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This research proposes a new feature selection algorithm, Class-specific Ensemble 

Feature Selection (CEFS), which finds class-specific subsets of features optimal to each 

available classification in the dataset.  Each subset is then combined with a classifier to 

create an ensemble feature selection model which is further used to predict unseen 

instances.  CEFS attempts to provide the diversity and base classifier disagreement 

sought after in effective ensemble models by providing highly useful, yet highly 

exclusive feature subsets.  Also, the use of a wrapper method gives each subset the 

chance to perform optimally under the respective base classifier.  Preliminary 

experiments implementing this innovative approach suggest potential improvements of 

more than 10% over existing methods. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Prediction and classification problems appear throughout our daily lives; 

physicians predict (diagnose) health problems, gamblers predict (pick) sporting events, 

stock traders predict (buy/sell) stock, and etc.  The storage and processing of past known 

data gives humans and machines alike the ability to predict and classify unseen or future 

data.  Now, add to it the fact that data storage has become increasingly easier and 

increasingly inexpensive.  The result is a dramatic shift in the mindset of data storage; a 

shift which considered a one-megabyte database as being very large in 1989 to numerous 

multi-terabyte databases being mined regularly by the year 2000 [1].   

Unfortunately, data processing has not kept up with data acquisition.  That is, as 

computer and database technologies continue to improve, data accumulates in a speed 

significantly faster than the capacity of data processing [2].  Such data accumulation 

produces significantly large databases.  These databases can be large due to a high 

number of instances
1
, a high number of features

2
, or a combination of both.  An example 

of a high-instance database is Google index, which reported having indexed one billion 

unique URLs by 2000 and one trillion by 2008 [3].  On the other hand, microarray 

                                                 
1
 For the remainder of this work, instances may also be referred to as “cases”, “vectors”, “samples”, or 

“observations”. 
2
 For the remainder of this work, features may also be referred to as “variables”, “dimensions”, 

“attributes”, or “genes” (in case of microarray data). 
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datasets present a fitting example of high-dimensional datasets, often containing a small 

number of instances but each with thousands of attributes [4].  Although various methods 

for dealing with both do exist, this research will focus solely on the issue of high-

dimensional data.  More specifically, it will do so through the use of feature selection, a 

technique which can reduce the cost of recognition and often provide better classification 

accuracy by reducing the number of features [5].  Up to now, however, this technique has 

been almost always carried out on the entire dataset at once, assuming that the most 

salient features for learning will be uniform among all instances, regardless of 

classification.   

So, assume dataset D, with instances classified as either x or y.  The hypothesis 

investigated in this research is two-fold.  First, it is believed that instances classified as x 

will have a different set of relevant
3
 features than will instances classified as y, 

contradicting the aforementioned methodology, which would suggest that features 

relevant to the entire dataset must be relevant to instances classified x and instances 

classified as y.  Moreover, under existing methods, features relevant to a single 

classification, but not to the entire dataset, may be deemed irrelevant, removed and thus 

unused at prediction time.  Second, given the well documented benefits of ensemble 

methods [6] [7] [8], an ensemble system which takes advantage of class-specific features 

should provide the data diversity and classifier disagreement necessary for ensemble 

systems to succeed, thereby increasing prediction performance (better accuracy).  

Allowing each classification to have its own set of class-specific optimal features, and 

                                                 
3
 The formal definition of relevance as it pertains to features will be detailed in Section 2.2 of this 

work. 
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thus each its own ensemble classifier, will create an ensemble system which should allow 

for a more accurate classification of unseen instances.  As an added benefit, new 

information may be learned as to the relevance of certain features on certain 

classifications, information which may have been otherwise unknown due to performing 

feature selection on all instances, and thus, all classifications at once.  This would be of 

particularly good use in problems such as cancer prediction [9] [10], where certain 

features may be optimal in detecting certain types of cancer, but irrelevant in others. 

 

1.1 Motivation 

 

 

According to [11], a learning algorithm is good if it produces hypotheses that do a 

good job of predicting classifications of unseen examples.  With that in mind, the primary 

goal of this research is to increase prediction accuracy, thereby creating a better learning 

algorithm.  Note, however, that the focus here is not on the learning algorithm itself, but 

rather on the pre-processing methodology used to prepare the training data for optimal 

learning.  In fact, research suggests that much of the power in classification comes not 

from the specific learning method, but from proper formulation of the problems and 

crafting the representation to make learning tractable  [12].  In addition, the same 

research suggests that performance is roughly equivalent between numerous learning 

algorithms, across many domains.  In other words, the preparation and representation of 

the data is of the utmost importance given that no single learning algorithm outperforms 

all others on every domain.  In a nutshell, this represents the well-known theorems of 

“No Free Lunch” [13]. 
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Although a dataset may be well prepared and represented, it may also fall victim 

to Belman’s “curse of dimensionality”, a problem which often plagues high-dimensional 

datasets.  The curse of dimensionality refers to the exponential growth of hypervolume as 

a function of dimensionality [14].  That is, the more dimensions in a dataset, the more 

representation needed by the predicting model.  For classification, this can mean that 

there are not enough data objects to allow the creation of a model that reliably assigns a 

class to all possible objects [15].  In the context of Neural Networks (NN), for example, 

the curse of dimensionality causes networks with irrelevant inputs to behave badly: the 

dimension of the input space is high, and the network uses almost all its resources to 

represent irrelevant portions of the space [16].  In [17], Silverman illustrates the difficulty 

of kernel estimation in high dimensions.  As shown in Table 1, even at a small 

dimensionality of 10, roughly 840,000 samples are required to estimate the density at 0 

with a given accuracy [17].   

Table 1: Required Sample Size for given Number of Dimensions [17] 

Dimensionality 
Required Sample 

Size 

1 4 

2 19 

5 786 

7 10,700 

10 842,000 

 

In 2003, research conducted by Guyon and Elisseeff reported on gene expression 

datasets up to 60,000 variables wide, and text classification datasets 15,000 variables 

wide and nearly 1 million instances deep [18].  Those numbers continue to grow daily, as 

well as in other fields such as satellite imagery, hyperspectral imagery, financial data, 
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consumer data, and etc [19].  Improving prediction accuracy within problems of high data 

dimensionality is the primary motivation for using feature selection.   

