
Scene Generation and Target Detection

for Hardware-in-the-Loop Simulation

Except where reference is made to the work of others, the work described in this
thesis is my own or was done in collaboration with my advisory committee. This

thesis does not include proprietary or classified information.

Ryan E. Sherrill

Certificate of Approval:

John E. Cochran Jr.
Professor and Head
Aerospace Engineering

Andrew J. Sinclair, Chair
Assistant Professor
Aerospace Engineering

Brian S. Thurow
Assistant Professor
Aerospace Engineering

George T. Flowers
Dean
Graduate School

Scene Generation and Target Detection

for Hardware-in-the-Loop Simulation

Ryan E. Sherrill

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
May 9, 2009

Scene Generation and Target Detection

for Hardware-in-the-Loop Simulation

Ryan E. Sherrill

Permission is granted to Auburn University to make copies of this thesis at its
discretion, upon the request of individuals or institutions and at

their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation

iii

Vita

Ryan Edward Sherrill, son of Robert Edward Sherrill Jr. and Isabelle Kathryn

Montoya, was born May 4, 1985 in Farmington, New Mexico. He graduated with

honors from Farmington High School, and entered Auburn University in the fall of

2003. He received his Bachelor of Aerospace Engineering degree in May of 2007, and

entered the Graduate School the following semester.

iv

Thesis Abstract

Scene Generation and Target Detection

for Hardware-in-the-Loop Simulation

Ryan E. Sherrill

Master of Science, May 9, 2009
(B.A.E., Auburn University, 2007)

74 Typed Pages

Directed by Andrew J. Sinclair

Hardware-in-the-Loop simulations are useful in developing and testing missile

components at a lower cost than experimental tests. Accurate results require the

missile’s optical sensor be stimulated by an artificial environment that represents

the physical world. As part of Auburn University’s development of a Hardware-in-

the-Loop lab, several software modules have been created that generate a simulated

infrared engagement scene, and emulate the target detection and tracking which oc-

curs onboard a missile. These scene generation and target detection tools allow

pure-digital and static Hardware-in-the-Loop simulations to be performed.

v

Acknowledgments

The author is grateful to Christian Bruccoleri and Puneet Singla for use of their

Matlab code to generate pseudo-uniform points on a sphere. The author also ac-

knowledges the California Institute of Technology Computational Vision Group for

maintaining a collection of articles related to image calibration. The author thanks

Dr. Andrew Sinclair for his knowledge and invaluable support, and Dr. John Cochran

Jr. for having faith in the author’s abilities and inviting him to work on this research

project.

The author would like to thank the Aerospace Engineering Department for its

generous financial assistance. The author is eternally grateful to his parents for their

unwavering support and continuous encouragement.

Finally, the author dedicates this thesis to the memory of two teachers in his

life, Mr. James Michael DeField (Oct. 30, 1952 - Aug. 19, 2005), my physics teacher

at Farmington High School, and Dr. Alan Scottedward Hodel (April 6, 1962 - Jan.

9, 2009), Associate professor of Electrical and Computer Engineering at Auburn,

who both passed away after valiant fights with cancer. These gentlemen were those

almost magical teachers that students hear about, people who teach for the sheer

joy of teaching, and who unselfishly put their students before their own work. Even

though he knew Mr. DeField and Dr. Hodel for a short time, each of them had a

profound impact on my life. As he continues his education toward the goal of someday

becoming a teacher himself, he will look back on the memories they provided, and for

my future students’ sake, hope that he becomes half the teacher each of them was.

vi

Style manual or journal used: Bibtex

Computer software used: Matlab 2007a, National Instruments Vision Builder,

Microsoft Word 2007, Microsoft Paint, WinEdt, Latex

vii

Table of Contents

List of Figures x

1 Introduction 1
1.1 Description of TigerSim . 2
1.2 Proposed Additions . 5

2 Scene Generation 7
2.1 Creating an Artificial Environment 7
2.2 Modeling the Target Characteristics 9
2.3 Rendering Process in Matlab . 11
2.4 Display Setup . 14
2.5 Examples of Generated Scenes . 15

3 Seeker Model: Software-in-the-Loop 17
3.1 Target Detection . 17
3.2 Derivation of the LOS vector . 20
3.3 Seeker Steering . 22

4 Seeker Model: Static Hardware-in-the-Loop 24
4.1 Hardware Setup . 24
4.2 Target Detection Process . 26
4.3 Coordinate Mapping . 29
4.4 Camera Error Sources . 31

4.4.1 Resolution Downsampling . 31
4.4.2 Bounding Box . 31
4.4.3 Lens Distortion . 33
4.4.4 Other Sources . 33

4.5 Graphical Error Analysis . 34

5 Results 38
5.1 LOS Errors . 38
5.2 Seeker Steering Errors . 44
5.3 Intercept Success Rate . 44
5.4 Simulation Run Time . 46

viii

6 Conclusion and Future Recommendations 47

Bibliography 49

Appendix A: Transformation Matrices 50

Appendix B: Matlab Code for Scene Generation 52

Appendix C: Matlab code for SWIL Target Detection 55

Appendix D: Matlab code for SHWIL Target Detection 58

Appendix E: Matlab code for SHWIL Calibration 60

Appendix F: Matlab code for Lens Distortion Determination 62

ix

List of Figures

1.1 Example of a HWIL simulation modeling an actual engagement. . . . 2

1.2 Flow chart showing the TigerSim subroutines. 3

1.3 The LOS vector between the interceptor and target. 4

2.1 The spherical star field used to represent the night sky. 8

2.2 Colormap developed in Matlab. 10

2.3 Visual target model. 10

2.4 The field of view is the angle the seeker is able to observe. 11

2.5 Missile coordinate frame (X, Y, Z) and seeker coordinate frame (x, y,
z). The gimbaled sensor inside the missile seeker is oriented through
the azimuth (φ) and elevation (θ) angles. 12

2.6 The geometric center of the target (red circle) and the point on the
body representing the simulation target location (blue circle). Units
are in meters. 13

2.7 Monitor resolution of 1280 by 1024 pixels and figure window resolution
of 900 by 900 pixels. 14

2.8 The rendered target scene ten seconds prior to intercept. 15

2.9 The rendered target scene one second prior to intercept. 15

2.10 The rendered target scene one half of a second prior to intercept. . . 16

2.11 The rendered target scene one tenth of a second prior to intercept. . . 16

3.1 Raster scan pattern. 18

3.2 Intercept scene with target centroid marked as determined by the tar-
get detection algorithm. 19

x

3.3 Reduction of scan area. 19

3.4 Pinhole camera model. 20

3.5 Relationship between geometric and physical coordinates. 21

4.1 Static HWIL laboratory setup . 25

4.2 Alignment of the television and camera a)horizontal b)vertical
c)alignment pattern on the screen . 27

4.3 Rendered scene captured by the camera showing the target (red box)
and the bounding box (green box). 28

4.4 SHWIL example showing the detected target (red box) and the trans-
mitted centroid location (red cross) 28

4.5 Converting generated scene to camera pixel coordinates. 30

4.6 Mapping between monitor and camera coordinates. 30

4.7 Generated image with a resolution of 900 pixels by 900 pixels. 32

4.8 Captured image of 373 pixels by 373 pixels. 32

4.9 Bounding box selects the portion of the camera pixels that contain the
figure window. 33

4.10 Radial lens distortion will alter the original grid (black) to a distorted
image (red). 34

4.11 Control points (blue cross) and imaged points (red square) for different
points on the figure window. 36

4.12 Histogram of X error of the control points. 37

4.13 Histogram of Y error of the control points. 37

5.1 Sphere of possible intercepts along with a nominal target and intercep-
tor path. 39

5.2 Average SWIL LOS error over 100 trials. 40

5.3 Average SHWIL LOS error over 100 trials. 41

5.4 Average SHWIL seeker steering error over 100 trials. 42

5.5 Average SHWIL seeker steering error over 100 trials. 43

5.6 Location of SWIL probable hit and miss intercepts. 45

xi

Chapter 1

Introduction

The purpose of a Hardware-in-the-Loop (HWIL) simulation is to model as accu-

rately as possible the response of physical components to a simulated environment.

