progress

Developer finishes the unit test Complete

Passes customer acceptance test Accepted

Failed at acceptance test Test failed

Release Release

Table 5.1: Change of User Story Status

“User Story Inventory” and “User Status” help customers and project managers easily

track every user story during projects. Table 5.1 shows the changing of properties for one

user story along the project progress. The customer first creates a user story, the Name,

Description, Author fields are filled out and the status is set to “Not started”. The user

story is saved in the “Project User Story Inventory”. The customer assigns user stories to

each development sites. This information is saved in the “Site User Story Inventory”. The

project manager then checks the inventory and lets developers pick user stories. The

project manager fills out the “Developer” field and changes the User Story Status to

“Assigned”. Each developer gives an estimate in programming days of how long the

story will take to implement. The user and project manager pick stories that will go into

the release plan and the iteration plan. The developer sets the Status to “In progress” at

the beginning of implementation and sets to “Complete” after unit test. Customers test the

user stories and mark them as “Accepted” if each passes its respective acceptance test, or

40

“Test Failed” if not. The “Release” status is used if a user story is included in a release

version. The “actual programming day” gives the project manager a means of calculating

the project velocity so as to help set up the next release/iteration plan. In this way, heavy

communication becomes a series of systematic processes that are not impacted by

regional and cultural difference. Simple activities and standard description give less

opportunity for misunderstanding. Customers and development team members can track

every user story at any time, thereby decreasing the time zone distance and increasing

awareness.

5.5.2 Functional Requirement

REQ3-1: User Story shall contain all the properties listed above

REQ3-2: The system shall display the “Project User Story Inventory” for the whole

project team

REQ3-3: The system shall display the “Site User Story Inventory” for each site

REQ3-4: Only the customer is allowed to add/remove a user story

REQ3-5: Only the project manager are allowed to assign a user story

REQ3-6: The developer can only update the estimate and actual programming day and

status of task assigned to him

REQ3-7: User stories can only be viewed by users from other development sites

REQ3-8: The system shall display stats on user stories for the whole project

REQ3-9: The system shall display stats on user stories for the whole site

REQ3-10: The system shall save the discussion under specific user story

REQ3-11: The system shall allow user stories to be assigned to only one iteration

REQ3-12: The system shall allow users to update user story status.

41

REQ3-13: User Story Status options shall be customerized based on user role.

REQ3-14: The system shall allow users to break user stories into tasks when needed

REQ3-15: The system shall record UML design diagrams and test cases for each user

story.

5.6 Project Release Management

5.6.1 Description

Unlike traditional development approaches where software modules are combined

together at the end of development, XP requires iterative development and frequent

releases to deliver a runnable system to customer as early as possible. Customers pick

user stories for each release at release planning meeting. In a globally distributed

development environment, release management is more complicated than single sites,

because a project release may consist of user stories developed by different sites. Without

a systematic management approach, the release plan is influenced by conflicting site

development schedules. To control this chaos, we propose using two kinds of release

plans: Project Release Plan and Site Release Plan. The project release plan is for the

whole project. It consists of release plans for each site. The approach is described in

Figure 5.1.

 Figure 5.1: Project Release Plan and Site Release Plan example

42

In this example, the customer first creates four user stories and assigns them to Site 1 and

Site 2 separately. The customer and project manager settle the Site Release Plan for each

site based on business needs and the user stories‟ priorities. The customer decides which

site releases they want to put into a Project Release. From the example above, the

customer wants user stories A, C, D as first project release. It includes Site Release S1R1,

S2R1 and S2R2. Using this approach avoids schedule conflicts between sites 1 and 2.

Development tasks are clear to customers and development is easy to manage.

The system supports above approach with two kinds of release plan – the Project

Release Plan and the Site Release Plan. The system shall provide customers an easy-to-

user platform for creating release plans. The system shall also make the project schedule

accessible to the entire team, editable to those who have privilege.

5.6.2 Functional Requirements

REQ5-1: The system shall record both the Project Release plan and the Site Release plan

REQ5-2: Project Release Plan and Site Release plan shall be visible to all team members

REQ5-3: The system shall allow the customer to create the Project Release Plan based

on the Site Release Plan

REQ5-4: The system shall allow the customer to create the Site Release Plan based on

user stories assignment.

