
Analysis and Improvement of Virtex-4 Block RAM Built-In Self-Test

and Introduction to Virtex-5 Block RAM Built-In Self-Test

Except where reference is made to the work of others, the work described in this
thesis is my own or was done in collaboration with my advisory committee. This

thesis does not include proprietary or classified information.

Brooks Garrison

Certificate of Approval:

Vishwani D. Agrawal
James J. Danaher Professor
Electrical and Computer Engineering

Charles E. Stroud, Chair
Professor
Electrical and Computer Engineering

Victor P. Nelson
Professor
Mathematics and Statistics

George Flowers
Dean
Graduate School

Analysis and Improvement of Virtex-4 Block RAM Built-In Self-Test

and Introduction to Virtex-5 Block RAM Built-In Self-Test

Brooks Garrison

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
May 9, 2009

Analysis and Improvement of Virtex-4 Block RAM Built-In Self-Test

and Introduction to Virtex-5 Block RAM Built-In Self-Test

Brooks Garrison

Permission is granted to Auburn University to make copies of this thesis at its
discretion, upon the request of individuals or institutions and at

their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation

iii

Vita

Brooks Garrison is the eldest son of Ricky and Rasa Garrison. He was born in

Huntsville, Alabama on March 26, 1985. Brooks attended Auburn University from

Fall 2003 to the Spring 2007. He was involved in the Engineering Honor Society,

Tau Beta Pi (TBΠ), during his junior and senior years. He was also involved in the

Electrical Engineering Honor Society, Eta Kappa Nu (HKN), during that time, and

served as Vice President during his senior year. He graduated in the spring of 2007

with a Bachelor’s of Engineering with special emphasis on Computer Engineering,

earning the honor of Magna Cum Laude.

Brooks immediately began working on his Master’s of Science degree at Auburn

University. His contributions to the Block RAM BIST for Virtex-4 and Virtex-5

FPGAs were developed under the direction of Dr. Charles E. Stroud.

iv

Thesis Abstract

Analysis and Improvement of Virtex-4 Block RAM Built-In Self-Test

and Introduction to Virtex-5 Block RAM Built-In Self-Test

Brooks Garrison

Master of Science, May 9, 2009
(B.S., Auburn University, 2007)

127 Typed Pages

Directed by Charles E. Stroud

A reliable method for testing embedded memories within Virtex-4 and Virtex-5

Field-Programmable Gate Arrays (FPGAs) is needed by the current FPGA commu-

nity. A method for testing the Virtex-4 embedded Block Random Access Memories

(RAMs) using Built-In Self-Test (BIST) was initially proposed by Milton in [7].

However, this method was found to have deficiencies in practical application. Several

corrections and improvements are made to this proposed approach, which improve

overall BIST generation and execution time.

A method for testing the Virtex-5 FPGA Block RAMs is proposed and the

suggested configuration settings are described. Four Test Pattern Generators (TPGs)

are proposed to implement the BIST, which will consist of 16 BIST configuration bit

files and subsequent execution of their associated BIST sequences.

v

Acknowledgments

I would like to thank Dr. Stroud for his constant support and advice throughout

my Master’s studies. His guidance helped me become a better engineer by teaching

me how to logically analyze a unknown behavior and turn it into a known behavior.

The knowledge he imparted to me will be invaluable in my future career and for this, I

am most grateful. I would also like to thank Dr. Agrawal and Dr. Nelson for serving

as members on my graduate committee. Without the contributions of all three of

these mentors, work like that presented in this thesis would not be possible. I would

also like to acknowledge my colleagues, Brad, Joey, Jia and Mary, whose assistance

was invaluable throughout my research.

I would also like to acknowledge my parents and family, whose support helped me

persevere through the hard times in my research when I believed that my potential

was lackluster at best. Most of all, I would like to thank my wife, Erin, whose constant

belief in my abilities inspired me to strive to meet her expectations when I had no

faith in myself.

vi

Style manual or journal used Journal of Approximation Theory (together with

the style known as “aums”). Bibliography follows van Leunen’s A Handbook for

Scholars.

Computer software used The document preparation package TEX (specifically

LATEX) together with the departmental style-file aums.sty.

vii

Table of Contents

List of Figures x

1 Introduction 1
1.1 Field Programmable Gate Arrays . 1

1.1.1 Pros/Cons to Using an FPGA 2
1.1.2 FPGA Implementation . 4

1.2 Built-In Self-Test . 5
1.2.1 Why use BIST? . 6
1.2.2 BIST for FPGAs . 7

1.3 Thesis Statement . 8

2 Background Information 9
2.1 Random Access Memory . 9

2.1.1 Faults . 10
2.2 FPGA Block RAM BIST . 13

2.2.1 ORA Implementation . 15
2.2.2 Overview of Virtex-4 Block RAMs 17
2.2.3 BIST for Virtex-4 Block RAMs 19

2.3 Virtex-5 Introduction . 41
2.3.1 FPGA Architecture . 41
2.3.2 Programming Tools . 45

2.4 Thesis Statement . 46

3 Virtex-4 Improvements 47
3.1 BIST Generation Simplification . 47
3.2 ORA Modification and OR-Chain . 50
3.3 PINS Option . 52
3.4 FIFO Reset Problem . 57
3.5 Additional FIFO Configurations . 62
3.6 Cascade ORA Clock Enables . 64
3.7 Timing Improvements and Analysis 66
3.8 Fault Coverage . 75
3.9 Summary . 80

viii

4 Virtex-5 Block RAM BIST 84
4.1 TPG Development . 84

4.1.1 RAMB36 TPG . 85
4.1.2 RAMB36SDP TPG . 88
4.1.3 FIFO36 TPG . 91
4.1.4 FIFO36 72 TPG . 91

4.2 ORA Placement . 91
4.3 BIST File Generation . 95

4.3.1 BIST Template Generation Program 97
4.3.2 Modification Program . 99

4.4 BIST Results . 99
4.4.1 File Size Comparison . 102
4.4.2 Timing Analysis . 102
4.4.3 Fault Coverage . 103

5 Summary and Conclusions 107
5.1 Virtex-4 Block RAM BIST Improvements 107
5.2 Virtex-5 Block RAM BIST . 109
5.3 Future Work . 110

Bibliography 112

A MarchLR with 72-bit BDS 114

ix

List of Figures

1.1 General FPGA Structure . 1

1.2 Basic BIST Structure [11] . 6

2.1 Functional Model of a Multi-Port SRAM [5] 10

2.2 Differential Access Multi-Port Cell [5] 11

2.3 Comparison Based ORAs . 16

2.4 Dual-Port Data Flows [15] . 17

2.5 BRAM - TPG/ORA Connections [7] 20

2.6 Virtex-4 Block RAM ORA Bit Assignments [7] 31

2.7 FIFO ORA Bit Assignments [7] . 35

2.8 ECC/Cascade RAM ORA Comparisons [15] 36

2.9 ECC RAM Top-Level View [15] . 37

2.10 ECC ORA Bit Assignments [7] . 38

2.11 Cascadable Block RAM [15] . 40

2.12 Cascade ORA Bit Assignments [7] 40

2.13 Virtex-4 vs. Virtex-5 Slice Comparison 42

3.1 Virtex-4 New and Old ORAs . 50

3.2 Additional Dummy ORAs . 51

3.3 OR-Chain Functionality . 52

3.4 OR-Chain in an FX12 Device . 53

x

3.5 V4RamBist.exe Command Line Format 55

3.6 PINS - TPG RST and ILOGIC Placement 56

3.7 Cascade ORA Bit Assignments [7] 65

3.8 Cascadable Block RAM [15] . 65

3.9 Max. BIST Clock Frequency for Virtex-4 LX60 72

3.10 Timing Analysis for Worst-Case BIST Configurations - Virtex-4 Devices 73

3.11 Max. BIST Clock Frequency for Virtex-4 LX60 with Clock Modifications 77

3.12 Timing Analysis for New Worst-Case BIST Configurations - Virtex-4
Devices . 78

3.13 Overall Fault Coverage for Virtex-4 Devices 80

3.14 BRAM Fault Coverage for Virtex-4 Devices 81

3.15 FIFO Fault Coverage for Virtex-4 Devices 81

3.16 ECC and Cascade Fault Coverage for Virtex-4 Devices 82

4.1 Shift Register Control String - RAMB36 88

4.2 RAMB36 TPG Area Constraint for an LX50T Device 89

4.3 Shift Register Control String - RAMB36SDP 91

4.4 Internal Slice Components [16] . 94

4.5 Virtex-5 ORA LUT Comparison . 96

4.6 V5BramBist.exe Command Line Format 98

4.7 TPG Placement for a Virtex-5 LX50T 100

4.8 V5BramMod.exe Command Line Format 101

4.9 Timing Analysis for Virtex-5 LX50T Device 104

4.10 Timing Analysis for Worst-Case BIST Configurations - Virtex-5 Devices105

4.11 RAMB36 Fault Coverage for Virtex-5 Devices 106

xi

Chapter 1

Introduction

1.1 Field Programmable Gate Arrays

A Field Programmable Gate Array (FPGA) is a prefabricated Integrated Circuit

(IC) that contains an array of programmable logic blocks (PLBs) and programmable

input/output (I/O) cells with programmable interconnections as seen in Figure 1.1

[11]. The user has the freedom to program the functionality realized by each logic

block and the connections between each logic block [9]. An FPGA is more flexible

with respect to design errors than a traditional gate array or Mask Programmable

Gate Array (MPGA). This is because MPGAs are only programmable in the factory

by the manufacturer, while FPGAs can be reprogrammed at the user’s discretion.

Figure 1.1: General FPGA Structure

1

FPGAs were developed as an alternative to Application-Specific Integrated Cir-

cuits (ASICs). ASICs are ICs developed for a specific use rather than for general

use [10]. While ASICs are generally four times faster and 40 times more efficient

in terms of area than FPGAs [6], they are by, nature, unforgiving if a design error

is encountered. Costs are incurred through redesign, fabrication and testing of the

new ASICs, which can be quite expensive in both money and time. FPGAs offer the

flexibility of fixing errors in the design configuration and then simply re-downloading

the design onto the device [10]. Through the use of FPGAs, overall prototyping costs

and design iterations can be greatly reduced.

However, FPGAs are less dense than traditional gate arrays and MPGAs due to

the fact that a lot of the FPGAs resources are spent merely to achieve the programma-

bility. This means that FPGAs have lower performance than ASICs and MPGAs.

The vast amount of programmable interconnections slow down internal signals and

thus FPGAs are slower than MPGAs and ASICs [9].

1.1.1 Pros/Cons to Using an FPGA

There are both advantages and disadvantages to using FPGAs. Some of the

prominent advantages of using an FPGA include the following:

• Reconfigurability

• Efficient prototyping

• Lower design costs

FPGAs provide reconfigurability to the user. If a bug is found in the design,

the user can fix the design configuration and re-download it to the device. No new

hardware needs to be designed or produced. This leads to lower design costs and is

2

optimal for prototyping. This reconfigurability can also be taken advantage of when

an FPGA is incorporated into a system. For example, when a system containing the

FPGA is first powered on or during times of low activity, the FPGA can be configured

to test itself and/or the system to determine if there are any faults [13]. If there are

none, the FPGA can then be reconfigured for the function it was intended to perform

within the system.

However, the flexibility of FPGAs does not come without a cost. Some of these

include the following:

• Slower device speeds

• Higher power consumption

• Volatile configuration memory

• Higher production cost

FPGAs have a multitude of programmable interconnect points within them.

These points have both capacitance and resistance which slow down signals within

the device causing the FPGA to run at slower speeds than ASICs or MPGAs [9].

ASICs are built for a specific purpose, while FPGAs are of a more general nature.

Because FPGAs are less constrained, many of the resources (programmable intercon-

nects, PLBs, etc) they contain are not fully utilized and are in general less power

efficient than ASICs [6]. Another disadvantage to using most FPGAs is that the

configuration memory must be downloaded every time the device is powered on due

to the volatile nature of the configuration memory. FPGAs are very useful for pro-

totyping and low volume designs. However, for designs that will be mass-produced,

FPGAs become an expensive component to be incorporated into the design. ASICs

are better suited for high volume production situations [9].

3

1.1.2 FPGA Implementation

Recent FPGAs are comprised of some, if not all, of the following components

[13]:

• Programmable Logic Blocks (PLBs)

• Digital Signal Processors (DSPs)

• Microprocessors

• Input/Output Blocks (IOBs)

• Random Access Memories (RAMs)

• Programmable Interconnect

These components can comprise over one billion transistors [13]. Technology

has advanced such that these transistors are now on the nanometer scale and the

process of creating these transistors is not without error. Due the the small scale

of the parts that make up the FPGA, an inexpensive and efficient way to test that

the components are fault-free is needed. This thesis will be using the flexible nature

of the FPGA itself in order to test that certain components, specifically the Block

RAMs, were created without defects and/or have not sustained faults during system

operation.

FPGA Memory

Embedded memory was incorporated onto FPGAs so that they could act as

System-on-Chip (SoC) devices, which contain all the elements of a computer. This

frees up PLB elements from acting as storage devices providing for the memory needs

4

of the circuit. The size of each Block RAM can range from 128 bits to 36 kbit and in

most cases the data width versus address space can be adjusted [13]. RAMs can also

be classified as single-port (SP) where reading and writing can only be implemented

over a single circuit path or multi-port (MP) where memory cells can be accessed

simultaneously and independently of each other [5]. The number of RAMs can vary

in an FPGA. In the Virtex-4 family, the number of 18 kbit Block RAMs can range

from 36 in the FX12 device to 552 in the FX140 device [15].

The introduction of Block RAMs to FPGAs also increases the overall perfor-

mance of the device. Compared to an ASIC that does the same function, the FPGA

with Block RAMs is approximately three times slower (compared to the four times

slower without Block RAMs [6]). The power consumption of the device is reduced

from 12 to 9 times more than an ASIC. Component and area utilization is also im-

proved from 40 to approximately 20 times more than an ASIC [6].

1.2 Built-In Self-Test

Built-In Self-Test (BIST) is a way for a given circuit to test itself to determine

if it is fault-free or defective. BIST consists of three main components shown in

Figure 1.2 and described below. A test controller, input isolation circuitry, and some

additional I/O may also be needed to run the BIST [11].

• Circuit Under Test (CUT): is the current circuit or component which is under-

going testing.

• Test Pattern Generator (TPG): the test pattern generator produces a sequence

of patterns for testing the CUT.

• Output Response Analyzer (ORA): the output response analyzer compacts the

output responses of the CUT into a Pass/Fail indication.

5

Figure 1.2: Basic BIST Structure [11]

1.2.1 Why use BIST?

There are several methods of testing a device. The first is to use an external test

machine that applies a set of test vectors to the device. The other option is to design

additional circuitry that makes the device easier to test or enables the device to test

itself [11].

Additionally, all the components of the BIST can be clocked using the system

clock. This is referred to as at-speed testing and is important because it can help

facilitate the detection of faults that lead to excessive delay in an otherwise working

CUT. This also allows testing to occur at the maximum clock frequency, which in

turn minimizes testing time and thus testing cost [11].

Another advantage of using BIST is that the need for expensive external auto-

matic test equipment (ATE) is greatly reduced. The cost of the ATE depends on the

number of test vectors, desired test speed, and the number of I/O pins required by

the CUT. Overall testing costs and time are reduced because the ATE requires only

6

a few signals to initiate and control the BIST sequence as well as retrieve the BIST

results [11].

However, BIST does have some negative aspects. Additional circuitry is typically

incorporated into the device to implement the BIST. This leads to a larger device area,

known as area overhead, and thus increased cost. This larger area overhead also leads

to longer signal routing paths within the device, which can affect performance [11].

Another disadvantage is that in addition to designing and verifying proper operation

of the intended system, the BIST system must also be designed and verified. Two

systems rather than one need to be designed and both must be valid. Although, one

BIST system can be used with many application circuits.

1.2.2 BIST for FPGAs

In an ASIC, additional circuitry must be added to the original circuit design to

incorporate the BIST circuitry. However in an FPGA, this is not needed because all

of the components of the BIST can be constructed using the inherent components

of the FPGA. In this thesis, PLBs compose the TPGs and ORAs while the Block

RAMs will compose the CUTs. Since all of the components of the BIST reside within

the FPGA, they all use the same clock, and at-speed testing can be taken advantage

of. This eliminates any performance penalties that might have been introduced if

additional testing hardware had been developed.

One of the main advantages for performing BIST on FPGAs is that BIST can

easily be applied to all levels of testing, which is known as vertical testability. BIST

also provides high diagnostic resolution by being able to specify which CUT a fault

is associated with [11].

7

1.3 Thesis Statement

The goal of this thesis is to discuss improvements made to the Virtex-4 Block

RAM BIST to address several problems found within the approach developed by

Milton in [7]. A technique for implementing Block RAM BIST on Virtex-5 devices

based on the techniques developed for the Virtex-4 Block RAM BIST will also be

introduced and discussed.

