An Adaptive Single-Hop Medium Access Control Layer For Noisy
Channels
Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee.
This dissertation does not include proprietary or classi ed information.
Derek T. Sanders
Certi cate of Approval:
Richard O. Chapman
Associate Professor
Computer Science and Software
Engineering
John A. Hamilton, Jr., Chair
Associate Professor
Computer Science and Software
Engineering
David A. Umphress
Associate Professor
Computer Science and Software
Engineering
Martin C. Carlisle
Professor
Department of Computer Science
United States Air Force Academy
George T. Flowers
Dean
Graduate School
An Adaptive Single-Hop Medium Access Control Layer For Noisy
Channels
Derek T. Sanders
A Dissertation
Submitted to
the Graduate Faculty of
Auburn University
in Partial Ful llment of the
Requirements for the
Degree of
Doctor of Philosophy
Auburn, Alabama
August 10, 2009
An Adaptive Single-Hop Medium Access Control Layer For Noisy
Channels
Derek T. Sanders
Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon the request of individuals or institutions and at
their expense. The author reserves all publication rights.
Signature of Author
Date of Graduation
iii
Dissertation Abstract
An Adaptive Single-Hop Medium Access Control Layer For Noisy
Channels
Derek T. Sanders
Doctor of Philosophy, August 10, 2009
(Master of Software Engineering, Auburn University, AL, 2008)
(Bachelor of Wireless Engineering, Auburn University, AL, 2006)
351 Typed Pages
Directed by John A. Hamilton, Jr.
The work presented in this dissertation is for a contribution to the data link
layer and its responsibility of managing the physical channel in a mobile ad-hoc net-
work (MANET). Wireless networks in general are susceptible to noise in the spectrum,
which can result in low throughput, loss of critical resources, and high re-transmission
rates at the physical and link layers. As a result, there is a growing need for wireless
technology that can continue to operate in the presence of noise. A mathematical al-
gorithm has recently been developed which uses concurrent and super-imposed codes,
which when applied to wireless communications allows for jam-resistant communica-
tions without a pre-shared secret. By leveraging this algorithm, the research for this
dissertation will create a jam-resistant single-hop medium access control (MAC) pro-
tocol that adapts to the level of noise in the channel. The protocol will dynamically
adjust the parameters for encoding to overcome the varying levels of interference.
iv
The new protocol will allow for communications to continue in the presence of noise
or jamming attacks.
v
Acknowledgments
 A special thank you to my parents and my six siblings who have supported me
during this milestone in my life.
 Thank you to my graduate advisor and committee members for their support,
advice, and encouragement.
 Thank you to the Information Assurance Center graduate students at Auburn
University for your support.
 Thanks to the US Air Force Academy Professors Bill Bahn, Leemon Baird, and
Martin Carlisle for their support, advice, and expertise.
 Thank you to my friend, Mark Kuhr, for keeping me motivated.
 Thank you to all my other friends who have been there for support and knowl-
edge.
 Thank you to RAM Laboratories, Inc. who have funded me through this re-
search.
vi
Style manual or journal used Journal of Approximation Theory (together with
the style known as \aums"). Bibliography follows van Leunen?s A Handbook for
Scholars.
Computer software used The document preparation package TEX (speci cally
LATEX) together with the departmental style- le aums.sty.
vii
Table of Contents
List of Figures xii
List of Tables xiv
1 Introduction 1
1.1 Goals . 6
1.2 Challenges . 7
1.3 Outline . 8
2 Wireless Technology Overview 10
2.1 Chapter Introduction . 10
2.2 Mobile Radio Propagation . 11
2.3 Physical Multiplexing and Spreading Techniques 12
2.4 Signal Jamming . 15
2.5 BBC Algorithm Overview . 19
2.5.1 Introduction . 19
2.5.2 BBC Encoding . 21
2.5.3 BBC Decoding . 22
2.5.4 BBC Decoding With Noise . 24
2.6 Chapter Conclusion . 27
3 Medium Access Control Layer 28
3.1 Chapter Introduction . 28
3.2 Flow and Error Control Protocols . 28
3.3 Wireless Medium Access Control Protocols 31
3.3.1 Contention Free Schemes . 32
3.3.2 Contention Based Schemes . 34
3.4 Chapter Conclusion . 52
4 BBC-MAC Initial Protocol Design 53
4.1 Chapter Introduction . 53
4.2 Protocol Requirements . 53
4.3 Chapter Conclusion . 57
viii
5 Protocol Design and Implementation Phase 58
5.1 Chapter Introduction . 58
5.2 System Components . 59
5.2.1 Hardware Components . 60
5.2.2 Software Components . 64
5.3 Physical Layer Implementation . 73
5.4 BBC-MAC Implementation . 75
5.5 Chapter Conclusion . 86
6 Phase I Experiments: Adaptive Coding Investigation 87
6.1 Chapter Introduction . 87
6.2 Experiment Setup . 88
6.3 Experiments . 92
6.3.1 Jammer RSSI Experiment . 92
6.3.2 Pulse Jammer Experiment . 93
6.3.3 Gaussian Jammer Experiment 102
6.4 Chapter Conclusion . 110
7 Phase II Experiments: Protocol Validation 113
7.1 Chapter Introduction . 113
7.2 Experiment Setup . 114
7.3 Experiments . 117
7.3.1 Initial Protocol Implementation Experiment 117
7.3.2 Re ned Protocol Implementation Experiment 128
7.4 Adaptive vs Non-Adaptive . 140
7.5 Chapter Conclusion . 145
8 Key Contributions 147
9 Conclusion 148
Bibliography 151
Appendices 161
A Source Code Listing 162
A.1 BBC-MAC Data Link Layer Code . 162
A.1.1 Interface Class (interface.py) 162
A.1.2 Receiver Class (Receiver.py) 170
A.1.3 Receiver Handler Class (RxHandler.py) 172
ix
A.1.4 Transmitter Class (Transmitter.py) 176
A.1.5 Transmitter Handler Class (TxHandler.py) 177
A.1.6 BBC Con g Class (bbc con g.py) 181
A.1.7 BBC-MAC Frame Class (bbc frame.py) 183
A.1.8 Utilities Class (utilities.py) . 184
A.1.9 CRC16 Class (crc16.py) . 185
A.1.10 Stats Module (stats.py) . 187
A.2 Radio Scripts Code . 188
A.2.1 USRP Receiver Script (usrp rx c le.py) 188
A.2.2 USRP Transmitter Script (bbc tx.py) 193
A.3 BBC Source Code . 199
A.3.1 bbcftp.h . 199
A.3.2 bbcftp.c . 201
A.3.3 bu er.h . 206
A.3.4 bu er.c . 208
A.3.5 bytes.h . 212
A.3.6 bytes.c . 214
A.3.7 codec.h . 215
A.3.8 codec.c . 219
A.3.9 con g.h . 230
A.3.10 con g.c . 233
A.3.11 dirtyd.h . 242
A.3.12 dirtyd.c . 245
A.3.13 modem.h . 270
A.3.14 modem.c . 272
A.3.15 sha1.h . 278
A.3.16 sha1.c . 279
A.3.17 sink.h . 288
A.3.18 sink.c . 289
A.3.19 source.h . 297
A.3.20 source.c . 298
A.3.21 usrp.c . 306
A.3.22 Make le . 314
A.4 Jammer Source Code . 317
A.4.1 Main Program Source (jammer.c) 317
A.4.2 Modi ed BBC modem.h Source 319
A.4.3 Modi ed BBC modem.c Source 321
A.4.4 Modi ed BBC sink.h Source 325
A.4.5 Modi ed BBC sink.c Source 327
x
A.4.6 Jammer Make le . 332
B Miscellaneous Files 334
B.1 Data Frame Hexadecimal String . 334
B.2 RTS Frame Hexadecimal String . 336
xi
List of Figures
2.1 Hidden Terminal Problem . 17
2.2 Exposed Terminal Problem . 18
5.1 Universal Software Radio Peripheral External View 60
5.2 Universal Software Radio Peripheral Internal Hardware 61
5.3 RFX-1200 Transceiver Daughterboard 63
5.4 VERT400 Antenna . 64
5.5 BBC Encoded Transmission without Noise 72
5.6 BBC Encoded Transmission with Pulse Jammer Noise 72
5.7 Physical Layer State Diagram . 74
5.8 BBC-MAC State Diagram . 76
6.1 RSSI Value vs Jamming Level . 92
6.2 Collective Pulse Jammer Results . 94
6.3 Pulse Jammer with Expansion 50 . 96
6.4 Pulse Jammer with Expansion 75 . 96
6.5 Pulse Jammer with Expansion 100 97
6.6 Pulse Jammer with Expansion 125 98
6.7 Pulse Jammer with Expansion 150 99
6.8 Pulse Jammer with Expansion 175 99
6.9 Pulse Jammer with Expansion 200 100
xii
6.10 Pulse Jammer with RTS Frame at Expansion 500 101
6.11 Collective Gaussian Jammer Results 103
6.12 Gaussian Jammer with Expansion 50 104
6.13 Gaussian Jammer with Expansion 75 105
6.14 Gaussian Jammer with Expansion 100 105
6.15 Gaussian Jammer with Expansion 125 106
6.16 Gaussian Jammer with Expansion 150 107
6.17 Gaussian Jammer with Expansion 175 108
6.18 Gaussian Jammer with Expansion 200 108
6.19 Gaussian Jammer with RTS Frame At Expansion 500 109
7.1 Experiment I Latency By Jammer Level 119
7.2 Experiment I Latency By Expansion Level 120
7.3 Experiment I RTS Transmits By Jammer Level 122
7.4 Experiment I RTS Transmits By Expansion Level 123
7.5 Experiment I Data Transmits By Jammer Level 126
7.6 Experiment I Data Transmits By Expansion Level 126
7.7 Experiment II Latency By Jammer Level 131
7.8 Experiment II Latency By Expansion Level 132
7.9 Experiment II RTS Transmits By Jammer Level 134
7.10 Experiment II RTS Transmits By Expansion Level 135
7.11 Experiment II Data Transmits By Jammer Level 137
7.12 Experiment II Data Transmits By Expansion Level 138
7.13 Adaptive vs Non-Adaptive by DATA-ACK Exchanges 142
7.14 Adaptive vs Non-Adaptive Convergence 143
7.15 Pulse Jammer with RTS Frame at Expansion 175 145
xiii
List of Tables
2.1 Pre x Hash Table . 22
2.2 Transmission Buckets . 22
2.3 Received Buckets With Noise . 25
6.1 Expansion Factor Impact . 90
6.2 Pulse Jammer Results . 95
6.3 Gaussian Jammer Results . 103
6.4 RSSI Failure Levels . 111
7.1 Expansion RSSI Range . 114
7.2 Experiment I Latency By Jammer Level 119
7.3 Experiment I Latency By Expansion Level 119
7.4 Experiment I RTS Transmits By Jammer Level 121
7.5 Experiment I RTS Transmits By Expansion Level 122
7.6 Experiment I Data Transmits By Jammer Level 125
7.7 Experiment I Data Transmits By Expansion Level 125
7.8 Experiment I Message Errors By Jammer Level 127
7.9 Experiment I Message Errors By Expansion Level 128
7.10 Experiment II Latency By Jammer Level 131
7.11 Experiment II Latency By Expansion Level 131
7.12 Experiment II RTS Transmits By Jammer Level 133
xiv
7.13 Experiment II RTS Transmits By Expansion Level 134
7.14 Experiment II Data Transmits By Jammer Level 136
7.15 Experiment II Data Transmits By Expansion Level 137
7.16 Experiment II Message Errors By Jammer Level 139
7.17 Experiment II Message Errors By Expansion Level 140
7.18 Adaptive vs Non-Adaptive . 141
7.19 Adaptive vs Non-Adaptive with Modi cation 141
xv
Chapter 1
Introduction
The earliest wireless communications and transmission control project known as
ALOHA [Abramson 1970] evolved into the wireless technology seen today. The Packet
Radio Network (PRNET) [Jubin and Tornow 1987] grew out of the development of
ALOHA and became one of the earliest multi-hop multiple access packet networks. To
distinguish multi-hop from single-hop, multi-hop systems or layers are concerned with
the movement of packets across multiple nodes or hops. Single-hop, on the other hand,
is only concerned with the link between two nodes or hops. As technology progressed,
the hardware needed to create diverse networks shrank into a more manageable form
and has subsequently allowed for the evolution of small mobile devices in which each
device can act as a repeater. This sort of network is commonly referred to as a Mobile
Ad-Hoc Network (MANET). These networks can be viewed as simple peer-to-peer
networks in which each node will receive packets and either keep it for itself or forward
it onto the next destination. Each of the nodes in this network communicates via the
wireless medium with other nodes in range without relying on internal infrastructure.
The MANET is said to be self-organizing since it should automatically detect any
new nodes and infuse them with the rest of the network e ortlessly. Due to the high
mobility of these networks it is often di cult to e ectively coordinate access to the
medium. This is due to the fact that incoming nodes and moving nodes transmissions
can easily inject noise into a previously reserved channel.
1
Some of the characteristics that can be generalized for MANETs are as follows
[Agrawal and Zeng 2006]:
 Dynamic Topologies: Mobility in the network causes the network topology
to change at random, and it is often hard to predict where a node may be for
the next transmission. The high degree of mobility also has an impact on the
power constraints for the nodes. As nodes move, a previously visible node may
not be reachable due to one node being limited by antenna power.
 Bandwidth Constraints: Bandwidth is a two-fold constraint when referring
to wireless communications. There is the physical bandwidth of the channel
and there is also the overall throughput of the link?s bandwidth. Most ad-
hoc networks are constrained to the Industrial, Scienti c, and Medical (ISM)
band, and are in turn required by FCC mandates that any radio in the ISM
use either Frequency Hopping Spread Spectrum (FHSS) or Direct Sequence
Spread Spectrum (DSSS). When considering the bandwidth of a MANET it is
important to note that the already limited bandwidth is further reduced after
the e ects of multiple access, fading, and interference have been considered. A
problem of particular concern is channel saturation, which leads to congestion.
This problem is compounded by the addition of noise and jamming attacks.
This is due to the fact that the wireless spectrum is inherently error prone
which further reduces the e ective throughput of the channel.
2
 Limited Energy Potential: Due to the nature of mobile networks it is likely
that the nodes will be running on a battery store. This impacts the nodes
transmitting power. As previously mentioned, the di erent transmission powers
coupled with mobility can sometimes create a unidirectional link. That is, one
node is able to transmit to another but not vice versa.
 Limited Physical Security: Due to the fact that MANETs have no infras-
tructure, security is a particular problem. Negotiating security trust levels and
key exchanges is a hard problem with no central authority to handle these cre-
dentials. Further problems can be found in the areas of Denial of Service (DoS)
attacks, man-in-the-middle attacks, and eavesdropping.
Noise and jamming, whether caused by other nodes in the network or intention-
ally injected into the channel by an adversary, can signi cantly a ect the ability of
network communications to carry on. With the increase in noise there is also an in-
crease in channel saturation, leading to higher re-transmissions at the data link layer
which can pose further threats to the sustainability of the node in terms of its power
source. Current mechanisms for handling noise (or avoiding collisions) are handled
by the Medium Access Control (MAC) layer protocol. The current protocols do not
necessarily handle the noise, rather, they try to avoid collisions in the channel by
using various techniques including sensing it before transmission or by splitting the
channel into smaller channels. It is ine cient to divide the channel due to the limited
bandwidth already asserted in the ISM, and current channel-sensing protocols can
3
starve their node in the presence of noise. These issues can have a signi cant impact
on the ability on the network to sustain data ow and for other layers in the stack to
properly carry out tasks.
To address interference, a new MAC layer is needed that can continue to operate
in the presence of noise. A new error-correcting code based upon concurrent codes
forms the backbone of this new protocol. The BBC (named after the creators Baird,
Bahn, and Collins) algorithm [Baird, Bahn, Collins, Carlisle and Butler 2007], a
subset of concurrent codes, is the speci c coding scheme that will be applied to
this research. Early research with this algorithm has shown that it can aid in the
recovery of a message that has been a ected by noise or collisions. Noise can a ect
transmissions by ipping bits, either 0?s to 1?s or vice versa. However, by leveraging
this new algorithm the messages contained in the transmission can still be recovered
up to a certain bit-error rate (BER). This research will create a new MAC layer, and
its supporting facilities, which take advantage of the error correcting abilities of the
BBC algorithm.
The data link layer transforms the raw transmission ability of the physical layer
into a reliable link, which is responsible for the hop-to-hop communications. This
layer also transforms the data from the network layer into manageable chunks of data
called frames. It is the responsibility of the MAC sub-layer to handle error correction
either through correcting code or by retransmitting corrupted frames. Furthermore,
the MAC layer is responsible for solving channel access con icts and coordinating the
4
transmission from one node to the next. The data link layer is traditionally thought
to handle these four main tasks:
 Framing: The data link layer separates messages either from the network layer
into smaller transmissions frames, or combines frames from the physical layer
into their original message for delivery to the network layer. The degree of
framing (variable-size) has a direct impact on the error control facility.
 Flow Control: This facility coordinates the data that can be outstanding
before an acknowledgement is received for proper transmission. Flow control
e ectively determines the channel saturation from the viewpoint of a single
node.
 Error Control: During transmission at the physical layer the data can become
corrupted. It is the responsibility of this facility to either detect and request
retransmissions, or attempt to correct the bit errors. Types of correcting codes
are block codes, linear block codes, and cyclic codes. One of the simplest forms
of error detection falls into checksums. Another aspect of error control is to
determine which frames have been lost and need to be retransmitted.
 Medium Access Control: In literature the MAC sub-layer is traditionally
in control of the previous mentioned facilities in the data link layer. The main
focus however is coordinating the access to a shared medium. It is responsible
for resolving the problems that can arise when multiple nodes wish to access
the channel.
5
The MAC layer?s ability to manage the physical medium has a direct e ect on
how reliable a link is. It also has an impact on how e cient the link is in terms of
overall data throughput. In other words, the MAC layer is the ultimate decider in the
level of Quality of Service (QoS) a network can maintain. For this reason the design
of a MAC protocol which handles the varying reliability of channel is of considerable
importance.
1.1 Goals
At the conclusion of this research e ort, this dissertation should demonstrate:
 A contribution to the area of MAC protocols for MANETs. This research will
incorporate the BBC algorithm into a new MAC layer, called BBC-MAC. BBC-
MAC will be a new approach to providing adaptive jam-resistant communica-
tions without a pre-shared secret. This will be validated using software-de ned
radios.
 A contribution to the current BBC algorithm by providing methods to vary the
coding parameters to allow for various levels of jam-resistance to be used. This
will allow BBC-MAC to adjust to varying levels of interference. This will be
validated using software-de ned radios.
 The main research contribution contained in this proposal is a MAC layer so-
lution to providing jam-resistant communications that can continue during a
6
jamming attack. The layer will achieve this by dynamically adjusting the cur-
rent level of jam resistance with respect to the level of interference.
1.2 Challenges
Creating a new MAC layer that is jam-resistant and that can be proven on a
real-world test bed presents several challenges. As previously mentioned, the MAC
layer has a direct impact on the QoS for a link, and creating one that in the end
improves upon the current state of MAC protocols is the main challenge. However,
by incorporating the BBC algorithm into this new layer, the current state of MANET
communications can be advanced to provide greater data transfer reliability. However,
the following challenges will need to be addressed.
 The new layer must be able to e ectively incorporate the BBC algorithm such
that the coding parameters can be altered on a link-state basis. If the link has a
low degree of noise, the level of encoding can be changed such that throughput
goes up. Conversely, if the link has a high degree of noise, the layer should
adjust the algorithm such that greater jam-resistance is achieved.
 The new layer must e ectively handle the congestion and saturation of the
channel by incorporating the proper ow and error control facilities. These
facilities must be adopted to take advantage of the important jam-resistant
nature of the BBC algorithm.
7
 The MAC protocol must e ectively coordinate access to the transmission chan-
nel amongst multiple nodes while maintaining the proper level QoS. It is unclear
how to properly con gure the MAC protocol to control all the other facilities
of the data link layer, and is the main focus of this research.
1.3 Outline
The remainder of this document is organized as follows:
 Chapter 2 gives an overview of the lower functions of wireless communications
including radio propagation and the physical multiplexing that occurs at the
physical level. The chapter concludes with an overview of the BBC algorithm
and its operations.
 Chapter 3 introduces the speci c duties of the data link layer with a main focus
on the discussion of current and past medium access control (MAC) protocols
for consideration.
 Chapter 4 discusses the initial design of the protocol.
 Chapter 5 covers the protocol design and implementation.
 Chapter 6 covers the initial experiements for determining the proper con gura-
tions needed to create the adaptive protocol.
 Chapter 7 covers the experiments and validation for the adaptive protocol.
8
 Chapter 8 discusses the contribution to the research eld.
 Chapter 9 concludes with a discussion of this dissertation and future work.
9
Chapter 2
Wireless Technology Overview
2.1 Chapter Introduction
Understanding the important functions of the lower layers of the wireless protocol
stack is crucial for gaining insight into the problems that mobile wireless networks
are faced with. The lowest level of interaction is at the physical layer and it is at this
layer where noise makes its impact. A layer up sits the data link layer that is tasked
with transforming the raw data transmissions provided by the physical layer into a
reliable data link usable by the upper layers. This chapter is focused upon giving
the reader an overview of the important components in wireless communications.
The important concepts within radio propagation will be covered. Additional topics
include an explanation of the physical multiplexing techniques, an overview of signal
jamming, and an in depth overview of the BBC algorithm.
Before continuing into the details of wireless communications a lexicon of terms
is provided for the reader as a friendly reminder of the de nitions [Forouzan 2007].
Terminology:
 Bandwidth: The di erence between the highest and the lowest frequencies
of a composite signal.
 Channel: A communications pathway.
10
 Guard Band: The bandwidth separating two signals in a composite signal.
 Link: The physical communications pathway that transfers data from one
device to another.
 Multiplexing: The process of combining signals from multiple sources for
transmission across a single data link.
 Spectrum: The range of frequencies of a signal.
 Spread Spectrum: A wireless transmission technique that requires a band-
width several times the original bandwidth.
2.2 Mobile Radio Propagation
Communications in a MANET use a wireless transmission medium in order to
exchange data. For this reason it is important to understand the distinguishing
characteristics for radio propagation. Ideally, radio waves would move freely in space
without any obstacles and free from interference. However, this is not possible in
the real world except in a lab environment where the waves are propagating through
a vacuum. When a radio wave does encounter an obstacle it can a ect the wave
through re ection, di raction, or scattering. [Agrawal and Zeng 2006]
1. Re ection: Re ection occurs when the radio wave encounters an object that
is larger compared to the size of its wavelength. This can be seen when the
radio wave hits the side of a building, where it will be re ected o the building.
11
This scenario can be viewed as a positive event since it allows more waves to
reach the receiver than would normally, but it also presents a problem since the
receiver will have multiple copies of the same wave.
2. Di raction: Di raction occurs when radio waves are blocked by an object
with sharp irregular edges. The radio waves will bend around the corner to
reach the receiver. Like re ection this allows waves to reach the receiver even
in situations where line of sight does not exist.
3. Scattering: Scattering occurs when the radio wave encounters an object that
is smaller compared to the size of its wavelength and the incoming wave is
scattered into several weaker outgoing signals. An example would be when a
radio wave hits street signs or lampposts.
2.3 Physical Multiplexing and Spreading Techniques
The physical layer of the network stack is charged with the physical movement
of bits from one node to the next. It is the interface that connects the rest of the
protocol stack to the physical medium for transport. This physical layer operates on
a stream of bits that are encoded or modulated into an electrical or optical signal
for transport. The layer is also concerned with the data rate over the medium. The
upper bound on the communications network is always going to be the number of
sustainable bits sent each second over the physical medium. The physical layer also
handles the synchronization that is required at the bit level for communications to
12
take place. The nal important aspect to the physical layer is how it multiplexes
the digital stream of bits into a transport form over the wireless medium. Applying
speci c multiplexing and spreading techniques can e ciently use the bandwidth of the
channel. When using multiplexing the goal is to create an e cient use of the channel
by combining multiple signals into a single signal. Spreading the signal allows for
privacy and the resistance to signal jamming. These techniques generally fall into the
domains of time, frequency, and spreading [Forouzan 2007, Agrawal and Zeng 2006].
 Frequency-Division Multiplexing (FDM): Frequency-division multiplexing is an
analog multiplexing technique that combines multiple signals. This is used when
the bandwidth (hertz) of a link is greater than that of the combined signals being
transmitted. The individual signals generated by the devices are modulated on
di erent carrier frequencies. These are then combined into a single composite
signal to be sent out over the medium. The carrier frequencies are su ciently
separated by guard bands to prevent overlap between the individual signals.
 Time-Division Multiplexing (TDM): Time-division multiplexing is a digital mul-
tiplexing technique that combines multiple low-rate channels into a single high-
rate channel. In contrast to FDM, TDM shares time on the medium versus
frequency as in FDM. Each node that is connected to the medium is given a
certain portion of time on the link in which it can occupy. There are two prevail-
ing methods of doing TDM: synchronous and statistical. The main di erence
between the two is that in synchronous mode, a node is allocated a time slot
13
even if the node does not have any data to send. Statistical TDM dynamically
allocates time units as needed which improves the bandwidth e ciency.
 Orthogonal Frequency-Division Multiplexing (OFDM): Orthogonal frequency-
division multiplexing is a technique to split high-rate radio signals into several
low-rate signals that are then transmitted over several orthogonal carrier fre-
quencies. The sending node breaks down the high-rate streams into n parallel
low-speed streams that are then modulated. The key di erence between OFDM
and FDM is that in OFDM all the sub-bands are used by a single source at one
time, instead of in FDM where the sub-bands are taken up by separate sources.
OFDM is used as the multiplexing technique in 802.11a/g/n.
 Spread Spectrum (SS): Spread spectrum is a technique like multiplexing that
brings together multiple signals for transmission. SS was originally designed
for military use to avoid jamming in the wireless spectrum. In wireless com-
munications, nodes must be able to share the medium in a manner that allows
for privacy from eavesdropping and without being susceptible to jamming. SS
takes the original signal?s required bandwidth and expands it such that the
spreaded bandwidth is much larger (usually twice) that of the original band-
width. After the signal has been created, the spreading process uses a spreading
code or chip-sequence, which determines how the original signal is spread in the
new bandwidth. Currently there are two main techniques for spreading the
14
bandwidth: Direct Sequence Spread Spectrum (DSS) and Frequency Hopping
Spread Spectrum (FHSS).
1. Direct Sequence Spread Spectrum (DSSS): Direct sequence spread spec-
trum multiplies the original signal by a pseudorandom sequence of bits
that is much larger than the original signal, e ectively spreading the origi-
nal signals bandwidth. In other words, each data bit in the original signal
is multiplied by the chip sequence using polar non-return to zero (NRZ)
encoding. DSSS provides privacy from eavesdropping as long as no other
nodes have access to the code. DSSS is resistant to interference in the
spectrum if each node uses a di erent spreading sequence.
2. Frequency Hopping Spread Spectrum (FHSS): Frequency hopping spread
spectrum uses a pseudorandom sequence to spread the original signal
across a larger bandwidth. The sequence determines how the radio sig-
nal hops between the multiple carrier frequencies.
2.4 Signal Jamming
Wireless communications are prone to errors during transmission. Signal jam-
ming disrupts the transmission and can occur through un-intentional means such as
interference, collisions, or noise. This type of jamming can occur in situations of high
network saturation where competing nodes are causing collisions in the spectrum. A
15
more signi cant threat are jamming attacks from adversaries attempting to disrupt
or bring down the network.
 Unintentional Jamming:
Friendly jamming is a common occurrence in current wireless communication
systems such as 802.11. The collisions that occur at the physical layer are
resolved by the data link layer, and generally go unnoticed by the user operating
at the application layer. It is only in situations of high network congestion
and noise where the problem can be seen in terms of lost packets and high
latency. Collisions occur when multiple stations transmit at the same time
onto a channel that was designed to only support one transmission. When this
happens the signals are combined, which e ectively destroys or corrupts the
data from the individual transmissions. The two most familiar situations that
can cause unintentional jamming are the exposed and hidden terminal problems
[Forouzan 2007].
1. Hidden Terminal Problem: The hidden terminal problem is depicted in
Figure 2.1. In this situation terminal A is able to see the signals broad-
casted from both B and C, but B and C are hidden from each other with
respect to A. Consider the scenario when terminal B is sending data to
terminal A. While this transmission is occurring terminal C also wishes
to send data to terminal A. The problem is terminal C can?t sense the
channel to see that terminal B is transmitting since C is out of range of
16
B?s transmission radius. When the two begin to transmit it will cause a
collision corrupting the data A is receiving.
Figure 2.1: Hidden Terminal Problem
2. Exposed Terminal Problem: The exposed terminal problem is depicted in
Figure 2.2. In this situation the problem is that terminal C is exposed to
the transmissions from terminal A to B. Consider the scenario where ter-
minal C wishes to send data to terminal D, and at the same time terminal
A is transmitting data to terminal B. Terminal C could send data to D
without interfering with the data from A to B, however, since it is being
exposed to the transmissions from A to B, it will not begin transmitting
to D. In other words, terminal C is wasting time and the actual channel
availability by waiting for terminal A to complete its transmission to B.
 Intentional Jamming:
As mentioned before the second type of jamming occurs when an adversary
wishes to attack a network. Jamming is a relatively easy task since in the
general case no special hardware is needed to carry out the attack, and it can be
17
Figure 2.2: Exposed Terminal Problem
implemented by merely listening to the medium and broadcasting at the same
frequency, and when carried out correctly it can lead to signi cant network
and communications disruptions [Awerbuch, Richa and Scheideler 2008]. The
method of attack is usually targeted at the physical medium for the network,
but more sophisticated attacks can target the speci c way the MAC protocol
operates in the data link layer. Methods for carrying out jamming attacks have
been studied and validated through simulation [Chiang and Hu 2007, Law, van
Hoesel, Doumen, Hartel and Havinga 2005, Li, Koutsopoulos and Poovendran
2007, Xu, Trappe, Zhang and Wood 2005]. Current defenses against jamming
focus on special techniques at the physical layer, such as spreading techniques
[Forouzan 2007, Liu, Noubir, Sundaram and Tan 2007, Navda, Bohra, Ganguly
and Rubenstein 2007]. Current wireless technologies like 802.11b use a form
of spread spectrum. However, 802.11b uses narrow spreading which allows
an attacker to jam only a small set of frequencies rendering spread spectrum
useless. Furthermore, the MAC protocol in 802.11 does not o er any protection
18
to even the simplest jamming techniques [Forouzan 2007, Bayraktaroglu, King,
Liu, Noubir, Rajaraman and Thapa 2008].
2.5 BBC Algorithm Overview
The goal of this research is to create a new MAC layer that provides jam-
resistance without a pre-shared secret by taking advantage of the BBC algorithm
[Baird, Bahn, Collins, Carlisle and Butler 2007]. Given its pivotal role in this re-
search e ort it is important to gain a clear understanding of how it will allow the
new layer to accomplish the task of maintaining a reliable link even in the presence
of noise. This section will cover the terminology used when referring to BBC opera-
tions, explain by example how the algorithm conducts its encode and decode steps,
and nally noise will be added to the example to illustrate how it overcomes that
obstacle.
2.5.1 Introduction
Current technologies such as spread spectrum provide jam-resistance, however,
the two communicating parties must possess the same chip sequence in order to com-
municate in a private and jam-resistant manner [Forouzan 2007]. Managing the chip
sequences for every node is similar to the problem that was faced by the cryptographic
community prior to the movement to a public key infrastructure. Prior to public key
cryptography both parties had to know the symmetric key in order to cipher messages
between the each other. In order to overcome this problem, new wireless technologies
19
are needed that allow for communications to occur which provide jam-resistance and
privacy, but also eliminate the need for secret knowledge (chip sequence). The cre-
ators of the BBC algorithm had this problem in mind when creating the algorithm.
The algorithm allows the communicating parties to talk without a pre-shared key
while a ording jam-resistance.
Terminology
The following glossary of terms is presented for the reader. Many of these terms
will be used when referencing the BBC algorithm in this Section and the remainder
of the dissertation.
Indelible Mark The location of a 1 bit, or a high pulse in a transmission. It is
assumed that the mark can never be transformed from a 1 to a 0.
Data The payload that is encapsulated in a message.
Message The fully constructed message including the necessary checksum bits and
header information.
Packet This is the combination of multiple messages that are combined with a
bitwise OR. The packet is the nal data which the BBC algorithms are enacted
upon.
The BBC algorithm operates in two modes: encoding and decoding. The en-
coding stage transforms binary data into a form, which determines how it is to be
physically transmitted. The parameters given to the encoder determine the level
20
of jam-resistance it a ords. The following sections show by example how the BBC
algorithm operates.
2.5.2 BBC Encoding
Algorithm 1 BBCEncode(M)
This function encodes an m-bit message M[1...m] adding k checksum bits to the
end of the message. H is a hash function. The de nition of H and the value of m
and k are public (not secret). The de nition of "indelible mark" and "location" are
speci c to the physical instantiation of BBC used.
Append k zero bits to the end of M
for i = 1 ... m+k do
Make an indelible mark at the location given by H(M[1...i])
end for
The BBC Encoding algorithm is shown by Algorithm 1 [Baird, Bahn, Collins,
Carlisle and Butler 2007]. It is a fairly straightforward process, compared to the steps
taken during decoding. The rst thing that is done is the original message is appended
with k checksum (zero) bits. The number of bits is determined in advance based upon
the coding parameters and the expected number of errors that is determined by the
current interference detected. Next, each pre x of the bit string is sent through a
hash function that maps a variable length bit string to some desired mapping where
the indelible mark will be. In this example pulse broadcast is used and so it is
conceptually mapped to a bucket number representing a period of time where a pulse
would be. Using the algorithm, and the example in [Baird, Bahn, Collins, Carlisle
and Butler 2007] which uses 25 buckets and 2 checksum bits, the encoding of the
message M = 1000 proceeds as follows:
21
1. Append two checksum zeros to M: 100000.
2. Encode each pre x string, s, using the hash function, H as shown in Table 2.1.
s H(s)
1 21
10 9
100 20
1000 14
10000 6
100000 10
Table 2.1: Pre x Hash Table
3. Broadcast this message by transmitting a pulse where there is a corresponding
1 in the buckets from Table 2.1. The result of this broadcast in the time period
conceptualized by the buckets [0,25] is seen in Table 2.2.
Bucket 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 251000 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0
Table 2.2: Transmission Buckets
2.5.3 BBC Decoding
Decoding on the receiver?s end is considerably more complex than the steps taken
to encode the message. This is because the receiver is unaware of what is sent and
must begin at the very beginning of any root message and systematically reduce the
set of possible messages. The algorithm for decoding the received message is given
by Algorithm 2 [Baird, Bahn, Collins, Carlisle and Butler 2007]. It is assumed that
the receiver knows the hash function, length of messages, and the length of k. From
the encoding example, assuming there was no noise induced in the message, and
22
Algorithm 2 BBCDecode(n)
This recursive function can be used to decode all the messages found in a given
packet by calling BBCDecode(1). There must be a global M[1...m + k] which is a
string of m + k bits. The number of bits in a message is m, and the number of
checksum zeros appended to the message is k. The de nition of H and the value of
m and k are public (not secret). The de nition of "indelible mark" and "location"
are speci c to the physical instantiation of BBC used.
if n = m+k + 1 then
print "One of the messages is:" M[1:::m]
else
if n>m then
limit(0
else
limit(1
end if
for i = 0 ... limit do
M[n] (i
if there is an indelible mark at location H(M[1:::n]) then
BBCDecode(M,n+ 1)
end if
end for
end if
the receiver began listening at the proper time the queue would look like Table 2.2.
Following the decoding algorithm the steps to decode this message would proceed as
follows:
1. Determine whether a 0 or 1 was transmitted. H(0) = 4 and H(1) = 21. The
receiver will listen for pulses at time slots 4 and 21. From Table 2.2 it is seen
that bucket 21 has a pulse, and thus the receiver knows that the message begins
with a 1. M0 = 1.
23
2. Next, the current set of pre xes are appended with 0 and 1 to account for all
pre xes. M? = 10, 11. H(10) = 9 and H(11) = 21. Both of these locations have
pulses and will survive onto the next decoding iteration. M0 = 10, 11.
3. Again, the current set of pre xes are appended with a 0 and 1. M0 = 100, 101,
110, 111. H(100) = 20, H(101) = 24, H(110) = 16, and H(111) = 2. Cross-
referencing with Table 2.2, it can be seen that only bucket 20 has a pulse and
thus 100 is the only survivor. M0 = 100.
