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Directed by Chris Rodger

In 2003 Hurd and others considered the problem of enclosing a triple system TS(v, λ)

in a triple system TS(v + s, λ + m) [13, 14], focusing on smallest possible enclosings. In

the second chapter, their result is generalized using a new proof based on a graph-theoretic

technique.

Four constructions are presented; they are exhaustive in the sense that, for each possible

congruence of the parameters v or s and m, at least one construction can be applied to obtain

an enclosing. In each construction, the value of v or s is restricted.

This naturally led to the question of whether or not a λ-fold 4-cycle system could be

enclosed for all possible values. In the third chapter, we completely solve the enclosing

problem by construction for λ-fold 4-cycle systems for u ≥ 2.
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Chapter 1

Introduction

1.1 Definitions

A complete graph on v vertices, denoted by Kv, is a simple graph in which there is

an edge between every pair of its vertices. A λ-fold complete graph on v vertices, denoted

λKv, is a multi-graph in which there are λ edges between every pair of its vertices.

Figure 1.1: K5 and 2K5

A k-factor of a graph G is a spanning k-regular subgraph of G. This means that the

k-factor is incident to each vertex of G and that each vertex has the same degree k in the

subgraph. In particular, a 1-factor of a graph G would be a spanning subgraph of G of

independent edges.

Let Zn = {0, 1, . . . , n − 1}. A k-cycle (v0, v1, . . . , vk−1) is a graph with vertex set

{vi | i ∈ Zn} and edge set {{vi, vi+1} | i ∈ Zn} (reducing the subscript modulo n). A

k-cycle system of a multi-graph G is an ordered pair (V,C) where V is the vertex set of G

and C is a set of k-cycles, the edges of which partition the edges of G. A k-cycle system of

Kn is known in the literature as a k-cycle system of order n.
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Figure 1.2: 1-factor of K4 (in bold)

Figure 1.3: Steiner Triple System of order 7
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A k-cycle system of λKv is conveniently denoted by kCS(v, λ). A 3CS(v, 1) is more

commonly known as a Steiner triple system, or STS(|V |) for short. It is clear that if there

exists a kCS(v, λ) then:

(i) λ(v − 1) is even,

(ii) k divides λv(v − 1)/2, and

(iii) v ≥ k.

For each k, v is said to be λ-admissible if (i)-(iii) are satisfied.

A kCS(v, λ), (V,C), is said to be enclosed in a kCS(w, λ + m), (W,P ), if V ⊂ W ,

C ⊂ P , and m ≥ 1. In the related situation when the number of vertices increases but the

index does not (i.e. m = 0), then the kCS(v, λ) is said to be embedded in the larger system.

All other definitions used can be found in Lindner and Rodger’s, “Design Theory,” [17]

or West’s “Introduction to Graph Theory” [22].

1.2 History

Doyen and Wilson [7] solved the embedding problem for Steiner triple systems, answer-

ing the question: for which values of w can a STS(v) always be embedded in a STS(w)?

The generalization of this question has also been answered for cycles of lengths greater than

3 in many cases [3, 12]. These have become known as Doyen-Wilson problems.

A similar problem occurs when discussing a partial k-cycle system. A partial k-cycle

system of order n and index λ is a subgraph of λKn the edges of which are partitioned into

k-cycles. Numerous results on embeddings and enclosings of k-cycle systems and partial

k-cycle systems can be seen in various papers including Treash [21] who produced a finite

embedding of a partial triple system. Further efforts were done by Lindner [15], and by

Andersen, Hilton, and Mendelsohn [1] improving the bounds until recently Bryant and

Horsley constructed best possible embeddings of partial STS(v)’s into STS(w)’s for all

admissible w ≥ 2v+1 [4]. The enclosing problem for 3-cycle systems is yet to be completely

solved. We address this subject in this dissertation being motivated by the work done by

Munson, Hurd and Sarvate [13, 14]; see Chapter 2. Work on embedding 4-cycle systems
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and partial 4-cycle systems have been addressed by Horak and Lindner [11], and Horton,

Lindner, and Rodger [12] among others. Chapter 3 addresses the enclosings of λ-fold 4-cycle

systems.
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Chapter 2

Enclosings of 3-Cycle Systems

We begin with constructions that will enclose λ-fold triple systems. Four constructions

are presented; they are exhaustive in the sense that, for each possible congruence of the

parameters v or s and m, at least one construction can be applied to obtain an enclosing.

In each construction, the value of v or s is restricted.

We begin with some definitions that are more specific to enclosing λ-fold triple systems.

2.1 Preliminaries

A (partial) balanced incomplete block design, or (partial) BIBD(v, k, λ), is an ordered

pair (V, B) where B is a collection of subsets of a set V of order v, each subset being called

a block, such that all blocks have size k and each pair of symbols in V appears together in

(at most) λ blocks. When k = 3, a BIBD(v, 3, λ) is often called a triple system, a TS(v, λ).

In this section, we allow repeated elements in all sets, except for blocks, and use X ⊆ Y

to denote the fact that each element occurs at least as many times in Y as it does in X.

The TS(v, λ), (V1, B1), is said to be enclosed in the TS(v + s, λ + m), (V2, B2), if V1 ⊆ V2

and B1 ⊆ B2.

Over the past five years, Hurd, Munson, and Sarvate [13, 14] have addressed the subject

of minimal enclosings of triple systems proving two results:

Theorem 2.1. [13] Each TS(v, λ) can be minimally enclosed into a TS(v + 1, λ + m) in

the case where m > 0 is as small as possible.

In the second paper, they presented partial results for the enclosing of a TS(v, λ) into

a TS(v + s, λ + 1) where s is as small as possible [14]. Theorem 2.1 is an immediate

corollary of our approach (see Corollary 2.1). Their latter results head in a related but
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different direction, considering the problem when the index is increased by exactly 1. They

considered the problem related to the existence of enclosings of triple systems for any v,

with 1 ≤ λ ≤ 6, of BIBD(v, 3, λ) into a BIBD(v + s, 3, λ + 1) for minimal positive s. The

non-existence of enclosings for otherwise suitable parameters is proved, and the difficult

cases for even λ were considered. They completely solve the case for λ ≤ 3 and λ = 5, and

partially complete the cases λ = 4 and 6. In some cases a 1-factorization of a complete

graph or complete n-partite graph is used to obtain the minimal enclosing. A list of open

cases for λ = 4 and λ = 6 was also included [14].

We should make note of a new necessary condition found in [13] regarding enclosings of

block designs. Of particular interest in this dissertation is the application to triple systems.

Theorem 2.2. [13] A necessary condition for enclosing X = BIBD(v, 3, λ) into Y =

BIBD(v + s, 3, λ + m) is that

s ≤ 1 + v

2
−

√
(1 + v)2(λ + m)2 − 4mv(v − 1)(λ + m)

2(λ + m)
or

s ≥ 1 + v

2
+

√
(1 + v)2(λ + m)2 − 4mv(v − 1)(λ + m)

2(λ + m)
.

This theorem is presented in the context that the following theorems in Chapter 3

provide constructions for enclosings that do not encompass all possible values of v, s, λ, and

m due to additional restrictions placed on the bounds presented above.

Here, we present a new construction of enclosings making extensive use of a graph-

theoretic result. A partial triple system of index λ is said to be equitable if for each pair

of symbols v and w, |t(v) − t(w)| ≤ 1, where t(v) is the number of triples containing v.

If T = (V, B) is a partial triple system of index λ, then let G(T ) be the graph with the

vertex set V in which the vertices x, y ∈ V are joined by z edges if and only if the pair

{x, y} occurs in λ− z triples in B. The edges in G(T ) represent the pairs that need to be

placed in triples to boost T to a TS(v, λ). Fu and Rodger [8] found necessary and sufficient
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conditions for the existence of an equitable triple system T of index λ for which G(T ) has,

for example, a 1-factorization, proving the following results.

Theorem 2.3. [8] Suppose that µ ≥ 1 and ν ≥ 3. Then

i) there exists an x-regular graph H on ν vertices and of multiplicity at most µ whose

edges can be partitioned into triples, such that

ii) µKν − E(H) has a 1-factorization

if and only if

(a) 0 ≤ x ≤ µ(ν − 1),

(b) if x > 0 then 3 divides xν,

(c) if x < µ(ν − 1) then 2 divides ν, and

(d) 2 divides x.

They also proved the following companion result.

Theorem 2.4. [8] Suppose that µ, ν ≥ 1 :

(a) 0 ≤ x ≤ µ(ν − 1),

(b) 3 divides xν, and

(c) µ(ν − 1) and x are even.

Then there exists an x-regular multigraph H of maximum multiplicity no greater than

µ with ν vertices whose edges can be partitioned into triples, such that µKν − E(H) has a

2-factorization.

We discuss some terminology and history before moving on to the enclosings.

Table 2.1 [17] below provides the necessary and sufficient conditions for the existence

of λ-fold triple systems. An integer v is said to be λ-admissible if:

(i) v 6= 2

(ii) 3 divides λv(v − 1)/2, and

(iii) λ(v − 1) is even.

7



This definition is made in the context of the existence of triple systems, conditions

(i)-(iii) being obvious necessary conditions for their existence. An interpretation of Table

2.1 [17] is that there exists a TS(v, λ) if and only if v is λ-admissible.

λ Restrictions on v

0 (mod 6) v 6= 2

1, 5 (mod 6) 1, 3 (mod 6)

2, 4 (mod 6) 0, 1 (mod 3)

3 (mod 6) All odd v

Table 2.1

Using Table 2.1 as a guideline, we construct enclosings of a TS(v, λ) in a TS(v+s, λ+m),

ensuring that for all congruence classes (mod 6) of v, s, λ and m at least one construction

is applicable (see Tables 2.2 and 2.3).

2.2 Enclosings when |S| is (λ + m)-admissible

In this section we provide our first sufficient conditions for the existence of an enclosing.

Theorem 2.5. Let v, λ, m, and s be positive integers. Then every TS(v, λ) can be enclosed

in a TS(v + s, λ + m), if:

(a) s ≤ m(v − 1)/(λ + m), and

(b) both v + s and s are (λ + m)-admissible.