Chapter 2 will present a more detailed overview of RAM architecture, namely

the architecture and operation of Block RAMs in the Virtex-4 and Virtex-5 FPGAs.

Previous Block RAM BIST methods will be described along with how they were

applied to Virtex-4 RAM BIST. Chapter 3 will present the work done to correct and

improve BIST for Virtex-4 Block RAMs, while Chapter 4 will present and discuss the

BIST technique proposed for Virtex-5 Block RAMs. Chapter 5 will summarize the

thesis and provide suggestions for future research and development.

8

Chapter 2

Background Information

This chapter will give an introduction to static random access memories (RAMs)

and the faults associated with them. This will include a discussion on how the

faults develop and implementation of known RAM test algorithms. The RAM test

algorithms used for BIST of Block RAMs in Virtex-4 [7] will be discussed, along with

how they test for faults. The architecture of Virtex-5 FPGA will be discussed, along

with the architecture and operation of Block RAMs.

2.1 Random Access Memory

Static RAMs (SRAMs) are constructed from memory cells that have two different

voltage levels, one for logic 0 and one for logic 1. This type of circuit is known as

a bi-stable circuit. A unique feature of SRAMs is that they are a volatile type of

memory, which means that they can only store data as long as they are supplied with

power [5]. When the power is turned off, all data in the SRAM is lost.

Figure 2.1 illustrates a functional model of a multi-port SRAM. The SRAM

consists of a memory cell array that is usually composed of the memory cells shown

in Figure 2.2. Each cell has a shared read/write capability and each port has two bit

lines that are used by the sense amplifier for the read/write operations. In addition

to the memory cell array, the SRAM has row and column address decoders that select

the memory cell from which to read and write. When data is being read, the read

circuitry loads the data from the selected memory cell into the Data Flow register

9

and it is then sent out on the Data-word Out line. If data is being written, it is loaded

into the Data Flow register from the Data-word In line and the write circuitry writes

the data to the selected memory cell [5].

Figure 2.1: Functional Model of a Multi-Port SRAM [5]

2.1.1 Faults

Since SRAMs have many components (Figure 2.1), the need to test these compo-

nents is crucial. RAMs are generally tested for faults by writing and reading various

test patterns known as march tests to each of the memory addresses [5]. The fault

detection results of these tests are described by functional fault models, which are ab-

stract fault models that can be described by fault primitives. Fault primitives make it

possible to precisely define a functional fault model. When testing SRAMs for faults,

10

Figure 2.2: Differential Access Multi-Port Cell [5]

every possible fault need not be tested, but rather the possible realistic faults need

to be tested [5]. There are several ways to classify memory faults. These include:

Static vs. Dynamic Faults

Static faults are characterized by the effect of a single operation to a cell. Ex-

amples of static faults include Stuck-at One/Zero. Dynamic faults are characterized

by the effect of multiple operations [5].

Simple vs. Linked Faults

Simple faults are faults that have no influence on other faults and thus the be-

havior of one fault does not influence the behavior of another fault. This is important

to note because simple faults cannot mask one another, that is hide their behavior.

11

Linked faults are faults that can influence other faults and therefore fault masking

can occur [5].

Single-Port vs. Multi-Port Faults

Faults that require at most one port operation to occur are said to be single-port

faults. These faults can occur in both single- and multi-port memories. Multi-port

faults can only occur due to operations performed on two or more ports. For example,

if two simultaneous read operations performed on a memory cell cause the contents

of the cell to change, a multi-port fault is said to have occurred [5].

Single-Cell vs. Multi-Cell Faults

When a sequence of operations is performed on a memory cell, if a fault is

sensitized in that cell, the fault is said to be a single-cell fault. However, if the

operations cause a fault to be sensitized in a different memory cell, the fault is said

to be a multi-cell fault, which is also known as a coupling fault [5]. Some common

single-cell faults include:

• Stuck-At Faults (SAF): these faults are characterized by the logic value of a

memory cell or line always being either logic 0 or logic 1 [1].

• Stuck-Open Faults (SOF): these faults are characterized by not being able to

access the memory cell, usually due to an open word line [1].

• Transition Faults (TF): these faults are characterized by a memory cell not

being able to transition from a logic 0 to a logic 1 or vice versa [1].

• Data Retention Faults (DRF): these faults are characterized by a memory cell

not being able to store its logical value after a certain amount of time [1].

12

Some common coupling faults which involve two cells, cell1 and cell2, include:

• Inversion Coupling Faults (CFin): these faults are characterized by a write

operation that causes the logic value of cell1 to flip, which causes the value of

cell2 to flip [1].

• Idempotent Coupling Faults (CFid): these faults are characterized by a write

operation that causes the logic value of cell1 to flip, which causes cell2 to always

become either logic 0 or logic 1 [1].

• State Coupling Faults (CFst): these faults are characterized by a memory cell

or line being forced to a certain value if another coupled cell or line is in a

certain state [1].

2.2 FPGA Block RAM BIST

BIST for FPGA Block RAMs has been previously implemented for the Virtex-

4 FPGAs. Milton [7] developed TPGs that would test each of the four modes

of operation for the Virtex-4 BRAMs (regular operation, First-In-First-Out or FIFO

operation, Error Correcting Code or ECC operation, and cascade operation). Milton’s

work was derived from the work first presented by Garimella for Virtex I and Virtex

II FPGA Block RAMs [4].

Garimella tested the Block RAMs in Virtex II by testing the single-port mode

and then the multi-port mode as proposed in [5]. His BIST configurations are shown

in Table 2.1. Garimella used the MarchLR RAM test algorithm to test the single-

port mode and March s2pf/d2pf to test the dual-port mode of the Virtex II Block

RAMs [4]. He used a single TPG to generate the test patterns and apply control

signals to the Block RAMs under test. Milton’s approach differed from Garimella’s in

13

that he implemented two identical TPGs that drive alternating rows of Block RAMs

under test, which provided for greater fault detection capabilities. The use of two

TPGs allowed for the detection of possible errors within the TPGs as well as those

that could be present in the Block RAMs. Garimella was the first to implement

circular comparison based ORAs (discussed in Section 2.2.1) when testing embedded

memories [4] and Milton adopted this when implementing his tests for Virtex-4 [7].

However, a major disadvantage of Garimella’s approach was that his BIST was

implemented completely in VHDL. While this did allow for a shorter development

time, there was an incurred cost of having to download each full BIST configuration to

the device under test. Milton also noted that constructing the BIST circuitry entirely

in VHDL reduces the control of the physical design of the BIST circuitry [7]. The

synthesis tools cannot guarantee any degree of similarity between the configurations

and thus does not allow for the exploitation of partial configuration files, which greatly

reduce download and test time. Furthermore, they can implement the behavior of

signals in a way that, while correct in implementation, does not configure the Block

RAM signals as expected and as a result, the Block RAM is not completely tested

[7].

Milton overcame these problems by implementing his BIST circuitry in both

VHDL, for the high-level TPG model, and Xilinx Design Language (XDL), to control

the placement of the BIST circuitry so as to take advantage of partial reconfiguration.

By modifying the XDL for the BIST configuration, Milton was able to ensure that the

placement and routing of his TPGs, ORAs and CUTs was constant and that the only

changes were to the Block RAMs’ configuration between each BIST configuration [7].

This consistency allowed for a drastic decrease in BIST download time when using

partial reconfiguration.

14

Table 2.1: Virtex II BIST Configurations [4]
BIST Test Address Data Clock

Configuration Algorithm Locations (A) Width (D) Cycles
1 MarchLR w/ BDS 512 36 58 · A
2 1k 18 14 · A
3 2k 9 14 · A
4 March LR 4k 4 14 · A
5 8k 2 14 · A
6 16k 1 14 · A
7 March s2pf 512 36 14 · A
8 March d2pf 512 36 9 · A

2.2.1 ORA Implementation

A basic comparison based ORA implementation can be seen in Figure 2.3(a)

[12]. This ORA implementation compares the outputs of a CUT with the outputs

of adjacent CUTs. If a fault is detected by the ORAs, the CUT it originated in can

be determined by observing which ORAs detected the fault [12]. For example, if

ORA2 detected a fault and ORA1 also detected a fault, then CUT2 is where the fault

occurred. However, this approach is limited by a fault detected in the edge ORA

(ORA0). If a fault is detected by ORA0 only, then the fault is in CUT0. However,

if both ORA0 and ORA1 detect a fault, then CUT1 is known to be faulty, but the

functionality of CUT0 is unknown.

A solution to this is a circular comparison based approach, which is shown in

Figure 2.3(b) [13]. This approach compares the top CUT with the bottom CUT

and effectively every CUT is being compared with two other CUTs. This allows

for the exact determination of a fault location [12]. The circular comparison based

approach was implemented by Milton in the Virtex-4 Block RAM BIST in [7] and

will be adopted for the Virtex-5 Block RAM BIST.

15

(a) Comparison Based ORAs

(b) Circular Comparison Based ORAs

Figure 2.3: Comparison Based ORAs

16

2.2.2 Overview of Virtex-4 Block RAMs

Figure 2.4: Dual-Port Data Flows [15]

Virtex-4 Block RAMs can store up to 18 kbit of data. Each Block RAM has two

ports (Port A and Port B) with which it can independently synchronously read and/or

write data to the Block RAM. Each port can be programmed to have different read

and write widths as seen in Table 2.2. There are three writing modes of operation:

WRITE FIRST - where the input data is simultaneously written into the memory

and the data output; READ FIRST - where the data previously stored at the memory

location is observable on the output while the data is being written to memory; and

NO CHANGE - where the outputs remain unchanged during a write operation [15].

17

The Virtex-4 Block RAMs also have the capability of using a pipeline register for the

output data, which allows for higher clock rate at the expense of an additional clock

cycle of latency.

Another feature of the Virtex-4 Block RAMs is that two adjacent RAMs may

be cascaded together to create a 32Kx1-bit RAM. An adjacent RAM pair can also

be configured in a single 512x64-bit error correcting code (ECC) mode. In both of

these modes of operation, care must be taken by the user to account for PowerPC

modules included within the FX devices. For instance, ECC configuration cannot be

implemented in the Block RAMs immediately above or below these PowerPC modules

[15]. This is because these Block RAMs do not have an associated adjacent Block

RAM to construct the ECC RAM.

Table 2.2: Virtex-4 BRAM Port Aspect Ratio [15]
Address Address Memory Data Data-In/Out Data-In/Out
Width Bits Depth Width Bits Parity Bits

14 13:0 16K 1 0 n/a
13 13:1 8K 2 1:0 n/a
12 13:2 4K 4 3:0 n/a
11 13:3 2K 9 7:0 0
10 13:4 1K 18 15:0 1:0
9 13:5 512 36 31:0 3:0

Table 2.3: Virtex-4 FIFO Port Aspect Ratio [15]
Address Address Memory Data Data-In/Out Data-In/Out
Width Bits Depth Width Bits Parity Bits

12 13:2 4K 4 3:0 n/a
11 13:3 2K 9 7:0 0
10 13:4 1K 18 15:0 1:0
9 13:5 512 36 31:0 3:0

18

Lastly, the Virtex-4 Block RAMs can be configured as First-In-First-Out (FIFO)

RAMs. Virtex-4 devices contain dedicated pointer logic to implement this mode of

operation. When configured as a FIFO, the BRAMs have a smaller set of configurable

read/write widths shown in Table 2.3. They also have independent read and write

clocks where data is read/written on the programmable active edge of the respective

clock. Several flags have been incorporated to aid the user in determining the fullness

of the FIFO: FULL/EMPTY and ALMOSTFULL/EMPTY. There are two operating

modes: standard - where the first word written to the FIFO will not appear on the

output until a read operation has been performed and First Word Fall Through

(FWFT) - where the first word written appears immediately on the output [15].

There are several functions to test to ensure the Block RAMs are fault-free [7].

These include:

• Memory contents.

• Read/write data widths.

• Write mode operation.

• Pipeline register functionality.

• Control signals and active levels.

• Dedicated circuitry for a specific mode of operation (i.e. FIFO pointers and

flags, cascade routing).

2.2.3 BIST for Virtex-4 Block RAMs

This section will present a more detailed discussion of the BIST configurations

that were implemented for the Virtex-4 Block RAMs [7]. Each FPGA consists of

19

columns of configurable logic blocks (CLBs), Block RAMs (BRAMs) and digital signal

processors (DSPs). Milton was concerned with only the CLBs and Block RAMs. The

CLBs were used to construct both the TPGs and the ORAs, while the BRAMs were

the circuits under test (CUTs) [7].

Figure 2.5: BRAM - TPG/ORA Connections [7]

Milton determined that he would use two identical TPGs. Each TPG would drive

alternating rows of Block RAM, as shown in Figure 2.5. Circular comparison-based

ORAs were also used as this would increase fault detection and diagnostic resolution.

It can also be seen in the figure that nine ORAs (light blue squares) are used for each

Block RAM. The outputs of a Block RAM are compared with the same outputs of

the Block RAM directly above and below it [7].

20

BRAM

The first set of BIST configurations created by Milton were for the normal mode

of operation for the BRAM. Most of the tests performed on the Block RAMs were done

in this mode of operation as it provides the most flexibility. Later BIST configurations

sought to test the circuitry for other modes of operation.

Milton implemented several known RAM tests: MarchLR with Background Data

Sequence (BDS), March s2pf/d2pf, which were also used by Garimella to test the

Virtex-II Block RAMs, and MATS+. The MarchLR algorithm was chosen because

it can detect the classical stuck-at faults in addition to pattern sensitivity faults,

intra-word coupling faults, and bridging faults [5].

The following notation is used to describe RAM test algorithms [5].

• ↑, ↓: Indicates the direction traveled through the address space (l indicates that

the direction can be either up or down).

• r, w : Indicates a read or write operation, respectively, and is followed by the

value expected to be read or the value to be written.

• Each group of operations in parentheses, called a march element, indicates the

operations that are performed on a single address. For example, ↓ (r0, w1) ;,

indicates that the address space will travel from the maximum address to the

minimum address. For each address location, a Read - 0 operation will be

performed, followed by a Write - 1 operation.

The MarchLR algorithm is given by Equation 2.1 and is order O(14N), where

N is the number of address locations.

21

MarchLR =

{l (w0) ;

↓ (r0, w1) ;

↑ (r1, w0, r0, w1) ;

↑ (r1, w0) ;

↑ (r0, w1, r1, w0) ;

↑ (r0)}

(2.1)

For word-oriented memories, such as those found in the Virtex-4, background

data sequences (BDS) are needed to detect the faults within each word of the memory.

The number of BDS is given by Equation 2.2, where K is the number of bits in a

data word [13].

NBDS = dlog2Ke+ 1 (2.2)

For a 4-bit BDS example using the MarchLR algorithm, first expand the algo-

rithm (2.1) to incorporate the 4-bit words. That is replace all r0, r1, w0, w1 elements

with r0000, r1111, w0000, and w1111 respectively. Using Equations 2.3 and 2.4 and

Tables 2.4 and 2.5, the BDS march elements can be constructed by the following

steps [2].

22

BDS1 = rDi, wDi+1, rDi+1 (2.3)

BDS2 = rDi, wDi+1, wDi+2, rDi+2 (2.4)

Table 2.4: 4-Bit BDS Components
Normal Inverse

0000 1111
0101 1010
0011 1100

Table 2.5: 4-Bit BDS Sequence
i D
0 0000
1 1111
2 0000
3 0101
4 1010
5 0101
6 0011
7 1100
8 0011

1. Starting with i = 0 in Table 2.5, use Equation 2.3 to get (r0, w1, r1) and the

resulting march element {↑ (r0000, w1111, r1111)}.

2. Using i = 1, the equation results in (r1, w2, r2) and the next march element is

{↓ (r1111, w0000, r0000)}.

3. Using i = 2, notice that from i = 2 to i = 3 there is a transition from the

first row of Table 2.4 to the second row and as such, Equation 2.4 is used to

23

create the march element rather than Equation 2.3. The resulting equation

is (r2, w3, w4, r4) and the march is {↑ (r0000, w0101, w1010, r1010)}. When a

transition like this occurs, i is incremented by 2.

4. Using i = 4, Equation 2.3 is used since there is no transition of rows between

i = 4 and i = 5, which results in the equation (r4, w5, r5) and the march element

{↓ (r1010, w0101, r0101)}.

5. Equation 2.4 is used due to the transition between i = 5 and i = 6, which

results in the equation (r5, w6, w7, r7) and the march element

{↑ (r0101, w0011, w1100, r1100)}.

6. Since there is no transition between i = 6 and i = 7, Equation 2.3 is used to

get the equation (r7, w8, r8) and the next march element is

{↓ (r1100, w0011, r0011)}.

7. The last march element for the additional BDS marches consists of a read

operation of the last i value, {↑ (r0011)}.

The MarchLR algorithm with BDS is given in Equation 2.5. Notice that the

seventh and eighth lines of Equation 2.5 contain redundant march elements that

are contained within the initial MarchLR marches. These can be eliminated and the

optimized MarchLR algorithm with BDS is shown in Equation 2.6 [2]. The order

for MarchLR with 4-bit BDS is O(38N) and the order for the optimized MarchLR

with 4-bit BDS is O(34N).