4. Appending the current set of pre xes gives M0 = 1000, 1001. H(1000) = 14,
H(1000) = 1. Only bucket 14 has a pulse and reduces the set to M0 = 1000.
5. At this stage the length of the original message has been reached. Thus, from
this point on the surviving pre xes will be appending with the checksum bits (0-
bits) for at most k times. H(10000) = 6. This does have a pulse and continues
onto the nal decoding stage. M0 = 10000.
6. This is the last decoding step since this is the last checksum bit to be appended.
H(100000) = 10, and bucket 10 does indeed have a pulse. Removing the k
checksum bits from the surviving set of M0 reveals that the only message was
sent = 1000, and this matches up with what was encoded in Section 2.5.2.
2.5.4 BBC Decoding With Noise
The decoding example in section 2.5.3 illustrated the basic concept of how to use
the BBC algorithm for physical encoding and decoding of the messages. However,
24
it lacked the illustration of how the algorithm will decode when a few of the bits
are ipped during transmission. It is assumed that the induction of power into the
spectrum can only ip the bits from 0 to 1 and not vice versa. For the sake of
completeness it will be shown how the algorithm decodes the message when just two
bits are ipped, or in this case, there are two buckets that get pulses. Using Table
2.2 as the basis, the following buckets are given pulses: 2 and 24. These buckets are
marked with an X in Table 2.3 to di erentiate them from the true pulses sent out by
the sender.
Bucket 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 251000 0 X 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 X 0
Table 2.3: Received Buckets With Noise
The decoding proceeds as follows:
1. Determine whether a 0 or 1 was transmitted. H(0) = 4 and H(1) = 21. The
receiver will listen for pulses at time slots 4 and 21. From Table 2.2 it is seen
that bucket 21 has a pulse, and thus the receiver knows that the message begins
with a 1. M0 = 1
2. Next, the current set of pre xes are appended with 0 and 1 to account for all
pre xes. M? = 10, 11. H(10) = 9 and H(11) = 21. Both of these locations have
pulses and will survive onto the next decoding iteration. M0 = 10, 11.
25
3. Again, the current set of pre xes are appended with a 0 and 1. M0 = 100, 101,
110, 111. H(100) = 20, H(101) = 24, H(110) = 16, and H(111) = 2. Cross-
referencing with Table 2.3, it can be seen that buckets 20, 24, and 2 have pulses.
M0 = 100, 101, 111.
4. Appending the current set of pre xes gives M0 = 1000,1001,1010,1011,1110,1111.
H(1000) = 14, H(1000) = 1, H(1010) = 15, H(1010) = 2, H(1110) = 14, H(1110)
= 23. Buckets 14 and 23 have pulses, and two of the pre xes mapped to 14
which gives the set M0 = 1000, 1011, 1110.
5. At this stage the length of the original message has been reached. Thus, from
this point on the surviving pre xes will be appending with the checksum bits
(0-bits) for at most k times. H(10000) = 6, H(10110) = 14, H(11100) = 13.
Bucket 6 and 14 have transmissions and the follow pre x set survives: M0 =
10000, 10110.
6. This is the last decoding step since this is the last checksum bit to be appended.
H(100000) = 10, H(101100) = 12. Only bucket 10 has a pulse leaving M0 =
100000. Removing the k checksum bits from the surviving set of M0 reveals that
only message was sent = 1000, and this matches up with what was encoded in
Section 2.5.2.
This example illustrated clearly how the algorithm reduces the set of possible
pre xes to get the actual message even in the presence of corrupted transmissions.
The interesting occurrences are the two surviving messages past the original message?s
26
length. These two messages that got eliminated are called hallucinations as termed
by the authors of [Baird, Bahn, Collins, Carlisle and Butler 2007]. This example
illustrates the importance of the k checksum bits. In the previous decoding example
it might have been thought to just stop decoding since the original message was
recovered. However, in this example if that were to have occurred three messages
would have thought to been received, and even onto the second to last stage two
messages would have been received. It is only after the nal decoding step where it
is determined how many true messages were sent.
2.6 Chapter Conclusion
This chapter began with an introduction to wireless communications and the op-
erations that occur at the physical layer for transport. An introduction to the various
signal jamming scenarios was presented, and the chapter concluded with an introduc-
tion to the BBC algorithm. A toy example was worked through that demonstrated
how the BBC algorithm encodes and decodes data, and nally, a decoding example
where noise was arti cially induced was given.
27
Chapter 3
Medium Access Control Layer
3.1 Chapter Introduction
In relationship to the OSI model, the IEEE 802 standard speci es that the data
link layer be divided into two sub-layers: the logical link control (LLC) layer and
the medium access control (MAC) layer. The separation is made to allow the MAC
protocol layer to be speci c to the type of physical medium used. For example, the
LLC in the IEEE 802 standard is the same across all the di erent local area network
(LAN) protocols, and it is only the MAC that is modi ed as necessary [Forouzan
2007]. For instance, IEEE 802.3 Wired Ethernet LAN uses a Carrier Sense Multiple
Access (CSMA) with Collision Detection, and IEEE 802.11 Wireless LAN uses a
specialized version of CSMA with Collision Avoidance, but both use the same IEEE
802.2 LLC.
3.2 Flow and Error Control Protocols
The speci c duties assigned to the LLC according the IEEE 802 standard are
to provide ow and error control. Flow control refers to the set of mechanisms that
dictate the number of outstanding frames that the sender can transmit without re-
ceiving an acknowledgement (ACK) frame. Error control is the correction of the
28
problem when an acknowledgement is never received, the receiver never gets an un-
expected frame, or the receiver gets a corrupted frame. It is based on the concept
of automatic repeat request, or the retransmission of data. Flow and error control
are accomplished through the use of a single protocol, with the exception of the error
detection mechanisms. The following lists the most familiar protocols to accomplish
error and ow control [Forouzan 2007].
 Stop-and-Wait Automatic Repeat Request:
This is the simplest of the ow and error control protocols. This protocol will
have one outstanding frame at any point in time. It will send one frame, and
then wait for an ACK frame to be returned from the receiver, or for a timer
to expire, in which it will automatically re-transmit the unacknowledged frame.
The error control is achieved through the use of the timer. It is assumed that if
there isn?t an ACK received after a speci c time that an error has occurred dur-
ing transmission and the frame never arrived or the receiver received a corrupted
frame. Sequence numbers are used for identifying frames, based on modulo-2
arithmetic. The sequence number inside the returned ACK frame is the number
for the frame that the receiver is expecting next.
 Go-Back-N Automatic Repeat Request:
This protocol expands upon the previous one by allowing multiple frames to be
sent at once. An abstraction known as the sliding window is used, where within
the sliding window resides the frames with the sequence numbers that have not
29
been acknowledged. The window can only slide when a valid acknowledgement
is received. Generally, the window can only slide one slot at a time. However,
since it is assumed that the receiver only sends back the ACK for the next
frame expected, the window can slide directly to that frame number, and send
out any frames in the window. This is because the receiver may not send back
an ACK for every frame it receives, just the most recent in order frame. Like
the Stop-and-Wait protocol, this also uses timers for error control. However,
there is only one timer that is kept track of, versus one for each frame. The
timer is only maintained for the oldest outstanding frame, and if that timer
expires all of the frames within the window are retransmitted.
 Selective Repeat Automatic Repeat Request:
The previous two protocols simpli ed the process carried out at the receiver?s
end. The receiver only had to maintain one bu er, the space for the next frame
expected. Any out of order frames that were received were simply discarded, and
this is a very ine cient use of the link. This problem can be further compounded
in noisy channels, like that in wireless communications, where a frame has a
high probability of being corrupted. These retransmissions use valuable link
bandwidth and further add to the probability of a corrupted frame. Selective
Repeat is a protocol meant for noisy channels. In this protocol instead of the
sender sending back all the frames in the window, it only retransmits those that
have not been acknowledged or have been corrupted. This allows for e cient use
30
of the link, but makes the processing on the receiver?s end much more complex.
The receiver can receive as many out of order frames as the window size and
will store them until enough in order frames arrive to deliver to the upper layer.
The receiver makes use of non-acknowledgment (NAK) frames, which are sent
to the sender to remind them to retransmit a speci c frame. A nal level of
complexity in this protocol is that every frame is given a timer, since it is only
sending back the corrupted frames, and not all the frames in the window.
These protocols provide the necessary functionality for error and ow control at
the data link layer. This research will however not distinguish them from the MAC
layer, and will instead consider them to be under the control of the protocol guiding
the access to the medium.
3.3 Wireless Medium Access Control Protocols
The MAC layer is responsible for solving the errors and anomalies that can
occur at the physical layer. It is the responsibility of this layer to resolve the con icts
that arise when multiple nodes wish to use a single channel. The speci c protocol
used can have a direct impact on the e ciency of the link and for this reason it is
important to consider the quality of service (QoS) constraints when designing a new
MAC layer. The protocols can be divided into two main categories: contention free
and contention based schemes, and then there are those that combine the two to form
hybrid protocols. Contention based schemes can be further divided into those which
operate on random access versus those that attempt to reserve the channel and resolve
31
collision. These protocols can be further divided into single channel, multi channel,
power aware, and quality of service (QoS) based protocols [Kumar, Raghavan and
Deng 2006].
3.3.1 Contention Free Schemes
Contention free schemes are those that divide the channel in such a way that
no two nodes should ever be competing for access to the channel at any point in
time. These are sometimes called channelization access schemes. These types of
schemes divide the available bandwidth of the link into multiple channels through
time, frequency, or through codes, and others use polling or are token-based systems.
The most familiar of these protocols are
 Frequency Division Multiple Access (FDMA):
Frequency division multiple access (FDMA) divides the available bandwidth
into multiple frequency bands. Each node is then allocated a speci c band on
which it can transmit data. Like in FDM, guard bands separate the individ-
ual bands. However, while FDM and FDMA conceptually operate the same
there is a key di erence. As mentioned in Section 2.3, FDM is a physical layer
multiplexing technique that combines the data from multiple low-bandwidth
channels and transmits them over a single high-bandwidth channel. The dif-
ference is that FDMA tells the physical layer to make a band pass signal from
the data that is given to it limiting the frequency that the node is transmitting
32
on. The signals from each station are then transmitting at di erent frequen-
cies and are combined when they put on the single channel [Forouzan 2007].
FDMA has been applied to various multiplexing schemes in literature including
the OFDM-FDMA and OFDM-interleaved-FDMA [Wong, Cheng, Lataief and
Murch 1999] schemes.
 Time Division Multiple Access (TDMA):
Time division multiple access (TDMA) divides the channel in time. Each node is
given a speci c time slot in which data can be transmitted on its behalf. TDMA
su ers from a synchronization issue since each station needs to know exactly
when a new time slot is beginning in order to e ectively transmit at the correct
time. Again, it needs to be clear that TDMA and TDM as mentioned in Section
2.3 are conceptually the same, but achieve di erent goals. TDM combines the
data of slower channels into a single faster channel using a multiplexer that
interleaves the data. TDMA however tells the physical layer to use a speci c
time slot [Forouzan 2007]. TDMA has been supplemented as an access scheme
in literature [Wang and Xiang 2006, van Hoesel, Nieberg, Kip and Havinga
2004, Kanzaki, Hara and Nishio 2007, Gerla and Tzu-Chieh Tsai 1995].
 Code Division Multiple Access (CDMA):
Code division multiple access (CDMA) is a scheme in which a single channel
carries all the data from multiple nodes simultaneously. It is based on cod-
ing theory, much like the spreading techniques described in Section 2.3. While
33
CDMA and DSSS might seem similar there is a clear distinction. CDMA uses
multiple orthogonal spreading sequences to allow for the multiple node access
on the same frequency. However, in the implementation of 802.11b DSSS, ev-
ery node uses the same spreading sequence, but allows the nodes to choose
from multiple frequencies for simultaneous operation. In CDMA each station
is given a speci c code called a chip sequence. By assigning each station their
own code multiple stations can communicate on a single channel without inter-
fering with other communicating nodes, assuming they know each other?s chip
sequence [Forouzan 2007]. CDMA has been proposed [Muqattash and Krunz
2003, Garcia-Luna-Aceves and Raju 1997, Joa-Ng and Lu 1999, Lee and Cho
1995, Sousa and Silvester 1988] and tested [Hui 1984] as a protocol for MANETs
in literature.
3.3.2 Contention Based Schemes
Protocols that operate on the foundation that nodes must compete for access
to the channel are considered contention-based schemes. These are generally called
random access protocols where no station is considered to be superior to another. For
this reason the MAC layer for contention based schemes can be considerably more
complicated than those for controlled access or channelized layers.
 ALOHA:
ALOHA is the earliest random access protocol developed by the University of
Hawaii in the early 1970?s. The original protocol is sometimes referred to as
34
pure ALOHA. The protocol is simple in that whenever a station wishes to send
a frame it does so. To recover from errors the protocol uses acknowledgments
from the receiver. If the sender doesn?t receive an acknowledgment after a
time-out period it assumes that frame has been lost. This is similar to the
error control protocols discussed in Section 3.2. When the timeout does occur
pure ALOHA requires that the sending node wait a random amount of time
before retransmitting. By waiting a random period time, the idea is to avoid
more collisions. Additionally, in order to avoid congestion from retransmits
the protocol further dictates that after a speci ed number of retransmits the
station must give up on that frame. A later modi cation to ALOHA is with
slotted ALOHA. Much like TDMA, slotted ALOHA divides channel access
into periods of time called slots, where a node is only allowed to transmit during
their speci ed slot. However, collision can still occur if two stations try to send
at the same time slot [Forouzan 2007, Abramson 1970].
 Carrier Sense Multiple Access (CSMA):
Carrier Sense Multiple Access (CSMA) is a protocol where a station is required
to sense the medium prior to transmitting. CSMA is an evolution of ALOHA
in the sense that it is reducing the chance of a collision because it senses the
channel, but it cannot eliminate collisions. When the station senses that the
channel is idle or busy there are three methods that can be used to determine
how to precede [Agrawal and Zeng 2006].
35
{ 1-Persistent Method: If the channel is idle, send the frame immedi-
ately. If it is busy, keep listening until it is idle and then transmit.
{ Non-persistent Method: If the channel is idle, send the frame imme-
diately. If it is busy, wait a random amount of time and then sense the
channel again.
{ p-Persistent Method: In this method time is considered to be slotted.
Each time slot is considered to be the contention period, usually equal to
the round trip propagation time. When there is a frame to send the station
 rst senses the channel. If it nds the channel to be idle it follows these
steps:
1. With probability p, the station sends its frame.
2. With probability q = 1 - p, the station waits for the beginning of the
next time slot and senses the channel again.
(a) If the line is idle, proceed to step 1.
(b) If the line is busy, acts the same way as in a collision. Waits a
random amount of time and starts all over.
 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA):
The basic CSMA with collision avoidance (CSMA/CA) protocol relies upon
three important strategies in order to provide collision avoidance: inter-frame
space, contention window, and acknowledgements. When a station has a frame
to send it senses the channel. If it is idle the station will not send immediately,
36
but rather defer transmitting for a speci ed amount of time called the inter-
frame space (IFS). After this time it senses the channel again, if it is idle the
station can transmit after waiting for a period of time to pass called the con-
tention time. The contention window is a time period divided into slots. When
the station is ready to transmit it must chose a random number of slots to wait
before the transmission can occur. At each time slot the channel is sensed, and
if it is busy it must stop its timer, and can only start the timer when the channel
is sensed idle again. Once the timer goes to zero, the transmission can occur.
Even with the other precautions a collision can occur. The protocol uses timers
and acknowledgments to recover from corrupt or lost frames.
The basic CSMA/CA protocol still su ers from the hidden and exposed terminal
problems discussed in Section 2.4. In order to overcome these problems channel
reservation mechanisms have been amended to CSMA/CA. The most basic
solution is through the use of request-to-send (RTS) and clear-to-send (CTS)
control frames. When a station wishes to send a frame it sends a RTS frame
to the receiver. Tobagi and Kleinrock rst proposed the exchange of RTS/CTS
in the split-channel reservation multiple access (SRMA) scheme [Tobagi and
Kleinrock 1976]. The receiver will reply with a CTS frame. The exchange of
these frames still follows the protocol explained previously for sending a data
frame. The idea with this exchange is that the channel has been reserved for
communication between these two stations. The RTS also lets the receiver
know that data is coming and gives it the ability to allocate bu er space for the
37
transmission. Any other station that received these RTS or CTS frames will
defer its own transmissions to further reduce the chance of collisions [Forouzan
2007, Agrawal and Zeng 2006].
 Multiple Access Collision Avoidance (MACA):
The Multiple Access Collision Avoidance (MACA) protocol was proposed by
Karn to overcome the problems faced by the basic CSMA/CA protocol discussed
above, namely the hidden and exposed terminal problems [Karn 1990]. MACA
uses small signaling packets like the RTS and CTS control packets used in
CSMA/CA. However, the author drops the carrier sense aspect of CSMA, and
instead focuses on extending the CA aspect. The dropping of the CS amounts
to the ALOHA protocol with RTS and CTS control frames. As mentioned
previously, when other stations overhear a RTS or CTS control frame they
are required to defer their transmission for some period of time. It is unclear
however how long these stations should defer using the channel, and this is
where Karn?s work is important. In MACA the sender includes the size of the
data being transferred in the RTS frame, and the receiver will return that same
information in the CTS frame. Any node that receives these frames will know
approximately how long they should defer transmitting based on the size of
the data. A further bene t of this protocol is that the size of the RTS/CTS
frames is quite small, compared to the data packets, reducing the probability
and risk that collisions between them present. However, MACA does not use
38
acknowledgement frames for the data packets at the MAC layer, and instead
leaves it up to the error control facility in the transport layer.
An extension to the basic MACA scheme was proposed by Bharghavan et
al. [Bharghavan, Demers, Shenker and Zhang 1994] called MACA for wireless
(MACAW). MACAW adds acknowledgement frames to the protocol giving it
the ability to recover from errors faster than MACA. Other variations of MACA
include MACA for underwater acoustic networks with packet train for multiple
neighbors (MACA-MN) [Chirdchoo, Soh and Chua 2008], MACA by invita-
tion (MACA-BI) [Talucci and Gerla 1997], and the Floor Acquisition Multiple
Access protocol [Garcia-Luna-Aceves and Fullmer 1999].
 Floor Acquisition Multiple Access (FAMA):
The Floor Acquisition Multiple Access (FAMA) protocol proposed by Garcia-
Luna-Aceves et al. is a MACA based scheme that dictates that every trans-
mitting node must acquire explicit control of the channel prior to transmitting
[Garcia-Luna-Aceves and Fullmer 1999]. This protocol di ers from the MACA
and MACAW schemes since it requires that both the sender and the receiver
take an active role in the collision avoidance process. To "acquire the oor",
as the authors put it, the sender sends out a RTS frame either by the FAMA
non-persistent packet sensing (FAMA-NPS) or the FAMA non-persistent carrier
sensing (FAMA-NCS) scheme. The receiver will reply with a CTS containing
the address of the initiating station. Any other station that receives an error
39
free CTS frame will know that the terminal addressed in the CTS frame has
reserved the channel. This is the oor acquisition aspect of FAMA. To fur-
ther ensure that the channel has been reserved, the CTS are repeated enough
times in order to jam any hidden station who did not hear the original RTS
acknowledgment.
 Multiple Access Collision Avoidance by invitation (MACA-BI):
The MACA by invitation (MACA-BI) proposed by Talucci and Gerla is a re-
ceiver initiated based protocol [Talucci and Gerla 1997]. In sender-initiated
protocols the sender will attempt to gain access to the channel by initiating
the RTS-CTS handshake. However, MACA-BI requires that the receiver re-
quest the data from the sender by using a ready-to-receive (RTR) frame. This
reduces the overhead in the exchange by making it an RTR-DATA versus an
RTS-CTS-DATA process. This protocol appears to be meant for service net-
works where the communications are one way, that is, where the receiver has
information it knows the other party has, it will send out a RTR that will be
followed by the data.
 Collision-free Receiver Oriented MAC (CROMA):
Collision-free Receiver Oriented MAC (CROMA) [Coupechoux, Baynat, Bonnet
and Kumar 2005] is a receiver initiated MAC protocol similar to MACA-BI.
CROMA divides time into frames, where each frame is further divided into a
 xed number N time-slots. Each slot is broken into three sub-slots: request
40
(REQ), ready-to-receiver (RTR), and a data (DATA) slot. The REQ slot is
used by nodes to send a REQ frame to a receiving node. The RTR slot is
used to acknowledge the REQ frames sent and to poll the nodes that previously
sent a successful request and reservation. A DATA frame is then sent once the
sender in the RTR slot has been successfully polled. The reservation of the
channel is achieved through the polling frames sent in the RTR slot, and this
is what makes CROMA a receiver oriented protocol versus a sending oriented
one. CROMA di ers from MACA-BI since it does not need to use a tra c
prediction algorithm. The division of these slots makes CROMA a collision-free
contention-based protocol.
 IEEE 802.11 MAC:
The IEEE 802.11 standard de nes two MAC sub-layers: the point coordination
function (PCF) and the distributed coordination function (DCF). The DCF
mode of operations was meant for ad hoc networks whereas the PCF mode
was meant for infrastructure-supported networks. The DCF function uses CS-
MA/CA with acknowledgment and RTS/CTS frames (RTS-CTS-DATA-ACK).
The protocol operates much in the same way as described in the CSMA and
CSMA/CA description with several di erences [Forouzan 2007, Agrawal and
Zeng 2006].
1. Sending node rst senses the channel by monitoring the energy level on
the carrier frequency.
41
(a) If found to be busy a persistent strategy with a back-o timer is used
until the channel is idle.
(b) Once the channel is found to be idle, the station must wait for a
period time called the distributed interframe space (DIFS). After this
duration the sender transmits a RTS frame.
2. Upon receiving the RTS frame, the receiver must wait for a period of time
called the short interframe space (SIFS) to pass prior to replying with a
CTS frame.
3. When the sender successfully receives the CTS frame it must wait for the
SIFS to pass prior to sending a data frame.
4. Upon successful reception of a data frame, the receiver must wait for the
SIFS to pass prior to returning an ACK frame.
This protocol makes use of the SIFS to further reduce the chance of collisions.
An additional important addition of the DCF is the network allocation vector
(NAV). When a sending station transmits a RTS it includes the duration of time
it expect to occupy the channel. Any stations that receive the RTS or replying
CTS use this time to create a timer that determines how much time must pass
before the station can sense the channel for idleness. Anytime a node wishes to
check the channel for idleness it must rst check to see whether the NAV timer
has expired. This is similar to the protocol used by MACA where the size of
the data is sent along with the RTS/CTS frames. The DCF is the most widely
42
used protocol for wireless local area networks (LANs). It has its roots in the
previously explained protocols, and many of the protocols [Fang, Bensaou and
Yuan 2004, You, Yeh and Hassanein 2003, Wang and Zhuang 2008, Lau and
Chan 2006] found in literature use it as a base of reference.
 Dual-Channel MAC (DUCHA):
Zhai et al. propose the Dual-Channel MAC (DUCHA) scheme that uses two
distinct channels to overcome the receiver blocking problem and the hidden and
exposed terminal problems [Zhai, Wang and Fang 2006, Zhai, Wang, Fang and
Wu 2004]. The receiver blocking problem is a specialized case of the exposed
terminal problem where a receiver cannot respond to incoming RTS intended
for itself due to the transmissions occurring in its sensing range. DUCHA
separates the channels into one for control and the other for data. It also uses a
busy tone, much like busy tone multiple access (BTMA) [Wu and Li 1988] and
dual busy tone multiple access (DBMTA) [Haas and Deng 2002], to establish
channel control to overcome the hidden terminal problem. The blocking receiver
problem is solved through negative CTS (NCTS) frames. The authors don?t use
ACK frames since they claim collisions in the data channel are guaranteed to
not occur. However, they do use a NACK busy tone from the receiver that
will be used if the receiver thinks it has received corrupted data. The message
exchange proceeds as follows:
43
1. RTS: The sender follows the rules employed by 802.11 with regard to the
use of the SIFS and DIFS wait times prior to sending a message. Any node
must sense the control channel to be free from a signal or busy tone for a
period equal to DIFS prior to sending. If the channel is found to be busy
it waits for a period of time to pass prior to sending its frame.
2. CTS/NCTS: In DUCHA any node that overhears a RTS responds with
a CTS frame after waiting a period equal to the SIFS regardless if the
control channel is busy if the data channel is idle. If both are busy, it
will ignore the RTS to avoid interfering with the reception of CTS frames
at the sender. NCTS frames are returned when the control channel has
been found to be idle for at least one CTS frame length long, and the data
channel is busy. The NCTS also provides the sender an estimation for how
much longer the data channel will be busy .
3. DATA: Once the sender receives a CTS it should begin to send the data
if no busy tone signal is present. If it receives a NCTS, it will defer trans-
mitting for the estimated time included in the NCTS frame. If neither is
received, it assumes a collision has occurred on the control channel and
uses a back o strategy accordingly.
4. Busy Tone: The receiver will begin to sense the channel data channel
prior to sending the CTA frame to listen for the data from the sender. If it
doesn?t begin to receive the rst bits of the frame in due time (determined
44
by the information in the RTS) it will assume the sender couldn?t trans-
mit. Otherwise, once the receiver begins to receive data it will transmit a
busy tone signal on the control channel to prevent hidden terminals from
transmitting.
5. NACK: The NACK is used by the receiver to notify the sender of a prob-
lem receiving the data. The receiver uses a timer to determine how long it
should take for the data frames to nish sending. If the timer expires and
the receiver hasn?t collected the correct data packet, it assumes a problem
has occurred and will extend the busy tone signal for a period past the
timer expiration. If it successfully received the packet it discontinues the
busy tone signal. The sender assumes that if it doesn?t hear the NACK
busy tone during the NACK period that the transmission succeeded, oth-
erwise if it sees the signal it will begin its retransmission procedure.
 Multi Channel CSMA MAC:
A multi-channel CSMA protocol was proposed by Nasipuri et al. [Nasipuri,
Zhuang and Das 1999] where the total bandwidth of the channel was divided
into N distinct channels. The channels can be divided either through CDMA
or FDMA. The protocol follows the basic principles described in the section of
CSMA. When a station wishes to send, it rst senses the last channel it used
to determine whether it is available. If the channel is not free a new one is
chosen at random, and if no free channel is located it uses a back o protocol to
45
retry later. The author?s later extended the protocol in [Nasipuri and Das 2000]
where the optimal channel is chosen based on the power of the signal observed at
the sender side. It was further supplemented in [Jain, Das and Nasipuri 2001]
to add an additional control channel to the N divided data channels. This
channel is used to exchange control frames that allow the sender to determine
the best channel to send the data on. The optimal channel is chosen based on
the signal-to-noise ratio (SNR) observed at the receiver.
 Hop-Reservation Multiple Access (HRMA):
Hop-reservation multiple access (HRMA) [Yang and Garcia-Luna-Aceves 1999,
Tang and Garcia-Luna-Aceves 1998] is a multi-channel protocol for radios using
the FHSS spreading technique described in Section 2.3. Previous work has been
done with frequency hopping radios [Pursley 1987, Ephremides, Wieselthier and
Baker 1987] to use CDMA in an e ective way that required the radios to switch
frequencies part way through data packets. HRMA uses very-slow FHSS in
order to take advantage of the time-slotting properties that allow an entire
frame to be sent in the same hop. HRMA does not do any carrier sensing
prior to transmission, and employs the use of control frames in order for a
pair of communicating nodes to reserve a hopping sequence (channel). HRMA
requires synchronization where one the N available frequencies is dedicated to
synchronization. The remaining frequencies are further divided intobN 12 cpairs,
where the rst frequency is used for the hop reservation (HR), CTS, RTS, and
46
data frames, and the second frequency is reserved exclusively for ACK frames.
This protocol allows for collision free communications even in the presence of
hidden terminals [Yang and Garcia-Luna-Aceves 1999].
 Multi-Channel Medium Access Control (MMAC):
Multi-channel MAC (MMAC) is a protocol meant to extend the functionality
of the DCF in IEEE 802.11 by allowing it to dynamically switch between the
11 available channels [So and Vaidya 2003]. Although 802.11 has the support
for these multiple channels it can only utilize one channel at a time. This is for
backwards compatibility since hosts with a half-duplex radio can either be in
receiving or transmit modes. The protocol divides time into multiple xed-time
beacon intervals. At the beginning of each of the intervals is an ad-hoc tra c in-
dication message (ATIM) window in which ATIM frames are exchanged between
communicating nodes so as to coordinate channel assignments. This protocol is
e cient since it doesn?t require that the nodes have multiple radio transceivers
as is the case for other multi-channel protocols [Jain, Das and Nasipuri 2001,
Wu, Lin, Tseng and Sheu 2000, Tseng, Wu, Lin and Sheu 2001]. The protocol
does however require that at the beginning of these ATIM windows, or beacon
intervals, every node must synchronize itself with all other nodes on a synchro-
nization channel in which these ATIM frames are exchanged. Additionally, each
node maintains a preferred channel list (PCL) that keeps track of the channels
for prioritization. The authors validated the protocol through simulations, and
47
their results demonstrated that MMAC outperformed IEEE 802.11 with regards
to throughput.
 A Jamming-Resistant MAC Protocol for Single-Hop Wireless Net-
works:
Awerbuch et al. propose a MAC protocol for maintaining link capacity in the
presence of adaptive adversarial jamming attacks [Awerbuch, Richa and Schei-
deler 2008]. The authors assume that all nodes are synchronized in time steps,
and that an adversary can only jam a (1)-fraction of the time steps for
some constant > 0, and that it must make a decision to jam that time step
prior to knowing the actions of other nodes at the current time step. As is
expected, the nodes on the network are unable to distinguish between adver-
sarial jamming and whether other nodes on the network are simply using the
channel. The nodes then use mathematical probabilities in order to determine
when they are able to transmit. The nodes keep track of the overall time in
which the channel is idle and when exactly one successful transmission occurs.
It then uses this information to adjust the probability of a time step in which
the transmission can occur. The nodes however, do not consider the time steps
in which their transmissions have been blocked making the decision algorithm
robust to jamming attacks. The algorithm attempts to adjust the probabilities
such that the number of time steps that the channel is found idle is equal to
the number of time steps in which exactly one message transmitted. If this is
48
not the case, than the probabilities are adapted to make this true. The authors
claim that this protocol is robust to adaptive jamming attacks and is energy
e cient. However, the paper does not include any simulation results or data
from a physical implementation. Furthermore, the authors assume that the ad-
versary is limited by the number of time steps that they can jam, and is limited
to \bursty jamming". Another interesting problem is the protocol relies upon
the knowledge of when a successful transmission occurred, and it assumes it
will know when this is true.
 Advanced MAC (aMAC):
Lau and Chan propose a new protocol call advanced MAC (aMAC) [Lau and
Chan 2006] that is based o a previous protocol called the Fair MAC with Co-
operation between Sender and Receiver (FMAC/CSR) [Li, Gupta and Nandi
n.d.]. The goal of FMAC/CSR is to maintain fairness between contending ow
for single-hop ows. However, Lau and Chan show that when it is extended to
multi-hop ows the fairness breaks down. This is attributed to the use of the
802.11 binary exponential back o (BEB) algorithm that is used for contention
resolution which has been shown to be unfair [Li, Nandi and Gupta 2006, Kloul
and Valois 2005, Raza ndralambo and Valois 2006]. aMAC aims to resolve the
unfairness issues in FMAC/CSR by replacing BEB with the exponential in-
crease exponential decrease (EIED) back o algorithm proposed by Song et al.
[Song, Kwak, Song and Miller 2003]. The protocol follows four steps: channel
49
estimation, unfairness detection, sender contention, and the EIED algorithm.
Channel estimation monitors the channel to estimate ow?s fair share and ac-
tual share. Unfairness detection compares the actual share to the fair share to
determine how much the actual shared has deviated from the fare share. The
sender contention determines the state of a MAC ow (aggressive, normal, or
restrictive). Finally, the EIED algorithm is used to govern the contention win-
dow. By integrating EIED the authors state that preliminary results show that
aMAC maintains superior medium fairness when compared to similar fairness
oriented schemes.
 Real-time MAC (RT-MAC):
Real-time MAC (RT-MAC) is a quality of service (QoS) oriented scheme pro-
posed by Baldwin et al. that is a variation of the IEEE 802.11 protocol [Baldwin,
Nathaniel J. Davis and Midki 1999]. When IEEE 802.11 is used with real-time
tra c constraints two issues impact the e ciency of the network: expired dead-
lines and collisions. Since IEEE 802.11 has no method of determining whether
a frame has exceeded its deadline it will continue to re-transmit these frames,
even though they are no longer useful to the receiver. These collisions and
re-transmits waste resources needed by other frames to meet their deadlines.
RT-MAC remedies this by avoiding the transmission of expired frames. This is
achieved by adding transmission deadlines to the packets received from the net-
work layer and by using an enhanced collision avoidance mechanism. Whenever
50
a packet is marked as real-time it is marked with a time stamp from the orig-
inating station indicating when the packet should be transmitted. The check
for an expired packet occurs at several points: when the back o timer expires,
prior to sending, and upon the expiration of the timer for the acknowledgment
frame. If at any of these points the frame missed the deadline, it is dropped
from the transmission queue. RT-MAC has a unique method for improving the
collision avoidance mechanism of 802.11. Prior to sending the frame the send-
ing nodes chooses the next back o counter value and records it in this frames
header. Any station that overhears this frame being sent out will see this back
o value and chose one such that it is di erent. This further eliminates the
possibility of collisions.
 Controlled Access CDMA (CA-CDMA):
The authors [Muqattash and Krunz 2003] present the Controlled Access CDMA
(CA-CDMA) multi-channel protocol which is based on CDMA. It was men-
tioned in the prior section that CDMA is a contention free algorithm, however,
the authors of CA-CDMA make the statement their modi cation is actually a
contention-based scheme. Much like CSMA/CA, CA-CDMA makes use of the
control RTS and CTS packets as a channel reservation mechanism. These con-
trol packets are transmitted on a control channel separate from the data channel,
at xed power. Just like IEEE 802.11 every node receives these packets, how-
ever, nodes may continue to transmit if they meet certain criteria determined
51
by the interference margin algorithm presented in [Muqattash and Krunz 2003].
The nodes use the power levels of the received CTS and RTS packets to deter-
mine the power that the node can transmit at without interfering with other
transmissions.
3.4 Chapter Conclusion
This chapter reviewed the protocols necessary to understanding the current state
of MAC layers for ad-hoc wireless networks. The protocols vary from those which rely
on contention free schemes, to those concerned about quality of service (QoS), and
to the protocols that use multiple channels for either doing control or for multiple
data paths. In relation to the jam-resistant goals of this research only one such
protocol was found which directly concerned itself with adversarial jamming of the
