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Light composite sandwich panels are increasingly used in automobiles, ships and air-

craft, because of the advantages they offer of high strength-to-weight ratios. However, the

acoustical properties of these light and stiff structures can be less desirable than those of

equivalent metal panels. These undesirable properties can lead to high interior noise levels.

A number of researchers have studied the acoustical properties of honeycomb and foam

sandwich panels. Not much work, however, has been carried out on foam-filled honeycomb

sandwich panels.

In this dissertation, governing equations for the forced vibration of asymmetric sand-

wich panels are developed. An analytical expression for modal densities of symmetric sand-

wich panels is derived from a sixth-order governing equation. A boundary element analysis

model for the sound transmission loss of symmetric sandwich panels is proposed. Measure-

ments of the modal density, total loss factor, radiation loss factor, and sound transmission

loss of foam-filled honeycomb sandwich panels with different configurations and thicknesses

v



are presented. Comparisons between the predicted sound transmission loss values obtained

from wave impedance analysis, statistical energy analysis, boundary element analysis, and

experimental values are presented.

The wave impedance analysis model provides accurate predictions of sound transmis-

sion loss for the thin foam-filled honeycomb sandwich panels at frequencies above their first

resonance frequencies. The predictions from the statistical energy analysis model are in

better agreement with the experimental transmission loss values of the sandwich panels

when the measured radiation loss factor values near coincidence are used instead of the

theoretical values for single-layer panels. The proposed boundary element analysis model

provides more accurate predictions of sound transmission loss for the thick foam-filled hon-

eycomb sandwich panels than either the wave impedance analysis model or the statistical

energy analysis model.

vi



Acknowledgments

I would like to thank Dr. Malcolm J. Crocker for his guidance during this research. I

am also thankful to Dr. George T. Flowers, Dr. Winfred A. Foster, Dr. Subhash C. Sinha,

and Shannon Price for their help. Thanks are also due to my parents for their support and

encouragement.

vii



Style manual or journal used Journal of Approximation Theory (together with the style

known as “aums”). Bibliograpy follows Journal of Sound and Vibration

Computer software used The document preparation package TEX (specifically LATEX)

together with the departmental style-file aums.sty.

viii



Table of Contents

List of Figures x

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 6
2.1 Wave impedance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Statistical energy analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Boundary element analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Wave Impedance Analysis 18
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Governing equations for forced vibration . . . . . . . . . . . . . . . . . . . . 19
3.3 Sound transmission loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Symmetric sandwich panels . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Other TL models for asymmetric sandwich panels . . . . . . . . . . . . . . 43
3.7 Other governing equations for anti-symmetric motion . . . . . . . . . . . . . 48
3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Statistical energy analysis 54
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Assumptions and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Transmission suite model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Modal densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Internal loss factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Coupling loss factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7 Sound transmission loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.8 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Boundary element analysis 86
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Finite element analysis models for sandwich structures . . . . . . . . . . . . 87
5.3 Basic concepts of boundary element analysis . . . . . . . . . . . . . . . . . . 91

ix



5.4 Boundary element analysis model for fluid-structure-fluid systems . . . . . . 95
5.5 Boundary element analysis model for three-layer symmetric sandwich panels 108
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Materials and material properties 112
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 Measurement methods for materials . . . . . . . . . . . . . . . . . . . . . . 118
6.4 Experimental resonance frequencies of sandwich beams . . . . . . . . . . . . 121
6.5 Material properties of sandwich panels . . . . . . . . . . . . . . . . . . . . . 128
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7 Dynamic properties of composite sandwich panels 135
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Experimental modal densities . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.3 Experimental total loss factors . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.4 Experimental radiation loss factors . . . . . . . . . . . . . . . . . . . . . . . 149
7.5 Experimental internal loss factors . . . . . . . . . . . . . . . . . . . . . . . . 159
7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8 Sound transmission loss of composite sandwich panels 161
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.2 Experimental sound transmission loss . . . . . . . . . . . . . . . . . . . . . 162
8.3 Sound transmission loss from wave impedance analysis . . . . . . . . . . . . 164
8.4 Sound transmission loss from statistical energy analysis . . . . . . . . . . . 172
8.5 Sound transmission loss from boundary element analysis . . . . . . . . . . . 176
8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9 Conclusions 183

Bibliography 186

A Derivation of stiffness constants of rotated-axis 191

B Partial differential Operators 194

x



List of Figures

3.1 The geometry and loads of a sandwich panel . . . . . . . . . . . . . . . . . 19

3.2 Symmetric and anti-symmetric face sheet displacements . . . . . . . . . . . 21

3.3 The rotated axis system of the orthotropic material . . . . . . . . . . . . . . 23

3.4 Components of pressure fields on a sandwich panel . . . . . . . . . . . . . . 27

3.5 Predicted wave numbers for anti-symmetric waves in panel A . . . . . . . . 35

3.6 Predicted wave speeds for anti-symmetric motion of panel A . . . . . . . . . 37

3.7 Predicted wave speeds for symmetric motion of panel A . . . . . . . . . . . 37

3.8 Wave impedances along two principal directions for panel A . . . . . . . . . 39

3.9 Calculated sound transmission loss values of panel A without damping . . . 39

3.10 Predicted and measured sound transmission loss values of panel A . . . . . 40

3.11 Wave impedances along two principal directions for panel B . . . . . . . . . 42

3.12 Predicted and measured sound transmission loss values of panel B . . . . . 42

3.13 Calculated wave impedances for symmetric panel C . . . . . . . . . . . . . 46

3.14 Predicted sound transmission loss values of panel C from Dym and Lang’s
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.15 Predicted sound transmission loss values of panel C from the present analysis 47

3.16 Predicted sound transmission loss values of panel A made using governing
equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Block diagram for power flows between the structure and the reverberant field 57

4.2 Block diagram for power flows between the structure and two reverberation
rooms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xi



4.3 The transmission suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Constant frequency loci for transverse wave numbers of a simply supported
panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Wave numbers for free transverse wave in x-axis of panel A . . . . . . . . . 67

4.6 Modal densities of free transverse wave in x-axis of panel A . . . . . . . . . 68

4.7 Effective radiation areas for edge and corner modes . . . . . . . . . . . . . . 73

4.8 Normalized radiation resistances of baffled simple supported aluminum panels 75

4.9 Sound transmission measurements from the two-room method . . . . . . . . 77

4.10 Estimated transmission loss values of panel D . . . . . . . . . . . . . . . . . 81

4.11 Resonant and non-resonant modes on the sound transmission loss of panel D 82

4.12 Estimated sound transmission loss values of panel A . . . . . . . . . . . . . 83

4.13 The effects of dimensions of panels and volumes of rooms on sound transmis-
sion loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Finite element model for sandwich structures using MSC Nastran . . . . . . 88

5.2 A cantilever sandwich beam with viscoelastic core (beam G) . . . . . . . . . 90

5.3 Half-space V limited by an infinite rigid plane SH and boundary S . . . . . 94

5.4 Sound fields Ω1 and Ω2 created by a baffled planar vibrating structure . . . 97

5.5 Calculated sound transmission loss values of the aluminum panel H for sound
waves at normal incidence using the BEM computer program . . . . . . . . 103

5.6 Calculated sound transmission loss values of the aluminum panel H for sound
waves at oblique incidence using the BEM computer program . . . . . . . . 105

5.7 Predicted sound transmission loss values of the aluminum panel H for sound
waves at normal incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Predicted sound transmission loss values of the aluminum panel H for sound
waves at oblique incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xii



6.1 Commonly used cell configurations for honeycomb core materials (a) hexag-
onal (b) square (c) over expanded hexagonal (d) flex . . . . . . . . . . . . . 115

6.2 Manufacture of honeycomb cores - corrugating (top) and expansion (bottom)
processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 The face sheet (a) and core (b) materials of sandwich structures in this study 118

6.4 The frequency response function of the aluminum beam for the shaker set-up 120

6.5 The frequency response function of the aluminum beam for the impact set-up 120

6.6 The frequency response function of beam Ix . . . . . . . . . . . . . . . . . . 123

6.7 The frequency response function of beam Iy . . . . . . . . . . . . . . . . . . 123

6.8 The frequency response function of beam Jx . . . . . . . . . . . . . . . . . . 123

6.9 The frequency response function of beam Jy . . . . . . . . . . . . . . . . . . 124

6.10 The frequency response function of beam Kx . . . . . . . . . . . . . . . . . 124

6.11 The frequency response function of beam Ky . . . . . . . . . . . . . . . . . 124

6.12 The frequency response function of beam Lx . . . . . . . . . . . . . . . . . 125

6.13 The frequency response function of beam Ly . . . . . . . . . . . . . . . . . . 125

6.14 Loss factors of beams Ix, Iy, Jx and Jy . . . . . . . . . . . . . . . . . . . . . 126

6.15 Loss factors of beams Kx and Ky . . . . . . . . . . . . . . . . . . . . . . . . 127

6.16 The frequency response functions of the aluminum beam . . . . . . . . . . . 127

6.17 Transverse displacement caused by (a) bending and (b) shear . . . . . . . . 129

7.1 Set-up for the modal density and loss factor experiments . . . . . . . . . . . 139

7.2 The inertance of the added mass . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3 The measured point mobility of panel J using the three-channel spectral
analysis (a) real part (b) imaginary part . . . . . . . . . . . . . . . . . . . . 141

7.4 Modal density estimates for panel J without mass correction . . . . . . . . 141

xiii



7.5 Modal density estimates for panel J with mass correction . . . . . . . . . . 142

7.6 Modal density estimates for panel I with mass correction . . . . . . . . . . 143

7.7 Modal density estimates for panel K with mass correction . . . . . . . . . 143

7.8 Modal density estimates for panel L with mass correction . . . . . . . . . . 144

7.9 Loss factor estimates for panel J . . . . . . . . . . . . . . . . . . . . . . . . 147

7.10 Loss factor estimates for panel I . . . . . . . . . . . . . . . . . . . . . . . . 147

7.11 Loss factor estimates for panel K . . . . . . . . . . . . . . . . . . . . . . . . 148

7.12 Loss factor estimates for panel L . . . . . . . . . . . . . . . . . . . . . . . . 148

7.13 Radiation resistance estimates for baffled clamped panel I . . . . . . . . . . 153

7.14 Radiation resistance estimates for baffled clamped panel J . . . . . . . . . . 153

7.15 Radiation resistance estimates for baffled clamped panel K . . . . . . . . . 154

7.16 Radiation resistance estimates for baffled clamped panel L . . . . . . . . . . 154

7.17 Radiation loss factor estimates for clamped panels I ∼ L . . . . . . . . . . . 155

7.18 Radiation resistance estimates for unbaffled free-edge panel I . . . . . . . . 156

7.19 Radiation resistance estimates for unbaffled free-edge panel J . . . . . . . . 157

7.20 Radiation resistance estimates for unbaffled free-edge panel K . . . . . . . . 157

7.21 Radiation resistance estimates for unbaffled free-edge panel L . . . . . . . . 158

7.22 Radiation loss factor estimates for unbaffled free-edge panels I ∼ L . . . . . 158

7.23 Internal loss factor estimates for panels I ∼ L . . . . . . . . . . . . . . . . . 159

8.1 Experimental sound transmission loss values of panel I . . . . . . . . . . . . 164

8.2 Experimental sound transmission loss values of panel J . . . . . . . . . . . 165

8.3 Experimental sound transmission loss values of panel K . . . . . . . . . . . 165

xiv



8.4 Experimental sound transmission loss values of panel L . . . . . . . . . . . 166

8.5 Predicted sound transmission loss values of panel I from the wave impedance
analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.6 Predicted sound transmission loss values of panel J from the wave impedance
analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.7 Predicted sound transmission loss values of panel K from the wave impedance
analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.8 Predicted sound transmission loss values of panel L from the wave impedance
analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.9 Predicted sound transmission loss values of panel I by using Eq. (??) . . . 170

8.10 Predicted sound transmission loss values of panel J by using Eq. (??) . . . 171

8.11 Predicted sound transmission loss values of panel K by using Eq. (??) . . . 171

8.12 Predicted sound transmission loss values of panel L by using Eq. (??) . . . 172

8.13 Transmission loss estimates for panel I from SEA . . . . . . . . . . . . . . . 174

8.14 Transmission loss estimates for panel I using the measured values of ηrad . 174

8.15 Transmission loss estimates for panel J using the measured values of ηrad . 175

8.16 Transmission loss estimates for panel K using the measured values of ηrad . 175

8.17 Transmission loss estimates for panel L using the measured values of ηrad . 176

8.18 Predicted sound transmission loss values of panel K from the boundary ele-
ment analysis, for sound waves at oblique incidences . . . . . . . . . . . . . 178

8.19 Predictions of sound transmission loss for panel K made using the boundary
element analysis model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.20 The prediction of sound transmission loss for panel I made using the bound-
ary element analysis model . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.21 The prediction of sound transmission loss for panel J made using the bound-
ary element analysis model . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.22 The prediction of sound transmission loss for panel L made using the bound-
ary element analysis model . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.1 The rotated-axis coordinate system of the orthotropic material . . . . . . . 192

xv



Chapter 1

Introduction

1.1 Background

Sound transmission loss is mostly determined by the mass, and the dynamic stiffness of

structures. A high mass-to-stiffness ratio usually produces a high transmission loss. Because

of the presence of the core, the dynamic stiffness of sandwich structures is strongly depen-

dent on frequency and decreases with increasing frequency. Thus, the sound transmission

loss of sandwich panels can be much different from that of single-layer panels. Three ap-

proaches have been used to investigate the sound transmission characteristics of single-layer

panels.

1.2 Approaches

Wave impedance analysis is the most straightforward approach to calculate the sound

transmission loss of panels. The wave impedance of a panel is derived from governing

equations for the forced vibration of the panel. Since the acoustic particle velocity must

match the transverse velocity of the panel at the fluid-structure interfaces, the pressures

in the incident, reflected and radiated waves at the interface can be related to the wave

impedance of the panel. Wave impedance analysis assumes that the panel is infinite, so

that only the non-resonant forced motion is considered below the coincidence frequency.
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Most previous work has used wave impedance analysis to predict the sound transmission

loss of sandwich panels.

Statistical energy analysis (SEA) was developed in the early 1960’s for estimating

the response and radiation properties of structures excited by broadband noise. With

broadband random noise excitation, the statistical properties such as mean square values

and power densities can be used to provide a measure of vibration. SEA works best with

reverberant fields of vibration, and has been used to predict the interaction between resonant

structures and reverberant acoustic fields. SEA is very attractive for use in high frequency

regions where modal densities are high and a deterministic analysis of all the resonant modes

of the vibration of a structure is not practical.

The introduction of computers has permitted increasing use of numerical simulation

analyses, including boundary element analysis and finite element analysis. The boundary

element analysis produces more details of the vibro-acoustic interaction than the wave

impedance analysis or the statistical energy analysis, especially at low frequencies, where the

requirements of SEA may not be met. For finite and boundary element analyses, the mesh of

the structure should provide with at least five finite element nodes per acoustic wavelength

in the frequency range of interest. At high frequencies, a very refined discretization is

required, which leads to a large algebraic system. Even with high speed computers, the

computation time for a single frequency is considerable.

The manufacture of high modulus reinforced fabrics increases the application of com-

posite sandwich panels. The relative difference between the stiffnesses of high modulus

2



reinforced face sheets and cores of the sandwich panels in this study is not the same as

that of the traditional sandwich panels for normal constructions [1, 2, 3, 4, 5, 6, 7, 10].

A few experimental sound transmission loss data for sandwich panels with high modulus

reinforced face sheets are available in the literature [8, 59, 60]. In Ref. [8] the sandwich

panels were treated as single-layer panels with an equivalent dynamic bending stiffness in

order to calculate the transmission loss of the sandwich panels. The other two references

only presented comparisons of the experimental results with the mass law values [59, 60].

1.3 Dissertation outline

This dissertation is organized as follows.

Chapter 2 presents a review of previous work on the three analyses, wave impedance

analysis, statistical energy analysis, and boundary element analysis. The section on wave

impedance analysis includes derivations of governing equations for the forced vibration

and the sound transmission loss of sandwich panels. The section on statistical energy

analysis provides SEA applications for the prediction of noise and vibration associated with

structures and acoustic volumes, together with work on the three main parameters, modal

density, internal loss factor, and coupling loss factor. Chapter 2 closes with a brief review

of boundary element analysis on the fluid-structure-fluid interaction.

Chapter 3 deals with wave impedance analysis. Governing equations for the forced vi-

bration of asymmetric sandwich panels with orthotropic cores are developed, then these are

followed by a sound transmission loss model which makes use of wave impedance analysis for
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asymmetric sandwich panels. The sound transmission characteristics of two sandwich pan-

els with honeycomb cores are discussed. Comparisons of the governing equations developed

herein and other available governing equations for sandwich panels are provided.

Chapter 4 starts with an introduction of SEA, together with a sound transmission loss

model using SEA. Then theoretical estimation methods for the three main parameters used

in SEA, especially for composite sandwich panels, are discussed. In SEA, the response

of structures is dependent on not only the dimensions of structures, but the dimensions

of acoustic volumes as well. The effects of these dimensions on the predictions of sound

transmission loss for panels are illustrated.

Chapter 5 first presents a comparison of different finite element models for sandwich

structures. Then concepts of boundary element method in acoustics are introduced and

the boundary element formulations for fluid-structure-fluid interaction are presented. Com-

parisons of predicted sound transmission loss values of an aluminum panel obtained from

numerical analyses, a BEM computer program in MATLAB language and a transmission

loss model in a commercial software, LMS SYSNOISE, are provided. Finally, a boundary

element analysis model is proposed for three-layer symmetric sandwich panels.

Chapter 6 presents a comprehensive overview of available face sheet and core composite

materials. The experimental methods used to obtain the material properties of the face

sheets and core of sandwich structures are discussed. Then the estimated material properties

of the sandwich panels tested in this study are presented.

4



Chapter 7 concentrates on dynamic properties of composite sandwich panels used in

SEA. The experimental modal densities, radiation loss factors and internal loss factors of

four sandwich panels are provided.

Chapter 8 presents experimental and predicted sound transmission loss values of four

sandwich panels. Both face sheet and core losses are considered in the wave impedance

analysis, and the internal loss factor of the whole structure is used in SEA and boundary

element analysis. Conclusions are presented in Chapter 9.

5



Chapter 2

Literature Review

2.1 Wave impedance analysis

Kurtze and Watters [1], in their classic paper, assumed that the face sheets respond as

elementary plates in bending, and the core acts as a spacer that has mass and only shear

effects in the core are included. They developed the wave impedance of sandwich panels

from an equivalent electrical circuit analog. Kurtze and Watters added periodic structures,

rigid bridges, in the core to increase the sound insulation. They also illustrated that the loss

tangent of the sandwich panel can be equal to that of the core in the mid-frequency region.

In the analysis, they assumed that the core is soft but incompressible, and the double-wall

resonance frequency is outside the frequency range of interest.

Ford and Walker [2] were the first to describe the effects of dilatational modes of

sandwich panels on sound transmission loss. They introduced a dilatational term to describe

the translational motion of the core. Then they developed governing equations for the free

vibration of sandwich panels from energy relationships. Ford and Walker showed that the

dilatational mode of vibration depends primarily on the core thickness and the face sheet

masses, and identified the dips in the experimental transmission loss curves as the resonance

frequencies for both flexural and dilatational modes.
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Smolenski and Krokosky [3] corrected some errors in the work of Ford and Walker [2],

and included volumetric and shear terms in the strain energy. They pointed out that in

general flexural modes of vibration are insensitive to changes in the Poisson’s ratio and thick-

ness of the core, whereas dilatational modes of vibration respond dramatically to changes

in these core properties.

The first effort at calculating the sound transmission loss of sandwich panels by using

wave impedance analysis is attributed to Dym and Lang [4, 5]. They introduced a set of

symmetric and anti-symmetric face sheet displacements as the dependent variables, and

retained the dilatational term. Dym and Lang showed that, for identical face sheets, the

symmetric and anti-symmetric energies are uncoupled naturally. They developed governing

equations for the forced vibration of symmetric sandwich panels by applying Lagrange’s

principle. Then they derived an expression for the sound transmission coefficient in terms

of the anti-symmetric and symmetric wave impedances [5]. They suggested that a high

transmission loss can be achieved by choosing the panel properties in such a way so that

the symmetric and anti-symmetric impedances have similar values.

Moore and Lyon [6] were the first to investigate symmetric sandwich panels with or-

thotropic cores. They used a set of symmetric and anti-symmetric displacements which are

equivalent to those presented by Smolenski and Krokosky [3]. They showed that a high

sound transmission loss can be achieved by using an orthotropic core with a low compres-

sional stiffness and a high shear stiffness, which is quite opposite to the design approach

suggested by Kurtze and Watters [1]. This moves the double-wall resonance frequency to a
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low frequency, and shifts the coincidence associated with anti-symmetric motion to a high

frequency, then the cancellation of the symmetric and anti-symmetric motions of the face

sheets produces that the transmission loss results are greater than the mass law values in the

mid-frequency region. In their analysis, there is an error in the expression for the stiffness

in the rotated axis system for sandwich panels with orthotropic cores.

Narayanan and Shanbhag [61] derived the acceleration for the forced vibration of sand-

wich panels from the governing equation for sandwich panels presented by Mead and Markus

[23] and applied a transmission loss model that is identical to the transmission loss model

developed by Dym and Lang [5] to examine theoretically the effects of some core parameters

on the sound transmission loss of sandwich panels.

Dym and Lang [7] extended their model for three-layer symmetric sandwich panels with

isotropic cores to asymmetric sandwich panels with orthotropic cores. Based on the predic-

tions, they found that when the mass is kept constant, panels with asymmetric configuration

have a poorer acoustical performance than those panels with symmetric configuration. The

dependence of stiffness on the angle of rotation of the orthotropic material was not consid-

ered in their model.

Nilsson [8] presented a free vibration dynamic analysis for sandwich panels with glass

reinforced plastic face sheets. The calculation showed that the total loss factor of sand-

wich panels is primarily determined by the loss factors of the face sheets, at low- and

high-frequencies. He treated the sandwich panels as single-layer panels with an equivalent
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dynamic bending stiffness in order to calculate the sound transmission loss of the sand-

wich panels. He also applied an approximation approach derived from SEA to estimate the

sound transmission loss of an asymmetric sandwich panel. Though Nilsson discussed the

effects of fluid load on sandwich panels and gave an expression for the apparent mass of

the water-loaded panel, he assumed that the effects of fluid load cancel out for symmetric

sandwich panels.

Jones [10] evaluated various full-sized sandwich construction designs experimentally in

a duplex living unit. He pointed out that the measured sound transmission loss values were

higher than the mass law values at low frequencies, because of insufficiently diffuse sound

fields in the rooms. He found that the sound transmission loss curves of the sandwich

panels with paper honeycomb core have smaller coincidence dips, and those dips do not

return as rapidly towards the mass law curve as do those of the panels with foam cores.

The experimental results also showed that asymmetric sandwich constructions do improve

sound insulation.

Huang and Ng [59] presented experimental sound transmission loss results for honey-

comb sandwich panels with glass reinforced composite face sheets. They showed the effects

of core thickness on sound transmission loss experimentally. They used an incorrect expres-

sion for the wave impedance of the sandwich panels to predict the sound transmission loss

values. Rajaram et al. [60] conducted experimental studies of the sound transmission loss

of honeycomb sandwich panels with carbon and glass fiber composite face sheets.
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In the analyses of all the papers mentioned above the face sheets of sandwich panels

are assumed to be isotropic that in general is not true for high modulus reinforced fiber

materials. The orthotropic face sheets are considered in development of governing equations

for the forced vibration of sandwich panels in this study.

2.2 Statistical energy analysis

Statistical energy analysis (SEA) is a modeling procedure which uses energy flow re-

lationships for the theoretical estimation of the vibration response levels of and the noise

radiation from structures in resonant motion.

Lyon and Maidanik [11] computed the power flow between two random excited, linear

oscillators with small coupling between them. They showed that the power flow is propor-

tional to the difference in average modal energies of the two oscillators. Then they extended

the model to the coupling between two multimodal systems, and the interaction between

a structure and a reverberant acoustic field. Lyon and Maidanik also gave a radiation re-

sistance expression for the coupling of a single mode structure to a reverberant acoustic

field.

Smith [12] calculated the response and sound radiation for one linear resonant mode of

a structure excited by a pure tone. He extended the model to the case of a structure excited

by broadband random noise. Then Smith found that when the modal vibrations are pre-

dominantly damped by sound radiation, the mean square velocity is inversely proportional

to the modal stiffness.
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Maidanik [13] extended the results presented in the two papers discussed above, from a

single mode formalism to a multimode formalism using two main assumptions. The number

of modes in a combined system is equal to the sum of the numbers of modes of the two

systems; and the modal densities of a combined system also are equal to the sum of the

modal densities of the two systems. Maidanik computed the radiation resistance of a finite

baffled simply supported single-layer panel for individual modes. He also predicted the

average modal radiation resistance of a baffled simply supported single-layer panel in a

reverberant acoustic field and compared the predicted values with experimental results.