Proof Let T = (Zv, B1) be a TS(v, λ); so v is λ-admissible. We now add s new vertices

in S = {n1, n2, ..., ns} to form an enclosing (Zv ∪ S, B′) of T as follows. Let (S, B2) be

a TS(s, λ + m) (this exists by assumption (b)). The remaining edges not yet occurring in

triples are therefore the edges in mKv, and the λ + m edges joining each vertex in Zv to

each vertex in S. Then there are mv(v − 1)/2 + vs(λ + m) remaining edges so, since v + s

is (λ + m)-admissible, it must be that the number of remaining edges is divisible by 3:

mv(v − 1)/2 + vs(λ + m) ≡ 0 (mod 3), so

8



mv(v − 1) + 2vs(λ + m) ≡ 0 (mod 3), and

mv(v − 1)− vs(λ + m) ≡ 0 (mod 3),

and so 3 divides xv, where x = (m(v−1)−s(λ+m)). We intend to apply Theorems 2.2 and

2.3, when v is even and odd respectively, with x = (m(v−1)−s(λ+m)), µ = m, and ν = v

in both cases. Note that by assumption (a), x ≥ 0. We have just checked that condition

(b) in each of Theorems 2.2 and 2.3 holds, and condition (a) clearly holds by assumption

(a). We now check the remaining conditions considering the cases where v is even and odd

in turn.

Case 1: Suppose v is even. Condition (c) of Theorem 2.3 clearly holds, so it remains

to show that 2 divides x. Since v is even and λ-admissible, by (iii), it must be the case

that λ is even. If m is even, then m(v − 1) − s(λ + m) is clearly even. If m is odd, then

(λ + m) is odd which, by (iii), implies (v + s) is odd, since it is (λ + m)-admissible, and

thus m(v − 1)− s(λ + m) is even.

So by Theorem 2.3 there exists a set of triples B3 which induces an x = (m(v−1)−s(λ+

m))-regular subgraph on the vertex set Zv whose complement in mKv has a 1-factorization

into the s(λ + m) 1-factors in F = {F1, F2, ...Fs(λ+m)}.
Let B4 = {{nj , a, b} | 1 ≤ j ≤ s, i ≡ j (mod s), and {a, b} ∈ E(Fi)}. Then each of the

remaining edges clearly occurs in a triple in B4.

Therefore (Zv ∪S, B1 ∪B2 ∪B3 ∪B4 = B′) is clearly a TS(v + s, λ + m) containing T .

Case 2: Suppose v is odd. Checking the remaining conditions of Theorem 2.4, clearly

m(v − 1) is even. Therefore x is clearly even unless s(λ + m) is odd; but then v + s is

even and (λ + m) is odd, contradicting v + s being (λ + m)-admissible. So, condition (c) of

Theorem 2.4 is met.

By Theorem 2.4, there exists a set B3 of triples on the vertex set Zv which induces an

x = (m(v− 1)− s(λ + m))-regular subgraph whose complement on Zv has a 2-factorization

consisting of the s(λ+m)/2 2-factors in F = {F1, F2, ...Fs(λ+m)/2}. So define B4 = {{nj , a, b}
| 1 ≤ j ≤ s, i ≡ j (mod s), and {a, b} ∈ E(Fi)}.

9



S

V

Figure 2.1: Using the 1-factor in Theorem 2.5 Case 1

V

S

Figure 2.2: Using the 2-factor (not necessarily connected) in Theorem 2.5 Case 2
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Then (Zv ∪ S, B1 ∪B2 ∪B3 ∪B4 = B′) is clearly a TS(v + s, λ + m) containing T .

We now easily obtain the result of Hurd, Munson, and Sarvate [13] in the following

corollary.

Corollary 2.1. There exists an enclosing of every TS(v, λ) in a TS(v + 1, λ + m) if and

only if 1 ≤ m(v − 1)/(λ + m) and v + 1 is (λ + m)-admissible.

Proof First, suppose that there exists an enclosing of a TS(v, λ), (V, B1) in a TS(v +

1, λ+m), (V ∪S, B′). Then S = {n1} and n1 has degree v(λ+m). Each of the v(λ+m)/2

triples containing n1 in B′ contains an edge in mKv. Therefore mv(v− 1)/2 ≥ v(λ+m)/2,

so 1 ≤ m(v − 1)/(λ + m).

Next, suppose that there exists a TS(v, λ), (V, B1), such that 1 ≤ m(v − 1)/(λ + m),

and that (v + 1) is (λ + m)-admissible. Clearly s = 1 is (λ + m)-admissible. Therefore, by

Theorem 2.5, there exists an enclosing TS(v + 1, λ + m), (V ∪ S, B′) of (V,B1).

2.3 Enclosings when |S|+1 is (λ + m)-admissible

In this section we investigate the enclosing of a TS(v, λ) in a TS(v + s, λ + m) when

|S|+1 is (λ+m)-admissible. We essentially borrow a vertex from Zv and repeat the process

from Theorem 2.5.

Theorem 2.6. Let v, λ, m, and s be positive integers. Then every TS(v, λ) can be enclosed

in a TS(v + s, λ + m) if:

(a) s ≤ (m(v − 2)−m)/(λ + m),

(b) both v + s and s + 1 are (λ + m)-admissible.

Proof Let T = (Zv, B1) be a TS(v, λ); so v is λ-admissible. We add the s new vertices in

S = {n1, n2, ..., ns} and adjoin vertex 0 ∈ Zv to the set S creating S′ = {n1, n2, ..., ns, 0}.
Let (S′, B2) be a TS(s + 1, λ + m) (this exists by assumption (b)). The remaining edges

not yet occurring in triples are therefore the edges in mKv−1, the λ + m edges joining

each vertex in Zv−1 to each vertex in S, and the m edges joining 0 to each vertex in Zv−1.

11



Following the proof of Theorem 2.5, since v + s is (λ + m)-admissible, it must be that the

number of remaining edges is divisible by 3:

m(v − 1)(v − 2)/2 + (v − 1)s(λ + m) + m(v − 1) ≡ 0 (mod 3), so

(v − 1)(m(v − 2) + 2s(λ + m) + 2m) ≡ 0 (mod 3), and

(v − 1)(m(v − 2)− s(λ + m)−m) ≡ 0 (mod 3).

Therefore, either

(v − 1) ≡ 0 (mod 3) or

m(v − 2)− s(λ + m)−m ≡ 0 (mod 3).

In either case, it follows that 3 divides x(v− 1), where x = (m(v− 2)− s(λ + m)−m). By

assumption (a), x ≥ 0. Therefore, with µ = m and ν = v − 1 in each of Theorems 2.2 and

2.3 it can be seen that condition (b) and condition (a) clearly hold in each theorem. We

now examine the cases where v is even and odd in turn.

Case 1: Suppose v is even. Then by (iii), λ must be even since v is λ-admissible. Since

v + s 6≡ s + 1 (mod 2), using condition (b), the only way (iii) can hold in both cases is if

λ + m is even. So m is even. Let x = (m(v − 2) − s(λ + m) −m). Then x is even, and

m(v − 2) is even, so condition (c) of Theorem 2.4 holds (with µ = m and ν = v − 1). We

therefore obtain the desired enclosing by proceeding in the same manner as in the proof of

Case 2 of Theorem 2.5.

Case 2: Next, suppose v is odd. Let x = (m(v − 2)− s(λ + m)−m). 2 clearly divides

(v − 1), so condition (c) of Theorem 2.3 is satisfied. Since v + s and s + 1 are (λ + m)-

admissible, s(λ + m) and (v + s − 1)(λ + m) are even; since v is λ-admissible, (v − 1)λ is

even. So by (iii), (v + s − 1)(λ + m) − (v − 1)λ = m(v − 1) + s(λ + m) ≡ x (mod 2) is

even. So condition (d) of Theorem 2.3 is met (with µ = m and ν = v − 1). We therefore

12



obtain the desired enclosing by proceeding in the same manner as in the proof of Case 1 of

Theorem 2.5.

SV

Figure 2.3: Idea of the construction of Theorem 2.6 Case 2

2.4 Enclosings when |S|+3 is (λ + m)-admissible

In this section we investigate the enclosing of a TS(v, λ) where |S|+3 is (λ + m)-

admissible.

Theorem 2.7. Let v, λ, m, and s be positive integers. Then every TS(v, λ) can be enclosed

in a TS(v + s, λ + m) if:

(a) s ≤ (m(v − 4)− 3m)/(λ + m),

(b) both v + s and s + 3 are (λ + m)-admissible, and

(c) s ≡ 0 or 4 (mod 6) or s ≥ 7.

Proof Let T = (Zv, B1) be a TS(v, λ); so v is λ-admissible. We add the s new vertices

in S = {n1, n2, ..., ns} and adjoin vertices 0, 1, 2 ∈ Zv to the set S creating the set S′ =

{n1, n2, ..., ns, 0, 1, 2}.

13



If s ≡ 0 or 4 (mod 6) then s + 3 ≡ 1 or 3 (mod 6). Let (S′, B′
2) be a TS (s + 3, λ + m)

that consists of (λ + m) copies of TS(s + 3, 1) each of which contains the triple {0, 1, 2}
(this exists by assumptions (b) and (c)), removing λ copies of the triple {0, 1, 2} from B′

2

we let this set of triples be B2. Then let (S′, B2) be a partial triples system on S′.

If s ≥ 7 we need to enclose λK3 into (λ + m)Ks+3 where K3 is λ copies of the triple

{0, 1, 2}. We let v′ = 3. By assumption (b), s + 3 is (λ + m)-admissible, and 3 is of course

m-admissible. If (λ + m)v′s ≤ (λ + m)s(s− 1)/2 we can apply Theorem 2.3. Since v′ = 3,

we have

3 ≤ (s− 1)/2, and

s ≥ 7.

By assumption (c), this bound holds. We then let (S′, B2) be the partial triple system given

by the above construction and Theorem 2.5 ignoring the triples of λK3.