wireless channel. Awerbuch et al. [Awerbuch, Richa and Scheideler 2008] proposed
the Jamming-Resistant MAC Protocol for this purpose, but only handled jamming
by attempting to send when it predicted no adversarial jamming was occuring. Many
of the other protocols address the hidden and exposed terminal problems through the
use of control frames, and multiple channels. Protocols such as CSMA/CA, MACAW,
DUCHA, and FAMA provide many di erent approaches to solving the hidden and
exposed terminal problems, and will be considered for the design of BBC-MAC.
52
Chapter 4
BBC-MAC Initial Protocol Design
4.1 Chapter Introduction
The medium access control layer for noisy channels will build upon the current
state of ad hoc wireless communications by creating a reliable data link through the
use of the BBC algorithm and its error-correcting properties. Combining BBC with
the traditional facilities of the data link layer will transform the raw data transmission
facility provided by the software-de ned radios into a jam-resistant communications
link for mobile ad-hoc networks. This layer will work as a single-hop protocol that will
only be concerned with delivery of data to the next terminal, and will not consider
multi-path routes for node-to-node delivery. It will be left to the network layer to
determine how to properly route the data.
4.2 Protocol Requirements
To achieve a reliable data link the new layer must address the issues of framing,
addressing, ow and error control, and a primary focus on controlling the channel. A
 nal requirement for the algorithm to operate properly is the ability to dynamically
adjust the coding properties of the BBC algorithm to adjust to the level of noise. By
adjusting the coding properties that determine the level of jam-resistance, the layer
can sustain link communications up to a certain level of noise.
53
 Framing: Physical limitations of the software de ned radios and coding
parameters of the BBC algorithm will require that larger packets received from
the network layer be broken into smaller frames for encoding and transmission.
On the receiving end these will have to be re-combined for proper delivery to
the upper layers. The size of the frames can be a xed or dynamic size, but
since the size of the frames could be in direct relation to the message length
that is encoded by the BBC algorithm, it will have to be a dynamic size. While
this was initially determined a requirement, I realized that the BBC algorithm
already does framing of data, and for the prototype implementation I considered
any data the upper layer passed to be a single data frame.
 Addressing: Every node in the transmission range must have a unique iden-
ti er so that a node receiving a message knows whether they are to be discarded
or when the message was meant for it . As mentioned previously, the routing
will be considered a job of the network layer, and it assumed the network layer
will have a unique identi er for this purpose. This same identi er will be used
at the data link layer for addressing. Considering the requirement of the rout-
ing, it is anticipated at this time that the data link layer will not keep state
information pertaining to nodes in its transmission range. However, this might
prove to be useful during research and will not be taken away from considera-
tion. The nal protocol prototype assumes that it will be given the address of
the node upon initialization.
54
 Flow and Error Control: An important property for creating a reliable
link is in the ow and error control algorithms. Flow control must alleviate
congestion of the link by limiting the amount of data it sends, and error control
must be able to recover from frames that the BBC algorithm?s error correcting
facility could not handle. It is anticipated a modi ed version of the selective
repeat automatic repeat request algorithm described in Section 3.2 will be used
for this purpose. The nal implementation does error control on the single
data frame it sends by using an acknowledgment frame. Future work would be
directed at doing error control on the individual BBC codec frames as well.
 Access Control: Controlling access to the channel is the most important
aspect of this protocol. While the BBC algorithm allows for communications
to continue even in the presence of interference, avoiding channel saturation is
important. If nodes were left to freely transmit whenever they chose, the level of
noise (jamming/collisions) on the channel would continue to grow to the point
where the error correcting aspect of BBC could not overcome the problem. To
overcome the hidden and exposed terminal problems described in Section 2.4,
techniques inspired by the protocols discussed in Section 3.3 will be used. It is
anticipated that the protocol will not rely on carrier sensing much like MACA
and MACAW, but will incorporate control frames to reserve channel access.
The control frames will carry several important pieces of information. The rst
is the the size of the data that is going to be transferred in the DATA frame.
This will allow any node that overhears this transmission to know how long it
55
should defer its transmissions. The second parameter included in both frames
will be the received signal strength indicator (RSSI) value. Upon sending a
RTS frame, the sender will include its most recent RSSI, and the receiver will
similarly reply with its most recent RSSI value. This is used to prepare the
nodes for the proper level of jam-resistance. The nal protocol implementation
does use the control frames to reserve the channel for the two communicating
nodes for a limited amount of time.
 Dynamic BBC: Maintaining the link will rely upon the BBC algorithm to
overcome noise in the channel. However, the level of noise is likely to be dy-
namic in relation to the number of nodes active in the network, and the level of
determination by an adversarial jammer. For this reason the layer must be able
to adjust the coding parameters of BBC to allow for dynamic jam-resistance.
The speci c properties at this time that changes the level of jam-resistance are
the hash function and the expansion size of the original data. These two prop-
erties determine how large the BBC packet is and where the indelible marks
can be placed. The RSSI value included RTS/CTS frames will be used to de-
termine at which level of jam-resistance the two nodes will communicate. The
node with the highest RSSI value will be the determining level that the remain-
ing DATA-ACK communications occur at. This service will also be available
for upper layers to adjust. This is a requirement for allowing varying levels of
priority from upper layer packets. The nal prototype achieves dynamic BBC
by altering the packet expansion in the BBC codec, and adjusting this value
56
based upon the Received Signal Strength Indicator (RSSI) value contained in
the control frames.
4.3 Chapter Conclusion
The Single-Hop Medium Access Control Layer for Noisy Channels protocol has
been conceived to address the many problems that currently a ect the current state
of medium access control for MANETs. The protocol will be designed to maintain a
reliable communications link in the presence of noise, via either intentional or unin-
tentional jamming, and will dynamically adjust either by the layers own mechanism or
as dictated by upper layers. The protocol aims to provide data transfer reliability by
developing a new layer built upon the foundation of the BBC algorithm. By focusing
on maintaining a communications link in the presence of jamming, it is expected that
the protocol will be able to overcome obstacles such as adversarial attacks, pre-shared
secrets, and the hidden and exposed terminal problems that other protocols fail to.
57
Chapter 5
Protocol Design and Implementation Phase
5.1 Chapter Introduction
The previous chapter discussed the initial protocol design and reviewed some of
the basic requirements and rudimentary methods for achieving the goals of the proto-
col. This chapter covers the end design for the protocol, and how it is implemented.
The protocol requires the use of many di erent software and hardware components.
Implementation and testing for so many pieces becomes more di cult as the complex-
ity of the layer increases. Initially, many of the pieces were built simultaneously and
then an attempt at testing was made. However, later development required that new
pieces be tested individually in order to reduce the new number of variables which
needed to be accounted for when the component failed.
As previously noted, one of the goals of this research is to implement and validate
the protocol on physical hardware. However, the MAC layer requires that a physical
layer exist prior to any implementation on it occuring. The creators of the BBC
[Baird, Bahn, Collins, Carlisle and Butler 2007] algorithm had created a basic physical
layer implementation for the purposes of research. Their implementation takes a le
as an input, encodes it using the BBC algorithm, and then modulates it for proper
transmission with the Software De ned Radios (SDRs). The modulated data is then
transmitted with a python script that repeats until user-terminated. A similar series
58
of steps occurs on the receiver?s end. A python script receives data from the USRP
until user terminated. Then the demodulator is run on the received data and the
decoder. If a successful transmission occurred, the same le sent should be in the
receivers folder. The code base from this prototype was used as the starting point for
the creation of the new upper-layer MAC protocol.
The remainder of this chapter begins with a breakdown of the system components
used for the creation of this new layer, and then follows with a detailed look at the
various operations at the physical layer and those which occur in the BBC-MAC layer.
5.2 System Components
The nal implementation presented here relies upon many software and hardware
components to create the end prototype. This section covers the di erent components
in order to familiarize the reader with the equipment used. Certain components have
a direct relation to the way the protocol was designed, speci cally, components like
the Universal Software Radio Peripheral (USRP) and the type of daughterboard used
have an impact on the hardware abilities of the layer.
59
5.2.1 Hardware Components
 Universal Software Radio Peripheral (USRP):
Figure 5.1: Universal Software Radio Peripheral External View
The Universal Software Radio Peripheral (USRP) is the main hardware compo-
nent used for developing Software De ned Radios (SDRs). Figure 5.1 shows the
external casing of this component. The USRP1, developed by Ettus Research,
LLC, pictured in Figure 5.2, was used for the development and testing during
this research. The USRP1 contains an Altera Cyclone Field Programmable
Gate Array (FPGA), and has four extension sockets that support up to four
daughterboards. The FPGA drives four high-speed 12-bit analog-to-digital con-
verters (ADC) capable of 64 Mega-Samples/second and four high-speed 14-bit
digital-to-analog (DAC) converters capable of 128 Mega-Samples/second. The
60
ADCs are used during the receive chain, and the e ective sampling rate is deter-
mined by the decimation rate. Likewise, the DACs are used during the transmit
chain and the e ective sampling rate is determined by the interpolation rate.
The USRP connects to the external computer through a Cypress EZ-USB FX2
High-speed USB 2.0 controller that allows for speeds approaching 32 Mbytes/s.
USB 2.0 speci cation allows for up to 480 Mbit/s or 60 Mbytes/sec, but the
current FPGA used doesn?t support the full bandwidth of USB 2.0. This is
because the Cypress USB controller uses the bulk transfer mode of USB 2.0,
which is limited to roughly 32 Mbytes/s.
Figure 5.2: Universal Software Radio Peripheral Internal Hardware
61
 RFX-1200 Daughterboard:
The USRP has the support for two transmit sockets and two receive sockets, al-
lowing for up to two receive daughterboards and two transmit daughterboards,
or two transceiver daughterboards. The daughterboard used during this re-
search is the RFX-1200 transceiver, pictured in Figure 5.3, that operates in the
1150-1450MHz frequency range with a transmit power of 200+mW (23dBm).
The board supports both transmitting and receiving on the same connector,
but also supports an auxiliary receive port which allows transmit and receive
to occur on separate frequencies. The board has a 30 MHz bandwidth and 70
dB Automatic Gain Control (AGC) range with adjustable transmit power. The
 nal useful feature which is crucial to this research is the built-in analog Re-
ceived Signal Strength Indicator (RSSI) measurement from an auxiliary ADC.
This research uses two RFX-1200s in each USRP.
 VERT400 Vertical Omnidirectional Antenna:
The nal component for the radios is the VERT400 omnidirectional antenna
pictured in Figure 5.4. This is a seven inch tri-band antenna operating at the
144Mhz, 400Mhz, and 1200Mhz frequencies. Each USRP has two daughter-
boards and so there are two of these antennas on each USRP.
62
Figure 5.3: RFX-1200 Transceiver Daughterboard
 Laptop Computer:
The nal hardware component is the computer used to drive the USRPs. In
this research, an Apple MacBook Pro running an Intel Core 2 Duo operating at
2.53 GHz with 4GB of DDR3 system memory was used. The computer has an
impact in several stages of this research. The rst is at the USB interface where
this laptop has two USB 2.0 ports. The second is during the decoding stage of
63
Figure 5.4: VERT400 Antenna
received data. The speed of the processor can have a signi cant impact on how
fast this stage occurs. Furthermore, the amount of system memory available
impacts how many samples from the received sink le the computer can load
into memory at a single time for decoding.
5.2.2 Software Components
The software components involved in this system are limited to C and Python.
The BBC program and the jammer for this research were both written in C. The
remainder of the software components were all written in Python due to its ease of
development and because the GNU Radio API for USRP interaction is written in
Python.
 GNU Radio Software Library:
GNU Radio is a free software toolkit created to give users the ability to learn and
create wireless protocols. The GNU Radio Library contains all the necessary
64
runtime and processing blocks to interact with the USRP. The client library is
largely written in Python with the signal processing blocks developed in C++.
 BBC Encoder:
The BBC software is written in C and can be found at the site maintained by
William Bahn [Bahn March 2009]. This software performs the BBC encoding
and also takes on the physical layer task of modulating data into the proper
format for the radio transmit script for transmission. The algorithmic details
of this software were discussed in Section 2.5.
When data is being encoded the following steps occur:
1. The data to be encoded is dumped to a le speci ed by the con guration
 le, and loaded into memory.
2. The data is then split up into BBC Frames with the following format:
{ StreamID: 16-bit integer that identi es the data stream.
{ Checksum: 32-bit checksum value for the payload.
{ Sequence Number: 16-bit integer indicating which sequence number
in the stream this frame is.
{ Data Bits: 16-bit integer indicating that actual number of bits con-
tained in the payload
{ Data: The payload for this frame. Size is determined by the con gu-
ration le.
65
3. Each frame is then sent to the BBC Encoder where the frame is encoded
and placed into the packet bu er.
4. The contents of the bu er are then modulated into the proper format and
placed in a sink le for transmission.
The software was largely left untouched with the exception of a modi cation
for the con guration le to accept absolute paths to the source and sink les.
The source is compiled into a binary executable which is called upon in the
interface.
 BBC Decoder:
The BBC decoder is part of the same piece of software as the encoder and was
written by William Bahn [Bahn March 2009]. The BBC decoder performs simi-
larly to the encoder, but in reverse. When there is data available for processing
the following steps occur:
1. The data that has been received from the radios is loaded into memory
and sent to the demodulator, where the received data is transformed into
bytes and placed in a bu er for processing.
2. Each bu er read location is then sent to the decoder where it attempts to
decode valid messages. Those that it does nd are sent to the sink module.
3. The sink module collects the messages belonging to the same streamid and
places them in order for output to the sink le.
66
4. At the end of the execution the sink module purges its contents to the sink
 le.
This part of the code has also been left mostly unaltered, with one exception.
If, during the purge of the sink, it is discovered that there are missing sequence
numbers, the sink will not dump the contents to the le. BBC-MAC is not
doing frame control on the BBC frames at this time, it is unnecessary to output
to the le if parts of the transmission are missing. From the point of view of
the layer it is just considered a failed transmit or receive. The nal source code
for the BBC software used during this research is listed in Section A.3.
 Python USRP Receiver Script:
In order for the layer to interact with the radios, a receiver script is necessary.
This is a modi ed version of the example usrp rx c le.py script that comes with
the GNU Radio library. The source code can be found in Section A.2.1. The
script accepts several important parameters:
{ freq: This is the frequency that the radio should be tuned to.
{ nsamples: This is used to tell the receiver it should collect nsamples
samples and then exit. This parameter is used to limit the size of the le
the BBC decoder can load into memory.
{ decim: This parameter is the decimation rate of the FPGA. The FPGA
can receive at 64 Mega-Samples/second. If the decimation rate is set to
128 then the e ective sampling rate is 64e6128 = 500000 Samples/sec.
67
Beyond initiating the communications with the radios and collecting the sam-
ples, this script also performs the important task of collecting the Received
Signal Strength Indicator (RSSI) value. Upon starting the receiver script a sep-
arate thread of execution is initiated that continuously calls the auxiliary ADC
and asks for the RSSI measurement. The thread averages the last 1141 calls
and outputs the highest average from the last twenty averages to a le located
in the folder for the speci ed radio. These operations can be found in Listing
5.1. The number of reads to the ADC in a single second is roughly 1141, and
by only returning the highest average in the last twenty seconds we are able to
give the layer a better idea of what level of jamming has recently occured. This
is a better safe than sorry approach to the con guration of the jam-resistance.
It allows the communicating nodes to con gure their jam-resitance levels to
an appropriate level of jamming which has recently been measured, and could
possibly occur again in the middle of the transmission.
def GetRSSI(self , d, t) :
reads = []
avgs = []
while self . rssi run :
tmp = self .u. read aux adc (self . rx subdev [0] ,0)
reads .append(tmp)
self . rssi = sum(reads [1140:])/1140
avgs . append(self . rssi)
file = open(receive . fn+" ssi " , "wt")
file . write (str (max(avgs [20:])))
file . close ()
Listing 5.1: usrp rx c le.py lines 190-200
68
 Python USRP Transmitter Script:
The transmitter script handles the duties of transmitting the encoded data with
the USRPs. The source for this le can be seen in Section A.2.2. It is a modi ed
version of the bbc tx.py script included on the BBC Real-time Research Engine
website. The important parameters for this script are:
{ rf freq: This is the frequency that the radio should be tuned to.
{ interp: This parameter is the interpolation rate of the FPGA. The FPGA
can transmit at 128 Mega-Samples/second. If the interpolation rate is set
to 256 then the e ective sampling rate is 128e6256 = 500000 Samples/sec.
{ jammer: This parameter tells the script how to create the transmission
 ow graph. 0 = no jammer, 1 = pulse jammer, 2 = Gaussian jammer.
{ jammer level: This parameter indicates the jamming level to be used if
a jammer type is speci ed.
{ tx time: This parameter tells the ow graph how long it should transmit
the data. This time is determined by the BBC-MAC layer based upon the
size of data and the con guration options for the encoder.
The modi cations were made so that it was possible to transmit on both daugh-
terboards simultaneously. This is required since whenever a valid transmission
is occurring there are three possible con gurations:
1. The encoded data is being transmitted on one of the daughterboards only.
69
2. The encoded data is being transmitted on one daughterboard and simul-
taneously the pulse jammer is being transmitted on the other.
3. The encoded data is being transmitted on one daughterboard and the
Gaussian jammer is being transmitted on the other.
 Pulse Jammer:
In order to test the error-correcting ability of the BBC algorithm I created a
novel jammer that would send out data at the same symbol rate and modulation
scheme as is used by the BBC executable. The main program is a modi ed
version of the BBC source code with only the necessary components remaining.
The source code for this jammer can be found in Section A.4. It accepts as
parameters the jammer level to be used and the number of samples to create.
The jammer level is a value in the range of [0,64]. The level indicates that
for every 64 time steps, that level time steps should contain a high pulse. The
relevant code for this is seen in Listing 5.2. For example, if the jamming level was
13, the program would randomly select 13 locations to set the bit to high in an
64-bit variable. The program also guarantees that there will be 13 locations by
ensuring that each new value was not already chosen. The program then pushes
the four bytes of that variable onto the bu er and send it to the modulator.
This is repeated for as many samples as are needed.
70
for(i = 0; i<(samples/(32 sizeof(unsigned long long))) ; i++)f
 buf number = 0;
 ran number = 0;
for(j=0;j < jammer level ; j++)f
 ran number = rand()%(8 sizeof(unsigned long long)) ;
while (marked[ran number]==1)f
 ran number = rand()%(8 sizeof(unsigned long long)) ;
g
marked[ran number] = 1;
// set the bit at ran number to 1
 buf number j= (1 << ran number) ;
g
memcpy(buffer >buffer+buffer >write , buf number , sizeof(unsigned long long)) ;
buffer >write+=sizeof(unsigned long long) ;
for(j=0;j<sizeof(unsigned long long) ; j++)f
buffer >ready = 1;
Modulate(config , buffer , modem, sink) ;
g
memset(marked ,0x00 , sizeof(unsigned long long) 8) ;
g
Listing 5.2: jammer.c lines 71-91
The goal of the jammer is to create an attack on the protocol by transmitting
random data in the same fashion as the valid encoded data. It aims to test the
limits of the error correction of the BBC algorithm and demonstrate an actual
interference in a similar fashion as the toy example with noise did in Section
2.5.4. To illustrate how this will a ect the data being transmitted, Figure
5.5 shows what BBC encoded transmission looks like on a software oscilloscope
without interference, and Figure 5.6 shows how it looks once we run this jammer
at level 20 jamming. While these images are not taken at the same time in the
transmission, it is clear that in Figure 5.5 the pulses are fairly distinct with
71
proper spacing, but in Figure 5.6 we see some interference and a signi cantly
higher density.
Figure 5.5: BBC Encoded Transmission without Noise
Figure 5.6: BBC Encoded Transmission with Pulse Jammer Noise
 Gaussian Jammer:
The other jammer used during testing is a Gaussian noise source generator that
is part of the GNU Radio library. The generator asks for an amplitude as a
parameter which determines the max amplitude of the signal containing the
noise. Again, in the script the jammer level is in the range of [0,64] where
the level is multiplied by 500 to determine the max amplitude to pass to the
Gaussian noise generator.
72
5.3 Physical Layer Implementation
This section will cover in greater capacity the operations that are carried out
at the physical layer to allow for the BBC-MAC layer to function properly. The
physical layer is responsible for the physical transmission of the data that the upper
layer passes to it. These responsibilities include the communication with the USRPs,
BBC encoding and decoding, and modulation of data for proper transmission. This
protocol assumes that all operations with the BBC algorithm are considered part
of the physical layer, and the upper layers simply control the operations through
con guration adjustments as necessary.
The task of communicating with the USRPs is handled by the radio scripts
discussed in Section 5.2.2. The scripts are then controlled by the interface class of
the BBC-MAC software which handles the control of the physical interface. This class
can be found in Section A.1.1. It also handles the execution of the BBC executable
for the encoding and decoding of data. The BBC executable handles the complex
task of encoding and modulation and the reverse task of demodulation and decoding
as discussed in Section 5.2.2. Figure 5.7 shows a high-level depiction of the operations
at the physical layer.
Whenever the radio is in receiver mode, the decoder is being continually ran on
the data that has been received. The transition from receiver to idle can occur as the
result of the following situations:
1. When the interface has been told to transmit data by the BBC-MAC layer.
73
Figure 5.7: Physical Layer State Diagram
2. If the decoder signals that that it has successfully decoded data, the receiver
script is exited and the received data purged, and then the receiver is started
again. The data that has been decoded is passed onto the BBC-MAC Receiver
class for processing.
3. When the receiver script has collected the number of samples speci ed by the
nsamples parameter. This implementation will exit after collecting 16 million
samples. The decoder is allowed to nish a nal attempt to decode the data
before the sink is purged and the receiver restarted.
4. If the decoder has been running longer than the time allotted for it to run. In
this situation the data in the sink le is considered unusable, the receiver is
stopped, and the sink data is purged before beginning the receiver again.
The node is never in an intentional continuous state of idleness. Any received
data is handed to the upper layer for processing and the node returns to receiving as
quickly as possible. In this sense idle is a transitional state.
74
A nal component of the interface is the Network Allocation Vector (NAV) timer.
Recall from the overview of the 802.11 protocol in Section 3.3.2 that it uses this timer
to determine how long it should defer transmitting for. Likewise in this protocol, if
this value has been set by the BBC-MAC layer, then the interface will not transmit
any frames until it has expired. The majority of the states that the physical layer
can be in are controlled by the BBC-MAC layer. Design characteristics of that layer
determine whether a node can transmit data or if it should be in receive mode.
5.4 BBC-MAC Implementation
BBC-MAC is where the majority of all work has been directed. It controls and
directs the physical layer and transforms it into a reliable medium for communica-
tions. The implementation of the protocol is a non-trivial approach to creating a
jam-resistant Medium Access Control (MAC) layer that can adapt to the level of
noise in the channel. The protocol adapts by measuring the interference in the chan-
nel and changing the coding con guration used at the physical layer. The layer is
made up of many di erent software components that can be seen in Section A.1. This
section will cover the main components of the protocol in such a way as to give com-
plete coverage of operations at the layer. Figure 5.8 shows the high level operations
in the BBC-MAC implementation.
75
Figure 5.8: BBC-MAC State Diagram
 BBC-MAC Frame:
The layer uses a common header format for all frame types. The header is
relatively small, only 21 bytes. The format of the header is as follows:
{ Destination Address: This is a 16-bit integer that indicates the address
of the node where this data is being delivered to.
{ Source Address: This is a 16-bit integer indicating the address of origi-
nating node for this message.
{ Type: This is an 8-bit integer indicating the type of the frame. 1 is a
Request-to-Send (RTS) frame. 2 is a Clear-to-Send (CTS) frame. 3 is a
Data frame and 4 is an Acknowledgement (ACK) frame.
76
{ Source Stream ID: This is a 16-bit integer indicating the stream ID that
this data belongs on the transmitter. It is used for identifying the handler
the data is destined to on the transmitters end.
{ Destination Stream ID: This is a 16-bit integer indicating the stream
ID that this data belongs to on the recipients end. It is used for proper
delivery of data to the handler for the stream on the receivers end.
{ RSSI: This is a 16-bit integer for the Received Signal Strength Indicator
(RSSI) level at the time of transmission. It is used during the RTS/CTS
handshake for con guration of the encoding for subsequent data frames.
{ CRC: This is a 16-bit integer containing the Cyclic Redundancy Check
(CRC) of the payload.
{ Timestamp: This is a 64-bit integer containing the time at which this
frame was transmitted.
{ Payload: Field containing the payload of the frame.
 Receiver:
The Receiver is the module that interacts with the interface class for all inbound
data. The layer views all communications in the forms of streams, where every
stream should have an ID associated with it. The Receiver maintains a list of all
handlers managing existing streams for both inbound and outbound streams.
Whenever data has been received at the interface it is enqueued in the Receiver?s
77
inbound queue. Once the receiver is ready to process the data it will examine
the Destination Stream ID eld in the header and the following steps take place:
{ ID is zero:
1. First attempt to locate a handler which has marked its destination
stream ID as the one listed as the Source Stream ID in the current
frame.
2. If no such handler exists then this is a new stream. Create a new
RxHandler with a stream ID unique to this node.
{ ID is non-zero:
1. First attempt to locate a handler with the ID matching this ID, and
pass the data to it.
2. If no such handler exists, create a new RxHandler with a stream ID
matching the Destination ID from the header.
The nal component of the Receiver is the callback routine. This is used when
an RxHandler has ended itself. If the handler was controlling the interface it
will relinquish control of the interface. This will remove the handler from the
list of handlers, clean up the memory it was occupying, and then if the statistics
module has been turned on it will print out the statistics that it maintained for
that stream. The routine also accepts the data that the RxHandler received, if
any, and passes it to the upper layer.
78
 Transmitter:
The Transmitter module handles all interactions with the upper layer for data
that is outbound. Whenever the upper layer has data to transmit it enqueues
it in this module?s queue. The data is immediately popped from the queue
and a TxHandler is created with a unique Stream ID to handle the remainder
of the operations associated with the outbound data. Like the Receiver, the
Transmitter has a callback routine that is used when the handler has terminated
itself. The handler will pass the routine a message to deliver to the upper layer
indicating a failure or a success. It will then remove the handler from the list
of handlers and clean up the memory being occupied by the handler. If this
handler was controlling the interface it relinquishes control of the interface.
Finally, if the statistics module is on it will print out the statistics that the
handler maintained for the stream.
 Handlers:
The handlers are where most of the decisions in the protocol are made. They
maintain the data and operations associated with a stream. There is a handler
for inbound streams called an RxHandler and likewise for outbound streams
there is a TxHandler. The interface maintains a queue of handlers that are
waiting for control of the interface. The handlers also are what make the adap-
tive protocol possible. After the RTS/CTS handshake is made the handlers
will adjust the con guration to the appropriate jam-resistance level based on
79
the RSSI value. There are ve con gurations where each weigh the bene ts of
throughput versus jam-resistance. The following outlines the detailed opera-
tions of the handlers:
{ TxHandler:
As soon as the Transmitter has data in its queue it creates a TxHandler
with a new stream ID. This ID becomes the source stream ID in any
outbound BBC-MAC frames from this handler. The handler maintains
two queues. The rst is a send queue that is used by the interface to get
the next frame that it should transmit from this handler. The second is the
receive queue. Recall that when the interface receives data it passes it onto
the Receiver module, which then locates the proper handler for the data.
This queue is where the Receiver will push the data. Finally, the handler
maintains a BBC Con guration object that holds the con guration options
that should be passed to the BBC encoder/decoder executable whenever
this handler has control of the interface. The following steps outline what
happens after the TxHandler has been created:
1. Set the con guration?s source ID to the current stream ID. Recall that
at the BBC encoding stage each time data is sent to the encoder it
creates individual BBC frames with sequence numbers belonging to a
stream ID. This is that value.
80
2. If the interface is operating in dynamic mode the con guration should
be set for the highest jam-resistance level, otherwise leave the con g-
uration as is.
3. Create a Request-to-Send frame with the node?s current RSSI value.
RTS frames contain the size of the data to be transmitted as the
payload.
4. Enqueue the RTS frame in the queue and then place this handler in
the interface?s handler queue.
Once this initial phase has occurred, the handler must now wait for the
interface to signal it via a callback routine that it has transmitted the
frame. When the callback is signaled, the interface passes it a copy of the
frame it just transmitted and the length of time the interface passed to the
bbc tx.py script. The following outlines what occurs when the callback is
called with the two frame types that the transmitter sends:
 Request-to-Send Frame: The handler makes a blocking call to the
receive queue that times out after a length of time equal to the transmit
time plus bu er time.
 Blocking Call Returns:
1. The received frame is checked to make sure it is a RTS frame.
If it is not, a node is responding with an incorrect frame and it
is ignored.
81
2. The RSSI value in the frame is compared to the RSSI value
which was sent in the RTS. If it is larger than our RSSI value,
then it is used as the determining value for the jam-resistance
level.
3. If the interface is in dynamic mode, adjust the con guration
to the appropriate jam-resistance level based on the RSSI value.
Once the RSSI value is obtained, the handler will do a secondary
check on the current RSSI value at the node. If the current value
would cause the con guration to jump to the next level of jam-
resistance, a new RTS frame is created and sent out to re-adjust
the receiver. This step is ignored if we are at the limit of RTS
re-transmit attempts, and continue on to transmitting the data
frame.
4. Create the data frame and place it in our outbound queue.
 Blocking Call Times Out:
1. Check to make sure we have not exceeded our retransmit at-
tempt value. If we have, then the handler will terminate itself
and pass a failure message to the Transmitter module.
2. Otherwise, the frame is updated with the current RSSI value
and placed in our outbound queue.
82
 Data Frame:
The handler will make a blocking call to the receive queue to get data
that will timeout after thirty seconds.
 Blocking Call Returns:
1. The received frame is checked to make sure it is an ACK frame.
If it is not, a node is responding with an incorrect frame and it
is ignored.
2. Otherwise, the handler has received an ACK frame and this
stream has been completed. The handler will terminate itself
and signal a successful transmission to the Transmitter module.
 Blocking Call Times Out:
1. Check to make sure we have not exceeded our retransmit at-
tempt value. If we have, then the handler will terminate itself
and pass a failure message to the Transmitter module.
2. Otherwise, the frame is re-enqueued in our outbound queue.
If the handler is capable of receiving the CTS from the other commu-
nicating node, it will claim ownership of the interface and start a timer
equal to the length of time in the CTS frame that was received. The
handler will continually check to see if the timer has expired, and if it
has then the handler must give up control of the interface and signal
a failure to the upper layer. This is to ensure fairness on this node
for other handlers to gain control of the interface, as well as maintain
83
the mutual agreement of how long any two communicating nodes can
claim ownership of the channel.
{ RxHandler:
The RxHandler is created by the Receiver class, and has a signi cantly less
complex role than the TxHandler. Upon creation, it is given a stream ID
to use as a self identi er. Any frames that it transmits will use this as the
Source Stream ID in the BBC-MAC frame header. Like the TxHandler,
the RxHandler maintains two queues. The rst is the receive queue where
any date from the Receiver module is placed, and the second is the send
queue used by the interface to get the data it is to send from this handler.
When data is placed in the handler?s receive queue, the following steps
occur for each of the following frames:
 RTS Frame:
1. The frame is rst checked to make sure the destination address is
equal to the address speci ed in the interface. If it is not, then the
frame is discarded.
2. Compare the RSSI value in the frame to the current RSSI at this
node. Select the higher value as the RSSI value for the purposes
of con guration adjustments.
3. Create a CTS frame with the selected RSSI value and enqueue it
in our send queue.
84
4. At this point this node should have the higher of the two RSSI
values. Using the size of the data in the RTS payload this node
will estimate the time needed on the channel for the codec con-
 guration based on the RSSI value and the size of the data and
place this in the CTS frames payload.
5. The handler will now wait for the interface to signal that it has
transmitted this frame and begin a timer equal to the length of
time that was previously estimated that the channel would be
needed for.
6. Adjust the jam-resistance level based on the RSSI value and claim
ownership of the interface.
 CTS Frame: If an RxHandler gets a CTS frame it indicates that this
CTS was not destined for this node and two other nodes are trying to
claim the channel. The value in the payload is extracted and the NAV
timer on the interface is updated with that value.
 Data Frame:
1. The frame is checked to make sure it was destined for this node.
If not, it is discarded.
2. An ACK frame is created and placed in the send queue.
3. The handler signals the Receiver class of a successful data recep-
tion via the Callback and the handler is terminated.
85
 ACK Frame: This frame should have been delivered to a TxHandler
if it was meant for this node. The frame is discarded and the handler
terminated.
5.5 Chapter Conclusion
The purpose of this chapter was to introduce the reader to the main components
that make up the implementation of the BBC-MAC protocol. The chapter began
with an introduction to the hardware and software components that make it possible
to achieve the goal of testing the protocol on physical hardware. We then discussed
the new jammer that was created to be used during the subsequent experimental
phases. The implementation details of the physical layer and the BBC-MAC protocol
were covered in appropriate detail in order familiarize the reader with how the layers
interact in order to create the reliable data link layer. The implementation presented
in this chapter was meant to create a working prototype in order to demonstrate the