Eichler [15] presented a formulation of statistical energy analysis which includes the

relations between the average energies in linear loosely and conservatively coupled systems

in terms of modal densities, internal and coupling loss factors. He showed that the products

of modal density and coupling loss factor are equal within each pair of subsystems. The

noise reduction of a rectangular box was investigated in three frequency regions as presented

by Lyon [14]. It was seen that the sound pressure in the box can exceed that in the incidence

sound field in both theoretical and experimental cases. Eichler noticed that the predictions

from the classical sound transmission predictions were closer to the measured values near

the critical frequency, because the theory presented in their analysis only considered the

resonant free vibration wave modes.

Crocker and Price [18] presented general power flow relationship equations for a room-

panel-room transmission suite. The power flow between the two rooms was defined as the

flow between at non-resonant modes, when there are no modes excited in the panel in the
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frequency band under consideration. Both non-resonant and resonant vibration modes were

taken into consideration. They also provided the experimental determination for the radi-

ation resistance, the coupling factors, the panel response, and the sound transmission loss,

derived using SEA. An aluminum panel was tested in a reverberation room and also clamped

between two reverberation rooms. Comparisons between experimental and predicted sound

transmission loss and radiation resistance values were provided.

Sewell [20] derived an expression for the forced vibration transmission coefficient of a

baffled single-layer partition in a reverberant acoustic field using the classical method. The

expression for the forced vibration transmission factor is generally valid when the surface

mass density of the partition is more than 10 kg/m2.

Gomperts [58] provided an expression for the radiation efficiency of a baffled free-edge

panel and Oppenheimer and Dubowsky [25] studied the radiation efficiency of an unbaffled

simply supported panel. Both of these studies were based on the results developed by

Maidanik [13].

The successful prediction of noise and vibration levels of coupled structural elements

and acoustic fields using SEA depends to a large extent on an accurate estimate of three

parameters, 1) the modal density of each subsystem, 2) the internal loss factor of each

subsystem, and 3) the coupling loss factors between the subsystems. Some studies have

been carried out in assessing the parameters experimentally.
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Clarkson and Pope [21] employed the point mobility technique, developed by Cremer

et al. [42], to estimate modal densities of flat plates and cylinders. They found that the

real part of point mobilities of very lightly damped structures can be negative.

Brown [55] showed that modal density estimates can be improved by using a three-

channel spectral analysis which minimizes the erroneous results generated by feedback noise

caused by exciter-structure interaction. Brown and Norton [40] showed that the modal

density measurement for cylindrical pipes can be further improved by using the three-

channel spectral analysis with a mass correction applied to the point mobility measurement.

Keswick and Norton [30] used two mass correction methods, the measured mass method and

the spectral mass method, to obtain the experimental modal densities of a lightly damped

clamped cylindrical pipe. The results showed that the spectral mass method is in better

agreement with theory.

Clarkson and Ranky [22] derived an expression for the modal density of honeycomb

sandwich panels from a reduced form of the governing equation for sandwich structures

presented by Mead and Markus [23] and they evaluated the modal density of honeycomb

plates by using a two-channel spectral analysis without mass correction.

Renji and Nair [26] developed an expression for the modal density of a symmetric sand-

wich panel from a fourth-order equation which was modified from the governing equation

of motion for a symmetric laminate by including the shear flexibility of the core. In the

work, they considered both real and imaginary parts of the point mobility in the measured

mass correction.
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The expressions for the modal density of honeycomb sandwich panels given by both

Clarkson and Ranky [22] and Renji and Nair [26] were developed from fourth-order govern-

ing equations, while most governing equations for symmetric honeycomb sandwich panels

are sixth-order [6, 7, 23, 37]. Ferguson and Clarkson [41] presented an expression for the

modal density of honeycomb sandwich panels derived from the sixth-order equation pre-

sented by Mead and Markus [23]. The expression, however, is incorrect.

Clarkson and Pope [21] used a steady state power flow method to estimate the loss

factors of flat plates and cylinders. Ranky and Clarkson [57] compared the power flow

method with the enveloped decay method which had been used to obtain internal loss

factors of structures. They found that there is no significant difference between the results

from the two methods when the modes in the chosen band of frequency have similar modal

loss factors. If this is not the case, the decay curve is not a straight line, then the power

flow method provides the result required for SEA calculations.

Renji and Narayan [28] investigated loss factors of honeycomb sandwich panels. They

corrected the effect of added mass on the driving force by using the measured mass correction

method and assumed that the mass loading of the accelerometer, which was employed to

measure the spatial velocity of the panel is negligible.

Lyon and Maidanik [11] described the experimental determination for the radiation loss

factor of a structure in a reverberant field. Crocker and Price [18] presented the experimental

determination for the radiation loss factor of a structure clamped between two reverberation
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rooms. Very little published data exist on the radiation loss factors or radiation resistances

of sandwich panels.

In this study, an expression for model densities of sandwich panels is derived from

a sixth-order governing equation. The experimental results of radiation loss factors for

sandwich panels with different boundary conditions are presented.

2.3 Boundary element analysis

The predictions from SEA are more accurate where sufficient modes in the frequency

band under consideration. It is impossible to obtain closed-form expressions for the radia-

tion efficiency for structures with arbitrary boundary conditions. Hence, the details of each

mode of finite structures should be considered in the response analysis in order to obtain

better predictions at low frequencies. A lot of studies have been carried out in simulating

fluid-structure interactions. Three-domain, fluid-structure-fluid systems have been modeled

as coupled systems [32, 34] and uncoupled systems [33, 45, 35].

Mariem and Hamdi [32] presented a boundary finite element analysis to compute the

sound transmission loss of a baffled panel. The elastic potential energy, the kinetic energy

and the work were described in their approach by the displacement of the panel. The

radiated sound pressure field was associated with the modified Green’s function using the

classical formula of Rayleigh. The total load on the panel was given by the pressure step

across the panel. The sound radiation from a baffled clamped thin circular panel excited by

a normal incident plane wave was computed. The numerical results showed that the radiated
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energies can be greater than the incident energy near the first few resonance frequencies.

Except near these frequencies, the numerical results agree well with the experimental values.

However, there are some errors in the expression for the total load on the panel.

Roussos [45] developed an uncoupled analytical model for the sound transmission loss

of a simply supported panel. A Green’s function integral equation was used to link the

plate vibrations to the transmitted far-field pressure field.

Barisciano [33] studied the sound transmission loss of honeycomb sandwich panels using

boundary element and finite element models. The finite elements of honeycomb sandwich

panels were constructed using Patran. The computed velocities of the panel excited by fluid

forces were imported to a boundary element analysis software as the boundary conditions

of the fluid domain. Barisciano treated the fluid-structure-fluid system as an uncoupled

system and used an incorrect finite element model for the sandwich panels.

Filippi et al. [34] studied the response of a thin elastic rectangular baffled panel in a

light fluid excited by an incidence acoustic field. The total load on the panel was assumed

to be related to the pressure step across the panel. They only predicted the noise reduction

(difference in sound pressure levels) across the panel.

Thamburaj and Sun [35] examined the effects of material and geometrical properties

on the theoretical sound transmission loss of a sandwich beam. The governing equations

for the sandwich beam were derived by applying Lagrange’s principle. They assumed that

the external load on the beams is due to the incident and reflected pressures only.
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In this work, a boundary element analysis model for the sound transmission loss of

three-layer symmetric sandwich panels is proposed. In the model, the fluid-structure-fluid

system is treated as a coupled system and the sandwich panel is excited a random incidence

field.
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Chapter 3

Wave Impedance Analysis

3.1 Introduction

The wave impedance analysis is used to compute the sound transmission loss of infinite

structures. The pressure loads on the structures are associated with the pressures in the

incident, reflected, radiated waves at the fluid-structure-fluid interfaces. The pressures in

the radiated and transmitted waves depend on the transverse motions of the structure. The

transverse vibration of the structure is determined by the pressure loads on the structure,

as shown in Fig. 3.1.

Dym and Lang [4, 5] presented a sound transmission loss analysis for symmetric sand-

wich panels with isotropic cores. They later extended their model to asymmetric sandwich

panels with orthotropic cores [7]. They provided the governing differential equations for

sandwich panels in matrix form. The dependence of stiffness on the angle of rotation of the

orthotropic material was not considered in their model. Moore and Lyon [6] included the

angle of rotation effects on stiffness of orthotropic material in their sound transmission loss

analysis for symmetric sandwich panels with orthotropic cores. The governing equations

for symmetric and anti-symmetric motions of symmetric sandwich panels were presented in

matrix form, respectively.
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Figure 3.1: The geometry and loads of a sandwich panel

In this study, the governing equations for the forced vibration of symmetric sandwich

panels with orthotropic cores developed by Moore and Lyon are extended to asymmetric

sandwich panels with orthotropic face sheets and cores. The wave impedance analysis model

for the sound transmission loss of asymmetric sandwich panels is provided. The effects of the

wave number, wave speed and wave impedance on the prediction of sound transmission loss

for sandwich panels are explained. This sound transmission loss analysis model is compared

with the model given by Dym and Lang [7]. Then a sixth-order governing equation for

anti-symmetric motion of symmetric sandwich panels is derived and compared with the

sixth-order differential equations for sandwich panels presented by Mead and Markus [23]

and Nilsson and Nilsson [37].

3.2 Governing equations for forced vibration

Both elasticity relationships and energy relationships can be employed to develop gov-

erning equations for three-layer sandwich structures. Since it is extremely difficult to obtain
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analytical expressions from elasticity relationships, in this study energy relationships were

chosen to derive governing equations for asymmetric sandwich panels. Elastic potential and

kinetic energies are evaluated in terms of the displacements, and the virtual work done by

the pressure loads on the face sheets is also derived in terms of the transverse displace-

ments. Then Lagrange’s equations are applied to obtain governing equations for the forced

vibration of asymmetric sandwich panels.

The basic assumptions made with three-layer sandwich panels are as follows:

1. the face sheets both stretch and bend along the face sheet-core interface;

2. transverse shear and rotatory inertia effects are neglected in the face sheets;

3. the core is thick compared with the face sheet, and the transverse shear deformation

is included;

4. a “dilatational term” is introduced to allow waves to propagate in-plane in the core.

The displacement functions are assumed as follows and are identical to those given by

Smolenski and Krokosky [3],

u2 =
[
(us + ua)−

(
z − h

2

)
∂w2

∂x

]
cos(kxx), w2 = (ws + wa) sin(kxx), (3.1)

uc =
[(
us +

2z
h
ua

)
+ ζ cos

(
π
z

h

)]
cos(kxx), wc =

(
2z
h
ws + wa

)
sin(kxx), (3.2)

u1 =
[
(us − ua)−

(
z +

h

2

)
∂w1

∂x

]
cos(kxx), w1 = (wa − ws) sin(kxx), (3.3)
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Figure 3.2: Symmetric and anti-symmetric face sheet displacements

where uj and wj are the in-plane and transverse displacements for the face sheet j, as

shown in Fig. 3.1. uc and wc are the in-plane and transverse displacements for the core.

The subscripts s and a denote the displacements caused by symmetric and anti-symmetric

motions, respectively, as shown in Fig. 3.2. ζ cos(πz/h) is the dilatational term and kx is

the wave number for the waves in the panel in the x−axis direction.

The transverse displacement functions are used to characterize the transverse defor-

mation as either symmetric, with respect to the middle surface z = 0, or anti-symmetric,

with respect to that surface z = ±(h/2). The in-plane displacements of the face sheets are

obtained by making z = ±(h/2) in the core displacement, which gives the displacement at

the interface between core and face sheets and adding a term caused by bending, which is

zero at the interface between the core and face sheets.

The strains are obtained from the displacement functions in Eqs. (3.1) ∼ (3.3):

εx =
∂u

∂x
6= 0, for the face sheets; (3.4)
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εx =
∂u

∂x
6= 0, εz =

∂w

∂z
6= 0, γxz =

∂w

∂x
+
∂u

∂z
6= 0, for the core. (3.5)

If all three principal axes for the orthotropic material are aligned with the three axes

of the coordinate system, then the elastic potential energy U can be written as follows with

εy = γxy = γyz = 0,

U =
1
2

∫ ∫
[C11ε

2
x + 2C13εxεz + 2C15εxγxz + C33ε

2
z + 2C35εzγxz + C55γ

2
xz] dzdx, (3.6)

where Cij is the elastic stiffness constants of the orthotropic material.

Substitution of Eq. (3.4) into Eq. (3.6), yields the elastic potential energy Uj for the

face sheets,

Uj =
1
2

∫ ∫ [
C
tj
11

(
∂uj
∂x

)2
]

dzdx, j = 1, 2, (3.7)

where Ctj11 is the elastic stiffness constants of the face sheet j.

Similarly, for the orthotropic core, the elastic potential energy Uc becomes,

Uc =
∫ ∫ [

C11

2

(
∂uc
∂x

)2

+ C13
∂uc
∂x

∂wc
∂z

+
C33

2

(
∂wc
∂z

)2

+
C55

2

(
∂uc
∂z

+
∂wc
∂x

)2
]

dzdx,

(3.8)

where Cij is the elastic stiffness constants of the core.

If the three axes of the coordinate system are not completely aligned with the three

principal axes of the orthotropic material, as shown in Fig. 3.3, the stiffness in the rotated
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Figure 3.3: The rotated axis system of the orthotropic material

axis system becomes Cij instead of Cij ,

C11 = l4C11 + 2l2m2(C12 + 2C66) +m4C22, (3.9)

C13 = l2C13 +m2C23, (3.10)

C15 = C35 = 0, (3.11)

C33 = C33, (3.12)

C55 = m2C44 + l2C55, (3.13)

where, φ denotes the angle of rotation, l = cosφ and m = sinφ. The details of the derivation

of the stiffnesses in the rotated-axis are given in Appendix A.

The kinetic energies are defined as follows, neglecting the rotational energies,

T =
1
2

∫ ∫
ρω2(u2 + v2 + w2) dzdx. (3.14)
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The virtual work done by the pressure loads can be expressed as,

W =
∫

[p1w1 − p2w2] dx =
∫

[(p1 − p2)wa − (p1 + p2)ws] dx. (3.15)

Lagrange’s equations are used to obtain the governing equations,

d
dt

(
∂T

∂q̇r
)− ∂T

∂qr
+
∂U

∂qr
=
∂W

∂qr
, (3.16)

where qr is the generalized displacement which includes us, ws, and ζ for the symmetric

motion, and ua, wa, for the anti-symmetric motion.

The resultant matrix equations are,



D11 D12 D13 D14 D15

D12 D22 D23 D24 D25

D13 D23 D33 0 0

D14 D24 0 D44 D45

D15 D25 0 D45 D55





ws

us

ζ

wa

ua



=



−(p1 + p2)

0

0

(p1 − p2)

0



, (3.17)

with, D11 =


(Ct111t

3
1 + Ct211t

3
2)k4

x/3 + C55hk
2
x/3− (ρt1skt

3
1 + ρt2skt

3
2)ω2k2

x/3

−(ρch/3)ω2 − (ρt1skt1 + ρt2skt2)ω2 + 4C33/h

 ,
D12 = −(Ct111t

2
1 + Ct211t

2
2)k3

x/2− 2C13kx + (ρt1skt
2
1 + ρt2skt

2
2)ω2kx/2,

D22 = (Ct111t1 + Ct211t2)k2
x + C11hk

2
x − (ρt1skt1 + ρt2skt2)ω2 − ρchω2,
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D13 = −4C13kx/π − 4C55kx/π, D23 = 2C11hk
2
x/π − 2ρchω2/π,

D33 = C11hk
2
x/2 + π2C55/(2h)− ρchω2/2,

D14 = (Ct111t
3
1 − C

t2
11t

3
2)k4

x/3− (ρt1skt1 − ρ
t2
skt2)ω2 − (ρt1skt

3
1 − ρ

t2
skt

3
2)ω2k2

x/3,

D15 = D24 = −(Ct111t
2
1 − C

t2
11t

2
2)k3

x/2 + (ρt1skt
2
1 − ρ

t2
skt

2
2)ω2kx/2,

D25 = (Ct111t1 − C
t2
11t2)k2

x − (ρt1skt1 − ρ
t2
skt2)ω2,

D44 =


(Ct111t

3
1 + Ct211t

3
2)k4

x/3 + C55hk
2
x − (ρt1skt

3
1 + ρt2skt

3
2)ω2k2

x/3

−ρchω2 − (ρt1skt1 + ρt2skt2)ω2

 ,
D45 = −(Ct111t

2
1 + Ct211t

2
2)k3

x/2 + 2C55kx + (ρt1skt
2
1 + ρt2skt

2
2)ω2kx/2,

D55 =


(Ct111t1 + Ct211t2)k2

x + C11hk
2
x/3 + 4C55/h

−(ρt1skt1 + ρt2skt2)ω2 − ρchω2/3

 ,

where ρtjsk, tj denote the mass density and thickness of the face sheet j; and ρc, h denote

the mass density and thickness of the core.

The solutions for the transverse displacements can be written in terms of the sound

pressure loads,

ws =
F11

|D|
[−(p1 + p2)] +

F41

|D|
[(p1 − p2)], (3.18)

wa =
F14

|D|
[−(p1 + p2)] +

F44

|D|
[(p1 − p2)], (3.19)

where |D| is the determinant of the matrix D, and Fij and is the cofactor of element Dij .

Since the matrix D is a symmetric matrix, then the cofactors must satisfy Fij = Fji.
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It is convenient to introduce the cofactor ratios,

s1 =
F41

F11
, s4 =

F14

F44
. (3.20)

After rearrangement, Eqs. (3.18) and (3.19) become,

zs(iωws) = −(p1 + p2) + s1(p1 − p2), (3.21)

za(iωwa) = −s4(p1 + p2) + (p1 − p2), (3.22)

where za, zs are the impedances, za = |D|/(iωF44), and zs = |D|/(iωF11).

Damping is incorporated by allowing the stiffness constants in the material to become

complex,

C∗ij = Cij(1 + iη), (3.23)

where η is the energy loss factor of the material.

For an isotropic material, a special case of an orthotropic material, the stiffness con-

stants are described in terms of the Lame constant λ and the shear modulus µ,

C11 = C22 = C33 = λ+ µ, C12 = C13 = C23 = λ, C44 = C55 = C66 = µ. (3.24)
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Figure 3.4: Components of pressure fields on a sandwich panel

3.3 Sound transmission loss

Consider a sandwich panel of infinite extent, separating two semi-infinite air spaces as

shown in Fig. 3.4. All of the sound waves shown are assumed to be plane waves. Let a

pressure wave be incident on the face sheet 1 at an angle θ.

The incident reflected, radiated, and transmitted sound pressures can be expressed as,

pinc(x, z) = Pinc exp[i(ωt− kx sin θ − kz cos θ)], for z < 0, (3.25)

pref(x, z) = Pref exp[i(ωt− kx sin θ + kz cos θ)], for z < 0, (3.26)

prad(x, z) = Prad exp[i(ωt− kx sin θ + kz cos θ)], for z < 0, (3.27)

ptra(x, z) = Ptra exp[i(ωt− kx sin θ − kz cos θ)], for z > 0, (3.28)

where Pinc, Pref, Prad and Ptra are the amplitudes of the incident, reflected, radiated,

and transmitted sound pressures, respectively. k is the wave number of sound in air. The
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pressure in the reflected wave is assumed to be equal in magnitude to the pressure in the

incident wave.

As a result of the matching of the face sheet velocity and the acoustic field velocity

at the interface, the radiated pressure can be determined from the acoustic momentum

equation,

∂prad
∂z

∣∣∣∣
z=0

= −iρairωẇ1, (3.29)

where ρair is the mass density of air, and ẇ1 is the transverse velocity of the face sheet 1.

Integrating Eq. (3.29) with respect to z, we have

prad = −
zairẇ1

cos θ
with zair = ρaircair, (3.30)

where zair is the acoustic impedance of air and cair is the speed of sound in air.

Similarly, the transmitted pressure produced by the transverse motion of the face sheet

2 is,

ptra =
zairẇ2

cos θ
, (3.31)

where ẇ2 is the transverse velocity of the face sheet 2.

The pressure load on the face sheet 1 is,

p1 = (pinc + pref + prad)|z=0. (3.32)
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On the transmission side, the acoustic field pressure is simply the transmitted pressure.

The pressure load on the face sheet 2 is,

p2 = ptra|z=0. (3.33)

Substituting Eq. (3.30) into Eq. (3.32), and Eq. (3.31) into Eq. (3.33), yields the

incident and transmitted pressures,

2pinc = p1 +
zair
cos θ

(ẇa − ẇs), (3.34)

ptra = p2 =
zair
cos θ

(ẇa + ẇs). (3.35)

Eliminating p1 and p2 from Eqs. (3.34) and (3.35), gives the equations of the transverse

velocities in terms of the incident pressure,

 zs + 2zair/ cos θ 2s1zair/ cos θ

2s4zair/ cos θ za + 2zair/ cos θ



ẇs

ẇa

 =


2pinc(s1 − 1)

2pinc(1− s4)

 . (3.36)

The impedances and cofactor ratios are evaluated by replacing wave-number kx by ksinθ in

Eq. (3.17).
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The sound transmission coefficient can be evaluated in terms of the impedances and

the cofactor ratios,

τ(θ, φ) =

∣∣∣∣∣ptrapinc

∣∣∣∣∣
2

=

∣∣∣∣∣∣ (1− s4)zs/(2z′air)− (1− s1)za/(2z′air)[
1 + zs/(2z′air)

] [
1 + za/(2z′air)

]
− s4s1

∣∣∣∣∣∣
2

with z′air =
zair
cos θ

, (3.37)

τ(θ, φ) =

∣∣∣∣∣ptrapinc

∣∣∣∣∣
2

=

∣∣∣∣∣∣ zs/(2z′air)− za/(2z′air)[
1 + zs/(2z′air)

] [
1 + za/(2z′air)

]
− s4s1

∣∣∣∣∣∣
2

for s4zs = s1za. (3.38)

In practice, sound waves are usually incident upon a structure from many angles si-

multaneously. Therefore an idealized random incidence model is usually assumed, in which

plane waves of equal amplitude are incident from all directions with equal probability and

which have random phases. The random incidence transmission coefficient, τ̄ , is obtained

by averaging τ(θ, φ) over all angles of incidence and rotation as follows,

τ̄ =
∫ 2π
0

∫ θlim
0 τ(θ, φ) sin θ cos θ dθdφ∫ 2π
0

∫ θlim
0 sin θ cos θ dθdφ

. (3.39)

Based on field and laboratory measurements [38], the limiting angle θlim is usually assumed

to be 78o.

For sandwich panels with isotropic face sheets and cores, the stiffness constants are

independent of the angle of rotation. Then the random incidence transmission coefficient

becomes,

τ̄ =
∫ θlim

0 τ(θ, φ) sin θ cos θ dθ∫ θlim
0 sin θ cos θ dθ

. (3.40)
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Finally, the sound transmission loss is defined by

TL = 10log10(
1
τ̄

) dB. (3.41)

3.4 Symmetric sandwich panels

For sandwich panels with identical face sheets, one has

Ct111 = Ct211 = Ct, ρ
t1
sk = ρt2sk = ρt, t1 = t2 = t. (3.42)

Then the symmetric and anti-symmetric motions are uncoupled naturally,

D14 = D15 = D24 = D25 = 0, s1 = s4 = 0. (3.43)

The governing matrix equations for symmetric and anti-symmetric motions can be

written as follows.

[Ms]



ws

us

ζ


=


D11 D12 D13

D12 D22 D23

D13 D23 D33





ws

us

ζ


=



−(p1 + p2)

0

0


, (3.44)

D11 = 2Ctt3k4
x/3 + 4C33/h+ C55hk

2
x/3− 2mt2ω2k2

x/3− ρchω2/3− 2mω2,

D12 = −Ctt2k3
x − 2C13kx +mtω2kx, D13 = −4C13kx/π − 4C55kx/π,
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D22 = 2Cttk2
x + C11hk

2
x − 2mω2 − ρchω2, D23 = 2C11hk

2
x/π − 2ρchω2/π,

D33 = C11hk
2
x/2 + π2C55/2h− ρchω2/2, and

[Ma]


wa

ua

 =

 D44 D45

D45 D55



wa

ua

 =


p1 − p2

0

 , (3.45)

D44 = 2Ctt3k4
x/3 + C55hk

2
x − 2mt2ω2k2

x/3− ρchω2 − 2mω2,

D45 = 2C55kx − Ctt2k3
x +mtω2kx,

D55 = 2Ctk2
xt+ C11hk

2
x/3 + 4C55/h− 2(m+ ρch/6)ω2,

where the surface mass density of a single face sheet is m = ρtt.