Since v + s is (λ + m)-admissible, it must be that the number of remaining edges is

divisible by 3:

m(v − 3)(v − 4)/2 + (λ + m)(v − 3)s + m3(v − 3) ≡ 0 (mod 3), so

(v − 3)(m(v − 4) + (λ + m)2s + 6m) ≡ 0 (mod 3), and

(v − 3)(m(v − 4)− s(λ + m)− 3m) ≡ 0 (mod 3).

Therefore, either

(v − 3) ≡ 0 (mod 3) or

m(v − 4)− s(λ + m)− 3m ≡ 0 (mod 3).

In either case, it follows that 3 divides x(v − 3), where x = (m(v − 4) − (λ + m)s − 3m).

By assumption (a), x ≥ 0. Therefore, with µ = m and ν = v − 3 in each of Theorems 2.2

14



and 2.3 it can be seen that conditions (a) and (b) clearly hold in each theorem. We now

examine the cases where v is even and odd in turn, using the value of x in both cases.

Triple System of

u+3+m)K 3

Use Theorem 2.5

\   K( λλ

Figure 2.4: Idea of the construction of Theorem 2.7

Case 1: Suppose v is even. Then by (iii), λ is even since v is λ-admissible. Since

v + s 6≡ s + 3 (mod 2), the only way condition (b) of Theorem 2.4 and (iii) can hold is if

λ + m is even. So m is even, x = (m(v− 4)− (λ + m)s− 3m) is even, and m(v− 4) is even,

so condition (c) of Theorem 2.4 holds (with µ = m and ν = v− 3). We therefore obtain the

desired enclosing by proceeding in the same manner as in the proof of Case 2 of Theorem

2.5.

Case 2: Next, suppose v is odd. Clearly 2 divides (v−3), so condition (c) of Theorem 2.3

is satisfied. Since v+s and s+3 are (λ+m)-admissible, (λ+m)(s+2) and (λ+m)(v+s−1)

are even and thus, (λ + m)s is even as well; since v is λ-admissible, λ(v− 1) is even. So, by

(iii), (λ + m)(v + s− 1)− λ(v − 1) = m(v − 4) + (λ + m)s + 3m ≡ x (mod 2) is even. So

condition (d) of Theorem 2.3 is met (with µ = m and ν = v − 3). We therefore obtain the

desired enclosing by proceeding in the same manner as in the proof of Case 1 of Theorem

2.5.
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2.5 Other Enclosings

The preceding constructions have addressed the existence of enclosings for all values of

s and λ + m (restricted by the bounds on s), except when s ≡ 5 (mod 6) and (λ + m) ≡ 1

or 5 (mod 6). We now address this case to give a comprehensive list of constructions for all

s and λ + m within the tolerance of our bounds.

Theorem 2.8. Let v, λ,m, and s be positive integers with s ≡ 5 (mod 6). Let v be even and

(λ+m) ≡ 1 or 5 (mod 6), m > 1. Then every TS(v, λ) can be enclosed in a TS(v+s, λ+m),

if:

(a) s ≤ (m− 1)(v − 1)/(λ + m− 1) if (λ + m) ≡ 1 (mod 6),

(b) s ≤ (m− 1)(v − 3)/(λ + m− 1) if (λ + m) ≡ 5 (mod 6), and

(c) v + s is (λ + m)-admissible.

Proof Let T = (Zv, B1) be a TS(v, λ); so v is λ-admissible. We add the s new vertices in

S = {n1, n2, ..., ns}.
Case 1: Let v be even and (λ + m) ≡ 1 (mod 6). By Table 2.1, assumption (c) implies

that (v + s) ≡ 1 or 3 (mod 6). So let (Zv ∪ S, B2) be a TS(v + s, 1). Since λ + m− 1 ≡ 0

(mod 6), s ≡ 5 (mod 6) is (λ + m− 1)-admissible. Let (S, B3) be a TS(s, λ + m− 1) .

We now intend to apply Theorem 2.3 as in Theorem 2.5 since s ≤ (m− 1)(v− 1)/(λ +

m−1) with x = ((m−1)(v−1)−(λ+m−1)s) ≥ 0 (by assumption (a)), µ = m−1, and ν = v.

Condition (a) of Theorem 2.3 clearly holds since x ≥ 0. Since v + s is (λ + m)-admissible,

the number of remaining edges must be divisible by 3:

(m− 1)v(v − 1)/2 + (λ + m− 1)vs ≡ 0 (mod 3), so

v((m− 1)(v − 1)− (λ + m− 1)s ≡ 0 (mod 3),

and so 3 divides xv, satisfying condition (b) of Theorem 2.3. Condition (c) of Theorem 2.3

is clear as well since ν = v is even. λ must be even (by (iii)) and µ = m− 1 must be even
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so condition (d) of Theorem 2.3 is satisfied. We therefore obtain the desired enclosing by

proceeding in the same manner as in the proof of Case 1 of Theorem 2.5.

Case 2: Let v be even and (λ + m) ≡ 5 (mod 6). Again, since (v + s) ≡ 1 or 3 (mod

6) we let (Zv ∪ S, B2) be a TS(v + s, 1). We adjoin vertex 0 ∈ Zv to the set S creating

S′ = {n1, n2, ..., ns, 0}. Since s + 1 ≡ 0 (mod 6) and (λ + m− 1) ≡ 4 (mod 6), let (S′, B3)

be a TS(s + 1, λ + m− 1).

We now apply Theorem 2.4, as in Theorem 2.6, with x = (m−1)(v−3)−(λ+m−1)s ≥ 0

(by assumption (b)), µ = m− 1, and ν = v− 1. Condition (a) of Theorem 2.4 clearly holds

since x ≥ 0. We now check the remaining conditions of Theorem 2.4. Since v + s is

(λ + m)-admissible, the number of remaining edges must be divisible by 3:

(m− 1)(v − 1)(v − 2)/2 + (λ + m− 1)(v − 1)s + (m− 1)(v − 1) ≡ 0 (mod 3), so

(v − 1)((m− 1)(v − 3)− (λ + m− 1)s ≡ 0 (mod 3),

and so 3 divides x(v − 1), satisfying condition (b) of Theorem 2.4. Since µ = m − 1 and

(λ+m−1) must be even, condition (c) of Theorem 2.4 is satisfied. We therefore obtain the

desired enclosing by proceeding in the same manner as in the proof of Case 1 of Theorem

2.6.

Theorem 2.9. Let v, λ, m, and s be positive integers with s ≡ 5 (mod 6). Let v ≡ 2 or 4

(mod 6), (λ + m) ≡ 1 or 5 (mod 6), and m = 1. Then every TS(v, λ) can be enclosed in a

TS(v + s, λ + 1) if:

(a) s ≥ v + 1, and

(b) v + s is (λ + m)-admissible.

Proof Let T = (Zv, B1) be a TS(v, λ); so v is λ-admissible. We add the s new vertices in

S = {n1, n2, ..., ns}.
Case 1: Let v ≡ 2 (mod 6). By Table 2.1, assumption (b) implies that λ ≡ 0 (mod 6).

(v + s) ≡ 1 (mod 6) and m = 1 so (λ+m) ≡ 1 (mod 6). Let (Zv ∪S,B2) be a TS(v + s, 1).
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The remaining edges not yet occurring in triples are therefore the edges in λKs and the λ

edges joining each vertex in Zv to each vertex in S. Since

λs(s− 1)/2 ≥ λvs/2, we have that

s ≥ v + 1.

We can now apply Theorem 2.4, as in Case 2 of Theorem 2.5, and choose S to be Zv with

x = λ(s − 1) − λv ≥ 0 (by assumption (a)), µ = λ, and ν = s. Conditions (a) and (c) of

Theorem 2.4 are clear. Since v + s is (λ + m)-admissible, the number of remaining edges

must be divisible by 3:

λs(s− 1)/2 + λvs ≡ 0 (mod 3), so

s(λ(s− 1)− λv) ≡ 0 (mod 3),

and so 3 divides xs. Therefore, condition (b) is satisfied and we therefore obtain the desired

enclosing by proceeding in the same manner as in the proof of Case 2 of Theorem 2.5.

Case 2: Let v ≡ 4 (mod 6). By (iii), assumption (b) implies that λ is even. (v + s) ≡
3 (mod 6), m = 1, and (λ + m) ≡ 1 or 5 (mod 6). Let (Zv ∪ S, B2) be a TS(v + s, 1). The

remaining edges not yet occurring in triples are therefore the edges in λKs and the λ edges

joining each vertex in Zv to each vertex in S. Since

λs(s− 1)/2 ≥ λvs/2, we have that

s ≥ v + 1.

We therefore obtain the desired enclosing by proceeding in the same manner as Case 1 with

x = λ(s− 1)− λv, µ = λ, and ν = s.

18



2.6 Large Enclosings

We have looked at enclosings involving 1-factorizations and 2-factorizations in the graph

of mKv. We now switch our construction, and apply Theorems 2.2 and 2.3 to the added

vertices in the graph of (λ + m)Ks to give us enclosings involving values of s > v.

Theorem 2.10. Let v, λ, m, and s be positive integers. Then every TS(v, λ) can be enclosed

in a TS(v + s, λ + m) if:

(a) s ≥ v + 1, and

(b) v is m-admissible and v + s is (λ + m)-admissible.

Proof Let T = (Zv, B1) be a TS(v, λ); so v is λ-admissible. We add the s new vertices

in S = {n1, n1, ..., ns} to form an enclosing (Zv ∪ S, B′) of T as follows. Let (Zv, B2) be a

TS(v, m) (this exists by assumption (b)). The remaining edges not yet occurring in triples

are therefore the edges in (λ + m)Ks, and the (λ + m) edges joining each vertex in Zv to

each vertex in S. Then there are (λ + m)s(s− 1)/2 + vs(λ + m) remaining edges so, since

v + s is (λ + m)-admissible, it must be the that the remaining edges is divisible by 3:

(λ + m)s(s− 1)/2 + (λ + m)vs ≡ 0 ( mod 3), so

(λ + m)s(s− 1)− (λ + m)vs ≡ 0 ( mod 3), and

(λ + m)s(s− v − 1) ≡ 0 ( mod 3),

and so 3 divides xs, where x = (λ + m)(s − v − 1). We have just checked that condition

(b) in each of Theorems 2.2 and 2.3 holds, and condition (a) clearly holds by assumption

(a). We intend to apply Theorems 2.2 and 2.3, where s is even and odd in turn, with

x = (λ + m)(s− v − 1), µ = λ + m, and ν = s in both cases.