This technology has multiple uses for military missiles, including the testing of new

systems and components, quality control for manufacturing processes, and reliabil-

ity assurance for stockpiled components. In a typical HWIL test, a missile seeker is

mounted to a flight motion table facing a projected scene. The missile’s seeker re-

sponds to the scene as if in a real flight, passing information to the rest of the missile’s

systems [1]. Figure 1.1 shows an example of a HWIL simulation recreating an actual

missile flight. Numerous simulated engagements can be presented to each missile,

and its performance evaluated, offering a wider range of data than would be possi-

ble in a live-fire test, at a much lower cost. With collaboration from the US Army,

Auburn University is developing a HWIL facility for educational and research pur-

poses. Once operational, it will provide training for students on complex simulations,

model development, and the testing of unclassified hardware. As part of this effort,

a 6 degree-of-freedom computer simulation was developed that models the flight of

a missile as it intercepts a ballistic target in the upper atmosphere. The goal of the

research described herein was to increase the simulation capability by augmenting the

current computer simulation, TigerSim, with scene generation and target detection

programs.

1

Figure 1.1: Example of a HWIL simulation modeling an actual engagement.

1.1 Description of TigerSim

Auburn University began to develop TigerSim in the fall of 2006. It consists of

a series of subroutines that are modeled from the physical systems of an interceptor

missile, as shown in Figure 1.2. A short description of each subroutine follows the

figure. The simulation code was developed in Matlab, a computer programming

language used frequently in science and engineering. It was a pure-digital simulation

that possessed no hardware interfaces or graphical outputs.

TigerSim contains twelve state variables, which completely describe the state of

the interceptor. The state variables are: the missile position in inertial coordinates,

(X, Y, Z); the missile orientation angles, (φ, θ, ψ); missile velocity, (u, v, w); and the

angular rotation rates, (p, q, r). The transformation matrix from inertial to missile

coordinates is given in Appendix A. Note that the state variables φ, θ, u, v, and p

differ from the image variables u, v, and p and the seeker orientation angles φ and θ

both discussed in Chapter 3.

2

Figure 1.2: Flow chart showing the TigerSim subroutines.

Calculate the Line-of-Sight: This subroutine computed the Line-of-Sight (LOS)

vector, and relied on perfect knowledge of the location of the target and inter-

ceptor. It served as a simple idealized seeker model in the TigerSim simulation.

The LOS is the unit vector aligned with the position vector from the interceptor

to the target as shown in Figure 1.3. The LOS vector is used by the missile’s

guidance system to adjust the interceptor’s trajectory, directing the interceptor

to strike the target.

3

Figure 1.3: The LOS vector between the interceptor and target.

Mass Model: As the rocket burns fuel and the boost stage separates from the kill

vehicle, the mass properties of the rocket change during flight. This subroutine

computes the total mass of the interceptor, the location of the center of gravity,

and the moments of inertia.

Aerodynamics Model: The aerodynamics model relies on a series of lookup tables

generated by Missile DatCom, a computer program written by the US Air Force.

Atmospheric properties such as temperature and density are a function of flight

conditions, and are used to determine the aerodynamic forces and moments

acting on the missile.

Gravity Model: This subroutine determines the gravitational forces that act on the

missile during flight.

4

Thrust Model: The thrust produced from the interceptor’s booster motors consist

of three linear segments over the first 20 seconds of flight. The thrust, initially

at zero increases to 4,000 N in one second and further increases to 6,000 N over

the next 16 seconds. The thrust then decreases to zero over a three second span.

Control Model: The LOS vector is passed to the control subroutine which uses

proportional-navigation and attitude-control algorithms to direct the divert

thrusters that steer the interceptor toward the target.

Equations of Motion: This subroutine uses the parameters from the above algo-

rithms in a series of equations to update the interceptor state forward in time

during the flight.

Target Model: The position of the target is updated as it follows a pre-determined

path through the atmosphere.

1.2 Proposed Additions

There were two goals of this research project. The first was to increase the

simulation capability by augmenting the system with a scene generation program.

This would produce a visual representation of what the missile’s seeker would observe

during an intercept scenario.

The second goal was to develop a target detection program that simulates a

missile seeker. Instead of relying on an idealized seeker model, the target detection

program would calculate the observed LOS based on the image produced by the scene

generation program. This would allow for a digital simulation of a missile intercept.

A similar target detection program was installed on a commercially available smart

camera to allow for static HWIL simulations. This allows for the integration of

5

physical components into the digital simulation, as an intermediate step to full HWIL

simulations. The following sections describe the development of the scene generation

system along with the physical and mathematical aspects of the target detection

program.

6

Chapter 2

Scene Generation

The purpose of a scene generation program is to stimulate a missile’s optical

sensor. Therefore, it is vital to model the intercept environment as accurately as

possible. The simulation must be able to match the seeker’s physical parameters

such as field of view and resolution, in addition to displaying the target and its

background. This chapter describes the development of the scene generation program

and concludes with several images of the scene generation program during flight.

2.1 Creating an Artificial Environment

In the TigerSim simulation, the intercept takes place at an altitude of approxi-

mately 78,000 meters. While not having reached the boundary of space, most optical

effects from the earth’s surface and atmosphere are negligible at such an altitude [2].

Therefore, the simulation did not include a representation of the earth’s surface or

a scattering model from light transversing the atmosphere. In addition, there were

no exogenous sources of light from the sun, moon, or other spacecraft. The scene is

developed, however, from visual models of the target and background environment

of the particular missile application. In this work, a ballistic-warhead target and

night-sky background were incorporated.

The missile’s seeker was assumed to detect light in infrared frequencies between

0.3 and 0.5 µm. This corresponds to an “optical window,” specifically, a frequency

of light with high atmospheric permeability. Military infrared sensors commonly use

7

this band for airborne target acquisition of missiles and aircraft. The output from the

scene generation program is a gray-scale image, which can be displayed on a hardware

device, such as an infrared projector. The generated image represents the intensity

of light received in each part of the image.

Objects modeled in the simulation include the stars of the night sky set against

the void of space. Using Matlab’s rendering tools, a black background was created.

Next, an artificial field of stars was added to model stellar infrared emissions. The

generated stars will force the target detection program to distinguish between the

target and its background, as discussed in the following chapters.

The stars were modeled as a pseudo-uniform distribution of 200 points on a

sphere. The distribution was created by modeling each point as a positive charge,

and using the law of repulsion, the positive charges distributed themselves on the

sphere’s surface. The resulting celestial sphere is shown in Figure 2.1. The camera

is located essentially at the center of the sphere and looks outward; therefore, at any

instant only a small section of stars can be seen.

Figure 2.1: The spherical star field used to represent the night sky.

8

2.2 Modeling the Target Characteristics

The target is the next and final portion of the scene to be generated. The

target dimensions were modeled on the warhead of the United States’ LGM-118A

Peacekeeper Intercontinental Ballistic Missiles (ICBMs) which entered service in 1986.

This ICBM contains 10 re-entry warheads, each approximately 1.0 meters in diameter

and 2.25 meters tall [3]. The target’s position in the TigerSim simulation is controlled

by the Target Model algorithm.

Objects entering the Earth’s atmosphere typically experience temperatures be-

tween 900 to 1200 degrees Celsius [5]. Objects this hot emit strongly in the infrared

spectrum of light, making them easier to discriminate against the atmosphere. The

nose of the target would experience the hottest temperatures, due to the location

of the stagnation point. Points on the cone’s surface further from the stagnation

point would experience cooler temperatures. This temperature gradient produces a

corresponding infrared gradient, which was modeled in Matlab.