The symmetric and anti-symmetric wave impedances for transverse motion are,

zs =
−(p1 + p2)
iωws

=
|Ms|

iω

∣∣∣∣∣∣∣∣∣
D22 D23

D23 D33

∣∣∣∣∣∣∣∣∣

, (3.46)

za =
(p1 − p2)
iωwa

=
|Ma|
iωD55

=
1
iω

(
D44 −

D2
45

D55

)
. (3.47)

The contributions of anti-symmetric and symmetric motions to the sound transmission

coefficients can be evaluated separately,

τa(θ, φ) =

∣∣∣∣∣ 1
1 + za/(2z′air)

∣∣∣∣∣
2

, τs(θ, φ) =

∣∣∣∣∣ 1
1 + zs/(2z′air)

∣∣∣∣∣
2

. (3.48)
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The sound transmission coefficient due to anti-symmetric and symmetric motions is,

τ(θ, φ) =

∣∣∣∣∣ 1
1 + zs/(2z′air)

− 1
1 + za/(2z′air)

∣∣∣∣∣
2

. (3.49)

If, under particular conditions, zs � za, in the frequency range of interest, the sound

transmission coefficient can be approximated by,

τ(θ, φ) ≈ τa(θ, φ). (3.50)

If the two wave impedances are nearly equal in sign and magnitude in certain frequency

bands, high transmission loss values are expected in those bands.

The expressions for the governing equations, Eqs. (3.44) and (3.45), the sound trans-

mission coefficient, Eq. (3.49) for symmetric sandwich panels are equivalent to those given

by Moore and Lyon [6]. Their expression for the diffuse field transmission coefficient is

equivalent to Eq. (3.39). However, they neglected the contribution of C66 on the rotated

axis stiffness C11 (see Eq. (3.9)).

3.5 Numerical results

The wave speed and wave impedance for panels provide a way to predict sound trans-

mission characteristics of the panels. The wave speed in a panel is defined by the wave

number in the panel and the circular frequency, c = ω/kp. In the absence of damping, zeros

occur in the wave impedance, where the trace wave speed matches the wave speed for freely
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propagating waves in the panel, ctrace = c. The trace wave speed is defined by the trace

wave number in the panel and the circular frequency, and depends on the angle of incidence

of the acoustic plane wave,

ctrace =
c0

sin θ
, ktrace = k sin θ, ctrace =

ω

ktrace
. (3.51)

The trace wave speed is always greater than c0, the speed of sound in air. It is equal to c0

at grazing incidence, θ = 90o, and becomes infinite at θ = 0o. Thus, coincidence may occur

when the wave speed in the panel is greater than or equal to the speed of sound in air.

The calculated wave numbers for anti-symmetric waves in a symmetric sandwich panel

with a honeycomb core are shown in Fig. 3.5. The wave numbers are evaluated from the

zeros in the wave impedances assuming zero damping in both the face sheets and core. The

face sheets of panel A were assumed to be isotropic and the honeycomb core was assumed

to be orthotropic. The proprieties of panel A are given in Table 3.1. The wave numbers

for the orthotropic core are dependent on the propagation direction of the incident acoustic

wave relative to the principal axes in the honeycomb core. The four solid curves denote the

wave numbers along the directions where the angles of rotation φ are equal to 0o, 30o, 60o

and 90o, from top to bottom in the figure.

Two parallel dotted lines are indicated in Fig. 3.5. The lower dotted line corresponds

to the wave number kl for pure bending of the entire panel. The upper dotted line represents

the wave number ku for flexural waves propagating in a single face sheet loaded with half

34



Figure 3.5: Predicted wave numbers for anti-symmetric waves in panel A

the mass of the core.

kl =

[
(2ρtt+ ρch)ω2

Ct(h2t/2 + ht2 + 2t3/3)

]1/4

, ku =

[
(ρtt+ ρch/2)ω2

Ctt3/12

]1/4

. (3.52)

It is seen that the wave number of the first propagating mode for anti-symmetric motion

of the panel asymptotically approaches the lower line for decreasing frequencies. In the high

frequency region the upper line is the asymptote. The differences between the four solid

curves become smaller when the curves approach either the lower or upper lines. Thus, the

anti-symmetric motion of the panel is mainly determined by the pure bending stiffness of

the entire panel in the low frequency region, and by the bending stiffness of one face sheet

loaded with half the mass of the core in the high frequency region.
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The wave numbers for symmetric waves in panel A along the four directions were also

calculated. It was found that the wave numbers for symmetric waves are complex below

6000 Hz.

The predicted wave speeds for anti-symmetric and symmetric waves in panel A are

shown in Figs. 3.6 and 3.7. The dotted horizontal lines indicate the speed of sound in air

in both figures. It was found that anti-symmetric waves of panel A travel fastest along

φ = 90o and slowest along φ = 0o. The anti-symmetric wave speeds exceed the speed of

sound in air near to 200 Hz.

No freely propagating symmetric waves in the four directions exist below 6000 Hz.

The near vertical lines indicate the freely propagating symmetric waves in the panel, which

travel at high speeds and which depend considerable on frequency. This behavior is similar

to a double wall resonance.

fw =
1

2π

√
C33

h(2ρtt+ ρch/3)
. (3.53)

For panel A, the double wall resonance frequency is about 5200 Hz. At double wall

resonance, the face sheet motions are uniform, which corresponds to a trace wave number of

zero and to an infinite wave speed. An incident wave at normal incidence excites symmetric

panel motion at frequencies near the double wall resonance. The wave speeds for symmetric

waves do not monotonically increase with increasing frequency as those for anti-symmetric
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Figure 3.6: Predicted wave speeds for anti-symmetric motion of panel A

Figure 3.7: Predicted wave speeds for symmetric motion of panel A
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waves do. The speeds of freely symmetric waves are greater than the speed of sound in air

in the frequency range of interest.

In the absence of damping, the wave impedances are imaginary. The wave impedances

were calculated for the two waves in φ = 0o, 90o directions at oblique incidence θ = 76.5o,

as shown in Fig. 3.8. It is seen that anti-symmetric coincidences occur near to 250 Hz

and no symmetric coincidence occurs in the frequency range of interest. The symmetric

impedance is insensitive to the propagation direction in panel A. A dip in the symmetric

wave impedance occurs near to 4000 Hz, below the double wall resonance frequency. The

symmetric wave impedances are much higher than the anti-symmetric wave impedances

below 2000 Hz for this oblique angle of incidence. The sound transmission loss values

caused by anti-symmetric or symmetric wave motions are compared with the predictions of

sound transmission loss generated by both motions for panel A, as shown in Fig. 3.9.

Since most measured sound transmission loss results for sandwich panels are presented

in one-third octave bands, the predicted sound transmission loss values were frequency-

averaged for comparison purpose. The transmission loss of panel A is dominated by the

anti-symmetric motion in the frequency range of interest. The contribution of the symmetric

motion is negligible up to 5000 Hz. The coincidence dip near to 250 Hz is associated

with anti-symmetric motion of panel A, which is consistent with the wave speed curves.

The sound transmission loss values of panel A were calculated and are compared with the

measured transmission loss results given in Ref. [6], as shown in Fig. 3.10. The predictions

were generated for two different values of energy loss factor of the core.
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Figure 3.8: Wave impedances along two principal directions for panel A

Figure 3.9: Calculated sound transmission loss values of panel A without damping
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Figure 3.10: Predicted and measured sound transmission loss values of panel A

The effects of core damping are noticeable at frequencies above the onset of coincidence,

where the core stiffnesses affect the sound transmission loss of the panel. The transmission

loss curves do not return to the mass law curve at frequencies above coincidence, and are

separated by more than 10 dB.

Theoretically, when the wave impedances for anti-symmetric and symmetric motions

are equal in sign and magnitude, there is no transmitted sound pressure. So the transmission

loss can exceed mass law values when the two wave impedances have similar values. This

behavior has been demonstrated analytically and experimentally for a honeycomb sandwich

panel in Ref. [6]. This acoustical behavior is a result of the cancellation of symmetric and

anti-symmetric motions of the face sheets. The honeycomb core was uncommonly orientated

so that the cells lay in the plane of the panel. The wave impedances of two motions along
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Table 3.1: Properties of sandwich panels A and B
Property Panel A Panel B

Face Surface mass density m (kg/m2) 4.17 5.7
Sheet Stiffness Ct11 (GPa) 7.0 7.0

Thickness t (mm) 6.35 9.53
Density ρc (kg/m3) 28 21
Thickness h (mm) 76.2 84.1
C11 (MPa) 4.0 0.4
C22 (MPa) 4.0 95
C33 (MPa) 370 0.4

Core C44 (MPa) 50 7.6
C55 (MPa) 23 0.17
C66 (MPa) 0.2 4.2
C12 = C13 = C23 (MPa) 0.5 0.04
Energy loss factor ηc 0.03, 0.05 0.03

φ = 0o, 90o at oblique incidence θ = 76.5o for panel B are shown in Fig. 3.11. The first

symmetric coincidence occurs near to 200 Hz, and the second symmetric coincidence and

the first anti-symmetric coincidence are around 2000 Hz. It is seen that, in the frequency

region f > 400Hz, the wave impedances are nearly equal in sign and magnitude. Thus high

transmission loss values are expected above 400 Hz.

Sound transmission loss values of panel B were calculated and are compared with the

measured results given in Ref. [6], as shown in Fig. 3.12. The predictions were generated

for three different values of energy loss factor of the core. It is seen that damping does not

have a noticeable effect on the sound transmission loss of panel B in the region 200 Hz <

f < 2000 Hz, between two symmetric coincidences.
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Figure 3.11: Wave impedances along two principal directions for panel B

Figure 3.12: Predicted and measured sound transmission loss values of panel B
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3.6 Other TL models for asymmetric sandwich panels

Dym and Lang [7] have presented a sound transmission loss analysis for asymmetric

sandwich panels with orthotropic cores. In their model, the displacement functions of the

face sheets and the core are written as,

u2 =
(
ū− h

2
∂w̄

∂x

)
+
(
ũ− h

2
∂w̃

∂x

)
−
(
z − h

2

)
∂w2

∂x
,w2 = w̃ + w̄; (3.54)

uc =
(
ū− h

2
∂w̄

∂x

)
+

2z
h

(
ũ− h

2
∂w̃

∂x

)
+ g cos

(
πz

h

)
, wc =

2z
h
w̄ + w̃; (3.55)

u1 =
(
ū− h

2
∂w̄

∂x

)
−
(
ũ− h

2
∂w̃

∂x

)
−
(
z +

h

2

)
∂w1

∂x
,w1 = w̃ − w̄; (3.56)

where w̄, ū and g are for the symmetric motion, and ũ, w̃ are for the anti-symmetric motion,

respectively. They assumed that all displacements are in phase,

ū, w̄, g, ũ, w̃ ∼ exp[i(ωt− kx sin θ)], (3.57)

while the transverse displacements and the in-plane displacements are assumed to be out

of phase in other works [2, 3, 6].

It is noted that the displacement functions assumed in section 3.2 are equal to those

in Eqs. (3.54) ∼ (3.56), if

us = ū− h

2
∂w̄

∂x
, g = ζ, ws = w̄, and ua = ũ− h

2
∂w̃

∂x
, wa = w̃. (3.58)
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Dym and Lang applied equations the same to Eqs. (3.7), (3.8), (3.14) and (3.15) to

evaluate the elastic potentials, the kinetic energies of the sandwich panel, and the potential

for surface pressures, respectively. But they introduced a shear correction factor κ in the

transverse shear strain of the core, γxz. Applying Hamilton’s principle, they derived the

governing differential equations for the forced motion,



B11 B12 B13 B14 B15

B12 B22 B23 B24 B25

B13 B23 B33 0 0

B14 B24 0 B44 B45

B15 B25 0 B45 B55





w̄

ū

g

w̃

ũ



=



−(p1 + p2)

0

0

(p1 − p2)

0



. (3.59)

The elements of the matrix B are given in Appendix B.

Since the in-plane displacement functions in their model are not the same as those used

in our model, Eq. (3.1), and the factor κ is in the elastic potential of the core, the matrix

B is not equivalent to the matrix D in Eq. (3.17). Thus the wave impedances computed

from this model are not the same as those from our model.

Dym and Lang developed the sound transmission coefficient of asymmetric sandwich

panels using the same approach described in Sec. 3.3. However, they neglected the depen-

dence of the stiffness of orthotropic materials on the angle of rotation φ between the axes

of the coordinate system and the principal axes of the orthotropic materials. Then they

44



Table 3.2: Properties of sandwich panel C
Property Panel C
Density ρ1 = ρ2 (kg/m3) 985.0

Face Young’s modulus E1 = E2 (GPa) 4.71
Sheet Thickness t1 = t2 (mm) 3.68

Poisson’s ration ν1 = ν2 0.3
Loss factor η1 = η2 0.01
Density ρc (kg/m3) 30
Thickness h (mm) 50.7

Core Lame constant λ (MPa) 21.57
Shear modulus µ (MPa) 2.14
Energy loss factor ηc 0.03

did not consider the dependence of the angle of rotation in the random incidence transmis-

sion coefficient calculation. The random incidence transmission coefficient τ̄ is defined Eq.

(3.40), so it is only valid for sandwich panels with isotropic materials.

No experimental data for sandwich panels with asymmetric configurations are available

in the literature. Dym and Lang [7] have studied the effects of the face sheet thicknesses of

panel C. The properties of panel C are given in Table 3.2.

The predicted wave impedances for two wave motions at oblique incidence θ = 76.5o

from the present model and Dym and Lang’s model are shown in Fig. 3.13. The predictions

are almost the same except near coincidence. The symmetric coincidence of panel C is near

to 1600 Hz, while the anti-symmetric coincidence is above 8000 Hz for this oblique incidence.

It was found that in the frequency range 6300 Hz > f > 3150 Hz, the two wave impedances

are nearly equal in sign and magnitude, at this oblique coincidence. Thus high transmission

loss values are expected in this region for panel C.
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Figure 3.13: Calculated wave impedances for symmetric panel C

The transmission loss values of panel C with asymmetric configurations were calculated

and are shown in Figs. 3.14 and 3.15. To avoid the effects introduced by adding mass, the

sum of the face sheet thicknesses, t1+t2, was fixed, and the ratio of the face sheet thicknesses

t1/t2 was varied for panel C. Since the face sheets and core of panel C were assumed to

be isotropic, the discrepancy between the two models is caused by the differences in the

displacement functions and the elastic potential of the core. The two models produce similar

transmission loss values. At low frequencies, below where symmetric coincidence occurs for

the panels the predicted sound transmission loss results follow the field incidence mass law

transmission loss curve.

The predicted sound transmission loss values exceed mass law values in some regions,

especially for the symmetric configuration, t1 = t2. This behavior is the result of the
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Figure 3.14: Predicted sound transmission loss values of panel C from Dym and Lang’s
model

Figure 3.15: Predicted sound transmission loss values of panel C from the present analysis
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cancellation of the symmetric and anti-symmetric motions of the face sheets. The symmetric

configuration enhances the cancellation. Asymmetric configurations of the sandwich panel,

t1 6= t2, exhibit some improvement in sound isolation near coincidence.

3.7 Other governing equations for anti-symmetric motion

When the transverse vibration is dominated by anti-symmetric transverse vibration,

the governing equation for transverse vibration of symmetric sandwich panels becomes,

q =

 2Ctt3k4
x/3 + C55hk

2
x − 2mt2ω2k2

x/3− µω2

− (2C55kx−Ctk3
xt

2+mω2kxt)2

2Cttk2
x+C11hk2

x/3+4C55/h−2(m+ρch/6)ω2

w, (3.60)

where the pressure step across the panel is, q = p1 − p2, and the surface mass density is

µ = ρch+ 2m.

The governing equation can be written in the alternative form,

[
Ak6

x +Bk4
x + Ck2

x +D
]
w =

[(
1 +

C11h

6Ctt

)
k2
x +

2C55

hCtt
− 1
Ctt

(
m+

ρch

6

)
ω2
]
q, (3.61)

where, A =
Ctt

3

6

(
1 +

2C11h

3Ctt

)
, D =

ω2

2Ctt
µ

[
ω2
(

2m+
ρch

3

)
− 4C55

h

]
,

B = C55

[
(t+ h)2

h
+
t2

3h
+
C11h

2

6Ctt

]
− ω2

[
t2

3

(
m+

ρch

3

)
− mthC11

9Ct

]
,

C = ω2

{
mt2ω2

6tCt

[
2ρch

3
+m

]
−
(

1 +
hC11

6tCt

)
µ− C55

tCt

[
ρch

2

6
+m

(
(t+ h)2

h
+

2t2

3h

)]}
.
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When the stiffnesses of the face sheets are much greater than the stiffnesses of the core,

and high order ω2 terms are negligible, the governing equation becomes,

[
Ak6

x +Bk4
x + Ck2

x +D
]
w =

[
k2
x +

2C55

hCtt

]
q, (3.62)

where, A =
Ctt

3

6
, B = C55

[
(t+ h)2

h
+
t2

3h

]
, C = ω2{−µ}, D =

ω2

2Ctt
µ

(
−4C55

h

)
.

Mead and Markus [23] presented an equation of motion in terms of the transverse

displacement for a three-layer damped sandwich beam with a viscoelastic core. In their

analysis, rotatory inertia was ignored and elasticity relationships were applied to derive the

sixth-order differential equation:

∂6w

∂x6
− g(1 + Y )

∂4w

∂x4
+

µ

Dt

(
∂4w

∂x2∂t2
− g∂

2w

∂t2

)
=

1
Dt

(
∂2q

∂x2
− gq

)
, (3.63)

where q is the total load, Dt is the bending rigidity of a single face sheet, g is the shear

parameter, Y is the geometric parameter and µ is the surface mass density of the panel.

For symmetric sandwich panels, the parameters can be evaluated as,

Dt =
Ett

3

6(1− ν2
t )
, g =

2C55

ht

1− ν2
t

Et
, Y = (h+ t)2 Ett

2(1− ν2
t )Dt

, µ = ρch+ 2m. (3.64)
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The governing Eq. (3.63) can be written as follows,

[
A′k6

x +B′k4
x + C ′k2

x +D′
]
w =

[
k2
x +

2C55

ht

1− ν2
t

Et

]
q, (3.65)

where, A′ =
Ett

3

6(1− ν2
t )
, B′ =

C55t
2

3h
+
C55(t+ h)2

h
, C ′ = −µω2, D′ = −2C55µω

2(1− ν2
t )

Ctth
.

The equation above is identical to Eq. (3.62), which is an approximate expression for Eq.

(3.61) under certain conditions.

The impedance is given by,

z =
q

iωw
=

1
iω

{
−µω2 +

Dt[k6 + g(1 + Y )k4]
k2 + g

}
. (3.66)

Nilsson and Nilsson [37] have presented an equation of motion for a three-layer sym-

metric sandwich beam. In their analysis, rotatory inertia effects were considered and energy

relationships were applied to derive the sixth-order differential equation.

−2D2
∂6w

∂x6
+

2D2

D1
Iρ

∂6w

∂x4∂t2
−
(
µ+

2D2

D1
µ+

IρGeh

D1

)
∂4w

∂x2∂t2
+Geh

(
∂4w

∂x4
+

µ

D1

∂2w

∂t2

)

+
Iρ
D1

µ
∂4w

∂t4
= −

(
1 +

2D2

D1

)
∂2q

∂x2
+
Geh

D1
q +

Iρ
D1

∂2q

∂t2
, (3.67)

where D1 is the bending rigidity of the entire beam, D2 is the bending rigidity of a single

face sheet, Iρ is the mass moment of inertia, Ge is the equivalent shear stiffness, and µ is
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the surface mass density of the beam.

D1 =
E1h

3

12(1− ν2
c )

+
Et1

(1− ν2
t )

(
h2t

2
+ ht2 +

2t3

3

)
, D2 =

Et1t
3

12(1− ν2
t )
,

Iρ =
ρch

3

12
+ ρt

(
h2t

2
+ ht2 +

2t3

3

)
, Ge =

C55(t+ h)2

h2
, µ = ρch+ 2m.

The governing equation (3.67) can be written as ,

[
2D2k

6 +
(
Geh−

2D2

D1
Iρω

2
)
k4 −

(
µ+

2D2

D1
µ+

IρGeh

D1

)
k2ω2 −

(
Geh− Iρω2

) µω2

D1

]
w

=
[
Geh

D1
+
(

1 +
2D2

D1

)
k2 − Iρ

D1
ω2
]
q. (3.68)

The impedance is,

z =
q

iωw
=

1
iω

−µω2 +
2D2k

6 +
(
Geh− 2D2

D1
Iρω

2
)
k4 − IρGeh

D1
k2ω2

Geh
D1

+
(
1 + 2D2

D1

)
k2 − Iρ

D1
ω2

 . (3.69)

The sound transmission coefficient can be evaluated by Eq. (3.48). The predicted sound

transmission loss values of panel A obtained by using the wave impedances computed from

the three governing equations are compared with the measured results, as shown in Fig.

3.16. The energy loss factor in the core was assumed to be 0.03 for all three cases. The

three governing equations generate similar transmission loss predictions for panel A in the

region between 250 Hz and 4000 Hz, where the anti-symmetric transverse displacement is

dominant.
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Figure 3.16: Predicted sound transmission loss values of panel A made using governing
equations

3.8 Conclusions

The wave impedance analysis provides the sound transmission loss of infinite sand-

wich panels. If damping is included in the theoretical calculations, the effect is noticeable

above coincidence, where the stiffnesses of the face sheets and core affect the sound trans-

mission loss of the panels. For sandwich panels with stiff cores, typical honeycomb cores,

anti-symmetric coincidence occurs at low frequencies, and symmetric coincidence is at high

frequencies. Thus, in the frequency range of interest, the anti-symmetric wave motion is

dominant. The sound transmission loss caused by anti-symmetric wave motion provides

an accurate approximation of the sound transmission loss produced by anti-symmetric and

symmetric motions. For sandwich panels with soft cores, the sound transmission loss values
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can exceed the mass law values because of the cancellation of symmetric and anti-symmetric

motions of the face sheets. This acoustical behavior occurs in the frequency region be-

tween symmetric and anti-symmetric coincidence. Asymmetric configurations lessen the

cancellation of symmetric and anti-symmetric motions of the face sheets, and produce some

improvement in sound isolation near coincidence.
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Chapter 4

Statistical energy analysis

4.1 Introduction

The modal vibration of a finite panel consists of standing waves. Each standing wave

can be considered to be composed of two wave types: forced traveling waves set up by exter-

nal loads and free (reflected) waves that are generated by secondary and necessary to satisfy

at the boundaries. There is little hope to obtain a detailed classical solution for a finite

panel because of the existence of many modes of vibration. For panels excited by broadband

noise, the detailed response characteristics may be neglected and statistical properties such

as mean square values and power spectra can be used to provide an approximate measure

of vibration.

Statistical energy analysis (SEA) was developed from studies of the power flow of two

randomly excited linearly coupled oscillators in the 1960’s. It was found that for conservative

coupling the power flow is proportional to the average modal energy difference between two

oscillators. A thermal argument concludes that the products of modal density and coupling

loss factor are equal in the two coupled oscillators [11]. The modal averaged radiation

resistance of a baffled simply supported single-layer panel excited by a reverberant field was

derived by Maidanik [13]. Later this analysis was extended from systems consisting of two

subsystems to multiple subsystems [39]. Crocker and Price [18] presented a three-subsystem
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SEA model to estimate the sound transmission loss of a single-layer panel with both resonant

and non-resonant modes under consideration. Price and Crocker [19] presented a five-

subsystem SEA model to estimate sound transmission through a double wall.

In this chapter, the assumptions and concepts of SEA are briefly reviewed. A three-

subsystem SEA model for a transmission suite is introduced. An analytical expression for

modal densities of sandwich panels is derived from a sixth-order governing equation. The

expression is compared with other analytical expressions for modal densities of sandwich

panels [22, 41]. The sound transmission loss of the structure between two reverberation

rooms is developed. Then the sound transmission loss estimates for a single-layer panel and

a honeycomb sandwich panel are compared with those experimental values given in Refs.

[6, 18]. The effects of test area of the panels and volume of the rooms’ acoustic spaces on

sound transmission loss are also studied.

4.2 Assumptions and concepts

The fundamental assumptions made in SEA are:

1. the couplings between the different subsystems are small, linear and conservative;

2. the power flows are between the subsystems having resonance frequencies in the band

of interest;

3. the subsystems are excited by broadband random excitation;

4. the total motion is regarded as a sum of independent motions in individual modes;

55



5. equipartition of energy exists between all modes at resonance within a given frequency

band in a given subsystem.

An individual oscillator driven in steady state conditions at a single frequency has

potential and kinetic energy stored within it. The power dissipated via the damping is

related to the energy stored in the oscillator.

Πdiss = cvẋ
2 = 2ζωnmẋ2 = 2ζωnE = ωnηE, (4.1)

where cv is the viscous damping coefficient, ζ is the damping ratio, ωn is the radian natural

frequency, m is the oscillator mass, E is the stored energy, and η is the energy loss factor.

The power dissipation concepts for a single oscillator can be extended to a collection

of oscillators in a specified frequency band,

Πdiss = ωnηE, (4.2)

where ω is the geometric mean center frequency of the band, and η is the mean energy loss

factor of all the modes in the band.

SEA is closely related to room acoustics and thermodynamics. It is assumed that

energy flows from oscillators of higher energy to those of lower energy. It was shown that

the power flow is proportional to the average modal energy difference of two loosely coupled
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Figure 4.1: Block diagram for power flows between the structure and the reverberant field

and randomly excited oscillators [11] and can be expressed in power dissipation terms,

〈Π12〉 = η12n1ω{〈E1〉/n1 − 〈E2〉/n2}, (4.3)

where n1 and n2 are the modal densities of the two groups of oscillators. nij is the coupling

loss factor, describing the flow of energy from subsystem i to subsystem j, and 〈Ej〉/nj is

the modal energy of group j.