The key benefit of feature selection is that it directly targets the curse of 

dimensionality, since it can eliminate irrelevant and redundant features and reduce noise 

in the dataset.  Moreover, as the dimension of the feature space increases so does the 

probability of over-fitting, and as shown by [20], feature selection provides a powerful 

means to avoid over-fitting.  Feature selection can also lead to a more understandable 

model, allow the data to be more easily visualized, and with a reduction in 

dimensionality, can decrease the amount of time and memory required by learning 

algorithms [15].  The motivation for this research, however, goes deeper into the 

methodology of feature selection, a topic which will be further explored in the subsequent 

section.   

 

1.2 Problem Description 

 

 

Although there are a plethora of feature selection algorithms, all differing in some 

shape or form, they all share a commonality; they all attempt to reduce the number of 

features by selecting an optimal subset of the original feature set.  This subset, however, 

almost always contains features which are assumed to be optimal to the entire dataset. 

This then leads to the assumption that the most optimal features to the dataset must be 

optimal for instances across all classifications.  Therein lies the problem and thus the 

basis for this research.   
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The hypothesis is that by allowing the feature selection algorithm to focus its 

attention on the prediction accuracy of a single classification at a time, the algorithm will 

produce a separate subset of features optimal to each classification.  These separate 

subsets can then be utilized to create separate classification models, thereby taking 

advantage of another technique proven to improve classification accuracy; ensemble 

learning (or in this case, ensemble feature selection).  In summary, this research will 

attempt to improve on the problem of prediction accuracy by proposing a unique 

approach to performing ensemble feature selection 

 

1.3 Goals and Contributions 

 

 

The research conducted and detailed through this work will attempt to achieve the 

following comprehensive goals: 

 

1. To design and develop a unique and effective approach to feature selection. 

 

2. To examine the potential benefits of class-specific ensemble feature selection. 

 

3. To enhance dataset understandability with the creation of class-specific optimal 

subsets as opposed to dataset-specific optimal subsets. 

 

4. To test the effectiveness of class-specific ensemble feature selection on an 

existing classification problem. 

 

The immediate contribution of this research will be in the introduction of a unique 

algorithm to the areas of feature selection, ensemble learning, and machine learning.  
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However, as dataset sizes continue to grow in every discipline, the proposed algorithm 

can further contribute in a much more widespread manner as it is data independent.  

Given its class-specific design, the algorithm may have even farther reaching 

implications to fields in science, medicine, vision, finance, etc.  

 

1.4 Organization 

 

 

The outline of this thesis first began with a brief introduction on the methods 

explored in this research.  The remainder of this thesis is organized as described below. 

Chapter 2 explains feature selection in detail.  Following a brief introduction to 

feature selection, common misconceptions and the definition of relevance are provided.  

The use of feature selection in unsupervised learning is then discussed, concluding with 

thorough explanations of the different types of feature selection algorithms and existent 

work in ensemble feature selection. 

Chapter 3 provides a thorough explanation of the Class-specific Ensemble Feature 

Selection (CEFS) algorithm proposed in this research.  A detailed description of the 

suggested implementation is also provided.   

Chapter 4 presents an initial implementation of the suggested algorithm, along 

with results attained from a preliminary experiment.  Moreover, experiment parameters, 

analysis, and conclusions are discussed.  Lastly, Chapter 5 concludes with final 

observations and analysis of the conducted research, and possible future work. 
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CHAPTER 2 

 

FEATURE SELECTION 

 

 

Many machine learning algorithms, including top-down induction of decision tree 

algorithms such as ID3 [21], C4.5 [22], and CART [23], and instance-based algorithms, 

such as IBL [24] [25], are known to lose prediction accuracy when faced with many 

features unnecessary for predicting the output, i.e. irrelevant features [26].  These are 

features which contain almost no useful information for the learning task at hand.  For 

example, students’ ID numbers are irrelevant for predicting students’ GPAs [15].  On the 

other hand, algorithms such as Naïve-Bayes [27] [28] [29] are robust with respect to 

irrelevant features, but their performance may degrade quickly if correlated features, i.e. 

redundant features, are added [26].  Such features duplicate much or all of information 

contained in one or more other attributes.  For instance, the purchase price of a product 

and the amount of sales tax paid contain much of the same information [15].  Feature 

selection targets those very problems as it is a technique which reduces the number of 

features and removes irrelevant, redundant or noisy data by selecting a subset of the 

original feature set [2].  Most feature selection methods follow a four step process: subset 

generation, subset evaluation, stopping criterion, and result validation (Figure 1) [30]. 
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Figure 1: Feature Selection Process [30] 

 

Beginning with subset generation, a selected search strategy produces candidate 

feature subsets.  Each subset is then evaluated and compared to others according to a 

given evaluation criterion.  The best subset is kept and this process is repeated until a 

stopping criterion is reached, at which point, the selected subset is validated using the 

pre-selected classifier.  Formally, feature selection can be defined as follows [2]: 

Definition 1 (feature selection) Let Y be the original set of features, with cardinality n.  

Let d represent the desired number of features in the selected subset X, X ⊆ Y.  Let the 

feature selection criterion function for the set X be represented by J(X).  Without lost of 

generality, let us consider a higher value of J to indicate a better feature set.  Formally, 

the problem of feature selection is to find a subset X ⊆ Y such that |X| = d and  

 

���� = max
⊆�,|
|�� ����. 

Although optimal feature selection is typically intractable [26] and many 

problems related to it have been shown to be NP-hard [31] [32], some feature selection 

algorithms have proved to be significantly more stable than others [33] [34].  