24

MarchLR with BDS =

{l (w0000) ;

↓ (r0000, w1111) ;

↑ (r1111, w0000, r0000, r0000, w1111) ;

↑ (r1111, w0000) ;

↑ (r0000, w1111, r1111, r1111, w0000) ;

↑ (r0000) ;

↑ (r0000, w1111, r1111) ;

↓ (r1111, w0000, r0000) ;

↑ (r0000, w0101, w1010, r1010) ;

↓ (r1010, w0101, r0101) ;

↑ (r0101, w0011, w1100, r1100) ;

↓ (r1100, w0011, r0011) ;

↑ (r0011)}

(2.5)

25

MarchLR with BDS =

{l (w0000) ;

↓ (r0000, w1111) ;

↑ (r1111, w0000, r0000, r0000, w1111) ;

↑ (r1111, w0000) ;

↑ (r0000, w1111, r1111, r1111, w0000) ;

↑ (r0000, w0101, w1010, r1010) ;

↓ (r1010, w0101, r0101) ;

↑ (r0101, w0011, w1100, r1100) ;

↓ (r1100, w0011, r0011) ;

↑ (r0011)}

(2.6)

For the dual port RAM tests, some additional notation is needed [5].

• The colon operator (:) separates the operation to the two ports.

• n : Indicates that no operation should be applied to a particular port.

• - : Indicates that any operation is allowed, as long as it does not cause a

conflicting pair (i.e. dual write operations to the same address locations with

different values).

•
N−1

n = 0 : Indicates that an operation is performed on either the row or column

range specified, where N,n is R,r for a row range and C,c for a column range,

respectively.

26

• nr,c : Indicates a particular operation, where n is r for read and w for write, on

a memory cell with the row, r, and the column, c.

March s2pf/d2pf: These RAM tests were chosen because they can detect all

realistic single and double addressing faults for a dual port RAM [5]. The order for

March s2pf is O(14N) and the order for March d2pf is O(9N). The algorithms for

these tests are shown in Equations 2.7 and 2.8 respectively.

March s2pf =

{l (w0 : n) ;

↑ (r0 : r0, r0 : −, w1 : r0) ;

↑ (r1 : r1, r1 : −, w0 : r1) ;

↓ (r0 : r0, r0 : −, w1 : r0) ;

↓ (r1 : r1, r1 : −, w0 : r1) ;

↓ (r0 : −)}

(2.7)

27

March d2pf =

{l (w0 : n) ;

↑
C−1

c = 0 (
R−1

r = 0 (w1r,c : r0r+1,c,

r1r,c : w1r+1,c, w0r,c : r1r+1,c r0r,c+1 : w0r+1,c));

↑
C−1

c = 0 (
R−1

r = 0 (w1r,c : r0r,c+1,

r1r,c : w1r,c+1, w0r,c : r1r,c+1, r0r,c : w0r,c+1))}

(2.8)

MATS+: This RAM test was chosen because it is a simple and fast algorithm

that will be used for the various address and data widths to test the programmable

address decoding circuitry [13]. The order for MATS+ is O(5N) and the algorithm

can be seen in Equation 2.9.

MATS+ =

{l (w0) ;

↑ (r0, w1) ;

↓ (r1, w0)}

(2.9)

Milton wrote a VHDL model for his TPG which would implement the tests de-

scribed previously. Table 2.6 lists the BIST configurations and settings devised by

Milton for the regular mode of operation. Two MarchLR configurations are imple-

mented, but the second configuration is only executed for 512 clock cycles. The first

28

BIST configuration is a MarchLR with BDS. It has a read width of 36 bits and a write

width of 36 bits. The choice of these widths allows for all data inputs and outputs,

32 data bits + 4 parity bits, to be tested. The second configuration performs the

first march element of the MarchLR algorithm, write 0. In this configuration, the

Block RAMs are configured with the Write Mode of READ FIRST, which places the

previous contents of the memory cell being written on the output bus when a write

operation is performed. This allows for the Block RAM initialization values to be

tested [7].

Note that not all of the possible address configurations are tested at this time,

as the ones not present for this set of BIST configurations will appear in one of the

later sets of BIST configurations. It can also be observed that the three write modes

of operation (READ FIRST, WRITE FIRST, and NO CHANGE) and the use of the

data out pipeline register are being tested as well. The last five columns indicate the

activate levels for the RAM control signals whose descriptions can be seen in Table

2.7 [7].

After all of these BIST configurations have been run, the entire memory array

will have been tested for faults. Also each of the ports has been tested to ensure

that simultaneous operations do not affect the memory contents and several of the

configurable address/data widths have had their programmable row/column decoders

tested [7].

The nine ORA CLBs can be seen in Figure 2.6. Each of the colored slices within

a CLB (blue shapes) contains two bits which correspond to the RAM outputs shown

on the leftmost side of the figure.

29

T
ab

le
2.

6:
B

IS
T

C
on

fi
gu

ra
ti

on
s

an
d

S
et

ti
n
gs

[7
]

(a
)

Se
tt

in
gs

P
ar

t
1

C
on

fig
.

B
IS

T
R

ea
d

/
A

dd
re

ss
P

ip
el

in
e

D
at

a
O

ut
R

A
M

W
ri

te
#

W
ri

te
W

id
th

R
eg

is
te

r
C

L
K

E
xt

en
si

on
M

od
e

W
id

th
In

ve
rt

1
M

ar
ch

L
R

36
51

2
N

o
N

o
N

on
e

R
E

A
D

F
IR

ST
2

M
ar

ch
L

R
36

51
2

N
o

N
o

N
on

e
R

E
A

D
F

IR
ST

3a
M

ar
ch

(s
2p

f)
36

51
2

Y
es

N
o

N
on

e
R

E
A

D
F

IR
ST

3b
M

ar
ch

(d
2p

f)
36

51
2

Y
es

N
o

N
on

e
R

E
A

D
F

IR
ST

4
1

16
k

Y
es

N
o

N
on

e
R

E
A

D
F

IR
ST

5
M

A
T

S+
8

4k
Y

es
Y

es
N

on
e

N
O

C
H

A
N

G
E

6
36

51
2k

Y
es

N
o

N
on

e
W

R
IT

E
F

IR
ST

(b
)

Se
tt

in
gs

P
ar

t
2

C
on

fig
.

B
IS

T
W

ri
te

O
ut

pu
t

P
or

t
Se

t/
C

lo
ck

In
it

#
E

na
bl

e
R

eg
is

te
r

E
na

bl
e

R
es

et
V

al
(W

E
)

(R
E

G
C

E
)

(E
N

)
(S

SR
)

(C
L

K
)

1
M

ar
ch

L
R

A
ct

iv
e

H
ig

h
A

ct
iv

e
H

ig
h

A
ct

iv
e

H
ig

h
A

ct
iv

e
H

ig
h

A
ct

iv
e

H
ig

h
A

2
M

ar
ch

L
R

A
ct

iv
e

H
ig

h
A

ct
iv

e
H

ig
h

A
ct

iv
e

H
ig

h
A

ct
iv

e
H

ig
h

A
ct

iv
e

H
ig

h
5

3a
M

ar
ch

(s
2p

f)
A

ct
iv

e
H

ig
h

A
ct

iv
e

H
ig

h
A

ct
iv

e
H

ig
h

A
ct

iv
e

H
ig

h
A

ct
iv

e
H

ig
h

A
3b

M
ar

ch
(d

2p
f)

A
ct

iv
e

H
ig

h
A

ct
iv

e
H

ig
h

A
ct

iv
e

H
ig

h
A

ct
iv

e
H

ig
h

A
ct

iv
e

H
ig

h
A

4
A

ct
iv

e
H

ig
h

A
ct

iv
e

H
ig

h
A

ct
iv

e
H

ig
h

A
ct

iv
e

H
ig

h
A

ct
iv

e
H

ig
h

5
5

M
A

T
S+

A
ct

iv
e

L
ow

A
ct

iv
e

L
ow

A
ct

iv
e

L
ow

A
ct

iv
e

L
ow

A
ct

iv
e

H
ig

h
A

6
A

ct
iv

e
L

ow
A

ct
iv

e
L

ow
A

ct
iv

e
L

ow
A

ct
iv

e
L

ow
A

ct
iv

e
L

ow
5

30

Table 2.7: Virtex-4 Block RAM Dual-Port Names and Descriptions [15]
Port Name Description

DI[A, B] Data Input Bus
DIP[A, B] Data Input Parity Bus

ADDR[A, B] Address Bus
WE[A, B] Write Enable
EN[A, B] When inactive, no data is written to the block RAM

and the output bus remains in its previous state.
SSR[A, B] Set/Reset
CLK[A, B] Clock Input

DO[A, B] Data Output Bus
DOP[A, B] Data Output Parity Bus

REGCE[A, B] Output Register Enable
CASCADEIN[A, B] Cascade input pin for 32K x 1-bit mode

CASCADEOUT[A, B] Cascade output pin for 32K x 1-bit mode

Figure 2.6: Virtex-4 Block RAM ORA Bit Assignments [7]

31

FIFO

Milton developed the second set of BIST configurations for when the Block RAMs

were configured as FIFOs. In the Virtex-4 devices, there is dedicated logic that has

been implemented so that Block RAMs can be utilized as FIFOs without the need of

external CLB logic [15]. It is this additional logic that needs to be tested.

Table 2.8: FIFO Flag Assertion/Deassertion Clock Cycle Latency [15]
FIFO Output Assertion Deassertion

Standard FWFT Standard FWFT
EMPTY 0 0 3 4

FULL 1 1 3 3
ALMOST EMPTY 1 1 3 3

ALMOST FULL 1 1 3 3
READ ERROR 0 0 0 0

WRITE ERROR 0 0 0 0

Milton implemented the following algorithm to test the logic associated with the

FIFO mode of operation of the Block RAMs [7]. This order of this algorithm is 8N,

where N is the number of address locations.

1. Reset the FIFO

2. For 0 - (N-1),

(a) Write a word of all zeros

(b) Observe the EMPTY flag deassertion according to Table 2.8

(c) Observe the FULL flag assertion according to Table 2.8

3. For 0 - (N-1),

(a) Read a word of all zeros

32

(b) Perform three NO-OP operations - this allows the FULL flag to deassert

before the write sequence

(c) Write a word of all ones

(d) Write a word of all ones - this second write asserts the WRERR flag for a

single clock cycle

4. For 0 - (N-1),

(a) Read a word expecting all ones

Milton developed the BIST configurations seen in Table 2.9. Using each of these

configurations allows for the test of each of the flags described previously and the

additional special logic implemented for the Virtex-4 FIFOs. The twelve 4k x 4-bit

configurations fully test the ALMOSTFULL/EMPTY flags by utilizing the dynamic

partial reconfiguration ability of the Virtex-4 FPGA. Each configuration is clocked

only enough to ensure that the flags undergo a Logic 1 to Logic 0 transition and then

the next configuration is downloaded and the process is repeated. The bit assignments

for the FIFO ORAs can be seen in Figure 2.7.

ECC

Milton’s third set of BIST configurations is for the ECC mode of operation for

the Block RAMs. When configured in this mode, two adjacent RAMs are connected

to create a 512 x 72-bit RAM (Figure 2.8), which uses 8-bit Hamming code to detect

double-bit errors and correct single bit errors [15]. The top-level view of the ECC

mode can be seen in Figure 2.9. It should be noted, that in this mode, RAMs located

in the rows immediately above and below a PowerPC module cannot be utilized [15].

33

T
ab

le
2.

9:
F

IF
O

B
IS

T
C

on
fi
gu

ra
ti

on
s

[7
]

C
on

fi
g.

F
IF

O
R

S
T

R
D

C
L

K
R

D
E

N
W

R
C

L
K

W
R

E
N

W
ri

te
A

L
M

O
S
T

A
L

M
O

S
T

#
M

o
d
e

IN
V

IN
V

IN
V

IN
V

IN
V

M
o
d
e

F
U

L
L

E
M

P
T

Y
1

2k
x

9-
b
it

IN
V

IN
V

IN
V

IN
V

IN
V

F
W

F
T

15
20

43
2

51
2

x
36

-b
it

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

S
ta

n
d
ar

d
15

49
6

3
1k

x
18

-b
it

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

S
ta

n
d
ar

d
5

50
7

4
4k

x
4-

b
it

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

S
ta

n
d
ar

d
5

5
5

4k
x

4-
b
it

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

S
ta

n
d
ar

d
6

7
6

4k
x

4-
b
it

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

S
ta

n
d
ar

d
8

8
7

4k
x

4-
b
it

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

S
ta

n
d
ar

d
16

16
8

4k
x

4-
b
it

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

S
ta

n
d
ar

d
32

32
9

4k
x

4-
b
it

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

S
ta

n
d
ar

d
64

64
10

4k
x

4-
b
it

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

S
ta

n
d
ar

d
12

8
12

8
11

4k
x

4-
b
it

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

S
ta

n
d
ar

d
25

6
25

6
12

4k
x

4-
b
it

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

S
ta

n
d
ar

d
51

2
51

2
13

4k
x

4-
b
it

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

S
ta

n
d
ar

d
10

24
10

24
14

4k
x

4-
b
it

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

S
ta

n
d
ar

d
20

48
20

48
15

4k
x

4-
b
it

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

n
ot

IN
V

S
ta

n
d
ar

d
40

92
40

92

34

Figure 2.7: FIFO ORA Bit Assignments [7]

Since this mode requires two RAMs, an upper and a lower, the ORA connections

are different from the previous two sets of BIST configurations (Figure 2.8). In this

mode, the outputs of the lower ECC RAM are compared to the outputs of the ECC

RAM in the pair directly above it and the same with the upper RAM outputs [15].

The TPGs are connected such that the same TPG controls an ECC RAM pair, so

the two TPGs drive alternating pairs of ECC RAMs [7].

Milton designed his TPG to fully test the ECC encode logic. Milton surmises

that the ECC encode logic consists of an XOR parity tree, but states that the parity

tree structure used by Xilinx for the Virtex-4 is unknown [7]. However, a method

for testing an XOR parity tree whose structure is unknown, described in [13], was

implemented by Milton. 100% fault coverage can be achieved using test vectors of

the following structure for an N -bit parity tree [13].

35

Figure 2.8: ECC/Cascade RAM ORA Comparisons [15]

36

Figure 2.9: ECC RAM Top-Level View [15]

1. All zeros vector

2. All combinations of a one in a field of zeros

3. All combinations of two ones in a field of zeros

4. Initialize the RAM with all 2N values, where N is the number of Hamming bits.

(For Virtex-4, N = 8)

Vector sets 1-3 test the ECC encode and detect circuitry, while the fourth vector

set tests the ECC correct circuitry [13]. Since the parity connections are unknown,

Milton proposed to initialize the Hamming bits within the ECC RAMs themselves.

This will result in the ECC RAMs detecting double-bit memory errors and both

detecting and correcting single-bit errors when the RAM’s memory locations are read

[7]. Milton implemented his BIST in two phases. In the first phase, the ECC RAMs

are initialized with all of the 28 possible Hamming values, while setting the data to

all zeros. This was thought to be the only way to introduce all possible single and

double-bit errors into the RAM. The RAM is then read and the single/double-bit

errors are observed. In the second phase, the ECC encode circuitry is tested by

37

writing the test vector sets 1-3 to the memory and then reading them back. This

tests the ECC encode and detect circuitry. The bit assignments for the ECC ORAs

can be seen in Figure 2.10.

The eight Hamming input bits were found to be bits DIB[17:16] and DIB[1:0]

on the upper Block RAM inputs and bits DIB[31:30] and DIB[15:14] on the lower

Block RAM inputs. The ECC RAMs have these bits initialized in the first BIST

configuration. The Block RAM ECC also has two output status bits, STATUS[1:0],

which correspond to bits DOA[31] and DOA[0], respectively. These bits indicate

whether or not a bit error was detected and if so, whether or not the bit error was a

single- or double-bit error, as shown by Table 2.10.

Figure 2.10: ECC ORA Bit Assignments [7]

38

Table 2.10: Status Bits for Virtex-4 ECC Mode of Operation
Status Status Description

1 0
0 0 No Bit Error
0 1 Single-bit Error - Corrected by Circuitry
1 0 Double-bit Error - Detected by Circuitry
1 1 Undefined

Cascade

Any two adjacent Block RAMs can also be configured such that they are cascaded

together to form a 32k x 1-bit RAM [15]. Figure 2.11 shows the structure of the

cascaded RAMs. In this configuration, one RAM is dedicated as the upper RAM

and the other as the lower, similar to the ECC RAM configuration (Figure 2.8).

However, this mode does not require the lower RAM to always be an even row. For

this configuration, Milton places testing emphasis on the address decoder and that

opposite logic values can be read/written. A MATS+ test algorithm (described in

the BRAM section on page 28) is applied to only two addresses that span the two

RAMs since the memory core has already been thoroughly tested by previous BIST

configurations [7].