Now consider a two-subsystem model with numerous modes in each subsystem where

one subsystem is driven by external forces and the other subsystem is driven through the

coupling. The typical application is the response of a structure excited in a reverberant

field. The model is illustrated in Fig 4.1. The steady state power flow balance equations

for the two groups of oscillators are,

Πin1 = Πdiss1 + Π12, Πin1 = ωη1E1 + ωη12n1(E1/n1 − E2/n2), (4.4)

Πin2 = Πdiss2 −Π12, 0 = ωη2E2 − ωη12n1(E1/n1 − E2/n2), (4.5)
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where Πin1 is the power input to subsystem 1, the structure; Πin2 = 0, is the power input

to subsystem 2, the acoustic field. n1 and n2 are the modal densities. η1 and η2 are the

internal loss factors. η12 and η21 are the coupling loss factors associated with energy flow

from subsystem 1 to 2 and subsystem 2 to 1, respectively. E1 and E2 are the vibration

energies associated with subsystems 1 and 2. All fluctuating terms are assumed to be both

time- and space-averaged, and the brackets have been removed for convenience. Since the

products of the modal density and coupling loss factor are equal in each pair of subsystems

[15], niηij = njηji, the Eqs. (4.4) and (4.5) can be written in matrix form,

ω

 n1η1 + n1η12 −n1η12

−n2η21 n2η2 + n2η21



E1/n1

E2/n2

 =


Πin1

0

 . (4.6)

By rearranging the bottom equation of the matrix Eqs. (4.6), the steady state modal

energy ratio between the two subsystems is,

E2/n2

E1/n1
=

η21

η2 + η21
. (4.7)

The modal energy of subsystem 2 is always less than that of subsystem 1. If η2 � η21,

the ratio approaches 1, which indicates that the additional damping provided to subsystem

2, the reverberant field, will be ineffective unless η2 is about the same as η21.

The two-subsystem model can be extended to a multiple-subsystem. In the general

case, N groups of oscillators yield N simultaneous power flow balance equations which can
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be written in matrix form. The steady state power flow balance matrix is,

ωA



E1/n1

E2/n2

· · ·

EN/nN


=



Πin1

Πin2

· · ·

ΠinN


, (4.8)

with A =



(η1 +
∑N
j 6=1 η1j)n1 −η12n1 · · · −η1Nn1

−η21n2 (η2 +
∑N
j 6=2 η2j)n2 · · · −η2Nn2

· · · · · · · · · · · ·

−ηN1nN · · · · · · (ηN +
∑N
j 6=N ηNj)nN


.

4.3 Transmission suite model

A transmission suite is considered to consist of three coupled systems as illustrated in

Fig. 4.2. The power flow balance equations for the three subsystems are written as,

Πin1 = Πdiss1 + Π12 + Π13, Πin1 = ω

 η1E1 + η12n1(E1/n1 − E2/n2)

+η13n1(E1/n1 − E3/n3)

 , (4.9)

Πin2 = Πdiss2 −Π12 + Π23, Πin2 = ω

 η2E2 − η12n1(E1/n1 − E2/n2)

+η23n2(E2/n2 − E3/n3)

 , (4.10)
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Figure 4.2: Block diagram for power flows between the structure and two reverberation
rooms

Πin3 = Πdiss3 −Π13 −Π23, Πin3 = ω

 η3E3 − η13n1(E1/n1 − E3/n3)

−η23n2(E2/n2 − E3/n3)

 , (4.11)

where Π13 is the power flow from subsystem 1 to subsystem 3 when there are no modes

excited in subsystem 2 in the frequency band under consideration. The non-resonant power

flow modes Π13 is due to modes which are resonant outside of the frequency band under

consideration.

For transmission loss measurements, a panel is clamped between two reverberation

rooms and excited by noise in the source room, Πin2 = Πin3 = 0, as shown in Fig. 4.3.

Equations (4.9) ∼ (4.11) can be written in matrix form,

ωA



E1/n1

E2/n2

E3/n3


= ω


a11 a12 a13

a21 a22 a23

a31 a32 a33





E1/n1

E2/n2

E3/n3


=



Πin1

0

0


, (4.12)
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Figure 4.3: The transmission suite

with A =


(η1 + η12 + η13)n1 −η12n1 −η13n1

−η21n2 (η2 + η21 + η23)n2 −η23n2

−η13n1 −η23n2 η3n3 + η13n1 + η23n2


.

Then, we have the modal energies,

E1

n1
=
F11

|A|
Πin1 =

∣∣∣∣∣∣∣∣∣
a22 a23

a32 a33

∣∣∣∣∣∣∣∣∣
|A|

Πin1,
E3

n3
=
F13

|A|
Πin1 =

∣∣∣∣∣∣∣∣∣
a21 a22

a31 a32

∣∣∣∣∣∣∣∣∣
|A|

Πin1, (4.13)

where |A| is the determinant of the matrix A and Fij is the cofactor of element aij .

Hence the modal energy ratio is,

E1/n1

E3/n3
=
a22a33 − a23a32

a21a32 − a22a31
= 1 +

2ηradn2η3n3 + (η3n3 + ηradn2)η2n2

η2
radn

2
2 + η13(2ηrad + η2)n1n2

, (4.14)

with η21 = η23 = ηrad.
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The successful prediction of the modal energy ratio using SEA depends to a large

extent on knowledge of the modal densities, internal loss factors and coupling loss factors

associated with the subsystems.

4.4 Modal densities

The modal density of the volume of an acoustic space depends on whether the volume

is one-dimensional, two-dimensional, or three-dimensional. The modal density of a volume,

a three-dimensional enclosure, is,

n(f) =
4πf2V

c3
+
πfS

2c2
+
P

8c
, (4.15)

where V is the volume of the enclosure, A is the total surface area, and P is the total length

of the edges.

The modal density of structures depends on their boundary conditions and the gov-

erning equation of motion. For simply supported panels, the wave number for a freely

propagating wave is,

kmn =
√
k2
x + k2

y =
√

(mπ/lx)2 + (nπ/ly)2, (4.16)

where m and n are the mode numbers, lx and ly are the dimensions of the panel.
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Figure 4.4: Constant frequency loci for transverse wave numbers of a simply supported
panel

Then the modal density is associated with the constant frequency loci of the wave

number, as illustrated in Fig. 4.4.

n(ω) =
π/4∆k2

(π/lx)(π/ly)∆ω
=
Ap
4π

dk2

dω
, n(f) = 2πn(ω) =

Ap
2

dk2

dω
. (4.17)

The governing equation for free motion of a single-layer panel is,

D
∂4w

∂x4
+m

∂2w

∂t2
= 0, with D =

Et3

12(1− ν2)
, m = ρt, (4.18)

where D is the bending rigidity, m is the surface density, E is the Young’s modulus, and ν

is the Poisson’s ratio.

Then the wave number k must satisfy,

Dk4 −mω2 = 0 or k2 = ω
√
m/D. (4.19)
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Hence, for a simply supported single-layer panel, the modal density is constant, inde-

pendent of frequency.

n(f) =
Ap
2

√
12(1− ν2)ρ

Et2
. (4.20)

For boundary conditions other than simply supported, analytical expressions for the

wave number of free motion are not available. High order modes of free motion are less

sensitive to boundary conditions than low order modes. Thus, except for the first several

modes, the modal density for simply supported panels provides an approximation for that

of panels with other boundary conditions.

The modal densities of sandwich panels are more complicated because not only are

they frequency dependent, but this frequency dependence is not a linear function. Clarkson

and Ranky [22] derived the square wave number, k2, from the sixth-order equation given by

Mead and Markus [23], by assuming the bending rigidity of the face sheets Dt is negligible,

k2 ≈ µω2 + ω
√

(µω)2 + 4µg2Dt(1 + Y )
2gDt(1 + Y )

, (4.21)

with Y =
[h+ (t1 + t3)/2]2E1t1E3t3

Dt(E1t1 + E3t3)
, g =

Gc
h

(
1

E1t1
+

1
E3t3

)
, Dt =

E1t
3
1 + E3t

3
3

12
,

where Ej is the Young’s modulus of the face sheet j and Gc is the shear modulus of the

core; tj and h are the thickness of the face sheet j and the core, respectively; and µ is the
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surface density of the sandwich panel.

Hence, n(f) =
πµApf

gDt(1 + Y )

(
1 +

µω2 + 2g2Dt(1 + Y )√
(µω2)2 + 4µ(gω)2Dt(1 + Y )

)
. (4.22)

Ferguson and Clarkson [41] presented the modal density derived from the same sixth-

order equation,

n(f) =
Ap
9

{
P−2/3 dP

dω
cos

(
θ

3

)
− P 1/3 dP

dω
sin
(
θ

3

)}
, with (4.23)

P = 3
√

3

{
µω2

Dt
+ g2 (1 + Y )2

2

}3/2

, cos(θ) = − 27
2P

[
2
27
g3(1 + Y )3 +

µgω2

Dt

(
1 + Y

3
− 1

)]
.

It was found that the modal density presented above produced a considerable difference

from that derived by Clarkson and Ranky [22], as shown later in this section.

For sandwich panels with stiff cores, such as honeycomb cores, the anti-symmetric

motion is dominant in the frequency range of interest. The governing equation for anti-

symmetric motion of sandwich panels can be written as a cubic equation with respect to

k2,

k6 + a2k
4 + a1k

2 + a0 = 0. (4.24)

The standard solutions are,

{k2}1 = −1
3
a2 + (S + T ), (4.25)
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{k2}2 = −1
3
a2 −

(S + T )
2

+ i

√
3

2
(S − T ), (4.26)

{k2}3 = −1
3
a2 −

(S + T )
2

− i
√

3
2

(S − T ), (4.27)

where S =
3
√
R+
√
D, T =

3
√
R−
√
D, D = Q3 +R2,

Q = (3a1 − a2
2)/9, R = (9a2a1 − 27a0 − 2a3

2)/54.

In the absence of damping, the wave number of free anti-symmetric transverse motion

is always real. Then the freely propagating wave number must satisfy the equation,

k2 = −(a2/3) + (S + T ). (4.28)

Hence the modal density can be obtained from,

dk2

dω
=
[
−1

3
da2

dω
+ (

dS
dω

+
dT
dω

)
]
, (4.29)

with
dS
dω

=
1
3
S−2

(
dR
dω

+
1

2
√
D

dD
dω

)
,

dT
dω

=
1
3
T−2

(
dR
dω
− 1

2
√
D

dD
dω

)
,

dD
dω

= 3Q2 dQ
dω

+ 2R
dR
dω

,
dR
dω

=
a1

6
da2

dω
+
a2

6
da1

dω
− 1

2
da0

dω
− a2

2

9
da2

dω
,

dQ
dω

=
1
3

da1

dω
− 2a2

9
da2

dω
.
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Figure 4.5: Wave numbers for free transverse wave in x-axis of panel A

Equation (4.24) is equivalent to the sixth-order governing equation for free motion of

sandwich panels presented by Mead and Markus [23], if

a2 = g(1 + Y ), a1 = −µω2/Dt, a0 = −µgω2/Dt. (4.30)

The wave numbers and modal densities of sandwich panel A, were computed, shown

in Figs. 4.5 and 4.6. The properties of panel A are given in Table 3.1, and the dimensions

are 1.22 m × 2.44 m. It is shown that the effect of bending rigidity of the face sheets, Dt,

on wave numbers is noticeable above 2000 Hz. While the effect of bending rigidity of the

face sheets on modal densities is apparent above 2000 Hz. The modal density presented by

Fergusan and Clarkson, Eq. (4.23), generates quite different data from the data obtained
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Figure 4.6: Modal densities of free transverse wave in x-axis of panel A

from the other two equations. Some factors might be missing. Two other sixth-order anti-

symmetric equations, Nilsson and Nilsson’s, Eq. (3.67) and the one developed in previous

chapter, Eq. (3.60), also were employed to compute the wave numbers and the modal

densities. It was found that the results from these two more complicated equations are the

same as those from the sixth-order equation given by Mead and Markus, Eq. (4.30).

4.5 Internal loss factors

Internal loss factors of the volumes of acoustic spaces can be obtained from the rever-

beration time T60, the reverberation time being the time that the energy level in the volume

takes to decay to 10−6 of its original value. The internal loss factor of an acoustic volume
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is given by,

exp(−ηωT60) = 10−6. (4.31)

Hence,

η =
2.2
fT60

. (4.32)

Analytical expressions are not generally available for internal loss factors of structural

components. Very little consistent information is readily available about the internal loss

factors of structural elements. The internal loss factor often varies from mode to mode, and

it is widely recognized that it is the major source of uncertainty in the estimation of the

dynamic response of a system.

4.6 Coupling loss factors

The coupling loss factors for the SEA transmission suite model have two classes of

factor, the structure-acoustic volume coupling loss factor and the acoustic-acoustic volume

coupling loss factor. The structure-acoustic volume coupling loss factor can be associated

with the radiation resistance of the structure.

The power radiated by a structure is given by,

Π = Rrad〈v
2
p〉. (4.33)
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The power dissipated due to radiation is,

Π = ηradωMp〈v2
p〉. (4.34)

Hence, the coupling loss factor due to radiation damping is,

ηrad =
Rrad
ωMp

. (4.35)

When a structure is excited in a reverberant acoustic field, the radiation resistance can

be expressed as [11, 13],

Rrad = (16/π)ρck2
∫ ∫

d~r1d~r2Ψ(~r1, ~r2)Φ(~r1, ~r2), (4.36)

where k is the wave number in the air; Ψ is the cross correlation of the vibrational field and

Φ is the cross correlation of the pressure field; and ρ and c are the mass density and the

speed of sound in air, respectively.

For free transverse waves on an infinite structure, yields

Rrad
Ap

=


0, kp > k

ρc(1− k2
p/k

2)−1/2, kp < k

, (4.37)

where kp is the wave number in the structure and Ap is the area of the panel.
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The equation above shows that a free wave on an infinite structure will not radiate

sound if its wavelength is smaller than the acoustic wavelength.

Consider the single mode radiation resistance of a finite baffled simply supported single-

layer panel. The cross correlation of the vibrational field is given by,

Ψ(~r1, ~r2) =


∏2
i=1[sin(xikpx) sin(yikpy)], 0 < xi < lx and 0 < yi < ly

0, 0 > xi > lx and 0 > yi > ly

, (4.38)

where the wave number in the panel is, kp =
√
k2
px + k2

py. The cross correlation of the

pressure field is given by,

Φ(~r1, ~r2) =
sin k|~r1 − ~r2|
k|~r1 − ~r2|

. (4.39)

Then the radiation resistance can be written as,

Rrad = (64ρck2/π2)
∫ 1

0
IxIy dβ, with (4.40)

Ix =

(
k2
px

k4

)
 cos2

sin2


[β2 − (k2

px/k
2)]2

klxβ

2
, Ix =

(
k2
py

k4

)∫ π/2

0

 cos2

sin2


[(k2

py/k
2)− (α sin θ)2]2

klyα

2
sin θ dθ,

α =
√
f/fc, β =

√
1− α2,

where fc is the critical frequency of the single-layer panel. The cos2 and sin2 are to be chosen

according to whether the mode, either in x or y direction, is odd or even, respectively.
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The resonant modes of a panel can be divided into three classes. Modes which have

wave phase speeds in both edge directions less than the speed of sound are termed “corner”

modes. Modes having wave phase speeds in one edge direction greater than the speed of

sound and wave phase speeds in the other edge direction less than the speed of sound are

termed “edge” modes. Modes having wave phase speeds greater than the speed of sound in

air are termed “surface” modes.

The approximated radiation resistance of the modes is,

kp < k, above coincidence, surface mode

Rrad =
Apρc√

1− (kp/k)2
; (4.41)

kp = k, at coincidence,

Rrad =
Apρc

3
√
π

√ lxk2
p

kpx
+

√
lyk2

p

kpy

 ;

kp > k, kpy > k, kpx < k, below coincidence, x-edge mode,

Rxrad =

[
Apρck

k2
pyly

]{
1 + (k2

p − k2)/k2
py

[(k2
p − k2)/k2

py]3/2

}
;

kp > k, kpy < k, kpx > k, below coincidence, y-edge mode,

Ryrad =

[
Apρck

k2
pxlx

]{
1 + (k2

p − k2)/k2
px

[(k2
p − k2)/k2

px]3/2

}
;

72



Figure 4.7: Effective radiation areas for edge and corner modes

kpy > k, kpx > k, corner mode,

Rrad =
8ρck2

πk2
pxk

2
py

.

It is shown theoretically that surface modes have high radiation efficiencies. Corner

modes have lower radiation efficiencies than edge modes. The theoretical results for the

radiation and classification of modes can also be given a simple physical explanation. Figure

4.7 shows a typical modal pattern in a baffled simply-supported panel. The dotted lines

represent panel nodes. For corner modes, the fluid will produce pressure waves which will

travel faster in the fluid than the panel transverse waves and the acoustic pressures created

by the quarter wave cells will cancelled everywhere except at the corners as shown. For edge

modes, cancellation can only occur in one edge direction and the quarter wave cells shown

will cancel everywhere except at x-edges. For surface modes, the fluid cannot produce
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pressure waves which will move fast enough to cause any cancellation. The modes radiate

from the whole surface area of a panel.

The results for the single mode can be extended to the reverberant vibrational field

radiation resistance. The modal averaged radiation resistance of a baffled simply supported

single-layer panel in an acoustic reverberant field given by [13] is, as corrected in Ref. [18],

R2π
rad = Apρc



σcorner + σedge, f < fc√
lx/λc +

√
ly/λc, f = fc

[1− (fc/f)]−1/2 , f > fc

with (4.42)

σcorner =


(λcλa/Ap)α2(8/π4)[(1− 2α2)/α/

√
1− α2], f < fc/2

0, f > fc/2
,

σedge =
1

4π2

Pλc
Ap

(1− α2) ln [(1 + α)/(1− α)] + 2α
(1− α2)3/2

,

λa =
c

f
, λc =

c

fc
, α =

√
f

fc
.

Maidanik [13] also noted that well below the critical frequency, the radiation resistance of

a clamped panel is twice that of a simply supported panel. Later Nikiforov [44] and Berry

et al. [24] showed that this conclusion is restricted to large structures or high order modes.

Typical frequency-averaged radiation resistances of baffled simply supported single-

layer panels are illustrated in Fig. 4.8. The radiation resistances of two different dimensions

of aluminum panels, 1.22 m × 2.44 m and 0.42 m × 0.84 m, were calculated. The thicknesses
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Figure 4.8: Normalized radiation resistances of baffled simple supported aluminum panels

of both panels are 6.35 mm. It is shown that the small panel has higher values of radiation

efficiency than the large panel below the critical frequency. This is because more effective

radiation areas per unit area exist in the small panel.

The acoustic-acoustic volume coupling loss factors describe the power flow between

two reverberation rooms when there are no modes excited in the structure in the frequency

band of interest.

During steady state conditions, the sound power flowing from the source room to the

receiving room due to sound transmission is,

Πtr = τIpAp, with Ip =
〈p2〉
4ρc

, (4.43)
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where Ip is the incident sound intensity on the structure in the source room and τ is the

transmission coefficient of the structure. The power flow can be written in dissipation terms,

Πtr = ηtrωE = ηtrω
〈p2〉
ρc2

V. (4.44)

Hence, the source-receiving coupling loss factor is associated with the non-resonant trans-

mission coefficient, τnr,

η13 = ηnr =
cAp

4V1ω
τnr, (4.45)

where V1 is the volume of the source room.

Since mass law transmission is derived by assuming zero stiffness and damping in the

infinite structure and off resonance, then η13 can be obtained from the field incidence mass

law transmission coefficient,

10log10

(
1
τnr

)
= 20log10

(
ωµ

2ρc

)
− 5 dB, (4.46)

where µ is the surface mass density of the structure.

Sewell [20] derived the transmission coefficient due to forced vibration,

10log10

(
1
τnr

)
≈ 20log10

[
ωµ

2ρc

(
1− ω2

ω2
c

)]
−10log10

[
ln(k

√
Ap) +

1
4πk2Ap

]
−5 dB, (4.47)

where ωc is the critical frequency of the structure. This formula is not for lightweight panels,

and it requires, µ > 10 kg/m2.
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Figure 4.9: Sound transmission measurements from the two-room method

4.7 Sound transmission loss

The sound transmission loss of partition can be obtained experimentally by the two-

room method. The sound power Π12 flowing from the source room to the receiving room

must equal the sound power Π21 flowing back into the source room from the receiving room

plus the sound power Πα, which is absorbed within the receiving room, as illustrated in

Fig. 4.9.

Π12 = Π21 + Πα. (4.48)

The sound power, Π1, incident upon the surface of the partition is,

Π1 =
〈p2

1〉
4ρc

Ap, (4.49)

where Ap is the surface area of the partition between two rooms, and 〈p2
1〉 is the mean

square sound pressure in the source room. Likewise, the sound power incident upon the
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receiving room side of the partition is,

Π2 =
〈p2

2〉
4ρc

Ap, (4.50)

where 〈p2
2〉 is the mean square sound pressure in the receiving room. The sound power which

is transmitted from the source room to the receiving room and the sound power transmitted

from the receiving room back to the source room are,

Π12 = Π1τ, Π21 = Π2τ, (4.51)

where τ is the transmission coefficient of the partition. The sound power absorbed by the

receiving room is,

Πα =
〈p2

2〉
4ρc

ApS2α2, (4.52)

where S2 is the total surface area of the receiving room and α2 is the average absorption

coefficient in the receiving room.

Substituting Eqs. (4.52) and (4.51) into Eq. (4.48), yields

1
τ

=
Ap
S2α2

(
〈p2

1〉
〈p2

2〉
− 1

)
=
〈p2

1〉
〈p2

2〉
Ap

S2α2 + τAp
. (4.53)

The energy density ratio of the transmission suite SEA model can be evaluated by Eq.

(4.14). Since the mean square sound pressure ratio is equivalent to the sound energy density
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ratio between the two reverberation rooms,

E1/V1

E3/V3
=
〈p2

1〉
〈p2

2〉
. (4.54)

The transmission loss of the structure in a transmission suite SEA model can be esti-

mated from,

TL = 10log10

(
1
τ

)
= 10log10

[
Ap
S3α3

(
E1/V1

E3/V3
− 1

)]
, (4.55)

where S3 is the total surface area of the receiving room. α3 is the average absorption

coefficient in the receiving room. S3α3 is associated with the reverberation time of the

receiving room T3, which is related to the internal loss factor of the receiving room, η3.

The modal density of large acoustic volumes is generally approximated by the first

term of Eq. (4.15). Hence, the transmission loss can be expressed as,

TL = 10log10

[
ApT3

0161V3

(
E1/V1

E3/V3
− 1

)]
= 10log10

[
4π

13.7fAp
n3η3c3

(
E1/V1

E3/V3
− 1

)]
, (4.56)

with,
E1/n1

E3/n3
− 1 =

2ηradn2η3n3 + (η3n3 + ηradn2)η2n2

η2
radn2n3 + η13(2ηrad + η2)n1n2

.

The transmission coefficient due to non-resonant modes is,

1
τ

=
4πf
c3

13.7Ap
η13n1

=
1
τnr

, with ηrad = 0. (4.57)
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The transmission coefficient due to resonant modes is,

1
τ

= 4π
13.7fAp

c3

2ηrad + [1 + (ηradn2)/(n3η3)]η2

η2
radn2

, with η13 = 0. (4.58)

In the absence of structural damping, the transmission coefficient becomes,

1
τ

= 4π
13.7fAp

c3

2
ηradn2 + 2η13n1

. (4.59)

4.8 Numerical results

Since most transmission loss measurements are conducted in reverberation rooms, the

reverberation times were assumed in this numerical study instead of the internal loss factors

of the two rooms. The reverberation times of two rooms were assumed to be 1.4 seconds at

all frequencies.

Two non-resonant transmission coefficients, Eqs. (4.46) and (4.47), were used in cal-

culating the sound transmission loss of an aluminum panel, panel D, as shown in Fig. 4.10.

The estimates were compared with the measured values in Ref. [18]. The material prop-

erties of the aluminum panels were assumed as, Young’s modulus E = 70 GPa, Poisson’s

ratio ν = 0.3, mass density ρ = 2700 kg/m3, energy loss factor ηint = 0.001. The thickness

and the dimensions are given in Table 4.1. The volumes of the two reverberation rooms

were, 127.4 m3 [18]. The estimates using the field incidence mass law as the non-resonant
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Figure 4.10: Estimated transmission loss values of panel D

Table 4.1: Properties of aluminum panels D, E and F
Property Panel D Panel E Panel F
Thickness (mm) 3.175 6.35 6.35
Dimension (m×m) 1.97× 1.55 1.22× 2.44 0.42× 0.84

transmission coefficient are much closer to the measured values than those using Sewell’s

formula, Eq. (4.47), below the critical frequency.