feasibility in creating a MAC layer that can adapt to the level of noise detected on
the channel. Some of the design decisions in the protocol could have been taken in
other directions, but the prototype that has been developed here suits the purpose of
demonstrating technical capability of incorporating the BBC algorithm into a protocol
stack in order to provide adaptive jam-resistant communications.
86
Chapter 6
Phase I Experiments: Adaptive Coding Investigation
6.1 Chapter Introduction
As noted in the previous chapter, the protocol must adjust the coding param-
eters used on the BBC algorithm to meet the current needs of the channel. If the
channel has a low degree of noise then minimal jam-resistance is needed to increase
the throughput. The reverse situation must also be addressed. If there is a high
level of interference then greater jam-resistance should be used in order to over-
come the noise. In the explanation of the protocol, I settled on using ve levels of
jam-resistance, plus an additional level for the smaller RTS/CTS frames. By using
 ve levels of jam-resistance, the protocol will be able to demonstrate its capacity to
adapt to the level of noise in the channel. The goal of this experiment is to test each
con guration against di erent levels of jamming, and against several jammers. The
experiment clearly showed the tradeo between jam-resistance and throughput, and
illustrated that with just one parameter adjustment of the BBC algorithm di erent
levels of resistance can be achieved. However, in both jammer types an upper bound
was reached where the adjustment made no statistical di erence in the reliability of
the con guration.
87
6.2 Experiment Setup
The hardware con guration for this experiment required two USRPs, and at
least one must have two daughterboards. The USRPs were fairly close to each other;
only four feet separated them. Inside each USRP are two daughterboards, where the
antennas in each are separated by 3.5 inches.
The experiment calls for a jammer to be running while a transmission is occur-
ring. I made the design decision to always have the jammer running for at least as
long as the transmission was occurring. This allows me to guarantee that the origi-
nating signal is always being jammed from the source of the transmission. For this
reason, the jammer code was incorporated in the transmitter script so this could be
achieved. Two types of jammers were used during this phase of experiments. The
 rst is a pulse jammer that I created to be a targeted attack on the decoder and the
modulation scheme currently used. The second is a Gaussian noise source generator
that is part of the GNU Radio API. Each jammer has a range of [0,64] to select for
the jamming level. On the pulse jammer the level indicates how many time steps
should contain a high pulse, and the Gaussian jammer uses the level to determine
the max amplitude. For this experiment the data used for encoding and transmission
was a single 802.3 ethernet frame that is 1514 bytes long. The hexadecimal string for
this data is listed in Section B.1.
After examining notes about the BBC algorithm and reviewing the source code,
it is fairly obvious how greater jam-resistance can be achieved. An examination of
88
Algorithm 2 in Section 2.5.3 shows that the upper bound on the decoder is O(2n).
The decoder time grows exponentially with respect to the number of 1 bits in the
\buckets" for the current message being decoded, or essentially the mark density. On
the BBC Real-time Engine website [Bahn March 2009], it is stated that in general,
in order to achieve greater jam-resistance the con gurations need to lower the mark
density during the encoding. There are two parameters which determine the length of
a packet and therein the mark density. The rst is the codec message bits paremeter,
which says how many bits long should a message be. The second is the codec expansion
parameter, which determines the length in which a BBC packet will be. Multiplying
the codec message bits codec expansion gives the length of a BBC packet or the
packet bits parameter. The value also impacts the spreadability of the pre x hashing
done when determining where a pulse should be located at, and in some cases how
many marks there will be.
// Generate mark location for present prefix
location = 0;
for (i = 0; i < SHA1 HASH DWORDS; i++)
location += ((codec >digest) >Message Digest [i])<<i ;
location %= c >packet bits ;
Listing 6.1: codec.c lines 343-347
The code snippet above shows where in the code this is of importance. The upper
bound of where a location can be is in the unsigned integer variable location. How-
ever, it is further impacted by the packet bits discussed before. By raising or lowering
89
the codec expansion di erent mark densities can be achieved. A rough estimation for
the stream density can be done by dividing the number of marks the encoder created,
N, by the number of samples that were created, S. The increase in expansion also
increases the number of marks produced. This is because the modular operation on
the location is on a larger number, and thus fewer pre x hashes will map to the same
location increasing the spreading of the marks.
Expansion N S Density Transmit Time Throughput
50 31768 716832 4.43% 6s 2019bps
75 32865 1075232 3.06% 9s 1346bps
100 33451 1433632 2.33% 12s 1009bps
125 33873 1792032 1.89% 15s 807bps
150 34054 2150432 1.58% 18s 673bps
175 34257 2508832 1.37% 21s 578bps
200 34404 2867232 1.19% 23s 527bps
RTS @ 500 3406 1433632 0.24% 12s 19bps
Table 6.1: Expansion Factor Impact
I decided to leave the codec message bits parameter at the default of 512 bits or
64 bytes, and instead vary the codec expansion. This decision was made because I
wanted to reduce the number variables changed during testing and implementation,
and instead focus on adjusting the parameter which varies the mark density. Table
6.1 shows the result of running the encoder for the chosen levels of expansions. It
also lists the transmit time required to transmit each con guration. Recall that for
these tests a 1514 byte ethernet frame was used. The transmission time is a simple
calculation based around the number of samples that were created. The sampling
90
rate of the USRP?s is 500,000 samples a second, and for each bit modulated there are
4 samples created, and so the time required to transmit isd4 S500000e. The ceiling of
that value is used in order to obtain an integer result. This information also lets us
display the nominal throughput as a function of time. The table clearly illustrates
that as we increase the expansion factor we decrease the stream mark density, but
also decrease the throughput.
For each expansion factor, thirty messages were sent at each jamming level until
it reached two levels in which no messages made it through. It was decided to stop
the tests at that point since even if one or two messages got through in subsequent
levels it would be statistically irrelevant. A script was created which would begin the
receiver, then begin the transmitter, and once the transmitter was nished it would
end the receiver script and begin the decoder. The decoder was given thirty seconds
to decode the data received. Once that time was expired it was considered a failed
transmission. Successful decodes where then checked for proper CRC16 values, and
only those that had matching CRC16 values were considered a success. A nal test
was carried out on the highest expansion factor that resulted in a reasonable amount
of transmit time for a RTS frame in order to determine its resilience to jamming.
This is important since these frames are signi cantly smaller than the ethernet frame
used during the rest of the tests, and are required in the protocol for establishing
channel control and coding con gurations for the communicating parties. The RTS
frame is just a BBC-MAC header plus a payload containing the time the initiating
node estimates it will need the channel for. For these tests it was only 28 bytes,
91
which, conveniently, an expansion of 500 resulted a transmit time of 12 seconds with
an extremely low mark density of just 0.24%.
6.3 Experiments
6.3.1 Jammer RSSI Experiment
To gain an initial insight into how the two jammers would a ect the channel,
the rst experiment was to run both jammers at each level of jamming and collect
the RSSI value. As noted in the previous chapter, the RSSI value is continuously
collected during the receiver?s script. The experiments were executed such that only
the noise data generated by the respective jammers were transmitted.
Figure 6.1: RSSI Value vs Jamming Level
92
Figure 6.1 shows the results of this experiment. The pulse jammer presents
a uniform increase in RSSI value, while the Gaussian jammer displays a half bell
curve increase. This is not surprising since the random generator used in the pulse
jammer is of uniform distribution, while the Gaussian uses a Raleigh distribution.
This information is necessary in order to correlate the results of the next series of
tests with the con guration needed for a speci c range of RSSI values.
6.3.2 Pulse Jammer Experiment
The pulse jammer that I created is meant to attack the decoder in a similar way
as my demonstration of the BBC decoder in Section 2.5.4. The jammer places a high
pulse where it otherwise would not be. As explained in the previous chapter, the
jammer accepts an input level in the range [0,64], where the level given determines
how many time steps will contain a pulse. For example, if the level is 13, the jammer
will output a sink le where every 64 time steps is guaranteed to contain 13 pulses.
This can create a signi cant amount of error and noise for the decoder, but it can
not guarantee that it will induce a 1364 ? 20:31% error rate. This is because if the
sender was already sending a 1 where the jammer outputted a 1, it would not a ect
the signal, and thus it is a maximum of 20.31% bit error rate and not a guaranteed
error rate.
Figure 6.2 and Table 6.2 show the results of all the tests on the ethernet frame.
What is clear from the graph is that each expansion factor gives an advantage over
the prior one, but as we increase the expansion we notice less improvement over the
93
Figure 6.2: Collective Pulse Jammer Results
previous expansion. Starting at expansion 100 we begin to see the steady decrease in
advantage over the previous level. This makes sense since looking back at Table 6.1,
there is a very minimal decrease in mark density as we increase the expansion from
100.
94
Jammer Level 50 75 100 125 150 175 200 RTS @ 500
0 25 29 30 26 27 28 28 22
1 26 27 23 27 27 26 23 27
2 16 28 30 24 29 27 15 27
3 4 28 25 26 30 24 20 26
4 0 28 24 26 28 22 21 23
5 0 26 24 23 27 21 20 27
6 0 26 26 28 29 24 22 27
7 0 14 26 24 29 25 23 28
8 0 0 24 26 28 22 22 30
9 0 0 24 28 29 18 24 26
10 0 0 22 28 29 23 20 28
11 0 0 0 26 28 26 26 28
12 0 0 0 1 29 21 24 25
13 0 0 0 0 0 21 27 28
14 0 0 0 0 0 0 11 29
15 0 0 0 0 0 0 0 26
16 0 0 0 0 0 0 0 29
17 0 0 0 0 0 0 0 28
18 0 0 0 0 0 0 0 30
19 0 0 0 0 0 0 0 11
20 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0
Table 6.2: Pulse Jammer Results
Figure 6.3 shows the results of tests with an expansion of 50. This con guration
does well through level one jamming where it gets 26 messages through, but then it
begins to lose ground with only 16 in level two jamming, and statistically becomes
unstable at level three jamming. This con guration was meant to operate in areas
of little-to-no noise in order to give high throughput. It can clearly tolerate this
requirement.
95
Figure 6.3: Pulse Jammer with Expansion 50
Figure 6.4: Pulse Jammer with Expansion 75
96
Figure 6.4 displays the results of the test on expansion 75. Expansion 75 does
signi cantly better than 50. It manages to get 26 messages through at level six jam-
ming, and then 14 at level seven before it goes to zero.
Figure 6.5: Pulse Jammer with Expansion 100
Figure 6.5 shows the results of tests on expansion 100. This expansion had
several jamming levels where it had just barely over 20 messages through. However,
while monitoring a lot of these tests, sometimes the radios would cause bu er under
runs where the received data was lost. Combined with the randomness of the data,
this can add to the low numbers on many of these early jamming levels where we
should be seeing high success rates. This con guration did signi cantly better than
the previous one. It got 22 messages through on level ten jamming, but then zero on
the subsequent levels.
97
Figure 6.6: Pulse Jammer with Expansion 125
Expansion 125 shown in Figure 6.6 did only one level better than the previous
one. After level 11 jamming it manages just one successful transmission before going
to zero. As mentioned earlier, this is where we begin to see only minor improvements
in jam-resistance.
Again, the next level of resistance at expansion 150 in Figure 6.7 shows that we
are able to compensate for just one more level of jamming. This con guration got 29
messages through on level 12 jamming, but then got zero through on the subsequent
tests.
98
Figure 6.7: Pulse Jammer with Expansion 150
Figure 6.8: Pulse Jammer with Expansion 175
99
Expansion 175 shown in Figure 6.8 displays problems early during the jamming
tests of just getting data decoded. This con guration manages to get to level 13
jamming with 21 of the messages getting through, and then decays to zero.
Figure 6.9: Pulse Jammer with Expansion 200
Expansion 200 shown in Figure 6.9 displays the same problems as 175 did early
on in the jamming experiment. However, it did just better than 175 at level 13 with 27
messages being received, and at level 14 it got just 11 messages through. Statistically,
200 does only marginally better than 175. After reviewing the logs on this test, a lot
of the problems seen in the early jamming levels were not due to the decoder timing
out, but rather that the decoder was indicating a signi cant amount of the sequence
numbers were missing and so it dropped the data.
100
Figure 6.10: Pulse Jammer with RTS Frame at Expansion 500
The nal test ran was on the RTS frame with an expansion of 500. Recalling the
protocol design, the RTS and CTS frames are used for determining the proper level
of jam-resistance needed between the two communicating parties. This requires that
we have a high degree of certainty that the these frames are successfully transmitted.
Figure 6.10 shows that this con guration allows the frame to make it through level
18 jamming with 30 messages being received, and 11 received at jamming level 19
before decaying to zero.
6.3.2.1 Pulse Jammer Experiment Conclusion
This experiment showed how the various con gurations can resist the pulse jam-
mer up to a certain level. Each of the con gurations o ers a bene t over the other
in the form of throughput or jam-resistance. The highest expansion factor manages
101
to resist a jamming level of 13 which equates to roughly a 20.31% bit error rate at
the maximum. Finally, the tests on the RTS frame demonstrate several important
factors. The rst is that we can successfully transmit these frames at very high levels
of jamming. The expansion of 500 resisted a jamming level of 18 which is roughly a
28.13% bit error rate at the maximum. The second important piece of information is
that the smaller frame size was able to do better than the larger at getting successful
receptions, but at also a signi cantly lower throughput.
6.3.3 Gaussian Jammer Experiment
The Gaussian jammer is a noise source generator part the GNU Radio API li-
brary. It accepts as a parameter the maximum amplitude and then uses a Gaussian
distribution random generator to determine what amplitude the output signal should
be. The generator accepts a jammer level in the range [0,64], where each step con-
stitutes and increase in amplitude of 500. The maximum value for the amplitude is
32000, which conveniently works out to 64 levels.
Figure 6.11 and Table 6.3 show the results of all the tests on the ethernet frame
and the last one on the RTS frame. Again we see the pattern of gradual decrease
in resistance as we increase the expansion, but there also appears to be area of con-
centration where the limits of the expansions are met. Recalling Figure 6.2 from the
pulse test, we notice that there was quite a bit more distinction between the con g-
urations. However, looking at how the RSSI values increase from Figure 6.1 for the
Gaussian jammer versus the pulse jammer, this rapid decline seems expected.
102
Figure 6.11: Collective Gaussian Jammer Results
Jammer Level 50 75 100 125 150 175 200 RTS @ 500
0 28 29 30 30 30 29 24 24
1 26 27 29 28 28 26 19 27
2 26 25 30 30 28 24 15 27
3 24 23 28 28 30 27 20 23
4 26 26 30 26 30 29 24 27
5 25 28 30 28 30 29 17 28
6 21 28 29 30 29 28 9 24
7 9 26 29 29 28 28 18 26
8 0 26 27 30 30 23 10 27
9 0 26 28 30 27 25 9 25
10 0 2 26 27 29 28 6 28
11 0 0 1 26 24 27 10 28
12 0 0 0 8 11 2 0 22
13 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0
Table 6.3: Gaussian Jammer Results
103
Figure 6.12: Gaussian Jammer with Expansion 50
Figure 6.12 shows the results of tests with an expansion of 50. The con guration
is able to cope with jamming level six, but then declines at seven with just nine
successful transmissions, and nally going to zero. Again, this con guration is meant
to be used in areas of low noise so as to increase the throughput.
Figure 6.13 displays the results of the test on expansion 75. This con gurations
is able to edge out the previous by several levels, allowing 26 messages through on
level nine jamming, and then just two on level 10 before declining to zero.
104
Figure 6.13: Gaussian Jammer with Expansion 75
Figure 6.14: Gaussian Jammer with Expansion 100
105
Figure 6.14 shows the results of tests on expansion 100. This expansion was only
able to do just one level better than expansion 75. There were 26 successful receives
on level ten jamming, and just one on 11. At this con guration we begin to see the
decline in jam-resistance advantage over the previous con guration. However, com-
paring the results of this test to the pulse jammer, this expansion was more stable in
the Guassian jammer than in the pulse.
Figure 6.15: Gaussian Jammer with Expansion 125
Expansion 125 shown in Figure 6.15 did only one level better than 100. The
con guration allowed 26 messages through on level 11 and eight on level 12 before
the decoder began to timeout on the subsequent levels.
106
Figure 6.16: Gaussian Jammer with Expansion 150
Figure 6.16 shows the results of expansion 150. Beginning at this con guration we
stop seeing a statistical advantage in raising the expansion. At level 11, 24 messages
were received, and at level 12 jamming just 11 messages were received.
Expansion 175 shown in Figure 6.17 doesn?t show the same problems as this
respective test did on the pulse jammer. However, again this expansion was not able
to do better than the previous two. It was able to get twenty-seven messages through
on jamming level eleven, and just two on jamming level twelve.
107
Figure 6.17: Gaussian Jammer with Expansion 175
Figure 6.18: Gaussian Jammer with Expansion 200
108
Expansion 200 shown in Figure 6.18 displays similar issues as the respective test
did in the pulse jammer, but did signi cantly worse. Again, looking at the logs for
this test it was observed that the decoder wasn?t timing out, but rather that it was
missing many sequence numbers.
Figure 6.19: Gaussian Jammer with RTS Frame At Expansion 500
Finally, the test on the RTS frame with an expansion of 500 was ran. Figure 6.19
shows the results of this test. Again, using this con guration the RTS frame could be
successfully received at a jamming level beyond what any of the data frames made it
to. The con guration allowed the frame to be received 22 times on level 12 jamming
before declining to zero on the remaining levels.
109
6.3.3.1 Gaussian Jammer Experiment Conclusion
This second experiment on the Gaussian jammer demonstrated that even against
a di erent type of jammer the con gurations can successfully use di erent con gu-
rations for the proper level of interference in the channel. The con gurations were
able to resist the jammer up to a certain point just as in the pulse test, but this time
it was seen that the limit was approached far quicker than in the pulse experiment.
This can be explained by the fact that the increase in jamming levels for the Gaussian
noise source beyond level ten begin to increase the RSSI value signi cantly more than
with the pulse jammer.
6.4 Chapter Conclusion
When comparing the results of the con gurations from the two jammers, on the
surface it seems that the lower expansions were able to resist more of the jamming
levels on the Gaussian test than they did on the pulse. However, to e ectively see
how the con gurations fared against the two jammers one must look at what RSSI
value the particular jamming level creates for the respective jammer. If we consider
anything less than a 50 percent success rate a failure and map the last jamming level
that particular con guration was successful on, to the RSSI value from Figure 6.1, we
get the results found in Table 6.4. The Gaussian jammer trials show that the upper
bound for the con guration to correct the errors was reached at level ten jamming.
However, what is really happening is they were not able to overcome the next level
of jamming which produces an RSSI value of 1603. When the results are compared
110
this way it illustrates that for both jammers, the RSSI value will give us the proper
estimation for which con guration to use. Then, with this information in mind, we
can ignore the type of jammer used and base the decision on the RSSI. This is im-
portant since the protocol will not have forehand knowledge of the jammer type and
instead will only be using the RSSI as a determination factor.
Jammer 50 75 100 125 150 175 200 RTS @ 500
Pulse 385 790 1161 1256 1356 1433 1433 1769
Gaussian 312 792 1028 1263 1263 1263 596 1603
Table 6.4: RSSI Failure Levels
This phase of experiments provided the necessary information to complete the
adaptive BBC-MAC protocol. The results showed that by adjusting the expansion
factor, we can adapt the encoding to better suit the needs of the channel. Increas-
ing the expansion factor reduces our throughput, but gives us greater jam-resistance.
While lowering it increases our throughput but leaves us susceptible to weaker jam-
ming attacks. The goal of this experiment was to arrive at ve con gurations for the
data frames and an additional one for the RTS and CTS frames. I tested seven con-
 gurations on an 1514 byte ethernet frame and demonstrated each of their abilities
to resist di erent levels of jamming on several jammers. After analyzing the results,
the con gurations chosen for the protocol are expansions 50, 75, 100, 150, and 175.
Expansion 200 was dropped for several reasons. The most obvious is that it is entirely
too unstable to be incorporated in the protocol. The second is that in both jammer
tests, it gave no statistical advantage over expansion 175. Expansion 125 was not
111
chosen since in terms of RSSI value it only did one level better than expansion 100
and I wanted a more signi cant bu er between the con gurations. The expansion of
500 for the RTS and CTS proved to be more than adequate as evidenced by the fact
that it was successfully received at RSSI levels well beyond what the con gurations
for the data frame achieved.
112
Chapter 7
Phase II Experiments: Protocol Validation
7.1 Chapter Introduction
The nal phase of experiments presented in this chapter focuses on using the
data from the rst phase of experiments conducted in Chapter 6. In that phase, an
investigation into the BBC algorithm was conducted to determine what must be done
to allow for varying levels of jam-resistance. The experiments showed that in order to
produce greater jam-resistance the mark density of a message must be reduced. After
an examination of the algorithm, the analysis shows that in order to achieve varying
levels of mark density, and thus jam-resistance, the expansion factor used in the codec
must be altered. Seven variations of that value were tested against two jammers and
the results showed that each variation provided a bene t in either jam-resistance or
throughput. The values chosen for protocol implementation are 50, 75, 100, 150 and
175. This chapter will include those in the BBC-MAC protocol and conduct the
experiments necessary to illustrate how the protocol can use these to adapt to the
level of noise. The rst experiment presented in this chapter shows the results of the
original protocol with those values. The information from that experiment revealed a
problem in the implementation and an important modi cation was made to improve
the overall performance of the protocol.
113
7.2 Experiment Setup
The physical layout of these experiments remains the same as the experiments
conducted in Chapter 6. The USRPs are roughly four feet apart with two transceiver
daughterboards in each, where their respective antennas are 3.5 inches apart.
The information from the previous set of experiments has been used and applied
to the BBC-MAC protocol implementation. Table 7.1 shows the range of RSSI val-
ues that each expansion is applied to. These ranges are based on the jamming level
that the expansion was able to resist and then correlated to the average RSSI value
produced at that level.
Expansion Min RSSI Max RSSI
50 0 300
75 301 700
100 701 1050
150 1051 1350
175 1351 4092
Table 7.1: Expansion RSSI Range
Prior to conducting the experiments a statistics module was created to allow
both a RxHandler and a TxHandler to keep track of relevant information for the
stream they are currently managing. The information kept by the TxHandler is:
 RTS Count: The number of RTS frames that were sent.
 Data Count: The number of data frames that were sent.
114
 Send Time: The Network Time Protocol (NTP) time that the rst RTS frame
was sent at.
 ACK Time: The NTP time that the ACK was received.
 RTS Fail: Flag set if this stream failed at the RTS/CTS exchange stage.
 Data Fail: Flag set if this stream failed at the DATA/ACK exchange stage.
 RSSI: Final RSSI value used for determining the expansion to use.
 Expansion: The expansion used for the Data transmission.
 Channel Latency: The di erence in time between the Send and ACK time.
On the recipients end the RxHandler also maintains some information:
 RTS Count: The number of RTS frames that were received.
 Data Count: The number of Data frames that were received.
 Data Time: The NTP time that the data frame was received and delivered to
the upper layer.
 ACK Count: The number of ACK frames transmitted. This should be equal
to the number of data frames received.
 CTS Count: The number of CTS frames transmitted. This should be equal
to the number of RTS frames received.
115
In the experiments. the following terms will be used to discuss the analysis of
the data collected by the statistics on the transmit and receive end for each message
that was sent:
 False Negative: This is where the transmitter signaled its upper layer of a
failure to deliver the data, but the receiver had actually received the data and
delivered it to its upper layer.
 False Positive: This is where the transmitter signaled its upper layer of a
failure to deliver the data and the other node did not receive it.
 Nominal Latency: This is the di erence between the Send Time in the Tx-
Handler statistics and the Data Time in the RxHandler statistics. It is the time
between when the sender rst initiated communications by sending an RTS and
when the recipient delivered the data to the upper layer. Under optimal con-
ditions this is just the Channel Latency minus the time to deliver the ACK.
However, under conditions where the data frame is unnecessarily re-transmited
due to a missed ACK, this can be signi cantly lower than the Channel Latency.
 Optimal Nominal Latency: This is the Nominal Latency when everything
worked perfectly. That is, only one RTS frame had to be sent and only one
Data frame had to be sent.
The experiments were tested with the pulser jammer only. This choice was made
since it gave a uniform increase in RSSI value allowing for more granularity of the
116
tests. For each experiment 30 messages were sent at each jammer level in the range
of [0,10]. The goal of the experiments are to show that the protocol would adapt to
di erent levels of noise and not the demonstration of absolute failure. The expansions
respective failure limits were demonstrated in Chapter 6. As with the experiments
conducted before, whenever a data transmission was occurring on the radio, a jammer
was running on the author daughterboard.
7.3 Experiments
7.3.1 Initial Protocol Implementation Experiment
The initial protocol implementation operates in the same fashion as explained in
Section 5.4. The ow of a message has the following sequence:
1. The sender encodes a RTS frame with an expansion factor of 500 and transmits.
2. The recipient will respond with a CTS frame encoded with an expansion of 500.
3. The two nodes should now be in agreement on which con guration to use for
subsequent frames.
4. The sender now encodes the data frame using the agreed expansion and trans-
mits.
5. The recipient will reply with an ACK frame encoded at the agreed expansion.
This RTS-CTS-DATA-ACK ow is the complete stream assuming everything is
received without error. Recall from Section 5.4 that if upon receiving the CTS the
117
sender requests further expansion re nement, it will re-transmit a RTS to inform the
recipient of a new con guration to which they should agree upon. To overcome the
possible corruption of RTS and CTS frames, the sender can re-transmit an RTS frame
up to two more times past the initial request. The time that the channel is allocated
for the two nodes is the time needed for three transmissions of the data frame plus
the time needed for a timeout. The decoder is given 30 seconds to decode the data
received by the receiver before the data is considered too corrupt for processing and
the data purged.
The experiment was conducted by sending 30 messages at each jammer level and
recording the results from the statistics for analysis. The data used as payload is the
same 1514 byte ethernet frame that was used in the experiments from Chapter 6, and
the hexadecimal string of the frame can be found in Section B.1.
Beginning rst with an analysis of the latency, we can see in Figures 7.1 and 7.2
that on all three measurements there is a gradual increase in latency as we increase
the jammer level and thus the expansion factor needed. Tables 7.2 and 7.3 show
the numbers that each graph displays, respectively. We can clearly see that there
is a bene t in using the lowest jam-resistance level. Compared to the highest jam-
resistance level, we are able to transmit almost 16 seconds faster in optimal conditions.
Furthermore, as we go from one expansion to the next, there is an increase in latency.
These two graphs demonstrate the latency tradeo by adjusting the expansion factor.
118
JammerLevel ChannelLatency(s) NominalLatency(s) OptimalLatency(s)
0 52.5 47.3 43.9
1 55.8 46.5 44.7
2 64.5 49.1 45.7
3 62.4 47.2 46.7
4 53.3 47.2 47.3
5 62.1 50.9 48.4
6 56.8 49.1 49.2
7 71.1 62.3 56.2
8 70.6 64.1 57.3
9 78.3 66.1 60.6
10 79.6 66.0 57.7
Table 7.2: Experiment I Latency By Jammer Level
Expansion ChannelLatency(s) NominalLatency(s) OptimalLatency(s)
50 53.0 47.1 42.6
75 60.5 47.6 45.8
100 57.6 49.6 48.3
150 72.1 63.6 57.3
175 78.4 65.3 58.9
Table 7.3: Experiment I Latency By Expansion Level
Figure 7.1: Experiment I Latency By Jammer Level
119
Figure 7.2: Experiment I Latency By Expansion Level
120
Continuing on to an analysis of the RTS frames, in Figures 7.3 and 7.4 we see
how many RTS frames were sent, how many of those were received, and how many
messages were sent. Under optimal conditions there should be a 1:1 ratio between
the number sent and received, and not necessarily a 1:1 ratio between the number
of RTS frames sent and the number of messages sent. This is because more RTS
frames might be sent as needed by the protocol to adjust the expansion factor used
in subsequent data and ACK frames. However, the gures clearly indicate that there
was a minimal error in the RTS frames and only at level eight jamming was there
increase in the adjustments made. The raw data from where this data was collected
indicates several times in which expansion 175 had to be used in level eight jamming,
accounting for the small separation between the number of RTS received and the
number of messages sent at that level. Tables 7.4 and 7.5 numerically display the
same data.
Jammer Level Messages Sent RTS Sent RTS Received
0 30 33 30
1 30 30 30
2 30 32 30
3 30 30 30
4 30 30 30
5 30 30 30
6 30 30 30
7 30 31 30
8 30 34 33
9 30 33 30
10 30 36 32
All 330 349 335
Table 7.4: Experiment I RTS Transmits By Jammer Level
121
Figure 7.3: Experiment I RTS Transmits By Jammer Level
Expansion Messages Sent RTS Sent RTS Received
50 24 27 24
75 96 98 96
100 91 91 91
150 71 78 74
175 48 55 50
All 330 349 334
Table 7.5: Experiment I RTS Transmits By Expansion Level
122
Figure 7.4: Experiment I RTS Transmits By Expansion Level
123
Moving onto an analysis of the data frames, Figures 7.5 and 7.6 show the results
of all the data transmissions at each jammer level and expansion factor, respectively.
The di erence listed in Tables 7.6 and 7.7 and the gures, represents the di erence
between the number of data frames received and the number of messages sent. Be-
ginning with the breakdown by jammer level, we can see that from levels one through
three there is an extremely high di erence between the number of messages sent and
the number of data frames received, and only a minor di erence between the number
of data frames sent and received. This indicates a problem in data frames being
acknowledged at those levels. If we move to Figure 7.6 with the breakdown by ex-
pansion, we can see that expansion 75 is the main expansion used at those levels
and presents a problem getting ACK frames through. However, as we move up in
expansions this problem seems to to disappear, indicating that as we increase the
expansion the ACK frames have a smaller error rate.
124
Jammer Level Messages Sent Data Sent Data Received Di erence
0 30 32 32 2
1 30 43 42 12
2 30 43 42 12
3 30 43 43 13
4 30 32 32 2
5 30 38 35 5
6 30 32 32 2
7 30 34 31 1
8 30 31 30 0
9 30 33 33 3
10 30 38 33 3
All 330 399 385 55
Table 7.6: Experiment I Data Transmits By Jammer Level
Expansion Messages Sent Data Sent Data Received Di erence
50 24 26 26 2
75 96 136 134 38
100 91 103 99 8
150 71 76 73 2
175 48 58 53 5
All 330 399 385 55
Table 7.7: Experiment I Data Transmits By Expansion Level
125
Figure 7.5: Experiment I Data Transmits By Jammer Level
Figure 7.6: Experiment I Data Transmits By Expansion Level
126
Finally, we conclude by looking at the overall message failure rate broke down
by jammer level and expansion factor in Tables 7.8 and 7.9. The tables display the
number of false negatives (FN) and false positives (FP) at each jammer level and ex-
pansion. Recall the problems with ACK frames from the analysis of the data frames
indicates how these FNs can come about. The FN for expansion 75 is at three with
only one other FN occurring at the highest jammer level. The FN at the highest
jammer level is not surprising since it is approaching the limit of what expansion 175
is able to tolerate. However, the most important statistic is that on no level was there
a FP or a failure to actually deliver the data message.
Jammer Level Messages Sent False Negatives False Positives
0 30 0 0
1 30 2 0
2 30 1 0
3 30 0 0
4 30 0 0
5 30 0 0
6 30 0 0
7 30 0 0
8 30 0 0
9 30 0 0
10 30 1 0
All 330 4 0
Table 7.8: Experiment I Message Errors By Jammer Level
127
Expansion Messages Sent False Negatives False Positives
50 24 0 0
75 96 3 0
100 91 0 0
150 71 0 0
175 48 1 0
All 330 4 0
Table 7.9: Experiment I Message Errors By Expansion Level
This experiment demonstrated the initial capability of the BBC-MAC protocol
and its capacity to adjust to the level of noise in the channel. The analysis of the data
collected clearly shows that by adjusting the jam-resistance level we can either gain a
bene t in throughput or a bene t in the ability to cope with greater jamming levels at
the cost of throughput. However, the analysis of the data frames indicated that there
was a serious problem at the lower jam-resistance levels in being able to return ACK
frames successfully. The next section aims to address this problem by modifying the
way the protocol implements the RTS-CTS-DATA-ACK frame exchange sequence.
7.3.2 Re ned Protocol Implementation Experiment
After the initial protocol implementation experiment was conducted, the results
show that there was a problem on the lower jam-resistance con gurations in getting
the ACK frames back to the sender. The analysis showed that there was a relatively
small separation between the number of data frames sent and the number received,
indicating the weakness in the protocols implementation of the RTS-CTS-DATA-
ACK frame exchange. Upon further analysis, this was result of the ACK frames
128
being so small in size, that on the lower resistance levels the smallest amount of noise
would corrupt the frame easily. This can then result in much higher data frame re-
transmission rates, and as seen, higher levels of false negatives. The simple solution
then becomes to always encode the ACK frames at a high jam-resistance level. This
 nal experiment makes only this modi cation to the protocol and will encode the
ACK frames at the same expansion as the RTS and CTS frames. The exchange of
frames now follows this series:
1. The sender encodes a RTS frame with an expansion of 500 and transmits.
2. The recipient will respond with a CTS frame encoded with an expansion of 500.
3. The two nodes should now be in agreement about which con guration to use
for subsequent messages.
4. The sender now encodes the data frame using the agreed expansion and trans-
mits. Once the transmission is complete the transmitter adjusts its codec ex-
pansion to be listening on expansion 500. If a timeout occurs, it will adjust its
con guration back to the agreed upon level and re-transmit the data frame.
5. The recipient will reply with an ACK frame encoded at expansion 500. Once the
transmission is complete, it will adjust its codec expansion back to the previous
expansion used for the data frames. This is in case the sender still didn?t receive
the ACK and re-transmits the data frame.
129
The goal of this modi cation is to reduce the number of unnecessary re-transmits
of the data frames, and increase the channel e ciency by eliminating the need to own
it for so long. This should also further reduce the number of false negatives seen at
the lower expansions. However, this will also increase the channel latency since it
will take longer to transmit the ACK frame encoded at the higher expansion. The
experiment is then conducted in the same manner as the one in Section 7.3.1. Thirty
messages sent at each jammer level, using the pulse jammer that is always running
whenever a transmission is occurring.
Beginning again by looking at the latencies in Figures 7.7 and 7.8, we see the
same increase in latency from the lowest expansion up to the highest. This is not a
siginifcant change in the optimal latency, as expected, since the modi cation doesn?t
a ect the time it takes to get a RTS-CTS-DATA through in optimal conditions.
However, we are also seeing an increase in the channel latency. It was expected to
increase, but it increased signi cantly more than what we see in Figures 7.1 and 7.1.
This larger-than-expected jump is due to a higher rate of RTS re-transmissions than
what we saw in the prior experiment. However, we again see that each expansion
gives us the bene t of either increased throughput or increased jam-resitance.
130
JammerLevel ChannelLatency(s) NominalLatency(s) OptimalLatency(s)
0 58.8 48.1 43.4
1 63.2 49.2 46.3
2 69.0 56.7 47.9
3 69.7 57.5 47.8
4 71.6 57.7 51.3
5 77.3 66.4 50.7
6 78.2 68.1 54.5
7 79.8 64.6 56.4
8 84.5 71.2 57.5
9 78.5 68.0 59.4
10 86.6 74.0 60.9
Table 7.10: Experiment II Latency By Jammer Level
Expansion ChannelLatency(s) NominalLatency(s) OptimalLatency(s)
50 58.8 48.1 43,4
75 67.2 54.3 47.2
100 72.8 60.9 51.2
150 79.3 66.3 56.4
175 86.1 74.0 60.1
Table 7.11: Experiment II Latency By Expansion Level
Figure 7.7: Experiment II Latency By Jammer Level
131
Figure 7.8: Experiment II Latency By Expansion Level
132
Figures 7.9 and 7.10 show the RTS transmit rates for this experiment. As noted,
we see a slightly higher transmission rate of RTS frames. Some of this can be at-