In this mode of operation, several ’failures’ are expected in specific ORAs, see

Figure 2.12 (pink squares). The ORAs associated with the RAMs that lie along the

bottom of a device and those that lie directly above a PowerPC module will indicate

these false failures. This is due to unconnected cascade routing into these RAMs

[7]. Essentially, the CASCADEIN shown in Figure 2.11 is not connected for these

RAMS and thus the output of the corresponding flip-flop will be different than the

flip-flop output of the RAM above it, as that RAM does have a CASCADEIN. The

bit assignments for the cascade ORAs can be seen in Figure 2.12.

39

Figure 2.11: Cascadable Block RAM [15]

Figure 2.12: Cascade ORA Bit Assignments [7]

40

2.3 Virtex-5 Introduction

This section provides a general overview of the Virtex-5 FPGA, including CLBs

and Block RAMs. More detail on certain aspects of the Virtex-5 Block RAMs will

be discussed in the chapter that deals with that specific BIST implementation.

2.3.1 FPGA Architecture

Programmable Logic Blocks

The Programmable Logic Blocks in the Virtex-5 consist of two types of slices,

SliceL and SliceM. Each slice contains the following:

1. Four logic function generators (LUTs)

2. Four storage elements

3. Wide-function multiplexers

4. Carry logic

Table 2.11: CLB Contrast Virtex-4 vs. Virtex-5 [15] [16]
Component Virtex-4 Virtex-5

Slices 4 2
LUTs 8 8

(4-input) (6-input)
FFs 8 8

Arithmetic and Carry Chains 2 2
Distributed Ram 64-bits 256-bits
Shift Registers 64-bits 256-bits

The CLBs in the Virtex-5 are improved from the Virtex-4. A brief contrast

between the Virtex-5 and Virtex-4 CLBs can be seen in Table 2.11 and in Figure

2.13. The Virtex-5 CLBs have two fewer slices than the Virtex-4. However, they have

41

(a) Virtex-4 CLB Arrangement [15]

(b) Virtex-5 CLB Arrangement [16]

Figure 2.13: Virtex-4 vs. Virtex-5 Slice Comparison

42

the same number of flip-flops. In effect, the flip-flops that were in Slices 2 and 3 were

merged into Slices 0 and 1, respectively.

Block RAMs

The Virtex-5 Block RAMs are capable of storing up to 36 K-bit of data. This can

be accomplished as one 36 kbit RAM or two independent 18 kbit RAMs. Table 2.12

shows the various address/data widths that the Block RAMs can be configured in the

independent 18 kbit RAM mode, while Table 2.13 shows the various address/data

widths that the Block RAMs can be configured as in the 36 kbit RAM mode. The

Virtex-5 Block RAMs have the capability of being either single- or dual-port RAMs

in either the 36 kbit or independent 18 kbit RAM modes [16].

The Virtex-5 Block RAMs also support both ECC and cascaded RAM modes.

The ECC mode of operation is similar to the Virtex-4 in that the RAM uses an 8-bit

Hamming code with overall parity to determine if there is a single- or double-bit error

present in the output data. However, the Virtex-5 requires only one Block RAM to

implement the 512 x 64-bit ECC mode rather than two adjacent Block RAMs. Also,

in the Virtex-5 devices, the ECC encoder and decoder can be accessed directly, which

will allow for greater control when testing these aspects of the Block RAM. In a

cascaded mode, the Virtex-5 Block RAMs create a 64k x 1-bit RAM. This is twice

as much as in the Virtex-4 cascaded RAM mode, but the connections between the

Block RAMs are quite similar [16].

FIFO support is also available in the Virtex-5 and can be configured as seen in

Table 2.14. The FIFOs have the same flags as the Virtex-4 FIFO RAMs. However,

the FULL flag no longer has a latency associated with it. The Virtex-5 FIFO RAMs

can also be configured in an ECC mode as well. This option was not available for the

Virtex-4 FIFO [16].

43

Table 2.12: Virtex-5 BRAM Port Aspect Ratio (18 kbit RAM) [16]
Address Address Memory Data Data-In/Out Data-In/Out
Width Bus Depth Width Bus Parity Bus

14 13:0 16k 1 0 n/a
13 13:1 8k 2 1:0 n/a
12 13:2 4k 4 3:0 n/a
11 13:3 2k 9 7:0 0
10 13:4 1k 18 15:0 1:0
9 13:5 512 36 31:0 3:0

Table 2.13: Virtex-5 BRAM Port Aspect Ratio (36 kbit RAM) [16]
Address Address Memory Data Data-In/Out Data-In/Out
Width Bus Depth Width Bus Parity Bus

15 14:0 32k 1 0 n/a
14 14:1 16k 2 1:0 n/a
13 14:2 8k 4 3:0 n/a
12 14:3 4k 9 7:0 0
11 14:4 2k 18 15:0 1:0
10 14:5 1k 36 31:0 3:0
9 14:6 512 72 63:0 7:0

Table 2.14: Virtex-5 FIFO Port Aspect Ratio [16]
18 kbit Mode 36 kbit Mode

Memory Depth Data Width Memory Depth Data Width
4k 4 8k 4
2k 9 4k 9
1k 18 2k 18
512 36 1k 36

- - 512 72

44

Table 2.15: Virtex-5 FIFO Data Depth [16]
Data Width Block Ram FIFO Capacity

18 kbit 36 kbit Memory Standard FWFT
- 4 8192 8193 8194
4 9 4096 4097 4098
9 18 2048 2049 2050
18 36 1024 1025 1026
36 72 512 513 514

2.3.2 Programming Tools

Several programming tools are used to construct the Block RAM BIST config-

urations for the Virtex-4 and Virtex-5 devices. These include several of the Xilinx

provided computer-aided design (CAD) tools, described below.

1. ISE - design suite that allows design of TPGs in VHDL, synthesis of these de-

signs, and implementation using an internal function, PACE, to restrict certain

areas for use, i.e. defining a set region for the TPGs [14].

2. FPGA Editor - graphical user interface (GUI) allows visual examination and

editing of the layout of BIST configurations [14].

3. Place and Route (PAR) - performs placement and routing of a specific design

[14].

4. XDL - Xilinx conversion software that converts NCD files (files generated by

ISE) to XDL files (Xilinx netlist description of a design) and vice versa.

5. BitGen - conversion software that converts NCD files to BIT files, binary files

that contains header information as well as configuration data, or RBT files,

files that are and ASCII version of the bit files, so that they may be downloaded

to a device [14].

45

6. TRCE - a timing analysis tool that determines the maximum clock frequency

at which the BIST configurations can run [14].

7. ModelSim - simulator by Mentor Graphics, that allows verification of BIST

configurations to ensure proper functionality.

2.4 Thesis Statement

This chapter has presented the work by Milton on the Virtex-4 Block RAMs.

This will be the foundation for the improvements implemented in the Virtex-4 Block

RAM BIST and the initial work with the Virtex-5 FPGA Block RAMs. This chapter

has also briefly introduced the Virtex-5 and its CLB and Block RAM capabilities.

All of the issues discussed concerning the Virtex-4 Block RAMs will need to be

addressed in addition to the new challenges that the Virtex-5 presents, such as:

• Memories are larger and have more address/data width options, so test time

will need to be minimized as much as possible.

• New configuration types have been introduced, such as the FIFO ECC mode,

that need BIST configurations to be designed for them.

• Different CLB architecture will have to be considered when constructing the

ORAs.

One goal of this thesis is a more thorough analysis of the Virtex-4 Block RAM

BIST and improvements to the BIST configurations originally developed by Milton

in [7], as proposed in the next chapter. Another goal is to introduce a technique

for implementing a BIST architecture and to develop BIST configurations to test the

Block RAMs in Virtex-5 FPGAs.

46

Chapter 3

Virtex-4 Improvements

This chapter will describe and discuss improvements and corrections made to

the Virtex-4 Block RAM BIST. These include simplifying the BIST configuration

generation procedure, adding the ability to have a single Pass/Fail signal for the user,

an option for system-level testing using user-defined input/output pins, improving

maximum BIST clock frequency, and fixing several problems found within the original

Virtex-4 Block RAM BIST developed in [7]. These improvements were implemented

mainly to provide increased utility to the user, as well as to address the excessive

number of programs required to generate the BIST configuration bit files. Also,

several modifications were made to Milton’s programs to correct errors that were

found within them. These include problems with the way the FIFO BIST was being

reset and overcoming the expected cascade BIST failures.

3.1 BIST Generation Simplification

The Virtex-4 Block RAM BIST generation originally consisted of three programs

for each of the four BIST types (BRAM, FIFO, ECC, and Cascade), which results in

a total of twelve programs [7]. These three programs include:

1. A TPG extraction program, which extracts the TPG description from the syn-

thesized TPG physical design in XDL format.

47

2. A BIST template generation program, which instantiates the user-specified

Block RAMs, ORAs, TPGs and the routing between these components in XDL

format.

3. A modification program, which reconfigures all of the instantiated Block RAMs

for each desired BIST configuration.

To address the unnecessary number of TPG extraction programs, a generic TPG

extraction program, tpgxdlext.exe, was developed, which was based on the function-

ality of Milton’s four TPG programs. This program no longer relied on having a

hierarchical model where the TPG was connected to a dummy Block RAM to pre-

serve signal names. However, several key signals, such as the clock and reset signals,

are required to have specific names, CLK and RESET, respectively. While this im-

provement to the Virtex-4 Block RAM BIST configuration generation had no impact

on configuration download and test time, it greatly lessened user confusion during the

Block RAM BIST generation process as well as on-going support and maintenance

of the BIST programs. An additional benefit of having a generalized extraction pro-

gram is that it has been applied to other Virtex-4 and Virtex-5 BIST configuration

programs, such as Digital Signal Processor (DSP) BIST [8].

Table 3.1: Virtex-4 TPG XDL Naming Convention
BIST Type TPG Name
BRAM bram tpg.xdl
FIFO fifo tpg.xdl
ECC ecc tpg.xdl
Cascade cas tpg.xdl

V4RamBist.exe, a generic Virtex-4 Block RAM BIST template generation pro-

gram, was created to reduce the number of BIST template generation programs from

48

four to one. This program incorporated the functionality of Milton’s four differ-

ent BIST template generation programs, while also embedding the TPG extraction

program, tpgxdlext.exe, within. This effectively hides the TPG extraction program

execution from the user, reducing the number of steps required on the user’s part to

generate a set of BIST configurations. The only user constraint is that the TPG XDL

files must be named according to the BIST type (see Table 3.1). V4RamBist.exe ex-

tracts, replicates, and places these TPGs, the Block RAMs and the ORAs for the

desired BIST type. The program also specifies the TPG to RAM and the RAM

to ORA connections and the OR-chain (discussed in Section 3.2). If the PINS in-

terface is desired (to be discussed in Section 3.3), it adds the necessary unplaced

components for the particular BIST type. Otherwise, the program incorporates the

Boundary Scan interface and its routing.

A generic Virtex-4 Block RAM BIST modification program, V4RamMod.exe,

was also developed based on the functionality of Milton’s four modification programs.

This new program also resulted in reducing four programs into one. Originally, the

user had to specify Active Reconfig when generating the configuration bit files. This

was because the Block RAM contents were being initialized to the same value for

the majority of the BIST configurations. When compressed or partial configuration

bit files were generated using BitGen for the desired Block RAM BIST configuration,

the Block RAM content frames would not be overwritten when the next configuration

was downloaded and executed. This resulted in residual memory values acting as the

initialized state of the Block RAM, which would sometimes result in false failure

indications by the ORAs. The solution to this was to ensure that the initialization

values were not the same between BIST configurations. This allows the user to not

have to use the Active Reconfig option when generating the configuration bit files but

increases the download time since the Block RAM content frames must be written.

49

3.2 ORA Modification and OR-Chain

An improvement was made to the ORAs to increase their functionality. Mil-

ton implemented the comparison shown in Figure 3.1(a). While this comparison

performed adequately, the comparison shown in Figure 3.1(b) keeps the same func-

tionality of the old ORA while taking advantage of the built-in carry chain that is

within each CLB. Instead of the ORA latching a Logic 1 to indicate a fault, a Logic

0 is latched, which selects the zero input of the carry multiplexer, which is connected

to a Logic 1 (Figure 3.1(b)) [3].

(a) Virtex-4 ORA (old) [7]

(b) Virtex-4 ORA (new) [3]

Figure 3.1: Virtex-4 New and Old ORAs

The BIST template generation program, V4RamBist, adds the connections be-

tween each CLB carry chain components to construct an iterative OR-chain. This

involves using more than the nine CLBs discussed previously to implement the ORAs.

In order to propagate the iterative OR-chain using the built-in carry logic, several

50

dummy ORAs were added to the BIST template file (Figure 3.2) and only their carry

chain routing is utilized. Normally when the configuration memory is read back, these

dummy ORAs would indicate a false fault detection by latching a Logic 1. However,

because the normal ORAs were changed to latch a Logic 0 on a fault detection, this

is no longer an issue when reading back the configuration memory to determine the

number of faults.

Figure 3.2: Additional Dummy ORAs

Figure 3.3 shows the functionality of these connections, where the orange boxes

indicate the ORAs and their outputs. If no mismatch is detected, the ORA output

is a Logic 1, which selects the carry chain output of the previous CLB. Otherwise a

Logic 1 is output to the iterative OR-chain.

In effect, a single Pass/Fail signal has been constructed for the user to observe.

At the end of a BIST sequence, the user can toggle TDI and observe TDO. If TDO

matches the behavior of TDI, then no fault was detected by any of the ORAs and

51

the configuration memory need not be read back to obtain the contents of the ORAs.

However, if TDO is constantly a Logic 1, then at least one ORA detected a fault. If

the location of the fault(s) is desired, the user can then read back the configuration

memory to determine the exact location. However, if the fault location is not an

issue, merely that a fault exists, then again, the time to read back the configuration

memory is eliminated.

Figure 3.3: OR-Chain Functionality

Figure 3.4 shows the connections within an FX12 device. The iterative OR-

chain can be seen coming from TDI in the middle of the device, which also goes to

the TPGs as the TPG reset signal, traveling up and down each column of ORAs and

ending at the TDO output in the middle of the device.

3.3 PINS Option

Prior to this work, the only way to interact with the Block RAM BIST was

through the Boundary Scan (BSCAN) interface. An additional interface was devel-

oped that allows a user to interact with the BIST through user-placed control pins,

which will be referred to as the PINS interface. The BIST template file is generated

by designating the desired options in V4RamBist.exe shown in Figure 3.5. Normally,

the n or a option would be specified as the last input parameter. This would indicate

to the program to use the BSCAN interface. Two new options p and pn were added

to indicate to the program that the PINS interface is desired. In this case, the BIST

template generation program does not include the BSCAN XDL module, but rather,

52

Figure 3.4: OR-Chain in an FX12 Device

53

produces several unplaced I/O components, which can be seen in Table 3.2, includ-

ing an external clock pin for the user. The unplaced components can then be placed

using FPGA Editor to desired input/output pins within the device. Special care

should be taken to ensure that when the TPG RST pin is placed, the corresponding

TPG ILOGIC component is placed with it, as shown in Figure 3.6. TPG RESET

keeps the TPG in a known, unchanging state so that TDI can be toggled and the

OR-chain observed. By adding this component, a synchronization circuit is added to

the asynchronous reset signal.

Table 3.2: PINS Interface - User Pins
BIST Type BRAM FIFO ECC Cascade

Clock Clock Clock Clock
TDO TDO TDO TDO
TDI TDI TDI TDI

Provided TPG RST TPG RST TPG RST TPG RST
Pins Mode[3] Mode[2]

Mode[2] Mode[1]
Mode[1] Mode[0]
Mode[0]

The BRAM and FIFO BIST configurations require the user to provide control

values to indicate to the TPG which BIST configuration test pattern sequence should

be run. The control signal values developed by Milton in [7] can be seen in Tables

3.3 and 3.4. To reduce the number of I/O pins required by the PINS interface, the

control signals RST LEVEL, WREN LEVEL, and RDEN LEVEL were combined into

a single pin (MODE[3]) because they are always the same value. The same procedure

was performed on the FIFO signals WE, REGCE, and EN/SSR. The PINS interface

control pins can be seen in Tables 3.5 (BRAM) and 3.6 (FIFO).