The sound transmission loss values due to resonant and non-resonant modes were also

computed, as shown in Fig. 4.11. The non-resonant coupling loss factors were obtained

from field incidence mass law, Eq. (4.46). Below the critical frequency, non-resonant modes

are dominant in transmission, and above that frequency, resonant modes are substantial.

Two sets of modal densities were employed in the calculation of sound transmission

loss for honeycomb sandwich panel A. The predictions of sound transmission loss are shown
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Figure 4.11: Resonant and non-resonant modes on the sound transmission loss of panel D

and compared with the measured values [6]. The properties of panel A are given in Table

3.1. The internal loss factor was assumed to be ηint = 0.03. The volumes of the two rooms

were taken as 100 m3.

The theoretical radiation resistances for sandwich panels are not readily available.

From the previous chapter, the critical frequency of panel A is near to 200 Hz, and the

radiation resistance is independent of the wave number for structures above the critical

frequency, then the radiation resistances of sandwich panels are only associated with the

critical frequencies above that frequency. The predictions using SEA were computed from

250 Hz, above the critical frequency. Both predictions using SEA produced similar values of

sound transmission loss, the difference between them is noticeable above 2000 Hz, as shown

in Fig. 4.12. Since the approximate modal density function overestimates modal densities
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Figure 4.12: Estimated sound transmission loss values of panel A

at high frequencies, as shown in Fig. 4.6, the estimated sound transmission loss values

are smaller than those using the modal densities derived from the sixth-order governing

equation.

The effects of dimensions of panels and volumes of rooms on sound transmission loss

were studied, as illustrated in Fig. 4.13. The volumes of the large rooms were 127.4 m3, and

52 m3 for the small rooms. Both panels are made of aluminum, and have the same material

properties as those of panel D. The thicknesses and the dimensions are given in Table 4.1.

Two panels with the identical thickness, then yields the same surface mass density and

critical frequency. The sound transmission loss predictions from SEA are insensitive to the

size of the panels and the volumes of the rooms above the critical frequency. The sound
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Figure 4.13: The effects of dimensions of panels and volumes of rooms on sound transmission
loss

transmission loss predictions for the panels reduces with decreasing the size of the panels

or increasing the volumes of the rooms below the critical frequency.

4.9 Conclusions

It is shown that for lightweight panels, the SEA model using non-resonant coupling

loss factor associated with the field incidence mass law generates better results than the

model using Sewell’s formula. For sandwich panels with stiff cores, anti-symmetric motions

dominant in the frequency range of interest, SEA produces reliable sound transmission

loss estimates above the critical frequency. The derived modal density of a traditional

honeycomb sandwich panel was found to be one half of the approximate modal density

84



that was obtained from a fourth-order governing equation, which yields a 2 dB difference

in the sound transmission loss. SEA produces similar sound transmission loss estimates for

single-layer panels made of the identical material and with the same thickness above the

critical frequency. Below that critical frequency, the estimates depend on the dimension of

the panels and the volumes of the rooms.
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Chapter 5

Boundary element analysis

5.1 Introduction

For a baffled planar structure, boundary element analysis has the advantage over finite

element analysis of avoiding the discretization of the fluid domain. Thus it is efficient

for solving exterior interactions, where the fluid occupies an unbounded domain. Three-

domain, fluid-structure-fluid systems have been modeled as coupled systems [32, 34, 46]

and uncoupled systems [33, 35, 45]. The uncoupled approach assumes that the structure is

rigid, and that the external load of the structure is only associated with the sound pressure

in the incident and reflected waves at the interface. The coupled approach considers the

effect of the sound pressure in the radiated waves at the interfaces.

In this chapter, finite element models of sandwich structures are reviewed and some

simulation results from MSC Nastran are compared with the exact solutions from the classic

analysis. The concepts of boundary element analysis are introduced. The coupled boundary

element analysis model for fluid-structure-fluid systems is discussed. A computer program in

MATLAB language is developed to compute the sound transmission loss of a baffled simply

supported aluminum panel. The estimates of sound transmission loss for the aluminum

panel from a sound transmission loss model in a commercial boundary element analysis

software, LMS SYSNOISE, are provided and compared with the results from the computer
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program. Finally, a coupled boundary element analysis model for the sound transmission

loss of three-layer symmetric sandwich panels is presented.

5.2 Finite element analysis models for sandwich structures

The displacement compatibility over the entire interfaces between the core and the face

sheets is required for modeling of sandwich structures. Some authors have developed finite

element programs for sandwich beams [35, 49], while others presented modeling methods

using commercially available finite element analysis softwares [48]. Finite element programs

for sandwich beams follow the same procedure for the development of the governing equation

for transverse motion of three-layer sandwich panels described in Sec. 3.2. The face sheets

are treated as elementary bent plates. The mid-plane displacements of the face sheets and

the displacements of the core are assumed to satisfy the displacement compatibility over

the face sheet-core interfaces.

Earlier finite element methods implemented with MSC Nastran required four layers of

nodes and extensive constraint equations to achieve the proper bending-shearing behavior of

a three-layer sandwich structure [47]. Johnson and Kienholz [48] proposed a finite element

model for sandwich structures with viscoelastic cores using only two layers of nodes, as

illustrated in Fig 5.1. The face sheets are modeled with plate elements, such as CQUAD

and CTRIA , with two rotational and three translational degrees of freedom per node. The

viscoelastic core is modeled with solid elements, such as HEXA and PENTA, with three

translational degrees of freedom per node. The plate elements are offset to one surface of
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Figure 5.1: Finite element model for sandwich structures using MSC Nastran

the plate, coincident with the nodes of the adjoining solid elements. The plate elements are

able to account for the stretching and bending of the face sheets. The modal loss factor is

defined as,

η(r) = ηv[V (r)
v /V (r)], (5.1)

where ηv is the energy loss factor of the viscoelastic core evaluated at the rth calculated

resonance frequency and V
(r)
v /V (r) is the fraction of elastic strain energy attributable to

the core when the structure deforms in the rth mode shape.

The sixth-order differential equation of motion formulated in terms of the transverse

displacement w, for a three-layer sandwich beam with a viscoelastic core is [23],

∂6w

∂x6
− g(1 + Y )

∂4w

∂x4
+

µ

Dt

(
∂4w

∂x2∂t2
− g∂

2w

∂t2

)
=

1
Dt

(
∂2q

∂x2
− gq

)
, (5.2)

with Dt =
E1t

3
1 + E3t

3
3

12
, g =

Gc
h

(
1

E1t1
+

1
E3t3

)
, Y =

[h+ (t1 + t3)/2]2E1t1E3t3
Dt(E1t1 + E3t3)

,
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Table 5.1: Classic boundary conditions
Clamped w = 0 ∇w = 0 ∇5w − gY∇3w = 0
Free ∇2w = 0 ∇4w − (µ/Dt)ω2w = 0 ∇5w − g(1 + Y )∇3w − (µ/Dt)ω2∇w = 0

where Gc is the shear modulus of the core, q is the external load, and µ is the surface mass

density.

The exact solution of Eq. (5.2), is of the form,

w = (A1e
−ik1x +A2e

−ik2x +A3e
−ik3x +A4e

−ik4x +A5e
−ik5x +A6e

−ik6x)eiωt. (5.3)

The amplitude Aj can be determined from the boundary conditions [23, 50], given in Table

5.1.

For a cantilever sandwich beam, as shown in Fig. 5.2, the equations for amplitudes Aj

of free transverse motion can be written in matrix form as,



b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

b41 b42 b43 b44 b45 b46

b51 b52 b53 b54 b55 b56

b61 b62 b63 b64 b65 b66





A1

A2

A3

A4

A5

A6



=



0

0

0

0

0

0



, (5.4)

with, b1j = 1, b2j = −ikj , b3j = −i(k5
j + gY k3

j ), b4j = −k2
j e
−ikjL,
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Figure 5.2: A cantilever sandwich beam with viscoelastic core (beam G)

b5j =
(
k4
j −

µ

Dt
ω2
)
e−ikjL, b6j =

[
−ik5

j − ik3
j g(1 + Y ) + ikj

µ

Dt
ω2
]
e−ikjL.

The modal loss factor η is determined by the perturbation method [51],

η =
Im(ω2)
Re(ω2)

, where ω2 =
Dt

µ

k6 + g(1 + Y )k4

k2 + g
. (5.5)

The cantilever beam, beam G, has identical aluminum face sheets and a viscoelastic

core, the properties are given in Table 5.2. The results for beam G, as obtained from the

sixth-order equation and two finite element models using MSC Nastran, are presented in

Table 5.3. One finite element model had CQUAD4 elements offset from the solid nodes by

a half of the thickness of the face sheets, as shown in Fig. 5.1, and the other was without

reference to the surface offset. Both finite element models had 50 CQUAD4 plate elements

and 50 HEXA solid elements in the lengthwise direction, x-axis.
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Table 5.2: Properties of beam G
Property Face sheet Core
Young’s modulus (Pa) 69× 109 2.1× 106

Shear modulus (Pa) 26.5× 109 6.23× 105

Poisson’s ratio 0.3 0.685
Thickness (mm) 1.524 0.127
Mass density (kg/m3) 2800 970

Table 5.3: Comparisons of natural frequencies for beam G
Sixth-order Eq. Finite element model Finite element model

Mode CQUAD4 with offset CQUAD4 without offset
Natural frequency(Hz) Natural frequency(Hz) Vυ/V Natural frequency(Hz)

1 63 63 0.29 39
2 291 291 0.23 241
3 735 734 0.14 675
4 1383 1381 0.08 1325
5 2249 2243 0.05 2193

The natural frequencies predicted from Johnson and Kienholz’s model and the sixth-

order equation are almost the same for the first five modes, while the finite element model

without offset predicts large differences for low order modes.

5.3 Basic concepts of boundary element analysis

A time-harmonic sound pressure field is represented by,

p(x, y, z, t) = p(x, y, z)eiωt. (5.6)

The Helmholtz equation is,

∇2p+ k2p = 0. (5.7)
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The acoustic particle velocity is related to the normal derivative of the sound pressure as,

v =
i

ρω

∂p

∂n
. (5.8)

The fundamental solution to the Helmholtz equation, Eq. (5.7) in three dimensions is,

G(x,X′) =
e−ikr

4πr
, (5.9)

where r is the distance between the field point x and the source point X′. The above

fundamental solution satisfies,

∇2G(x,X′) + k2G(x,X′) = −δ(x,X′), (5.10)

where δ is the Dirac delta function.

The boundary integral equation can be found from Green’s second identity,

∫
S

(
p
∂G

∂n
−G∂p

∂n

)
dS =

∫
V

(
p∇2G−G∇2p

)
dV. (5.11)

Substituting the Laplacian ∇2p on the left-hand side of Eq. (5.7), yields

∫
S

(
p
∂G

∂n
−G∂p

∂n

)
dS =

∫
V

(
∇2G+ k2G

)
p dV. (5.12)

92



Equations (5.10) and (5.12) give the boundary integral representation of the sound pressure

field,

p(x) =
∫
S

∂p(X′)
∂n

G(x,X′)dS −
∫
S
p(X′)

∂G(x,X′)
∂n

dS. (5.13)

The normal derivative of the fundamental solution is,

∂G

∂n
= −e

−ikr

4πr

(
ik +

1
r

)
∂r

∂n
. (5.14)

For infinite regions, a far-field boundary condition is necessary to guarantee that the solution

of the mathematical problem will be a sound wave propagating from the source to infinity,

and not vice versa. This condition is called the Sommerfeld radiation condition at infinity,

lim
r→∞

r

∣∣∣∣ ∂∂r + ik

∣∣∣∣ = 0. (5.15)

For larger values of r,

∂r

∂n
→ 1,

1
r
→ 0, (5.16)

then Eq. (5.14) reduces to,

∂G

∂n
+ ikG = 0. (5.17)

Consider the domain V limited by an infinite rigid plane boundary, SH , baffle, and

another boundary S, as shown in Fig. 5.3. The plane is rigid, so that total reflection occurs
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Figure 5.3: Half-space V limited by an infinite rigid plane SH and boundary S

for waves at any angle of incidence at SH ,

v = 0⇒ ∂p/∂n = 0. (5.18)

Then the boundary integral equation for the sound pressure field becomes,

p(x) =
∫
S

∂p(X′)
∂n

G(x,X′)dS −
∫
S+SH

p(X′)
∂G(x,X′)

∂n
dS. (5.19)

The sound pressure p is not zero at SH . To avoid the discretization of the infinite

boundary, the fundamental solution G has to be modified to be satisfied over SH ,

∂G(x,X′)
∂n

= 0. (5.20)
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Using the method of images, the half-space Green’s function can be of the form,

G(x,X′) =
e−ikr1

4πr1
+
e−ikr2

4πr2
, (5.21)

where r1 denotes the distance from x to X′ and r2 is the distance from x to X′′ (the image

of X′ with respect to SH). The second term of Eq. (5.21) represents the reflected waves

due to the presence of the infinite plane SH .

The normal derivative of the half-space Green’s function is,

∂G(x,X′)
∂n

=
1

4π

[(
− 1
r2
− ik

r1

)
e−ikr1

∂r1

∂n
+
(
− 1
r2
− ik

r2

)
e−ikr2

∂r2

∂n′

]
, (5.22)

where n′ is the image of n with respect to the plane SH . For any point x along SH , we have

r2 = r1, while ∂r2/∂n = −∂r1/∂n. (5.23)

Then the integral Eq. (5.19) reduces to

p(x) =
∫
S

∂p(X′)
∂n

G(x,X′) dS −
∫
S
p(X′)

∂G(x,X′)
∂n

dS. (5.24)

5.4 Boundary element analysis model for fluid-structure-fluid systems

For the conventional multi-domain systems, the acoustic domains are first divided into

several subdomains, and the Helmholtz integral equation is applied to each subdomain. Two
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interface conditions, the continuity of normal particle velocity and the continuity of sound

pressure, are then enforced at the interface between two neighboring subdomains. For the

fluid-structure-fluid system, the structure involved is elastic, and the sound pressure has a

step across the interface. The fluid-structure-fluid interaction requires a slight modification

of the interface conditions. The continuity of normal particle velocity is the same as for

fluid-fluid systems, and the second condition becomes the continuity of the normal stress,

which relates the normal displacement and the stiffness and mass matrices of the structure

to the pressure step across the structure. The stiffness and mass matrices can be obtained

from the finite element analysis.

Consider a fluid-structure-fluid system, as illustrated in Fig. 5.4. An elastic panel,

occupies the domain Σ on the plane z = 0 in a three-dimensional space. The baffle occupies

the region Σ′ and is perfectly rigid. The two half spaces Ω1 (z < 0) and Ω2 (z > 0) contain

a fluid. The system is excited by a simple harmonic sound source, O(Q)eiωt, located in Ω1

at point Q, (x, y, z).

Let w(U) = w(x, y) be the panel normal displacement of node U , located at (x, y, 0);

p2(Q) = p2(x, y, z) and p1(Q) = p1(x, y, z) denote the sound pressure fields, in Ω2 and

Ω1 fields, respectively. The sound pressure step q(Q) = q(x, y) across the panel, is defined

by,

q(x, y) = lim
l→0
|p1(x, y, −l)− p2(x, y, l)|, l > 0. (5.25)
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Figure 5.4: Sound fields Ω1 and Ω2 created by a baffled planar vibrating structure

Then the sound pressure functions p2(Q) and p1(Q) satisfy the Helmholtz equation,

(∇2 + k2)p2(Q) = 0, Q ∈ Ω2 and (∇2 + k2)p1(Q) = O(Q), Q ∈ Ω1. (5.26)

At the interface, the continuity of normal stress produces,

(K −Mω2)w(U) = q(U), U ∈ Σ, (5.27)

where K and M are the stiffness and the mass matrix of the panel, respectively.

The continuity of normal velocity gives,

∂p2(U)
∂n

= −∂p1(U)
∂n

= ρfω
2w(U), U ∈ Σ. (5.28)
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where ρf is the mass density of the fluid, and n is the unit normal vector to the surface Σ,

outward to the sound pressure field Ω2.

On the baffle plane, we have,

∂p2(U)
∂n

=
∂p1(U)
∂n

= 0 and w(U) = 0, U ∈ Σ′. (5.29)

The half-space Green’s function is expressed as,

G(Q,Q′) =
e−ikr(Q,Q

′)

4πr(Q,Q′)
+
e−ikr(Q,Q

′
−)

4πr(Q,Q′−)
, (5.30)

where the coordinates of the points Q
′

and Q
′
− are (x′, y′, z′) and (x′, y′,−z′), respectively.

The structure and the baffle are coplanar. Thus, the normal derivative of the modified

Green’s function is zero along Σ. The sound pressure fields can be written as,

p2(Q) = ω2ρf

∫
Σ
w(U ′)G(Q,U ′)dS(U ′), Q ∈ Ω2, (5.31)

p1(Q) = p0(Q)− ω2ρf

∫
Σ
w(U ′)G(Q,U ′)dS(U ′), Q ∈ Ω1, (5.32)

where p0(Q) is the sound pressure generated by the source and its image, in the presence

of the baffle.

Hence, we have the equation for the panel displacement:

(K −Mω2)w(U) + 2ρfω2
∫

Σ
w(U ′)G(U,U ′)dS(U ′) = p0(U), U ∈ Σ. (5.33)
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The discretization by finite elements of the panel yields the matrix equation,

[K− (M + 2B)ω2]w = F, (5.34)

where B is the complex symmetric matrix associated with the fluid, which depends on

the wave number in the z direction, kz, and F is the loading matrix acting on the plane

structure. The equation above is similar to the equation derived by Mariem and Hamdi

[32], although the factor of B is 4 in their work.

The sound pressure in the incident plane wave can be written as,

pinc = Pincexp{iωt− ik(x sin θ cosφ+ y sin θ sinφ+ z cos θ)}, (5.35)

where Pinc is the amplitude of the source, θ is the angle of incidence, and φ is the angle of

rotation. Then the wave number k in Eq. (5.30) is evaluated as kcosθ.

The sound transmission coefficient is defined as,

τ =
Wr

Wi
, (5.36)

where Wi denotes the virtual sound power flow, which would pass through the surface of

the panel, if the panel were removed.

Wi =
|Pinc|

2S cos θ
2ρfcf

, (5.37)
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where cf is the sound speed in the fluid. The sound power radiated by the panel in the

semi-infinite fluid domain, Wr, is given by,

Wr =
1
2

Re
(∫

S
v∗n(U)pr(U)dS(U)

)
=

1
2

Re
(
−
∫
S
iωw∗(U)pr(U)dS(U)

)
, U ∈ Σ. (5.38)

with pr(U) = ω2ρf
∫

Σw(U ′)G(U,U ′)dS(U ′).

Theoretically, modal superposition method is numerically equivalent to the direct re-

sponse method if the modal basis consists of all modes of the structure. The modal super-

position method can be used to evaluate the frequency response of the normal displacement

in the form of a linear combination of modal eigenvectors,

w =
∑
j

aj{ψj} = [ψ]{a}, (5.39)

where {a} contains the modal participation factors, and [ψ] is a matrix, whose columns are

the modal eigenvectors. Compared to the direct response method, the modal superposition

method has the advantage of allowing faster calculations once the modes are determined.

Then Eq. (5.34) can be expressed as,

([ψ]T [K− (M + 2B)ω2][ψ]){a} = [ψ]TF. (5.40)
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The structural damping can be introduced by adding a fraction matrix η,

([ψ]T [K(1 + iη)− (M + 2B)ω2][ψ]){a} = [ψ]TF. (5.41)

When the modal eigenvectors are generalized with respect to mass, the following rela-

tions are obtained,

{ψi}TK{ψj} =


λi = ω2

i i = j

0 i 6= j

, and {ψi}TM{ψj} =


1 i = j

0 i 6= j

. (5.42)

Hence Eqs. (5.40) and (5.41) are only associated with the element mesh, the eigenvalues λ,

and the generalized modal eigenvectors, ψ.

The natural frequency fmn of a simply supported single-layer panel can be evaluated

by,

Dk4 = mω2, with k2
mn = (mπ/lx)2 + (nπ/ly)2, ω = 2πf, (5.43)

where lx and ly are the dimensions of the panel. The modal eigenvectors of normal dis-

placements can be expressed as,

φmn = Vmn sin(mπx/lx) sin(mπy/ly), (5.44)

where the amplitude Vmn can be obtained from finite element analysis.
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Table 5.4: Natural frequencies and generalized modal amplitudes of panel H
From Eq.(5.43) MSC Nastran

Mode (m,n) Frequency (Hz) Frequency (Hz) Vmn
1 (1,1) 52.9 52.9 1.1414531
2 (2,1) 85.5 85.5 1.1432148
3 (3,1) 140.0 140.2 1.1461568
4 (1,2) 178.7 179.5 1.1463532
5 (2,2) 211.4 211.9 1.1481224
6 (4,1) 216.2 217.2 1.1502883
7 (3,2) 265.8 266.1 1.1510770
8 (5,1) 314.2 316.9 1.1556219
9 (4,2) 342.1 342.5 1.1552263
10 (1,3) 388.4 392.8 1.1545663
11 (2,3) 421.1 424.9 1.1563482
12 (6,1) 434.0 440.0 1.1621734
13 (5,2) 440.1 441.6 1.1605831
14 (3,3) 475.6 478.5 1.1593239
15 (4,3) 551.8 554.0 1.1635029
16 (6,2) 559.9 563.8 1.1671624

The generalized modal eigenvectors of a 3.175 mm thick aluminum panel, panel H,

were computed by MSC Nastran. The 0.84 m × 0.428 m panel was divided into 40 × 24

CQUAD4 elements. The generalized modal amplitudes Vmn with respect to the mass are

given in Table 5.4.

A boundary element method (BEM) computer program in MATLAB language was

developed to calculate the sound transmission loss of the aluminum panel H. The modal

supposition method was employed and the first 16 modes were included. The structural

modal damping was assumed to be constant over all frequencies. Two different structural

loss factors were examined, η = 0.001, 0.005. The frequency increment used was 1 Hz.

The calculated sound transmission loss values of the aluminum panel H for sound waves at

normal incidence are shown in Fig. 5.5.
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Figure 5.5: Calculated sound transmission loss values of the aluminum panel H for sound
waves at normal incidence using the BEM computer program

It was found that the presence of the fluid modifies the resonance characteristics of

the panel, slightly shifting modal frequencies to lower frequencies. The effect of damping

on sound transmission loss is noticeable around resonance frequencies. It is seen that the

radiated power is greater than the virtual power flow at the resonance frequencies of the

first several modes.

The specific acoustic impedance of the half-space Green’s function, Eq. (5.30), is

identical to that of a spherical wave,

Z =
iρfcfkr

1 + ikr
= ρfcf

(
k2r2

1 + k2r2
+ i

kr

1 + k2r2

)
. (5.45)
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Unlike the specific acoustic impedance of a plane sound wave, the specific acoustic impedance

of a spherical sound wave has both resistive and reactive components. When kr >> 1, the

specific acoustic impedance approaches ρfcf , the specific acoustic impedance of a plane

wave. For boundary element analysis, both the resistive and reactive components are re-

quired. The virtual sound power flow, Eq. (5.37), is defined by using plane wave concepts,

and the radiated power, Eq. (5.38), is associated with the specific acoustic impedance of

spherical waves. That may explain why the radiated sound power is greater than the virtual

sound power flow at low order resonance frequencies.

When a plane wave is normally incident on the panel, the sound pressure generated by

the source and its image on the panel, p0(U), is uniform (see Eq. (5.35)). Only odd-odd

(volume displacing) modes are excited, so only odd-odd modes radiate power. It is seen

that the transmission loss curve generated by the first mode, (1,1), is much higher than the

mass law curve above its resonance frequency, and it approaches the mass law curve with

increasing frequency.

The sound pressure in a plane wave obliquely incident on the panel, depends on the

angle of incidence, θ, and the angle of rotation, φ. Thus it should be expected that the

transmission loss of the aluminum panel will also depend on the angle of rotation, φ. A

comparison of the sound transmission loss values of the aluminum panel H for sound waves

at oblique incidences predicted using the computer program is presented in Fig. 5.6.

When a plane wave is obliquely incident on the panel, along the x−axis direction, (φ =

0o), the sound pressure generated by the source and its image on the panel, p0(U), is constant
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Figure 5.6: Calculated sound transmission loss values of the aluminum panel H for sound
waves at oblique incidence using the BEM computer program

along the y−axis direction. Then the radiated power for odd-even or even-even modes of

the panel is quite small. Hence the resonance dips in the predicted sound transmission loss

along the x-axis direction (φ = 0o), occur at the resonance frequencies whose y-axis mode

numbers are odd. Likewise, the resonance dips in the predicted transmission loss along the

y-axis direction (φ = 90o), occur at the resonance frequencies whose x-axis mode numbers

are odd (see Table 5.4). Since the sound pressure generated by the source and its image on

the panel, p0(U), is less sensitive to the angles of incidence and rotation at low frequencies,

the effect of angle of rotation on sound transmission loss is negligible in that region.