Furthermore, feature selection has been shown to yield benefits such as facilitating data 

visualization and data understanding, reducing measurement and storage requirements, 

reducing training and utilization times, and defying the curse of dimensionality to 

improve prediction performance [18].  As a result, feature selection can be found in many 

areas of research such as bioinformatics [35] [36] [37] [38], machine learning [35] [39] 

[40] [41], text classification/mining [42] [43] [44] [45] [46], case-based reasoning [47], 
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statistics [48] [49] [50], security [44] [51], pattern recognition [5] [36] [52] [53], data 

mining [54] [55] [56], and various others.  In addition, numerous reviews and 

comparative studies on existing feature selection algorithms have been conducted [2] [30] 

[57] [58] [59].   

Feature selection methods can be structured into four main factions: filter, 

wrapper, embedded, and hybrid methods [2] [38]. Filter and wrapper methods are most 

widely known and used.  Embedded methods are also frequently used, but typically with 

the user having no knowledge that feature selection is being employed.  Hybrid methods 

are fairly new on the scene, so they have not yet fully made their mark.   

Filter methods rank each feature according to some univariate metric, and only 

the highest ranking features are used while the remaining low ranking features are 

eliminated [38].  Some commonly used metrics for filter methods include Information 

Gain, Chi-Squared [42], and Pearson Correlation Coefficient [60].  Since such metrics are 

used as the evaluation criterion to select an optimal subset of features, it is important to 

point out that filter methods do not involve the use of a learning algorithm as evaluation 

criterion, defining its main distinction from wrapper methods.  As such, filter methods do 

not inherit bias from learning algorithms and are also more computationally efficient than 

wrapper methods [2]. 

Popularized by Kohavi and John in [26] wrapper methods utilize a learning 

algorithm to assess the goodness of a subset of features [18].  Whereas a filter method 

will use metrics to determine the usefulness of each feature, wrapper methods will use a 

learning method to determine the usefulness of a candidate set of features.  At the end of 
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the process, not only will the algorithm produce an optimal set of features, but one which 

will perform most optimally under the aforementioned learning algorithm.  Well known 

wrapper algorithms include Sequential Forward Selection, Sequential Backward 

Selection [5], and using a hill-climber to optimize feature selection [26].  Although 

wrapper methods have shown to be more computationally expensive than filter methods 

due to their use of a separate learning algorithm for evaluation, research has also shown 

that wrapper methods tend to give superior performance as feature subsets are better 

suited to the predetermined learning algorithm [2]. 

Embedded methods perform feature selection as part of the learning algorithm 

itself.  That is, during the process of the learning algorithm, the algorithm decides which 

attributes to use and which to ignore [15].  Decision Trees are perhaps the most well 

known example of embedded methods [21] [22] [23]. 

To take advantage of the benefits of filter and wrapper models, and to avoid the 

pre-specification of a stopping criterion, hybrid methods have been proposed [61].  A 

typical hybrid method uses both an independent measure and a learning algorithm to 

evaluate feature subsets [2]. 

As such, this work will focus most of its attention on filter and wrapper 

algorithms, the latter, being implemented on the proposed algorithm.  The remainder of 

this chapter is organized as follows.  First, common misconceptions of the feature 

selection are addressed, followed by an in depth discussion on the subject of relevance as 

it pertains to feature selection.  Next, a brief synopsis of the use of feature selection in 

unsupervised learning is given.  Detailed descriptions of each type of feature selection 
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algorithm are then provided.  Finally, previous research conducted in ensemble feature 

selection is summarized and explained, concluding with a few remarks regarding feature 

selection as described in this chapter. 

 

2.1 Misconceptions 

 

 

Techniques such as dimensionality reduction, feature extraction, feature 

construction, feature weighting, feature creation and others are often misused as 

synonymous to feature selection.  It should be pointed out that feature selection strictly 

selects a subset of the existing feature set, without creation of new features [26] [62] [63].  

However, to attain a better understanding of feature selection, a brief explanation of some 

of the aforementioned techniques is noteworthy. 

The first two techniques, dimensionality reduction and feature extraction, go hand 

in hand as various algorithms are often interchangeably characterized under both.  Tan et 

al comments that dimensionality reduction commonly uses techniques from linear 

algebra to project the data from a high-dimensional space into a lower-dimensional space 

[15].  Similarly, Jain et al describes feature extraction algorithms as algorithms which 

create new features based on transformations or combinations of the original feature set 

[5].  For example, Principal Component Analysis (PCA) finds new attributes which are 

linear combinations of the original attributes, are orthogonal to each other, and capture 

the maximum amount of variation in the data [15].  In other words, PCA is an orthogonal 

transformation of the coordinate system, which is obtained by projection onto the 

principal components, or features, of the data.  Since a small number of principal 
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components are often sufficient, a reduction in dimensionality occurs [64].  Further 

reviews of PCA literature can also be found at [65] and [66].   

Now consider another example; suppose you have a set of photographs, where 

each photograph is to be classified as to whether or not it contains a human face.  By 

using a feature extraction algorithm, pixels can be transformed to provide higher-level 

features, such as edges and areas highly correlated with the presence of human faces.  

Other examples include applying a Fourier transform to times series data to identify 

underlying frequencies in order to detect certain periodic patterns [15] and using 

Independent Component Analysis (ICA) in conjunction with Support Vector Machines 

(SVM) in order to improve prediction accuracy in series forecasting [67].   

Other techniques such as feature weighting [15] and feature construction [18] also 

provide similar distinctions, but for the brevity of this research, will not be discussed at 

this time.  In summary, feature selection is not to be confused with other techniques 

which go beyond the original feature set, creating new features; that is, feature selection 

algorithms always yield a direct subset of the original feature set. 

 

2.2 Definition of Relevance 

 

 

Relevance, as it pertains to feature selection, is a bit of a loaded term.  Defining it 

is not trivial nor is it widely agreed upon.  In fact, numerous authors have provided a 

number of different definitions for relevance.  A brief summary of some of these 

definitions will be provided in the subsequent paragraphs.  Detailed explanations and 

further definitions of relevance can be found in works such as [26] by Kohavi and John, 
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[68] by Blum and Langley, [36] by Nilsson et al, and most recently in [69] by Bell and 

Wang. 