Case 1: Suppose s is even. Condition (c) of Theorem 2.3 clearly holds, so it remains to

show that 2 divides x. If (λ+m) is even then x is clearly even. If (λ+m) is odd, condition

(iii) implies (v + s) is odd (by assumption (b)), and thus x = (λ + m)(s − v − 1) is even.
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So condition (d) of Theorem 2.3 is satisfied. We therefore obtain the desired enclosing by

proceeding in the same manner as in the proof of Case 1 of Theorem 2.5.

Case 2: Suppose s is odd. Checking the remaining conditions of Theorem 2.4, (λ +

m)(s−1) is clearly even. Therefore x is even unless (λ+m)v is odd; but, by (iii), if (λ+m)v

is odd then (λ + m)(s− 1) is odd, contradicting s being odd. So, condition (c) of Theorem

2.4 is met. We then get the desired enclosing by proceeding in the same manner as in the

proof of case 2 of Theorem 2.5.

Theorem 2.11. Let v, λ, m, and s be positive integers. Then every TS(v, λ) can be enclosed

in a TS(v + s, λ + m) if:

(a) 1 ≤ m(v − 1)/(λ + m) and v + 1 is (λ + m)-admissible, and

(b) s ≥ v + 3 and v + s is (λ + m)-admissible.

Proof Let T = (Zv, B1) be a TS(v, λ); so v is λ-admissible. We add the s new vertices in

S = {n1, n1, ..., ns} and adjoin vertex ns ∈ S to the set Zv creating Z ′v = {0, 1, 2, ..., v, ns}.
Let (Z ′v, B2) be a TS(v + 1, λ + m) (this exists by assumption (a) and Corollary 2.5). Since

v + s is (λ + m)-admissible, it must be the case that the number of remaining edges is

divisible by 3:

(λ + m)(v + 1)(s− 1) + (λ + m)(s− 1)(s− 2)/2 ≡ 0 (mod 3), so

(λ + m)(s− 1)(−(v − 1) + s− 2) (mod 3), and

(λ + m)(s− 1)(s− v − 3) (mod 3)

and so 3 divides x(s− 1) where x = (λ + m)(s− v − 3) ≥ 0. We intend to apply Theorems

2.2 and 2.3, when s is odd and even, respectively, with x = (λ + m)(s− v − 3), µ = λ + m,

and ν = s− 1.

Case 1: Suppose s is odd, then s − 1 is even. Condition (c) of Theorem 2.3 clearly

holds, so it remains to show that 2 divides x. If (λ + m) is even the x is clearly even. If

(λ+m) is odd, condition (iii) implies v+s−1 is even and thus s−v−3 is even. Therefore x
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is even, satisfying condition (d) of Theorem 2.3. We therefore obtain the desired enclosing

by proceeding in the same manner as in the proof of Case 1 of Theorem 2.5 with the above

values for x, µ, and ν.

Case 2: Suppose s is even, then s − 1 is odd. Clearly 2 divides ν − 1. If (λ + m) is

even, x is clearly even. If (λ + m) is odd, then condition (iii) and assumption (b) imply

that v + s− 1 must be even. Thus s− v − 3 is even and therefore x is even. So, condition

(c) of Theorem 2.4 holds. We therefore obtain the desired enclosing by proceeding in the

same manner as in the proof of Case 2 of Theorem 2.5.

Theorem 2.12. Let v, λ,m, and s be positive integers with s ≡ 1 or 5 (mod 6). Then every

TS(v, λ) can be enclosed in a TS(v + s, λ + m) if:

(a) s ≥ v + 1 and (λ + m) ≡ 1 (mod 6) or (λ + m) ≡ 5 (mod 6) and v ≡ 0, 1, 3, or, 4

(mod 6), or

(b) s ≥ v+3, 1 ≤ (m−1)(v−1)(λ+m−1) and v+1 is (λ+m)-admissible if (λ+m) ≡
5 (mod 6) and v ≡ 2 or 5 (mod 6), and

(c) v + s is (λ + m)-admissible.

Proof Let T = (Zv, B1) be a TS(v, λ); so v is λ-admissible. We add the s new vertices

in S = {n1, n1, ..., ns}. Let (Zv ∪ S,B2) be a TS(v + s, 1) (this exists by Table 2.1 since

(λ + m) ≡ 1 or 5 (mod 6), and assumption (c)). The necessary conditions of the following

cases are checked by following the proof of Theorem 2.8.

Case 1: If s ≥ v + 1 and (λ + m) ≡ 1 (mod 6), or (λ + m) ≡ 5 and v ≡ 0, 1, 3, or 4

(mod 6) then λ + m− 1 ≡ 0 (mod 6) and v is (λ + m− 1)-admissible. We then proceed in

the same manner as Theorem 2.10 with x = (λ + m − 1)(s − v − 1), µ = λ + m − 1, and

ν = s.

Case 2: First, assume assumption (b). Then λ + m− 1 ≡ 4 (mod 6). We adjoin vertex

ns ∈ S to the set Zv creating Z ′v = {0, 1, 2, ..., v, ns}. Let (Z ′v, B2) be a TS(v +1, λ+m− 1)

(this exists by assumption (b) and Corollary 2.5). We then proceed in the same manner as

Theorem 2.10 with x = (λ + m− 1)(s− v− 3) ≥ 0 (by assumption (b)), µ = λ + m− 1, and

ν = s− 1.
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2.7 Conclusion

The constructions presented here are exhaustive in the sense that for each possible

congruence of s or v (mod 6) and each possible congruence of (λ + m) or m (mod 6), at

least one theorem can be applied to obtain an enclosing, as described in the tables below.

Of course, not all enclosings have been found, since each result places restrictions on s or

v, given the other parameters.

Notice that Theorem 2.2 contains a bound that one can view as being quadratic in

s, given all other parameters of our enclosings. As an example of how one would use the

results in the previous section, suppose that we attempt to enclose a TS(82, 8) in a triple

system that is near the bounds of Theorem 2.2. In order to do so we will examine the case

when m = 1 and vary s. The necessary condition requires that

s ≤ 83
2
−

√
(832)81− 4(82)81(9)

2(9)
≈ 10.13 or

s ≥ 83
2

+

√
(832)81− 4(82)81(9)

2(9)
≈ 72.87 .

It can be seen that the necessary condition creates a “gap” of values that is unusual in

these types of designs. This gap is created by he increasing need to use each edge with two

v vertices, or two s vertices, with two “mixed” edges (those having a v and s vertex). We

will see this phenomenon in the following example. We will use s = 73 for this example,

looking at a value bordering the necessary condition. If we simply use the theorems in this

chapter we can enclose a TS(82, 5) in a TS(155, 9) if s ≤ m(v−1)
(λ+m) (Theorem 2.5) giving us

s ≤ 1(81)
9 = 9 which gets us very close to the first bound. Or, s ≥ 83 (Theorem 2.10) which

is not nearly as close as we would like. It is expected that the constructions in this chapter

could be used to greater effect as the following suggests.

From Table 2.1, we see that it is possible for a TS(155, 9) to exist. Then Let B1 consist

of the triples of a TS(82, 8) then V is a 1K82 and S is a 9K73 with a 9K82,73 between the

two sets of vertices. We will attempt to use our first construction presented. Table 2.1
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82

9K73

1K

Figure 2.5: Example bordering the bounds of Theorem 2.3

says that a TS(73, 9) exists so let these triples make up the set B2. There are now 3321

edges in 1K82 which consists of 81 1-factors each of which contains 41 edges. Each 1-factor

uses 82 edges in 9K82,73. Using every edge in 1K82 in a triple with 2 vertices in V and one

in S leaves 53874 − 82(81) = 47232 edges that need to be put in triples, but there is no

possibility of putting these edges into triples given the aforementioned partitions. So, this

construction has “failed” to enclose the TS(82, 8) into a TS(155, 9).

We will next attempt a construction by “switching” our construction by using a mod-

ification of Theorem 2.7 which would allow us to get closer to the necessary bound rather

than with the bound in Theorem 2.10. This idea was more commonly seen in the section

Large Enclosings, but is applicable in our point here. We will use the construction that

“borrows” 3 vertices. Of course, we will let B1 be the triples of a TS(82, 8). Next, we will

create the set V ′ by adjoining the vertices n1, n2, n3 ∈ S to V , and let the remaining vertices

of S be the set S′. By Table 2.1, a TS(85, 1), (V ∪ {n1, n2, n3}, B2), exists and let the 24

unused edges between n1, n2 and n3 form a set of 8 triples, B3. Then there are 35 edges in

each of the 621 1-factors that comprise the 21735 edges in 9K70 (the induced graph on S′).

We need 9(85) = 765 1-factors which requires 26775 edges in S′. Using all edges possible,
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there are still 53874 − 2(21735) = 10404 edges still to be put in triples which cannot be

done without “breaking up” some of the already formed triples since all edges not used in

triples are “mixed”. That is, they connect V vertices with S vertices which will not allow

for triples to be formed without some connected edge (those already in triples). Essentially,

since a bipartite graph has no odd cycles, and what remains is a bipartite graph, we cannot

form a triple. So this construction has “failed” as well.

We use the term “failed” loosely and in the sense that each construction leaves some

edges not partitioned into triples. But, with a lot of well chosen triple deconstruction, we

could construct triples involving the remaining edges between the sets V and S and the

edges of the deconstructed triples to finish the enclosing. With values close to the bounds

given by Theorem 2.3, the constructions would require nearly every edge in V and S to use

two edges between V and S.