A commercial boundary element analysis software, LMS SYSNOISE, was also used to

calculate the sound transmission loss of the aluminum panel H. A finite element model
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database and a boundary element indirect baffled model database were defined in the soft-

ware. The element mesh, 40 × 24 CQUAD4 elements, was imported to the software as

the structural meshes for both databases and to occupy on the plane z = 0. The com-

puted eigenvectors of the first 16 modes obtained from MSC Nastran were imported to

the software as the structural modes in the finite element model database. A plane wave

source was defined in the boundary element model database at 5 m below the center of the

panel. The two databases were linked to solve the displacement of the aluminum panel.

LMS SYSNOISE does not directly calculate the radiated power of planar structures, but

it does provide an alternative method to estimate the radiated sound intensity from planar

structures, by integration of the sound power through a field point mesh, which covers the

receiver side of the structure. A hemisphere with 1 m radius was used for the field point

mesh.

Comparisons of sound transmission losses of the aluminum panel H for plane sound

waves at normal and oblique incidences calculated using the BEM computer program and

the transmission loss model in the boundary element analysis software are given in Figs. 5.7

and 5.8. In both cases, the structural damping was assumed to be constant for all modes

and the structural loss factor was assumed to be η = 0.001; the frequency increment used

was 1 Hz.

The predictions from the BEM computer program and the TL model in the boundary

element analysis software are quite similar, although there are some differences. In the

software, the velocity field is obtained by differentiation of the pressure field at the Gauss
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Figure 5.7: Predicted sound transmission loss values of the aluminum panel H for sound
waves at normal incidence

Figure 5.8: Predicted sound transmission loss values of the aluminum panel H for sound
waves at oblique incidence

107



points of the elements of the field point mesh and then extrapolation and averaging are

carried out at the nodes. Hence the estimated sound power radiated depends on the field

point mesh and the Gauss points. The estimates of radiated sound power can become more

accurate if a finer field point mesh or more Gauss points are used.

5.5 Boundary element analysis model for three-layer symmetric sandwich pan-

els

For a three-layer sandwich panel, the generalized modal eigenvectors of the normal

displacements of the face sheets can be written as,

φmn =


Vmn,2func(m,n, x, y, z), z > 0

Vmn,1func(m,n, x, y, z), z < 0
. (5.46)

These generalized eigenvectors can be obtained from the finite element model for sandwich

structures given by Johnson and Kienholz [48]. In their model, for symmetric sandwich

panels, the normal displacements of the face sheets are the same. Hence the three-layer

symmetric sandwich panel can be treated as an equivalent single-layer panel whose gener-

alized modal eigenvectors satisfy,

ψ′mn = V ′mnfunc(m,n, x, y) with V ′mn = Vmn,2 = Vmn,1. (5.47)
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In the previous section, it was shown that Eqs. (5.40) and (5.41) are only associated

with the element mesh, the eigenvalues λ, and the generalized modal eigenvectors of the

structure. Then only the generalized eigenvectors for one face sheet of the symmetric sand-

wich panel are required in this boundary element analysis model. The sound transmission

coefficient can be computed from Eqs. (5.36) ∼ (5.38) and the sound transmission loss can

be determined with Eq. (3.41).

To verify the proposed model, the aluminum panel H was modeled as a single-layer

panel and a three-layer panel using the finite element model presented by Johnson and

Kienholz [48], t1 = t2 = 0.24 mm, h = 2.195 mm. The finite element mesh of the three-

layer panel was generated in MSC Nastran, and consisted of 40 × 24 CQUAD4 elements

for each face sheet, and 40 × 24 HEXA elements for the core. The finite element mesh

of the single-layer panel consisted of 40 × 24 CQUAD4 elements. The calculated natural

frequencies and generalized amplitudes Vmn, with respect to the mass, for the clamped

aluminum panel H, are given in Table 5.5. It is seen that the two finite element models

predict almost the same natural frequencies and generalized amplitudes.

The sound transmission characteristics of the clamped aluminum panel H in the single-

layer model case and the three-layer model case were computed by using LMS SYSNOISE.

In the single-layer model case, the sound transmission loss values were obtained by using

the TL model described in Sec. 5.4. In the three-layer model case, the structural mesh used

in the boundary element analysis is not the entire element mesh that consists of CQUAD4

and HEXA elements. Only the element mesh of one face sheet, 40 × 24 CQUAD4 elements,
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Table 5.5: Natural frequencies and generalized amplitudes of the clamped aluminum panel
H

Single-layer model Three-layer model
Mode (m,n) Frequency (Hz) Amplitude Vmn Frequency (Hz) Amplitude Vmn

1 (1,1) 104.9 1.3873931 104.5 1.3862565
2 (2,1) 137.0 1.3394921 136.4 1.3382779
3 (3,1) 194.6 1.3268757 193.5 1.3257434
4 (1,2) 273.6 1.2870189 271.5 1.2858151
5 (4,1) 277.6 1.3145773 275.6 1.3140515
6 (2,2) 304.4 1.2745483 302.1 1.2627527
7 (3,2) 357.7 1.2642025 355.1 1.3862565
8 (5,1) 385.4 1.3166149 381.7 1.3161944

was imported to the software as the structural meshes for both databases and to occupy

on the plane z = 0. Then the computed eigenvectors of the face sheet were imported to

the software as the structural modes in the finite element model database. The estimates

of the radiated sound powers were found to be almost the same for both cases.

5.6 Conclusions

The presence of fluid modifies the resonance characteristics of the structure. The

radiated sound power of a planar structure can be higher than the virtual sound power flow

near the lower order resonance frequencies. The damping increases the sound transmission

loss near the resonance frequencies. For finite single-layer isotropic rectangular panels,

the sound transmission loss also depends on the angle of rotation, φ. The contribution of

other than odd-odd modes on the sound transmission loss for single-layer isotropic panels

is negligible for plane sound waves at normal incidence, while those can be substantial for

plane sound waves at oblique incidence. The sound transmission loss values are less sensitive
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to the damping and the angle of incidence at low frequencies. Good agreement was found

between the predications obtained from the BEM computer program and the TL model of

the boundary element analysis software.

A boundary element analysis model is presented to obtain the sound transmission

loss of three-layer symmetric sandwich panels. Only the eigenvectors of one face sheet are

required in the analysis. Hence, this incurs only a minimum increase in computation effort

relative to single-layer structures.
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Chapter 6

Materials and material properties

6.1 Introduction

A sandwich structure consists of three or more constituents, the face sheets, the core

and the adhesive joints. The introduction of fiber composites allows the choice of a great

number of face sheet materials. The number of available cores also has increased because

of the introduction of cellular plastics. Since the material properties of composites are

very dependent on the manufacturing process, there is usually a large number of material

data for composites, especially data for fiber composites. In a few papers on sound trans-

mission through sandwich composite structures, parameters of material properties used in

predictions were determined experimentally, based on resonance frequency measurements

[6, 8]. Moore and Lyon [6] determined the core material parameters experimentally, based

on resonance frequency measurements with a layer of core material sandwiched between

rigid metal discs. Nilsson and Nilsson [8] separated the face sheets from the foam core and

simulated a free-free beam boundary condition to determine the E-moduli of the face sheets

and foam core.

In this chapter, the materials commonly used in sandwich structures are reviewed,

especially the composite materials for the sandwich structures investigated in this study.

The experimental methods used to obtain material properties of the face sheets and core
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of sandwich structures are discussed. The estimated material properties of the sandwich

structures used in this study are also presented.

6.2 Materials

“Almost any structural material which is available in the form of a thin sheet may be

used to form the faces of a sandwich panel” [52], gives a good view of material selection

for the face sheets of sandwich structures. The properties of primary interest for the face

sheets of sandwich structures are stiffness, strength, impact resistance, surface finish, en-

vironmental resistance and wear resistance. Common face sheet materials can be divided

into two main groups: metallic and non-metallic materials.

The advantages of using metal for the face sheets include high stiffness and strength,

low cost, good surface finish, and high impact resistance. The drawbacks include high mass

density and difficulty in manufacturing sandwich structures.

Most non-metallic composites offer strength properties similar to those of metals. The

manufacturing of non-metallic composite sandwich structures is much easier than the man-

ufacturing of metal face sheet sandwich structures. The most important non-metallic mate-

rials are fiber reinforced composites. Glass fibers have good mechanical and environmental

resistance properties. Their main drawbacks are that their elastic moduli are fairly low and

their mass densities are higher than those of other reinforcements.

Aramid fibers made from aromatic polymid, have low mass densities, and high stiffness

and high strength properties. It is difficult to machine aramid fibers, however, because
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of their extremely wear resistance. Graphite fibers are built-up from long carbon-carbon

molecular chain yielding very strong fibers. Graphite fibers are among the strongest and

stiffest composite materials when they are combined with matrix systems to produce high-

performance structures. Graphite fibers have a low coefficient of thermal expansion, and

good friction properties. Their main drawbacks are their high cost and relatively brittleness.

Common composite face sheet material forms can be divided into two main groups,

laminate and textile structures. Textile structures include unitapes and 2-D woven fabrics.

Unitapes have maximum structural properties in the fiber direction, while they are much

poorer in the direction transverse that in the fiber direction. 2-D woven fabrics are more

expensive than unitapes, however the lay-up lab requirements are reduced in manufacturing

operations. Common 2-D woven fabrics include unidirectional fabrics, plain weave fabrics

and satin weave fabrics. Among them, plain weave is the most stable construction and has

minimum slippage. The strength is uniform in both directions. A laminate is a stack of

lamina comprised of a layer of fibers in a matrix. The rule-of-mixtures is used to estimate

the properties of a lamina [62]. Classical lamination theory is applied to calculate the

properties of a laminate.

Core materials are of the same importance as the face sheet materials and the least

knowledge exists about their properties. Cores in sandwich structures can be divided into

two main groups, honeycombs and foams. The properties of primary interest of the core

include mass density, shear modulus, shear strength, stiffness perpendicular to the face

sheets, thermal insulation and acoustic insulation.
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Figure 6.1: Commonly used cell configurations for honeycomb core materials (a) hexagonal
(b) square (c) over expanded hexagonal (d) flex

Figure 6.2: Manufacture of honeycomb cores - corrugating (top) and expansion (bottom)
processes

Honeycomb core materials have been developed and used primarily in aerospace ap-

plications. Honeycomb materials can be manufactured with a variety of cell shapes. The

commonly used cell configurations for honeycombs are shown in Fig. 6.1.

The manufacture of honeycombs is conducted in two different ways, as illustrated in

Fig. 6.2. The corrugating process requires that pre-corrugated metal sheets are stacked

into blocks and bonded together. When the adhesive has cured, blocks with the required

thickness can be cut from the stack. The corrugating process is usually used for high density

metal honeycombs.
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The expansion process begins with the stacking of thin plane sheets of the web material

on which adhesive node lines have been printed. When the adhesive has cured, the honey-

comb block may be expanded by pulling in the W−direction until a desired cell shape has

been achieved (see Fig. 6.1). Metal honeycombs are cut into the desired thickness prior to

expansion, and when expanded they retain their shapes since the material yields plastically.

Non-metallic materials, such as impregnated fiber mats or paper, are heat treated after

expansion to retain their shapes. Then the materials are dipped in resin, which is cured in

an oven. After this process is completed, the core is sliced.

Due to the manufacturing methods involved, most honeycombs have not only different

out-of-plane properties but also different in-plane properties from each other. Honeycombs

have excellent mechanical properties. These include very high stiffness perpendicular to

the plane, and the highest shear stiffness- and strength-to-weight ratios of all available core

materials. Their main drawbacks are high cost and difficult handling during lay up of

sandwich element.

Gibson and Ashby [53] derived an expression for the out-of-plane shear moduli of regular

hexagonal honeycomb cores,

GLT = GWT = 1.15Gst/s, (6.1)

where t is the cell wall thickness, s is the diameter of a circle inscribed in the hexagonal

cell, and Gs is the shear modulus of the cell wall material. In practice, regular hexagonal

116



honeycomb cores have double cell walls in the L-direction due to their manufacture (see

Fig. 6.1). Then the shear modulus estimation is modified to [54],

GLT = 4tGs/(3s), GWT = 16tGs/(30s). (6.2)

For square cells the shear moduli are [54],

GLT = GWT = tGs/s. (6.3)

Foams do not offer the same high stiffness- and strength-to-weight ratios as honey-

combs. Foams can be manufactured from a variety of synetheticpolyers and are generally

less expensive. Foams offer high thermal insulation and acoustical damping. The foam

surface is easy for bonding. The manufacturing operation of sandwich elements with foams

is much easier than that with honeycombs.

Polyurethane (PUR) foams have low thermal conductivity, very good insulation prop-

erties and poor mechanical properties. PUR foams are probably the least expensive of all

available core materials. That PUR foams can also be foamed in-situ gives an integrating

manufacturing in conjunction with the manufacturing of the sandwich elements.

Polystyrene (PS) foams have good mechanical and thermal insulation properties, and

they are low cost. Their main drawback is their sensitivity to solvent. Polyvinylchloride

(PVC) foams are the most frequently used foams and they have quite good mechanical
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Figure 6.3: The face sheet (a) and core (b) materials of sandwich structures in this study

properties. Polymethacrylimide (PMI) foams have the best mechanical properties and are

more expensive than other foams.

All sandwich structures tested in this study have plain weave fabric-reinforced graphite

composites as the face sheet materials, and PUR foam-filled paper honeycombs as the core

materials. The combination of PUR foam and honeycomb materials gives the core the

advantage of possessing both foam and honeycomb properties, a high shear modulus, and

a large bonding area.

6.3 Measurement methods for materials

Moore and Lyon [6] estimated the honeycomb stiffnesses from resonance frequency

measurements on a test sample consisting of a thin layer of honeycomb sandwiched between

rigid metal disks. They found that such tests gave values for the main diagonal axial

stiffnesses C11, C22, C44 and C55. The off-diagonal stiffnesses C13, C23, and C12 were

arbitrarily assumed to be equal to 0.1 times the softer of the axial stiffnesses.
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Nilsson [8] simulated a free-free beam boundary condition by suspending a beam by

strings. The beam was excited by an impact in a direction perpendicular to the plane of the

beam. The loss factors were derived from half-power bandwidth measurements for various

resonances.

In this study, a free-free beam boundary condition was simulated in two ways. In one

case the beam was excited with white noise by a shaker mounted at its center. Since the

force is applied at the center of the beam, then the center can be considered approximately

as a node of the standing waves. It is expected that only odd modes of the beams are

excited successfully. In the other case the beam was suspended by strings at the two ends.

The beam was excited by an impact in a direction perpendicular to the plane of the beam.

In both cases, the response functions were measured by an accelerometer mounted on the

beam. The modal loss factors were derived from half-power bandwidth method at various

resonances determined from the response function measurements.

In order to verify the hypotheses concerning free-free boundary conditions, a 61 cm

long, 2.54 mm wide, 6.35 mm thick, aluminum beam was excited in both ways. The

admittance-frequency response functions of the aluminum beam for two cases are shown in

Figs 6.4 and 6.5.

It is seen that the even modes are suppressed when the beam is excited by a shaker

mounted at the center. The resonance frequencies of odd modes are slightly lower than

those obtained from the impact set-up. There is more noise in the impact system than in
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Figure 6.4: The frequency response function of the aluminum beam for the shaker set-up

Figure 6.5: The frequency response function of the aluminum beam for the impact set-up

the shaker system. The measured resonance frequencies and loss factors of the aluminum

beam are given in Table 6.1.

The natural frequencies of a free-free single-layer beam are,

f = ξ
π

8L2

√
Et2

12ρ
, ξ = 3.0112, 52, 72, · · ·, (6.4)

The exact natural frequencies were computed by assuming E = 70 GPa, ρ = 2700kg/m3.
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Table 6.1: Measured resonance frequencies and loss factors of the aluminum beam
Mode 1 2 3 4 5 6 7 8

Shaker f (Hz) 83 442 1102 2060
η(%) 1.8 0.21 0.1 0.04

Impact f (Hz) 88 244 476 789 1174 1642 2178 2798
η(%) 1.15 0.41 0.22 0.12 0.1 0.09 0.06 0.05

Exact f (Hz) 89 246 483 790 1192 1665 2216 2847

The resonance frequencies obtained from the impact set-up are all within 2% of the

predicted values, when a free-free boundary condition is assumed. The resonance frequencies

obtained from the shaker set-up are within 9% of the predicted values for the same condition.

The two set-ups give the similar modal loss factor values, of the order 0.1%, except in the

low frequency region. The experimental loss factor includes both the internal loss in the

structure and the loss at the boundaries of the structure element in the low frequency region.

This fact may explain the high values of the first few modal loss factors.

6.4 Experimental resonance frequencies of sandwich beams

Honeycomb materials have different stiffnesses in planes perpendicular and parallel to

the direction of the cells. It was assumed that the cells of the honeycomb are aligned

perpendicular to the plane of the sandwich structures in this study. Most foam cores are

only moderately anisotropic and have fairly similar in-plane properties. Thus the foam-filled

honeycomb cores were assumed to be orthotropic.

Measurements were performed on beams representing the two main in-plane directions

of the panels. For materials tested in two directions of the structure, the results are assigned

subscripts x or y to indicate the orientations of the beam. Test samples in the form of beams
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Table 6.2: Properties of the sandwich beams
Face sheets Core

Beam Length Width Thickness Density Thickness Density
(cm) (cm) (mm) (kg/m3) (cm) (kg/m3)

Ix 114.3 3.0 0.33 1900 0.635 160
Iy 53.3 3.2 0.33 1900 0.635 160
Jx 103.8 3.2 0.50 1600 0.635 160
Jy 54.5 3.2 0.50 1600 0.635 160
Kx 101.6 4.4 0.50 1600 1.27 120
Ky 53.0 4.1 0.50 1600 1.27 120
Lx 104.8 3.2 0.33 1900 2.54 70
Ly 54.9 3.5 0.33 1900 2.54 70

were cut out from four symmetric composite sandwich panels. The configurations are given

in Table 6.2. The estimated densities of the face sheets include the density of the plain

weave fabrics and the adhesive. The sandwich structures were assumed to be homogenous.

Beams Ix, Iy, Jx and Jy have the same foam-filled honeycomb core. Beams Jx, Jy,

Kx and Ky with two layers of plain weave fabrics for each face sheet were treated as three-

layer sandwich structures. All sandwich beams are lightweight, ∼ 3 kg/m2. In order to

minimize effects of mass loading, an Endevco model 22 piezoelectric accelerometer, mass

of 0.14 g, was employed to measure the responses of the beams. For each test specimen,

the measurements were repeated several times. The resonance frequencies of all sandwich

beams were obtained by using the impact method discussed in the previous section. The

admittance-frequency functions of all eight beams are shown in Figs. 6.6 ∼ 6.13.

For sandwich beams Ix, Jx and Kx, at least the first 10 modes can be identified, and

for sandwich beams Iy, Jy and Ky, the first six modes can be identified, corresponding to
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Figure 6.6: The frequency response function of beam Ix

Figure 6.7: The frequency response function of beam Iy

Figure 6.8: The frequency response function of beam Jx
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Figure 6.9: The frequency response function of beam Jy

Figure 6.10: The frequency response function of beam Kx

Figure 6.11: The frequency response function of beam Ky
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Figure 6.12: The frequency response function of beam Lx

Figure 6.13: The frequency response function of beam Ly

frequencies up to 2 kHz. While for beams Lx and Ly, only a few resonant modes can be

registered. The modal loss factors of beams Ix, Jx, Iy and Jy are similar, of the order 1%,

as shown in Fig. 6.14. The modal loss factors of beams Kx and Ky are about 2% around

1200 Hz, as shown in Fig. 6.15.

The effects of the mass loading of the accelerometer on the frequency response function

were also investigated. Both a laser Doppler vibrometer and an accelerometer were employed

to measure the response of a light single-layer beam, ∼ 1.9 kg/m2. The beam was excited

with white noise by a shaker mounted at its center. The length, width and thickness of the
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Figure 6.14: Loss factors of beams Ix, Iy, Jx and Jy

beam are 61 cm, 2.54 cm, and 6.35 mm, respectively. The frequency response functions of

the beam are shown in Fig. 6.16.

The frequency response functions of the two transducers are seen to be similar. The

resonance frequencies measured by the accelerometer are slightly lower than those measured

by the laser vibrometer. The laser vibrometer and the accelerometer all require some mass

to be attached the beam. The mass of the accelerometer is 0.14 g, while the mass of the

metal piece needed for the laser vibrometer measurement is much smaller. There is about

5 dB difference between the measured amplitudes of the two frequency response functions.

The modal loss factors were determined by the half-power point method. The resonance

frequencies and modal loss factors are given in Table 6.3.
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Figure 6.15: Loss factors of beams Kx and Ky

Figure 6.16: The frequency response functions of the aluminum beam
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Table 6.3: Resonance frequencies and modal loss factors of the beam
Laser f(Hz) 67 182 352 580 859 1193 1582 2486 3020

vibrometer η(%) 4.2 3.2 2.6 2.7 ∼ 2.2 ∼ 1.8 ∼ 1.9 ∼ 2.0 ∼ 2.0
Accelerometer f(Hz) 67 180 350 580 856 1188 1577 2482 3002

η(%) 3.0 2.8 2.6 2.7 2.6 3.5 2.8 3.9 ∼ 3.1

The effect of mass loading of the accelerometer on the resonance frequencies of the

beam was found to be negligible. The resonance frequencies measured by the accelerometer

system are all within 1% of those obtained by the laser system. The laser system has more

noise than the accelerometer system, and it cannot provide precise resonance frequencies

and modal loss factors except at low frequencies.

6.5 Material properties of sandwich panels

The well known sixth-order governing differential equation of transverse displacement

for a sandwich beam was originally developed by Mead and Markus for sandwich beams

with viscoelastic cores [23]. In general these beams have thin cores, which are different

from the sandwich structures examined in this study. Nilsson and Nilsson [37] developed a

sixth-order governing equation for symmetric sandwich beams with thick honeycomb and

foam cores, which includes rotatory inertia effects of the face sheets and core. They assumed

that the total transverse displacement w of a honeycomb sandwich is primarily caused by

bending, shear and rotation in the core, as shown in Fig. 6.17.

∂ω/∂x = β + γ. (6.5)
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Figure 6.17: Transverse displacement caused by (a) bending and (b) shear

The differential equation governing w, β and γ is determined using Hamilton’s principle.

The total potential energy of a honeycomb sandwich beam is assumed to be caused by pure

bending of the entire beam, bending of both face sheets and shear in the core. The kinetic

energy of the honeycomb sandwich beam is due to the transverse motion of the beam and

the rotation of a section of the beam.

Then the equation governing w can be written as,

−2D2
∂6w

∂x6
+

2D2

D1
Iρ

∂6w

∂x4∂t2
−
(
µ+

2D2

D1
µ+

IρGeh

D1

)
∂4w

∂x2∂t2
+Geh

(
∂4w

∂x4
+

µ

D1

∂2w

∂t2

)

+
Iρ
D1

µ
∂4w

∂t4
= −

(
1 +

2D2

D1

)
∂2q

∂x2
+
Geh

D1
q +

Iρ
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∂2q
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with D1 =
E2h

3

12
+ E1

(
h2t

2
+ ht2 +

2t3

3

)
, Iρ =

ρch
3

12
+ ρt

(
h2t

2
+ ht2 +

2t3

3

)

D2 =
E1t

3

12
, µ = 2ρtt+ ρch, Ge = G2

(
1 +

t

h

)2

,

where h and t are the thickness of the face sheets and core, respectively. The mass densities

of the face sheets and the core are ρt and ρc, respectively.
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Assuming w =
∑
j Aje

iωte−ikjx, and allowing the external load q to equal zero, the

wave number kj must satisfy the following expression,

2D2k
6+
(
Geh−

2D2

D1
Iρω

2
)
k4−

(
µ+

2D2

D1
µ+

IρGeh

D1

)
k2ω2−µGeh

D1
ω2+

Iρ
D1

µω4 = 0. (6.7)

Nilsson and Nilsson presented the boundary conditions, given in Table 6.4, in terms of

w, and β. It was shown that β can be expressed in a similar way to w, β =
∑
j Bje

iωte−ikjx,

and it must satisfy the following equation,

−D1
∂2β

∂x2
+ 2D2

(
∂3w

∂x3
− ∂2β

∂x2

)
+ Iρ

∂2β

∂t2
−Geh

(
∂w

∂x
− β

)
= 0. (6.8)

Then the amplitude Bj can be determined as a function of Aj ,

Bj = Aj
2D2k

3
j +Gehkj

(D1 + 2D2)k2
j +Geh− Iρω2

= AjXj . (6.9)

Since both composite face sheet and core materials have losses, the damping is intro-

duced by a complex E-modulus,

E = ER(1 + iη), where ER is real. (6.10)
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Table 6.4: Basic boundary conditions
Clamped w = 0 β = 0 ∇w = 0
Free ∇2w = 0 ∇β = 0 D1

∂2β
∂x2 = Iρ

∂2β
∂t2

For a free-free boundary sandwich beam, the six boundary conditions in combination

with Eq. (6.9), yield the equations for Aj , which written in matrix form are,



b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

b41 b42 b43 b44 b45 b46

b51 b52 b53 b54 b55 b56

b61 b62 b63 b64 b65 b66





A1

A2

A3

A4

A5

A6



=



0

0

0

0

0

0



, (6.11)

with b1j = −k2
j , b2j = −ikjXj , b3j = D1Xjk

2
j − IρXjω

2, b4j = −k2
j e
−ikjL,

b5j = −ikjXje
−ikjL, b6j = (D1Xjk

2
j − IρXjω

2)e−ikjL.