 Although the word relevance is often used casually and without formal definition 

in most feature selection studies, its definition is as important as its use.  At the heart of 

this matter lies the question of relevance vs. usefulness.  Selecting only the most relevant 

features will often produce suboptimal results, especially if the features are redundant.  

Conversely, a subset of useful features may leave out many redundant, yet relevant, 

features [18].  In other words, the relevance of a feature does not imply that it should be 

in the optimal feature subset, while irrelevance does not imply it should not be in the 

optimal feature subset [26].  For clarification purposes, provided next are some formal 

definitions acquired from [26], [36], and [68] which may aid in understanding the role of 

relevance in feature selection.   

Definition 2 (conditional independence) A variable Xi is conditionally independent of a 

variable Y given (conditioned on) the set of variables � ⊂ � iff it holds that  

 

�����|��, �� = ���|��� = 1. 

 

This is denoted � ⊥ ��|�. 

 

Conditional independence is a measure of irrelevance, but it is difficult to use as an 

operational definition since this measure depends on the conditioning set S [36].  The 

definitions of strong and weak relevance, defined next, will help refine what it means for 

a feature to be considered irrelevant. 

Definition 3 (strong relevance) A feature Xi is strongly relevant iff there exists some xi, 

y, and si for which p( Xi = xi, Si = si ) > 0 such that  

 

p( Y = y | Xi = xi, Si = si ) ≠ p( Y = y | Si = si ). 
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Definition 4 (weak relevance) A feature Xi is weakly relevant iff it is not strongly 

relevant and there exists a subset of features ��
�of �� for which there exists some xi, y, and 

��
� with p( Xi = xi, ��

� = ��
�
 ) > 0 such that  

 

p( Y = y | Xi = xi, ��
� = ��

�) ≠ p( Y = y | ��
� = ��

� ). 

 

In other words, a feature X is strongly relevant if the removal of X alone will yield a 

decrease in the performance of an optimal classifier.  Conversely, a feature X is weakly 

relevant if it is not strongly relevant and there exists a subset of features, S, such that the 

performance of a classifier on S is worse than the performance on S ∪ {X}.  Thus, a 

feature is relevant if it is either weakly or strongly relevant, otherwise it is irrelevant 

[26].  Figure 2 provides a useful visual representation of the feature subset space divided 

into irrelevant, weakly relevant and strongly relevant feature subsets [26]. 

 
 

Figure 2: Feature Subset Space [26] 

 

 

Recall, however, that a distinction between the relevance of a feature and the 

usefulness of a feature is still necessary.  As such, the following definition derived from 

[70] will provide clarification. 
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Definition 5 (incremental usefulness) Given a sample of data S, a learning algorithm L, 

and a feature set A, feature xi is incrementally useful to L with respect to A if the accuracy 

of the hypothesis that L produces using the feature set {xi} ∪ A is better than the accuracy 

achieved using just the feature set A.  

 

Accordingly, the definition of incremental usefulness will be the focal point for 

determining whether or not a feature should be included in the optimal feature subset.  

This is further apparent given the fact that the proposed algorithm later described in this 

research will employ a wrapper method, which tailors directly to the learning algorithm 

used to evaluate each feature subset.  Therefore, features will be assessed according to 

their usefulness with respect to the learning algorithm rather than their overall relevance. 

As a final illustration on the issue of relevance vs. usefulness, refer to an example 

provided in [26].  One of the artificial datasets (m-of-n-3-7-10) represents a symmetric 

target function, implying that all features should be ranked equally by any filtering 

method.  However, Naïve-Bayes improves if a single feature (any one of them) is 

removed.  Consequently, that is the precise motivation behind the selection of a wrapper 

method over a filter method in the implementation of the proposed algorithm in this 

research (Chapter 3).  Please note, however, that relevance according to these definitions 

does not imply membership in the optimal feature subset, and that irrelevance does not 

imply that a feature cannot be in the optimal feature subset [26].  The underlying purpose 

among an of this is to design the algorithm in such a way that it will be allowed to choose 

usefulness over relevance. 
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2.3 Feature Selection in Unsupervised Learning 

 

 

Although the use of feature selection in unsupervised learning will not be 

implemented in this research, a brief discussion of the subject is important given the 

amount of attention it has received [2] [71] [72] [73] [74].  Unsupervised learning, more 

specifically clustering [75] [76], groups instances based on the information describing the 

instance or based on their relationships.  The goal is to obtain groups with instances 

similar or related to one another and different from instances in other groups.  The greater 

the similarity (or homogeneity) within a group and the greater the difference between 

groups, the better the clustering [71]. 

Wrapper methods used in conjunction with clustering evaluate the goodness of a 

feature subset by the quality of the clusters resulted from applying the clustering 

algorithm on the candidate feature subset.  A number of heuristic measures exist for 

estimating the quality of clustering results, such as cluster compactness, scatter 

separability, and maximum likelihood [2].  Further work on developing dependent 

criteria in feature selection for clustering can also be found in [54], [72], and [73].  Since 

filter methods don’t depend on the use of a separate learning algorithm for evaluation, the 

methodology for using filter feature selection on unsupervised learning does not differ 

from that of supervised learning.  Given the infancy of this research area, advances 

continue to occur.  
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2.4 Feature Selection Methods 

 

 

Feature selection methods can be grouped into one of four groups: filter, wrapper, 

embedded, and hybrid methods [2] [38].  The subsequent sections will describe each 

method in detail. 

 

2.4.1 Filter Methods 

 

 

Coined by John, Kohavi and Pfleger in [77], filter methods have their name 

because they filter out irrelevant features before induction occurs.  The process uses 

general characteristics of the training set to select some features and exclude others.  

Since filtering methods do not involve the use of a learning algorithm to evaluate 

candidate sets, they can be combined with any learning algorithm after the filtering is 

complete.  Moreover, filter methods are a computationally effective form of data pre-

processing, especially when compared to wrapper methods [38] [68]. 

Figure 3 describes a generalized form of a filter algorithm, provided by [2].  

Given dataset D, begin with a given subset S0 (an empty set, a full set, or any randomly 

selected subset) and search through the feature space using a particular search strategy.  