We have seen the usefulness of the theorems provided by Fu and Rodger [8]. In the

majority of our constructions, we have dealt mainly with triples containing a symbol of S

and two symbols in V . Section 2.5 is the first instance where we have extensively used

“mixed” triples (Those having one symbol in V and two symbols in S and vice versa.).

It is easily seen that this type of construction relaxes the bounds given in the previous

four sections. It is the hopes of the authors that the flexibility of using “mixed” triples

will constitute a lowering of the restrictive bounds presented, creating a larger family of

enclosings.
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s (mod 6) Restrictions on λ + m (mod 6) Theorem Construction

0 0, 2, 4 2.5, 2.6, 2.7

0 1, 3, 5 2.6, 2.7

1 0 2.5, 2.6, 2.7

1 2, 4 2.5, 2.7

1 1, 3, 5 2.5

2 0 2.5, 2.6, 2.7

2 1, 2, 4, 5 2.6

2 3 2.6, 2.7

3 0, 2, 4 2.5, 2.6, 2.7

3 1, 3, 5 2.5

4 0 2.5, 2.6, 2.7

4 1, 5 2.7

4 2, 4 2.5, 2.7

4 3 2.6, 2.7

5 0 2.5, 2.6, 2.7

5 1, 5 2.8, 2.9

5 2, 4 2.6

5 3 2.5

Table 2.2
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v (mod 6) Restrictions on m (mod 6) Theorem Construction

0 0, 2, 4 2.10

0 1, 3, 5 2.11

1 0, 1, 2, 3, 4, 5 2.10

2 0 2.10

2 1, 2, 3, 4, 5 2.11

3 0, 1, 2, 3, 4, 5 2.10

4 0, 2, 4 2.10

4 1, 5 2.12

4 3 2.11

5 0, 3 2.10

5 1, 5 2.12

5 2, 4 2.11

Table 2.3
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Chapter 3

Enclosings of 4-Cycle Systems

3.1 Preliminaries

We now investigate the enclosings of λ-fold 4-cycle systems. In this section we com-

pletely solve the enclosing problem for λ-fold 4-cycle systems when u ≥ 2 proving the

following theorem.

Figure 3.1: 4-cycle decomposition of K9

Theorem 3.1. Let u > 1. Every 4-cycle system of λKv can be enclosed in a 4-cycle system

of (λ + m)Kv+u iff

(a) (v + u− 1)(λ + m) ≡ 0 (mod 2), and

(b) u(u− 1)(λ + m)/2 + mv(v − 1)/2 + vu(λ + m) ≡ 0 (mod 4).

Throughout, we will use standard graph theoretic terminology which, if not defined

here, can be found in [17, 22]. If G and H are two graphs then let G ∪ H be the graph
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with vertex set V (G ∪ H) = V (G) ∪ V (H) and edge set E(G ∪ H) = E(G) ∪ E(H). If

V (G) ∩ V (H) = ∅, then let G ∨ H be the graph with V (G ∨ H) = V (G) ∪ V (H) and

E(G ∨H) = E(G) ∪ E(H) ∪ {{g, h} | g ∈ V (G), h ∈ V (H)}. If H is a subgraph of G, let

G−H be the subgraph of G containing precisely those edges of G which are not in H. Let

λK(X, Y ) be the bipartite graph with vertex set X ∪ Y on which each x ∈ X is joined to

each y ∈ Y with λ edges. Throughout this section let v = |V |, u = |U |, and w = |W |.
We begin by proving the necessity of conditions (a)-(c) in Theorem 3.1 which clearly

follows by the following lemma.

Lemma 3.1. Suppose there exists a 4-cycle system of λKv. Then conditions (a)-(c) of

Theorem 3.1 hold iff in (λ + m)Kv+u:

i) each vertex has even degree, and

ii) the number of edges is divisible by 4.

Proof

First, assume that conditions (a) and (b) hold. Then (λ + m)(v + u− 1), the degree of

each vertex in (λ + m)Kv+u, is even, thus proving (i). By (b), u(u− 1)(λ + m)/2 + mv(v−
1)/2 + vu(λ + m) ≡ 0 (mod 4), adding in λv(v − 1)/2, which is the number of edges in a

λKv (which must be divisible by 4), we have: u(u− 1)(λ + m)/2 + mv(v − 1)/2 + vu(λ +

m) + λv(v − 1) ≡ 0 (mod 4) which is the number of edges in (λ + m)Kv+u, proving (ii).

Now assume that conditions (i) and (ii) hold. Then (λ+m)(v +u− 1), the degree of a

vertex in (λ+m)Kv+u is even, proving (a) holds. (λ+m)(v +u− 1) = (λ+m)(u)+m(v−
1) + λ(v − 1) this implies that (λ + m)(u) + m(v − 1) is even, (because a 4-cycle system

of λKv is postulated to exist) λ(v − 1) must be even, proving (b). The number of edges

of (λ + m)Kv+u is (λ + m)v(v − 1)/2 + (λ + m)u(u − 1)/2 + (λ + m)uv which is divisible

by 4. Since there exists a 4-cycle system of λKv, λv(v − 1)/2 is also divisible by 4. So

(λ + m)v(v − 1)/2 + (λ + m)u(u− 1)/2 + (λ + m)uv − λv(v − 1)/2 = u(u− 1)(λ + m)/2 +

mv(v − 1)/2 + vu(λ + m) ≡ 0 (mod 4), giving us condition (b).
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Table 3.1 [2] below summarizes these necessary as well as the sufficient conditions for

the existence of 4-cycle systems of lKw. An integer w is said to be l-admissible if conditions

(i) and (ii) of Lemma 3.2 are satisfied for some index l. This definition is made in the

context of the existence of 4-cycle systems, conditions (a)-(c) of Theorem 3.1 being obvious

necessary conditions for their existence. An interpretation of Table 3.1 is that there exists

a 4-cycle system (W, l) if and only if w is l-admissible.

l Restrictions on w

1 (mod 4) w ≡ 1 (mod 8)

2 (mod 4) w ≡ 0 or 1 (mod 4)

3 (mod 4) w ≡ 1 (mod 8)

0 (mod 4) w 6= 2 or 3

Table 3.1

Necessary and sufficient conditions for the existence of 4CS(w, l).

The following two results will be used extensively to partition the edges of Ku,v and

mKv into 4-cycles, respectively.

Theorem 3.2. [20] There exists a 4-cycle system of λKx,y if and only if

(1) x, y ≥ 2

(2) λxy ≡ 0 (mod 4)

(3) λx ≡ λy ≡ 0 (mod 2).

The following table found in [9] will be useful in discussing our next lemma. Table 3.2

is a list of the leaves of maximum packings of λKv with 4-cycles. F is a 1-factor; Cn is a

cycle of length n; E6 is the set of graphs on n vertices with 6 edges in which each vertex

has even degree, D is a doubled edge; and F2 can be chosen to be the set of graphs on n

vertices in which all vertices have degree 1 except for either one vertex that has degree 5,

or two vertices that have degree 3, or the graph with vertex set {0, 1, 2, 3, 4, 5} and edge

set {{0, 1}, {0, 2}, {0, 3}, {1, 4}, {1, 5}}; in this dissertation we assume F2 is the latter two

whenever possible.
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λ (mod 4) / v (mod 8) 0 1 2 3 4 5 6 7

1 F φ F C3 F E6 F C5

2 φ φ E6, D if v > 3 E6, D if v > 3 φ φ E6, D E6, D

3 F φ F2 if v > 2 C5 if v > 3 F E6, D F2 C3

4 φ φ φ if v > 2 φ if v > 3 φ φ φ φ

Table 3.2 Maximum Packings; Use E6 if simple leaves are required, and D otherwise.

The following lemma will be useful in the construction when the number of new vertices

is 2.

Lemma 3.2. If there exists a partial decomposition of λKv into t 4-cycles, then there exists

an equitable, partial decomposition of λKv into t 4-cycles.

Proof Let L(λ, v) denote the number of edges in the leave of a maximum packing of λKv

with 4-cycles (see Table 3.2, and use D as the leave when available). Since all leaves can be

chosen to be equitable, in view of Table 3.2, we can assume that t < (λv(v−1)
2 − L(λ, v))/4.

We will proceed by induction on the index λ. Bryant et al [5] proved the case when λ = 1.

Assume that the hypothesis is true for λ ≤ k− 1. In most cases the result will immediately

follow by taking the union of two graphs with the same vertex set, namely (λ − z)Kv and

zKv, with z ∈ {1, 2}, to form the graph λKv.

Case 1: Suppose t ≤ t∗ = ((λ− 1)v(v−1)
2 −L(λ− 1, v))/4. An equitable, partial 4-cycle

decomposition of (λ−1)Kv then exists by the induction hypothesis; this is also an equitable,

partial decomposition of λKv into 4-cycles.

Case 2: Suppose t∗ < t ≤ t∗∗ = (λv(v−1)
2 − minz∈{1,2}{L(λ − z, v) + L(z, v)})/4. Let

(V, B1) and (V, B2) be maximum packings of (λ−z)Kv and zKv, respectively with z ∈ {1, 2}.
Let G(B1) and G(B2) be the graphs induced by (V, B1) and (V, B2) respectively, naming

the vertices so that dG(B1)(i) ≤ dG(B1)(j) and dG(B2)(i) ≥ dG(B1)(j) for 0 ≤ i < j ≤ v − 1.

Let G be the union of G(B1) and G(B2). Then clearly each vertex in G has degree in

{dG(B1)(0) + dG(B2)(v − 1) + d | d ∈ {0, 2}} or {dG(B1)(0) + dG(B2)(v − 1) + d | d ∈ {2, 4}}.
In either case, it follows that (V, B1 ∪B2) is the desired equitable partial 4-cycle system.
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Case 3: Now suppose that t∗∗ < t < (λv(v−1)
2 − L(λ, v))/4. This is nearly a maximum

packing of λKv. We use the same approach as in Case 2, starting with up to two maximum

packings (V, B1) of (λ − z)Kv and (V, B2) of zKv, except that we may need to align the

respective leaves to create more 4-cycles. It suffices to consider one choice of z for each of

the possible values of λ and v. These are chosen so that the union of the leaves L1 ∪L2 has

as many 4-cycles as possible. Exactly t− t∗∗ of these 4-cycles are then added to B1 ∪B2 to

obtain the desired equitable 4-cycle system; the following argument checks this is possible.