A custom colormap was developed, to model the target’s infrared characteristics.

The intensity at the beginning and end of the colormap is defined. Matlab then

interpolates between those values at every point on the surface, to produce the desired

color distribution, as shown in Figure 2.2. White at the tip and a medium gray at

the base were chosen to produce a representative distribution of infrared intensity of

the target. The gray color that was chosen to terminate the colormap was the same

gray color used as the stars. The complete target is shown in Figure 2.3.

9

Figure 2.2: Colormap developed in Matlab.

Figure 2.3: Visual target model.

10

2.3 Rendering Process in Matlab

The portion of the artificial environment which is displayed is determined by

several factors, including the missile position and orientation, and the seeker gimbal

angles and the field of view (FOV). The missile seeker has a gimbaled sensor that

is actively steered by the seeker gimbal angles. The FOV is the angular extent of

the outside world that can be observed at a single time, as shown in Figure 2.4. In

HWIL testing, the FOV of the generated scene needs to be matched to the FOV of

the seeker. In TigerSim, the scene generation process was made adjustable to allow

for the testing of different seekers. The experiments performed in this report used a

FOV of 20 degrees, to match the physical properties of the camera, which is discussed

in more detail in Chapter 4.

Figure 2.4: The field of view is the angle the seeker is able to observe.

Figure 2.5 shows the missile seeker and the gimbaled sensor. In the figure, the

missile coordinate frame is given by (X, Y, Z), and is fixed to the missile. The

gimbaled sensor is free to rotate within the seeker and is actively steered to keep

the sensor boresight pointed at the target. The seeker frame (x,y,z) rotates with the

sensor. The sensor steering is dictated by the azimuth φ and elevation θ angles. These

angles are determined by the seeker-steering algorithm as described in Section 3.3.

The inputs to the scene generation program are the locations of the target and

interceptor in three dimensional space, the interceptor orientation, and seeker gimbal

angles. The scene generation program then builds the observed target around the

11

Figure 2.5: Missile coordinate frame (X, Y, Z) and seeker coordinate frame (x, y, z).
The gimbaled sensor inside the missile seeker is oriented through the azimuth (φ) and
elevation (θ) angles.

point in space. The target is centered horizontally and vertically as shown in Fig-

ure 2.6. The cone representing the target is constructed out of 14 triangles projecting

radially from the vertex. The base of the cone is a 14-sided polygon.

At great distances, the size of the target may be no larger than a pixel. Also, the

target location may not be centered on a screen pixel, causing the target intensity

to be spread over several pixels. When Matlab renders the scene, the target may be

too faint to be detected. This problem cannot be easily corrected by adjusting the

Matlab rendering process. Instead, a small fiduciary marker was plotted on top of the

target whenever the range between the target and the interceptor was greater than

600 m. This ensures that the target is visible at large distances. For ranges less than

600 m, the target is sufficiently large that this step is not necessary.

In the TigerSim simulation, the target and the interceptor move independently of

each other in three-dimensional space. For the greatest simplicity, the scene genera-

tion program would plot the scene features in inertial coordinates and place a virtual

camera at the seeker’s position and orientation. However, the graphical ability of

12

Figure 2.6: The geometric center of the target (red circle) and the point on the body
representing the simulation target location (blue circle). Units are in meters.

Matlab prevents this. Instead, a “scene frame” is created. The scene frame is aligned

with the seeker frame, but the origin is located at the target. The virtual camera

translates and rotates around the target, mimicking the relative position and orienta-

tion of the target relative to the interceptor, as determined by the Target Model and

Target Detection subroutines. Because of this, the scene generation program com-

putes a transformation matrix from inertial coordinates to seeker coordinates, which

are used in the scene generation and target detection subroutines. The transformation

matrix is the product of the matrices given in Appendix A.

13

2.4 Display Setup

The scene generation program was intended to model an infrared scene. For lower

cost and complexity the actual hardware used here for HWIL simulations operated in

the visual region. For these simulations, the generated scene was displayed on a 18.1

inch liquid crystal display (LCD) monitor. The native resolution of the monitor is

the SXGA standard of 1280 horizontal pixels by 1024 vertical pixels. All experiments

were performed with the monitor set to its native resolution. The generated scene

had a resolution of nx = ny = 900 pixels. This was done to ensure the displayed

pixels remained square. The display pixels have coordinates of (u, v), with the origin

in the upper left corner of the scene. Pixel coordinates are discussed in more detail

in Section 3.2. Figure 2.7 shows the display figure window on the monitor screen.

Figure 2.7: Monitor resolution of 1280 by 1024 pixels and figure window resolution
of 900 by 900 pixels.

14

2.5 Examples of Generated Scenes

The following figures provide an example of the scene generation capabilities of

TigerSim. All figures have a resolution of 900 pixels by 900 pixels. The target is

located in the center of each image, with a portion of the artificial celestial sphere in

the background.

Figure 2.8: The rendered target scene ten seconds prior to intercept.

Figure 2.9: The rendered target scene one second prior to intercept.

15

Figure 2.10: The rendered target scene one half of a second prior to intercept.

Figure 2.11: The rendered target scene one tenth of a second prior to intercept.

16

Chapter 3

Seeker Model: Software-in-the-Loop

Two different methods of target detection were developed in the Auburn Hardware-

in-the-Loop lab to replace the LOS calculation subroutine found in previous versions

of TigerSim. This chapter describes the pure digital simulation, while the next chap-

ter describes the addition of a smart camera into the target detection program.

3.1 Target Detection

A Software-in-the-Loop (SWIL) target-detection module was created to simu-

late the behavior of a missile seeker. This allowed for digital simulation by directly

capturing the rendered scene. In developing the target detection algorithm, it was

assumed that the engagement scenario involved a single interceptor and target, and

that the target could not deploy decoys or other countermeasures. Therefore, the tar-

get detection subroutine can locate the target by determining the value of the highest

intensity pixel, and locating all pixels with that intensity value.

The target was located by analyzing each pixel in a two-dimensional rectilinear

pattern, also called a raster scan [2], as shown in Figure 3.1. The intensities of all

pixels were compared to find the highest intensity. All pixels with that intensity were

identified as the target and their pixel locations (xi, yi) were extracted. The centroid

of the target is determined from the pixel coordinates by Equation (3.1). Here n

is the number of pixels with the brightest intensity and u and v represent the pixel

locations of the target centroid.

17

u =
1

n

n∑
i=1

xi

v =
1

n

n∑
i=1

yi (3.1)

Figure 3.2 shows a sample intercept scene with the target centroid marked as a red

cross as determined by the target detection program. As can be seen, this detection

algorithm focuses on the brightest part of the target, the nose.

Figure 3.1: Raster scan pattern.

The complete Raster scan of an image is computationally expensive, greatly

slowing down the simulation. Therefore, a modified procedure was implemented after

the initial image detection, as shown in Figure 3.3. Since the seeker is actively steered

to keep the target in the center of the field of view, the target will be located near

the center of the image. Using this fact, the 100 pixels in the middle of the image

are initially scanned. If an object is detected that has the same or higher intensity

value as the initial scan, it is assumed that the target has been located. If no object

is found, the entire image is analyzed to re-locate the target. This method reduces

the search time by approximately two orders of magnitude.

18

Figure 3.2: Intercept scene with target centroid marked as determined by the target
detection algorithm.

Figure 3.3: Reduction of scan area.