The material properties of the face sheets and cores of the sandwich structures tested

in this study were estimated using Eqs. (6.7) and (6.11), based on the experimental data

for free-free sandwich beams. It is well known that the motion of sandwich structures is

primarily determined by the face sheets at low frequencies. Thus the E-moduli of the face

sheets can be estimated from the first several resonance frequencies. Then the G-moduli of

the cores can be estimated from the higher modes. Since only the first few modes can be
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Table 6.5: The estimated moduli of sandwich panels I, J , K and L
Sandwich panel I J K L

Face sheets Ex (GPa) 32 49 39 32
Ey (GPa) 34 49 39 24

Cores Gxz (MPa) 100 90 100
Gyz (MPa) 150 140 60

identified for beams Lx and Ly, the shear moduli, Gxz and Gyz, of the core of panel L can’t

be determined from measurements. The material property parameters were assumed to

be constant for all frequencies. Then the estimated main material properties for sandwich

panels I, J , K and L are given in Table 6.5.

The resonance frequencies of sandwich beams are insensitive to the core E-modulus

perpendicular to the plane, which was assumed to be 2.3 times the stiffer out-of-plane shear

modulus of the core. Based on the estimated material properties of the face sheets and the

cores, the predicted natural frequencies obtained from the models of Nilsson and Nilsson

[37], Mead and Markus [23] (MM), Johnson and Kienholz [48] (FEM) are given in Tables 6.6

∼ 6.11. The FEM model had 60 CQUAD4 plate elements and 60 HEXA solid elements in

the lengthwise direction, x-axis. Poisson’s ratios were assumed to be 0.15. The off-diagonal

stiffness constants C13, C23, and C12 were arbitrarily assumed to be equal to 0.1 times the

softer of the axial stiffness constants.

The predicted resonance frequencies are seen to agree well with the measured resonance

frequencies. The modal frequencies predicted from governing equations, the models of

Nilsson and Nilsson, and Mead and Markus, are similar, then the effects of the rotatory

inertia of the face sheets and core on modal frequencies are negligible for the sandwich
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Table 6.6: The modal frequencies of beam Ix
Mode 1 2 3 4 5 6 7 8 9 10
Nilsson (Hz) 28 77 149 245 361 498 652 823 1009 1208
MM (Hz) 28 76 148 243 359 494 648 819 1004 1203
Johnson (Hz) 28 76 149 243 360 495 650 821 1007 1207
Measured (Hz) 27 74 143 238 353 486 639 808 992 1189
Mode 11 12 13 14 15
Nilsson (Hz) 1418 1638 1867 2103 2345
MM (Hz) 1413 1633 1862 2098 2340
Johnson (Hz) 1419 1642 1875 2116 2366
Measured (Hz) 1400 1622 1852 2085 2331

Table 6.7: The modal frequencies of beam Iy
Mode 1 2 3 4 5 6 7
Nilsson (Hz) 133 360 690 1109 1601 2152 2748
MM (Hz) 131 356 684 1100 1591 2141 2738
Johnson (Hz) 131 357 685 1103 1596 2150 2750
Measured (Hz) 126 353 683 1096 1586 2132 2720

Table 6.8: The modal frequencies of beam Jx
Mode 1 2 3 4 5 6 7 8 9 10
Nilsson(Hz) 48 132 253 407 589 794 1017 1254 1501 1755
MM(Hz) 48 130 250 403 584 788 1010 1246 1492 1746
Johnson(Hz) 48 131 252 406 588 793 1016 1254 1504 1761
Measured(Hz) 47 131 251 404 583 781 999 1224 1460 1702
Mode 11 12
Nilsson (Hz) 2015 2278
MM (Hz) 2005 2268
Johnson (Hz) 2026 2296
Measured (Hz) 1950 2195

Table 6.9: The modal frequencies of beam Jy
Mode 1 2 3 4 5 6
Nilsson (Hz) 177 474 888 1389 1949 2548
MM (Hz) 176 472 886 1387 1949 2549
Johnson (Hz) 177 472 885 1386 1947 2549
Measured (Hz) 177 467 877 1372 1929 2477
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Table 6.10: The modal frequencies of beam Kx

Mode 1 2 3 4 5 6 7 8 9 10
Nilsson (Hz) 81 219 416 661 943 1253 1582 1924 2275 2630
MM (Hz) 80 216 411 655 936 1245 1574 1917 2268 2624
Johnson (Hz) 80 217 413 657 941 1254 1589 1939 2300 2671
Measured (Hz) 79 216 413 651 919 1216 1536 1987 2230 2592

Table 6.11: The modal frequencies of beam Ky

Mode 1 2 3 4 5 6
Nilsson (Hz) 285 707 1218 1759 2300 2845
MM (Hz) 283 704 1216 1758 2305 2847
Johnson (Hz) 284 708 1227 1780 2343 2904
Measured (Hz) 281 702 1227 1757 2277 2727

structures tested in this study. The difference of the predictions between the FEM model

and the other two models is larger for thick sandwich beams than for thin sandwich beams.

6.6 Conclusions

The main material moduli of composite sandwich panels have been determined exper-

imentally from data for free-free sandwich beams. The predicted natural frequencies were

found to agree well with the measured resonance frequencies. Due to the small mass, 0.14

g, the effect of mass loading of the accelerometer on the measured resonance frequencies

of the sandwich beams was found to be negligible. The modal loss factors of the sandwich

beams are much higher than that of the aluminum beam, about 10 times.
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Chapter 7

Dynamic properties of composite sandwich panels

7.1 Introduction

The parameters that are used in statistical energy analysis to describe the dynamic

behavior of a structure are the modal density, internal loss and coupling loss parameters

of the structure. The accuracy prediction of response using SEA greatly depends on an

accurate estimate of the three parameters.

In principle the modal density can be obtained by exciting the structure with a sinu-

soidal force of varying frequency and counting the number of modes that are excited in each

frequency band. However, the mode count method is not suitable for structures that have a

high modal density and a high modal overlap or those with heavily damped modes present.

Because of these reasons, the point mobility technique, described by Cremer et al. [42] is

a more suitable method for measuring modal densities. The accuracy of this technique is

critically dependent on the reliable measurement of force and velocity.

Two common direct experimental techniques for obtaining internal loss factors are 1)

the half-power bandwidth method and 2) the envelope decay method. Only the internal

loss factors of the non-overlapping modes can be obtained from the half-power bandwidth

method. For SEA applications, the primary property of interest is the band-averaged loss

factor not the modal loss factor. The envelope decay method is based on the logarithmic
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decrement of the transient structural response, which is obtained from measurements of the

decay of the vibration after the excitation is cut off. The steady state power flow method

is an indirect approach to experimentally obtain the band-averaged loss factor.

Most experiments used to measure the loss factor of a structure have been conducted

in air. In such cases, the loss factor reported is the total loss factor, which includes the

radiation loss factor.

In this study, modal densities, internal loss factors and radiation loss factors of four

composite sandwich panels were estimated experimentally. The dimensions of all four panels

are the same, 1.12 m × 0.62 m. A three-channel spectral analysis was employed to obtain

the point mobilities of the sandwich panels. The modal densities of the composite sandwich

panels were experimentally determined with the spectral mass correction method. The total

loss factors of the panels were evaluated by using the power flow method. The experimental

radiation loss factors of the unbaffled and baffled composite sandwich panels were compared

with the theoretical estimates.

7.2 Experimental modal densities

The modal density of a structure can be obtained from the measurement of the spatially

averaged point mobility frequency response function [42],

n(f) = 4MpRe[Y (f)], (7.1)
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where Y (f) = V (f)/F (f) is the driving point mobility of the structure at frequency f , and

Mp is the mass of the structure. The band-averaged modal density is given by,

n(f) =
1
4f

∫
4MpRe[Y (f)] df. (7.2)

In the conventional two-channel spectral analysis, the point mobility is determined by

the cross-spectrum of the force, and velocity and the auto-spectrum of the input force,

Y (f) =
Gfv(f)
Gff (f)

. (7.3)

For lightly damped systems, the driving force at resonance is very small, Gff (f)→ 0. Any

feedback due to exciter-structure interaction can produce bias error which can sometimes

result in negative peaks [55].

In the three-channel spectral analysis, the point mobility is determined by using the

relation,

Y (f) =
Gsv(f)
Gsf (f)

. (7.4)

where Gsv(f) and Gsf (f) are the cross-spectra between the original input and the measured

velocity, and the original input and the measured force.

Mass corrections must be considered when making any frequency response measurement

on a lightweight structure. In the case of point mobility measurements, there will always be

some added mass between the force gauge of the impedance head and the structure. The
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added mass will corrupt the force measurement because some portion of the force measured

is used to drive against the inertial resistance of the added mass.

The point mobility measurement can be corrected for the mass loading effect as follows,

Yc =
Vm
Fc

=
Vm

Fm −MAm
=

Vm/Fm
1− iωMVm/Fm

=
Ym

1− iωMYm
, (7.5)

where Am and Fm are the acceleration and force measured by the impedance head, Vm and

Ym are the measured velocity and point mobility, Fc and Yc are the corrected force and point

mobility, respectively. M is the added mass between the force gauge and the structure.

The added mass M can be evaluated by adding the manufacturer’s specifications for

the mass below the force gauge to the mass of the attachment components or by measuring

the point mobility of the added mass attached to the impedance head when it is separated

from the structure. The first correction method is termed as the measured mass method.

The second correction method is termed as the spectral mass method.

Hence, the real and imaginary parts of the corrected point mobility are,

Re(Yc) =
Re(Ym)

[1 + ωM Im(Ym)]2 + [ωMRe(Ym)]2
, (7.6)

Im(Yc) =
ωM{[Im(Ym)]2 + [Re(Ym)]2}+ Im(Ym)

[1 + ωM Im(Ym)]2 + [ωMRe(Ym)]2
. (7.7)

In this study, the modal density of a sandwich panel was obtained by averaging the

modal densities measured at four randomly chosen points on the panel. The point mobility
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Figure 7.1: Set-up for the modal density and loss factor experiments

was measured at each position with a B&K impedance head type 8000 that was attached

to a B&K vibration exciter type 4809 by a stud. The impedance head was attached to the

panel with wax. The sandwich panel was suspended by strings and excited by a conventional

electrodynamic shaker with a broadband random force, as shown in Fig. 7.1. The measured

inertance of the added mass between the force gauge and the panel is between 860 (m/s2)/N

and 960 (m/s2)/N in the frequency range of 200 Hz ∼ 5600 Hz, as shown in Fig. 7.2. Then

the effective dynamic mass of the added mass is between 1.06 g and 1.14 g, which is slightly

smaller than 1.2 g, the mass below the force gauge of the impedance head specified by the

manufacturer.

The frequency analysis bandwidths chosen were one-third octave and a constant band-

width of 400 Hz. The first is consistent with most previous work and the second is chosen

to have at least five resonance frequencies in each analysis band. The frequency analysis
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Figure 7.2: The inertance of the added mass

resolution was chosen to be 1 Hz. Four composite sandwich panels with foam-filled honey-

comb cores, panels I ∼ L, were investigated. The dimensions of the four panels are given

in Table 6.2.

The measured point mobility of panel J at one location using the three-channel spectral

analysis is illustrated in Fig. 7.3. It was found that only slight differences between the

measured point mobilities of all four panels obtained by the two-channel and three-channel

spectral analyses exist at very low frequencies.

The modal density estimates without mass correction, as shown in Fig. 7.4, only

provide a reasonable approximation at low frequencies, where the effect of the added mass

is negligible. The theoretical modal density predictions were derived for simply supported

panels. The theoretical predictions were obtained from 1) Mead and Markus’s sixth-order

governing equation by following the procedure that is described in Sec. 4.4, and 2) a reduced
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Figure 7.3: The measured point mobility of panel J using the three-channel spectral analysis
(a) real part (b) imaginary part

Figure 7.4: Modal density estimates for panel J without mass correction
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Figure 7.5: Modal density estimates for panel J with mass correction

fourth-order governing equation, by use of Eq. (4.22). It was found that both equations

produce the same modal density values for all four panels at frequencies below 6000 Hz.

The modal density estimates for panel J with mass correction, agree with the theoret-

ical predictions as shown in Fig. 7.5. The modal density estimates for the other panels, I,

K and L are shown in Figs. 7.6 ∼ 7.8.

Since Mead and Markus’s sixth-order governing equation was developed for sandwich

beams or isotropic sandwich panels, and panels J and K have similar stiffness constants

along the two main in-plane directions, as shown in Table 6.5, then the modal density

estimates for these two panels are closer to the theoretical predictions than those for panel

I are. The core shear modulus of panel L could not be determined from the resonance

measurements. So the theoretical modal density predictions were computed by assuming
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Figure 7.6: Modal density estimates for panel I with mass correction

Figure 7.7: Modal density estimates for panel K with mass correction
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Figure 7.8: Modal density estimates for panel L with mass correction

that the equivalent shear moduli are 30 MPa and 40 MPa, respectively. The theoretical

values imply that the modal density of panel L is insensitive to the core shear moduli at

frequencies below 1000 Hz.

7.3 Experimental total loss factors

Unlike modal densities, theoretical expressions for loss factors of structures are not

available. The loss factor of a structure can be obtained from the measurement of the force

supplied to the structure and the spatially averaged square velocity produced. In steady

state conditions, the average power input is equal to the average power dissipated, and then
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the average loss factor is,

η =
F 2(t)Re(Y )
Mp〈v2(t)〉2πf

. (7.8)

Thus the band-averaged loss factor is,

η(f) =
1
4f

∫
F 2(t)Re(Y )
Mp〈v2(t)〉2πf

df. (7.9)

As discussed in the previous section, the force measurement can be mass corrected as

follows,

Fc = Fm −MAm = Fm − iωMYcFc ⇒ Fc =
Fm

1 + iωMYc
, (7.10)

then, F 2
c =

F 2
m

[1− ωM Im(Yc)]2 + [ωMRe(Yc)]2
. (7.11)

In the case of the measurement of high frequency vibration of lightly damped structures,

considerable care should be taken when using an accelerometer because of the mass loading

effect. Well below its resonance frequency, the accelerometer can be assumed to act as a

pure mass. The velocity of the structure Vc can be assumed to be reduced to Va by the

presence of the accelerometer [56],

Va
Vc

=
Z

Z + iωma
, (7.12)

where Z is the mechanical impedance of the test element, and ma is the accelerometer mass.
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In this study, the mass loading of the accelerometer was assumed to be,

V 2
a

V 2
c

=
1

1 + [ωmaRe(Yc)]2
, (7.13)

where Yc is the corrected point mobility. The corrected point mobility in the loss factor

analysis is the estimate obtained from the spectral mass correction method.

The frequency bandwidth of the loss factor analysis chosen was one-third octave. The

frequency analysis resolution was 1 Hz. The velocities of the panels were determined by

measuring the panel responses with an Endevco model 2226c piezoelectric accelerometer at

five randomly chosen positions. The loss factor estimates for panel J are shown in Fig. 7.9.

The mass loading effect becomes apparent at frequencies above 3150 Hz for panel J . It

was found that the corrected loss factor of panel J is less than 3%. The modal loss factors

of panel J , obtained from the half-power point method are given in Table 7.1. The loss

factor estimates are in good agreement with the modal loss factors.

Table 7.1: The modal loss factors of panel J
Frequency (Hz) 161 222 238 320 336 366 382 412 454 490 554 601

Loss factor η (%) 0.7 0.8 0.7 1.6 0.6 0.5 0.6 0.6 0.7 0.7 0.6 0.9

The loss factor estimates for panels I, K and L are shown in Figs. 7.10 ∼ 7.12. It was

found that the loss factor of panel L is much higher than those of the three other panels.

The effect of the mass loading of the accelerometer is small at frequencies below 2000 Hz

for all four panels.
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Figure 7.9: Loss factor estimates for panel J

Figure 7.10: Loss factor estimates for panel I
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Figure 7.11: Loss factor estimates for panel K

Figure 7.12: Loss factor estimates for panel L
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7.4 Experimental radiation loss factors

The radiation resistance of a structure in a reverberant field can be experimentally

obtained by studying the energy flow relations between the structure and the reverberation

room [13]. Consider a panel that is excited by a shaker in a reverberation room. The steady

state power flow balance equations are,

Πin1 = Πdiss1 + Π12, 0 = Πdiss2 −Π12. (7.14)

The total power supplied to the panel by the shaker is,

Πin1 = Rtot〈v
2〉 = Rtot

E1

Mp
= (Rint +Rrad)〈v2〉, (7.15)

where Rtot, Rrad and Rint are the total, radiation and mechanical resistances of the panel,

respectively. Mp is the mass of the panel and 〈v2〉 is the mean square velocity of the

structure. The power dissipated by the structure is,

Πdiss1 = Rint
E1

Mp
= Rint〈v

2〉. (7.16)

The rate of internal energy dissipation by the reverberation room is,

Πdiss2 = E2ηroomω = ηroomω
〈p2〉
ρc2

Vroom, (7.17)
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where ηroom and Vroom are the internal loss factor and the volume of the room, respectively.

〈p2〉 is the mean square pressure of the room.

Substitution of Eqs. (7.15) ∼ (7.17) into (7.14), yields

Rrad〈v
2〉 = ηroomω

〈p2〉
ρc2

V2. (7.18)

The equation above can be rewritten as,

Rrad = ηroomω
Sp

Svρc2
Vroom =

13.8Sp
TroomSvρc2

Vroom, (7.19)

where Sp is the pressure spectral density function of the room, Sv is the velocity spectral

density function of the structure, and Troom is the reverberation time of the room.

Similarly, the radiation resistance of structures excited by a shaker between two rever-

beration rooms can be estimated experimentally [18]. The steady state power flow balance

equations are,

0 = Πdiss1 + Π12 + Π13, Πin2 = Πdiss2 −Π12 + Π23, 0 = Πdiss3 −Π13 −Π23. (7.20)

Then, we have

Πin2 −Πdiss2 = Πdiss1 + Πdiss3 = Rrad〈v
2〉 =

ω

ρc2
(η1〈p2

1〉V1 + η3〈p2
3〉V3). (7.21)
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Likewise, the radiation resistance of the structure between two reverberation rooms is,

Rrad =
13.8
Svρc2

(
Sp1
T1

V1 +
Sp3
T3

V3

)
. (7.22)

It is noted that in both radiation resistance determinations, Eqs. (7.19) and (7.22), the

radiation resistance is also termed as R4π
rad, because that the radiating area of the panel is

twice of the area of the panel.

Gomperts [58] showed that the radiation efficiency of a baffled free-edge panel at fre-

quencies well below the critical frequency is,

σbaf, free = (2/5)(f/fc)2σbaf, ss = (2/5)(f/fc)2(σcorner + σedge), (7.23)

where fc is the critical frequency of the panel. σcorner and σedge are the radiation effi-

ciencies of baffled simply supported panel for corner and edge modes, which were derived

by Maidanik [13] (see Eq. (4.42)).

When the panel is unbaffled, fluid flow around the panel edges reduces the sound

radiation. Oppenheimer and Dubowsky [25] have provided an expression for the radiation

efficiency for unbaffled simply supported panels,

σunbaf, ss = Fplate(Fcornerσcorner + Fedgeσedge), f < fc, (7.24)
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with Fcorner =
13α

2(1 + 13α)
, Fedge =

49α
2(1 + 49α)

, Fplate =
k4A2

p/48π2

1 + k4A2
p/48π2

,

where k is the wave number of the sound in air.

In this study, the four sandwich panels were clamped sequentially between two rever-

beration rooms and excited by a B&K vibration exciter type 4809 to obtain their radiation

resistances. The clamping reduced the dimensions of the panels to 0.88 m × 0.42 m. The

frequency analysis bandwidth chosen was one-third octave. The frequency analysis resolu-

tion was 1 Hz. The sound pressure spectral density function in each room was determined

by measuring the room responses with a microphone at eight positions. The velocity spec-

tral density function of the panel was determined by measuring the panel responses at eight

positions with an accelerometer. The mass loading of the accelerometer was considered in

the radiation resistance calculation. The measured radiation resistances of the four clamped

sandwich panels are shown in Figs. 7.13 ∼ 7.16.

It was found that Eq. (4.42) provides a good approximation for the radiation resistance

of the thin sandwich panels, I and J . The measured radiation resistances of the thick

sandwich panels, K and L, have maximum values at frequencies above their predicted

critical frequencies and are much smaller than those predicted values at frequencies near

their predicted critical frequency. Those may be explained by the fact that there are not

enough resonant modes below the critical frequency because of the relative small dimensions

of the two sandwich panels.
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Figure 7.13: Radiation resistance estimates for baffled clamped panel I

Figure 7.14: Radiation resistance estimates for baffled clamped panel J
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Figure 7.15: Radiation resistance estimates for baffled clamped panel K

Figure 7.16: Radiation resistance estimates for baffled clamped panel L
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The radiation loss factor is determined from the radiation resistance R2π
rad by,

ηrad =
R2π

rad
ωMp

. (7.25)

The radiation loss factor estimates for panels I ∼ L with clamped edges are shown in

Fig. 7.17. The radiation loss factors of panels I and J are small at low frequencies, and

the maximum values exist near their critical frequencies, more than 2%. The radiation loss

factors of panels K and L, however, are high at low frequencies. The radiation loss factor

of panel L is significantly larger than those of other panels at frequencies below 1000 Hz.

Figure 7.17: Radiation loss factor estimates for clamped panels I ∼ L

The radiation resistances of panels I ∼ L with unbaffled free edges were also investi-

gated. The panels were hung in a reverberation room. The experimental data were obtained
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by following the same procedure for the baffled clamped model described early in this sec-

tion, as shown in Figs. 7.18 ∼ 7.21. The radiation resistances of the baffled free-edge panels

and the unbaffled simply supported panels were calculated by using Eqs. (7.23) and (7.24).

Figure 7.18: Radiation resistance estimates for unbaffled free-edge panel I

The radiation loss factor estimates for unbaffled free-edge panels are shown in Fig.

7.22. The radiation loss factor estimates for all four unbaffled free-edge panels are small

at low frequencies, and become larger around their critical frequencies. The radiation loss

factor estimates for all four unbaffled free-edge panels are less than 1%, much lower than

those of baffled clamped panels.
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Figure 7.19: Radiation resistance estimates for unbaffled free-edge panel J

Figure 7.20: Radiation resistance estimates for unbaffled free-edge panel K
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Figure 7.21: Radiation resistance estimates for unbaffled free-edge panel L

Figure 7.22: Radiation loss factor estimates for unbaffled free-edge panels I ∼ L
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Figure 7.23: Internal loss factor estimates for panels I ∼ L

7.5 Experimental internal loss factors

In the presence of a fluid medium, such as air, the experimental internal loss factor of

a structure obtained from energy methods is the sum of three forms of damping [43],

η = ηint + ηrad + ηj , (7.26)

where ηint is the internal loss factor, ηrad is the radiation loss factor, and ηj is the loss

factor associated with energy dissipation at the boundaries of the structural element.

The internal loss factor estimates for the four panels, I ∼ L, were obtained by neglecting

ηj , as shown in Fig. 7.23. Since the total loss factor is for the unbaffled free-edge panel,

ηrad is used for the radiation loss factor of the unbaffled free-edge panel in the computation
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of the internal loss factor. The internal loss factors of panels I, J and K are similar, and

less than 4%, in the frequency range of 200 Hz ∼ 4000 Hz. The internal loss factor of panel

L is much greater than those of other panels.

7.6 Conclusions

The experimental modal densities of composite sandwich panels are in good agreement

with theory. The radiation loss factors of unbaffled free-edge composite sandwich panels

are relatively small, and the total loss factors of unbaffled free-edge composite sandwich

panels are dominated by the internal loss factors. On the other hand, the radiation loss

factors of baffled clamped composite sandwich panels were found to be comparable to the

internal loss factors near their critical frequencies, especially for thin the panels. Among

the composite sandwich panels investigated, panels I, J and K have the similar internal

loss factors.
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Chapter 8

Sound transmission loss of composite sandwich panels

8.1 Introduction

Light composite sandwich panels are used in a wide variety of applications, including

flooring of commercial aircraft. These panels typically feature orthotropic honeycomb cores

bonded to high modulus composite face sheets. The sound transmission characteristics of

these structures are important aspects of their design. Because the panels are stiff and light,

the acoustical performance is poor. Moore and Lyon [6] developed a wave impedance anal-

ysis for sandwich panels with honeycomb cores, and their measured sound transmission loss

results are in agreement with the predicted values at frequencies above coincidence. Some

researchers experimentally investigated the sound transmission characteristics of honeycomb

sandwich panels [10, 59, 60].

The sound transmission loss values of the four composite sandwich panels, I ∼ L, were

determined experimentally by using the conventional two-room method. The predictions

of sound transmission loss were calculated from three analyses, wave impedance analysis,

statistical energy analysis, and boundary element analysis. The values of loss factors used

in the calculations were assumed based on the experimental values, given in Chap. 7.