54

V4RAMbist (v2.1) - generates template file

for Block RAM BIST configs in any Virtex-4

command line format:

V4RAMbist <xdlfile> <startrow> <startcol> <endrow> <endcol>

<dev> <part> <type> [n,a,p,pn]

where type = bram (Block RAM mode BIST)

fifo (FIFO mode BIST)

ecc (ECC RAM mode BIST)

casc (Cascade RAM mode BIST)

dev part rows cols dev part rows cols dev part rows cols

lx 15 64 31 sx 25 64 55 fx 12 64 31

lx 25 96 35 sx 35 96 55 fx 20 64 47

lx 40 128 43 sx 55 128 69 fx 40 96 65

lx 60 128 61 fx 60 128 67

lx 80 160 65 fx 100 160 85

lx 100 192 73 fx 140 192 103

lx 160 192 98

lx 200 192 127

n: this option runs xdl2ncd with -nodrc option

a: runs ’n’ option followed by reentrant routing with

PAR and converts back to XDL

p: this option uses system-level pins instead of

Boundary Scan interface

pn: system-level pins PLUS runs xdl2ncd

with -nodrc option

Figure 3.5: V4RamBist.exe Command Line Format

55

Figure 3.6: PINS - TPG RST and ILOGIC Placement

Table 3.3: BRAM BSCAN Interface [7]
March WE REGCE EN/SSR MODE MODE MODE

Test 2 1 0
MarchLR (Init A) 1 1 1 0 0 0
MarchLR (Init B) 1 1 1 0 0 0

March s2pf 1 1 1 0 1 1
March d2pf 1 1 1 1 0 0

MATS+ (16k) 1 1 1 0 1 0
MATS+ (8k) 0 0 0 0 0 1

MATS+ (512) 0 0 0 1 0 1

Table 3.4: FIFO BSCAN Interface [7]
FIFO RST WREN RDEN

MODE LEVEL LEVEL LEVEL MODE[1] MODE[0]
2k x 9-bit 0 0 0 0 1

512 x 36-bit 1 1 1 1 1
1k x 18-bit 1 1 1 1 0
4k x 4-bit 1 1 1 0 0

56

Table 3.5: BRAM PINS Interface
March Test MODE[3] MODE[2] MODE[1] MODE[0]

MarchLR (Init A) 1 0 0 0
MarchLR (Init B) 1 0 0 0

March s2pf 1 0 1 1
March d2pf 1 1 0 0

MATS+ (16k) 1 0 1 0
MATS+ (8k) 0 0 0 1

MATS+ (512) 0 1 0 1

Table 3.6: FIFO PINS Interface
FIFO Mode MODE[2] MODE[1] MODE[0]

2k x 9-bit 0 0 1
512 x 36-bit 1 1 1
1k x 18-bit 1 1 0
4k x 4-bit 1 0 0

3.4 FIFO Reset Problem

A problem was found within the FIFO TPG during the PINS interface develop-

ment that was not apparent initially. Milton gives the number of clock cycles that

each FIFO BIST configuration requires in [7] and when executed for the specified

values without being reset, the BIST performed as expected. However, during the

development of the PINS interface, one of the desired options was to have the BIST

run by an external free running clock. This would constantly run the BIST.

Experiments were performed to observe the behavior of the BIST when transi-

tions occurred on the TPG RST pin during BIST execution. The expected result

was that the BIST would start over at the beginning of the test algorithm. However,

it was observed that the BIST would become permanently stuck in a certain part of

the algorithm when this behavior was simulated. The BIST configuration would then

have to be re-downloaded in order for the BIST to perform its function.

57

The error was due to the ”element” variable in Milton’s FIFO BIST Finite State

Machine (FSM) VHDL not being reset to its initial state when a TPG RST was

performed. Once corrected, the FIFO FSM performed correctly when reset.

Although the FIFO FSM was performing correctly, false fault detections were

observed in the ORAs when the FIFO BIST was executed and transitions were sim-

ulated on the TPG RST pin. The locations of the false fault detections were incon-

sistent, but the false fault detections always appeared in ORAs that monitor either

the ALMOSTFULL or FULL flags.

Initially, the source of the problem was believed to be incorrect ALMOST-

FULL/EMPTY offset values. Table 3.7 shows the acceptable range of values of

the offsets for these flags. Tables 3.8(a) and 3.8(b) show the values Milton used in

his FIFO BIST modification program. The offset values are shown both in decimal,

so that the value can be verified to be in the desired range easily, and in hexadecimal

to show the value specified by the original modification program.

From this table, it can clearly be seen that some of the offset values are incorrect.

During examination of Milton’s BIST modification program, it seems that he believed

the ALMOSTEMPTY flag was designated normally by a hex value in the XDL.

However, he seemed to believe that the ALMOSTFULL flag was designated by the

two’s complement of the offset value in the XDL. For example for the 2k x 9-bit FIFO

mode, a valid ALMOSTEMPTY offset value would be any number in the range [5 :

2044] ([0x005 : 0x7FC]), while a valid ALMOSTFULL offset value could be the two’s

complement of any number in the range [5 : 2043] ([0xFFB : 0x805] instead of [0x005

: 0x7FB]).

Most peculiar was that Milton specified 2043, 496, 507 and 4 as the ALMOST-

FULL offset for the first three and very last configurations of the FIFO BIST (See

Tables 3.8(a) and 3.8(b)). If the offset does follow the two’s complement of the input

58

offset value then the resulting offset values greatly exceed the acceptable values for

that mode. However, if they do not then the majority of the 4k x 4-bit configurations

test only a small range of offset values.

Table 3.7: FIFO ALMOSTFULL/EMPTY Flag Offset Range [15]
ALMOSTEMPTY ALMOSTFULL

FIFO Mode Standard FWFT
2k x 9-bit 5 to 2044 6 to 2045 4 to 2043

512 x 32-bit 5 to 508 6 to 509 4 to 507
1k x 18-bit 5 to 1020 6 to 1021 4 to 1019
4k x 4-bit 5 to 4092 6 to 4093 4 to 4091

Under the assumption that the offset values of the ALMOSTFULL flag are the

two’s complement of the designated value, V4RamMod.exe, the BIST modification

program, was modified to have offset values that would lie within the acceptable range

for the desired FIFO mode. Also the offset values for the first three configurations

were chosen to test the maximum range. These new values can be seen in Tables

3.9(a) and 3.9(b). However, this was not the solution to the randomly seen false

fault detections during an asynchronous reset using the TPG RST pin.

The next suspicion explored was that the false fault detections were caused by

an initialization problem. The Virtex-4 User Guide states,

”Reset is an asynchronous signal to reset all read and write address

counters, and must be asserted to initialize flags after power up. Reset

does not clear the memory, nor does it clear the output register. When

reset is asserted High, EMPTY and ALMOST EMPTY will be set to 1,

FULL and ALMOST FULL will be reset to 0. The reset signal must

be High for at least three read clock and write clock cycles to ensure all

59

Table 3.8: ALMOSTFULL/EMPTY Flag Offset Range described in [7]

(a) ALMOSTEMPTY Offset Values

Config FIFO Normal 2’s Compliment
Mode Decimal Hex Decimal Hex
1 2k x 9-bit 15 00F 4081 FF1
2 512 x 32-bit 15 00F 4081 FF1
3 1k x18-bit 5 005 4091 FFB
4 4k x 4-bit 5 005 4091 FFB
5 4k x 4-bit 6 006 4089 FF9
6 4k x 4-bit 8 008 4088 FF8
7 4k x 4-bit 16 010 4080 FF0
8 4k x 4-bit 32 020 4064 FE0
9 4k x 4-bit 64 040 4032 FC0
10 4k x 4-bit 128 080 3968 F80
11 4k x 4-bit 256 100 3840 F00
12 4k x 4-bit 512 200 3584 E00
13 4k x 4-bit 1024 400 3072 C00
14 4k x 4-bit 2048 800 2048 800
15 4k x 4-bit 4092 FFC 4 004

(b) ALMOSTFULL Offset Values

Config FIFO Normal 2’s Compliment
Mode Decimal Hex Decimal Hex
1 2k x 9-bit 2043 7FB 2053 805
2 512 x 32-bit 496 1F0 3599 E0F
3 1k x18-bit 507 1FB 3589 E05
4 4k x 4-bit 4091 FFB 5 005
5 4k x 4-bit 4089 FF9 6 006
6 4k x 4-bit 4088 FF8 8 008
7 4k x 4-bit 4080 FF0 16 010
8 4k x 4-bit 4064 FE0 32 020
9 4k x 4-bit 4032 FC0 64 040
10 4k x 4-bit 3968 F80 128 080
11 4k x 4-bit 3840 F00 256 100
12 4k x 4-bit 3584 E00 512 200
13 4k x 4-bit 3072 C00 1024 400
14 4k x 4-bit 2048 800 2048 800
15 4k x 4-bit 4 004 4092 FFC

60

Table 3.9: V4RamMod.exe ALMOSTFULL/EMPTY Flag Offset Range

(a) ALMOSTEMPTY Offset Values

Config FIFO Normal 2’s Compliment
Mode Decimal Hex Decimal Hex
1 2k x 9-bit 6 006 4089 FF9
2 512 x 32-bit 5 005 4091 FFB
3 1k x18-bit 5 005 4091 FFB
4 4k x 4-bit 5 005 4091 FFB
5 4k x 4-bit 6 006 4089 FF9
6 4k x 4-bit 8 008 4088 FF8
7 4k x 4-bit 16 010 4080 FF0
8 4k x 4-bit 32 020 4064 FE0
9 4k x 4-bit 64 040 4032 FC0
10 4k x 4-bit 128 080 3968 F80
11 4k x 4-bit 256 100 3840 F00
12 4k x 4-bit 512 200 3584 E00
13 4k x 4-bit 1024 400 3072 C00
14 4k x 4-bit 2048 800 2048 800
15 4k x 4-bit 4092 FFC 4 004

4 - alt 4k x 4-bit 1365 555 2731 AAB
5 - alt 4k x 4-bit 2730 AAA 1366 556

(b) ALMOSTFULL Offset Values

Config FIFO Normal 2’s Compliment
Mode Decimal Hex Decimal Hex
1 2k x 9-bit 2053 805 2053 805
2 512 x 32-bit 3589 E05 507 1FB
3 1k x18-bit 3077 C05 1019 3FB
4 4k x 4-bit 4091 FFB 5 005
5 4k x 4-bit 4089 FF9 6 006
6 4k x 4-bit 4088 FF8 8 008
7 4k x 4-bit 4080 FF0 16 010
8 4k x 4-bit 4064 FE0 32 020
9 4k x 4-bit 4032 FC0 64 040
10 4k x 4-bit 3968 F80 128 080
11 4k x 4-bit 3840 F00 256 100
12 4k x 4-bit 3584 E00 512 200
13 4k x 4-bit 3072 C00 1024 400
14 4k x 4-bit 2048 800 2048 800
15 4k x 4-bit 5 005 4091 FFB

4 - alt 4k x 4-bit 2730 AAA 1366 556
5 - alt 4k x 4-bit 1365 555 2731 AAB

61

internal states are reset to the correct values. During RESET, RDEN and

WREN must be held Low” [15].

In the FIFO TPG, the reset signal was synchronous to set up signals for the

FIFO FSM. An additional statement in the VHDL description of the FIFO TPG was

added that sent the reset signal asynchronously to the FIFOs, while the rest of the

reset of the TPG operation was performed on the next rising clock edge. This solved

the initialization problem and the false fault detections no longer appeared.

3.5 Additional FIFO Configurations

A major drawback of the FIFO BIST developed by Milton [7] is the sheer num-

ber of configurations that it requires to thoroughly test the ALMOSTFULL/EMPTY

flags. Two alternative BIST configurations were developed to reduce the number of

FIFO BIST configurations. Fault coverage is potentially reduced however, because

fewer possible ALMOSTFULL/EMPTY flag bit combinations are tested. Fault simu-

lation indicated the twelve 4k x 4 configurations developed by Milton provided higher

fault coverage only if one knows the construction of the ALMOSTFULL/EMPTY

logic and Milton’s patterns were appropriately converted. Since this information is

unknown, the additional test time is not worthwhile. These two new BIST configu-

rations are shown in Table 3.10.

Table 3.10: Additional FIFO BIST Configurations
FIFO Active Level Write ALMOST ALMOST
Mode RST RDEN WREN Mode FULL EMPTY
4k x 4 1 1 1 Standard 1366 (AAA) 2731 (555)
4k x 4 1 1 1 Standard 2731 (555) 1366 (AAA)

62

The new set of BIST configurations constructed for FIFO BIST are shown in

Table 3.11. Fault injection was performed for both the original and new sets of FIFO

BIST configurations. A known list of FIFO RAM faults was used to modify the RAM

configuration bits downloaded to the FPGA and each of the BIST configurations was

executed. The faults that were detected by the FIFO BIST configurations were noted

for each of the two sets. Both sets were found to detect the same faults, despite the

potentially reduced fault coverage due to not testing as many combinations of the

ALMOSTFULL/EMPTY flag configuration bits.

The total number of BIST clock cycles was 65,561 for all fifteen configurations

in [7], while the total number of clock cycles is 64,672 for the configurations in Table

3.11. Despite the fact that this is only a difference of less than a thousand clock

cycles, configuration download and memory readback time need to be taken into

account since these are for more significant. Additionally, Milton assumes that the

user has complete control of the BIST clock. However, this may not be the case when

using the PINS option if, for example, the BIST is clocked using an external oscillator.

The two new configurations were designed such that meticulous clock control is not

needed.

If more thorough testing of the ALMOSTFULL/EMPTY flags is desired, then

it is preferable to use the set of fifteen configurations. If merely the functionality of

the flags is desired, then it is preferable to use the new set of five configurations to

reduce overall test time.

63

Table 3.11: Shortened FIFO BIST Configurations
FIFO Active Level Write ALMOST ALMOST
Mode RST RDEN WREN Mode FULL EMPTY
2k x 9 0 0 0 FWFT 15 2043

512 x 36 1 1 1 Standard 15 496
1k x 18 1 1 1 Standard 5 507
4k x 4 1 1 1 Standard 1366 (AAA) 2731 (555)
4k x 4 1 1 1 Standard 2731 (555) 1366 (AAA)

3.6 Cascade ORA Clock Enables

When in the Cascade mode, there are expected failures in the ORAs along the

bottom row of the device and in the row above a PowerPC in the FX devices (re-

illustrated in Figure 3.7). This is due to the lack of cascade routing, namely a

CascadeIn (re-illustrated in Figure 3.8) input on these RAMs. These expected

failures interfere with the iterative OR-chain mentioned earlier by latching up the

error in the ORAs resulting in a constant Fail signal from the OR-chain output. A

solution was developed to handle the ORA mismatches that would otherwise occur.

This required adding a clock enable to the ORAs that monitor these particular RAMs.

The TPG then controls the clock enable such that the ORAs do not latch the expected

failure, but will latch mismatches due to faults.

Milton’s approach required only 20 clock cycles using a FSM to execute the

BIST. When performing asynchronous resets using the PINS option for the cascade

BIST, the behavior of the BIST was erratic and the expected failures would become

latched into the ORAs, which was undesirable. The VHDL description of the cascade

mode TPG was modified to be a 5-bit counter that would output the desired address,

read/write operation, data, Port A/B enable, and additional ORA clock enables,

ORACE and ORBCE – the clock enables (CE) added to enable or disable the ORA

64

Figure 3.7: Cascade ORA Bit Assignments [7]

Figure 3.8: Cascadable Block RAM [15]

65

for a desired number of clock cycles. This was a feasible option because the cascade

BIST sequence is only 32 clock cycles.

The V4RamBist.exe program added routing from the Cascade TPG to the ORAs

with expected failures. The BIST was run normally, that is the ORACE and ORBCE

had no impact on the BIST, on a Virtex-4 FX12 device. The ORAs were enabled for

the entire execution. The clock cycles where ORA mismatches occurred were noted

and can be seen in Tables 3.12 - 3.20 as those rows colored in red. The specific clock

cycle can be seen from the CNTR columns, while the inputs to the ORAs, which

expect failures, can be seen in the RAM and ORA columns respectively.

It can be clearly seen that for the counter values 7 (00111), 14 (01110), and 15

(01111) mismatches occur on Port A between the RAMs along the bottom of the

device when the first cascade configuration (UPPER) is executed. When configured

in the second cascade configuration (LOWER) the counter value 3 (00011) also has

mismatches on Port A in addition to the counter values described for the UPPER

configuration. Counter values 21 (10101), 22 (10110), 23 (10111), 30 (11110), and

31 (11111) have mismatches for Port B for both UPPER and LOWER configurations.

The TPG VHDL description was modified to disable the specific ORAs for either

Port A or B when there are mismatches. These changes were able to ensure that the

expected ORA mismatches did not get latched, even during the reset experiment

using the PINS option.