REQ5-5: The system shall prompt the user when a Release Plan conflict happens.

REQ5-6: The system shall let team members with update privilege to change the

schedule

REQ5-7: The system shall record the update history for the Project Schedule.

REQ5-8: The system shall notify all team members when a release plan is updated

43

5.7 Project Iteration Management

5.7.1 Description

After the Release Plan is set up, the customer and project manager will pick which

user stories from the Release Plan will go into the Iteration plan. An iteration plan should

not contain the user story from later release plan when the user stories of earlier release

plan are still available. When the iteration is complete, a project velocity should be

calculated. Only customers and the project manager have the update privileges to edit

(Add/Remove/Update) an Iteration Plan. Iteration information is viewable to all team

members so as to make sure each developer is aware of his tasks and schedule. We also

suggest displaying a stat of user stories under seven statuses separately during the project,

together with project velocity calculated at the end of iteration. This way customers and

project managers can easily measure project progress and make adjustments if necessary.

5.7.2 Functional requirement

REQ6-1: The system shall display iteration information for the entire development team

REQ6-2: Only customers and project managers are allowed to edit iteration properties

REQ6-3: The system shall not allow users to pick a user story from a later release

version when there are ones remaining in a earlier version

REQ6-4: The system shall display the stat of user stories under each status for each

iteration

REQ6-5: The system shall display project velocity at the end of each iteration

44

5.8 Project Event Notification

5.8.1 Description

Event notification functionality is crucial to fill the communication gap between

distributed teams. It helps team members be aware of what is happening in the project

without having to ask. This avoids the necessity of certain communication which is hard

to initiate in a GSD environment. Customers and project managers can monitor the

project in a real-time fashion. It is important for the system to notify appropriate project

stakeholders when significant events happen.

5.8.2 Functional Requirements

REQ7-1: The system shall notify customers of the following Planning and Release phase

events:

a. An user story is created/updated/removed

b. A Project Release Plan is created/updated/removed

c. A Site Release Plan is created/updated/removed

d. An iteration is created/updated/removed

e. An iteration is completed

f. A Release is ready/released

g. A developer is added/removed from site

REQ7-2: The system shall notify project managers of all Planning, Implementation, Test

and Release phase events

a. A user story is assigned to site

b. A user story assigned to site is updated/removed

c. A Project Release Plan is created/updated/removed

45

d. A Site Release Plan is created/updated/removed

e. An iteration is created/updated/Removed

f. An iteration is complete

g. A iteration is accepted by the customer

h. A Site Release is ready/released

i. A Project Release is ready/released

REQ7-3: The system shall notify developers about the following Planning,

Implementation, Release phase events:

a. A user story is assigned

b. A user story assigned is updated/removed

c. A user story acceptance is accepted/failed

d. An iteration is created/updated/removed

e. A Site (to which the developer belongs to) Release Plan is

created/updated/removed

f. A Project Release Plan is created/updated/removed

g. A Site Release is ready/released

h. A Project Release is ready/released

i. A developer is added/removed from site

REQ7-4: The system shall notify users when a conversation invitation arrives

REQ7-5: The system shall notify users when an instant message arrives

46

CHAPTER 6

IMPLEMENTATION AND VALIDATION

In this chapter we present prototype software, GSDXP, which implements the

methodology we introduced in previous chapter. This prototype is developed as an

Eclipse plug-in. This prototype does not fully implement all the requirements of our

approach, only the ones considered necessary to demonstrate proof of feasibility.

6.1 Prototype Scenario

Our prototype is developed based on the scenario shown in Figure 6.1.

Figure 6.1: Prototype scenario

In this scenario, there are three sites located in three different countries. The customer‟s

company is in San Jose, CA, USA. Two development sites are located respectively, at

Beijing, China and Tokyo Japan. Each development site has a project manager who is in

charge of coordinating and managing the development site.