19

3.2 Derivation of the LOS vector

Previous subsections outlined the methods for scanning the image to locate the

pixels that represent the target, in pixel coordinates. The guidance system used in the

missile simulation requires the LOS vector to be re-defined in inertial coordinates, in

order to steer the missile toward the target. In addition, the azimuth and elevation of

the target are required to orient the missile seeker. This section outlines the method

used to extract the LOS vector based on the sensor model.

Figure 3.4 shows a pinhole camera. Light from the imaged object (far right)

enters the camera at the projection point and is collected by the camera, forming the

image. The object is inverted on the image plane, therefore it is common to consider

an equivalent image, as shown in the figure. This gives the advantage that the image

and the imaged object have the same orientation. The equivalent image will be used

in this work.

Figure 3.4: Pinhole camera model.

20

To determine the LOS vector, geometric coordinates of the image must be de-

fined. To describe the position of the image, a set of physical coordinates (x, y, z) are

defined as well as the pixel coordinates (u, v), as shown in Figure 3.5. The coordi-

nates uo and vo denote the center of the image in pixel coordinates. A target can be

described in either pixel coordinates, m, or camera coordinates, p. Because of the

range ambiguity from the image, both sets of coordinates are normalized so that the

third coordinate equals one.

m =


x
z

y
z

1

 (3.2)

p =


u

v

1

 (3.3)

Figure 3.5: Relationship between geometric and physical coordinates.

21

The target detection program provides the target centroid, u and v in pixel

coordinates, m, while the LOS vector is written in physical coordinates, p. These

two values are related through the intrinsic matrix. First, the FOV, uo, and vo,

mentioned in previous sections are used to determine the number of pixels per focal

length in Eq. (3.4).

σx =
uo

tan(fovx

2
)

σy =
vo

tan(fovy

2
)

(3.4)

The following transformation matrix, known as the intrinsic matrix, relates the two

sets of coordinates [4].


x
z

y
z

1

 =


σx 0 uo

0 σy vo

0 0 1



−1 
u

v

1

 (3.5)

The LOS unit vector can be constructed as shown in seeker coordinates.

LOSseeker =
1√

(x
z
)2 + (y

z
)2 + 1


x
z

y
z

1

 (3.6)

Using the transformation matrices found in Appendix A, the LOS vector in Equa-

tion (3.6) is converted into inertial coordinates to steer the missile.

3.3 Seeker Steering

As mentioned, the seeker contains a gimbaled sensor. During a missile’s flight,

it is important that the sensor remains pointed at the target in order to provide

22

proper guidance commands to the missile. A seeker steering algorithm needed to be

developed to model this aspect of missile behavior.

Steering was performed by pointing the z-axis of the seeker frame (the boresight

of the sensor) along the LOS direction from the previous time step. The LOS vector

calculated in the previous section points toward the target. Azimuth and elevation

angles can be used to relate the LOS vector to the missile coordinate frame, shown in

Figure 2.5, as they represent the horizontal and vertical angle (φ and θ respectively)

between the center of the image and the target location. Because the azimuth and

elevation angles locate the target in the image, they are used to orient the seeker.

After the target detection algorithm transforms the LOS vector to the missile

frame, it performs the additional step of calculating the azimuth and elevation angles,

shown in Equation (3.7).

φ = sin−1 (LOSmissile(3))

θ = tan−1

(
LOSmissile(2)

LOSmissile(1)

)
(3.7)

The azimuth and elevation angles are then stored by TigerSim and used to orient

the seeker frame in the next time step. This steering approach does not attempt to

anticipate future motions of the target, but its effectivemess is investigated through

simulation trials described in Chapter 5.

23

Chapter 4

Seeker Model: Static Hardware-in-the-Loop

The second series of experiments involved the addition of a camera into the simu-

lation. Static HWIL (SHWIL) simulations were conducted to investigate distributing

the simulation over various software and hardware components. For development

purposes, a smart camera was used to model a missile seeker head, combining the

required optics, detector, and electronics. The inclusion of hardware components pro-

vided a higher fidelity HWIL simulation, and is an important stepping stone to full

HWIL dynamic simulations.

4.1 Hardware Setup

A Sony XCI-V3 smart camera was used as a seeker model. The XCI-V3 combines

a 640 pixel by 480 pixel still camera and a computer using a 400 MHz AMD processor

with Embedded Microsoft Windows XP. The camera was used with a Tamron 12mm

lens. The generated scene was displayed on an LCD monitor, facing the camera as

shown in Figure 4.1. For simulations, the camera was tripod mounted and located so

that the rendered scene nearly filled the entire camera FOV.

An important aspect for accurate simulations was to ensure that the camera was

level, and that the camera and LCD monitor were properly aligned. A construction

level was used to adjust the tripod so that the camera was level, and to ensure

the monitor screen was vertical. A laser level was then placed on the camera. By

inspecting the cross pattern the laser level displayed on the monitor, as illustrated in

24

Figure 4.1: Static HWIL laboratory setup

25

Figure 4.2, the position of the camera was adjusted to be centered on the monitor.

The alignment process was iterative, and needed to be repeated several times to

ensure accuracy.

4.2 Target Detection Process

After the scene was generated, the simulation PC used a TCP/IP connection to

send a trigger to the camera. This started an inspection program written in National

Instruments’ Vision Builder software. The program acquired and analyzed an image

of the generated scene to determine the target centroid.

The SHWIL target detection algorithm used a different technique than the SWIL

target detection to determine the target centroid. The inspection program scanned

the entire image and located the object which had the greatest intensity. It then

constructed a box around the object. The center of the box was used as the target

centroid. Once the inspection program was complete, the pixel coordinates of the

target, m and n, were transmitted back to the simulation PC by the TCP/IP con-

nection. Figure 4.3 shows the target located in a image captured by the camera. The

steps outlined in Section 3.2 to calculate the LOS were carried out on the simulation

PC.

The SWIL mainly determined that the nose of the target was the target centroid,

as the nose contains the pixels with the highest intensity. The advantage of the

SHWIL method is that the transmitted target location is closer to the geometric

center of the target. Figure 4.4 shows the transmitted pixel coordinates of the target

m and n is the center of the red detection box. The main disadvantage of the SHWIL

method is that the orientation of the target relative to the interceptor directly effects

the shape of the box, and consequently the transmitted target location.

26

Figure 4.2: Alignment of the television and camera a)horizontal b)vertical c)alignment
pattern on the screen

27

Figure 4.3: Rendered scene captured by the camera showing the target (red box) and
the bounding box (green box).

Figure 4.4: SHWIL example showing the detected target (red box) and the transmit-
ted centroid location (red cross)

28

4.3 Coordinate Mapping

For the static HWIL simulation, the target detection provides the target centroid

in camera pixel coordinates. These coordinates have an origin at the upper left corner

of a bounding box that was manually placed in the image around the rendered scene.

In these simulations, a camera calibration must be used to convert from camera

pixel coordinates, (m,n), to screen pixel coordinates, (u, v) as shown in Figure 4.5.

Figure 4.6 shows that u coordinates and m coordinates are related through a scaling

factor, α as shown in Equation (4.1).

u− uo = α (m−mo) (4.1)

This scaling factor is computed by first plotting a fiduciary point on the LCD

monitor at a known pixel coordinate (u′, v′), and measuring the corresponding camera

coordinate of that marker, (m′, n′). The complete mapping between the two points

is given by Equation (4.2). The calibration process was performed with four different

markers, and the average calibration value was used.

u− uo =

(
u′ − uo

m′ −mo

)
(m−mo)

v − vo =

(
v′ − vo

n′ − no

)
(n− no) (4.2)

After solving Equation (4.2) for u and v, Equation (3.5) was used as in the SWIL

simulation.

29

Figure 4.5: Converting generated scene to camera pixel coordinates.

Figure 4.6: Mapping between monitor and camera coordinates.