3.7 Timing Improvements and Analysis

Several timing improvements were also made to the Virtex-4 Block RAM BIST

configurations. Figure 3.9 shows the maximum BIST clock frequencies at which

the original Virtex-4 BIST configurations, described in Table 3.21, can be executed

66

Table 3.12: Cascade Mismatches - Port A - UPPER Configuration (1)
CNTR RAM RAM ORA RAM RAM ORA

R0C5 R56C5 R0C4 R0C10 R56C10 R0C9
1 0 0 1 0 0 1
2 0 0 1 0 0 1
3 0 0 1 0 0 1
4 0 0 1 0 0 1
5 0 0 1 0 0 1
6 0 0 1 0 0 1
7 0 0 1 0 0 1
8 1 1 1 1 1 1
9 1 1 1 1 1 1
10 1 1 1 1 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1 1
13 1 1 1 1 1 1
14 0 0 1 0 0 1
15 0 0 1 0 0 1
16 0 0 1 0 0 1

Table 3.13: Cascade Mismatches - Port A - UPPER Configuration (2)
CNTR RAM RAM ORA RAM RAM ORA

R0C25 R56C25 R0C26 R4C5 R36C5 R36C4
1 0 0 1 0 0 1
2 0 0 1 0 0 1
3 0 0 1 0 0 1
4 0 0 1 0 0 1
5 0 0 1 0 0 1
6 0 0 1 0 0 1
7 0 0 1 1 0 1
8 1 1 1 0 0 1
9 1 1 1 0 0 1
10 1 1 1 1 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1 1
13 1 1 1 0 0 1
14 0 0 1 1 0 1
15 0 0 1 1 0 1
16 0 0 1 0 0 1

67

Table 3.14: Cascade Mismatches - Port A - UPPER Configuration (3)
CNTR RAM RAM ORA

R4C10 R36C10 R36C9
1 0 0 1
2 0 0 1
3 0 0 1
4 0 0 1
5 0 0 1
6 0 0 1
7 1 0 1
8 0 0 1
9 0 0 1
10 1 1 1
11 1 1 1
12 1 1 1
13 0 0 1
14 1 0 1
15 1 0 1
16 0 0 1

Table 3.15: Cascade Mismatches - Port A - LOWER Configuration (1)
CNTR RAM RAM ORA RAM RAM ORA

R0C5 R56C5 R0C4 R0C10 R56C10 R0C9
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 0 1 1 0 1 1
4 1 1 1 1 1 1
5 0 0 1 0 0 1
6 0 0 1 0 0 1
7 0 1 1 0 1 1
8 0 0 1 0 0 1
9 0 0 1 0 0 1
10 1 1 1 1 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1 1
13 0 0 1 0 0 1
14 0 1 1 0 1 1
15 0 1 1 0 1 1
16 0 0 1 0 0 1

68

Table 3.16: Cascade Mismatches - Port A - LOWER Configuration (2)
CNTR RAM RAM ORA RAM RAM ORA

R0C25 R56C25 R0C26 R4C5 R36C5 R36C4
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 0 1 1 1 0 1
4 1 1 1 0 0 1
5 0 0 1 0 0 1
6 0 0 1 0 0 1
7 0 1 1 0 0 1
8 0 0 1 1 1 1
9 0 0 1 1 1 1
10 1 1 1 1 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1 1
13 0 0 1 1 1 1
14 0 1 1 0 0 1
15 0 1 1 0 0 1
16 0 0 1 0 0 1

Table 3.17: Cascade Mismatches - Port A - LOWER Configuration (3)
CNTR RAM RAM ORA

R4C10 R36C10 R36C9
1 1 1 1
2 1 1 1
3 1 0 1
4 0 0 1
5 0 0 1
6 0 0 1
7 0 0 1
8 1 1 1
9 1 1 1
10 1 1 1
11 1 1 1
12 1 1 1
13 1 1 1
14 0 0 1
15 0 0 1
16 0 0 1

69

Table 3.18: Cascade Mismatches - Port B - UPPER/LOWER Configurations (1)
CNTR RAM RAM ORA RAM RAM ORA

R0C5 R56C5 R0C3 R0C10 R56C10 R0C8
17 0 0 1 0 0 1
18 0 0 1 0 0 1
19 0 0 1 0 0 1
20 1 1 1 1 1 1
21 0 1 1 0 1 1
22 0 1 1 0 1 1
23 0 1 1 0 1 1
24 0 0 1 0 0 1
25 0 0 1 0 0 1
26 0 0 1 0 0 1
27 0 0 1 0 0 1
28 0 0 1 0 0 1
29 0 0 1 0 0 1
30 0 1 1 0 1 1
31 0 1 1 0 1 1
32 0 1 1 0 1 1

Table 3.19: Cascade Mismatches - Port B - UPPER/LOWER Configurations (2)
CNTR RAM RAM ORA RAM RAM ORA

R0C25 R56C25 R0C27 R4C5 R36C5 R36C3
17 0 0 1 0 0 1
18 0 0 1 0 0 1
19 0 0 1 0 0 1
20 1 1 1 0 0 1
21 0 1 1 1 0 1
22 0 1 1 1 0 1
23 0 1 1 0 0 1
24 0 0 1 1 1 1
25 0 0 1 1 1 1
26 0 0 1 0 0 1
27 0 0 1 0 0 1
28 0 0 1 0 0 1
29 0 0 1 1 1 1
30 0 1 1 0 0 1
31 0 1 1 0 0 1
32 0 1 1 1 0 1

70

Table 3.20: Cascade Mismatches - Port B - UPPER/LOWER Configurations (3)
CNTR RAM RAM ORA

R4C10 R36C10 R36C8
17 0 0 1
18 0 0 1
19 0 0 1
20 0 0 1
21 1 0 1
22 1 0 1
23 0 0 1
24 1 1 1
25 1 1 1
26 0 0 1
27 0 0 1
28 0 0 1
29 1 1 1
30 0 0 1
31 0 0 1
32 1 0 1

on a Virtex-4 LX60 device. It can be seen that the worst-case clock frequencies are

configurations six, seven, nine, and eleven for the four BIST types, which correspond

to the frequencies 47.9 MHz, 101.4 MHz, 82.4 MHz, and 67.4 MHz, respectively, for

a Virtex-4 LX60 device. Configurations six and eleven are special cases where the

Block RAMs use opposite edge clocking from that of the TPGs and ORAs. This was

previously shown in Table 2.6 for Block RAM BIST and while not explicitly stated

in Milton’s thesis, examination of his work shows this is the case for the FIFO BIST

(2K) configuration. As a result, the normal BIST clock frequency is halved. The

timing analysis for every Virtex-4 device worst-case BIST configuration can be seen

in Figure 3.10. The number above each set of bars indicates the total number of

Block RAMs within that device and all Block RAMs are under test in these BIST

configurations.

71

F
ig

u
re

3.
9:

M
ax

.
B

IS
T

C
lo

ck
F

re
q
u
en

cy
fo

r
V

ir
te

x
-4

L
X

60

72

F
ig

u
re

3.
10

:
T

im
in

g
A

n
al

y
si

s
fo

r
W

or
st

-C
as

e
B

IS
T

C
on

fi
gu

ra
ti

on
s

-
V

ir
te

x
-4

D
ev

ic
es

73

Table 3.21: Max. BIST Clock Frequency for each Configuration in LX60 Device
Config. # BIST Max. Freq.

1 BRAM - MLRA w/ BDS 95.997
2 BRAM - MLRB w/ BDS 95.997
3 BRAM - DUALP 95.997
4 BRAM - MATS+ 16k 82.556
5 BRAM - MATS+ 8k 91.017
6 BRAM - MATS+ 512 47.998
7 CASC - UPPER 101.43
8 CASC - LOWER 101.43
9 ECC - WREN 82.379
10 ECC - RDEN 82.379
11 FIFO - 2k x 9 67.367
12 FIFO - 512 x 36 134.735
13 FIFO - 1k x 18 134.735

14-25 FIFO - 4k x 4 (all) 134.735

This halved clock frequency greatly limits the speed at which the BIST can be

executed. However, a solution was implemented within the Virtex-4 modification pro-

gram that eliminates this halving effect. In addition to the RAM Port A/B clocks for

configuration six and the Write/Read clocks for configuration eleven being inverted,

the clocks of all the other components of the BIST (ORAs and TPGs) are inverted,

effectively making them all the same edge, while still testing the opposite edge clock-

ing of the Block RAM. The new worst-case clock frequencies for the Block RAM BIST

now become governed by configuration four and nine (Figure 3.11). The timing anal-

ysis for all Virtex-4 device new worst-case configuration can be seen in Figure 3.12.

This change resulted in a dramatic increase in the maximum BIST clock frequency

for all devices. For example, the LX200 device previous had a maximum BIST clock

frequency of approximately 25 MHz. However with this change implemented, the

maximum BIST clock frequency increased to approximately 42 MHz.

74

A penalty is incurred from this change. The size of the partial configuration bit

file with the inverted clocks increases. This can be seen in Tables 3.23 and 3.24.

However, by making the configuration with the inverted clocks either the first or last

configuration in a set of BIST configurations, the impact of this increased file size is

reduced. All of the clocks in the device have to be reconfigured only a single time,

rather than twice if the configuration is in the middle of the set of BIST configurations.

The bolded rows show the files that have an increase in size due to this new clocking

scheme.

When using all twenty-five configuration bit files, the file size increase is found

to be 0.000518% using the compressed configuration bit files and 1.029% when using

partial compressed configuration bit files. When using the set of fifteen configuration

bit files, the file size increase was 0.00849% using the compressed configuation bit

files and 1.940% when using partial compressed configuration bit files. This file size

increase has very little impact on the total download time of all BIST configuration

files.

3.8 Fault Coverage

In [7], the only results discussed by Milton are the differences in test time and file

size when downloading full, compressed, and partial configuration bit files to a device.

However, the actual fault coverage of the Virtex-4 Block RAM BIST was never really

discussed. After implementing the corrections and improvements discussed in this

chapter, a quantitative analysis of the achievable fault coverage was performed.

A total of 456 configuration memory bit faults were emulated within a device,

specifically a Virtex-4 FX12 FPGA, by overwriting a single bit in the configuration

memory to a desired stuck-at value after each BIST configuration was downloaded

75

Table 3.22: Virtex-4 Block RAM BIST Configurations with
Clock Modifications for LX60 Device

Config. # BIST Max. Freq.
1 BRAM - MLRA w/ BDS 95.997
2 BRAM - MLRB w/ BDS 95.997
3 BRAM - DUALP 95.997
4 BRAM - MATS+ 16k 82.556
5 BRAM - MATS+ 8k 91.017
6 BRAM - MATS+ 512 96.488
7 CASC - UPPER 101.43
8 CASC - LOWER 101.43
9 ECC - WREN 82.379
10 ECC - RDEN 82.379
11 FIFO - 2k x 9 133.851
12 FIFO - 512 x 36 134.735
13 FIFO - 1k x 18 134.735

14-25 FIFO - 4k x 4 (all) 134.735

Table 3.23: File Size without Clock Inversion Change for LX60 Device
Config. BIST Compressed Partial

(# bits) (# bits)
1 MLRA 9,566,976 9,566,976
2 MLRB 9,566,976 446,688
3 DUALP 9,566,976 446,688
4 MATS+ 16K 9,566,976 446,688
5 MATS+ 8K 9,566,976 545,248
6 MATS+ 512 9,566,976 545,248
7 CAS UPPER 7,962,624 7,962,624
8 CAS LOWER 7,962,624 446,688
9 ECC WREN 9,461,856 9,461,856
10 ECC RDEN 9,448,800 545,248
11 FIFO 2K 8,684,832 8,684,832
12 FIFO 512 8,684,832 122,688
13 FIFO 1K 8,684,832 24,032

14 -25 FIFO 4K x 1 8,684,832 24,032
Total 222,510,240 39,533,888

14 - alt FIFO 4K x 1 8,684,832 24,032
15 - alt FIFO 4K x 1 8,684,832 24,032

Total 135,661,920 39,293,568

76

F
ig

u
re

3.
11

:
M

ax
.

B
IS

T
C

lo
ck

F
re

q
u
en

cy
fo

r
V

ir
te

x
-4

L
X

60
w

it
h

C
lo

ck
M

o
d
ifi

ca
ti

on
s

77

F
ig

u
re

3.
12

:
T

im
in

g
A

n
al

y
si

s
fo

r
N

ew
W

or
st

-C
as

e
B

IS
T

C
on

fi
gu

ra
ti

on
s

-
V

ir
te

x
-4

D
ev

ic
es

78

Table 3.24: File Size with Clock Inversion Change for LX60 Device
Config. BIST Compressed Partial

(# bits) (# bits)
1 MLRA 9,566,976 9,566,976
2 MLRB 9,566,976 446,688
3 DUALP 9,566,976 446,688
4 MATS+ 16K 9,566,976 446,688
5 MATS+ 8K 9,566,976 545,248
6 MATS+ 512 9,566,976 949,792
7 CAS UPPER 7,962,624 7,962,624
8 CAS LOWER 7,962,624 446,688
9 ECC WREN 9,461,856 9,461,856
10 ECC RDEN 9,448,800 545,248
11 FIFO 2K 8,683,680 8,683,680
12 FIFO 512 8,684,832 481,600
13 FIFO 1K 8,684,832 24,032

14-25 FIFO 4K x 1 8,684,832 24,032
Total 222,509,088 40,296,192

14 - alt FIFO 4K x 1 8,684,832 24,032
15 - alt FIFO 4K x 1 8,684,832 24,032

Total 135,660,768 40,055,872

79

to the device but before the BIST configurations were executed. The complete set of

BIST configurations was executed and the configurations that detected the emulated

fault were noted. The fault coverage accrued by each BIST type can be seen in Figure

3.13, as well as the cumulative fault coverage for executing the complete set of BIST

configurations, which results in a cumulative fault coverage of 98.67%. The fault

coverage attained by each individual configuration for each of the BIST types can be

seen in Figures 3.14, 3.15, and 3.16.

Figure 3.13: Overall Fault Coverage for Virtex-4 Devices

3.9 Summary

Overall, the process for generating the Virtex-4 Block RAM BIST configurations

was improved. Twelve specific BIST generation programs were condensed into two

visible and one hidden program that maintained the same functionality. The ORAs

80

Figure 3.14: BRAM Fault Coverage for Virtex-4 Devices

Figure 3.15: FIFO Fault Coverage for Virtex-4 Devices

81

Figure 3.16: ECC and Cascade Fault Coverage for Virtex-4 Devices

were modified to exploit the built-in carry chain functionality of the CLBs to provide

the user a single Pass/Fail signal using an iterative OR-chain. An additional interface

for interacting with the BIST, the PINS interface, was developed to give the user

another option if BSCAN is not available or desired.

Also, two new configurations were developed for FIFO Block RAM BIST to

reduce overall test time by testing all of the ALMOSTFULL/EMPTY flag offset

configuration bits simultaneously. Resetting the FIFO BIST no longer results in the

BIST becoming stuck or false fault detections being latched up in the ORAs. The

TPG for the Cascade Block RAM mode was modified to incorporate clock enable

signals to enable/disable the Port A/B ORAs along the bottom of the device and

in the row above a PowerPC, so as not to have false fault detections that could

interfere with the Pass/Fail signal generated by the OR-chain. Changes were made

to the modification program to increase the maximum BIST clock frequency so that

82

it could be executed faster, reducing overall BIST test time. And finally the fault

coverage, both cumulative and individual, was found for the Virtex-4 Block RAM

BIST configurations.

83

Chapter 4

Virtex-5 Block RAM BIST

This chapter will discuss the initial development of the Virtex-5 Block RAM

BIST programs and configurations. The approaches applied to the Virtex-4 Block

RAM BIST were adapted and applied to develop the Virtex-5 Block RAM BIST.

Several TPGs were initially developed for the various Virtex-5 Block RAM types and

new comparison-based ORAs were implemented to monitor the outputs of the Block

RAMs. The new TPGs will be described first, followed by discussion of the new

ORAs and ending with initial results for the Block RAM BIST configurations.

4.1 TPG Development

Initially, only one Block RAM XDL primitive (RAMBFIFO36) was to be used

for generation of all the BIST configurations. This Block RAM primitive was found

to be a superset of all of the other Virtex-5 Block RAM primitives. A single Block

RAM primitive and TPG design would reduce the complexity of BIST generation.

Since this primitive is a superset of all the Virtex-5 Block RAM primitives, all modes

of operation could be tested while reducing download and testing time. However,

this was found to be an overzealous starting point for this project as there was no

documentation to utilize. Instead, four documented Block RAM primitives were

chosen to implement the Virtex-5 BIST in order to establish a known behavior for

each of these four types, which could later be combined to design a single TPG for

84

the RAMBFIFO36 Block RAM primitive. The implemented Block RAM primitives

are as follows:

1. RAMB36 (32k + 4k parity) - true dual-port Block RAM that supports widths

of x1, x2, x4, x9, x18, and x36.

2. RAMB36SDP (512 x 72-bit) - simple dual-port Block RAM with 64-bit ECC.

3. FIFO36 (32k + 4k parity) - synchronous/asynchronous FIFO Block RAM that

supports widths of x1, x2, x4, x9, and x18.

4. FIFO36 72 (512 x 72-bit) - synchronous/asynchronous FIFO with 64-bit ECC.

Four TPG designs are proposed for the Virtex-5 Block RAM BIST that would

perform specific test algorithms depending on the corresponding Block RAM configu-

ration. The BIST configurations and their corresponding address and data widths can

be seen in Table 4.1 and will be discussed in more depth in the following subsections.