Using Table 3.2, we consider each case in turn.

Subcase 1: Suppose first that the leaves of the two maximum packings are both 1-

factors, L1 and L2. Let the leave L1 of B1 have edge set {{2x, 2x+2}, {2x+1, 2x+3} | x ∈
{0, 1, 2, . . . , v − 1}} and the leave L2 of B2 have edge set {{0, 1}, {2, 3}, . . . , {v − 2, v − 1}}.
The additional 4-cycles are those in B3 = {(y, y + 1, y + 3, y + 2) | 0 ≤ y < t− t∗∗}. Then

(V, B1 ∪B2 ∪B3) produces the required equitable partial 4-cycle system.

Subcase 2: Let the leaves of the two maximum packings be C5’s with L1 = (0, 1, 2, 3, 4)

and L2 = (0, 2, 5, 3, 6). These edges can be taken as the 2 cycles (0, 2, 3, 4) and (0, 1, 2, 5, 3, 6)

adding the first to B1 ∪ B2 to produce the required equitable partial 4-cycle system with

leave E6 (or simply use E6 in Table 3.2).

Subcase 3: Let the leaves of the two maximum packings be a C5 with L1 = (0, 1, 2, 3, 4)

and a C3 with L2 = (1, 3, 4). Add the 4-cycle (0, 1, 3, 4) to B1 ∪ B2 to obtain the required

equitable partial 4-cycle system (or, we can simply think of removing a 4-cycle from a

4-cycle system).

The subcases take into account all relevant combinations of (λ− z)Kv and zKv to get

the desired partial equitable 4-cycle decomposition of λKv.

3.2 Enclosings when u ≥ 3

In this section we provide our first sufficient conditions for the existence of an enclosing

of a 4-cycle system of λKv, proving that Theorem 3.1 is true when u ≥ 3.
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Proposition 3.1. Let v, λ, m, and u be positive integers with v ≥ 4, u ≥ 3 and λ ≡
1 (mod 4). Then every 4CS(v, λ) can be enclosed in a 4CS(v + u, λ + m), if v + u is

(λ + m)-admissible.

Proof We will proceed case by case based on the congruence of m (mod 4) and the possible

values of u. We can assume V = Zv

Let C = (Zv, C1) be a 4CS(v, λ). Since v is λ-admissible, by Table 3.1 we see that

|Zv| = v ≡ 1 (mod 8). Let U = {n1, n2, ..., nu} with U ∩ Zv = ∅ and form an enclosing

4CS(Zv ∪ U,C ′) of C as follows.

Case 1: Suppose m ≡ 1 (mod 4). Then (λ + m) ≡ 2 (mod 4). Therefore, since v + u is

(λ+m)-admissible, (λ+m) ≡ 1+1 = 2 (mod 4) and, since v ≡ 1 (mod 8), Table 3.1 implies

that u ≡ 0 or 3 (mod 4). Since λ ≡ m (mod 4), there exists a 4CS(v, m), say (Zv, C2).

(i) If u ≡ 0 (mod 4), then u is (λ + m)-admissible so there exists a 4CS(u, λ + m),

say (U,C3); this exists by Table 3.1 since u ≡ 0 (mod 4). This leaves the edges of (λ +

m)K(Zv, U) remaining. Clearly, the degree of each vertex in (λ + m)K(Zv, U) is even and,

as u + v is (λ + m)-admissible, the number of edges remaining is divisible by 4. Therefore,

by Theorem 3.2, the remaining edges can be decomposed into 4-cycles. Let (Zv ∪U,C4) be

a 4CS of (λ + m)K(Zv, U).

Then (Zv ∪ U , C1 ∪ C2 ∪ C3 ∪ C4 = C ′) is clearly a 4CS(v + u, λ + m) containing C.

(ii) If u ≡ 3 (mod 4), adjoin vertex 0 ∈ Zv to the set U creating U ′ = {n1, n2, ..., nu, 0}.
Let (U ∪{0}, C3) be a 4CS(u+1, λ+m) (this exists by Table 3.1). This leaves the edges of

(λ+m)K(Zv\{0}, U) remaining. Clearly, the degree of each vertex in (λ+m)K(Zv\{0}, U)

is even and, as u + v is (λ + m)-admissible, the number of edges remaining is divisible by

4. Therefore, by Theorem 3.2, the remaining edges can be decomposed into 4-cycles. Let

(Zv \ {0} ∪ U,C4) be a 4CS of (λ + m)K(Zv \ {0}), U).

Then (Zv ∪ U , C1 ∪ C2 ∪ C3 ∪ C4 = C ′) is clearly a 4CS(v + u, λ + m) containing C.

Case 2: m ≡ 2 (mod 4). Then (λ + m) ≡ 3 (mod 4). Therefore, by Table 3.1, u ≡ 0

(mod 8). Since m ≡ 2 (mod 4), and v ≡ 1 (mod 8) there exists an m-fold 4CS(v,m), say

(Zv, C2). By adjoining vertex 0 ∈ Zv to the set U creating U ′ = {n1, n2, ..., nu, 0}, there also
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exists a 4CS(u+1, λ+m), (U ′, C3), (see Table 3.1). The remaining edges are those edges in

(λ+m)K(Zv, U). By Theorem 3.2, there exists a 4CS (Zv \{0}∪U,C4) of (λ+m)K(Zv, U).

Then (Zv ∪ U , C1 ∪ C2 ∪ C3 ∪ C4 = C ′) is clearly a 4CS(v + u, λ + m) containing C.

Case 3: m ≡ 3 (mod 4). Then (λ + m) ≡ 0 (mod 4). Therefore, by Table 3.1, u ∈ N,

and there exists a 4CS(v, m), say (Zv, C2).

(i) Let u be even. u is (λ + m)-admissible so there exists a 4CS(u, λ + m), say (U,C3);

this exists by Table 3.1. This leaves the edges of K(V, U) remaining. Clearly, the degree

of each vertex is even and, as u + v is (λ + m)-admissible, the number of edges remaining

is divisible by 4. Therefore, by Theorem 3.2, the remaining edges can be decomposed into

4-cycles. Let (Zv ∪ U,C4) be a 4CS of (λ + m)K(V,U).

Then (Zv ∪ U , C1 ∪ C2 ∪ C3 ∪ C4 = C ′) is clearly a 4CS(v + u, λ + m) containing C.

(ii) Let u be odd. Adjoin vertex 0 ∈ Zv to the set U creating U ′ = {n1, n2, ..., nu, 0}. Let

(U ′, C3) be a 4CS(u+1, λ+m) (see Table 3.1). This leaves the edges of (λ+m)K(Zv\{0}, U)

remaining. Clearly, the degree of each vertex in (λ + m)K(Zv \ {0}, U) is even, u + v is

(λ + m)-admissible, and the number of edges remaining is divisible by 4. Therefore, by

Theorem 3.2, the remaining edges can be decomposed into 4-cycles. Let (Zv \ {0} ∪ U,C4)

be a 4CS of (λ + m)K(Zv \ {0}, U).

Then (Zv ∪ U , C1 ∪ C2 ∪ C3 ∪ C4 = C ′) is clearly a 4CS(v + u, λ + m) containing C.

Case 4: m ≡ 0 (mod 4). Then (λ + m) ≡ 1 (mod 4). Therefore, by Table 3.1,

u ≡ 0 (mod 8), and there exists a 4CS(v, m), say (Zv, C2). Adjoin vertex 0 ∈ Zv to the

set U creating U ′ = {n1, n2, ..., nu, 0}. Let (U ′, C3) be a 4CS(u + 1, λ + m) (see Table

3.1). This leaves the edges of (λ + m)K(Zv \ {0}, U) remaining. Clearly, the degree of each

vertex in (λ + m)K(Zv \ {0}, U) is even and, as u + v is (λ + m)-admissible, the number of

edges remaining is divisible by 4. Therefore, by Theorem 3.2, the remaining edges can be

decomposed into 4-cycles. Let (Zv \ {0} ∪ U,C4) be a 4CS of (λ + m)K(Zv \ {0}, U).

Then (Zv ∪ U , C1 ∪ C2 ∪ C3 ∪ C4 = C ′) is clearly a 4CS(v + u, λ + m) containing C.
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We will refer to the proof of Proposition 3.1 often when the constructions are the same,

while still keeping track of the changing parameters of v, u, and m.

Proposition 3.2. Let v, λ, m, and u be positive integers with v ≥ 4, u ≥ 3, and λ ≡
2 (mod 4). Then every 4CS(v, λ) can be enclosed in a 4CS(v + u, λ + m), if v + u is

(λ + m)-admissible.

Proof We will proceed case by case based on the congruence of m (mod 4) and the possible

values of u. Again, we assume V = Zv.

Let C = (Zv, C1) be a 4CS(v, λ). Since v is λ-admissible, by Table 3.1 we see that

|Zv| = v ≡0, 1, 4, or 5 (mod 8). Let U = {n1, n2, ..., nu} with U ∩ Zv = ∅ and form an

enclosing 4CS(v + u,C ′) of C as follows.

Case 1: Suppose m ≡ 1 (mod 4). Then (λ + m) ≡ 3 (mod 4). And, for each value of

v, u ≡ 1, 0, 5, or 4 (mod 8), respectively.

Since, in all cases, u + v is 1-admissible, let (Zv ∪ U,C2) be a 4CS(v + u, 1). The

remaining edges of (λ + m)Ku can be decomposed into a 4CS(u, λ + m− 1), (U,C3). This

exists by Table 3.1, since u ≡ 0 or 1 (mod 4), exactly one edge between each pair of vertices

in U has been used in C2. Let (V, C4) be a 4CS(v, m − 1) of (m − 1)Kv under the same

reasoning. Clearly, the degree of each vertex in (λ + m− 1)K(V, U) must be even and the

number of edges divisible by 4. Therefore, by Theorem 3.2, the remaining edges can be

decomposed into 4-cycles. Let (Zv ∪ U,C5) be a 4CS of (λ + m− 1)K(V,U).