Customer

(San Jose,

USA)

Development Team A

(Beijing, China)

Development Team B

(Tokyo, Japan)

47

6.2 Project Information Overview

Figure 6.2: Project Information Overview

Figure 6.2 shows the project information overview of the plug-in. In the left view,

project information and structure are displayed in a tree fashion. The “People” node

contains information on the entire team member (customer, project manager, developer).

The “User Story” node and “Release Plan” node contain all the user story information

and the project release plan. The three sites information are saved under the “Site” node.

The customer site at San Jose is listed at the top. The following two development sites are

located at Beijing and Tokyo separately. Each site has its own team members, user stories,

release plans, and iteration lists. At the right bottom of window, there are three tabbed

views: Message, News and Discussion. The Message view lists messages received

48

whether user is online or not. The News view lists event notifications. The Discussion

view is an embedded instant messenger which supports real-time conversation. By double

clicking on the “Project” root node, a window like Figure 6.3 presents project outlines.

Figure 6.3: Project outline

Double clicking on a site name results in a window like Figure 6.4: Site outline. This

window presents an outline of the site.

49

Figure 6.4: Site outline

Using this feature, every team member can easily obtain a big picture of the project and

locate the project resources he needs no matter where he is. This is especially helpful if

new team members are introduced in the middle of project.

6.3 Team Member Management

In the previous chapter, we proposed that a team member management approach to

alleviate communication difficulties. In GSDXP, a team member can check out the full

member list from “People” node under “Project” tree, as illustrated in Figure 6.5.

50

Figure 6.5: Full team member list

From this list, users can easily locate any team member. This list also can be grouped by

team member property to facilitate easy reference to information. When each member is

double clicked, a pop-up window displays the member‟s detail information (see Figure

6.6). Adding or Removing a team member can be done by clicking “Add” and “Remove”

button at the upper-right corner.

51

 Figure 6.6: Team member detail information

Besides basic information, the “User Story List” lists the user stories assigned to this

developer. This list is very useful to answer “who is working on what” question.

Figure 6.7: Team member list group by “City”

52

The “People” node under each development site displays a team member list of the site,

as illustrated in Figure 6.8.

Figure 6.8: Team member list for site “Beijing, China”

6.4 User Story Management

Since most of communication is highly concentrated in XP through user stories,

more detail and systematic information is helpful in solving communication problems.

We propose in Chapter 5 using the “Project User Story Inventory” and the “Site User

Story Inventory” for better management and communication. This approach is

implemented through the “User Story” node under the “Project” tree root and the “Site”

node separately. Each “User Story” node under the tree root saves all the user stories

created for this project.

53

Figure 6.9: Project User Story Inventory

Figure 6.9 shows the “Project User Story Inventory”. From this inventory, we can see

there are four user stories. Each user story‟s progress can be observed from this list. For

example, user story “US_1”, “Login screen”, is set to have High priority with a status of

“Complete”. It was estimated as requiring 3 programming days and actually took 3. It is

included in the iteration “BC_1”, which is belong to site release “BC_1.0.0” and project

release “1.0.0”.

 Double clicking on “US_1” will pop a “User Story Detail Information” window

shown in Figure 6.10.

54

Figure 6.10: User Story Detail Information Window

The “Properties” tab displays the general information of user story.

The “Tasks” tab shows the tasks list if the user story has been broken down to tasks.

Figure 6.11 shows that US_1 was divided into two tasks.

55

Figure 6.11: User Story Detail Information Window

The “UML” tab displays the UML diagram path for this user story as illustrated in Figure

6.12. Add, Remove and View functionalities can be performed by clicking specific

buttons on the right.

56

Figure 6.12: UML tab shows the UML diagram file

The “Test Case” tab displays the unit test case file for this user story. User can Add,

Remove or View the file by clicking specific buttons on the right.

57

Figure 6.13: Test Case tab shows the unit test case file

The “Project User Story Inventory” provides a way to quickly acertain a user story status

and its related work for globally distributed team members. It facilitates the

communication from many aspects.

 Difficult to initiate communication – a team member can find out “who to

contact what” from here

 Miscommunication – User story properties give users a direct way to

understand content and progress. Standard UML diagram and test case

decreases the possibility of misunderstanding.