tributed to the larger number of expansion adjustments that took place. This is
evidenced by the fact that the number of frames received is steadily increasing over
the number of frames sent, but there are several levels that display higher RTS er-
ror rates. Reviewing the logs of the trials indicated that an unusually large number
of RTS transmissions began while the receiver was in an unprepared state, or the
receiver had to stop receiving due to sample limitations in the middle of an RTS
transmission. However, the protocol never failed at the RTS-CTS handshake, and
resolved the problems with re-transmissions.
Jammer Level Messages Sent RTS Sent RTS Received
0 30 30 30
1 30 31 31
2 30 34 31
3 30 37 33
4 30 34 33
5 30 40 35
6 30 40 36
7 30 36 35
8 30 37 36
9 30 34 34
10 30 32 32
All 330 385 366
Table 7.12: Experiment II RTS Transmits By Jammer Level
133
Figure 7.9: Experiment II RTS Transmits By Jammer Level
Expansion Messages Sent RTS Sent RTS Received
50 30 30 30
75 86 97 90
100 71 86 80
150 74 92 87
175 69 80 79
All 330 385 366
Table 7.13: Experiment II RTS Transmits By Expansion Level
134
Figure 7.10: Experiment II RTS Transmits By Expansion Level
135
We now move onto the analysis of the data frame re-transmit rates. Figures 7.11
7.12 show the results of this experiment. The graphs clearly show that the modi-
 cation resolved the problem of unnecessary re-transmissions of data frames. The
di erence seen from the previous experiment is included on the graphs, and there is
a large margin between the two di erences. This indicates that we have successfully
reduced the number of data transmissions that went unacknowledged and the num-
bers can be seen in Tables 7.14 and 7.15.
Jammer Level Messages Sent Data Sent Data Received Di erence
0 30 34 31 1
1 30 34 33 3
2 30 33 31 1
3 30 31 31 1
4 30 32 31 1
5 30 31 30 0
6 30 30 30 0
7 30 32 32 2
8 30 34 31 1
9 30 32 30 0
10 30 41 31 1
All 330 364 341 11
Table 7.14: Experiment II Data Transmits By Jammer Level
136
Figure 7.11: Experiment II Data Transmits By Jammer Level
Expansion Messages Sent Data Sent Data Received Di erence
50 30 34 31 1
75 86 94 91 5
100 71 74 72 1
150 74 77 76 2
175 69 85 71 2
All 330 364 341 11
Table 7.15: Experiment II Data Transmits By Expansion Level
137
Figure 7.12: Experiment II Data Transmits By Expansion Level
138
Finally, we conclude by analyzing the message failure rates of this experiment.
Tables 7.16 and 7.17 show that on only level ten jamming did we see false negatives,
and at no point was there a false positive, or a failure to deliver the data. The seem-
ingly static number of false negatives at jammer level ten appears to be an indication
that expansion 175 is just barely capable of handling the amount of interference in-
duced by that jammer level. However, the number of false positives at the lower
jamming levels have been successfully eliminated by the modi cation made for this
experiment.
Jammer Level Messages Sent False Negatives False Positives
0 30 0 0
1 30 0 0
2 30 0 0
3 30 0 0
4 30 0 0
5 30 0 0
6 30 0 0
7 30 0 0
8 30 0 0
9 30 0 0
10 30 2 0
All 330 2 0
Table 7.16: Experiment II Message Errors By Jammer Level
139
Expansion Messages Sent False Negatives False Positives
50 30 0 0
75 86 0 0
100 71 0 0
150 74 0 0
175 69 2 0
All 330 2 0
Table 7.17: Experiment II Message Errors By Expansion Level
This experiment focused on addressing the issue in data frame acknowledgments
that we exposed in the rst experiment in Section 7.3.1. The analysis of this ex-
periment shows that with the modi cation of encoding the ACK frames at the same
expansion level as the RTS and CTS frames, we are able to reduce the number of
unnecessary re-transmissions of data frames at the lower expansion levels, and further
reduce the number of false negatives.
7.4 Adaptive vs Non-Adaptive
To wrap up the discussion on the BBC-MAC protocol I would like to show how
the protocol performs when we remove the adaptive portion. Removing the adaptive
portion would then eliminate the RTS-CTS exchange, and instead no matter the level
of noise the highest expansion of 175 would be used for the DATA frame, and then
the expansion 500 on the ACK. Under perfect situations, the RTS/CTS/ACK frames
encoded at 500 take 12 seconds to transmit. Table 7.18 then shows the Round Trip
Time (RTT) for a single DATA-ACK exchange for the non-adaptive, and then the
adaptive protocol at their respective expansion levels.
140
Con guration 50 75 100 150 175 Non-Adaptive
RTT (s) 42 45 48 54 57 32
Table 7.18: Adaptive vs Non-Adaptive
The table highlights an issue where even at our lowest jam-resistance level, we
are not transmitting faster than the non-adaptive protocol. The problem is in the
encoding of the RTS/CTS/ACK frames. Since these are encoded at such a high ex-
pansion, they require a lot of time to transmit, and thus there is a signi cant penalty
in simply transmitting only one DATA-ACK exchange post the RTS-CTS exchange.
In order to resolve this problem, we need to lower the penalty incurred by using the
RTS-CTS exchange to setup both nodes. I propose that instead of encoding the RT-
S/CTS/ACK frames at expansion 500, we lower this to only be as high as the highest
expansion used of 175. The frames will now only require ve seconds to transmit,
and again assuming perfect conditions, Table 7.19 shows how this modi cation a ects
the time needed to complete a transmission with a single DATA-ACK exchange. The
modi cation will also reduce the time needed for the non-adaptive protocol since the
ACK frame is no longer encoded at 500.
Con guration 50 75 100 150 175 Non-Adaptive
RTT (s) 21 24 27 33 36 26
Table 7.19: Adaptive vs Non-Adaptive with Modi cation
With this modi cation we now have signi cantly reduced overhead in a single
DATA-ACK exchange. However, several of the adaptive con gurations still take
141
longer than the non-adaptive protocol for a single DATA-ACK exchange. Most MAC
protocols support fragmentation, and thus support multiple DATA-ACK exchanges.
802.11 supports multiple of these exchanges after a single RTS-CTS handshake, as
long as the individual fragments do not exceed the length speci ed by the station, and
can support up to 16 of the DATA-ACK exchanges for a single RTS-CTS handshake
[IEEE 2007]. If we now look at how the adaptive protocol performs against the non-
adptive protocol when we allow up to 16 exchanges to occur we arrive at Figure 7.13.
Referring to Figure 7.13, the adaptive protocol shows faster round trip transmission
times than the non-adaptive protocol in all but the highest expansion level case. As
expected, the adaptive 175 never splits because it always has the overhead of the
RTS/CTS handshake. However, this handshake is what allows the lower expansions
to be used when necessary.
Figure 7.13: Adaptive vs Non-Adaptive by DATA-ACK Exchanges
142
A nal thought on the non-adaptive versus adaptive is how well would it perform
when an adversary is jamming for some period of time, and then stops jamming. For
example, if we were to transmit 100 messages, and the adversary would jam a certain
percentage of those, at what point does the non-adaptive protocol start to outperform
the adaptive protocol. Assuming that the jammer is either running at full capacity
for that percentage or not at all, the adaptive protocol is either using expansion 175
or expansion 50 for those respective scenarios. Figure 7.14 shows at what percentage
the adaptive protocol converges with the non-adaptive protocol with respect to the
number of DATA-ACK exchanges that occur after the initial RTS-CTS handshake.
Figure 7.14: Adaptive vs Non-Adaptive Convergence
As expected, the percentage of jamming that the adaptive protocol tolerates over
the non-adaptive increases with the respect to the number of DATA-ACK exchanges.
143
The adaptive protocol demonstrates its superiority over the non-adaptive protocol
as there are more of these exchanges, and this because the penalty incurred by the
RTS-CTS handshake is minimal compared to the number of DATA-ACK exchanges.
However, even if there was a single DATA-ACK exchange, the adaptive protocol will
still outperform the non-adaptive protocol 33% of the time. Given that we can never
gauge how much of the time an adversary will jam, or how much data will need to
be framed from the upper layer, we can see that the adaptive protocol will provide a
bene t in either situation.
The nal aspect of this modi cation that needs to be validated is the RTS frame
encoded at expansion 175?s ability to resist at least the same amount of jamming
levels that that the highest expansion was able to with the data frames. To test this
I ran the same resilience test that was run in Section 6.3.2. The RTS frame was
encoded at expansion 175 and I transmitted the frame 30 times at each jammer level
until there were two levels where zero frames were successfully received. Figure 7.15
shows the results of this trial. The graph shows that the modi cation allows the
RTS frame to be successfully received through level 13 jamming. Recall from Section
6.3.2, that the data frame encoded at expansion 175 was also successful at completing
transmissions through level 13 jamming.
144
Figure 7.15: Pulse Jammer with RTS Frame at Expansion 175
The modi cation made to the protocol improves the performance by reducing
the time needed to complete the RTS-CTS-DATA-ACK exchange of frames between
the sender and the receiver. The modi cation does not alter the e ectiveness of
the protocol in adapting to the level noise, and only improves the time required to
complete a transmission at all the the resistance levels. The results of the modi ca-
tion demonstrates the adaptive BBC-MAC protocols superiority to the non-adaptive
protocol that would be using the highest expansion level at all times.
7.5 Chapter Conclusion
This chapter presented the nal phase of experiments for the BBC-MAC proto-
col. The experiments in this chapter veri ed the capability of the protocol to adapt to
the level of noise by controlling the con guration of the BBC encoder and decoder at
145
the physical layer. The rst experiment implemented the information obtained from
the rst phase in Chapter 6. After analyzing the results, it was shown that there was
an issue in the frame exchange where at lower jam-resistance levels the ACK frame
was easily being corrupted. In the second experiment, I proposed a solution where
the ACK frames are always encoded at the same jam-resistance level as the RTS and
CTS frames. With this one modi cation I was able to improve the e ciency of the
protocol by signi cantly reducing the number of unnecessary data frame transmits
due to a missed acknowledgment. The second experiment further solidi ed the pro-
tocol?s ability to cope with a sundry of jamming levels by only using the necessary
jam-resistance as indicated by the RSSI value. A nal discussion of how the pro-
tocol performs against a non-adaptive version was given. The analysis showed that
the implementation after the second set of experiments was not able to outperform
a non-adaptive protocol. A modi cation to the protocol was presented where the
RTS/CTS/ACK frames would be encoded at the highest expansion available for the
DATA frames. The analysis of this modi cation demonstrated that it was now able
to outperform the non-adaptive protocol, and the performance gap increased with
respect to the number of DATA-ACK exchanges that occur for each RTS-CTS hand-
shake. By controlling the codec con guration used at the physical layer, BBC-MAC
is able to provide higher throughput in exchange for lower jam-resistance and vice
versa, e ectively adapting to channel needs.
146
Chapter 8
Key Contributions
 Designed a Medium Access Control (MAC) layer for wireless nodes that can
adapt to the level of noise detected in the channel.
 Implemented a working prototype of a protocol stack for adaptive jam-resistance
communications on software de ned radios (SDRs) including the physical layer
and a data link layer based on the design presented in the dissertation.
 Demonstrated how the BBC algorithm could be modi ed and controlled to
provide di erent jam-resistance levels.
 Demonstrated that by altering the con guration options on the BBC algorithm,
speci c levels of jam-resistance can be achieved that provide greater throughput
or greater jam-resistance.
 Proved that by combining the BBC algorithm with the BBC-MAC implemen-
tation, an adaptive protocol can be created that proactively determines the
proper con gurations to use based on channel needs.
 Improved upon the initial design of the BBC-MAC implementation by altering
the frame exchange sequence.
 Performed a literature review on wireless communications and technologies, the
BBC algorithm, and the MAC layer and its supporting facilities.
147
Chapter 9
Conclusion
This dissertation presents the relevant technologies and literature for wireless
communications, and presents a novel approach to providing jam-resistance at the
MAC layer. The current state of MAC layer research has not used the approach to
solving noise in the channel that has been presented in this dissertation. Noise on
the channel can be induced by many factors including environmental interference,
unintentional jamming from other nodes, or intentional jamming. Current protocols
attempt to solve the problems induced by unintentional jamming by relying on control
frames, multiple channels, or mathematical probabilities. Only one MAC protocol has
been presented that is directly concerned with adversarial wireless jamming [Awer-
buch, Richa and Scheideler 2008]. However, the protocol attempts predict the time
steps that jamming is not occurring, and has no mechanism to allow communications
to occur while jamming is taking place. The protocol presented in this dissertation
allows communications to continue in the presence of a jamming attack. Corruption
of transmissions due to jamming is overcome by leveraging a recent coding algorithm
for error-correction. Furthermore, the protocol dynamically adjusts the coding prop-
erties of the algorithm to change the level of jam-resistance with respect to the level
of noise detected in the channel. By leveraging the BBC message encoding, this re-
search provides a MAC layer which is resistant to jamming unlike any other MAC
layer protocol currently in existence.
148
Future work with this protocol stack should be directed at using a new modula-
tion scheme for the physical transmission of the encoded data. While the modulation
scheme used in the prototype served the purposes of demonstrating the technical fea-
sibility of the protocol, it also takes a signi cant amount of time to transmit. By
combining this research with a mature modulation scheme, the latency of the pro-
tocol would be signi cantly improved. The ultimate test of latency is how well does
the protocol support voice communications. Future work should be directed at im-
proving the latency not only through testing di erent modulation schemes, but also
by optimizing the BBC decoder. If the decoder could be optimized to not only have
a tighter upper bound, but also to spend less time looking at invalid messages, the
latency of the communications could be signi cantly reduced.
This research e ort created a bi-layer protocol stack for wireless mobile nodes.
A physical layer was implemented based on previous work that handles the coding
and modulation of data for transmission, and the necessary components to interact
with physical hardware. A MAC layer was then created that would control all ac-
tivities at the physical layer. The layer proactively adjusts the coding con guration
used at the physical layer to provide an adaptive jam-resistant protocol stack. By
adapting to channel needs, BBC-MAC is able to provide only the necessary amount of
jam-resistance in order to provide better throughput when possible, and greater jam-
resistance when necessary. Uncommon to MAC layers in literature, this dissertation
presents a prototype that has been implemented and validated on physical hardware
149
instead of through a computer simulation. The results of the various phases of exper-
imentation demonstrate the ability of the layer to react to channel conditions. Based
on the experiments in this dissertation it was shown that the protocol is capable of
adapting to the level of jamming. The dissertation contributed to the eld of wireless
communications by creating an adaptive single-hop MAC layer for noisy channels.
150
Bibliography
Abramson, N. [1970], THE ALOHA SYSTEM{Another alternative for computer
communications, in ?Proceeding of the Fall Joint Computer Conference?, Vol. 37,
pp. 281{285.
Agrawal, D. and Zeng, Q. [2006], Introduction to Wireless and Mobile Systems, Nel-
son, chapter 3,6,7, pp. 57{78, 125{168.
Awerbuch, B., Richa, A. and Scheideler, C. [2008], A Jamming-Resistant MAC Pro-
tocol for Single-Hop Wireless Networks, in ?PODC ?08: Proceedings of the twenty-
seventh ACM symposium on Principles of distributed computing?, ACM, New York,
NY, USA, pp. 45{54.
Bahn, W. [March 2009], ?BBC Real-time Engine?.
URL: http://www.williambahn.com/bbc/software/real time engine/index.htm
Baird, L. C., Bahn, W. L., Collins, M. D., Carlisle, M. C. and Butler, S. C. [2007],
Keyless Jam Resistance, in ?Proc. IEEE SMC Information Assurance and Security
Workshop IAW ?07?, pp. 143{150.
Baldwin, R. O., Nathaniel J. Davis, I. and Midki , S. F. [1999], ?A Real-time Medium
Access Control Protocol for Ad Hoc Wireless Local Area Networks?, SIGMOBILE
Mob. Comput. Commun. Rev. 3(2), 20{27.
151
Bayraktaroglu, E., King, C., Liu, X., Noubir, G., Rajaraman, R. and Thapa, B.
[2008], On the Performance of IEEE 802.11 under Jamming, in ?Proc. INFOCOM
2008. The 27th Conference on Computer Communications. IEEE?, pp. 1265{1273.
Bharghavan, V., Demers, A., Shenker, S. and Zhang, L. [1994], MACAW: A Media
Access Protocol for Wireless LAN?s, in ?SIGCOMM ?94: Proceedings of the con-
ference on Communications architectures, protocols and applications?, ACM, New
York, NY, USA, pp. 212{225.
Chiang, J. T. and Hu, Y.-C. [2007], Cross-Layer Jamming Detection and Mitigation
in Wireless Broadcast Networks, in ?MobiCom ?07: Proceedings of the 13th annual
ACM international conference on Mobile computing and networking?, ACM, New
York, NY, USA, pp. 346{349.
Chirdchoo, N., Soh, W.-S. and Chua, K. C. [2008], MACA-MN: A MACA-Based
MAC Protocol for Underwater Acoustic Networks with Packet Train for Multiple
Neighbors, in ?Proc. IEEE Vehicular Technology Conference VTC Spring 2008?,
pp. 46{50.
Coupechoux, M., Baynat, B., Bonnet, C. and Kumar, V. [2005], ?CROMA { An
Enhanced Slotted MAC Protocol for MANETs?, Mob. Netw. Appl. 10(1-2), 183{
197.
Ephremides, A., Wieselthier, J. and Baker, D. [1987], ?A Design Concept for Reliable
Mobile Radio Networks with Frequency Hopping Signaling?, Proceedings of the
152
IEEE 75(1), 56{73.
Fang, Z., Bensaou, B. and Yuan, J. [2004], Collision-Free MAC Scheduling Algo-
rithms For Wireless Ad Hoc Networks, in ?Proc. IEEE Global Telecommunications
Conference GLOBECOM ?04?, Vol. 5, pp. 2770{2774.
Forouzan, B. [2007], Data Communications and Networking, fourth, international
edition edn, McGraw-Hill, 1221 Avenue, New York, NY, 10020, chapter 6, 11-14,
pp. 161{190, 307{444.
Garcia-Luna-Aceves, J. J. and Fullmer, C. L. [1999], ?Floor acquisition multiple access
(FAMA) in single-channel wireless networks?, Mob. Netw. Appl. 4(3), 157{174.
Garcia-Luna-Aceves, J. J. and Raju, J. [1997], Distributed Assignment of Codes for
Multihop Packet-Radio Networks, in ?Proc. MILCOM 97?, Vol. 1, pp. 450{454.
Gerla, M. and Tzu-Chieh Tsai, J. [1995], ?Multicluster, Mobile, Multimedia Radio
Network?, Wireless Networks 1(3), 255{265.
URL: http://dx.doi.org/10.1007/BF01200845
Haas, Z. and Deng, J. [2002], ?Dual Busy Tone Multiple Access (DBTMA)-A Multiple
Access Control Scheme for Ad Hoc Networks?, Communications, IEEE Transac-
tions on 50(6), 975{985.
Hui, J. [1984], ?Throughput Analysis for Code Division Multiple Accessing of
the Spread Spectrum Channel?, Vehicular Technology, IEEE Transactions on
33(3), 98{102.
153
IEEE [2007], ?IEEE Standard For Information Technology-Telecommunications And
Information Exchange Between Systems-Local And Metropolitan Area Networks-
Speci c Requirements - Part 11: Wireless LAN Medium Access Control (MAC)
And Physical Layer (PHY) Speci cations?, IEEE Std 802.11-2007 (Revision of
IEEE Std 802.11-1999) pp. C1{1184.
Jain, N., Das, S. R. and Nasipuri, A. [2001], A Multichannel CSMA MAC Pro-
tocol with Receiver-Based Channel Selection for Multihop Wireless Networks, in
?Proc. Tenth International Conference on Computer Communications and Net-
works?, pp. 432{439.
Joa-Ng, M. and Lu, I.-T. [1999], Spread Spectrum Medium Access Protocol with
Collision Avoidance in Mobile Ad-hoc Wireless Network, in ?Proc. IEEE Eighteenth
Annual Joint Conference of the IEEE Computer and Communications Societies
INFOCOM ?99?, Vol. 2, pp. 776{783.
Jubin, J. and Tornow, J. [1987], ?The DARPA Packet Radio Network Protocols?,
Proceedings of the IEEE 75(1), 21{32.
Kanzaki, A., Hara, T. and Nishio, S. [2007], An E cient TDMA Slot Assignment
Protocol in Mobile Ad Hoc Networks, in ?SAC ?07: Proceedings of the 2007 ACM
symposium on Applied computing?, ACM, New York, NY, USA, pp. 891{895.
Karn, P. [1990], MACA - A New Channel Access Method for Packet Radio, in ?Com-
puter Networking Conference?, Vol. 9, pp. 134{140.
154
Kloul, L. and Valois, F. [2005], Investigating Unfairness Scenarios in MANET using
802.11b, in ?PE-WASUN ?05: Proceedings of the 2nd ACM international workshop
on Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks?,
ACM, New York, NY, USA, pp. 1{8.
Kumar, S., Raghavan, V. S. and Deng, J. [2006], ?Medium Access Control protocols
for ad hoc wireless networks: A survey?, Ad Hoc Networks 4(3), 326 { 358.
URL: http://www.sciencedirect.com/science/article/B7576-4DPGSVH-
1/2/58c0f2f528f8d27ecd834b2e92c21515
Lau, T. H. and Chan, K. S. [2006], aMAC: Advanced MAC Scheme for Mobile Ad-
hoc Networks, in ?Proc. Asia-Paci c Conference on Communications APCC ?06?,
pp. 1{5.
Law, Y. W., van Hoesel, L., Doumen, J., Hartel, P. and Havinga, P. [2005], Energy-
E cient Link-Layer Jamming Attacks against Wireless Sensor Network MAC Pro-
tocols, in ?SASN ?05: Proceedings of the 3rd ACM workshop on Security of ad hoc
and sensor networks?, ACM, New York, NY, USA, pp. 76{88.
Lee, S. W. and Cho, D. H. [1995], Distributed Reservation CDMA for Wireless LAN,
in ?Proc. IEEE Global Telecommunications Conference GLOBECOM ?95?, Vol. 1,
pp. 360{364.
Li, M., Koutsopoulos, I. and Poovendran, R. [2007], Optimal Jamming Attacks
and Network Defense Policies in Wireless Sensor Networks, in ?Proc. INFOCOM
155
2007. 26th IEEE International Conference on Computer Communications. IEEE?,
pp. 1307{1315.
Li, Z., Gupta, A. K. and Nandi, S. [n.d.], ?FMAC/CSR: A Fair MAC Protocol for
Wireless Ad-hoc Networks?.
URL: http://www.cs.jhu.edu/ z i/fmac-csr.pdf
Li, Z., Nandi, S. and Gupta, A. K. [2006], ?Modeling the Short-term Unfairness of
IEEE 802.11 in Presence of Hidden Terminals?, Perform. Eval. 63(4), 441{462.
Liu, X., Noubir, G., Sundaram, R. and Tan, S. [2007], SPREAD: Foiling Smart Jam-
mers Using Multi-Layer Agility, in ?Proc. INFOCOM 2007. 26th IEEE International
Conference on Computer Communications. IEEE?, pp. 2536{2540.
Muqattash, A. and Krunz, M. [2003], CDMA-Based MAC Protocol for Wireless Ad
Hoc Networks, in ?MobiHoc ?03: Proceedings of the 4th ACM international sym-
posium on Mobile ad hoc networking & computing?, ACM, New York, NY, USA,
pp. 153{164.
Nasipuri, A. and Das, S. R. [2000], Multichannel CSMA with Signal Power-Based
Channel Selection for Multihop Wireless Networks, in ?Proc. 52nd Vehicular Tech-
nology Conference IEEE VTS-Fall VTC 2000?, Vol. 1, pp. 211{218.
Nasipuri, A., Zhuang, J. and Das, S. R. [1999], A Multichannel CSMA MAC Protocol
for Multihop Wireless Networks, in ?Proc. WCNC Wireless Communications and
Networking Conference 1999 IEEE?, pp. 1402{1406.
156
Navda, V., Bohra, A., Ganguly, S. and Rubenstein, D. [2007], Using Channel Hopping
to Increase 802.11 Resilience to Jamming Attacks, in ?Proc. INFOCOM 2007. 26th
IEEE International Conference on Computer Communications. IEEE?, pp. 2526{
2530.
Pursley, M. [1987], ?The Role of Spread Spectrum in Packet Radio Networks?, Pro-
ceedings of the IEEE 75(1), 116{134.
Raza ndralambo, T. and Valois, F. [2006], Performance Evaluation of Backo Algo-
rithms in 802.11 Ad-Hoc Networks, in ?PE-WASUN ?06: Proceedings of the 3rd
ACM international workshop on Performance evaluation of wireless ad hoc, sensor
and ubiquitous networks?, ACM, New York, NY, USA, pp. 82{89.
So, J. and Vaidya, N. [2003], ?A Multi-Channel MAC Protocol for Ad Hoc Wireless
Networks?.
URL: citeseer.ist.psu.edu/so03multichannel.html
Song, N.-O., Kwak, B.-J., Song, J. and Miller, M. [2003], ?Enhancement of IEEE
802.11 Distributed Coordination Function with Exponential Increase Exponential
Decrease Backo Algorithm?, Vehicular Technology Conference, 2003. VTC 2003-
Spring. The 57th IEEE Semiannual 4, 2775{2778 vol.4.
Sousa, E. and Silvester, J. [1988], ?Spreading Code Protocols for Distributed
Spread-Spectrum Packet Radio Networks?, Communications, IEEE Transactions
on 36(3), 272{281.
157
Talucci, F. and Gerla, M. [1997], MACA-BI (MACA by invitation): A Wireless
MAC Protocol for High Speed Ad Hoc Networking, in ?IEEE 6th International
Conference on Universal Personal Communications Record Conference Record?,
Vol. 2, pp. 913{917.
Tang, Z. and Garcia-Luna-Aceves, J. J. [1998], Hop Reservation Multiple Access
(HRMA) for Multichannel Packet Radio Networks, in ?Proc. 7th International Con-
ference on Computer Communications and Networks?, pp. 388{395.
Tobagi, F. and Kleinrock, L. [1976], ?Packet Switching in Radio Channels: Part
III{Polling and (Dynamic) Split-Channel Reservation Multiple Access?, Communi-
cations, IEEE Transactions on 24(8), 832{845.
Tseng, Y.-C., Wu, S.-L., Lin, C.-Y. and Sheu, J.-P. [2001], A Multi-Channel MAC
Protocol with Power Control for Multi-Hop Mobile Ad Hoc Networks, in ?Proc.
International Conference on Distributed Computing Systems Workshop?, pp. 419{
424.
van Hoesel, L. F. W., Nieberg, T., Kip, H. J. and Havinga, P. J. M. [2004], Advantages
of a TDMA based, energy-e cient, self-organizing MAC protocol for WSNs, in
?Proc. VTC 2004-Spring Vehicular Technology Conference 2004 IEEE 59th?, Vol. 3,
pp. 1598{1602.
Wang, P. and Zhuang, W. [2008], A Collision-Free MAC Scheme for Multimedia Wire-
less Mesh Backbone, in ?Proc. IEEE International Conference on Communications
158
ICC ?08?, pp. 4708{4712.
Wang, X. and Xiang, W. [2006], ?An OFDM-TDMA/SA MAC Protocol with QoS
Constraints for Broadband Wireless LANs?, Wireless Networks 12(2), 159{170.
URL: http://dx.doi.org/10.1007/s11276-005-5263-1
Wong, C. Y., Cheng, R., Lataief, K. and Murch, R. [1999], ?Multiuser OFDM with
adaptive subcarrier, bit, and power allocation?, Selected Areas in Communications,
IEEE Journal on 17(10), 1747{1758.
Wu, C. and Li, V. [1988], Receiver-Initiated Busy-Tone Multiple Access in Packet Ra-
dio Networks, in ?SIGCOMM ?87: Proceedings of the ACM workshop on Frontiers
in computer communications technology?, ACM, New York, NY, USA, pp. 336{342.
Wu, S.-L., Lin, C.-Y., Tseng, Y.-C. and Sheu, J.-L. [2000], A New Multi-Channel
MAC Protocol with On-Demand Channel Assignment for Multi-Hop Mobile Ad
Hoc Networks, in ?Proc. International Symposium on Parallel Architectures, Algo-
rithms and Networks I-SPAN 2000?, pp. 232{237.
Xu, W., Trappe, W., Zhang, Y. and Wood, T. [2005], The Feasibility of Launching
and Detecting Jamming Attacks in Wireless Networks, in ?MobiHoc ?05: Proceed-
ings of the 6th ACM international symposium on Mobile ad hoc networking and
computing?, ACM, New York, NY, USA, pp. 46{57.
Yang, Z. and Garcia-Luna-Aceves, J. J. [1999], Hop-Reservation Multiple Access
(HRMA) for Ad-Hoc Networks, in ?Proc. IEEE Eighteenth Annual Joint Conference
159
of the IEEE Computer and Communications Societies INFOCOM ?99?, Vol. 1,
pp. 194{201.
You, T., Yeh, C.-H. and Hassanein, H. [2003], CSMA/IC: A New Class of Collision-
Free MAC Protocols for Ad Hoc Wireless Networks, in ?Proc. Eighth IEEE Interna-
tional Symposium on Computers and Communication (ISCC 2003)?, pp. 843{848.
Zhai, H., Wang, J. and Fang, Y. [2006], ?DUCHA: A New Dual-Channel MAC Proto-
col for Multihop Ad Hoc Networks?, Wireless Communications, IEEE Transactions
on 5(11), 3224{3233.
Zhai, H., Wang, J., Fang, Y. and Wu, D. [2004], A Dual-Channel MAC Protocol for
Mobile Ad Hoc Networks, in ?Proc. IEEE Global Telecommunications Conference
Workshops GlobeCom Workshops 2004?, pp. 27{32.
160
Appendices
161
Appendix A
Source Code Listing
A.1 BBC-MAC Data Link Layer Code
A.1.1 Interface Class (interface.py)
1 ? ? ?
If you can find someone who can debug two million lines of code and interface
3 eight connection machines for what I bid for this job , I ?d love to see him try
? ? ?
5 import sys
import os
7 from stat import
import threading
9 from subprocess import
import Queue
11 import Receiver , Transmitter
import time , random
13 import ethernet frame
import bbc frame
15 from optparse import OptionParser
from gnuradio import gr , gru
17 from gnuradio import usrp
from gnuradio . eng option import eng option
19 from gnuradio import eng notation
from gnuradio . eng notation import num to str , str to num
21 from utilities import
import bbc config
23
class interface (threading . Thread) :
25 def init (self , usb , usrp side , path , address , verbose , chat , dynamic , experiment mode) :
threading . Thread. init (self)
27 random. seed ()
self .name = "BBC MAC Interface"
29 self .mode = 1
self . dynamic = dynamic
31 self . experiment mode = experiment mode
self . running = True
33 self . config change = False
162
self . handlerQueue = Queue.Queue()
35 self . tx rx pid = 1
self . decoder pid = 1
37 self . rssi = 0
self . address = address
39 self . usb = usb
self . usrp side = usrp side
41 self . usrp path = path
self . verbose = verbose
43 self . chat mode = chat
self . handlers = []
45 self . interface handler = None
self . block transmit = time . time ()
47 self . jammer type = 0
self . jammer level = 0
49 self . rcv start = 0
self . default config = bbc config . bbc config (path)
51 if self . dynamic :
self . default config . SetResistance (4092 , 200)
53 self .nav = 0.0
self . transmitter = Transmitter . Transmitter(self . address , self)
55 self . receiver = Receiver . Receiver (self . address , self)
57 def ShutDown(self) :
self .mode = 1
59 self . running = False
try:
61 os . kill (self . tx rx pid , 9)
except:
63 pass
65 try:
os . kill (self . decoder pid , 9)
67 except:
pass
69
self . receiver .ShutDown()
71 for i in range(len (self . handlers)) :
try:
73 self . handlers [i]. Shutdown()
except:
75 pass
77 def run(self) :
self . receiver . start ()
163
79 self . transmitter . start ()
81 while self . running :
#This is our simple way of not doing anything until the nav expires
83 if self .nav > 0:
if self . verbose :
85 print "Deferring for" , self .nav ,"seconds ."
time . sleep (self .nav)
87 self .nav = 0.0
89 self . receive ()
91 if self . interface handler == None:
try:
93 self . interface handler = self . handlerQueue . get(True , 1)
if self . verbose :
95 print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name,
self . interface handler .name+" now owns the interface")
try:
97 if time . time () > self . block transmit or self . experiment mode == False :
frame = self . interface handler . send queue . get(True , 1)
99 self . transmit (frame , self . interface handler)
except Queue.Empty:
101 pass
except Queue.Empty:
103 pass
else :
105 try:
if time . time () > self . block transmit or self . experiment mode == False :
107 frame = self . interface handler . send queue . get(True , 1)
self . transmit (frame , self . interface handler)
109 except Queue.Empty:
pass
111
self .mode = 1
113
def transmit (self , frame , handler , tx time=0):
115 #dump payload to f i l e
frame . timestamp = time . time ()
117 f = open(self . usrp path + "/t" , "w")
f . write (frame . serialize ())
119 f . close ()
121 try:
os . kill (self . decoder pid , 9)
164
123 except:
pass
125
try:
127 os . kill (self . tx rx pid , 9)
except:
129 pass
131 ret code = call ([self . usrp path + "/usrp" , handler . config . tx ()] , stdout=PIPE, stderr=PIPE
)
if tx time == 0:
133 tx time = EstimateTransmitTime(len (frame . serialize ()) , handler . config)
135 try:
os . kill (ret code . pid , 9)
137 except:
pass
139
if frame . type == 4:
141 tx time =1.1
elif frame . type == 2: # or frame . type == 4:
143 tx time =1.5
145 #tx time = 12.0
#transmit
147 if self . verbose :
print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name, "Radio
transmitter started")
149
ret code = call ([self . usrp path + "/bbc tx .py" , " U" , self .usb , " T" , self . usrp side , " f"
, "1250M" , " i" , "256" , " S" , self . usrp path + "/r" , " L" , str (tx time) , " J" , str (
self . jammer type) , " jammer level" , str (self . jammer level)] , stdout=PIPE, stderr=
PIPE)
151
try:
153 os . kill (ret code . pid , 9)
except:
155 pass
if self . verbose :
157 print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name, "Transmitted
a frame")
print frame
159
#inform the handler that we sent the frame
161 handler . Callback(frame , tx time)
165
return
163 def SetJammerType(self , type) :
self . jammer type = type
165
def SetJammerLevel(self , level) :
167 self . jammer level = level
169 def receive (self) :
try:
171 os . remove(self . usrp path + "/t")
except OSError :
173 pass
while self . running and self .mode == 1 and self . CheckInterfaceQueue () == False :
175 try:
os . remove(self . usrp path + "/r")
177 except OSError :
pass
179
self . tx rx pid = Popen ([self . usrp path + "/ usrp rx cfile .py" , " U" , self .usb , " R" ,
self . usrp side , " f" , "1250M" , " d" , "128" , " N" , "16000000" , self . usrp path+"/r"
] , stdout=PIPE, stderr=PIPE) . pid
181 self . rcv start = time . time ()
if self . tx rx pid != 0 and self . tx rx pid != None:
183 if self . verbose :
print "%s %s : %s pid=%i" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .
name, "Radio receiver started" , self . tx rx pid)
185 else :
if self . verbose :
187 print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name, "
Unable to start radio receiver")
189
while self . CheckReceiveExit () :
191
data = None
193 if self . interface handler != None:
data = self . Decode(self . interface handler . config)
195 #? ? ?
if self . interface handler != None and data == None and self . interface handler .
stage==1 and self . CheckReceiveExit () :
197 #print "%s %s : %s" % (time . strftime("%H:%M:%S", time . gmtime()) , self .
name, "Decoder timeout on handler ?s expansion , testing default ")
data = self . Decode(self . default config , 5.5)
199 if data == 1: #Don? t necessarily want to trash the data because this
timed out
166
data = None
201 #? ? ?
else :
203 data = self . Decode(self . default config)
205 if data == 1:
print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name, "
Decoder preempted")
207 break
209 elif data != None:
try:
211 os . remove(self . usrp path + "/t")
except:
213 pass
self . rssi = GetRSSI(self . usrp path)
215 #pass the data off to a receive handler
frame = bbc frame . bbc frame(data)
217 if self . verbose :
print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name,
"Received a frame")
219 print frame
self . receiver .Enqueue(frame)
221 break
223 # Kill the Radio Receive
try:
225 os . kill (self . tx rx pid , 2)
if self . verbose :
227 print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name, "
Radio receiver stopped")
except:
229 if self . verbose :
print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name, "
Radio receiver stopped")
231 pass
233 def Decode(self , config , timeout=30.0) :
if self . config change :
235 self . config change = False
#print "%s %s : %s" % (time . strftime("%H:%M:%S", time . gmtime()) , self .name, "Decoder Start
")
237 self . decoder pid = Popen ([self . usrp path + "/usrp" , config . rx ()] , stdout=PIPE, stderr=
PIPE) . pid
time now = time . time ()
167
239 success = False
while time . time () time now < timeout and self . CheckDecodeExit() :
241
try:
243 pid , x = os . waitpid(self . decoder pid , os .WNOHANG)
if pid!=0:
245 success = True
break
247 except:
success = True
249 break
time . sleep (0.1)
251 #print "%s %s : %s" % (time . strftime("%H:%M:%S", time . gmtime()) , self .name, "Decoder Exit %
is " % (time . time () time now))
if success == False :
253 try:
os . kill (self . decoder pid , 9)
255 except:
pass
257 #return 1
259 try:
Check for f i l e existence , open stats f i l e anyways , no need for two steps
261 f = open(self . usrp path + "/t" , "r")
data = f . read ()
263 f . close ()
return data
265 except IOError :
if success == False :
267 return 1
else :
269 return None
271 def CheckReceiveExit(self) :
return self . CheckInterfaceQueue () == False and self .mode == 1 and CheckPID(self . tx rx pid)
and self . running and time . time () self . rcv start < 33
273
def InformConfigChange(self) :
275 self . config change = True
277 def CheckDecodeExit(self) :
return self . CheckInterfaceQueue () == False and self .mode == 1 and self . running and self .
config change == False
279
def CheckInterfaceQueue(self) :
168
281 if self . interface handler == None:
return self . handlerQueue .empty() == False
283 else :
return self . interface handler . send queue .empty() == False
285
def RelinquishInterfaceControl (self , handler , time left) :
287 self . block transmit = time left
self . interface handler = None
289
def UpdateNAV(self , timer) :
291 if self . interface handler == None: #Make sure someone doesn ? t already own the interface
before setting the NAV
self .nav = timer
293 self .mode = 0
295 def Enqueue(self , handler) :
if self . verbose :
297 print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name, handler .name
+" added to handler queue")
self . handlerQueue . put(handler)
299 #self .mode = 0
301 def LocateHandler(self , streamid) :
for i in range(len (self . handlers)) :
303 if self . handlers [i]. streamid == streamid :
return self . handlers [i]
305 return None
307 def LocateHandlerBySource(self , sstreamid) :
for i in range(len (self . handlers)) :
309 if self . handlers [i]. destination streamid == sstreamid :
return self . handlers [i]
311 return None
313 def GetNewStreamID(self) :
return random. randint (1 ,65535)
315
317 def main() :
319 parser = OptionParser (option class=eng option)
parser . add option (" X" , " txrx subdev spec" , type="string" , default="A" , dest="side" ,
321 help="select USRP TxRx side A or B")
parser . add option(" U" , " usb num" , type="string" , default=0,
323 help="select USRP USB location 0 or 1 (default=0)")
169
parser . add option(" A" , " node address" , type="int" , default=None, help="Address for this
node")
325 parser . add option(" P" , " usrp path" , type="string" , default=None, help="path to usrp folder
with scripts")
parser . add option(" C" , " chat mode" , action="store true")
327 parser . add option(" J" , " jammer type" , type="int" , default=0)
parser . add option (" jammer level" , type="eng float" , default=16e3 ,
329 help="set waveform amplitude to AMPLITUDE [default=%default]" , metavar="
AMPL")
parser . add option(" v" , " verbose" , action="store true" , dest="verbose" ,
331 help="print everything to stdout")
parser . add option(" dynamic" , action="store true" , default=False , help="Enable dynamic jam
resistance")
333 parser . add option(" experiment" , action="store true" , default=False , help="Used to leave
handlers running for as long as the channel was allocated")
335 (options , args) = parser . parse args ()
f = open(options . usrp path+"/ftp frame 1514 . fr")
337 data = f . read ()
f . close ()
339
i = interface (options .usb num , options . side , options . usrp path , options . node address , options .
verbose , options . chat mode , options .dynamic , options . experiment)
341 i . start ()
343 while True:
cmd = raw input ()
345 cmds = cmd. split (" ")
if cmd == "exit":
347 i .ShutDown()
raise SystemExit
349 elif cmds[0] == "send":
i . transmitter .Enqueue(data , 2222)
351 elif cmds[0] == "kick":
i . interface handler .Shutdown()
353 elif cmds[0] == "jam":
i .SetJammerType(int (cmds [1]))
355 i . SetJammerLevel(int (cmds [2]))
357 if name == " main ":
main()
A.1.2 Receiver Class (Receiver.py)
import threading
170
2 import Queue
import bbc frame
4 import RxHandler
import sys
6 import time
8 class Receiver (threading . Thread) :
def init (self , address , interface) :
10 threading .Thread . init (self)
self . handlers = [] # This should also include TxHandlers in order to properly give them
their CTS/ACK Frames