Then (Zv ∪ U , C1 ∪C2 ∪C3 ∪C4 ∪C5 = C ′) is clearly a 4CS(v + u, λ + m) containing

C.

Case 2: Suppose m ≡ 2 (mod 4). Then (λ + m) ≡ 0 (mod 4). First, suppose u ≥ 4.

In each case, v is m-admissible. Let (V, C2) be a 4CS(v, m) of mKv. And, for u ≥ 4, let

(U,C3) be a 4CS(u, λ + m) of (λ + m)Ku. These exist by Table 3.1. As (λ + m) ≡ 0 (mod

4), Theorem 3.2 applies to K(V,U). Let (Zv ∪ U,C4) be a 4CS of (λ + m)K(V,U).

Then (Zv ∪ U , C1 ∪ C2 ∪ C3 ∪ C4 = C ′) is clearly a 4CS(v + u, λ + m) containing C.

If u = 3, adjoin vertex 0 ∈ Zv to the set U creating U ′ = {n1, n2, n3, 0}. Let (U ′, C3)

be a 4CS(u + 1 = 4, λ + m). Clearly, the degree of each vertex in (λ + m)K(Zv \ {0}, U)
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is even and, as u + v is (λ + m)-admissible, the number of edges remaining is divisible by

4. Therefore, by Theorem 3.2, the remaining edges can be decomposed into 4-cycles. Let

(Zv \ {0} ∪ U,C4) be a 4CS of (λ + m)K(Zv \ {0}, U).

Then (Zv ∪ U , C1 ∪ C2 ∪ C3 ∪ C4 = C ′) is clearly a 4CS(v + u, λ + m) containing C.

Case 3: Suppose m ≡ 3 (mod 4). Then (λ + m) ≡ 1 (mod 4). And for u ≡ 0, 1, 4, or

5 (mod 8), u ≡ 1, 0, 5, or 4 (mod 8), respectively. Let (V ∪ U,C5) be a 4CS(u + v, 1) (this

exists by Table 3.1). We then proceed in the same manner as Case 2.

Case 4: Suppose m ≡ 0 (mod 4). Then (λ + m) ≡ 2 (mod 4).

If v ≡ 0 or 4 (mod 8), then u ≡ 0, 1, 4, or 5 (mod 8) (not respectively). In all cases, v

is m-admissible and u is (λ + m)-admissible. Let (V, C2) be a 4CS(v, m) and (U,C3) be a

4CS(u, λ + m). And, by Theorem 3.2, let (V ∪ U,C4) be a 4CS of (λ + m)K(V,U).

Then (Zv ∪ U , C1 ∪ C2 ∪ C3 ∪ C4 = C ′) is clearly a 4CS(v + u, λ + m) containing C.

If v ≡ 1 or 5 (mod 8), then u ≡ 0, 3, 4, or 7 (mod 8) (not respectively). Let (V ∪U,C3)

be a 4CS(v + u, 2) (this exists by Table 3.1). Then, as in Case 2, there exists an enclosing

(Zv ∪ U,C4) of (λ + m− 2)Kv+u.

Then (Zv ∪ U , C1 ∪ C2 ∪ C3 ∪ C4 = C ′) is clearly a 4CS(v + u, λ + m) containing C.

We will continue in much the same fashion as Proposition 3.2 using the same construc-

tions found in Proposition 3.1 with λ ≡ 3 (mod 4)

Proposition 3.3. Let v, λ, m, and u be positive integers with v ≥ 4, u ≥ 3, and λ ≡
3 (mod 4). Then every 4CS(v, λ) can be enclosed in a 4CS(v + u, λ + m), if v + u is

(λ + m)-admissible.

Proof We will proceed case by case based on the congruence of m (mod 4) and the possible

values of u. Again, we assume V = Zv.

Let C = (Zv, C1) be a 4CS(v, λ). Since v is λ-admissible, by Table 3.1 we see that

|Zv| = v ≡ 1 (mod 8). Let U = {n1, n2, ..., nu} with U ∩ Zv = ∅ and form an enclosing

4CS(v + u,C ′) of C as follows.
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Case 1: Suppose m ≡ 1 (mod 4). Then (λ + m) ≡ 0 (mod 4).

(i) Let u be even. By Table 3.1 there exists a 4CS(v, m), say (Zv, C2). Since u ≥ 4

(being even), there exists a 4CS(u, λ+m), (U,C3), and a 4CS(v+u, C4) of (λ+m)K(V, U).

Therefore, we get an enclosing in a similar fashion as in Proposition 3.1 Case 1 (i).

(ii) Let u be odd. Then there exists a 4CS(v, m), say (Zv, C2). Adjoin vertex 0 ∈ Zv

to the set U creating U ′ = {n1, n2, ..., nu, 0}. We then continue to construct our enclosing

just as in Proposition 3.1 Case 1 (ii).

Case 2: Suppose m ≡ 0 or 2 (mod 4). Then (λ + m) ≡ 1 or 3 (mod 4), respectively,

and it must be that u ≡ 0 (mod 8) (by Table 3.1). So there exists a 4CS(u + 1, λ + m), say

(U ′, C3), and let (Zv \ {0} ∪ U,C4) be a 4CS of (λ + m)K(Zv \ {0}, U). We then construct

our enclosing just as in Proposition 3.1 Case 1 (ii).

Case 3: Suppose m ≡ 3 (mod 4). Then (λ + m) ≡ 2 (mod 4), and it must be that

u ≡ 0 or 3 (mod 4).

(i) If u ≡ 0 (mod 4), then we proceed as in Proposition 3.1 Case 1 (i) with a 4CS(v, m),

say (Zv, C2), a 4CS(u, λ + m), say (U,C3), and finally, (Zv ∪ U,C4) being a 4CS of (λ +

m)K(V, U) giving us our desired enclosing.

(ii) If u ≡ 3 (mod 4), then we proceed as in Proposition 3.1 Case 1 (ii) by adjoining

vertex 0 ∈ Zv to the set U creating U ′ = {n1, n2, ..., nu, 0}. Let (U ′, C3) be a 4CS(u +

1, λ + m) (see Table 3.1). This leaves the edges of (λ + m)K(Zv \ {0}, U) remaining. Let

(Zv \ {0} ∪ U,C4) be a 4CS of (λ + m)K(Zv \ {0}, U). Then it is clear that (Zv ∪ U ,

C1 ∪ C2 ∪ C3 ∪ C4 = C ′) is clearly a 4CS(v + u, λ + m) containing C.

Proposition 3.4. Let v, λ, m, and u be positive integers with v ≥ 4, u ≥ 3, and λ ≡
0 (mod 4). Then every 4CS(v, λ) can be enclosed in a 4CS(v + u, λ + m), if v + u is

(λ + m)-admissible.

Proof We will proceed case by case based on the congruence of m (mod 4) and the possible

values of u. Again, we assume V = Zv.
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Let C = (Zv, C1) be a 4CS(v, λ). Since v is λ-admissible, by Table 3.1 we see that

|Zv| = v can take on all values ≥ 4. Let U = {n1, n2, ..., nu} with U ∩ Zv = ∅ and form an

enclosing 4CS(v + u,C ′) of C as follows.

Case 1: Suppose m ≡ 1 (mod 4). Then (λ + m) ≡ 1 (mod 4). And, for each value of

v ≡0, 1, 2, 3, 4, 5, 6, or 7 (mod 8), u ≡ 1, 0, 7, 6, 5, 4, 3, or 2 (mod 8), respectively. Let

(U ∪ V,C5) be a 4CS(v + u, 1). Then let (V, C2) be a 4CS(v,m− 1), if there are any edges

left and, if u ≥ 4, then let (U,C3) be a 4CS(u, λ + m − 1) (these exist by Table 3.1). By

Theorem 3.2, there exists a 4CS of (λ + m− 1)K(U, V ), say (V ∪ U,C4).

If u = 3, then we proceed as in Proposition 3.2 Case 2. Adjoin vertex 0 ∈ Zv to the

set U creating U ′ = {n1, n2, n3, 0}. Let (U ′, C3) be a 4CS(u + 1 = 4, λ + m − 1). Clearly,

the degree of each vertex in (λ + m − 1)K(Zv \ {0}, U) is even and, as u + v is (λ + m)-

admissible, the number of edges remaining is divisible by 4. Therefore, by Theorem 3.2,

the remaining edges can be decomposed into 4-cycles. Let (Zv \ {0} ∪ U,C5) be a 4CS of

(λ + m− 1)K(Zv \ {0}, U).

Then (Zv ∪ U , C1 ∪C2 ∪C3 ∪C4 ∪C5 = C ′) is clearly a 4CS(v + u, λ + m) containing

C.

Case 2: Suppose m ≡ 2 (mod 4). Then (λ + m) ≡ 2 (mod 4). And, for each value of

v ≡0 (mod 4), u ≡ 0, 1, 4, or 5(mod 8). If v ≡1 (mod 4), u ≡ 0, 3, 4, or 7(mod 8). If v ≡2

(mod 4), u ≡ 2, 3, 6, or 7(mod 8). And, if v ≡3 (mod 4), u ≡ 1, 2, 5, or 6(mod 8).

In all cases except when u = 3 we can construct our enclosing in the following way.

Let (U ∪ V,C5) be a 4CS(v + u, 2). Then let (V,C2) be a 4CS(v, m − 2), if there are any

edges left, and (U,C3) be a 4CS(u, λ + m− 2) (these exist by Table 3.1). By Theorem 3.2,

there exists a 4CS of (λ + m− 2)K(U, V ), which we denote by (V ∪ U,C4).