Each generated subset S is evaluated by an independent measure M and compared with 

the previous best.  If better, it’s regarded as the current best subset.  The search iterates 

until a predefined stopping criterion is reached.  The algorithm outputs the last current 

best subset Sbest as the final feature subset [2].  
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Figure 3: Generalized Filter Algorithm [2] 

 

 

One of the simplest filtering processes is to evaluate each feature individually 

based on its correlation with the target function and then select the k features with the 

highest values.  This method has been shown to achieve good results in text 

categorization tasks [78] [79], often used in combination with either a Naïve-Bayesian 

classifier or a nearest neighbor classifier [68].  Other widely used metrics include 

Information Gain, Odds Ratio, Log Probability Ratio [42], FOCUS [80], RELIEF [81] 

[82], Potential Difference [83], Pearson Correlation Coefficient [60], etc.  RELIEF, for 

instance, assigns a “relevance” weight to each feature, which represents the relevance of 

the feature to the target concept.  It samples instances randomly and updates the 

relevance values based on the difference between the selected instance and the nearest 

instances of the same and opposite class (“near-hit” and “near-miss”) [26].  The 

algorithm does require the problem to only contain two classes however.  Another 

example, FOCUS, looks for minimal combinations of attributes that perfectly 
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discriminate among the classes.  It begins by looking at each feature individually, goes on 

to pairs of features, triples, and so forth, stopping only when it finds a combination which 

generates pure partitions of the training set. 

There are some drawbacks to filter methods however.  First, most filtering 

methods require the pre-selection of a set number of features to be chosen.  If the number 

is too high, irrelevant features will be kept and accuracy may suffer.  If the number is too 

low, useful features may not be selected, once again affecting accuracy.  Some remedies 

to this problem include using a hold-out set to test for the best k, or to use a hill-climber 

or some other evolutionary computation algorithm to find an optimal k.  These solutions, 

however, will negatively impact what is perhaps the biggest benefit of a filtering 

algorithm, its relative speed.  A second drawback is that filtering algorithms may miss 

features that would otherwise be useful to the learning algorithm which will predict 

unseen instances.  Since the algorithm bases its selection purely on metrics, it may miss 

features deemed useful by some learning algorithms and perhaps irrelevant in others.  

This is why wrapper methods are widely known to outperform filter methods (in terms of 

prediction accuracy) [2] [38]. 

 

2.4.2 Wrapper Methods 

 

 

Wrapper methods occur outside the basic learning algorithm, but also use said 

learning algorithm as a subroutine, rather than just as a post-processor.  For this reason, 

John, Kohavi, and Pfleger [77] refer to them as wrapper methods.  Each candidate subset 

is evaluated by running the selected data through the learning algorithm and using the 
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estimated accuracy of the resulting classifier as its evaluation metric.  As aforementioned, 

the biggest benefit to using wrapper methods is their tendency to outperform (prediction 

accuracy) their filter and embedded counterparts.  The general argument is that the 

classifier which will use the feature subset should provide a better estimate of accuracy 

than a separate metric that may have an entirely different bias [68]. 

Figure 4 provides the pseudocode for a generalized wrapper algorithm [2], which 

is quite similar to the generalized filter algorithm (Figure 3 – Section 2.4.1) except that it 

uses a predefined learning algorithm A instead of an independent measure M for the 

evaluation of each candidate subset.  For each generated subset S, the algorithm evaluates 

its goodness by applying the learning algorithm to the data with subset S and evaluating 

the accuracy.  Thus, different learning algorithms may produce different feature selection 

results.  Varying the search strategies via the function generate(D) and learning 

algorithms (A) can result in different wrapper algorithms. Since learning algorithms are 

used to control the selection of feature subsets, the wrapper model tends to give superior 

performance as feature subsets found are better suited to the predetermined learning 

algorithm.  As a result, it’s also more computationally expensive than a filter method [2]. 
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Figure 4: Generalized Wrapper Algorithm [2] 
 

 

Similar to many wrapper method variations such as the brute force method, 

branch and bound, sequential backward/forward search, the sequential floating search 

method, etc. Variations can also be found in the learning algorithm.  Neural networks, 

Bayesian networks, and the SVM are often applied on different wrapper problems [84].  

Research done in [56] also discusses overfitting and dynamic search in regards to 

wrapper methods. 

 

2.4.3 Embedded Methods 

 

 

Much like wrapper methods, embedded methods interact directly with a specific 

learning algorithm.  In other words, the feature selection algorithm is built (embedded) 

into the classifier model itself rather than using the classifier to evaluate candidate feature 

sets.  Moreover, these methods have the advantages that they interact directly with the 

classifier while also being less computationally expensive than wrapper methods [38].  A 
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generalized form of this technique is not provided here because embedded feature 

selection methods may be highly different in implementation depending on the learning 

algorithms encompassing them (e.g. decision tree vs. SVM).   

Recursive partitioning methods for induction such as decision trees [21] [22] [23], 

for instance, employ a greedy search through the space of decision trees, at each stage 

using an evaluation function to select the feature which has the best ability to 

discriminate among the classes.  They partition the data based on this feature and repeat 

the process on each subset, extending the tree downward until no further discrimination is 

possible.  Other embedded methods include Separate-and-Conquer for learning decision 

lists [85] and Support Vector Machines of Recursive Feature Elimination [35]. 

 

2.4.4 Hybrid Methods 

 

 

Hybrid feature selection algorithms combine the use of filter and wrapper 

methods in an attempt to exploit the benefits of both.  By combining both techniques at 

different stages, hybrids are able to take advantage of the speed of a filter method and the 

accuracy of a wrapper method [37] [61].  Other implementations may also include the use 

of an embedded method, such as a decision tree, instead of a wrapper method [86] [87].   