30

4.4 Camera Error Sources

Including the camera in the TigerSim simulation introduced errors not present

in the digital simulations. While these errors are present in all HWIL simulations,

it was necessary to identify and quantify the major error sources in the TigerSim

simulation. The major sources of error are discussed below, while the next section

discusses a graphical method for analyzing the amount of error present in the HWIL

simulation.

4.4.1 Resolution Downsampling

The Matlab figure window, which displays the generated scene, had a resolution

of 900 pixels by 900 pixels. The camera captured the displayed scene with a resolution

of 373 pixels by 373 pixels. This means that distinct adjoining pixels in (u, v) can

correspond to the same pixel in (m,n). Figure 4.7 shows a sample generated scene

with a resolution of 900 pixels by 900 pixels, while Figure 4.8 shows the image captured

by the camera. Both images are shown to at the same pixels per inch.

4.4.2 Bounding Box

An additional source of error is the selection of the bounding box in Vision

Builder. Figure 4.9 shows the origin of the camera pixel coordinates in the upper left

corner of the image. This origin does not correspond with the figure window displaying

the generated scene. As part of the camera set-up, an inspection area, or bounding

box must be selected. This bounding box shifts the origin of the camera pixels so it

correlates with the origin of the figure window. The bounding box must be set by

hand, and its selection determines the values of mo, no, m, and n in Equation (4.2).

Therefore, errors of several pixels can be introduced into the LOS equation.

31

Figure 4.7: Generated image with a resolution of 900 pixels by 900 pixels.

Figure 4.8: Captured image of 373 pixels by 373 pixels.

32

Figure 4.9: Bounding box selects the portion of the camera pixels that contain the
figure window.

4.4.3 Lens Distortion

Radial distortion errors, as illustrated in Figure 4.10, is the most significant error

source in modern commercial lens. In most applications, the most apparent effect of

radial distortion is straight-line objects will appear curved in the captured image [6].

In this experiment, the pixel error in the target location caused by radial distortion

is of concern. Several methods to calibrate for radial distortion are available in the

literature [7, 8, 9, 10].

4.4.4 Other Sources

The three sources of error mentioned about result from including a camera in the

simulation. However, the camera introduces several additional opportunities for error

to enter the simulation. The first is an inaccurate alignment of the LCD monitor and

the camera. While great care was taken to ensure accurate orientation of the camera,

an inadvertent bump could cause either the LCD monitor or the camera to move.

This would cause the camera captured image to become slightly skewed.

33

Figure 4.10: Radial lens distortion will alter the original grid (black) to a distorted
image (red).

Sources of light not from the LCD monitor could interfere with the camera being

able to capture the displayed image. A reflecting from another light source off the

monitor could wash out a certain area of the camera. Additionally, non-uniform

pixel response from either the LCD monitor or the camera could alter the rendered

or captured image. While these other error sources are present, they were mainly

judged to be inconsequential in comparison to resolution downsampling, bounding

box error and lens distortion.

4.5 Graphical Error Analysis

In order to determine the total amount of error present, a grid was constructed by

plotting a control point in 45 pixel increments both horizontally and vertically across

the entire image, resulting in 361 points. Using Equation (4.2), the imaged control

point from the camera was transformed to screen pixel coordinate and plotted along

with the original control point. Figure 4.11 shows the control points as blue crosses

34

and the imaged control point as a red square. In addition, histograms illustrating the

amount of error are shown in Figure 4.12 and Figure 4.13. The figures show both an

error distribution and pixel bias. The figures did not show a large consistent pixel

offset indicating a bounding box error or a large distribution indicating the presents

of significant lens distortion. In addition, the error is fairly low near the center of the

image, where the target is located for most of its flight. For these reasons, no specific

error calibration was performed.

35

F
ig

u
re

4.
11

:
C

on
tr

ol
p

oi
n
ts

(b
lu

e
cr

os
s)

an
d

im
ag

ed
p

oi
n
ts

(r
ed

sq
u
ar

e)
fo

r
d
iff

er
en

t
p

oi
n
ts

on
th

e
fi
gu

re
w

in
d
ow

.

36

Figure 4.12: Histogram of X error of the control points.

Figure 4.13: Histogram of Y error of the control points.

37

Chapter 5

Results

In the tested engagement scenario, the target traveled along a constant velocity

path, with a constant heading angle. In the target detection program, the point

the target passes through after 70 seconds of simulation and the target speed are

variables. From this information, the target position is propagated either forward or

backward in time. For each trial, variations were introduced to the final intercept

location and the target speed. This defined a sphere of possible intercept locations.

Variations were sampled from a normal distribution and had a standard deviation of

587 m and 6.05 m/s respectively. The resulting sphere contained locations that were

reasonable for the interceptor to reach in 70 seconds. This methodology allowed the

interceptor to be launched at t=0 seconds for every trail. Figure 5.1 shows nominal

target and interceptor trajectories, as well as a sphere containing all of the intercept

locations. The same deviations were used for the SWIL and SHWIL simulations.

5.1 LOS Errors

The following figures present the averaged results of the experiment over 100

trials. Figure 5.2 and Fig. 5.3 show the error in radians between the true LOS

vector and the observed LOS vector from the target detection algorithm. Only the

final 5 seconds prior to intercept are shown, as the error rate did not significantly

change up to that point. Sources of error prevalent throughout the SWIL simulation

include finite pixel resolution and the fact that the image centroid is not the same as

38

Figure 5.1: Sphere of possible intercepts along with a nominal target and interceptor
path.

the geometric centroid. Toward the end of the flight, the angle between the target

centroid and the location of the highest intensity pixels toward the nose of target

increases, contributing to increase in error over the final 0.5 seconds. The SHWIL

simulation had slightly larger error than the SWIL simulation, on the order of a

one pixel increase. This increase was expected as the inclusion of hardware into the

simulation increases error, and also the fidelity of the simulation. As the increase was

small, the additional sources of camera error discussed in Section 4.4 do not have a

significant effect on the simulation, further validating the decision not to specifically

calibrate for camera error sources.

39

F
ig

u
re

5.
2:

A
ve

ra
ge

S
W

IL
L

O
S

er
ro

r
ov

er
10

0
tr

ia
ls

.

40

F
ig

u
re

5.
3:

A
ve

ra
ge

S
H

W
IL

L
O

S
er

ro
r

ov
er

10
0

tr
ia

ls
.

41

F
ig

u
re

5.
4:

A
ve

ra
ge

S
H

W
IL

se
ek

er
st

ee
ri

n
g

er
ro

r
ov

er
10

0
tr

ia
ls

.

42

F
ig

u
re

5.
5:

A
ve

ra
ge

S
H

W
IL

se
ek

er
st

ee
ri

n
g

er
ro

r
ov

er
10

0
tr

ia
ls

.

43

5.2 Seeker Steering Errors

Figure 5.4 and Figure 5.5 show the seeker steering error in pixels over the final

5 seconds of the simulation. The seeker is actively steered to keep the target in the

center of the image. The plots show the difference between the center of the figure

window and the center of the target over the 100 trials. The error is noticeably

small for the majority of the intercept, indicating that the seeker steering algorithm

is able to keep the target located at the center of the image. At the very end of

the simulation, the seeker steering algorithm is unable to compensate for the drastic

changes per time step in the target’s location. The noticeable increase in error in the

SHWIL simulation can be primarily contributed to upscaling the image from camera

to screen resolution.

5.3 Intercept Success Rate

Figure 5.6 shows which SWIL intercept simulations were successful in hitting

the target. A precise “hit” or “miss” was indeterminable with the data collected,

because the interceptor is traveling about 6 m per time step. For each simulation, the

interceptor’s velocity and the true range between the interceptor and the target was

recorded. Using the velocity vector, it was possible to determine the distance traveled

by the interceptor per time step. If the minimum range between the interceptor

and target was less than the distance traveled per time step, a probable hit was

determined. From the recorded data, 96 of the 100 simulations resulted in a probable

hit.