58

 Increased communication cost- time, money, and staff – The User Story

Inventory decreases the necessity of initiating communication because a team

member can obtain all the user story information from the inventory without

asking. Communication is only needed when user has a question about a

certain property.

 Time difference – The Inventory is saved on the server, which is accessible

any time.

Above all, The “User Story Inventory” can facilitate communication during

project. When customers create a lot user stories, it may be inconvenient to locate a

specific user story from the “Project User Story Inventory”. A “Site User Story Inventory”

contains the user stories which have been assigned to the site, thereby giving project

managers a big-picture perspective of their site. Figure 6.14 shows the “Site User Story

Inventory” for Beijing development site.

Figure 6.14: “Site User Story Inventory” for Beijing development site

59

The User Stories can be broken down into tasks. Figure 6.15 shows a task added to User

Story US_3.

Figure 6.16: Create a Task for US_3

6.5 Project Release Management

In Chapter 5.6 we describe our approach of dividing the release plan into the Project

Release Plan and the Site Release Plan. In our prototype plug-in, they are represented by

the “Release Plan” under Project tree root and the “Release Plan” under the site branch

separately. The Site Release Plan for Beijing is shown in Figure 6.17.

60

Figure 6.18: “Site Release Plan” for Beijing development site

There are two site releases created, BC_1.0.0 and BC_1.0.1. Each release contains one

user story that is developed in one iteration. BC_1.0.0 is already released. BC_1.0.1 is

still in progress. To create a new Site Release Plan, we can click on “Add” button. A pop-

up window is looked as Figure 6.19.

61

Figure 6.20: Create new Site Release Plan

In the “User Story” area, the “Available” box contains all the user stories assigned to the

Beijing site but which haven‟t yet been assigned to any Site Release. User Stories

assigned to a release plan will not be shown here. In this way, we can avoid assigning a

user story to multiple sites. To view/edit a release plan, double click on the Site Release

Plan.

62

Figure 6.21: View/Edit Site Release Plan

Moving a user story from the “Available” box to the “Selected” box will add a user story

into this site release; moving stories from “Selected” to “Available” remove them from

the site release.

By double clicking on “Release Plan” under the project tree, the Project Release

Plan of GSDXP is shown, as in Figure 6.22.

63

Figure 6.23: Project Release Plan of GSDXP

From the release plan list, we can see there are two Project Release Plans. Version 1.0.0

contains two Site Release Plans: BC_1.0.0 from site Beijing and TJ_1.0.0 from site

Tokyo. Each of the site release plans has one user story, the total user stories that will be

delivered is two. The scheduled release date is 10/01/2008, which is “Not Released” yet.

By double clicking on each release plan, a Release Plan Detail Information window

appears, as in Figure 6.20.

64

Figure 6.24: Project Release Plan Detail View

The “Site Release Plan” lists all the Site Release Plans included in this Project Release

Plan –BC_1.0.0, TJ_1.0.0 and unassigned Site Release Plan TJ_1.0.1. From this window,

the customer can add or remove a Site Release Plan.

6.6 Project Iteration Management

On the project tree, the “Iteration” node contains the iterations the site is working on.

65

Figure 6.25: Iteration tree

As showed in Figure 6.21, the site Beijing has two iterations so far. In BC_1_1, one user

story “US_1” was developed, which was further divided into two tasks “US_1_1” and

“US_1_2”. The second iteration “BC_1_2” developed user story “US_2” which was not

divided into tasks. By double clicking on the “Iteration” node, a Site Iteration list is

shown as Figure 6.26.

66

Figure 6.26: Site Iteration List

The iteration detail view is shown in Figure 6.27.

Figure 6.27: Iteration detail view

67

The checked user story in User Story list is the story currently included in iteration.

Because iteration BC_1_1 is already complete, no other user stories are listed.

6.7 Project Event Notification

Event notification can help improve communication by making team members aware

of significant occurrences that have taken place.

6.7.1 Message View

Figure 6.28: Message view

The message view is used to display messages in the order in which they were

received. This functionality does not require the user to be online. Messages are saved in

database. When the user logs in, he can browse all the messages he received. Users can

reply to messages by double clicking on the message, the result being a dialog box

illustrated in Figure 6.29.