Similar to the generalized algorithms previously provided, Figure 5 describes the 

pseudocode for a generalized hybrid algorithm [2].  The algorithm first uses a filter 

method to find the best subset for a given predetermined cardinality and then uses the 

learning algorithm to select the final best subset among the best subsets across different 

cardinalities.  The algorithm begins with a given subset S0 (typically an empty set in 
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sequential forward selection) and iterates to find the best subsets at each increasing 

cardinality. In each round for a best subset with cardinality c, it searches through all 

possible subsets of cardinality c + 1 by adding one feature from the remaining features. 

Each newly generated subset S with cardinality c + 1 is evaluated by an independent 

measure M and compared with the previous best.  If S is better, it becomes the current 

best subset S� !"
�  at level c + 1.  At the end of each iteration, a learning algorithm A is 

applied on S� !"
�  at level c + 1 and the quality of the mined result is compared with that 

from the best subset at level c.  If S� !"
�  is better, the algorithm continues to find the best 

subset at the next level; otherwise, it stops and outputs the current best subset as the final 

best subset. The quality of results from a learning algorithm provides a natural stopping 

criterion in this model [2]. 

 

 

Figure 5: Generalized Hybrid Algorithm [2] 
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For example, [84] begins by pre-processing the dataset by using two different 

filter methods, F-score and Information Gain.  The separate feature subsets are then 

combined and processed through a Sequential Floating Wrapper method, which yields the 

final feature subset.  A Support Vector Machine (SVM) then utilizes the resulting feature 

subset to compute the classification accuracy. 

 

2.5 Feature Selection in Ensemble Methods 

 

 

Feature selection methods discussed up to this point employ the use of a single 

classifier.  An ensemble system, on the other hand, is composed of a set of multiple 

classifiers and performs classification by selecting from the predictions made by each of 

the classifiers [15].  Since wide research has shown that ensemble systems are often more 

accurate than any of the individual classifiers of the system alone [6] [7] [8], it is only 

natural that ensemble systems and feature selection would be combined at some point. 

 

2.5.1 Ensemble Methods 

 

 

The main goal of an ensemble is to construct multiple classifiers from the original 

data and then aggregate their predictions when classifying unknown instances.  Figure 6 

shows a basic view of an ensemble method [15].  As depicted, three main steps exist: 

training set generation, learning, and integration.  Step 1 begins with the original training 

set D.  From this training set, t data subsets are created (D1, D2, …, Dt).  Bagging and 

boosting are common ways to accomplish this step [15].  Then in Step 2, t base classifiers 

are generated (C1, C2, …, Ct).  These classifiers may all be the same, all different, or 
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contain any combination of the same or different classifiers.  Each classifier Ci is trained 

using the subset Di.  Finally in Step 3, the prediction of each classifier is combined in a 

predetermined way to produce the resulting classification. 

 
Figure 6: A logical view of the ensemble learning method [15] 

 

 

Two primary approaches exist to the integration phase: combination and 

selection.  In the combination approach, the base classifiers produce their class 

predictions and the final outcome is composed using those predictions.  In the selection 

approach, one of the classifiers is selected and the final prediction is the one produced by 

it [88].  The simplest and most common combination method is voting, also known as 

majority voting.  In voting, the classification predicted by a base classifier is counted as a 

vote for that particular class value.  The class value with the most votes becomes the final 

classification [88].  A simple and popular selection method is cross-validation majority 

(CVM) [89], which estimates the accuracy of each base classifier using cross-validation 
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and selects the classifier with the highest accuracy.  Although CVM is a selection method 

which chooses one classifier for the whole data space, more sophisticated selection 

methods which estimate local accuracy [90] or meta-level classifiers do exist [91].  

Perhaps the most commonly used integration techniques are voting [6], simple and 

weighted averaging, and a posteriori [92] [93].   

According to [94], the main objective when building the base classifiers is to 

maximize the coverage of the data, which is the percentage of the instances which at least 

one base classifier can classify correctly.  Reaching coverage greater than the accuracy of 

the best classifier, however, requires diversity among the base classifiers [8] [92] [93].  

Although research is always ongoing on new approaches to increase diversity, some 

methods include training on different subsets of the training set, using different learning 

algorithms, injecting randomness, and training on different sets of input features [95].  

The latter is where ensemble feature selection can be successfully applied.  

 

2.5.2 Ensemble Feature Selection 

 

 

An effective way of generating a diverse, yet accurate, ensemble of base 

classifiers is to use ensemble feature selection [88].  To recall, theoretical and empirical 

research has shown that an efficient ensemble should consist not only of high accuracy 

classifiers, but classifiers which also err in different parts of the input space [6].  

Providing different feature subsets allow base classifiers to make their classification 

errors in different subareas of the instance space.  While feature selection algorithms 

attempt to find an optimal feature subset for the learning algorithm, ensemble feature 
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selection has the additional goal of finding a set of feature subsets which will promote 

disagreement among the base classifiers [88] [96].  This is perhaps the most important 

point in understanding the motivation and goals of the research presented in this work.  

The approach proposed in Chapter 3 will attempt to provide the aforementioned 

disagreement among the base classifiers, but with a set of highly optimal class-specific 

feature subsets. 

Various successful attempts have been made at implementing ensemble feature 

selection.  In [97], Ho proposes a technique called Random Subspace Method (RSM), 

which randomly selects a predetermined number of features from the original feature set.  

This is repeated n times to create n feature subsets which are used to generate the n base 

classifiers used in the ensemble.  Ho goes on to show that RSM ensembles can reach 

effective results presumably because the lack of accuracy in the ensemble members is 

compensated for by the diversity created by the RSM [97].  In another implementation, 

Optiz begins by using RSM to generate an initial population of feature subsets, which he 

then uses and optimizes in his Genetic Algorithm (GA).  Optiz uses GAs in conjunction 

with Neural Networks (NN) as a wrapper method to find optimal feature subsets, which 

he then uses as training data to build an ensemble model of NNs.  Optiz comments that 

the initial population, acquired through RSM, was surprisingly good and produced better 

ensembles on average than the popular and power ensemble approaches of bagging and 

boosting [96].  Other ensemble feature selection studies have included implementations 

such as a Hill-Climber and Bayesian Classifiers with cross-validation integration [88], 

GA and k Nearest Neighbor classifiers [98] [99], sequential-search-based strategies and 



 

 

29 

Bayesian Classifiers [100], and comparative ensemble feature selection studies such as 

[101].   