12 self . queue = Queue.Queue()
self . running = 1
14 self . address = address
self . interface = interface
16 self .name = "Receiver"
18 def run(self) :
while self . running :
20 try:
frame = self . queue . get(True ,1)
22 if frame . dstream id == 0:
#Check to see if this a duplicate and if the source streamid matches the
destination of a handler
24 handler = self . interface . LocateHandlerBySource(frame . sstream id)
if handler != None:
26 handler .Enqueue(frame)
else :
28 temp = RxHandler . RxHandler(frame , self . interface .GetNewStreamID() , self .
Callback , self . address , self . interface)
self . interface . handlers . append(temp)
30 temp. start ()
else :
32 handler = self . interface . LocateHandler(frame . dstream id)
if handler != None:
34 handler .Enqueue(frame)
else :
36 temp = RxHandler . RxHandler(frame , frame . dstream id , self . Callback , self .
address , self . interface)
self . interface . handlers . append(temp)
38 temp. start ()
except Queue.Empty:
40 pass
42 def Enqueue(self , frame) :
171
self . queue . put nowait(frame)
44
def ShutDown(self) :
46 self . running = 0
48
def Callback(self , obj , data=None) :
50 print obj . stats
if data!=None:
52 print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name, obj .name+"
delivered data from stream "+str (obj . streamid))
try:
54 if self . interface . interface handler == obj :
print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name, "removed
"+obj .name+" as interface handler")
56 self . interface . interface handler = None
self . interface . InformConfigChange ()
58 self . interface . handlers . remove(obj)
del obj
60 except:
print "Unexpected error :" , sys . exc info () [0]
62 pass
A.1.3 Receiver Handler Class (RxHandler.py)
import Queue
2 import bbc frame
import ethernet frame
4 import threading
import bbc config
6 from utilities import
from stats import
8 import time
10 class RxHandler(threading . Thread) :
def init (self , frame , streamid , callback , address , interface) :
12 threading .Thread . init (self)
self . streamid = streamid
14 self . callback = callback
self . recv queue = Queue.Queue()
16 self . send queue = Queue.Queue()
self . running = True
18 self . address = address
self . interface = interface
20 self . stats = RxStats ()
172
self . stage = 0
22 self .name = "RxHandler "+str (self . streamid)
self . rssi = None
24 self . data = None
self . config = bbc config . bbc config (self . interface . usrp path)
26 self . config .SOURCE ID = self . streamid
if self . interface . dynamic :
28 self . config . SetResistance (4092 , 175)
self . destination address = frame . src addr
30 self . destination streamid = frame . sstream id
self . flag = 0
32 self . last frame = None
self . t1 = 0
34 self . timeout = 0
self .Enqueue(frame)
36
def Enqueue(self , frame) :
38 if self . last frame == None:
self . last frame = frame
40 elif frame . timestamp <= self . last frame . timestamp :
if self . interface . verbose :
42 print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name, "Frame
discarded (old or duplicate)")
return
44 elif frame . corrupt :
if self . interface . verbose :
46 print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name, "Frame
discarded (corrupt)")
return
48 self . last frame = frame
self . recv queue . put nowait(frame)
50
def Shutdown(self) :
52 self . running = False
#self . callback (self , self . data)
54
def run(self) :
56 while self . running :
try:
58 frame = self . recv queue . get(True ,1)
if frame . type == 1:
60 #Received a RTS, Check to see if this was for us .
if frame . dest addr == self . address :
62 self . destination address = frame . src addr
self . destination streamid = frame . sstream id
173
64 data len = int (frame . payload)
66 self . rssi = self . interface . rssi
if frame . rssi > self . rssi :
68 self . rssi = frame . rssi
70 self . timeout = EstimateChannelTime(data len , self . config , self . config .
GetExpansionByRSSI(self . rssi))
72 if self . interface . dynamic :
self . config . SetResistance (4092 , 175)
74 new frame = bbc frame . bbc frame ((self . destination address , self . address ,
2, self . streamid , self . destination streamid , self . rssi , self . timeout))
#return a CTS with our current RSSI
76 diff = frame . timestamp + EstimateTransmitTime(len (frame . serialize ()) , self
. config) + 3 time . time ()
#while time . time () < frame . timestamp+EstimateTransmitTime(len (frame .
serialize ()) , self . config)+2:#14.0: #Hack so I ?m not transmitting
while they ? re s t i l l transmitting this frame
78 # continue
if diff > 0.0:
80 time . sleep (diff)
self . config .SOURCE ID = self . streamid
82 self . send queue . put nowait(new frame)
if self . flag == 0:
84 self . interface .Enqueue(self)
self . flag = 1
86 self . stats . rts count+=1
elif frame . type == 2:
88 #Received a CTS, Extract the time value and update the NAV timer
t = float (frame . payload)
90 self . interface .UpdateNAV(t)
self . running = False
92 elif frame . type == 3:
#Received Data
94 if frame . dest addr == self . address :
self . stage = 0
96 self . destination address = frame . src addr
self . destination streamid = frame . sstream id
98 new frame = bbc frame . bbc frame ((self . destination address , self . address ,
4, self . streamid , self . destination streamid , self . rssi , "ACK"))
#return a ACK
100 diff = frame . timestamp + EstimateTransmitTime(len (frame . serialize ()) , self
. config) + 3 time . time ()
174
#while time . time () < frame . timestamp+EstimateTransmitTime(len (frame .
serialize ()) , self . config)+3:#14.0: #Hack so I ?m not transmitting
while they ? re s t i l l transmitting this frame
102 # continue
if diff > 0.0:
104 time . sleep (diff)
self . config .SOURCE ID = self . streamid + 1
106 if self . interface . dynamic :
self . config . SetResistance (4092 , 175)
108 self . send queue . put nowait(new frame)
if self . flag == 0:
110 self . interface .Enqueue(self)
self . flag = 1
112 self . data = frame . payload
if self . stats . data count==0:
114 self . stats . data time = time . time ()
self . stats . data count+=1
116 elif frame . type == 4:
#Received an ACK
118 #this should have been given to a TxHandler , but one doesn ? t exist , so ignore
self . running = False
120 except Queue.Empty:
if self . t1 !=0:
122 if time . time () self . t1 > self . timeout :
self . running = False
124 pass
self . callback (self , self . data)
126
def Callback(self , frame , tx time) :
128
if frame . type == 2: #Sent out the CTS, now adjust our config and start the timer
130 if self . interface . dynamic :
self . config . SetResistance (self . rssi)
132 self . interface . InformConfigChange ()
#if self . t1 == 0:
134 if self . interface . verbose :
print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name, "
Reserved channel for "+str (self . timeout)+" seconds .")
136 self . t1 = time . time ()
self . stats . cts count+=1
138 self . stage = 1
elif frame . type == 4:
140 self . stats . ack count+=1
if self . interface . dynamic :
142 self . config . SetResistance (self . rssi)
175
self . interface . InformConfigChange ()
144
#if frame . type == 4:
146 # self . running = False
A.1.4 Transmitter Class (Transmitter.py)
import threading
2 import Queue
import bbc frame
4 import TxHandler
import time
6 import sys
8 class Transmitter(threading .Thread) :
def init (self , address , interface) :
10 threading .Thread . init (self)
self . address = address
12 self . interface = interface
self . queue = Queue.Queue()
14 self . running = True
self .name = "Transmitter"
16
def run(self) :
18 while self . running :
try:
20 payload , destination = self . queue . get(True ,1)
temp = TxHandler . TxHandler(self . interface .GetNewStreamID() , self . address , self .
Callback , payload , destination , self . interface)
22 self . interface . handlers .append(temp)
except Queue.Empty:
24 pass
26 def Enqueue(self , payload , destination) :
self . queue . put nowait ((payload , destination))
28
def Callback(self , obj , message=None, time left =0.0) :
30 print obj . stats
if message!=None:
32 print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name, obj .name+"
reports that stream "+str (obj . streamid)+" was a "+message)
try:
34 if self . interface . interface handler == obj :
print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name, "removed
"+obj .name+" as interface handler")
176
36 self . interface . RelinquishInterfaceControl (obj , time left)
#self . interface . interface handler = None
38 self . interface . InformConfigChange ()
40 self . interface . handlers . remove(obj)
del obj
42 except:
print "Unexpected error :" , sys . exc info () [0]
44 pass
A.1.5 Transmitter Handler Class (TxHandler.py)
import Queue
2 import bbc frame
import bbc config
4 import ethernet frame
import thread
6 import time
from utilities import
8 from stats import
10 class TxHandler :
def init (self , streamid , address , callback , data , destination , interface) :
12 self . address = address
self . destination address = destination
14 self . destination streamid = 0
self . streamid = streamid
16 self . callback = callback
self . recv queue = Queue.Queue()
18 self . send queue = Queue.Queue()
self . interface = interface
20 self . stats = TxStats(data)
self .name = "TxHandler "+str (self . streamid)
22 self . rssi = None
self . data = data
24 self . config = bbc config . bbc config (self . interface . usrp path)
self . config .SOURCE ID = self . streamid
26 if self . interface . dynamic :
self . config . SetResistance (4092 , 175)
28 self . running = True
rts frame = self .CreateRTS()
30 self . send queue . put nowait(rts frame) #Enqueue the initial frame out outbound queue
self . interface .Enqueue(self) #Enqueue our handle in the interface
32 self . stats . rts count+=1
self . stage = 0
177
34 self . rtx count = 0
self . thread id = None
36 self . last frame = None
self . timeout = 0
38 self . t1 = 0
#print "Created ", self .name
40
def Enqueue(self , frame) :
42 if self . last frame == None:
self . last frame = frame
44 elif frame . timestamp <= self . last frame . timestamp :
if self . interface . verbose :
46 print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name, "Frame
discarded (old or duplicate)")
return
48 elif frame . corrupt :
if self . interface . verbose :
50 print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name, "Frame
discarded (corrupt)")
return
52 self . last frame = frame
self . recv queue . put nowait(frame)
54
def Shutdown(self , message=None) :
56 try:
self . thread id . exit ()
58 except:
pass
60 self . callback (self , message , self . t1 + self . timeout)
62 def Callback(self , frame , tx time) :
if frame . type==1 and self . stats . rts count==1:
64 self . stats . send time = time . time () tx time #This is the very fi r s t callback for the
actual transmit
if frame . type == 3:
66 if self . interface . dynamic :
self . config . SetResistance (4092 , 175)
68 self . interface . InformConfigChange ()
70 self . thread id = thread . start new thread (self . thread ,(frame , tx time))
72 def thread(self , frame , tx time) :
if frame . type == 1: #We are waiting for a CTS
74 try:
178
rcv frame = self . recv queue . get(True , 30) #Easy way to do a timer , use the queue
timeout
76 if rcv frame . type == 2: #We got the CTS, send out Data
self . destination streamid = rcv frame . sstream id
78 if rcv frame . rssi > self . rssi :
self . rssi = rcv frame . rssi
80
tmp rssi = self . interface . rssi
82
self . stats . rssi = self . rssi
84 diff = rcv frame . timestamp + 1.5 EstimateTransmitTime(len (rcv frame . serialize
()) , self . config) + 3 time . time ()
#while time . time () < rcv frame . timestamp+EstimateTransmitTime(len (rcv frame .
serialize ()) , self . config)+3:#14.0: #Hack so I ?m not transmitting while
they ? re s t i l l transmitting this frame
86 # continue
if diff > 0.0:
88 time . sleep (diff)
90 if self . interface . dynamic :
self . config . SetResistance (self . rssi)
92
if self . interface . dynamic and self . config . GetExpansionByRSSI(tmp rssi) > self .
config .CODEC EXPANSION and self . rtx count < 2: #catch it early and re
transmit the RTS
94 self . config . SetResistance (4092 , 175)
rts frame = self .CreateRTS(tmp rssi)
96 if self . interface . verbose :
print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .
name, "Expansion adjustment needed , re sending RTS")
98 self . send queue . put nowait(rts frame)
self . stats . rts count+=1
100 self . rtx count+=1
else :
102 self . timeout = float (rcv frame . payload)
if self . interface . verbose :
104 print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .
name, "Reserved channel for "+str (self . timeout)+" seconds .")
if self . t1 == 0:
106 self . t1 = time . time ()
self . stats . expansion = self . config .CODEC EXPANSION
108 self . config .SOURCE ID = self . streamid + 1
data frame = self . CreateDataFrame()
110 self . send queue . put nowait(data frame)
self . stats . data count+=1
179
112 self . rtx count = 0
except Queue.Empty:
114 if self . rtx count < 2:
self . config .SOURCE ID = self . streamid
116 rts frame = self .CreateRTS()
self . send queue . put nowait(rts frame)
118 if self . interface . verbose :
print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name,
"CTS timeout , re sending RTS")
120 self . stats . rts count+=1
self . rtx count+=1
122 else : #3x is max retransmit time to die
if self . interface . verbose :
124 print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name,
"RTS retransmission maxed, giving up")
#signal upper layer
126 self . stats . rts fail = True
self .Shutdown(" failure ")
128 elif frame . type == 3: #We are waiting for an ACK
try:
130 rcv frame = self . recv queue . get(True , 30) #Easy way to do a timer , use the queue
timeout
if rcv frame . type == 4:
132 if self . interface . verbose :
print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name,
"received ack")
134 self . stats . ack time = time . time ()
self . stats . latency = self . stats . ack time self . stats . send time
136 self .Shutdown("success")
except Queue.Empty:
138 if self . rtx count < 2 and time . time () self . t1 < self . timeout :
if self . interface . verbose :
140 print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name,
"ACK time out , re sending data frame")
self . config .SOURCE ID = self . streamid + 1
142 data frame = self . CreateDataFrame()
if self . interface . dynamic :
144 self . config . SetResistance (self . rssi)
self . send queue . put nowait(data frame)
146 #self . interface . Enqueue(self . CreateDataFrame () , self)
self . rtx count+= 1
148 self . stats . data count+=1
else : #3x is max retransmit time to die
150 if self . interface . verbose :
180
print "%s %s : %s" % (time . strftime ("%H:%M:%S" , time .gmtime()) , self .name,
"Exceeded channel allocation , giving up")
152 #Signal upper layer
self . stats . data fail = True
154 self .Shutdown(" failure ")
156
158 def CreateRTS(self , rssi=None) :
if rssi==None:
160 self . rssi = GetRSSI(self . interface . usrp path)
else :
162 self . rssi = rssi
Create a config based on the RSSI we have and use it for the estimation
164 #self . timeout = EstimateChannelTime(self . data , self . config)
return bbc frame . bbc frame ((self . destination address , self . address , 1, self . streamid , self
. destination streamid , self . rssi , str (len (self . data))))
166
def CreateDataFrame(self) :
168 return bbc frame . bbc frame ((self . destination address , self . address , 3, self . streamid , self
. destination streamid , self . rssi , self . data))
170 def Encode(self , frame) :
return
A.1.6 BBC Con g Class (bbc con g.py)
1 from cStringIO import StringIO
3 class bbc config :
def init (self , path) :
5 self .DIAGNOSTICS = False
self .PATH = path
7
SCHEDULER Configuration
9 self .SCHEDULER TX notRX = 0
self .SCHEDULER REALTIME = 0
11
SOURCE Configuration
13 self .SOURCENAME = "r"
self .SOURCE ID = 1
15
CODEC Configuration
17 self .CODEC MESSAGE BITS = 512
self .CODEC RANDOM BITS = 8
181
19 self .CODEC CLAMP BITS = 1
self .CODEC FRAGMENT BITS = 1
21 self .CODEC STOP BITS = 100
self .CODEC EXPANSION = 500
23 self .CODEC PACKET LOAD = 2
self .CODEC DECODE LIMIT = 2
25
BUFFER Configuration
27 self .BUFFER PACKETS = 4.0
self .BUFFERLAMBDA = 0.4
29
MODEM Configuration
31 self .MODEM PACKET RATE BPS = 500000
self .MODEM SAMPLES PER BIT = 4
33 self .MODEM GAIN DB = 80.0
self .MODEM CHANNEL LOSS DB = 8.0
35 self .MODEMTHRESHOLDPCT = 46.3744
self .MODEM HYSTERESIS PCT = 5.0
37 self .MODEM JITTER BITS = 2.0
self .MODEM CUSHION PCT = 10.0
39
SINK Configuration
41 self .SINK NAME = "t"
self .SINK SAMPLE LIMIT = 16000000
43
def tx(self) :
45 self .SOURCENAME = "t"
self .SINK NAME = "r"
47 self .MODEM CHANNEL LOSS DB = 3.0
self .SCHEDULER TX notRX = 1
49 f = open(self .PATH+"/tx . ini" , "wt")
f . write (self . format ())
51 f . close ()
return self .PATH+"/tx . ini"
53
def rx(self) :
55 self .SOURCENAME = "r"
self .SINK NAME = "t"
57 self .MODEM CHANNEL LOSS DB = 16.0
self .SCHEDULER TX notRX = 0
59 f = open(self .PATH+"/rx . ini" , "wt")
f . write (self . format ())
61 f . close ()
return self .PATH+"/rx . ini"
63
182
def format(self) :
65 s = StringIO ()
for k,v in self . dict . items () :
67 if str (k) == "DIAGNOSTICS":
if v:
69 s . write ("DIAGNOSTICSnn")
elif str (k) == "PATH" or str (k) == "SINK NAME" or str (k) == "SOURCENAME":
71 s . write ("%s=n"%sn"nn" % (k,v))
else :
73 s . write (?%s=%snn ? % (k,v))
return s . getvalue ()
75
def SetResistance (self , rssi , value=None) :
77 if value!=None:
self .CODEC EXPANSION = value
79 return
81 self .CODEC EXPANSION = self . GetExpansionByRSSI(rssi)
83 def GetExpansionByRSSI(self , rssi) :
if rssi <= 350:
85 return 50
elif rssi <= 700:
87 return 75
elif rssi <= 1050:
89 return 100
elif rssi <= 1350:
91 return 150
else :
93 return 175
A.1.7 BBC-MAC Frame Class (bbc frame.py)
1 import struct
import time
3 from crc16 import
5 class bbc frame :
def init (self , raw frame) :
7 self . types = (1 ,2 ,3 ,4) # RTS CTS DATA ACK
self . timestamp = time . time ()
9 if isinstance (raw frame , str) :
self . raw frame = raw frame
11 try:
183
self . dest addr , self . src addr , self . type , self . sstream id , self . dstream id , self . rssi ,
self . crc , self . timestamp = struct . unpack("!HHBHHHHd" , raw frame [:21])
13 self . payload = raw frame [21:]
if self . crc != crc16 (str (self . payload)) :
15 self . corrupt = True
else :
17 self . corrupt = False
except:
19 self . corrupt = True
else :
21 self . dest addr , self . src addr , self . type , self . sstream id , self . dstream id , self . rssi ,
self . payload = raw frame
self . crc = crc16 (str (self . payload))
23 #self . raw frame = self . serialize ()
25 def toString (self) :
s = "Destination : "+str (self . dest addr)+"nnSource : "+str (self . src addr)+"nnType: "+str (self .
type)+"nnSource StreamID : "+str (self . sstream id)+"nnDestination StreamID : "+str (self .
dstream id)+"nnRSSI: "+str (self . rssi)+"nnCRC: "+str (self . crc)+"nnTimestamp: "+str (self .
timestamp)#+"nnPayload :nn"+str (self . payload)
27 return s
29 def repr (self) :
return self . toString ()
31
def serialize (self) :
33 return struct . pack("!HHBHHHHd" , self . dest addr , self . src addr , self . type , self . sstream id ,
self . dstream id , self . rssi , self . crc , self . timestamp) + str (self . payload)
35 def size (self) :
return len (self . serialize ())
A.1.8 Utilities Class (utilities.py)
import os
2 import bbc config
from crc16 import
4 from math import
crc = CRC16()
6
def GetRSSI(path) :
8 while True:
try:
10 f = open(path+"/ rssi " , "rt")
rssi = int (f . read ())
184
12 f . close ()
break
14 except:
continue
16 return rssi
18 def EstimateChannelTime(data len , config , expansion=None) :
t = 3 (EstimateTransmitTime(data len , config , expansion)+30) #+ 12 + 18 + 12#Worst cast
estimation , ACK and RTS frames are same size
20 return t
22 def EstimateTransmitTime(data len , config , expansion=None) :
if expansion == None:
24 expansion = config .CODEC EXPANSION
one = ceil ((data len /((config .CODEC MESSAGE BITS/8.0) 10.0))/config .CODEC PACKET LOAD)
26 two = ((config .CODEC MESSAGE BITS expansion)/8) config .BUFFERLAMBDA
three = ((config .CODEC MESSAGE BITS expansion)/8) + 1
28 res = ceil (4 (((one two + three) 8 4)/config .MODEM PACKET RATE BPS))
return res
30
def CheckPID(pid) :
32 try:
os . kill (pid , 0)
34 return True
except:
36 return False
38 def StatFileSize (path) :
try:
40 return os . stat (path) . st size
except:
42 return 0
44 def GetCRC(data) :
crc . update(str (data))
46 return crc . checksum()
A.1.9 CRC16 Class (crc16.py)
crc16 . py by Bryan G. Olson , 2005
2 # This module is free software and may be used and
distributed under the same terms as Python i t s e l f .
4
"""
6 CRC 16 in Python , as standard as possible . This is
185
the ? reflected ? version , which is usually what people
8 want . See Ross N. Williams ? /A Painless Guide to
CRC error detection algorithms /.
10 """
12 from array import array
14
def crc16 (string , value=0):
16 """ Single function interface , like gzip module ?s crc32
"""
18 for ch in string :
value = table [ord(ch) ^ (value & 0xff)] ^ (value >> 8)
20 return value
22
class CRC16(object) :
24 """ Class interface , like the Python library ?s cryptographic
hash functions (which CRC?s are definitely not .)
26 """
28 def init (self , string=? ?) :
self . val = 0
30 if string :
self . update(string)
32
def update(self , string) :
34 self . val = crc16 (string , self . val)
36 def checksum(self) :
return chr(self . val >> 8) + chr(self . val & 0xff)
38
def hexchecksum(self) :
40 return ?%04x ? % self . val
42 def copy(self) :
clone = CRC16()
44 clone . val = self . val
return clone
46
48 # CRC 16 poly : p(x) = x 16 + x 15 + x 2 + 1
top bit implicit , reflected
50 poly = 0xa001
table = array(?H?)
186
52 for byte in range (256) :
crc = 0
54 for bit in range (8) :
if (byte ^ crc) & 1:
56 crc = (crc >> 1) ^ poly
else :
58 crc >>= 1
byte >>= 1
60 table . append(crc)
A.1.10 Stats Module (stats.py)
from cStringIO import StringIO
2
4 class TxStats :
def init (self , data) :
6 self . raw data = data
self . rts count = 0
8 self . data count = 0
self . rts fail = False
10 self . data fail = False
self . send time = 0
12 self . ack time = 0
self . rssi = 0
14 self . expansion = 0
self . latency = 0
16
def repr (self) :
18 return self . toString ()
20 def toString (self) :
s = StringIO ()
22 for k,v in self . dict . items () :
if str (k) == "raw data":
24 continue
s . write (?%snt ? % k)
26 s . write (?nn ?)
28 for k,v in self . dict . items () :
if str (k) == "raw data":
30 continue
s . write (?%snt ? % v)
32 s . write (?nn ?)
187
34 return s . getvalue ()
36 class RxStats :
def init (self) :
38 self . rts count = 0
self . data count = 0
40 self . ack count = 0
self . cts count = 0
42 self . data time = 0
44 def repr (self) :
return self . toString ()
46
def toString (self) :
48 s = StringIO ()
for k,v in self . dict . items () :
50 if str (k) == "raw data":
continue
52 s . write (?%snt ? % k)
s . write (?nn ?)
54
for k,v in self . dict . items () :
56 if str (k) == "raw data":
continue
58 s . write (?%snt ? % v)
s . write (?nn ?)
60
return s . getvalue ()
A.2 Radio Scripts Code
A.2.1 USRP Receiver Script (usrp rx c le.py)
1 #!/ usr/bin/env python
3 """
Read samples from the USRP and write to f i l e formatted as binary
5 outputs single precision complex float values or complex short values (interleaved 16 bit signed
short integers) .
7 """
9 from gnuradio import gr , gru , eng notation
#from gnuradio import audio
188
11 from gnuradio import usrp
from gnuradio . eng option import eng option
13 from optparse import OptionParser
from usrpm import usrp dbid
15 import time
import sys
17 import thread
19 class my graph(gr . flow graph) :
#class my graph(gr . top block) :
21
def init (self) :
23 gr . flow graph . init (self)
#gr . top block . i n i t (self)
25 self . rssi = 0
27 usage="%prog : [options] output filename output filename2"
parser = OptionParser(option class=eng option , usage=usage)
29 parser . add option(" R" , " rx subdev spec" , type="subdev" , default =(0, 0) ,
help="select USRP Rx side A or B (default=A)")
31 parser . add option(" U" , " usb num" , type="int" , default=0,
help="select USRP USB location 0 or 1 (default=0)")
33 parser . add option(" d" , " decim" , type="int" , default=16,
help="set fgpa decimation rate to DECIM [default=%default]")
35 parser . add option(" f" , " freq" , type="eng float" , default=None,
help="set frequency to FREQ" , metavar="FREQ")
37 parser . add option(" g" , " gain" , type="eng float" , default=None,
help="set gain in dB (default is midpoint)")
39 parser . add option(" 8" , " width 8" , action="store true" , default=False ,
help="Enable 8 bit samples across USB")
41 parser . add option(" no hb" , action="store true" , default=False ,
help="don ?t use halfband filter in usrp")
43 parser . add option(" s" ," output shorts" , action="store true" , default=False ,
help="output interleaved shorts in stead of complex floats ")
45 parser . add option(" N" , " nsamples" , type="eng float" , default=None,
help="number of samples to collect [default=+inf]")
47 parser . add option(" C" , " nchan" , type="int" , default=1,
help="set number of channels to use (RX on both daughterboards)")
49 (options , args) = parser . parse args ()
51 if len (args) < 1:
parser . print help ()
53 raise SystemExit , 1
55 #with multiple channels , need multiple f i l e s for receiver sinks so both receivers are not
189
writing to the same f i l e on the driver computer
57 if options . nchan > 1:
filename A = args [0]
59 filename B = args [1]
else :
61 filename = args [0]
63 self . fn = filename
if options . freq is None:
65 parser . print help ()
sys . stderr . write (?You must specify the frequency with f FREQnn ?) ;
67 raise SystemExit , 1
69 if options . no hb or (options . decim<8):
self . fpga filename="std 4rx 0tx . rbf" #Min decimation of this firmware is 4. contains 4
Rx paths without halfbands and 0 tx paths .
71 if options . output shorts :
self .u = usrp . source s (which=options .usb num , decim rate=options . decim ,
fpga filename=self . fpga filename)
73 else :
self .u = usrp . source c (which=options .usb num , decim rate=options . decim ,
fpga filename=self . fpga filename)
75 else :
#standard fpga firmware " std 2rxhb 2tx . rbf " contains 2 Rx paths with halfband f i l t e r s
and 2 tx paths (the default) min decimation 8
77 if options . output shorts :
self .u = usrp . source s (which=options .usb num , decim rate=options . decim)
79 else :
self .u = usrp . source c (which=options .usb num , decim rate=options . decim)
81
#use more than 1 channel if specified
83 #this will allow a USRP to TX or RX on both daughterboards simultaneously
if options . nchan > 1:
85 nchan = options . nchan
if self .u.nddc() < nchan :
87 sys . stderr . write (?This code requires an FPGA build with %d DDCs. This FPGA has
only %d.nn ? % (nchan , self .u.nddc()))
raise SystemExit
89
if not self .u. set nchannels (nchan) :
91 sys . stderr . write (? set nchannels(%d) failednn ? % (nchan ,))
raise SystemExit
93
#self . subdev = self .u. db [0] + self .u. db [1]
95
190
self . subdev = (self .u.db [0][0] , self .u.db [1][0])
97
print "Using RX daughterboard %s" % (self . subdev [0]. side and name () ,)
99 print "Using RX daughterboard %s" % (self . subdev [1]. side and name () ,)
101 if options . gain is None:
g A = self . subdev [0]. gain range ()
103 options . gain = float (g A[0]+g A [1]) /2
105 #use the same gain for both sides
self . subdev [0]. set gain (options . gain)
107 self . subdev [1]. set gain (options . gain)
r = usrp . tune (self .u, i , self . subdev [i] , target freq)
109 r A = self .u. tune(0 , self . subdev [0] , options . freq)
if not r A :
111 sys . stderr . write (? Failed to set frequency for RX daughterboard %snn ? % (self .
subdev [0]. side and name ()))
raise SystemExit , 1
113
r B = self .u. tune(1 , self . subdev [1] , options . freq)
115 if not r B :
sys . stderr . write (? Failed to set frequency for RX daughterboard %snn ? % (self .
subdev [1]. side and name ()))
117 raise SystemExit , 1
119 else :
using only 1 channel in this case
121 # determine the daughterboard subdevice we ? re using per argument l i s t
self . subdev = usrp . selected subdev (self .u, options . rx subdev spec)
123 print "Using RX daughterboard %s" % (self . subdev . side and name () ,)
125 #set the gain
if options . gain is None:
127 # if no gain was specified , use the mid point in dB
g = self . subdev . gain range ()
129 options . gain = float (g[0]+g [1]) /2
131 self . subdev . set gain (options . gain)
133 r = self .u. tune(0 , self . subdev , options . freq)
if not r :
135 sys . stderr . write (? Failed to set frequencynn ?)
raise SystemExit , 1
137
if options . width 8 :
191
139 sample width = 8
sample shift = 8
141 format = self .u. make format(sample width , sample shift)
r = self .u. set format (format)
143 if options . output shorts :
#default value is fine here for multiple channels since
145 #we will be using complex floats
self . dst = gr . file sink (gr . sizeof short , filename)
147 else :
if options . nchan == 1:
149 self . dst = gr . file sink (gr . sizeof gr complex , filename)
else :
151 #establish separate f i l e sinks for the two channels
self . dst A = gr . file sink (gr . sizeof gr complex , filename A)
153 self . dst B = gr . file sink (gr . sizeof gr complex , filename B)
155 if options . nsamples is None:#this is the default
if options . nchan == 1:
157 self . connect(self .u, self . dst)
else : #multiple channels
159 di = gr . deinterleave (gr . sizeof gr complex)
self . connect(self .u, di)
161 self . connect ((di ,0) , self . dst A)
self . connect ((di ,1) , self . dst B)
163
else :
165 if options . output shorts :
self . head = gr . head(gr . sizeof short , int (options . nsamples) 2)
167 else :
self . head = gr . head(gr . sizeof gr complex , int (options . nsamples))
169 self . connect(self .u, self .head , self . dst)
171 if options . rx subdev spec is None:
options . rx subdev spec = usrp . pick rx subdevice (self .u)
173 self . rx subdev = options . rx subdev spec
175 self .u. set mux(usrp . determine rx mux value(self .u, options . rx subdev spec))
#self .u. set mux (gru . hexint (0 xf3f2f1f0))
177
#PRINT STATEMENTS
179 print "Using USB Port %d" % (options .usb num)
if (options . nchan > 1) :
181 print "Using %d Channels" % (options . nchan)
else :
183 print "Using %d Channel" % (options . nchan)
192
185 #display USB sample rate
input rate = self .u. adc freq () / self .u. decim rate ()
187 print "USB sample rate %s" % (eng notation . num to str (input rate))
self . rssi run = True
189
def GetRSSI(self , d, t) :
191 reads = []
avgs = []
193 while self . rssi run :
tmp = self .u. read aux adc (self . rx subdev [0] ,0)
195 reads . append(tmp)
self . rssi = sum(reads [1140:])/1140
197 avgs .append(self . rssi)
file = open(receive . fn+" ssi " , "wt")
199 file . write (str (max(avgs [20:])))
file . close ()
201
if name == ? main ? :
203 try:
receive = my graph()
205 thread . start new thread (receive .GetRSSI ,(0 ,0))
receive . run()
207 print "Receiving Complete ."
receive . rssi run = False
209
except KeyboardInterrupt :
211 # pass
receive . rssi run = False
213 receive . stop ()
A.2.2 USRP Transmitter Script (bbc tx.py)
#!/ usr/bin/env python
2
This program reads waveform data from the f i l e " bbc tx . dat" and sends
4 # it to the USRP for broadcast .
6 # This f i l e was derived from the usrp siggen . py f i l e that came with
GNU Radio . It was stripped to just the essentials needed to transmit
8 # a baseband signal from a complex f i l e source .
10 # The f i l e format is complex IQ data pairs where both values are IEEE
single precision floating point numbers in l i t t l e endian format .
12 # The f i r st value is I and the second value is Q. The data is present
193
only on the I data . The Q data is all zeros .
14
from gnuradio import gr , gru
16 from gnuradio import usrp
from gnuradio . eng option import eng option
18 from gnuradio import eng notation
from gnuradio . eng notation import num to str , str to num
20 from optparse import OptionParser
import sys
22 import time
import os
24 from subprocess import
26
class bbc tx graph(gr . top block) :
28 def init (self , usb num , sink path , jammer , jammer level=0, sink path B=None) : #included
usb num from parameter l i s t to define which usb
30 gr . top block . init (self)
#default interpolator rate
32 self . interp = 64
34 if jammer==0:
self . txfile = gr . file source (gr . sizeof gr complex , sink path ,1)
36 self . usrp = usrp . sink c (usb num , self . interp) # change from 0 to 1 if necessary
self . connect (self . txfile , self . usrp)
38 elif jammer==1:
call (["/Users/Derek/Desktop/jammer/jammer" , " C" ,"/Users/Derek/Desktop/jammer/tx . ini"
, " N" , "1000000" ," J" , str (jammer level)])
40 self . txfileA = gr . file source (gr . sizeof gr complex , sink path , 1)
self . txfileB = gr . file source (gr . sizeof gr complex , "/Users/Derek/Desktop/jammer/r" ,
1)
42 self . usrp = usrp . sink c (which=usb num , interp rate=self . interp , nchan=2)
#do connect
44 intl = gr . interleave (gr . sizeof gr complex)
self . connect(self . txfileA , (intl , 0))
46 self . connect(self . txfileB , (intl , 1))
self . connect(intl , self . usrp)
48 elif jammer==2:
self . txfileA = gr . file source (gr . sizeof gr complex , sink path , 1)
50 self . noisegen = gr . noise source c (gr .GR GAUSSIAN, 500 jammer level)
self . usrp = usrp . sink c (which=usb num , interp rate=self . interp , nchan=2)
52 #do connect
intl = gr . interleave (gr . sizeof gr complex)
54 self . connect(self . txfileA , (intl , 0))
194
self . connect(self . noisegen , (intl , 1))
56 self . connect(intl , self . usrp)
elif jammer==3:
58 self . noisegen = gr . noise source c (gr .GR GAUSSIAN, 500 jammer level)
self . usrp = usrp . sink c (usb num , self . interp) # change from 0 to 1 if necessary
60 self . connect (self . noisegen , self . usrp)
62 def usb freq (self) :
return self . usrp . dac freq () / self . interp
64
def usb throughput (self) :
66 return self . usb freq () 4
68 def set interpolator (self , interp) :
self . interp = interp
70 self . usrp . set interp rate (interp)
72 def set freq single (self , target freq) :
"""
74 Set the center frequency we ? re interested in .
76 @param target freq : frequency in Hz
@rypte : bool
78
Tuning is a two step process . First we ask the front end to
80 tune as close to the desired frequency as it can . Then we use
the result of that operation and our target frequency to
82 determine the value for the digital up converter .
"""
84 r = self . usrp . tune(self . subdev . which , self . subdev , target freq)
if r :
86 print "r . baseband freq =" , eng notation . num to str (r . baseband freq)
print "r . dxc freq =" , eng notation . num to str (r . dxc freq)
88 print "r . residual freq =" , eng notation . num to str (r . residual freq)
print "r . inverted =" , r . inverted
90 print " OK"
return True
92
return False
94
def set freq multi (self , side , target freq) :
96 """
Set the center frequency we ? re interested in .
98
@param side : 0 = side A, 1 = side B
195
100 @param target freq : frequency in Hz
@rtype : bool
102
Tuning is a two step process . First we ask the front end to
104 tune as close to the desired frequency as it can . Then we use
the result of that operation and our target frequency to
106 determine the value for the digital up converter .
"""
108
print "Tuning side %s to %sHz" % (("A" , "B") [side] , num to str (target freq))
110 r = self . usrp . tune(self . subdev [side]. which , self . subdev [side] , target freq)
if r :
112 print " r . baseband freq =" , num to str (r . baseband freq)
print " r . dxc freq =" , num to str (r . dxc freq)
114 print " r . residual freq =" , num to str (r . residual freq)
print " r . inverted =" , r . inverted
116 print " OK"
return True
118
else :
120 print " Failed !"
122 return False
124 def main () :
parser = OptionParser (option class=eng option)
126 parser . add option (" T" , " tx subdev spec" , type="subdev" , default =(0, 0) ,
help="select USRP Tx side A or B (may also use A:0 or A:1 format)")
128 parser . add option (" f" , " rf freq " , type="eng float" , default=None,
help="set RF center frequency to FREQ")
130 parser . add option (" i" , " interp" , type="int" , default=64,
help="set fgpa interpolation rate to INTERP")
132 parser . add option(" U" , " usb num" , type="int" , default=0,
help="select USRP USB location 0 or 1 (default=0)")
134 parser . add option(" J" , " jammer" , type="int" , default=0, help="0 = None, 1 = Pulse Jammer, 2
= Gaussian Jammer")
parser . add option (" jammer level" , type="int" , default=32,
136 help="set the jammer level [0 ,64]")
parser . add option(" S" , " sink path" ,type="string" , default=None, help="set sink file path for
transmission 1")
138 parser . add option(" Q" , " sink path B" ,type="string" , default=None, help="set sink file path
for transmission 2")
parser . add option(" P" , " tx subdev spec B" , type="subdev" , default =(0, 0) ,
140 help="select USRP Tx side A or B (may also use A:0 or A:1 format)")
196
parser . add option(" L" , " tx time" ,type="float" , default =8.0, help ="set the length to
transmit for")
142 (options , args) = parser . parse args ()
144 if len (args) != 0:
parser . print help ()
146 raise SystemExit
148 if options . rf freq is None:
sys . stderr . write ("usrp siggen : must specify RF center frequency with f RF FREQnn")
150 parser . print help ()
raise SystemExit
152
fg = bbc tx graph(options .usb num , options . sink path , options .jammer , options . jammer level ,
options . sink path B)
154
fg . set interpolator (options . interp)
156
print "Using USB Port %d" % (options .usb num)
158 print "Sink path : %s" % (options . sink path)
if (options .jammer) :
160 print "Jammer running at level : %i" % (options . jammer level)
162 if options .jammer==0:
print "Using 1 Channel"
164 # determine the daughterboard subdevice we ? re using
if options . tx subdev spec is None:
166 options . tx subdev spec = usrp . pick tx subdevice (fg .u)
168 m = usrp . determine tx mux value(fg . usrp , options . tx subdev spec)
#print "mux = %#04x" % (m,)
170 fg . usrp . set mux(m)
#fg . usrp . set mux (0xba98)
172
fg . subdev = usrp . selected subdev (fg . usrp , options . tx subdev spec)
174 print "Using TX daughterboard %s" % (fg . subdev . side and name () ,)
176 fg . subdev . set gain (fg . subdev . gain range () [1]) # set max Tx gain
178 if not fg . set freq single (options . rf freq) :
sys . stderr . write (? Failed to set RF frequencynn ?)
180 raise SystemExit
182 fg . subdev . set enable (True)# enable transmitter
197
184 else : # we ? re using both daughterboard slots , thus subdev is a 2 tuple
print "Using 2 Channels"
186 fg . subdev = (fg . usrp .db [0][0] , fg . usrp .db [1][0])
print "Using TX daughterboard %s" % (fg . subdev [0]. side and name () ,)
188 print "Using TX daughterboard %s" % (fg . subdev [1]. side and name () ,)
190
#m A = usrp . determine tx mux value (fg . usrp , options . tx subdev spec)
192 #m B = usrp . determine tx mux value (fg . usrp , options . tx subdev spec B)
#print "mux = %#04x" % (m,)
194 #fg . subdev [0]. set mux (m A)
#fg . subdev [1]. set mux (m B)
196 #fg . usrp . set mux (m A)
fg . usrp . set mux(gru . hexint (0xBA98))
198
fg . subdev [0]. set gain (fg . subdev [0]. gain range () [1]) # set max Tx gain
200 fg . subdev [1]. set gain (fg . subdev [1]. gain range () [1]) # set max Tx gain
202 #use same frequency for both transmitters
fg . set freq multi (0 , options . rf freq)
204 fg . set freq multi (1 , options . rf freq)
#fg . subdev [0]. set freq (options . rf freq)
206 #fg . subdev [1]. set freq (options . rf freq)
208 fg . subdev [0]. set enable (True) # enable transmitter
fg . subdev [1]. set enable (True) # enable transmitter
210
try:
212 #size = os . stat (options . sink path) . st size
#tx sec = (size 163840)/(fg . usb freq ()) # num samples/ tx samples sec
214 #if tx sec > 8:
tx sec = 8
216
print "Transmitting for" , str (options . tx time)
218 #t1 = time . time ()
#fg . run ()
220 #t2 = time . time ()
#print "%i" % (t2 t1)
222 fg . start ()
time . sleep (options . tx time)
224 fg . stop ()
print "Transmission Completed.nn"
226 except KeyboardInterrupt :
#pass
228 fg . stop ()
198
230 if name == ? main ? :
main()
A.3 BBC Source Code
A.3.1 bbcftp.h
1 /
 Application Layer for the Real time BBC Codec/Modem
3
 William L. Bahn
5 Academy Center for Information Security
 Department of Computer Science
7 United States Air Force Academy
 USAFA, CO 80840
9
 FILE : bbcftp .h
11 DATE CREATED: 13 SEP 07
 DATE MODIFIED : . . . 13 SEP 07
13