161



8.2 Experimental sound transmission loss

Four composite sandwich panels were fabricated for sound transmission loss measure-

ments in the Sound and Vibration Laboratory at Auburn University. The transmission

suite consists of two adjacent 51.2 m3 reverberation rooms. Each room has two walls made

of wood with fiberglass filled in between them, and they are separated from each other

by fiberglass, and mounted on air bags. The panels were clamped in a frame between the

two rooms. The panel edge conditions were intended to be fully fixed. The frame reduced

the test dimensions of the panels to 0.84 m × 0.42 m. The sound transmission loss was

measured according to the standard test method, ASTM E90-99. One-third octave bands

of white noise were made in the source room with two loudspeakers and the sound pressure

levels were measured at eight positions in each room.

The sound transmission loss for the two-room method discussed in Sec. 4.7, Eq. (4.53),

can be expressed as,

TL = L1 − L3 + 10log10

ApT

0.161V3
, with T =

0.161V3

τAp + S3α3
, (8.1)

where L1 and L3 are the space-averaged sound pressure levels measured in the two rever-

beration rooms, respectively; S3 is the total surface area of the receiving room and α3 is

the average absorption coefficient in the receiving room; T is the reverberation time of the

receiving room when the panel is clamped between the two rooms; V3 is the volume of the

receiving room; and Ap is the test area of the panel.
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Table 8.1: The reverberation times of the receiving room
One-third octave center Reverberation time T (s)

Frequency (Hz) Panel I Panel J Panel K Panel L
125 0.493 0.395 0.352 0.360
160 0.636 0.659 0.699 0.634
200 0.578 0.740 0.736 0.698
250 0.903 0.818 0.856 0.860
315 1.048 1.086 1.034 1.043
400 1.240 1.162 1.155 1.110
500 1.264 1.254 1.309 1.345
630 1.316 1.407 1.324 1.344
800 1.411 1.449 1.472 1.430
1000 1.326 1.364 1.368 1.338
1250 1.238 1.248 1.224 1.247
1600 1.132 1.157 1.121 1.146
2000 1.028 1.036 1.016 1.016
2500 0.947 0.916 0.947 0.937
3150 0.846 0.809 0.865 0.830
4000 0.778 0.759 0.780 0.747
5000 0.698 0.688 0.690 0.713
6300 0.633 0.639 0.629 0.652
8000 0.556 0.545 0.555 0.538

The reverberation times of the receiving room when the four panels were clamped

between the two rooms are given in Table 8.1. The reverberation time T was obtained

by averaging the reverberation times at eight randomly chosen positions. There is no

significant difference among the reverberation times because of the relatively small test

area of the panels.

The experimental transmission loss values of all four panels I ∼ L are shown in Figs.

8.1 ∼ 8.4. The first resonance frequencies of panels I, J , K and L are in the one-third

octave bands with center frequencies of 160 Hz, 250 Hz, 315 Hz and 400 Hz, respectively.

The experimental transmission loss values of panels I and J are near the field incidence
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Figure 8.1: Experimental sound transmission loss values of panel I

mass law curves at frequencies well below the critical frequencies, while those of panels K

and L are quite below the field incidence mass law curves. At low frequencies, the sound

transmission loss curve of panel K is strongly influenced by its resonant modes, while

the sound transmission loss curve of panel L is smoother because of its high loss factor.

The coincidence dips of all four panels are not as apparent as those of metal panels. All

coincidence dips do not return rapidly towards the mass law curves and the experimental

transmission loss values depart from the mass law curves by about 10 dB.

8.3 Sound transmission loss from wave impedance analysis

The predictions of sound transmission loss were generated by using the wave impedance

analysis model presented in Chap. 3. In the low frequency region, the transverse motion is
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Figure 8.2: Experimental sound transmission loss values of panel J

Figure 8.3: Experimental sound transmission loss values of panel K
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Figure 8.4: Experimental sound transmission loss values of panel L

Table 8.2: The assumed loss factors of the four panels
Panel I Panel J Panel K Panel L

Face sheets 0.01 0.01 0.01 0.02
Core 0.01, 0.04 0.01, 0.03 0.02, 0.04 0.03, 0.06

determined by pure bending, then the total losses are mostly determined by the losses of

the face sheets. For increasing frequencies, the transverse motion of the panel is influenced

by the shear in the core. Since both the face sheets and cores of the panels are made of

composite materials, the losses of both the face sheets and core were considered in the

theoretical calculations. The loss factors of the face sheets and the core of the four panels

were assumed based on the results presented in Sec. 7.5, given in Table 8.2. The assumed

properties of the four panels are given in Tables 6.2 and 6.5.
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Figure 8.5: Predicted sound transmission loss values of panel I from the wave impedance
analysis

All four panels under investigation are symmetric, having two identical face sheets.

Then the anti-symmetric and symmetric motions of the panels are uncoupled naturally.

The coincidence frequencies associated with symmetric motion of all four panels were found

to occur at very high frequencies, above 8 kHz, according to the governing equations for

symmetric motion of symmetric sandwich panels, Eq. (3.44). As shown in Chap. 3, the

equation given by Mead and Markus [23], Eq. (3.63), is a simplified form for the governing

equation developed in Chap. 3, Eq. (3.17), by neglecting symmetric motions. It is expected

that the predictions by using the wave impedances calculated from the two equations should

be similar at frequencies below 8 kHz. The predicted sound transmission loss values of panels

I ∼ L obtained by using the two governing equations are shown in Figs. 8.5 ∼ 8.8.
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Figure 8.6: Predicted sound transmission loss values of panel J from the wave impedance
analysis

Figure 8.7: Predicted sound transmission loss values of panel K from the wave impedance
analysis
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Figure 8.8: Predicted sound transmission loss values of panel L from the wave impedance
analysis

The predicted critical coincidence frequencies of panels I, J , K and L associated with

anti-symmetric motion are in the one-third octave bands with center frequencies of 2500

Hz, 2000 Hz, 1250 Hz and 1000 Hz, respectively. The effect of damping in the face sheets

and core on the transmission loss of the sandwich panels is negligible at frequencies below

the critical coincidence frequencies. The predictions of sound transmission loss are in good

agreement with the experimental values of all four panels at frequencies above the critical

coincidence frequencies. Also the predictions for panels I and J agree well with the measured

results below their critical coincidence frequencies. It was found that the difference between

the predictions from the two equations is less than 2 dB up to 8000 Hz for all four sandwich

panels.

169



Figure 8.9: Predicted sound transmission loss values of panel I by using Eq. (3.67)

Nilsson and Nilsson [37] neglected the symmetric motion and considered the rotatory

inertia of the face sheets and core in their work. Figures 8.9 ∼ 8.12 show comparisons be-

tween the predictions of sound transmission loss for panels I ∼ L using the wave impedances

calculated from their equation, Eq. (3.67) and the presented governing equation in Chap.

3, Eq. (3.17).

It is seen that the effects of rotatory inertia of the face sheets and core on the sound

transmission loss of thin panels, I and J , are more apparent than those of thick panels, K

and L. All three predictions from wave impedance analysis provide similar sound transmis-

sion loss values for all four sandwich panels.
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Figure 8.10: Predicted sound transmission loss values of panel J by using Eq. (3.67)

Figure 8.11: Predicted sound transmission loss values of panel K by using Eq. (3.67)
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Figure 8.12: Predicted sound transmission loss values of panel L by using Eq. (3.67)

8.4 Sound transmission loss from statistical energy analysis

The sound transmission loss for the SEA model of a transmission suite as discussed in

Sec. 4.7, is

TL = 10log10

[
ApT3

0161V3

(
E1/V1

E3/V3
− 1

)]
, with, (8.2)

E1/n1

E3/n3
− 1 =

2ηradn2η3n3 + (η3n3 + ηradn2)η2n2

η2
radn2n2 + η13(2ηrad + η2)n1n2

,

where T3 is the reverberation time of the receiving room. The parameters used in the SEA

calculation were evaluated both experimentally and theoretically to compute the sound

transmission loss of the four sandwich panels. The internal loss factor of the receiving room,
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η3, was determined from the reverberation time of the receiving room, by using Eq. (4.32).

The reverberation time of the receiving room was obtained by averaging the reverberation

times at eight randomly chosen positions. The modal densities of the two reverberation

rooms, n1 and n3, were obtained from Eq. (4.15). The values of the radiation loss factor,

ηrad, used were determined from Eq. (4.42). The values of the coupling loss factor, η13, were

determined from the field incidence mass law transmission coefficient, Eq. (4.46). Then the

values of modal density, n2, used were the modal density for simply supported conditions

and were derived from Eqs. (4.29) and (4.30). The sound transmission loss estimates for

the panels were generated for two different values of internal loss factor of the panels.

The sound transmission loss estimates for panel I are shown in Fig. 8.13. The esti-

mates are in good agreement with the experimental results except below the first resonance

frequency and near coincidence. The disagreement near coincidence is reduced when the

measured values of radiation loss factor ηrad near coincidence are used in the calculation,

as illustrated in Fig. 8.14.

Sound transmission loss estimates for panels J , K and L are shown in Figs. 8.15 ∼ 8.17.

The sound transmission estimates for panels J and K agree well with the experimental

values when the measured values of radiation loss factor ηrad near coincidence are used in

the calculations. The discrepancy for panel L is attributable to insufficient panel modes

to make a correct band-averaged value of modal density. According to the finite element

analysis, below 1000 Hz, there are only four modes in the clamped panel L. That may also
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Figure 8.13: Transmission loss estimates for panel I from SEA

Figure 8.14: Transmission loss estimates for panel I using the measured values of ηrad
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Figure 8.15: Transmission loss estimates for panel J using the measured values of ηrad

Figure 8.16: Transmission loss estimates for panel K using the measured values of ηrad
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Figure 8.17: Transmission loss estimates for panel L using the measured values of ηrad

explain that the measured radiation resistance values of panel L are quite different from

those of the other three sandwich panels.

8.5 Sound transmission loss from boundary element analysis

The sound transmission characteristics of the four sandwich panels were also computed

by the boundary element analysis model proposed in Sec. 5.5. The finite element mesh

of the sandwich panel was generated in MSC Nastran, and consisted of 60 × 36 CQUAD4

elements for each face sheet, and 60 × 36 HEXA elements for the core. A finite element

model database and a boundary element indirect baffled model database were created in the

boundary element analysis software, LMS SYSNOISE. The element mesh of one face sheet

was imported to the software as the structural meshes for both databases and to occupy
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Table 8.3: Modal frequencies of panel K from Johnson and Kienholz’s [48] finite element
model

Mode (m,n) (1,1) (2,1) (3,1) (1,2) (2,2) (4,1) (3,2)
fmn (Hz) 344 442 619 752 824 858 957

Mode (m,n) (5,1) (4,2) (1,3) (2,3) (5,2) (3,3) (6,1)
fmn (Hz) 1141 1149 1241 1301 1391 1407 1454

on the plane z = 0. The computed eigenvectors of the first 30 modes for the face sheet

were imported to the software as the structural modes in the finite element model database.

A plane wave source was defined in the boundary element model database at 5 m below

the center of the panel. The two databases were linked to solve the displacement of the

sandwich panel. A 1 m radius hemisphere field point mesh that was assumed to cover the

receiver side of the panel was used to obtain the radiated sound power of the panel. The

frequency increment used was 4 Hz.

The predicted transmission loss values of composite sandwich panel K for plane sound

waves at oblique incidences, θ = 12o, 60o, and φ = 45o, are shown in Fig. 8.18. The

calculated modal frequencies obtained from the finite element analysis are given in Table

8.3. It is seen that the contribution of even-even modes can be substantial on the sound

transmission loss of composite sandwich panel K for plane sound waves at oblique incidence.

The sound transmission loss is less sensitive to the angle of incidence, θ, at low frequencies.

Since the sound transmission loss measurements were conducted in reverberation rooms,

for comparison purpose, the sound transmission loss was evaluated by averaging over the

angle of incidence θ, and the angle of rotation, φ. Figure 8.19 shows a comparison between
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Figure 8.18: Predicted sound transmission loss values of panel K from the boundary element
analysis, for sound waves at oblique incidences

the sound transmission loss data for panel K measured experimentally and those calculated

from the boundary element analysis model. Predictions were made using two values of the

modal loss factor, 0.01 and 0.02.

The predicted sound transmission loss values increase with increasing modal loss factor.

The increase varies from band to band and it is dependent on the resonant modes in the

one-third octave band under consideration. The disagreement at low frequencies is thought

to be caused by the ideal clamped boundary condition assumed in the finite element anal-

ysis. While the discrepancy around 500 Hz is much larger than the difference generated

by different values of loss factor. The discrepancy may be caused by frequency-dependent
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Figure 8.19: Predictions of sound transmission loss for panel K made using the boundary
element analysis model

material properties. The predictions for panel K are in better agreement with the experi-

mental values than those made using the other two analyses, wave impedance analysis and

SEA.

The predictions of sound transmission loss for panels I, J and L are shown in Figs.

8.20 ∼ 8.22. The first 30 modes were included and the frequency step was 4 Hz. Boundary

element analysis provides accurate predictions of transmission loss for panel I above 400 Hz.

The discrepancy of panel J around 800 Hz was thought to be caused by frequency-dependent

material properties. The profiles of the predicted and experimental transmission loss for

panel L are very similar. Since the assumed material properties of panel L were obtained

experimentally from a small number of measured resonance frequencies of the two beams,
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Figure 8.20: The prediction of sound transmission loss for panel I made using the boundary
element analysis model

Figure 8.21: The prediction of sound transmission loss for panel J made using the boundary
element analysis model
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Figure 8.22: The prediction of sound transmission loss for panel L made using the boundary
element analysis model

then the amplitude difference between the predicted and experimental sound transmission

losses may perhaps be reduced by use of more accurate material properties.

8.6 Conclusions

The experimental sound transmission loss results for thin sandwich panels, I and J ,

follow the field incidence mass law at frequencies well below their critical frequencies. The

transverse motions of the four panels are dominated by the anti-symmetric motion in the

frequency range of 125 Hz ∼ 8000 Hz. The wave impedance analysis provides a good

prediction of sound transmission loss for the four sandwich panels at frequencies above the

critical frequency. The statistical energy analysis also provides a good prediction of sound
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transmission loss for the four sandwich panels at frequencies above the critical frequency.

The predictions of sound transmission loss are very sensitive to the radiation loss factor near

coincidence. Both wave impedance analysis and statistical energy analysis provide accurate

estimates of sound transmission loss for thin sandwich panels, I and J . The boundary

element analysis provides the most accurate predictions of sound transmission loss for thick

sandwich panels K and L at low frequencies except near the first resonance frequency.
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Chapter 9

Conclusions

The governing equations for the forced vibration of asymmetric sandwich panels were

developed from energy relationships and are presented in matrix form. For the type of

sandwich panels with graphite fiber face sheets and foam-filled honeycomb cores tested in

this study, the anti-symmetric motion was found to be dominant and the effect of rotatory

inertia on the transverse displacement of the panels was found to be small in the frequency

range of interest.

A closed-form expression for the modal densities of sandwich panels was developed from

a typical sixth-order governing equation of motion for sandwich panels with stiff cores. The

derived modal density of a traditional honeycomb sandwich panel was found to be one half

of the approximate modal density that is obtained from a fourth-order governing equation.

A computer program was developed to compute the sound transmission loss of a baffled

simply supported aluminum panel. The presence of the fluid modifies the resonance char-

acteristics of the aluminum panel, slightly shifting modal frequencies to lower frequencies.

The radiated sound power of the panel was found to be higher than the virtual sound power

flow near the low order resonance frequencies. For finite single-layer isotropic rectangular

panels, the sound transmission loss depends not only on the angle of incidence, θ, but on

the angle of rotation as well, φ. The contribution of other than odd-odd modes on the

sound transmission loss of single-layer panels is negligible for plane sound waves at normal

183



incidence, while those can be substantial for plane sound waves at oblique incidence. The

transmission loss values are less sensitive to the damping and the angles of incidence and

rotation at low frequencies.

A boundary element analysis model for the sound transmission loss of symmetric sand-

wich panels is proposed. This model requires a minimum increase in computation effort

relative to the effort needed for single-layer panels. It can be implemented with two com-

mercial softwares, LMS SYSNOISE and MSC Nastran.

The material properties for the graphite fiber face sheets and foam-filled honeycomb

cores of the sandwich panels investigated in this study were estimated based on the measure-

ments of the resonance frequencies of the beams which were cut from the panels. Because

the sandwich panels are light, about ∼ 3 kg/m2, it was necessary to include the effect of mass

loading of the transducer used to measure the panel vibration in order to obtain accurate

point mobilities of the panels. The modal densities of the panels were estimated by using a

three-channel spectral analysis with a spectral mass correction method, which was used to

consider the mass loading of the impedance head. Experimental modal density results for

the sandwich panels were found to agree well with the theoretical estimates. Allowance was

also made for the effect of mass loading of the accelerometer in the estimations for both

total loss factors and radiation loss factors of the panels.

The radiation loss factors of clamped sandwich panels are large near coincidence, es-

pecially for thin sandwich panels; while the radiation loss factors of unbaffled free-edge
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sandwich panels are much smaller than those of baffled clamped sandwich panels. The in-

ternal loss factors are dominant in the total loss factor estimates for the unbaffled free-edge

sandwich panels studied. The internal loss factors of the sandwich panel were found to be

much larger than those of metal panels.

The wave impedance analysis model provides accurate predictions of sound transmis-

sion loss for thin composite sandwich panels at frequencies above their first resonance fre-

quencies. The proposed boundary element analysis model provides more accurate predic-

tions of sound transmission loss for thick sandwich panels than either the wave impedance

analysis model or the statistical energy analysis model. The predicted and experimental

transmission loss values of the sandwich panels are in better agreement when the measured

radiation loss factor values near coincidence are used instead of the theoretical values for

single-layer panels. The expression for the radiation resistance of sandwich panels is a

subject that requires further study.
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Appendix A

Derivation of stiffness constants of rotated-axis

If all three principal axes for the orthotropic material are aligned with the three axes
of the coordinate systems, the stiffness matrix of orthotropic material takes the form,

σx
σy
σz
τyz
τxz
τxy


=



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





σx
σy
σz
τyz
τxz
τxy


where

C11 =
1− ν23ν32

∆
E1, C12 =

ν12 + ν13ν32

∆
E2 =

ν21 + ν23ν31

∆
E1,

C13 =
ν13 + ν12ν23

∆
E3 =

ν31 + ν21ν32

∆
E1, C22 =

1− ν13ν31

∆
E2,

C23 =
ν32 + ν12ν31

∆
E2 =

ν23 + ν21ν13

∆
E3, C33 =

1− ν12ν21

∆
E3,

∆ = 1− ν12ν21 − ν23ν32 − ν13ν31 − 2ν12ν23ν31,

C44 = G23, C55 = G13, C66 = G12.

If the Young’s modulus in one principal axis of orthotropic material is much stiffer than
those in the others, E3 >> E1, E2, ν31, ν32 >> ν13, ν23, the stiffness constants can be
approximated,

C11 =
E1

1− ν12ν21
, C12 =

ν12

1− ν12ν21
E2 =

ν21

1− ν12ν21
E1,

C13 =
ν13

1− ν12ν21
E3 =

ν31

1− ν12ν21
E1, C22 =

E2

1− ν12ν21
,

C23 =
ν32

1− ν12ν21
E2 =

ν23

1− ν12ν21
E3, C33 =

E3

1− ν12ν21
.
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Figure A.1: The rotated-axis coordinate system of the orthotropic material

According to the tensor transformation rule, the stresses and strains along the principal
axes can be written with the stresses and strains in x, y, z axes, σ1 τ12 τ13

τ12 σ2 τ23

τ13 τ23 σ3

 = A

 σx τxy τxz
τxy σy τyz
τxz τyz σz

AT ,

 ε1 γ12/2 γ13/2
γ12/2 ε2 γ23/2
γ13/2 γ23/2 ε3

 = A

 εx γxy/2 γxz/2
γxy/2 εy γyz/2
γxz/2 γyz/2 εz

AT ,

where A =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 =

 l m 0
−m l 0

0 0 1

 .
Expanding the equations above, produces

σ1

σ2

σ3

τ23

τ13

τ12


= T



σx
σy
σz
τyz
τxz
τxy


=



l2 m2 0 0 0 2lm
m2 l2 0 0 0 −2lm
0 0 1 0 0 0
0 0 0 l −m 0
0 0 0 −m l 0
−lm lm 0 0 0 l2 −m2





σx
σy
σz
τyz
τxz
τxy


, and



ε1

ε2

ε3

γ23/2
γ13/2
γ12/2


= T



εx
εy
εz

γyz/2
γxz/2
γxy/2


.
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The relationships between engineering strains and tensorial strains can be expressed
as, 

εx
εy
εz
γyz
γxz
γxy


= R



εx
εy
εz

γyz/2
γxz/2
γxy/2


=



1
1

1
2

2
2





εx
εy
εz

γyz/2
γxz/2
γxy/2


.

Applying the stress-strain relations in the three principal axes and introducing the
developed transformations above, we obtain

σ1

σ2

σ3

τ23

τ13

τ12


= T



σx
σy
σz
τyz
τxz
τxy


= C



ε1

ε2

ε3

γ23

γ13

γ12


= CR



ε1

ε2

ε3

γ23/2
γ13/2
γ12/2


= CRT



εx
εy
εz

γyz/2
γxz/2
γxy/2


,

then,



σx
σy
σz
τyz
τxz
τxy


= C



εx
εy
εz
γyz
γxz
γxy


, where C = T−1CRTR−1,

C11 = l4C11 + 2l2m2(C12 + 2C66) +m4C22,

C12 = l2m2C11 + (l4 +m4)C12 + l2m2C22 − 4l2m2C66,

C13 = l2C13 +m2C23,

C16 = l3mC11 + (lm3 − l3m)C12 − lm3C22 + 2(lm3 − l3m)C66,

C22 = m4C11 + 2l2m2(C12 + 2C66) + l4C22,

C26 = lm3C11 + (l3m− lm3)C12 − l3mC22 + 2(l3m− lm3)C66,

C33 = C33, C44 = m2C55 + l2C44, C55 = m2C44 + l2C55,

C66 = l2m2C11 − 2l2m2C12 + l2m2C22 + (l2 −m2)C66,

C34 = C35 = C36 = C14 = C15 = C24 = C25 = 0.
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Appendix B
Partial differential Operators

The elements of the matrix B of Eq. (3.59) are differential operators which are listed
below:

B11 = −mh
2

4
∂4

∂x2∂t2
+m∗

∂2

∂t2
+D

∂4

∂x4
− h

(
2C13 +

C55

3

)
+

4C13

h
,

B12 =
mh

2
∂3

∂x∂t2
− F ∂3

∂x3
+ 2C13

∂

∂x
, B13 =

ρh2

π

∂3

∂x∂t2
− C11h

2

π

∂3

∂x3
+

4
π

(C13 + C55)
∂

∂x
,

B22 = −m ∂2

∂t2
+ C

∂2

∂x2
, B23 =

2C11h

π

∂2

∂x2
− 2ρh

π

∂2

∂t2
,

B33 = −ρh
2
∂2

∂t2
+
C11h

2
∂2

∂x2
+
π2C55

2h
, B34 = B35 = 0,

B14 =
h2(ρ1t1 − ρ2t2)

4
∂4

∂x2∂t2
− (ρ1t1 − ρ2t2)

∂2

∂t2
− (D1 −D2)

∂4

∂x4
,

B24 = B15 = −h(ρ1t1 − ρ2t2)
2

∂3

∂x∂t2
+ (F1 − F2)

∂3

∂x3
,

B25 = (ρ1t1 − ρ2t2)
∂2

∂t2
− (C1 − C2)

∂2

∂x2
,

B44 = −m
∗h2

4
∂4

∂x2∂t2
+m

∂2

∂t2
+ D̃

∂4

∂x4
,

B45 =
m∗h

2
∂3

∂x∂t2
− F̃ ∂3

∂x3
, B55 = −m∗ ∂

2

∂t2
+ C̃

∂2

∂x2
− 4C55

h
,

with, m = ρ1t1 + ρ2t2 + ρh, m∗ = ρ1t1 + ρ2t2 +
ρh

3
,

C = C1 + C2 + C11h, F = F1 + F2 +
C11h

2

2
,

C̃ = C1 + C2 +
C11h

3
, F̃ = F1 + F2 +

C11h
2

6
,

D = D1 +D2 +
C11h

3

4
, Di =

Ei
3(1− v2

i )

[(
h

2
+ ti

)3

+
(
h

2

)3
]
,

Ci =
Eiti

(1− v2
i )
, Fi =

Ei
2(1− v2

i )

[(
h

2
+ ti

)2

+
(
h

2

)2
]
,

where ρj and ρ denote mass densities of the face sheet j and the core; tj and h stand for
thicknesses of the face sheet j and the core, respectively. Ej is the Young’s modulus of the
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face sheet j. Cij is the stiffness constants of the core, and the directions denote as follows,

σx
σy
σz
τyz
τxz
τxy


=



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





σx
σy
σz
τyz
τxz
τxy


.
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