Perhaps the most related work to the algorithm proposed in this research is the 

work done by Vale et al in [102].  In that study, the authors implement a filter method 

with an emphasis on class-based feature selection to generate the feature subsets used by 

each base classifier.  The use of a filter method is perhaps the most evident shortcoming 

of the implementation as wrapper methods have often shown to provide more accurate 

results.  In addition, the authors implement a combination based ensemble integration 

technique, although the specific details of the combination technique are not provided.  

Depending on the specific combination technique, further improvement can be seen here 

as well. 

In summary, Chapter 2 has provided an in depth description of feature selection.  

First, common misconceptions and various definitions of relevance were discussed.  This 

was followed by the uses of feature selection in unsupervised learning and explanations 

of the different types of feature selection techniques.  Lastly, the use of feature selection 

in combination with ensemble methods was reviewed. 
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CHAPTER 3 

 

CLASS-SPECIFIC ENSEMBLE FEATURE SELECTION  

(CEFS) 

 

 

A thorough summary of the intricacies of feature selection was presented in 

Chapter 2.  This included an overview of some of the benefits and drawbacks of certain 

methods and the latest work being done in the field.  The algorithm proposed in this 

research, named Class-specific Ensemble Feature Selection (CEFS), will seek to exploit 

some of those short comings, as well as, build upon the most recent successful findings. 

The CEFS algorithm will focus mainly on improving prediction accuracy on 

classification problems.  As an added benefit, the class-specific design will select features 

optimal to each separate classification, thereby providing more information and 

understanding in regards to the most useful features to each classification and to the 

model. 

Presented next is the design of CEFS (Figure 7).  First, assume dataset D, which 

contains n different classifications.  CEFS will use a wrapper method such as Sequential 

Backward Selection (SBS) [47] or a Genetic Algorithm (GA) [96] to find n optimal 

feature subsets.  That is, the feature selection algorithm will be run n times, each time 

searching for the subset of features which will maximize the classification accuracy, not 

of the entire dataset D, but of one of the n classifications, thus producing n optimal class-

specific subsets.  This is done by evaluating the prediction accuracy of the classifier on a 
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single classification at a time, instead of the prediction accuracy of the classifier on the 

entire test set (which groups all classifications together).  To clarify, the training set and 

test set do not ever change, they still contain all of the instances as though the algorithm 

were going to predict as normal.  The facet which changes is the evaluation criterion.  By 

using only the prediction accuracy of a single classification at a time, the algorithm is 

able to find an optimal set of class-specific features. 

 

Figure 7: CEFS Procedure 

 

 

The classifier used for the wrapper method evaluation is a Naïve Bayesian 

Classifier (NBC) [28] [29], which is perfectly suited for this research, as lazy learners 

tend to benefit greatly from feature selection [103].  Then, each class-specific subset will 

be used to build a separate base classifier, creating n classifiers in an ensemble feature 
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selection model.  Finally, the ensemble will use a combination technique to predict the 

outputs of the unseen instances. 

The algorithm itself is similar to the one presented in [102], but with two main 

improvements.  First, a wrapper method is used for feature selection instead of a filter 

method.  Since the features will be selected using the classifier as its evaluation criteria, 

this should produce features more useful to predict each class, which most importantly, 

should lead to a higher accuracy as has been typically shown to occur with the use of 

wrapper methods over filter methods [2].  Refer to Section 2.2 for a more in depth 

discussion of the issue of relevance vs. usefulness in regards to feature selection.  Using a 

wrapper method over a filter method will increase the overall running time of the 

algorithm, however, this is an acceptable drawback if it will improve prediction accuracy.  

The second distinction is the integration strategy used for the ensemble machine.  The 

research presented in [102] uses a fusion-based integration strategy, although the details 

on the specific implementation of this strategy are not provided.  The research proposed 

in this work will not implement a specific ensemble integration technique, but rather 

explore the potential accuracy if an appropriate technique was selected.   
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CHAPTER 4 

 

IMPLEMENTATION 

 

 

In order to gage the usefulness and effectiveness of the algorithm and to test the 

hypothesis aforementioned in this text, an implementation of a Class-specific Ensemble 

Feature Selection (CEFS) is necessary.  This Chapter provides preliminary results of an 

initial implementation of CEFS.  Moreover, this initial implementation is tested on a 

limited amount of data to show a proof of concept.  Further experimentation will be 

necessary to fully test the impact the proposed algorithm can have on prediction 

accuracy.  The remainder of the Chapter will be arranged as follows.  First, a brief 

description of the proposed hypothesis is provided.  Next, experimental data, tools, and 

procedure are discussed.  Finally, preliminary results, findings and conclusions are 

detailed.   

 

4.1 Proposed Hypothesis 

 

To reiterate the proposed hypothesis from Chapter 1, the hypothesis examined in 

this research is two-fold.  First, is the theory that instances classified as x will have a 

different set of useful features than will instances classified as y, contradicting the 

aforementioned methodology, which suggests that features useful to the entire dataset 

must be useful to instances classified x and instances classified as y and vice-versa.  
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Second, utilizing class-specific feature subsets to assemble and train ensemble base 

classifiers will create a system which will further improve prediction accuracy over 

existing models.   

 

4.2 Preliminary Experiment 

 

An initial preliminary experiment was conducted in small scale to show, as a 

proof of concept, that the proposed approach is successful in confirming the 

aforementioned hypothesis and achieving the suggested goals.   

 

4.2.1 Data 

 

The dataset used in this experiment was acquired from the UCI Machine Learning 

Repository [104].  The breast cancer dataset was chosen, containing 286 instances with 

two possible classifications:  recurrence (85) and no recurrence (201).  Furthermore, each 

instance contained nine unique features: age, menopause, tumor-size, inv-nodes, node-

caps, deg-malig, breast side, breast-quad, and irradiat.  A Leave-One-Out cross- 

validation scheme, which is detailed in Section 4.2.3, was used to partition the data. 