15 REVISION HISTORY

17

19 DESCRIPTION

21 /
23 #ifndef BBCFTPdotH
#define BBCFTPdotH
25
//
27 // REQUIRED INCLUDES
//
29
#include "config .h"
31 #include "source .h"
#include "codec .h"
33 #include "buffer .h"
#include "modem.h"
35 #include "sink .h"
199
37 #include "dirtyd .h"
39 //
// PARAMETER DEFINITIONS
41 //
43 #define BBC FTP BYTES CHECKSUM (4)
#define BBC FTP BYTES SEQNUM (2)
45 #define BBC FTP BYTES LOADBITS (2)
#define BBC FTP BYTES ID (2)
47
#define BBC FTP OFFSET CHECKSUM (0)
49 #define BBC FTP OFFSET ID (BBC FTP OFFSET CHECKSUM + BBC FTP BYTES CHECKSUM)
#define BBC FTP OFFSET SEQNUM (BBC FTP OFFSET ID + BBC FTP BYTES ID)
51 #define BBC FTP OFFSET LOADBITS (BBC FTP OFFSET SEQNUM + BBC FTP BYTES SEQNUM)
#define BBC FTP OFFSET PAYLOAD (BBC FTP OFFSET LOADBITS + BBC FTP BYTES LOADBITS)
53 #define BBC FTP HEADER BYTES (BBC FTP OFFSET PAYLOAD)
55 //
// STRUCTURE TYPE DEFINITIONS
57 //
59 typedef struct BBCFTP BBCFTP;
61 //
// STRUCTURE DEFINITIONS
63 //
65 // NOTE: Normally the structure definition would be in the .c f i l e to make
// the structure members inaccessible to outside functions except through
67 // public function calls . But for the real time code it has been decided
// to make the structure members directly visible to the functions that
69 // manipulate them .
71 struct BBCFTP
f
73 CONFIG config ;
SOURCE source ;
75 CODEC codec ;
BUFFER buffer ;
77 MODEM modem;
SINK sink ;
79 g;
81 //
200
// PUBLIC FUNCTION PROTOTYPES
83 //
85 BBCFTP BBCFTP Del(BBCFTP p) ;
BBCFTP BBCFTP New(char filename , DWORD errcode) ;
87
void PrintMessage(BYTE base) ;
89
void SetMessageChecksum(BYTE base , DWORD v) ;
91 void SetMessageSeq(BYTE base , WORD v) ;
void SetMessageLoadBits(BYTE base , WORD v) ;
93 void SetMessageID(BYTE base , WORD v) ;
void SetMessagePayload(BYTE base , BYTE source , DWORD bytes , int offset) ;
95
DWORD GetMessageChecksum(BYTE base) ;
97 WORD GetMessageSeq(BYTE base) ;
WORD GetMessageLoadBits(BYTE base) ;
99 WORD GetMessageID(BYTE base) ;
BYTE GetMessagePayload(BYTE base) ;
101
103 //
#endif
A.3.2 bbcftp.c
1 /
 Application Layer Module for the Real time BBC Codec/Modem FTP program
3
 William L. Bahn
5 Academy Center for Information Security
 Department of Computer Science
7 United States Air Force Academy
 USAFA, CO 80840
9
 FILE : bbcftp . c
11 DATE CREATED: 18 SEP 07
 DATE MODIFIED : . . . 18 SEP 07
13

15 REVISION HISTORY

17

19 DESCRIPTION
201

21 This module provides the crude application layer functions for the ftp
 demo.
23 /
25 //
// REQUIRED INCLUDES
27 //
29 #include <stdlib .h> // malloc () , free ()
#include <stdio .h> // printf ()
31 #include <string .h> // memmove()
33 #include "bbcftp .h"
35 //
// STRUCTURE DEFINITIONS
37 //
39 // NOTE: Normally the structure definition would be in the .c f i l e to make
// the structure members inaccessible to outside functions except through
41 // public function calls . But for the real time code it has been decided
// to make the structure members directly visible to the functions that
43 // manipulate them .
45 //
// PRIVATE FUNCTION DEFINITIONS
47 //
49
//
51 // PUBLIC FUNCTION DEFINITIONS
//
53
BBCFTP BBCFTP Del(BBCFTP p)
55 f
if (p)
57 f
p >config = CONFIG Del(p >config) ;
59 p >source = SOURCE Del(p >source) ;
p >codec = CODEC Del(p >codec) ;
61 p >buffer = BUFFER Del(p >buffer) ;
p >modem = MODEM Del(p >modem) ;
63 p >sink = SINK Del(p >sink) ;
g
202
65 return NULL;
g
67
BBCFTP BBCFTP New(char filename , DWORD errcode)
69 f
BBCFTP p;
71 DWORD err ;
73 p = NULL;
err = 0;
75 errcode = 0;
77 p = (BBCFTP) malloc(sizeof(BBCFTP)) ;
if (!p) errcode j= 1 << 0;
79
if (! errcode)
81 f
p >config = CONFIG New(filename , &err) ;
83 if (err) errcode j= 1 << 1;
g
85
if (! errcode)
87 f
p >source = SOURCE New(p >config , &err) ;
89 if (err) errcode j= 1 << 2;
p >codec = CODEC New(p >config , &err) ;
91 if (err) errcode j= 1 << 3;
p >buffer = BUFFER New(p >config , &err) ;
93 if (err) errcode j= 1 << 4;
p >modem = MODEMNew(p >config , &err) ;
95 if (err) errcode j= 1 << 5;
p >sink = SINK New(p >config , &err) ;
97 if (err) errcode j= 1 << 6;
g
99
return p;
101 g
103 void BBCFTP ErrorCodes(DWORD err)
f
105 if (err & ((DWORD) 1 << 0))
printf ("BBC FTP System Constructor failed to allocatenn") ;
107 if (err & ((DWORD) 1 << 1))
printf ("CONFIG Constructor exited with errorsnn") ;
109 if (err & ((DWORD) 1 << 2))
203
printf ("SOURCE Constructor exited with errorsnn") ;
111 if (err & ((DWORD) 1 << 3))
printf ("CODEC Constructor exited with errorsnn") ;
113 if (err & ((DWORD) 1 << 4))
printf ("BUFFER Constructor exited with errorsnn") ;
115 if (err & ((DWORD) 1 << 5))
printf ("MODEM Constructor exited with errorsnn") ;
117 if (err & ((DWORD) 1 << 6))
printf ("SINK Constructor exited with errorsnn") ;
119 g
121 void PrintMessage(BYTE base)
f
123 int i ;
int chunk size bytes ;
125
DWORD checksum ;
127 WORD seqnum , loadbits , id ;
129 checksum = GetMessageChecksum(base) ;
seqnum = GetMessageSeq(base) ;
131 loadbits = GetMessageLoadBits(base) ;
id = GetMessageID(base) ;
133
printf ("[%04lu] " , (unsigned long) checksum) ;
135 printf ("[%04lu] " , (unsigned long) seqnum) ;
printf ("[%04lu] " , (unsigned long) loadbits) ;
137 printf ("[%04lu] " , (unsigned long) id) ;
139 chunk size bytes = loadbits /8;
141 printf ("[") ;
for (i = 0; i < chunk size bytes ; i++)
143 f
putc((base + BBC FTP OFFSET PAYLOAD + i) , stdout) ;
145 g
printf ("]nn") ;
147
g
149
void SetMessageChecksum(BYTE base , DWORD v)
151 f
memmove(base+BBC FTP OFFSET CHECKSUM, &v, BBC FTP BYTES CHECKSUM) ;
153 g
204
155 void SetMessageSeq(BYTE base , WORD v)
f
157 memmove(base+BBC FTP OFFSET SEQNUM, &v, BBC FTP BYTES SEQNUM) ;
g
159
void SetMessageLoadBits(BYTE base , WORD v)
161 f
memmove(base+BBC FTP OFFSET LOADBITS, &v, BBC FTP BYTES LOADBITS) ;
163 g
165 void SetMessageID(BYTE base , WORD v)
f
167 memmove(base+BBC FTP OFFSET ID, &v, BBC FTP BYTES ID) ;
g
169
void SetMessagePayload(BYTE base , BYTE source , DWORD bytes , int offset)
171 f
memmove(base+BBC FTP OFFSET PAYLOAD+offset , source , bytes) ;
173 g
175 DWORD GetMessageChecksum(BYTE base)
f
177 return ((DWORD)(base + BBC FTP OFFSET CHECKSUM)) ;
g
179
WORD GetMessageSeq(BYTE base)
181 f
return ((WORD)(base + BBC FTP OFFSET SEQNUM)) ;
183 g
185 WORD GetMessageLoadBits(BYTE base)
f
187 return ((WORD)(base + BBC FTP OFFSET LOADBITS)) ;
g
189
WORD GetMessageID(BYTE base)
191 f
return ((WORD)(base + BBC FTP OFFSET ID)) ;
193 g
195 BYTE GetMessagePayload(BYTE base)
f
197 return (BYTE)(base + BBC FTP OFFSET PAYLOAD) ;
g
199
205
//
A.3.3 bu er.h
/
2 Data Buffer for the Real time BBC Codec/Modem

4 William L. Bahn
 Academy Center for Information Security
6 Department of Computer Science
 United States Air Force Academy
8 USAFA, CO 80840

10 FILE : buffer .h
 DATE CREATED: 01 SEP 07
12 DATE MODIFIED : . . . 01 SEP 07

14
 REVISION HISTORY
16

18
 DESCRIPTION
20
 The data buffer stores packet data between the codec and the modem.
22
 In the receiver , the buffer accepts packet data from the codec and
24 feeds that data to the modem. In the transmitter , it accepts data from
 the modem and feeds it to the codec . While the modem, by its nature ,
26 generally produces and consumes data at a uniform rate , the codec
 can be quite erratic in its data rate . Therefore the buffer must be
28 sized sufficiently large to allow for the resulting ebb and flow .
 This is particularly important in the case of the receiver since , if
30 the buffer can ? t accommodate the data as the modem delivers it , data
 will be lost . This is not as critical with the transmitter , depending
32 on the nature of the data source and its buffering strategy , since it
 will normally only reduce the effective data rate as opposed to causing
34 dropped packets .

36 The data is stored in a circular buffer with the following variables :

38 buffer : Pointer to the block of memory where the buffer starts .
 read : Index of the f i rs t byte of the present packet .
40 write : Index of the next unused buffer location .
 margin : How many bytes are in buffer beyond the scope of the decoder .
206
42 unused : How many unused bytes are available in the buffer .

44 The buffer is seen by two functions , the one that is demodulating the
 data packet and the one that is decoding the resulting data . The
46 demodulating function writes to the buffer at a nominally constant
 rate dictated by the communications link . In this application , this is
48 simulated by reading the stored waveform data from a f i l e and querying
 the clock to determine how many bytes to add to the buffer each time
50 the function is called . The decoding function , on the other hand , always
 to decodes eight packets each time it is called provided sufficient data
52 is available . Specifically , it decodes the eight packets that start with
 the bits in the byte stored at the "read" pointer . Since it can ? t decode
54 packets that are not completely contained in the buffer , the decoding
 function fi r s t checks to see if " f i l l " is non negative . If it isn ?t , then
56 it returns immediately . At the other end of the spectrum , the demodulator
 may run out of unused memory to write to . If this happens , data is going
58 to be lost . It is cleaner to throw away old data instead of introducing
 a gap in present data , therefore the demodulator will push the "read"
60 pointer forward as it overwrites the beginning of the existing packet
 data .
62
 /
64
#ifndef BUFFERdotH
66 #define BUFFERdotH
68 //
// REQUIRED INCLUDES
70 //
72 #include "config .h"
#include "dirtyd .h"
74
//
76 // STRUCTURE DECLARATIONS
//
78
typedef struct BUFFER BUFFER;
80
//
82 // STRUCTURE DEFINITIONS
//
84
// NOTE: Normally the structure definition would be in the .c f i l e to make
86 // the structure members inaccessible to outside functions except through
207
// public function calls . But for the real time code it has been decided
88 // to make the structure members directly visible to the functions that
// manipulate them .
90
struct BUFFER
92 f
size t size ; // Allocated size of buffer (in bytes)
94 size t minsize ; // Minimum acceptable buffer size (in bytes)
BYTE buffer ; // Pointer to the actual buffer
96 DWORD read ; // Index of next position to be read .
DWORD write ; // Index of next position to be written .
98 DWORD scope ; // The number of bytes recipient must .
SDWORD margin ; // Number of bytes beyond scope of recipient
100 DWORD empty; // Number of bytes available for new data .
DWORD ready ; // Number of bytes ready for modulation .
102 DWORD buffermask ; // The used bits in the buffer size
DWORD overflows ; // Number of data pushes into read pointer .
104 g;
106 //
// PUBLIC FUNCTION PROTOTYPES
108 //
110 BUFFER BUFFER Del(BUFFER p) ;
BUFFER BUFFER New(CONFIG c , DWORD errcode) ;
112
//
114 #endif
A.3.4 bu er.c
1 /
 Data Buffer for the Real time BBC Codec/Modem
3
 William L. Bahn
5 Academy Center for Information Security
 Department of Computer Science
7 United States Air Force Academy
 USAFA, CO 80840
9
 FILE : buffer . c
11 DATE CREATED: 01 SEP 07
 DATE MODIFIED : . . . 01 SEP 07
13

208
15 REVISION HISTORY

17

19 DESCRIPTION

21 The data buffer and its programmer interface is described in buffer .h.

23
 /
25
//
27 // REQUIRED INCLUDES
//
29
#include <stdlib .h> // malloc () , free ()
31 #include <string .h> // memset()
33 #include "buffer .h"
35 //
// STRUCTURE DEFINITIONS
37 //
39 // NOTE: Normally the structure definition would be in the .c f i l e to make
// the structure members inaccessible to outside functions except through
41 // public function calls . But for the real time code it has been decided
// to make the structure members directly visible to the functions that
43 // manipulate them .
45 //
// PRIMITIVE FUNCTION DEFINITIONS
47 //
49 //
// PRIVATE FUNCTION DEFINITIONS
51 //
53 //
// PUBLIC FUNCTION DEFINITIONS
55 //
57 BUFFER BUFFER Del(BUFFER p)
f
59 if (p)
209
f
61 if (p >buffer) f free (p >buffer) ; p >buffer = NULL; g
g
63 return NULL;
g
65
BUFFER BUFFER New(CONFIG c , DWORD errcode)
67 f
BUFFER p;
69 DWORD err ;
71 p = NULL;
err = 0;
73
if (! err)
75 f
p = (BUFFER) malloc(sizeof(BUFFER)) ;
77 if (!p)
err j= 1 << 1;
79 g
81 if (! err)
f
83 p >minsize = (size t) (c >bufferbytes per packet c >buffer packets) ;
p >size = 1;
85 while ((0 != p >size)&&(p >size < p >minsize))
p >size <<= 1;
87 if (0 == p >size)
err j= 1 << 2;
89 g
91 if (! err)
f
93 // Allocate buffer memory
p >buffer = (BYTE) malloc(p >size sizeof(BYTE)) ;
95 if (!p >buffer)
err j= 1 << 3;
97
// Initialize buffer state
99
// Common to TX and RX
101 p >buffermask = p >size 1;
p >scope = c >bufferbytes per packet ;
103 p >read = 0;
p >write = 0;
210
105 p >overflows = 0;
107 // TX and RX specific
if (c >scheduler TX notRX)
109 f
p >margin = p >size p >scope ;
111 p >ready = 0;
p >empty = 0; // Not used
113 g
else
115 f
p >margin = ((SDWORD)p >scope) ;
117 p >ready = 0; // Not used
p >empty = p >size ;
119 g
g
121
// Clear entire buffer
123 if (! err)
memset(p >buffer , 0, p >size) ;
125
if (err)
127 p = BUFFER Del(p) ;
129 if (c >diagnostics)
f
131 // Diagnostic Report
printf (" nn") ;
133 printf ("PACKET BUFFERnn") ;
printf (" Creation : %snn" , ((err)? "FAILED":"SUCCEEDED")) ;
135 printf (" Location : %pnn" , (void) p) ;
printf (" Minimum buffer size : %lu bytesnn" , (unsigned long) p >minsize) ;
137 printf (" Buffer size : %lu bytesnn" , (unsigned long) p >size) ;
printf (" Buffer location : %pnn" , (void) p >buffer) ;
139 printf (" Packet size in buffer : . . %lu bytesnn" , (unsigned long) p >scope) ;
printf (" read : %lu bytesnn" , (unsigned long) p >read) ;
141 printf (" write : %lu bytesnn" , (unsigned long) p >write) ;
printf (" empty : %lu bytesnn" , (unsigned long) p >empty) ;
143 printf (" ready : %lu bytesnn" , (unsigned long) p >ready) ;
printf (" margin : %li bytesnn" , (long) p >margin) ;
145 printf (" overflows : %lu bytesnn" , (unsigned long) p >overflows) ;
printf (" nn") ;
147 g
149 errcode = err ;
211
return p;
151 g
153 //
A.3.5 bytes.h
1 / ===
 PROGRAMMER "BAHN, William"
3 TITLE "Integer Storage Size Type Definitions "
 CREATED 06 FEB 07
5 MODIFIED 06 FEB 07
 FILENAME "bytes .h"
7 ===
 GENERAL DESCRIPTION
9
 This f i l e contains type definitions so that porting from one processor
11 to another is simpler .
 ===
13 SIZE DEFINITIONS

15 The following definitions are used :

17 SIZE UNSIGNED SIGNED
 8 bit BYTE SBYTE
19 16 bit WORD SWORD
 32 bit DWORD SDWORD
21 64 bit QWORD SQWORD (not available on most systems)

23 ===
 To Verify Sizes
25
 Use the VerifySIZES () function passing the largest integer size , in
27 bits , that is of interest .