4.1.1 RAMB36 TPG

The first TPG developed was for the Virtex-5 Block RAM BIST in the RAMB36

mode of operation. Comprehensive testing of the memory core is performed by the

RAMB36SDP TPG, which will be described in the next subsection. The RAMB36

TPG is responsible for testing the dual-port functionality of the Block RAM using

the RAM test algorithms, S2PF and D2PF (See Equations 2.7 and 2.8, respec-

tively). Also, the MATS+ RAM test algorithm (See Equation 2.9) is used to test the

programmable address and data widths, write modes, the active levels of the clock,

port enable, output register clock, and set/reset signals. The settings for each BIST

configuration can be seen in Table 4.3. The desired test is selected by a user-supplied

control string which is shifted into the TPG through the BSCAN interface, as shown

85

Table 4.1: Virtex-5 BIST Configurations
BIST Algorithm Address Data

TPG Type Config. # Depth Width
1 s2pf 1k 36
2 d2pf 1k 36
3 MATS+ 2k 18

RAMB36 4 MATS+ 4k 9
5 MATS+ 8k 4
6 MATS+ 16k 2
7 MATS+ 32k 1
1 MarchLRw/BDS 512 72

RAMB36SDP 2 ECC (RDEN) 512 72
3 ECC (WREN) 512 72

FIFO36 72 1 FIFOX (RDEN) 512 72
2 FIFOX (WREN) 512 72
1 FIFOX 1k 36

FIFO36 2 FIFOX 2k 18
3 FIFOX 4k 9
4 FIFOX 8k 4

in Figure 4.1 and the control string values for each BIST configuration can be seen

in Table 4.2. The three Mode bits correspond to the Configuration Number in Table

4.3, while the Level Control bit corresponds to the ENA level.

The RAM test algorithms described in Chapter 2 are implemented by a Finite

State Machine (FSM) in a VHDL model for the RAMB36 TPG. The model was

constrained the to first thirty-two rows and the first six columns in the bottom of an

LX50T device, as shown in Figure 4.2, and is a total of 118 slices. All of the TPGs

developed are held to this constraint, which allows for easier processing later by the

Virtex-5 BIST template generation program, V5BramBIST.exe.

86

Table 4.2: Control String Values for RAMB36 TPG
Config. BIST Level Mode Mode Mode Hex

Algorithm Control 2 1 0 String
1 s2pf 0 0 0 0 0x0
2 d2pf 0 0 0 1 0x1
3 MATS+ (2k) 1 0 1 0 0xA
4 MATS+ (4k) 1 0 1 1 0xB
5 MATS+ (8k) 1 1 0 0 0xC
6 MATS+ (16k) 1 1 0 1 0xD
7 MATS+ (32k) 1 1 1 0 0xE

Table 4.3: Configuration Settings for RAMB36 TPG

(a) Settings Part 1

Config. BIST DO READ WRITE WRITE SAVE
Algorithm (A/B) Width Width Mode DATA

REG (A/B) (A/B) (A/B)
1 s2pf 1 36 36 READ FIRST FALSE
2 d2pf 1 36 36 READ FIRST FALSE
3 MATS+ 0 18 18 READ FIRST FALSE
4 MATS+ 0 9 9 WRITE FIRST FALSE
5 MATS+ 0 4 4 NO CHANGE FALSE
6 MATS+ 0 2 2 WRITE FIRST FALSE
7 MATS+ 0 1 1 NO CHANGE FALSE

(b) Settings Part 2

Config. BIST CLK, RAM INIT SRVAL INIT
Algorithm EN, SSR EXT VAL (A/B)

REGCLK (A/B) VAL
(A/B)(U/L)

INV
1 s2pf INV NONE AAAA 5555 0
2 d2pf not INV NONE 5555 AAAA FFFF
3 MATS+ not INV NONE AAAA 5555 0
4 MATS+ not INV NONE 5555 AAAA FFFF
5 MATS+ not INV NONE AAAA 5555 0
6 MATS+ not INV NONE 5555 AAAA FFFF
7 MATS+ not INV NONE AAAA 5555 0

87

Figure 4.1: Shift Register Control String - RAMB36

4.1.2 RAMB36SDP TPG

The TPG proposed for the RAMB36SDP primitive is responsible for testing the

memory core, as well as the ECC read and write capabilities. By using the widest

data width for this Block RAM type, all memory elements can be reached by the

implemented BIST configurations. A control string is shifted in through the BSCAN

interface to the TPG to select the desired BIST configuration. The control string

values for each BIST configuration can be seen in Table 4.4.

Table 4.4: Control String Values for RAMB36SDP TPG
Config. Algorithm LEVEL MODE MODE Hex

CTRL 1 0 String
1 MarchLR with BDS 0 0 0 0x0
2 ECC 0 0 1 0x1
3 ECC 1 1 0 0x6

The RAM test algorithm, MarchLR with BDS, is incorporated into this TPG

and because the data width is set to its widest width of 72-bits, a Background Data

Sequence is developed to ensure that all intra-word Coupling Faults can be detected.

The implemented March test and corresponding BDS can be seen in Appendix A. The

procedure for testing ECC RAMs is also incorporated into the TPG VHDL model to

execute the BIST configurations. The proposed settings for each BIST configuration

can be seen in Table 4.5.

88

Figure 4.2: RAMB36 TPG Area Constraint for an LX50T Device

89

Table 4.5: Configuration Settings for RAMB36SDP TPG

(a) Settings Part 1

Config. # Algorithm DO EN ECC EN ECC EN ECC
REG READ WRITE SCRUB

1 MarchLR 0 FALSE FALSE FALSE
with BDS

2 ECC (RDEN) 1 TRUE FALSE FALSE
3 ECC (WREN) 1 FALSE TRUE FALSE

(b) Settings Part 2

Config. # Algorithm INIT SR INIT SAVE
VAL VAL (A/B) DATA

VAL
1 MarchLR AAAA 5555 0 FALSE

with BDS
2 ECC AAAA 5555 0 FALSE
3 ECC 5555 AAAA FFFF FALSE

(c) Settings Part 3

Config. # Algorithm RDCLK RDEN RDRCLK
(U/L) (U/L) (U/L)
INV INV INV

1 MarchLR not INV not INV not INV
with BDS

2 ECC not INV not INV not INV
3 ECC INV INV INV

(d) Settings Part 4

Config. # Algorithm WRCLK WREN SSR
(U/L) (U/L) (U/L)
INV INV INV

1 MarchLR not INV not INV not INV
with BDS

2 ECC not INV not INV not INV
3 ECC INV INV INV

90

Figure 4.3: Shift Register Control String - RAMB36SDP

4.1.3 FIFO36 TPG

The TPG proposed for the FIFO36 primitive is responsible for testing the FIFO

functionality. The RAM test algorithm, FIFOX, described in Chapter 2, is incor-

porated into a VHDL model to execute the BIST configurations for this TPG. The

proposed settings for each BIST configuration can be seen in Table 4.6.

4.1.4 FIFO36 72 TPG

The proposed FIFO36 72 TPG is responsible for testing the ECC capabilities of

the Block RAM when it is configured as a FIFO. The RAM test algorithm, FIFOX,

described in Chapter 2, is incorporated into a VHDL model to execute the BIST

configurations for this TPG. The proposed settings for each BIST configuration can

be seen in Table 4.7.

4.2 ORA Placement

The ORAs for the Virtex-5 Block RAM BIST differ from those of the Virtex-4

Block RAM BIST described previously in Section 2.2.3. In the Virtex-5 devices,

there are five rows of CLBs adjacent to each Block RAM, rather than the four rows

of CLBs in the Virtex-4 devices. Instead of using nine CLBs spread across three

columns, as in the Virtex-4 Block RAM BIST, two columns of five CLBs are used for

the ORAs.

91

Table 4.6: Configuration Settings for FIFO36 TPG

(a) Settings Part 1

Config. # Algorithm DO DATA EN FWFT
REG WIDTH SYN

1 FIFOX 1 36 TRUE TRUE
2 FIFOX 1 18 FALSE FALSE
3 FIFOX 0 9 TRUE TRUE
4 FIFOX 0 4 FALSE FALSE

(b) Settings Part 2

Config. # Algorithm RDCLK RDRCLK RDEN RST
(U/L) (U/L) INV INV
INV INV

1 FIFOX INV INV INV INV
2 FIFOX not INV not INV not INV not INV
3 FIFOX not INV not INV not INV not INV
4 FIFOX not INV not INV not INV not INV

(c) Settings Part 3

Config. # Algorithm WRCLK WREN ALMOST ALMOST
(U/L) INV FULL EMPTY
INV OFFSET OFFSET

1 FIFOX INV INV 5555 AAAA
2 FIFOX not INV not INV AAAA 5555
3 FIFOX not INV not INV 5555 AAAA
4 FIFOX not INV not INV AAAA 5555

92

Table 4.7: Configuration Settings for FIFO36 72 TPG

(a) Settings Part 1

Config. # Algorithm DO EN ECC EN ECC EN
REG READ WRITE SYN

1 FIFOX 1 TRUE FALSE FALSE
2 FIFOX 0 FALSE TRUE TRUE

(b) Settings Part 2

Config. # Algorithm FWFT RST ALMOST ALMOST
INV EMPTY FULL

RSTINV OFFSET OFFSET
1 FIFOX TRUE INV 5555 AAAA
2 FIFOX FALSE not INV AAAA 5555

(c) Settings Part 3

Config. # Algorithm RDCLK RDRCLK RDEN WRCLK WREN
(U/L) (U/L) INV (U/L) INV
INV INV RDENINV INV WRENINV

1 FIFOX INV INV INV INV INV
2 FIFOX not INV not INV not INV not INV not INV

Each ORA slice contains four 6-input Look-Up Tables (LUTs), which can be seen

in Figure 4.4. The A1-A4 inputs to the LUTs are used to compare the designated

outputs of the Block RAMs (See Figure 4.5(a)). This results in eight RAM output

comparisons in each slice of the CLB, for a total of 160 possible comparisons and

since the maximum number of possible outputs for any of the RAM primitives is 118

(RAMBFIFO36) this is more than enough logic to implement the comparisons.

The four LUTs are used differently, depending on the type of the BIST. For the

RAMB36 and FIFO36 BIST types, all of the RAM outputs will be implemented as a

single ORA comparison. This is accomplished by connecting the same RAM outputs

to the A1 and A3 inputs and A2 and A4 inputs as shown in Figure 4.5(b). This

effectively results in the comparison ORA acting as if it were the circuit in Figure

4.5(c).

93

Figure 4.4: Internal Slice Components [16]

94

Since the number of outputs for these Block RAM types is less than 80, which is

half the total number of possible comparisons if two comparisons were implemented

per LUT, this single comparison can be implemented. This comparison technique

improves the diagnostic resolution of the BIST by allowing any RAM output failure

to be precisely determined.

However, for the RAMB36SDP and FIFO36 72 BIST types, single RAM output

comparison is not possible. RAMB36SDP has 82 RAM outputs, while FIFO36 72 has

114 RAM outputs. Therefore, it is necessary to implement the dual comparison in

several of the LUTs. Care is taken to implement the outputs that are only associated

with that particular RAM primitive as single comparisons, and implement the outputs

that had been tested thoroughly in another BIST configuration as dual comparisons.

An iterative OR-chain, which was adopted from the Virtex-4 Block RAM BIST

(Section 3.2), was implemented for the Virtex-5 BIST [3]. The fast-carry logic within

each CLB was exploited to provide a single Pass/Fail signal.

4.3 BIST File Generation

Two programs were developed for the Virtex-5 Block RAM BIST and are sim-

ilar in operation to those developed for the Virtex-4 Block RAM BIST. The BIST

template generation program, V5BramBIST.exe, is responsible for algorithmically

placing and interconnecting the Block RAMs and ORAs within the user-specified

FPGA row/column ranges, as well as placing and interconnecting the two TPGs for

the designated BIST type. The modification program, V5BramMod.exe, is responsible

for correctly configuring the RAMs for the desired BIST configuration.

95

(a) LUT Double Comparison

(b) LUT Single Comparison

(c) Effective Single Operation

Figure 4.5: Virtex-5 ORA LUT Comparison

96

4.3.1 BIST Template Generation Program

A BIST template generation program, V5BramBist.exe, was developed for the

Virtex-5 Block RAM BIST. This program processes user-specified parameters for the

desired BIST template to generate. This template can be for any one of the four BIST

types described previously. Depending on the BIST type selected, the Block RAM

primitive that matches that type is selected and placed within the desired device for

all Block RAMs that lie within the specified FPGA row/column range. The command

line format provided to the user is given in Figure 4.6.

The ORAs are placed in the two columns of CLBs directly to the left of a Block

RAM column and the outputs of the placed Block RAMs are then routed to their

specific comparison LUT within the ORA CLBs. Depending on the type, this may

either be the single or double comparison described in the previous section, and the

iterative OR-chain is routed through the fast-carry logic.

Once the Block RAMs and ORAs are placed and routed, a TPG is extracted from

an XDL description of the TPG and stored in several files, which are used to replicate

the TPG. The two TPGs, TPG0 and TPG1, are placed in the six CLB columns to the

right of the rightmost column of Block RAMs, excluding the columns of Block RAMs

that are located in a Tri-mode Ethernet Media Access Controller (TEMAC) column

in the LXT, SXT, FXT, and TXT Virtex-5 devices. These columns were selected

because they remain unused for the Virtex-5 Block RAM BIST in every Virtex-5

device. One TPG, TPG0, is placed in the lower half of the device, while the other

TPG, TPG1, is placed in the upper half of the device. An example of this can be seen

in Figure 4.7. The routing is placed between the TPG outputs and their respective

Block RAMs, which alternate rows so that faults that may occur within the TPG can

be detected.

97

V5RAMbist (v1.4) - Generates template file for Block RAM

BIST config in any Virtex-5

Command line format:

V5RAMbist <xdlfile> <startrow> <startcol> <endrow> <endcol>

<dev> <part> <type> [n,p,a]

dev part rows cols dev part rows cols dev part rows cols

lxt 20 60 33

lx/t 30 80 38 sxt 35 80 50 fxt 30 80 50

lx/t 50 120 38 sxt 50 120 50 fxt 70 160 50

lx/t 85 120 64 sxt 95 160 68 fxt 100 160 73

lx/t 110 160 64 sxt 240 240 104 fxt 130 200 70

lx/t 155 160 87 fxt 200 240 87

lx/t 220 160 121 txt 150 200 70

lx/t 330 240 121 txt 240 240 91

where the type is defined as:

RAMB36 = 1

RAMB36SDP = 2

FIFO36 = 3

FIFO36_72 = 4

npa options:

n = runs XDL2NCD with -nodrc

p = runs ’n’ option followed by reentrant routing with PAR

a = runs ’n’ & ’p’ options and coverts back to XLD

Note:

All parameters can be upper or lower case (but not mixed).

Also, the extension on <xdlfile> need not be specified.

The .xdl extension will be appended by the program.

Figure 4.6: V5BramBist.exe Command Line Format

98

Finally the BSCAN interface is added to the template XDL file, which allows the

user to shift in a BIST control string (if applicable) and control the BIST clock and

reset signals. It also enables the user to toggle TDI to observe the Pass/Fail signal

propagated by the iterative OR-chain.

4.3.2 Modification Program

A modification program, V5BramMod.exe, was developed for the Virtex-5 Block

RAM BIST. This program is responsible for establishing the correct Block RAM con-

figuration parameters for the specified BIST type and the desired BIST configuration.

The program also inverts the TPG and ORA clocks for the BIST configurations where

opposite edge clocking is to be tested to reduce the impact of inverting the clocks,

as was discussed in the previous chapter. The command line format provided to the

user is shown in Figure 4.8.

The two additional options allow the user to convert the generated .XDL file

into an .NCD file. This .NCD file can be edited in FPGA Editor to insert probes,

if the user so desires, or can be manually processed by the user using Bitgen.exe, to

create the configuration bit files. If the bit option is specified, the processed .XDL

file will be converted to an .NCD file and then processed using Bitgen.exe to create

a compressed configuration bit file without any additional effort by the user.

4.4 BIST Results

The subsequent subsections will describe the current results of executing the

proposed BIST configurations. These results may change as the Virtex-5 BIST con-

figurations are refined.

99

(a) TPG Placement (b) TPG Placement in a Routed BIST

Figure 4.7: TPG Placement for a Virtex-5 LX50T

100

V5RAMmod (ver 1.3) - modifies routed XDLs for Block RAM to

subsequent BIST configs

Command line format:

V5RAMmod <xdl_in> <xdl_out> <type> <phase> [ncd,bit]

where the type is defined as:

RAMB36 = 1

RAMB36SDP = 2

FIFO36 = 3

FIFO36_72 = 4

Type: RAMB36 RAMB36SDP FIFO36 FIFO36_72

--

Phase 1: S2PF MarchLR FIFOx 1K FIFOx_ECC_RD

Phase 2: D2PF ECC_RD FIFOx 2K FIFOx_ECC_WR

Phase 3: MATS+ 2K ECC_WR FIFOx 4K

Phase 4: MATS+ 4K FIFOx 9K

Phase 5: MATS+ 8K

Phase 6: MATS+ 16K

Phase 7: MATS+ 32K

--

Generation Options:

- ncd option runs XDL -XDL2NCD

- bit option runs XDL -XDL2NCD and BITGEN -D -B -G COMPRESS

- If no option is selected, only the XDL file will be generated

Note:

On both <xdl_in> and <xdl_out> the .xdl file extension should

be specified.