 

4.2.2 Tools 

 

The dataset used in this experiment was stored and accessed using Microsoft 

Access 2007.  The CEFS algorithm was written using Java JDK 1.6 as the programming 

language of choice and jGRASP as the IDE. 
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4.2.3 Procedure 

 

Given the relatively small number of instances and imbalance between classes in 

the dataset (29.7% recurrence vs. 70.3% no recurrence), a leave-one-out cross-validation 

scheme was selected.  In a leave-one-out approach, each test set contains only one 

instance from the overall dataset.  This is repeated until all instances have been used as a 

test set.  The accuracy is then the average of the number of instances correctly predicted 

over the total number of instances in the dataset.  This approach has the advantage of 

utilizing as much data as possible for training (i.e., n – 1 instances where n is the number 

of instances in the original dataset).  In addition, test sets are mutually exclusive and they 

effectively cover the entire dataset [15].   

The CEFS algorithm implemented in this experiment uses a Sequential Backward 

Selection algorithm (SBS) [5] in conjunction with a Naïve-Bayesian Classifier (NBC) to 

create the feature selection wrapper method.  The only portion of CEFS not implemented 

was the ensemble integration technique, for two reasons.  First, by not implementing an 

integration technique and simply measuring whether either of the classifiers correctly 

classified the instance, we are able to attain an upper bound on performance.  Second, 

further research and experimentation are needed in order to choose the most appropriate 

integration methods to be used in this system. 

In terms of metrics, the overall accuracy of CEFS and of a baseline model, also 

using SBS and NBC, were measured.  In addition to overall accuracy, several other 

metrics were recorded to support the hypothesis proposed in this thesis.  These metrics 

will be further detailed in the subsequent section. 
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4.2.4 Experiment Results 

 

Several comparative metrics were taken for this experiment.  The first was to 

compare the optimal feature subsets acquired from the original baseline algorithm to 

CEFS.  Table 2 gives the optimal feature subsets acquired by each algorithm.  Although 

the dataset is considered small on a dimensional scale, the results can serve to illustrate 

several points.  To begin, the only feature useful to both class-specific subsets was feature 

8 – breast quadrant.  Interestingly enough though, this feature was not deemed useful in 

terms of the optimal subset for the entire dataset.  In contrast, features 5 and 6 were the 

only ones selected by the baseline algorithm, yet neither of them is deemed useful for 

instances classified as recurrence.  Feature 8 was the only feature deemed useful for 

recurrence instances, yet this feature was not deemed at all useful under the baseline 

algorithm.  The results from this dataset alone support the idea of feature dataset 

exclusivity, which shows that features useful for one classification may be different from 

other classifications, and may be lost at prediction time if using the baseline type of 

feature selection. 

Table 2: Optimal Feature Subsets under Breast Cancer Dataset 

Feature Subset 1 2 3 4 5 6 7 8 9 

Entire Dataset (baseline)         X X       

No-recurrence specific (CEFS) X   X   X X X X X 

Recurrence specific (CEFS)               X   

(1-age, 2-menopause, 3-tumor size, 4-inv nodes, 5-node caps,  

6-deg malig, 7-breast side, 8-breast quad, 9-irradiat) 

 

The next metric, depicted in Figure 8, measured the percentage of times each 

classifier agreed or disagreed on their prediction.  This is important, because the 



 

ensemble system accurately predicted about 80% of the instances when the classifiers 

agreed, which was 73% of the time.  

 

Figure 8: Ensemble Classifier Agreement

 

 

According to Figure 8, t

prediction accuracy when the classifiers disagree is dependent on which type of ensemble 

integration method is used.  Since no ensemble integration method was implemented, this 

figure is not available.  However, if the integration technique selected were to allow the 

ensemble machine to correctly predict 100% of the instances when the classifiers 

disagreed, then the algorithm would reach an overall accuracy of 85.3% (giving us an 

upper bound on accuracy).  If at the worst, the integration technique predicted as good as 

when the classifiers agree, that would still yield an overall accuracy of roughly 80%.  

Figure 9 displays the prediction accuracy of an NBC without any feature selection, the 

baseline algorithm aforementioned, the case where disagreeing classifiers predicted as 

27%
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ensemble system accurately predicted about 80% of the instances when the classifiers 
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well as agreeing classifiers and the upper bound on prediction accuracy (when 

disagreeing classifiers predict correctly 100% of the time). 

 

 

Figure 9: Prediction Accuracy based on Algorithm 
 

 

As shown by Figure 9, choosing an effective integration technique for the 

ensemble system can provide significantly better accuracy than existent methods.  

Moreover, this figure shows that the opportunity for improvement is quite possible for the 

CEFS proposed approach. 
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CHAPTER 5 

 

CONCLUSION 

 

 

Given the motivation and objectives presented in Chapter 1, a unique ensemble 

feature selection algorithm is proposed and presented.  This algorithm utilizes a wrapper 

method to build an ensemble of models, each with feature subsets optimized for 

performance with respect to a separate classification and under a specific base classifier.  

The proposed method seeks to outperform (in terms of prediction accuracy) the state of 

the art by providing an approach which will bring sought after diversity and disagreement 

to the ensemble model while supplying the same model with feature subsets containing 

highly useful features to the base classifiers themselves.  Preliminary Results show 

promise in terms of possible increases in prediction accuracy, with potential 

improvements of more than 10% over exiting methods. 

In terms of future work, this research can evolve in a variety of different ways.  

First, a thorough comparative study on how performance is affected by different wrapper 

methods, higher and lower number of classifications, and different ensemble integration 

techniques, should be conducted.  Second, it would be worthwhile to investigate an 

ensemble of models with feature subsets derived from both filter and wrapper methods.  

Third, a comparative study of different evolutionary computation algorithms utilized as 

wrapper methods within ensemble feature selection models might provide valuable 
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information as to better performing wrapper methods.  Finally, given that ensemble 

feature selection is still a relatively new area to feature selection, and class-specific 

selection even newer, fresh and innovative combinations may provide even better 

performing algorithms. 
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