Figure 6.29: Reply message

68

6.7.2 News View

Figure 6.30: News view

The News view displays the news regarding events that have happened in project.

This functionality is designed to help improve the “Awareness” problem. From this

window, team members can maintain a vision of the project. The “News” tab blinks to

prompt user when an event message has arrived.

6.7.3 Discussion View

The Discussion view is used to display the real-time conversation between

communication peers. Due to time constraints, this functionality was not implemented.

The idea of Discussion is to allow user to initiate communication from the GSDXP plug-

in without relying on third-party software. Users can choose to save the content of

conversation as a record. Instant messenger functionality is very handy for team members

to communicate with other members at other sites without regard to time and spatial

limits.

69

CHAPTER 7

METHODOLOGY VALIDATION

To validate approach, GSDXP was sent to managers and software engineers involved

in Global Software Development for usability evaluation. We invited two department

managers and six software engineers to be test users. They came from five different

companies located at Beijing, China and Tokyo, Japan. All of them had been involved in

software outsourcing industry for more than four years. The longest was more than ten

years. Among eight trial users, three had practiced XP on real projects, and five knew the

basic idea of XP. The software development process they were using at the time of the

evaluation was a combination of waterfall and iterative.

Before the trial run, the virtual users were asked to name the most common

problem they have in software outsourcing. Six users answered communication problems

and the other two gave understanding user needs as the largest problem, which is partly

caused by communication. All of them mentioned that project progress is significantly

slowed down without a on-site customer. A project manager said “Sometimes it takes

more than two days to confirm a question which should only take twenty minutes if there

were an on-site customer. We have to rely on back-and-forth emails, conference calls.

That slows down project progress.”

After the trial run, a survey was conducted regarding the usability of plug-in. The

survey result is showed in Figure 7.1.

70

Figure 7.1: User‟s feedback on plug-in usability

All eight users agreed that our approach helps solve “Awareness” and

“Miscommunication” problems. Seven out of eight agreed it decreases communication

cost, time, money and staff. Six think it facilitates communication initiation. Three

thought it helps to solve time difference problem, although not all the respondents were

able to reply definitive to this issue.

All of users thought this plug-in is a light-weight and handy tool for project

management. The user interface is straightforward to use, although general XP

knowledge is required. Five of them thought the approach is generally practical in GSD

projects and helps solve communication problems. Three of the eight virtual users had

concerns regarding project size, server reliability, and network quality etc. Two managers

were most interested in the User Story Management functionality, while four of engineers

were pleased to see the Event Notification functionality. In the end, three of users

suggested the further improvement of Release Plan Management.

0% 20% 40% 60% 80% 100% 120%

Percentage of user

Time difference

Awareness

Increased communication cost

Miscommunication

Difficult to initiate communication

Decreased frequency of communication

71

CHAPTER 8

SUMMARY AND FUTURE WORK

8.1 Summary

XP cannot be fully implemented in a global distributed development setting. We have

proposed, partially implemented, and evaluated an XP-based methodology to solve the

communication problems in GSD projects from many perspectives. It also provides an

easy and systematic way to address the weak support of project management. Based on

our survey results, we find our approach is generally welcomed by GSD practitioners.

Two of tool evaluators who barely knew XP before showed interest in practicing it in

future projects. Our study shows that after carefully tailoring, together with its dynamic

characteristic and complimented by a project management methodology, XP is a suitable

practice for Global Software Development.

8.2 Conclusion

Based on our study, it shows that according to appropriate adaption, XP and GSD can

be combined together to reap the benefits of both even though former emphasizes on

communication, and latter is inherited with communication gap. We identified that the

XP practices of on-site customers, planning game, small release, simple design, testing

and collective ownership as the ones can be customized to alleviate communication

problems in GSD. Since XP does not provide support for project management,

management approaches are needed when practicing it. We found that management of

72

key elements in the project facilitates the deployment of XP. Those key elements include

project information, project site information, project team member information, user

story information, project release plan information, project iteration information, and

project events information. The goal of managing this information is to provide every

stakeholder a clear vision of the project, in such a way to decrease the communication

necessity and communication difficulty.