For the SHWIL simulations, the target detection software required that the target

never touch the border of the bounding box. Therefore, each SHWIL simulation

was stopped if the range between the target and the interceptor was less than 8 m,

44

Figure 5.6: Location of SWIL probable hit and miss intercepts.

45

causing each SHWIL simulation to stop one time step before the SWIL simulations.

This premature stop of the simulation prevented probable hit or miss from being

determined.

5.4 Simulation Run Time

A final method of comparison is the run time for an approximately 70 second

simulation. The SWIL simulations took 26.15 hours to run, for an average time of

15.69 minutes per simulation. The SHWIL simulations took slightly longer, at 28.73

hours total time and 17.24 minutes per simulation. While the SHWIL simulation dis-

tributes computing resources over additional hardware, the longer run times can be

attributed to the additional steps of converting camera coordinates to screen coordi-

nates and the communication delay between the simulation computer and the camera.

This indicates that HWIL simulations are extremely computationally expensive, over

seventeen minutes to run a approximately 70 second simulation. For the simulation to

run in real-time, purpose-specific hardware and software would need to be developed

to significantly reduce run time.

46

Chapter 6

Conclusion and Future Recommendations

The long-term goal in the Auburn University HWIL laboratory has been to

develop a missile simulation that can be used for the testing of unclassified hard-

ware. The work presented here described the development of a scene generation and

target detection capability for HWIL simulation of missile engagements. These ca-

pabilities were developed using widely available software packages and commercial

hardware. The success rate of the simulation indicates that the scene generation and

target detection algorithms that were developed can be confidently used to replace

the previous TigerSim algorithm, which used perfect knowledge of the target and

interceptor’s location to determine the LOS. The results also demonstrated that the

guidance system implemented in the missile simulation can generate successful target

interceptions even in the presence of hardware imperfections. While this new capabil-

ity brings the Auburn HWIL lab closer to accurately simulating a missile intercept,

significant work is still required before high-fidelity simulation is possible.

Using the work presented in this thesis as a foundation for future students, the

author would like to make several suggestions for possible research topics. One area

of important work could be to focus on the modeling of the target’s appearance.

Currently, the target is given an artificially constant intensity throughout the flight.

In a real-life interception, the targets intensity would vary with range and atmospheric

conditions. Also, even though the rendered image of the target may be one pixel

in size, it is realistic that the target’s intensity could be split over several pixels.

Therefore, a visual scattering model is proposed for future development.

47

The author also suggests two improvements to the target detection program.

Currently, the SWIL target detection program scans the image to locate the highest

intensity pixel value. All the pixels containing that intensity are classified as the

target. The shortcoming of this method is that the interceptor is steered toward

to nose of the target, instead of the target’s center. An improved target detection

program would scan the entire image and determine the range of values that represent

the target. By locating the entire target in the image, the interceptor would be able to

steer toward the target’s geometric center. This new target detection method should

be used for both the SWIL and SHWIL simulations, allowing for a more accurate

comparison of target detection methods.

A second suggestion would be the history of the LOS and seeker steering angles

be stored by TigerSim. If the target detection algorithm is unable to locate the target

in the image, then based on the targets last known position and heading, the targets

current position is estimated. This estimate is then used to calculate the LOS and

seeker steering for the current time step. The following time step, the target detection

algorithm would again scan the image to locate the target. This would allow for the

inclusion of exogenous sources of light into the simulation.

48

Bibliography

[1] United States Army Redstone Technical Test Center. http://www.rttc.army.

mil/whatwedo/primary_ser/modeling/hwil.htm.

[2] Ronald Driggers, Paul Cox, and Timothy Edwards. Introduction to Infrared and
Electro-Optical Systems. Artech House, Boston, 1999.

[3] United States Strategic Command Intercontinental Ballistic Missiles Fact Sheet.
http://www.stratcom.mil/FactSheetshtml/ballistic_missiles.htm.

[4] Yi Ma, Stefano Soatto, Jana Kosecha, and S. Shanker Sastry. An Invitation to
3-D Vision: From Images to Geometric Models. Springer, 2005.

[5] J. Martin. Atmospheric Reentry: an Introduction to its Science and Engineering.
Prentice-Hall, Englewood Cliffs, N.J., 1966.

[6] Duane Brown. Close-Range Camera Calibration. Symposium on Close-Range
Photogrammetry, January 1971.

[7] B. Prescott and G.F. McLean. Line-based correction of radial lens distortion.
Graphical Models and Image Processing, 59(1):39–47, January 1997.

[8] Moumen Taha El-Melegy and Aly A. Farag. Statistically robust approach to lens
distortion calibration with model selection. IEEE 1063-6919/03, 2003.

[9] Vitaliy Leonidovich Orekhov. A full scale camera calibration technique with
automatic model selection-extension and validation. Master’s thesis, The Uni-
versity of Tennessee, 2007.

[10] Christopher Paul Broaddus. Universal geometric camera calibration with statis-
tical model selection. Master’s thesis, The University of Tennessee, 2005.

49

http://www.rttc.army.mil/whatwedo/primary_ser/modeling/hwil.htm
http://www.rttc.army.mil/whatwedo/primary_ser/modeling/hwil.htm
http://www.stratcom.mil/FactSheetshtml/ballistic_missiles.htm

Appendix A

Transformation Matrices

The transformation matrix from inertial to missile coordinates is given by the following

equation.

c11 = cos(θ) cos(ψ)

c12 = cos(θ) sin(ψ)

c13 = -sin(θ)

c21 = -cos(φ) sin(ψ) + sin(φ) sin(θ) cos(ψ)

c22 = cos(φ) cos(ψ) + sin(φ) sin(θ) sin(ψ)

c23 = sin(φ) cos(θ)

c31 = sin(φ) sin(ψ) + cos(φ) sin(θ) cos(ψ)

c32 = -sin(φ) cos(ψ) + cos(φ) sin(θ) sin(ψ)

c33 = cos(φ) cos(θ)

C =


c11 c12 c13

c21 c22 c23

c31 c32 c33



50

The transformation matrix from missile to seeker coordinates is given by the following

equation.

c11 = cos(El) cos(Az)

c12 = cos(El) sin(Az)

c13 = -sin(El)

c21 = sin(Az)

c22 = cos(Az)

c23 = 0

c31 = sin(El) cos(Az)

c32 = sin(El) sin(Az)

c33 = cos(El)

C =


c11 c12 c13

c21 c22 c23

c31 c32 c33



51

Appendix B

Matlab code for Scene Generation

function [drawany]=SceneGen(X, targetpos, stars, range, time, plotfig)

global aumov dt stepsperframe Cinertial2seeker Cmissile2seeker visstarttime
Az El dt

if and (time>visstarttime, time<visstarttime+dt)
%Relative Position of target to interceptor
SeekerPosition=X(1:3,1);
TargetPosition=targetpos;
roll missile=X(4,1); pitch missile=X(5,1); yaw missile=X(6,1);

%Necessary State Information
RelPos=TargetPosition−SeekerPosition;
rho=norm(RelPos); % unit vector from seeker to target
Cinertial2missile=DCM(yaw missile,pitch missile,roll missile);

% orientation of interceptor
Cinertial2target=DCM(pi,−pi/6,0); % orientation of target
LOS m=Cinertial2missile*RelPos/rho; % LOS vector in missile coords

%Compute Seeker Orientation
El=asin(LOS m(3));
Az=atan2(LOS m(2),LOS m(1));
Cmissile2seeker=DCM(Az,−El,0);