If u = 3, we proceed as in Case 1. Adjoin vertex 0 ∈ Zv to the set U creating

U ′ = {n1, n2, n3, 0}. Let (U ′, C3) be a 4CS(u+1 = 4, λ+m−2). Clearly, the degree of each

vertex in (λ+m− 2)K(Zv \ {0}, U) is even and, as u+ v is (λ+m)-admissible, the number

of edges remaining is divisible by 4. Therefore, by Theorem 3.2, the remaining edges can

be decomposed into 4-cycles. Let (Zv \ {0}∪U,C5) be a 4CS of (λ + m− 2)K(Zv \ {0}, U).
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In any case, (Zv ∪ U , C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 = C ′) is clearly a 4CS(v + u, λ + m)

containing C.

Case 3: Suppose m ≡3 (mod 4). Then (λ + m) ≡ 3 (mod 4). And, for each value of

v ≡0, 1, 2, 3, 4, 5, 6, or 7 (mod 8), u ≡ 1, 0, 7, 6, 5, 4, 3, or 2 (mod 8), respectively. Let

(U ∪ V,C5) be a 4CS(v + u, 3). Then let (V, C2) be a 4CS(v,m− 3), if there are any edges

left, and (U,C3) be a 4CS(u, λ + m− 3) (these exist by Table 3.1). By Theorem 3.2, there

exists a 4CS of (λ + m− 3)K(U, V ), which we denote by (V ∪ U,C4).

If u = 3, we have to proceed as in Case 1. Adjoin vertex 0 ∈ Zv to the set U creating

U ′ = {n1, n2, n3, 0}. Let (U ′, C3) be a 4CS(u+1 = 4, λ+m−3). Clearly, the degree of each

vertex in (λ+m− 3)K(Zv \ {0}, U) is even and, as u+ v is (λ+m)-admissible, the number

of edges remaining is divisible by 4. Therefore, by Theorem 3.2, the remaining edges can

be decomposed into 4-cycles. Let (Zv \ {0}∪U,C5) be a 4CS of (λ + m− 3)K(Zv \ {0}, U).

In any case, (Zv ∪ U , C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 = C ′) is clearly a 4CS(v + u, λ + m)

containing C.

Case 4: Suppose m ≡0 (mod 4). Then (λ + m) ≡ 0 (mod 4). So u is unrestricted by

the necessary conditions.

Then let (V,C2) be a 4CS(v, m), and, if u ≥ 4, let (U,C3) be a 4CS(u, λ + m). By

Theorem 3.2, there exists a 4CS of (λ + m)K(U, V ), which we denote by(V ∪ U,C4).

If u = 3, we proceed in a similar manner as in Case 2. Let (V, C2) be a 4CS(v, m).

We then adjoin vertex 0 ∈ Zv to the set U creating U ′ = {n1, n2, n3, 0}. Let (U ′, C3) be

a 4CS(u + 1 = 4, λ + m). By Theorem 3.2, the remaining edges can be decomposed into

4-cycles. Let (Zv \ {0} ∪ U,C4) be a 4CS of (λ + m)K(Zv \ {0}, U).

In any case, (Zv ∪U , C1 ∪C2 ∪C3 ∪C4 = C ′) is clearly a 4CS(v + u, λ + m) containing

C.

3.3 Enclosings when u = 2

In this section we prove that Theorem 3.1 is true in the case where u = 2.
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Proposition 3.5. Let v, λ, m, and u be positive integers with v ≥ 4 and u = 2. Then every

4CS(v, λ) can be enclosed in a 4CS(v + u, λ + m), if v + u is (λ + m)-admissible.

Proof Let C = (Zv, C1) be a 4CS(v, λ). Since v is λ-admissible, by Table 3.1 we see that

|Zv| = v ≡ 7 (mod 8) when (λ+m) ≡ 1 or 3 (mod 4). v ≡ 2, 3, 6, or 7 if (λ+m) ≡ 2 (mod

4). Finally, v can take on all values ≥ 4 if (λ + m) ≡ 0 (mod 4). Let U = {uH , uT } with

U ∩ Zv = ∅ and form an enclosing 4CS(v + u,C ′) of C as follows.

Case 1: Suppose (λ + m) ≡ 1 or 3 (mod 4). Since |U | = 2 it must be that v ≡ 7 (mod

8). Thus λ ≡ 0 (mod 4) and m ≡ 1 or 3 (mod 4). Let (V,C2) be an equitable, partial

4CS(v, m) containing mv(v − 1)/2 − (λ + m) edges. This exists by Lemma 3.1. Let H

be the complement of (V,C2). H is clearly an even graph though possibly not connected.

Apply an orientation to each edge in each component to have a directed Eulerian circuit.

For each directed edge, take the following edges to create a 4-cycle: the directed edge, the

edge connected to the head vertex and uH , the edge connected to the tail vertex and uT ,

and the edge between uH and uT . Let (U ∪ V, C3) be 4CS of the aforementioned edges.

The remaining edges of (λ + m)K(Zv, U) consist of those between Zv and U . Let G∗

be the graph on Zv ∪ U that is the complement of the edges in C1, C2, and C3. |E(G∗)| =
2(λ + m)v − 2(λ + m) = 2(λ + m)(v − 1). Thus, 4 divides |E(G∗)|. uH and uT each have

degree (λ + m)(v − 1) which is even. And, each vertex in Zv has degree either 2(λ + m)

or 2(λ + m) − d where d is the degree of the vertex in H. As H was an even graph, these

vertices have even degree. Therefore, Theorem 3.2 applies. Let (Zv ∪ U,C4) be a 4CS of

(λ + m)K(Zv, U)−H.

Then (Zv ∪ U , C1 ∪ C2 ∪ C3 ∪ C4 = C ′) is clearly a 4CS(v + u, λ + m) containing C.

Case 2: Suppose (λ + m) ≡ 2 (mod 4). Since |U | = 2, it must be that v ≡ 2, 3,

6, or 7 (mod 8). Thus λ ≡ 0 (mod 4). We then proceed as in Case 1 taking note that

2(λ + m)(v − 1) is divisible by 4, and the degrees of G∗ for each vertex is divisible by 2.

Case 3: Suppose (λ + m) ≡ 0 (mod 4). v can therefore take on all values ≥ 4. When

v ≡ 2, 3, 6, or 7 (mod 8), λ ≡ 0 (mod 4) and m ≡ 0 (mod 4). If v ≡ 0, 4, or 5 (mod 8),

λ ≡ 0 or 2 (mod 4); therefore, m ≡ 0 or 2 (mod 4), respectively. If v ≡ 1 (mod 8), λ ≡ 0,
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1, 2, or 3 (mod 4). In any case, we proceed as in Case 1 noting that 4 divides |E(G∗)|, and

2 divides the degrees of G∗.

T

V

H

Figure 3.2: Connecting the Euler Tour (2 4-cycles constructed as an example)

3.4 Conclusion

We have provided constructions for all possible enclosings for u ≥ 2, providing the

sufficiency of Theorem 3.1 (Through Propositions 3.1-3.5). The case when u = 1 looks

to be particularly difficult. Since 3 vertices must be in V , a decomposition of mKV into

2-paths (denoted P2) and 4-cycles must be obtained. This concept is not difficult on its

own, but the difficulty arises, in that, the end of each P2 must be connected to the u vertex,

requiring each v vertex to be at the end of (λ + m) P2’s while the remaining edges would

still need to be decomposable into 4-cycles. Thus we need an equalized P2 with a 4-cycle

decomposition where the ends of each P2 are evenly distributed among the v vertices. The
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figure below illustrates this problem. Work will be continued on this problem in order to

completely solve the enclosings of 4-cycle systems.

2

V

u

4−cycle

P ’s need to be equalized

Figure 3.3: Constructing 4-cycles from P2’s
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Chapter 4

Conclusions

It is disconcerting to the author that, despite much work, neither case has been com-

pletely solved. Due to the complexity of the quadratic necessary bounds found by Hurd et

al [13], the enclosings of λ-fold Triples Systems is incomplete. It is worthy to note that the

constructions presented in Chapter 2 are fairly comprehensive where the parameters are

concerned. And, it is the belief of the author that the bounds on the remaining enclosings

will be difficult to pare down. The author believes that a modification of the constructions

presented will fill the remaining “holes”. The difficulty arises in the scale on which this must

be done, ranging over four parameters while manipulating multiple construction techniques

will not be a simple endeavor.

In the case of the enclosings of the λ-fold 4-cycle systems, the only situation left unad-

dressed is when u = 1. A new approach may be necessary in this case, but it is the hope of

the author that this will have a constructive proof similar to those presented in Chapter 3.

These enclosings naturally lead to the question of enclosing larger λ-fold cycle systems

(k-cycle systems with k ≥ 5). In particular, embeddings for partial cycle systems have

been shown to exist [11, 16], and the author believes that at least the generalization of

enclosing λ-fold even-cycle systems can be proved in a similar fashion as the enclosings of

λ-fold 4-cycle systems presented in Chapter 3.

Another natural question is: Can a non-proper subsystem be enclosed in a larger

(λ + m)-fold k-cycle system? That is, for what values of λ, v, u, and m can the edges of

(λ + m)Kv+u with those in a particular copy of λKv removed be partitioned into 4-cycles.

In other words, does there exist a k-cycle system of (λ + m)Kv+u \ λKv? Notice that if

there exists a 4-cycle system of λKv, then this question is addressed in this dissertation.

This leads to the following conjecture:
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Conjecture 4.1. Let u ≥ 1. There exists a 4-cycle system of (λ + m)Kv+u \ λKv iff

(a) (v + u− 1)(λ + m) ≡ 0 (mod 2), and

(b) u(u− 1)(λ + m)/2 + mv(v − 1)/2 + vu(λ + m) ≡ 0 (mod 4).

(c) u(λ + m) + m(v − 1) ≡ 0 (mod 2)

Proof (of Necessary Conditions)

Conditions (a) and (b) follow from Theorem 3.1. The graph contains vertices of degree

u(λ+m)+m(v−1). Since each degree must be even, the necessity of condition (c) follows.

The author believes that many of the constructions presented can be reused for the

question at hand and that it is mostly an exercise in narrowing down the admissible pa-

rameters.
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