8.3 Future Work

As with any significant endeavor, work still needs to be done. One of the problems is

that our approach requires that users have a relatively high understanding of their

business in order to make the right decision -- such as user stories assignment and

priorities setting -- at critical points so site releases can finish at right time to be

combined to project release. Server stability is another problem we need to consider.

When this approach is applied to a big project, server performance under heavy loads is

crucial to ensure project progress. A mechanism of processing concurrent access is

definitely necessary because project information is shared with all stakeholders. For the

reason of time, we only developed an outline of prototype software. There are few other

key functionalities we have not implemented, such as user privilege management,

embedded instant messenger, etc. As suggested by our trial users, the release plan

management part may be the part needs further study because in our study, release

planning mainly relies on customer understands the business and big picture of project.

How to handle release conflicts and delay are left for the following study.

73

BIBLIOGRAPHY

[1] Iyengar,P.Application Development Is More Global than Ever, Publication

G00124025, Gartner, 2004;

www.gartnre.com/resources/124000/124025/application_dev.pdf

[2] “Offshore‟s New Horizons,” Global Technology Business, v.3, n.3 Mar 2000,

pp.12-15

[3] Lindstrom,L and Jeffries, R.Extreme Programming And Agile Software

Development Methodologies, Information Systems Management, 24:3 , pp. 41-60,

2004

[4] Manifesto for Agile Software Development, http://agilemanifesto.org/

[5] Herbsleb, J. Global Software Engineering: The Future of Socio-technical

Coordination. Future of Software Engineering 2007 Briand, L. and Wolf, A. eds.

IEEECS Press, 2007.

[6] Allen, T.J., Managing the Flow of Technology, 1977, Cambridge, MA: MIT Press

[7] Mockus, A, and Herbsleb, J, Challenges of Global Software Development,

Proceedings of the Seventh International Soft-ware Metrics Symposium,

METRICS 2001. IEEE. pp. 182-184.

[8] ErranCarmel ,RituAgarwal, Tactical Approaches for Alleviating Distance in

Global Software Development, IEEE Software, v.18 n.2, p.22-29, Mar 2001

[9] Damian, D., Stakeholders in Global Requirements Engineering: Lessons Learned

From Practice. IEEE Software, v.24 n.2, p.21-27, Mar./Apr. 2007

[10] R.D. Battin, R. Crocker, J. Kreidler, and K. Subramanian, Leveraging Resources

in Global Software Development, IEEE Software, vol. 18, no. 2, pp. 70-77,

Mar./Apr. 2001

[11] C. Ebert, and P. De Neve, “Surviving Global Software De-velopment”, IEEE

Software, pp. 62-69, Mar./Apr. 2001

[12] E.A. Karlsson et al., "Daily Build and Feature Development in Large Distributed

Projects, Proc. Int"l Conf. Software Eng., IEEE CS Press, Los Alamitos, Calif.,

2000, pp. 649-658.

[13] Simons, M. Internationally Agile. InformIT, Mar 15th, 2002

[14] Fowler, M. Using Agile Software Process with Offshore Development.

http://www.it.uu.se/edu/course/homepage/acsd/ht03/Fowler.pdf, Sept. 2003

http://agilemanifesto.org/
http://www.it.uu.se/edu/course/homepage/acsd/ht03/Fowler.pdf

74

[15] Xiaohu, Y., Bin, X., Zhijun, H. Maddineni, S. Extreme Programming in Global

Software Development. Proceedings of the Canadian Conference on Electrical

and Computer Engineering, pp.1845-1848. Vol. 4, 2-5 May 2004

[16] Nisar, M. and Hameed, T. Agile Methods Handling Offshore Software

Development Issues. Proceedings of INMIC 2004, 8th International Multitopic

Conference, pp. 417-422, Dec.2004

[17] Karlsson, E., Andersson, L. and Leion, P. Daily Build and Feature Development

in Large Distributed Projects. Proceedings of the International Conference on

Software Engineering, pp.649-658, 2000

[18] Farmer, M. DecisionSpace Infrastructure: Agile Development in a Large,

Distributed Team. Proceedings of the Agile Development Conference, 2004

[19] Sinha, V.; Sengupta, B.; Chandra, S. Enabling Collaboration in Distributed

Requirements Management, IEEE Software, V. 23, No.5, pp.52-61, Sept./Oct.