Ctarget2seeker=Cmissile2seeker*Cinertial2missile*Cinertial2target';
Cinertial2seeker=Cmissile2seeker*Cinertial2missile;

end

if time>visstarttime+dt
%Relative Position of target to interceptor
SeekerPosition=X(1:3,1);
TargetPosition=targetpos;
roll missile=X(4,1); pitch missile=X(5,1); yaw missile=X(6,1);

%Necessary State Information
RelPos=TargetPosition−SeekerPosition;
rho=norm(RelPos); % distance from seeker to target
Cinertial2missile=DCM(yaw missile,pitch missile,roll missile);

% orientation of interceptor

52

Cinertial2target=DCM(pi,−pi/6,0); % orientation of target
Cmissile2seeker=DCM(Az,−El,0);

Ctarget2seeker=Cmissile2seeker*Cinertial2missile*Cinertial2target';
Cinertial2seeker=Cmissile2seeker*Cinertial2missile;

% for display purposes
LOS m=Cinertial2missile*RelPos/rho; % LOS vector in missile coords
Az true=atan2(LOS m(2),LOS m(1));
El true=asin(LOS m(3));
Cmissile2seeker true=DCM(Az true,−El true,0);
Cinertial2seeker true=Cmissile2seeker true*Cinertial2missile;

% Target Model
TargetSceneCoords = Cinertial2seeker*RelPos − [rho ; 0 ; 0];
theta=[0:2*pi/20:2*pi]';
radius=.75; % target characteristics
height=2.25;

% vertex points in target−fixed coords
basez=radius*cos(theta);
basey=radius*sin(theta);
basex=−height/2*ones(length(theta),1);
tip=[height/2 0 0]';

% convert to seeker coords
for k=1:length(basex)

R=Ctarget2seeker*[basex(k) basey(k) basez(k)]';
basex s(k,1)=TargetSceneCoords(1,1)+R(1);
basey s(k,1)=TargetSceneCoords(2,1)+R(2);
basez s(k,1)=TargetSceneCoords(3,1)+R(3);

end
tip s=TargetSceneCoords+Ctarget2seeker*tip;

%Star model
for k=1:length(stars)

stars s(k,:)=(Cinertial2seeker*stars(k,:)')';
stars s(k,1)=stars s(k,1)−rho;

end

plot=figure(plotfig);
clf('reset')
plotaxes=axes('Position',[0 0 1 1]); % set axes to fill entire figure
set(plotfig,'Color',[0 0 0])
camproj('perspective')
camva(20) % set the camera field of view

campos([−rho 0 0]); % position of camera
camtarget([0 0 0]); % point the camera at the target
camup([0 0 −1]) % Z points down!
axis equal

53

axis off
hold on

%Add stars
for j=1:length(stars)

if([1 0 0]*stars s(j,:)'>0)
star=plot3(stars s(j,1),stars s(j,2),stars s(j,3),'p');
set(star,'MarkerEdgeColor',[.1 .1 .1]);
set(star,'MarkerFaceColor',[.1 .1 .1]);

end
end

%Load the custom colormap and apply to current figure
load('MyColormaps','targetcolor')
colormap(targetcolor)

% plot the target
fill3(basex s,basey s,basez s,[.6 .6 .6]); % plot the base
for k=1:length(basex)−1 % plot the cone

polygon=fill3([basex s(k) basex s(k+1) tip s(1)],[basey s(k)
basey s(k+1) tip s(2)],[basez s(k) basez s(k+1) tip s(3)],[0;0;1]);

set(polygon,'EdgeColor','interp')
set(polygon,'FaceColor','interp')

end

%Plot a single white pixel to identify the target
if range>600

targetpoint=plot3((TargetSceneCoords(1)+R(1)),
(TargetSceneCoords(2)+R(2)),(TargetSceneCoords(3)+R(3)),'w.');

set(targetpoint,'MarkerSize',2);
end
drawany=1;

else
drawany = 0;

end

54

Appendix C

Matlab code for SWIL Target Detection

function [LOS, LOStrue, xloc, yloc]=Target gen and detect(X, targetpos,
stars, range, time, plotfig, prevLOS, drawany);

global aumov dt stepsperframe baseline Az El numdetect pixelx pixely
Cinertial2seeker Cmissile2seeker visstarttime

if drawany==1
% Capture the Image
TargetImage=getframe(plotfig);
myimage=TargetImage.cdata;

%Convert the image to grayscale
Pic=rgb2gray(myimage);

%Calculate the location of the target
num=0;
targetlocationx=0;
targetlocationy=0;

%Scan the image for the target
baseline=50;
if time<visstarttime+.003

scnstart=1;
scnend=pixelx;

else
scnstart=(pixelx/2)−10;
scnend=(pixelx/2)+10;

end
for i=scnstart:scnend

for j=scnstart:scnend
pixel=Pic(i,j);
if pixel>baseline

targetlocationx=i;
targetlocationy=j;
baseline=pixel;
num=0;

end
if pixel==baseline

num=num+1;

55

targetlocationx(num,1)=i;
targetlocationy(num,1)=j;

end
end

end

%Verify that the target was located
if baseline<110;

for i=1:pixelx
for j=1:pixelx

pixel=Pic(i,j);
if pixel>baseline

targetlocationx=i;
targetlocationy=j;
baseline=pixel;
num=0;

end
if pixel==baseline

num=num+1;
targetlocationx(num,1)=i;
targetlocationy(num,1)=j;

end
end

end
end

%Calculate the center of the target (Pixel Coordinates)
x=(mean(targetlocationx));
y=(mean(targetlocationy));

xloc=x;
yloc=y;

%Compute the line of sight vector
FOVx=30;
FOVy=30;

Uo=pixelx/2;
Vo=pixely/2;

sigmax=(Uo/(tand(FOVx/2)));
sigmay=(Vo/(tand(FOVy/2)));

A=[sigmax 0 Uo;0 sigmay Vo;0 0 1];
LOSvec=inv(A)*[x;y;1];
LOSnorm=norm(LOSvec);

LOS=Cinertial2seeker'*[0 0 1;0 1 0;1 0 0]*(LOSvec/LOSnorm);

x = X(1);
y = X(2);

56

z = X(3);
LOStrue=(targetpos − [x y z]')/norm(targetpos − [x y z]');

LOSmiss=Cmissile2seeker'*[0 0 1;0 1 0;1 0 0]*(LOSvec/LOSnorm);

Az=atan(LOSmiss(2)/LOSmiss(1));
El=asin(LOSmiss(3));

else
x = X(1);
y = X(2);
z = X(3);

% line of sight in inertial coords
LOS = (targetpos − [x y z]')/norm(targetpos − [x y z]');
drawany=1;
LOStrue=[0;0;0];

xloc=0;
yloc=0;

end

57

Appendix D

Matlab code for SHWIL Target Detection

function [LOS, LOStrue, xloc, yloc]=Target gen and detect(X, targetpos,
stars, range, time, plotfig, prevLOS, drawany, xtnfm, ytnfm);

global aumov dt stepsperframe baseline Az El numdetect pixelx pixely
Cinertial2seeker Cmissile2seeker visstarttime obj1 leftcameraedge
topcameraedge xsize ysize

if drawany==1
%Ensre the image has been drawn
pause(0.1)
if time<visstarttime+2*dt

pause(0.5)
end
if range<200

pause(0.5)
end

%Communicating with instrument object, obj1.
fwrite(obj1, '0')
count=1;
while count==1

[data1,count] = fscanf(obj1,'%c',6);
end

x=((str2double(data1(1:3))−xsize−leftcameraedge)*xtnfm)+pixelx/2;
y=((str2double(data1(4:6))−ysize−topcameraedge)*ytnfm)+pixely/2;

xloc=x;
yloc=y;

FOVx=20.0;
FOVy=20.0;

Uo=pixelx/2;
Vo=pixely/2;

sigmax=(Uo/(tand(FOVx/2)));
sigmay=(Vo/(tand(FOVy/2)));