Figure 4.8: V5BramMod.exe Command Line Format

101

4.4.1 File Size Comparison

The compressed configuration bit file and compressed partial configuration bit

file sizes for the RAMB36 BIST configurations can be seen in Table 4.8. Using

compressed partial reconfiguration files yields additional benefits when implementing

the Virtex-5 Block RAM BIST, as it did in the Virtex-4 Block RAM BIST. In the

case of the RAMB36 configurations the total number of downloaded bits is reduced

approximately 4.6 times, which reduces the total BIST execution time.

Inverting all of the TPG and ORA clocks also has an impact on the Virtex-

5 partial configuration bit file sizes, as it did in the Virtex-4 partial configuration

bit files. In the case of RAMB36, the TPG and ORA clocks are inverted in the

first configuration, while the remaining configurations use non-inverted clock signals.

This results in the compressed partial configuration bit file for this configuration to

be noticeably larger than its counterparts.

Table 4.8: BIST Configuration File Sizes for LX50T Device - RAMB36
Config. BIST Compressed Partials

(# bits) (# bits)
1 S2PF 7,348,384 7,348,384
2 D2PF 7,342,816 689,600
3 MATS 2k 7,342,816 625,536
4 MATS 4k 7,342,816 625,536
5 MATS 8k 7,342,816 625,536
6 MATS 16k 7,342,816 625,536
7 MATS 32k 7,342,816 625,536

Total 51,405,280 11,165,664

4.4.2 Timing Analysis

The maximum BIST clock frequency for an LX50T device is shown in Figure

4.9. All of the configurations execute faster than the desired BIST clock frequency

102

of 50 MHz. The MATS+ (2K) configuration has the lowest maximum BIST clock

frequency of approximately 65 MHz. This configuration is generated for every Virtex-

5 device except LX20T, which is not supported because the number of RAMs in the

TEMAC column is insufficient to implement the circular comparison with the ORAs.

The worst-case timing analysis and the total number of Block RAMs for each device

can be seen in Figure 4.10 and the total number of Block RAMs can be seen above

each column. The three largest devices (LX330, LXT330, and SXT240) are the only

devices where the worst-case configuration fails to achieve the desired BIST clock

frequency. However, for these devices, the BIST can be performed separately on

each half of the device, which increases the BIST clock frequency at the cost of an

additional set of BIST configurations.

4.4.3 Fault Coverage

Configuration memory bit faults were emulated using the same process as im-

plemented in the Virtex-4 fault simulation. These bits are modified before the BIST

is executed to emulate stuck-at fault behavior. The fault coverage accrued by each

configuration, as well as the cumulative fault coverage for executing the BIST for the

RAMB36 configurations can be seen in Figure 4.11 and the total fault coverage of

the RAMB36 BIST configurations is 82.17%, which is an acceptable value for the

fault coverage. The RAM test algorithms implemented in the RAMB36 BIST con-

figurations should detect mismatches between the Block RAM initialization values.

However, not all of the expected initialization faults were detected, which resulted in

a lower fault coverage than could actually be achieved. This is an important area for

future investigation.

103

F
ig

u
re

4.
9:

T
im

in
g

A
n
al

y
si

s
fo

r
V

ir
te

x
-5

L
X

50
T

D
ev

ic
e

104

F
ig

u
re

4.
10

:
T

im
in

g
A

n
al

y
si

s
fo

r
W

or
st

-C
as

e
B

IS
T

C
on

fi
gu

ra
ti

on
s

-
V

ir
te

x
-5

D
ev

ic
es

105

Figure 4.11: RAMB36 Fault Coverage for Virtex-5 Devices

106

Chapter 5

Summary and Conclusions

This thesis discussed FPGAs, their advantages and their disadvantages, as well

as discussing BIST and why it is needed. An overview of RAMs was given and the

particular associated faults were presented. The Block RAM BIST developed for

the Virtex-4 devices developed by Milton [7] and each component of the BIST were

discussed. A preliminary Virtex-5 Block RAM BIST was presented, highlighting the

differences between the Virtex-4 and Virtex-5 BIST approaches.

5.1 Virtex-4 Block RAM BIST Improvements

A number of improvements were implemented for the Virtex-4 Block RAM BIST.

A major improvement that was implemented but did not directly affect the BIST exe-

cution time was the simplification of the twelve Virtex-4 Block RAM BIST generation

programs into two programs. This greatly simplified the configuration file generation

process from the user’s point of view.

Another major improvement was the implementation of the new ORA that used

the built-in carry chain to provide the user with a single Pass/Fail signal. This

signal allowed the user to choose whether or not to perform a configuration memory

readback. This results in a much faster BIST execution time if no configuration

memory readbacks are performed and the iterative OR-chain is used to determine if a

device was fault-free or not. In the case that the configuration memory is read back,

107

the BIST execution time can still be improved by only performing the readback when

the iterative OR-chain indicates a fault was detected.

The development of the two new FIFO BIST configurations also helped to reduce

the overall Block RAM BIST execution time. If extensive testing of the ALMOST-

FULL/ALMOSTEMPTY flags is not desired, the total number of configurations for

the FIFO BIST is reduced from fifteen to five configurations. The fix to the Reset

state also ensured that the BIST will execute properly whenever it is reset during

execution.

The addition of clock enables for the bottom-most ORAs and the ORAs directly

above the PowerPC (if applicable) allowed for the use of the iterative OR-chain in

conjunction with the Block RAM BIST when the RAMs are cascaded. Rather than

allow the ORAs to latch up false fault detections, the ORAs are disabled for the clock

cycles where known mismatches will occur.

Several improvements were made to the BIST configurations, which tested the

opposite-edge clocking of the Block RAMs. In addition to inverting the RAM clocks,

setting the clock edges of the ORA and TPG clocks to the opposite-edge clock setting

allowed the BIST configuration to run at approximately twice the frequency of what it

was previously. This also changed which BIST configurations governed the maximum

speed at which the BIST could be executed.

Fault simulation was performed on all of the Virtex-4 BIST configurations to

determine the cumulative fault coverage of the Virtex-4 Block RAM BIST, which was

found to be 98.67%. This was done by manually overwriting a desired configuration

memory bit before executing each BIST configuration and then observing if the fault

was detected by the configuration or not.

108

5.2 Virtex-5 Block RAM BIST

This thesis also presents an initial approach to the Virtex-5 Block RAM BIST.

Four Block RAM primitives, RAMB36, RAMB36SDP, FIFO36 and FIFO36 72, are

used to implement all of the BIST configurations. TPGs were proposed for each of the

four primitives. The TPG for the RAMB36 mode of operation is the most complete

and was discussed in greater detail than the other three TPGs.

A new ORA structure was introduced in the Virtex-5 Block RAM BIST to take

advantage of the new slice composition. When the number of RAM outputs is less

than 80, a single comparison can be implemented in each of the four LUTs contained

within a Virtex-5 slice. When the number of RAM outputs is greater than 80, single

comparisons are implemented on as many of the RAM outputs as possible, while

implementing a double comparison in several LUTs for the RAM outputs which are

tested in other BIST configurations.

Two new programs, V5BramBist.exe and V5BramMod.exe, were developed and

are used in the generation of the Virtex-5 Block RAM BIST configuration bit files.

The first generates an XDL template description for the desired BIST type, and the

second modifies the BIST template to create a specific configuration within that BIST

type.

Timing analysis was performed on the configurations generated for the RAMB36

BIST type to determine the maximum BIST clock frequency. The slowest configu-

ration was found to be the MATS+ (2k) configuration with BIST clock frequency of

approximately 65 MHz. This configuration was generated for every Virtex-5 device,

except the LX20 device, and every device except the three largest devices (LX330,

LXT330, and SXT240) were found to operate at a frequency that exceeds the desired

BIST clock frequency of 50 MHz.

109

Fault emulation was also performed for the RAMB36 TPG type. A fault cov-

erage of 82.17% was achieved using just these configurations. However, detection of

the Block RAM initialization faults was inconclusive. Under certain conditions no

initialization faults would be detected, while under a different set of conditions all

initialization faults would be detected.

5.3 Future Work

Currently, only the modifications for the RAMB36 Block RAM type are believed

to be functional. It is recommended that for future research, the functionality of the

other three Block RAM types be verified, rather than assuming them to be correct.

This can include generating the BIST configurations for the partially complete TPG

(RAMB36SDP), up to designing the complete VHDL models for the FIFO36 and

FIFO36 72 TPGs based on the proposed settings in Chapter 4. Also, the issue of only

part of the Block RAM initialization mismatches being detected should be explored.

Timing analysis should be performed on all of the newly created BIST config-

urations to determine the worst-case timing configuration for each of the four TPG

types. The newly determined worst-case timing configurations should be generated

for every device to determine which devices, such as the LXT300, should perform the

BIST on partial arrays rather than the whole of the device.

Fault emulation should also be performed on all of the newly developed BIST

configurations to determine the overall fault coverage provided by executing the com-

plete set of BIST configurations on a Virtex-5 device. This fault coverage is desired

to be as high as possible.

The ultimate goal, however, is to understand the functionality of the four de-

signed BIST types well enough to be able to incorporate them into a single TPG for

110

the undocumented RAMBFIFO36 Block RAM type introduced at the beginning of

Chapter 4. Drastically decreased BIST test time can result from the culmination of

this goal as only one full, compressed configuration bit file need be downloaded to the

device, while the subsequent configurations can be compressed partial configuration

bit files.

111

Bibliography

[1] A. J. Van de Goor, Using March Tests to Test SRAMs, IEEE Design and Test
of Computers, 10 (1993), no. 1, 8–14.

[2] Ad J. Van de Goor and I.B.S Tlili, March Tests for Word-Oriented Memories,
Design, Automation and Test in Europe, Design, Automation and Test in Eu-
rope, 1998, pp. 501–508.

[3] Bradley F. Dutton and Charles E. Stroud, Built-In Self-Test of Configurable
Logic Blocks in Virtex-5 FPGAs, IEEE Southeastern Symposium on System
Theory, IEEE Southeastern Symposium on System Theory, 2009, pp. 230–234.

[4] Srinivas Garimella, Built-In Self Test for Regular Structure Embedded Cores in
System-on-Chip, Master’s thesis, Auburn University, 2005.

[5] Said Hamdioui, Testing Static Random Access Memories, Kluwer Academic Pub-
lishers, 2004.

[6] Ian Kuon and Johnathon Rose, Measuring the Gap between FPGAs and ASICs,
Computer-Aided Design of Integrated Circuits and Systems, 26 (2007), no. 2,
203–215.

[7] Daniel Milton, Built-In Self-Test of Configurable Memory Resources in Field-
Programmable Gate-Arrays, Master’s thesis, Auburn University, 2007.

[8] Mary Pulukuri and Charles E. Stroud, Built-In Self-Test of Digital Signal Pro-
cessors in Virtex-4 FPGAs, IEEE Southeastern Symposium on System Theory,
IEEE Southeastern Symposium on System Theory, 2009, pp. 34–38.

[9] Charles H. Roth and Lizy Kurian John, Digital Systems Design using VHDL,
Thomson Learning, 2008.

[10] Michael John Sebastian Smith, Application-Specific Integrated Circuits, Addison
Wesley, 1997.

[11] Charles E. Stroud, A Designer’s Guide to Built-In Self-Test, Kluwer Academic
Publishers, 2002.

112

[12] Charles E. Stroud and Srinivas Garimella, Built-In Self-Test and Diagnosis of
Multiple Embedded Cores in SoCs, Proceedings, International Conference on Em-
bedded Systems and Applications, International Conference on Embedded Sys-
tems and Applications, 2005, pp. 130–136.

[13] Laung-Terg Wang, Charles E. Stroud, and Nur A. Touba, System-on-Chip Test
Architectures, Morgan Kaufmann Publishers, 2008.

[14] Xilinx, Development System Reference Guide, 2008.

[15] , Virtex-4 FPGA User Guide, 2008.

[16] , Virtex-5 FPGA User Guide, 2008.

113

Appendix A

MarchLR with 72-bit BDS

The following 72-bit MarchLR algorithm and accompanying BDS sequence were

developed directly from the method described in [2]. The BDS sequence can also

be optimized to eliminate the redundant march elements (Element 7 and 8) found

within the BDS and the MarchLR sequence. This reduces the test time from O(23

N) to O(21 N), where N is the number of address locations.

114

March Address RAM Data Hex
Element Direction Operation Value

MarchLR 1 up/down write 000000000000000000

2 down read 000000000000000000

write FFFFFFFFFFFFFFFFFF

3 up read FFFFFFFFFFFFFFFFFF

write 000000000000000000

read 000000000000000000

write FFFFFFFFFFFFFFFFFF

4 up read FFFFFFFFFFFFFFFFFF

write 000000000000000000

5 up read 000000000000000000

write FFFFFFFFFFFFFFFFFF

read FFFFFFFFFFFFFFFFFF

write 000000000000000000

6 up read 000000000000000000

BDS 7 up read 000000000000000000

write FFFFFFFFFFFFFFFFFF

read 000000000000000000

8 down read FFFFFFFFFFFFFFFFFF

write 000000000000000000

read 000000000000000000

9 up read 000000000000000000

write 555555555555555555

write AAAAAAAAAAAAAAAAAA

read AAAAAAAAAAAAAAAAAA

10 down read AAAAAAAAAAAAAAAAAA

write 555555555555555555

read 555555555555555555

11 up read 555555555555555555

write 333333333333333333

write CCCCCCCCCCCCCCCCCC

read CCCCCCCCCCCCCCCCCC

12 down read CCCCCCCCCCCCCCCCCC

write 333333333333333333

read 333333333333333333

13 up read 333333333333333333

write 0F0F0F0F0F0F0F0F0F

write F0F0F0F0F0F0F0F0F0

read F0F0F0F0F0F0F0F0F0

115

March Address RAM Data Hex
Element Direction Operation Value

BDS 14 down read F0F0F0F0F0F0F0F0F0

write 0F0F0F0F0F0F0F0F0F

read 0F0F0F0F0F0F0F0F0F

15 up read 0F0F0F0F0F0F0F0F0F

write FF00FF00FF00FF00FF

write 00FF00FF00FF00FF00

read 00FF00FF00FF00FF00

16 down read 00FF00FF00FF00FF00

write FF00FF00FF00FF00FF

read FF00FF00FF00FF00FF

17 up read FF00FF00FF00FF00FF

write FF0000FFFF0000FFFF

write 00FFFF0000FFFF0000

read 00FFFF0000FFFF0000

18 down read 00FFFF0000FFFF0000

write FF0000FFFF0000FFFF

read FF0000FFFF0000FFFF

19 up read FF0000FFFF0000FFFF

write FF00000000FFFFFFFF

write 00FFFFFFFF00000000

read 00FFFFFFFF00000000

20 down read 00FFFFFFFF00000000

write FF00000000FFFFFFFF

read FF00000000FFFFFFFF

21 up read FF00000000FFFFFFFF

write 00FFFFFFFFFFFFFFFF

write FF0000000000000000

read FF0000000000000000

22 down read FF0000000000000000

write 00FFFFFFFFFFFFFFFF

read 00FFFFFFFFFFFFFFFF

23 up read 00FFFFFFFFFFFFFFFF

116

	List of Figures
	Introduction
	Field Programmable Gate Arrays
	Pros/Cons to Using an FPGA
	FPGA Implementation

	Built-In Self-Test
	Why use BIST?
	BIST for FPGAs

	Thesis Statement

	Background Information
	Random Access Memory
	Faults

	FPGA Block RAM BIST
	ORA Implementation
	Overview of Virtex-4 Block RAMs
	BIST for Virtex-4 Block RAMs

	Virtex-5 Introduction
	FPGA Architecture
	Programming Tools

	Thesis Statement

	Virtex-4 Improvements
	BIST Generation Simplification
	ORA Modification and OR-Chain
	PINS Option
	FIFO Reset Problem
	Additional FIFO Configurations
	Cascade ORA Clock Enables
	Timing Improvements and Analysis
	Fault Coverage
	Summary

	Virtex-5 Block RAM BIST
	TPG Development
	RAMB36 TPG
	RAMB36SDP TPG
	FIFO36 TPG
	FIFO36_72 TPG

	ORA Placement
	BIST File Generation
	BIST Template Generation Program
	Modification Program

	BIST Results
	File Size Comparison
	Timing Analysis
	Fault Coverage

	Summary and Conclusions
	Virtex-4 Block RAM BIST Improvements
	Virtex-5 Block RAM BIST
	Future Work

	Bibliography
	MarchLR with 72-bit BDS