2006

[20] Jazz Community, https://jazz.net/index.jsp

[21] Highsmith, J. ; Cockburn, A.; Agile software development: the business of

innovation, Computer, V.34, Issue 9, pp.120 – 127, Sept. 2001

[22] Jeffries, R. et all., Extreme Programming Installed, Addison Wesley Longman,

2001, 172.

[23] Storm User Story Tool, http://xpstorm.sourceforge.net/.

[24] Rees, M.J.; A feasible user story tool for agile software development,

Software Engineering Conference, 2002. Ninth Asia-Pacific, pp.22 – 30, 4-6 Dec.

2002

[25] Kahkonen, T.; Abrahamsson, P., Digging into the fundamentals of extreme

programming building the theoretical base for agile methods, Proceedings of 29th

Euromicro Conference, pp.273 – 280, 1-6 Sept. 2003

[26] Tuomi, I., Corporate knowledge: Theory and Practice of Intelligent

organizations. 1999, Helsinki: Metaxis.

[27] DSDMConsortium, Dynamic Systems Development Method, version 3. Ashford,

Eng.: DSDM Consortium, 1997.

[28] J. Stapleton, Dynamic systems development method -The method in practice:

Addison Wesley, 1997

[29] S. R. Palmer and J. M. Felsing, A Practical Guide to Feature-Driven

Development, 2002.

[30] Richard Baskerville , Jan Pries-Heje, Racing the E-Bomb: How the Internet Is

Redefining Information Systems Development Methodology, Proceedings of the

IFIP TC8/WG8.2 Working Conference on Realigning Research and Practice in

Information Systems Development: The Social and Organizational Perspective,

p.49-68, July 27-29, 2001

https://jazz.net/index.jsp
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=20507
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8716

75

[31] K. Beck, Embracing Change With Extreme Programming, IEEE Computer, vol.

32, pp. 70-77, 1999.

[32] K. Schwaber, Scrum Development Process, In OOPSLA'95 Workshop on

Business Object Design and Implementation, 1995.

[33] A. Cockburn, Writing Effective Use Cases, The Crystal Collection for Software

Professionals: Addison-Wesley Professional, 2000.

[34] A. Hunt, Thomas, D., The Pragmatic Programmer: Addison Wesley, 2000.

[35] Abrahamsson, P.; Warsta, J.; Siponen, M.T.; Ronkainen, J., New directions on

agile methods: a comparative analysis, In Proceedings of 25th Internationa

Conference on Software Engineering, pp.244 - 254 , 3-10 May 2003

[36] Elssamadisy, A.; Schalliol, G.; Recognizing and Responding To "Bad Smells" In

Extreme Programming, Proceedings of the 24rd International Conference on

Software Engineering, 2002. ICSE 2002. pp.617 – 622 2002

[37] Abrahamsson, P.; Koskela, J.; Extreme programming: a survey of empirical data

from a controlled case study, Proceedings of International Symposium on

Empirical Software Engineering, 2004. ISESE '04, pp73 – 82, 19-20 Aug 2004

[38] Paul S Grisham,; Dewayne E. Perry,; Customer Relationships and Extreme

Programming, Proceedings of the 2005 workshop on Human and social factors of

software engineering, HSSE '05, May 2005

[39] Boehm, B,; Get ready for agile methods, with care, IEEE Computer, V. 35, Issue:

1, pp. 64-49, Jan 2002

[40] Lan Cao,; Kannan Mohan,; Peng Xu,; Balasubramaniam Ramesh,; How Extreme

does Extreme Programming Have to be? Adapting XP Practices to Large-scale

Projects, System Sciences, Proceedings of the 37th Annual Hawaii International

Conference on 2004, pp 10, 5-8 Jan. 2004.