58

A=[sigmax 0 Uo;0 sigmay Vo;0 0 1];
LOSvec=inv(A)*[x;y;1];
LOSnorm=norm(LOSvec);

LOS=Cinertial2seeker'*[0 0 1;1 0 0;0 1 0]*(LOSvec/LOSnorm);

x = X(1);
y = X(2);
z = X(3);
LOStrue=(targetpos − [x y z]')/norm(targetpos − [x y z]');

LOSmiss=Cmissile2seeker'*[0 0 1;1 0 0;0 1 0]*(LOSvec/LOSnorm);

Az=atan(LOSmiss(2)/LOSmiss(1));
El=asin(LOSmiss(3));

else
x = X(1);
y = X(2);
z = X(3);

LOS = (targetpos − [x y z]')/norm(targetpos − [x y z]');

LOStrue=[0;0;0];
xloc=0;
yloc=0;

end

59

Appendix E

Matlab code for SHWIL Calibration

function [xtnfm ytnfm]=SHWIL Calibration()

global leftcameraedge topcameraedge xsize ysize obj1

pixelx=900;
pixely=900;

scrpxl=zeros(4,2);
campxl=zeros(4,2);
pxltnfmx=zeros(4,1);
pxltnfmy=zeros(4,1);

for ss=1:4

if ss==1
x=0.05;
y=0.05;

elseif ss==2
x=0.95;
y=0.05;

elseif ss==3
x=0.05;
y=0.95;

elseif ss==4
x=0.95;
y=0.95;

else
disp('Error in Calibration')

end

mntrpos=get(0,'MonitorPosition');
left=(mntrpos(2,3)+mntrpos(2,1)−1)/2−pixelx/2;
bottom=(mntrpos(2,4)+mntrpos(2,2)−1)/2−pixely/2+mntrpos(1,4)−

mntrpos(2,4);
calibr=figure('Position',[left bottom pixelx pixely]);
set(calibr,'Toolbar','none');

%Plot the calibration markers

60

plotaxes=axes('Position',[0 0 1 1]);
plot(x,y,'ws', 'markerfacecolor','w')
axis ([0 1 0 1])
set(gcf,'Color','k')
axis off
pause(0.2)

%Communicate with the camera
%Communicating with instrument object, obj1.
fwrite(obj1, '0')
count=1;
while count==1

[data1,count] = fscanf(obj1,'%c',6);
end

%Store pixel locations for calibration
scrpxl(ss,1)=(x*pixelx);
scrpxl(ss,2)=(pixely−(y*pixely));
if ss==1

campxl(ss,1)=(str2double(data1(1:3))−leftcameraedge);
campxl(ss,2)=(str2double(data1(4:6))−topcameraedge);

elseif ss==2
campxl(ss,1)=(str2double(data1(1:3))−leftcameraedge);
campxl(ss,2)=(str2double(data1(4:6))−topcameraedge);

elseif ss==3
campxl(ss,1)=(str2double(data1(1:3))−leftcameraedge);
campxl(ss,2)=(str2double(data1(4:6))−topcameraedge);

elseif ss==4
campxl(ss,1)=(str2double(data1(1:3))−leftcameraedge);
campxl(ss,2)=(str2double(data1(4:6))−topcameraedge);

end

pxltnfmx(ss,1)=(scrpxl(ss,1)−pixelx/2)/(campxl(ss,1)−xsize);
pxltnfmy(ss,1)=(scrpxl(ss,2)−pixely/2)/(campxl(ss,2)−ysize);

%Clean up
pause(0.1)
close all

end

%Compute coordinate transformation
xtnfm=mean(pxltnfmx(:,1));
ytnfm=mean(pxltnfmy(:,1));

pause(0.5)

61

Appendix F

Matlab code for Lens Distortion Determination

%Program to graphically display the amount of distortion present on a
%camera lens

%Image size: X=640 Y=480
xp=330;
yp=240;
K1=6*10ˆ−7;
K2=−2*10ˆ−12;
pixelx=900;
pixely=900;
leftcameraedge=66;
topcameraedge=95;
xsize=188.5; %Camera inspection window /2
ysize=188.5;

obj1 = instrfind('Type', 'tcpip', 'RemoteHost', '131.204.22.56',
'RemotePort', 502, 'Tag', '');

%Create the tcpip object if it does not exist otherwise use the object
that was found.
if isempty(obj1)

obj1 = tcpip('131.204.22.56', 502);
else

fclose(obj1)
obj1 = obj1(1);

end

mntrpos=get(0,'MonitorPosition');
left=(mntrpos(2,3)+mntrpos(2,1)−1)/2−pixelx/2;
bottom=(mntrpos(2,4)+mntrpos(2,2)−1)/2−pixely/2+mntrpos(1,4)−mntrpos(2,4);
calibr=figure('Position',[left bottom pixelx pixely]);
set(calibr,'Toolbar','none');

%Connect to instrument object, obj1.
fopen(obj1)
i=1;
for x=.05:.05:.95

for y=.05:.05:.95;
clf('reset')

62

plotaxes=axes('Position',[0 0 1 1]);
plot(x,y,'ws', 'markerfacecolor','w')
axis ([0 1 0 1])
set(gcf,'Color','k')
axis off
pause(0.2)

fwrite(obj1, '0')
count=1;
while count==1

[data1,count] = fscanf(obj1,'%c',6);
end

scrpxl(i,1)=(x*pixelx);
scrpxl(i,2)=(pixely−(y*pixely));

campxl(i,1)=str2double(data1(1:3));
campxl(i,2)=str2double(data1(4:6));

i=i+1;
end

end
close all

for i=1:length(campxl)
x(i)=((campxl(i,1)−127−188.5)*2.3859)+450;
y(i)=((campxl(i,2)−95−188.5)*2.3789)+450;
xpxlerror(i)=scrpxl(i,1)−x(i);
ypxlerror(i)=scrpxl(i,2)−y(i);

end

figure(1)
for i=1:length(campxl)

hold on
plot(x,y,'rs')
plot(scrpxl(i,1),(scrpxl(i,2)),'b+','MarkerFaceColor','r')
xlim([0 900])
ylim([0 900])

end

spacing=−4:.5:4;

figure(2)
xhist=histc(xpxlerror,spacing);
bar(spacing,xhist);

figure(3)
yhist=histc(ypxlerror,spacing);
bar(spacing,yhist);

63

	List of Figures
	1 Introduction
	1.1 Description of TigerSim
	1.2 Proposed Additions

	2 Scene Generation
	2.1 Creating an Artificial Environment
	2.2 Modeling the Target Characteristics
	2.3 Rendering Process in Matlab
	2.4 Display Setup
	2.5 Examples of Generated Scenes

	3 Seeker Model: Software-in-the-Loop
	3.1 Target Detection
	3.2 Derivation of the LOS vector
	3.3 Seeker Steering

	4 Seeker Model: Static Hardware-in-the-Loop
	4.1 Hardware Setup
	4.2 Target Detection Process
	4.3 Coordinate Mapping
	4.4 Camera Error Sources
	4.4.1 Resolution Downsampling
	4.4.2 Bounding Box
	4.4.3 Lens Distortion
	4.4.4 Other Sources

	4.5 Graphical Error Analysis

	5 Results
	5.1 LOS Errors
	5.2 Seeker Steering Errors
	5.3 Intercept Success Rate
	5.4 Simulation Run Time

	6 Conclusion and Future Recommendations
	Bibliography
	Appendix A: Transformation Matrices
	Appendix B: Matlab Code for Scene Generation
	Appendix C: Matlab code for SWIL Target Detection
	Appendix D: Matlab code for SHWIL Target Detection
	Appendix E: Matlab code for SHWIL Calibration
	Appendix F: Matlab code for Lens Distortion Determination