29 The function returns TRUE if conflicts are found .

31 If an argument of 0 is used , then the return value has a bit set for
 each type definition that didn ? t verify , starting with the shortest
33 length in the LSB.

35 Example you are interested only in integer sizes up to 32 bits .

37 VerifySIZES (32) or VerifySIZES(BITSinDWORD) ;

212
39 ===
 /
41
#ifndef BYTESdotH
43 #define BYTESdotH
45 #define BITSinBYTE (8)
#define BITSinWORD (16)
47 #define BITSinDWORD (32)
#define BITSinQWORD (64)
49
/ ===
51 Normal definitions

53 This the only section that should need to be changed .

55 Determine which integer type is the correct number of bits and update
 the following l i s t . Do not worry about signed/unsigned .
57
 It is not recommended that you actually use these definitions in your
59 code they are simply used in the following type definitions .
 ===
61 /
63 #define NBYTE char
#define NWORD short
65 #define NDWORD int
#define NQWORD long
67
/ ===
69 UNSIGNED TYPE DEFINITIONS
 ===
71 /
73 typedef unsigned NBYTE BYTE;
typedef unsigned NWORD WORD;
75 typedef unsigned NDWORD DWORD;
typedef unsigned NQWORD QWORD;
77
/ ===
79 SIGNED TYPE DEFINITIONS
 ===
81 /
83 typedef signed NBYTE SBYTE;
213
typedef signed NWORD SWORD;
85 typedef signed NDWORD SDWORD;
typedef signed NQWORD SQWORD;
87
/ ===
89 UTILITY FUNCTIONS
 ===
91 /
93 unsigned int VerifySIZES(unsigned int maxlength) ;
95 #endif
A.3.6 bytes.c
/ ===
2 PROGRAMMER "BAHN, William"
 TITLE "Integer Storage Size Type Definitions "
4 CREATED 06 FEB 07
 MODIFIED 06 FEB 07
6 FILENAME "bytes . c"
 ===
8 GENERAL DESCRIPTION

10 NOTE: ANY AVAILABLE "USER GUIDE" IS IN THE ASSOCIATED HEADER FILE.

12 This f i l e contains type definitions so that porting from one processor
 to another is simpler .
14
 ===
16 /
18 #include "bytes .h"
20 int VerifyBYTE(void)
f
22 return (8 sizeof(BYTE) != BITSinBYTE) ;
g
24
int VerifyWORD(void)
26 f
return (8 sizeof(WORD) != BITSinWORD) ;
28 g
30 int VerifyDWORD(void)
214
f
32 return (8 sizeof(DWORD) != BITSinDWORD) ;
g
34
int VerifyQWORD(void)
36 f
return (8 sizeof(QWORD) != BITSinQWORD) ;
38 g
40 unsigned int VerifySIZES(unsigned int maxlength)
f
42 unsigned int flags ;
unsigned int mask;
44
// Generate a flag vector with a 1 set anyplace that does not
46 // verify properly . Note that the bit position is equal to base 2
// log of the number of bytes in the integer type .
48
flags = 0;
50 flags = (flags << 1) + VerifyQWORD() ;
flags = (flags << 1) + VerifyDWORD() ;
52 flags = (flags << 1) + VerifyWORD() ;
flags = (flags << 1) + VerifyBYTE() ;
54
// Convert length from bits to smallest compatible number of bytes .
56
maxlength = (maxlength/8) + ((maxlength%8)?1:0) ;
58
// Generate a mask that is set only in those flag positions of interest .
60
if (maxlength) // report on sizes up to and including maxlength .
62 for (mask = 0; maxlength > 0; maxlength /= 2)
f
64 mask = (mask << 1) + 1;
if ((maxlength > 1)&&(maxlength%2))
66 mask = (mask << 1) + 1;
g
68 else // report on all defined sizes
mask = ~0;
70
return (flags & mask) ;
72 g
A.3.7 codec.h
215
/
2 CODEC for the Real time BBC Codec/Modem

4 William L. Bahn
 Academy Center for Information Security
6 Department of Computer Science
 United States Air Force Academy
8 USAFA, CO 80840

10 FILE : codec .h
 DATE CREATED: 06 SEP 07
12 DATE MODIFIED : . . . 06 SEP 07

14
 REVISION HISTORY
16

18
 DESCRIPTION
20
 The codec encodes and decodes messages to/from BBC encoded packets .
22

24 /
26 #ifndef CODECdotH
#define CODECdotH
28
//
30 // REQUIRED INCLUDES
//
32
#include "config .h"
34 #include "source .h"
#include "buffer .h"
36 #include "sink .h"
#include "dirtyd .h"
38 #include "sha1 .h"
40 typedef struct thread data thread data ;
42
44 //
// STRUCTURE DECLARATIONS
216
46 //
48 typedef struct CODEC CODEC;
50 //
// STRUCTURE DEFINITIONS
52 //
54 // NOTE: Normally the structure definition would be in the .c f i l e to make
// the structure members inaccessible to outside functions except through
56 // public function calls . But for the real time code it has been decided
// to make the structure members directly visible to the functions that
58 // manipulate them .
60 struct CODEC
f
62 // State information
SHA1Context state ; // Pointer to single SHA1 structure
64 SHA1Context digest ; // Pointer to single SHA1 structure
66 // Decode buffer
BYTE msg; // Array containing the message bit contents (1 bit per byte)
68 BYTE checkbit ; // Array indicating whether each bit is a message or check bit
SHA1Context hashstate ; // Array of SHA1 structures
70 g;
72 struct thread data
f
74 CONFIG config ;
BUFFER buffer ;
76 CODEC codec ;
SINK sink ;
78 int running ;
int number;
80 g;
82 //
// PUBLIC FUNCTION PROTOTYPES
84 //
86 CODEC CODEC Del(CODEC p) ;
CODEC CODEC New(CONFIG c , DWORD errcode) ;
88 void Encode(CONFIG c , SOURCE source , CODEC codec , BUFFER buffer) ;
void Decode(CONFIG c , BUFFER buf , CODEC codec , SINK sink) ;
90
217
/ DECODER
92
 The decoder decodes all eight of the packets that start with each of the
94 eight bits in the byte located at the present "read" location of the buffer .

96 The value of the variable " originbit " determines which of the eight offsets
 from the beginning of the byte the present packet starts at . The variable
98 " location " refers to the location of the bit in question relative to the
 beginning of the packet . Therefore , relative to the beginning of the byte
100 where the packet starts , the location is simply " origin + location ". This
 combined location must then be turned into an index and and offset . The
102 "index" refers to which byte within the buffer contains the bit of interest
 while the " offset " identifies the bit within that byte . The "index" value
104 must further account for the fact that the fi r s t byte in the packet is
 located at the "read" point within the index and that the buffer is circular .
106 The " offset " value must be used to mask the byte being examined so that only
 the bit of interest is considered . For speed purposes , this mask is provided
108 by a lookup table "bitmask ".

110 Taking all of this into account , the following steps will check if a
 particular packet bit is set :
112
 index = fread + floor [(location + originbit) /8]g mod bufferlength
114 offset = (location + originbit) mod 8
 status = buffer [index] & bitmask [offset]
116
 Since the buffer length is exactly 2^n long , the residue of the index can
118 be taken by simply retaining only the lower n bits . Similarly , the residue
 of the offset modulo 8 can be taken by only retaining the lower 3 bits . Both
120 of these can be done by performing a bitwise AND with an appropriate mask.
 Finally , the division of the effective location within the packet can be
122 performed by right shifting the sum by 3 bits . Hence we have the following
 equations :
124
 index = (read + ((location + originbit) >> 3)) & buffermask ;
126 offset = (location + originbit) & 0x00000007 ;
 status = buffer [index] & bitmask [offset]
128
 The most challenging part of the decoding algorithm is the backtracking that
130 must take place when the present partial message is finished , either because
 it was found to be a dead end or because it resulted in an actual message .
132 The basic task is to traverse the decoding tree backwards until the last
 partial message bit that was a zero is found . Then that bit is changed to a one
134 and decoding moves forward again . Two special cases have to be taken into
 account . First , if there are no message bits that are zero , then the decoding
218
136 of that packet is finished . Second , checksum bits are always zero and the
 decoder must skip over them without turning them to ones .
138 index 0123456789....
 check 1001001001....
140 msg 0010110110....

142 /
144 //
#endif
A.3.8 codec.c
1 /
 CODEC for the Real time BBC Codec/Modem
3
 William L. Bahn
5 Academy Center for Information Security
 Department of Computer Science
7 United States Air Force Academy
 USAFA, CO 80840
9
 FILE : codec . c
11 DATE CREATED: 06 SEP 07
 DATE MODIFIED : . . . 06 SEP 07
13

15 REVISION HISTORY

17

19 DESCRIPTION

21 The codec and its public interface are described in codec .h

23
 /
25
//
27 // REQUIRED INCLUDES
//
29
#include <stdlib .h> // free () , malloc ()
31
#include "codec .h"
219
33 #include "sha1 .h"
35 #define DECODE LIMIT 0.05 (double)CLOCKS PER SEC
37 //
// STRUCTURE DEFINITIONS
39 //
41 // NOTE: Normally the structure definition would be in the .c f i l e to make
// the structure members inaccessible to outside functions except through
43 // public function calls . But for the real time code it has been decided
// to make the structure members directly visible to the functions that
45 // manipulate them .
47 //
// PRIVATE FUNCTION DEFINITIONS
49 //
51 #define SHA1 HASH DWORDS (5)
53 void ExportMessage(CONFIG c , CODEC codec , SINK sink)
f
55 DWORD i ;
DWORD bit ;
57 DWORD index , offset ;
59 BYTE message ;
61 // Create pointer to next element in sink memory
message = sink >v + (sink >samples sink >sample size bytes) ;
63
// Discard leading random bits
65 for (bit = 0, i = 0; i < c >codec random bits ; i++, bit++)
f
67 while (codec >checkbit [bit])
bit++;
69 g
71 // Extract message bits and pack into byte string
for (i = 0; i < c >codec message bits ; i++, bit++)
73 f
while (codec >checkbit [bit])
75 bit++;
index = i >> 3;
77 offset = i & 0x00000007 ;
220
message [index] &= ~c >bitmask[7 offset];
79 if (codec >msg[bit])
message [index] j= c >bitmask[7 offset];
81 g
83 // Zero pad remainder of last byte if necessary
while (7 != offset)
85 f
i++;
87 offset = i & 0x00000007 ;
message [index] &= ~c >bitmask[7 offset];
89 g
91 // NUL terminate byte string
index++;
93 message [index] = ?n0 ? ;
// printf ("ntnt%snn",message) ;
95 // Advance sink memory pointer
sink >samples++;
97 g
99 //
// PUBLIC FUNCTION DEFINITIONS
101 //
103 CODEC CODEC Del(CODEC p)
f
105 if (p)
f
107 if (p >state) f free (p >state) ; p >state = NULL; g
if (p >digest) f free (p >digest) ; p >digest = NULL; g
109 if (p >hashstate) f free (p >hashstate) ; p >hashstate = NULL; g
if (p >msg) f free (p >msg) ; p >msg = NULL; g
111 if (p >checkbit) f free (p >checkbit) ; p >checkbit = NULL; g
g
113 return NULL;
g
115
CODEC CODEC New(CONFIG c , DWORD errcode)
117 f
CODEC p;
119 DWORD err ;
DWORD check ;
121 DWORD i , run ;
err = 0;
221
123
p = (CODEC) malloc(sizeof(CODEC)) ;
125 if (!p)
err = 1 << 0;
127
if (! err)
129 f
// State information
131 p >state = (SHA1Context) malloc(sizeof(SHA1Context)) ;
p >digest = (SHA1Context) malloc(sizeof(SHA1Context)) ;
133
// Decode Buffer
135 p >msg = (BYTE) malloc(c >padded message bits) ;
p >checkbit = (BYTE) malloc(c >padded message bits) ;
137 p >hashstate = (SHA1Context) malloc(c >padded message bits sizeof(SHA1Context)) ;
139 // Verify successful memory allocation
if (!(p >state)) err j= 1 << 1;
141 if (!(p >digest)) err j= 1 << 2;
if (!(p >msg)) err j= 1 << 3;
143 if (!(p >checkbit)) err j= 1 << 4;
if (!(p >hashstate)) err j= 1 << 5;
145 g
147 if (! err)
f
149 // Initialize checkbit markers
for (check = TRUE, run = 0, i = 0; i < (c >padded message bits c >codec stop bits) ; i++)
151 f
switch (check)
153 f
case TRUE:
155 if (run >= c >codec clamp bits)
f
157 check = FALSE;
run = 0;
159 g
break;
161 case FALSE:
if (run >= c >codec fragment bits)
163 f
check = TRUE;
165 run = 0;
g
167 break;
222
g
169 p >checkbit [i] = check ;
run++;
171 g
173 for (i = 0; i < c >codec stop bits ; i++)
p >checkbit [c >padded message bits c >codec stop bits + i] = TRUE;
175
g
177
if (c >diagnostics)
179 f
// Diagnostic Report
181 printf (" nn") ;
printf ("CODECnn") ;
183 printf (" Creation : %snn" , ((err)? "FAILED":"SUCCEEDED")) ;
printf (" Location : %pnn" , (void) p) ;
185 printf (" Message bits : %linn" , (unsigned long) c >codec message bits) ;
printf (" Random bits : %linn" , (unsigned long) c >codec random bits) ;
187 printf (" Clamp bits : %linn" , (unsigned long) c >codec clamp bits) ;
printf (" Fragment bits : %linn" , (unsigned long) c >codec fragment bits) ;
189 printf (" Stop bits : %linn" , (unsigned long) c >codec stop bits) ;
printf (" Padded message length : . . %linn" , (unsigned long) c >padded message bits) ;
191 printf (" Packet expansion : %linn" , (unsigned long) c >codec expansion) ;
printf (" Packet load : %li messagesnn" , (unsigned long) c >codec packet load) ;
193 printf (" Decode limit : %li messagesnn" , (unsigned long) c >codec decode limit) ;
printf (" Message buffer at : %pnn" , p >msg) ;
195 printf (" Checksum buffer at : %pnn" , p >checkbit) ;
printf (" Hash buffer at : %pnn" , p >hashstate) ;
197 printf (" State buffer at : %pnn" , p >state) ;
printf (" Digest buffer at : %pnn" , p >digest) ;
199 printf (" nn") ;
g
201
if (err)
203 p = CODEC Del(p) ;
205 errcode = err ;
return p;
207 g
209 / DECODER

211 The decoder decodes all eight of the packets that start with each of the
 eight bits in the byte located at the present "read" location of the buffer .
223
213
 The value of the variable " originbit " determines which of the eight offsets
215 from the beginning of the byte the present packet starts at . The variable
 " location " refers to the location of the bit in question relative to the
217 beginning of the packet . Therefore , relative to the beginning of the byte
 where the packet starts , the location is simply " origin + location ". This
219 combined location must then be turned into an index and and offset . The
 "index" refers to which byte within the buffer contains the bit of interest
221 while the " offset " identifies the bit within that byte . The "index" value
 must further account for the fact that the fi r s t byte in the packet is
223 located at the "read" point within the index and that the buffer is circular .
 The " offset " value must be used to mask the byte being examined so that only
225 the bit of interest is considered . For speed purposes , this mask is provided
 by a lookup table "bitmask ".
227
 Taking all of this into account , the following steps will check if a
229 particular packet bit is set :

231 index = fread + floor [(location + originbit) /8]g mod bufferlength
 offset = (location + originbit) mod 8
233 status = buffer [index] & bitmask [offset]

235 Since the buffer length is exactly 2^n long , the residue of the index can
 be taken by simply retaining only the lower n bits . Similarly , the residue
237 of the offset modulo 8 can be taken by only retaining the lower 3 bits . Both
 of these can be done by performing a bitwise AND with an appropriate mask.
239 Finally , the division of the effective location within the packet can be
 performed by right shifting the sum by 3 bits . Hence we have the following
241 equations :

243 index = (read + ((location + originbit) >> 3)) & buffermask ;
 offset = (location + originbit) & 0x00000007 ;
245 status = buffer [index] & bitmask [offset]

247 The most challenging part of the decoding algorithm is the backtracking that
 must take place when the present partial message is finished , either because
249 it was found to be a dead end or because it resulted in an actual message .
 The basic task is to traverse the decoding tree backwards until the last
251 partial message bit that was a zero is found . Then that bit is changed to a one
 and decoding moves forward again . Two special cases have to be taken into
253 account . First , if there are no message bits that are zero , then the decoding
 of that packet is finished . Second , checksum bits are always zero and the
255 decoder must skip over them without turning them to ones .
 index 0123456789....
257 check 1001001001....
224
 msg 0010110110....
259
 /
261
//
263
/
265 The encoding function can be implemented in a more compact , efficient
 way. The method used here is intended to mirror the decode operation
267 as closely as possible . This is reasonable because the encoding
 operation requires constant time regardless of message and is therefore
269 well constrained .

271 /
273 void Encode(CONFIG c , SOURCE source , CODEC codec , BUFFER buffer)
f
275 DWORD msg bit , pmsg bit , r , i , index , offset ;
unsigned int location ;
277 int bit value ;
BYTE msg;
279 DWORD message stop ;
clock t ticks ;
281 DWORD marks;
283 ticks = clock () ;
285 marks = 0;
message stop = source >sample + c >codec packet load ;
287 if (message stop > source >samples)
message stop = source >samples ;
289
// Place bookend marks
291 location = 0;
index = (buffer >write + (location >> 3)) & buffer >buffermask ;
293 offset = location & 0x00000007 ;
if (buffer >buffer [index] & c >bitmask [offset])
295 marks ;
buffer >buffer [index] j= c >bitmask [offset];
297 marks++;
299 location = c >last packet bit ;
index = (buffer >write + (location >> 3)) & buffer >buffermask ;
301 offset = location & 0x00000007 ;
if (buffer >buffer [index] & c >bitmask [offset])
225
303 marks ;
buffer >buffer [index] j= c >bitmask [offset];
305 marks++;
307 while (source >sample < message stop)
f
309 if (c >diagnostics)
printf ("Encoding message #%lunn" , source >sample) ;
311 // Compute pointer to beginning of present message in source buffer
msg = (BYTE) source >v + source >sample source >sample size bytes ;
313
// Initialize Hash Function state to the Initial Vector
315 SHA1Reset(codec >state) ;
317 // Load message into the codec ?s message buffer
for (pmsg bit = 0, r = 0, msg bit = 0 ; pmsg bit < c >padded message bits ; pmsg bit++)
319 f
if (codec >checkbit [pmsg bit])
321 bit value = 0;
else
323 f
if (r < c >codec random bits)
325 f
bit value = rand() < (RANDMAX >> 1) ;
327 r++;
g
329 else
f
331 index = msg bit >> 3;
offset = msg bit & 0x00000007 ;
333 bit value = (msg[index] & c >bitmask[7 offset]) ? 1 : 0;
msg bit++;
335 g
g
337 SHA1Input(codec >state , c >bitptr + bit value , 1) ;
339 // Compute hash result for present prefix
 (codec >digest) = (codec >state) ;
341 SHA1Result(codec >digest) ;
343 // Generate mark location for present prefix
location = 0;
345 for (i = 0; i < SHA1 HASH DWORDS; i++)
location += ((codec >digest) >Message Digest [i])<<i ;
347 location %= c >packet bits ;
226
349 // Place mark for present prefix
index = (buffer >write + (location >> 3)) & buffer >buffermask ;
351 offset = location & 0x00000007 ;
if (buffer >buffer [index] & c >bitmask [offset])
353 marks ;
buffer >buffer [index] j= c >bitmask [offset];
355 marks++;
g
357 source >sample++;
g
359
if (source >sample >= source >samples)
361 f
// Last packet has been encoded . Advance buffer past last packet .
363 source >streaming = FALSE;
c >buffer advance = c >bufferbytes per packet ;
365 g
367 // Advance buffer write pointer to next packet write location .
buffer >write = (buffer >write + c >buffer advance) & buffer >buffermask ;
369 buffer >margin = c >buffer advance ;
buffer >ready += c >buffer advance ;
371
c >dec ticks += clock () ticks ;
373 g
375 void Decode(CONFIG c , BUFFER buf , CODEC codec , SINK sink)
f
377
379 SDWORD i , bit ;
DWORD location , index , offset , originbit ;
381 clock t ticks ;
DWORD limit ;
383 ticks = clock () ;
// if (c >diagnostics)
385 // printf (" Begining new Decode buf >read=[%i]nn", buf >read) ;
// Process all 8 packets that begin within the byte at the front of the buffer
387 for (originbit = 0; originbit < 8; originbit++ / && (clock () ticks) < DECODE LIMIT /)
f
389 if ((sink >sample limit sink >samples) > c >codec decode limit)
limit = (sink >sample limit sink >samples) ;
391 else
limit = c >codec decode limit ;
227
393
// Check for bookend marks
395 index = (buf >read + (originbit >> 3)) & buf >buffermask ;
offset = (originbit) & 0x00000007 ;
397 if (!(buf >buffer [index] & c >bitmask [offset]))
break;
399
index = (buf >read + ((originbit + c >last packet bit) >> 3)) & buf >buffermask ;
401 offset = (originbit + c >last packet bit) & 0x00000007 ;
if (!(buf >buffer [index] & c >bitmask [offset]))
403 break;
405 // Initialize Hash Function state to the Initial Vector
SHA1Reset(codec >state) ;
407 bit = 0;
codec >msg[bit] = 0;
409 // printf (" index=[%i] offset=[%i]nn", index , offset) ;
while (TRUE) // Loop will terminate with a "break" call
411 f
/ if ((clock () ticks) > DECODE LIMIT)
413 break ; /
// Update the hash state for the new message bit
415 SHA1Input(codec >state , c >bitptr + codec >msg[bit] , 1) ;
417 // Compute the packet bit location corresponding to the hash
 (codec >digest) = (codec >state) ;
419 SHA1Result(codec >digest) ;
location = 0;
421 for (i = 0; i < SHA1 HASH DWORDS; i++)
location += ((codec >digest) >Message Digest [i])<<i ;
423 location %= c >packet bits ;
425 // Check for mark at calculated location
index = (buf >read + ((originbit + location) >> 3)) & buf >buffermask ;
427 offset = (originbit + location) & 0x00000007 ;
// printf ("ntindex=[%i] offset=[%i] location=[%i] (buf >buffer=[%i] & c >bitmask=[%i])=[%i]nn
", index , offset , location , buf >buffer [index] , c >bitmask [offset] ,
429 //(buf >buffer [index] & c >bitmask [offset])) ;
if (buf >buffer [index] & c >bitmask [offset])
431 f
// printf ("ntntEnternn") ;
433 // Update hash state for present partial message
codec >hashstate [bit] = (codec >state) ;
435 bit++;
// IF a complete message hasn ? t been decoded yet
228
437 if ((DWORD) bit < c >padded message bits)
f
439 // Start with 0 for next bit in partial message
codec >msg[bit] = 0;
441 // printf ("ntntContinuenn") ;
continue;
443 g
// ELSE a complete message has been found
445 // printf ("ntntComplete message foundnn") ;
c >message count++;
447 ExportMessage(c , codec , sink) ;
bit ;
449 limit ;
if (0 == limit)f
451 // printf ("ntntlimit==0 breaknn") ;
break;
453 g
g
455
// Backtrack to last message bit that is a zero
457 while ((bit >= 0) && (codec >checkbit [bit] jj codec >msg[bit]))
bit ;
459
// If no bits are zero , then decoding is finished
461 if (bit < 0)
break;
463
// Change last zero bit to a one
465 codec >msg[bit] = 1;
467 // Reset hash state
if (0 == bit) // to initial vector
469 SHA1Reset(codec >state) ;
else // to vector of previous partial message
471 (codec >state) = codec >hashstate [bit 1];
g
473 g
buf >read = (buf >read + 1) & buf >buffermask ;
475 buf >empty++;
buf >margin ;
477 // if (c >diagnostics)
// printf ("ntDecode time : %0.05 fnn", ((clock () ticks)/(double)CLOCKS PER SEC)) ;
479 c >dec ticks += clock () ticks ;;
g
481
229
//
A.3.9 con g.h
/
2 Configuration Module for the Real time BBC Codec/Modem

4 William L. Bahn
 Academy Center for Information Security
6 Department of Computer Science
 United States Air Force Academy
8 USAFA, CO 80840

10 FILE : config .h
 DATE CREATED: 03 SEP 07
12 DATE MODIFIED : . . . 08 SEP 07

14
 REVISION HISTORY
16

18
 DESCRIPTION
20
 This module imports and manages the configuration information for the
22 modem and the codec .

24 /
26 #ifndef CONFIGdotH
#define CONFIGdotH
28
//
30 // REQUIRED INCLUDES
//
32
#include <time .h>
34
#include "dirtyd .h"
36
//
38 // STRUCTURE DECLARATIONS
//
40
typedef struct CONFIG CONFIG;
230
42
//
44 // STRUCTURE DEFINITIONS
//
46
// NOTE: Normally the structure definition would be in the .c f i l e to make
48 // the structure members inaccessible to outside functions except through
// public function calls . But for the real time code it has been decided
50 // to make the structure members directly visible to the functions that
// manipulate them .
52
struct CONFIG
54 f
int diagnostics ;
56
// Direction
58 int scheduler TX notRX ;
int scheduler realtime ;
60
// Source Parameters
62 char path ;
char source name ;
64 DWORD source sample size bytes ;
DWORD source sample limit ;
66 WORD source id ;
68 // Codec Parameters
DWORD codec message bits ;
70 DWORD codec random bits ;
DWORD codec clamp bits ;
72 DWORD codec fragment bits ;
DWORD codec stop bits ;
74 DWORD codec expansion ;
DWORD codec decode limit ;
76 DWORD codec packet load ;
78 // Derived Codec Parameters
DWORD fragments ; // Number of complete fragement in padded message
80 DWORD padded message bits ; // Length of message after padding with random and check bits
DWORD packet bits ;
82 DWORD last packet bit ;
DWORD bytes per message ;
84 DWORD bytes per packet ;
DWORD bufferbytes per packet ;
86
231
// Buffer Parameters
88 double buffer packets ;
double buffer lambda ;
90 DWORD buffer advance ;
92 // Modem Parameters
DWORD modem packet rate bps ;
94 DWORD modem samples per bit ;
double modem gain dB;
96 double modem channel loss dB ;
double modem threshold pct ;
98 double modem hysteresis pct ;
double modem jitter bits ;
100 double modem cushion pct ;
// Derived Modem Parameters
102 //DWORD bytes per sample ;
double nominal tx signal ;
104 double nominal rx signal ;
DWORD trx bytes per packet byte ;
106 DWORD cushion bits ;
108 // Sink Parameters
char sink name ;
110 DWORD sink sample size bytes ;
DWORD sink sample limit ;
112
// Misc
114 DWORD message count ;
DWORD marks;
116
// Lookup tables
118 BYTE bitptr [2]; // 0 and 1 represented as BYTEs that can be passed by reference
BYTE bitmask [8]; // Masks to pick off the bits within a byte
120
// Tally Counters
122 DWORD actual trx bytes ;
DWORD nominal trx bytes ;
124 double bytespertick ;
clock t dem ticks ;
126 clock t dec ticks ;
clock t ticks ;
128 clock t tot ticks ;
130 g;
232
132 //
// PUBLIC FUNCTION PROTOTYPES
134 //
136 CONFIG CONFIG Del(CONFIG p) ;
CONFIG CONFIG New(char filename , DWORD errcode) ;
138
//
140 #endif
A.3.10 con g.c
/
2 Configuration Module for the Real time BBC Codec/Modem

4 William L. Bahn
 Academy Center for Information Security
6 Department of Computer Science
 United States Air Force Academy
8 USAFA, CO 80840

10 FILE : config . c
 DATE CREATED: 03 SEP 07
12 DATE MODIFIED : . . . 03 SEP 07

14
 REVISION HISTORY
16

18
 DESCRIPTION
20
 This module imports and manages the configuration information for the
22 modem and the codec .

24 /
26 //
// REQUIRED INCLUDES
28 //
#include <stdlib .h> // malloc () , free ()
30 #include <math.h>
#include <string .h>
32 #include <ctype .h>
233
34 #include "config .h"
#include "dirtyd .h"
36
#define USRP SAMPLE SIZE (2 sizeof(float))
38
//
40 // STRUCTURE DEFINITIONS
//
42
// NOTE: Normally the structure definition would be in the .c f i l e to make
44 // the structure members inaccessible to outside functions except through
// public function calls . But for the real time code it has been decided
46 // to make the structure members directly visible to the functions that
// manipulate them .
48
//
50 // PRIVATE FUNCTION DEFINITIONS
//
52
// Nominal String : xxx"filename"xxxx
54 // If both double quotes are not found , a NULL pointer is returned .
56 char ExtractName(char s)
f
58 char filename ;
char t ;
60 int len ;
62 filename = NULL;
64 // Advance s to f ir s t double quote or end of string
while ((s)&&(?n" ? != s))
66 s++;
// If double quote found , advance to next character
68 if (s)
s++;
70 // Advance t to next double quote or end of string
for (t = s ; (t)&&(?n" ? != t) ; t++)
72 EMPTYLOOP;
74 // Calculate length of string between f i rs t pair of double quotes
len = t s ;
76
t = filename = malloc(len + 1) ;
78
234
if (filename)
80 f
while (len)
82 t++ = s++;
 t = ?n0 ? ;
84 g
86 return filename ;
g
88
// NOTE: The character string may me changed by this function .
90
void UpdateConfig(CONFIG c , char string)
92 f
char s , v;
94 DWORD vi ;
double vf ;
96
if ((! c)jj(! string))
98 return;
// Advance into string to fi r st non whitespace character
100 for (s = string ; isspace (s) ; s++)
EMPTYLOOP;
102
// Ignore blank or comment lines
104 if ((NUL == s)jj(?#? == s))
return;
106
// Identify parameter keyword and convert to uppercase
108 for (v = s ; (v) && (!((isspace (v)) jj (? : ? == v) jj (?=? == v))) ; v++)
 v = toupper(v) ;
110 // Terminate keyword and start value immediately after (if anything there)
if (v)
112 v++ = NUL;
114 // Skip over whitespace , colons , and equal signs .
while ((isspace (v)) jj (? : ? == v) jj (?=? == v))
116 v++;
118 // Process those parameters that use string values
if (! strcmp(s , "PATH")) c >path = ExtractName(v) ;
120 else if (! strcmp(s , "SOURCENAME")) c >source name = ExtractName(v) ;
else if (! strcmp(s , "SINK NAME")) c >sink name = ExtractName(v) ;
122 else if (! strcmp(s , "DIAGNOSTICS"))
/ f
235
124 if (! strcmp(v ,"True")) /
c >diagnostics = TRUE;
126 //g
else
128 f
// Process remaining parameters
130
// Extract value from string
132 vi = atoi (v) ;
vf = atof (v) ;
134
// SCHEDULER Configuration
136
if (! strcmp(s , "SCHEDULER TX NOTRX")) c >scheduler TX notRX = vi ;
138 else if (! strcmp(s , "SCHEDULER REALTIME")) c >scheduler realtime = vi ;
140 // SOURCE Configuration
else if (! strcmp(s , "SOURCE ID")) c >source id = vi ;
142 // SOURCE NAME processed above due to string value
144 // CODEC Configuration
else if (! strcmp(s , "CODEC MESSAGE BITS")) c >codec message bits = vi ;
146 else if (! strcmp(s , "CODEC RANDOM BITS")) c >codec random bits = vi ;
else if (! strcmp(s , "CODEC CLAMP BITS")) c >codec clamp bits = vi ;
148 else if (! strcmp(s , "CODEC FRAGMENT BITS")) c >codec fragment bits = vi ;
else if (! strcmp(s , "CODEC STOP BITS")) c >codec stop bits = vi ;
150 else if (! strcmp(s , "CODEC EXPANSION")) c >codec expansion = vi ;
else if (! strcmp(s , "CODEC PACKET LOAD")) c >codec packet load = vi ;
152 else if (! strcmp(s , "CODEC DECODE LIMIT")) c >codec decode limit = vi ;
154 // BUFFER Configuration
else if (! strcmp(s , "BUFFER PACKETS")) c >buffer packets = vi ;
156 else if (! strcmp(s , "BUFFERLAMBDA")) c >buffer lambda = vf ;
158 // MODEM Configuration
else if (! strcmp(s , "MODEM PACKET RATE BPS")) c >modem packet rate bps = vi ;
160 else if (! strcmp(s , "MODEM SAMPLES PER BIT")) c >modem samples per bit = vi ;
else if (! strcmp(s , "MODEM GAIN DB")) c >modem gain dB = vf ;
162 else if (! strcmp(s , "MODEM CHANNEL LOSS DB")) c >modem channel loss dB = vf ;
else if (! strcmp(s , "MODEMTHRESHOLDPCT")) c >modem threshold pct = vf ;
164 else if (! strcmp(s , "MODEM HYSTERESIS PCT")) c >modem hysteresis pct = vf ;
else if (! strcmp(s , "MODEM JITTER BITS")) c >modem jitter bits = vf ;
166 else if (! strcmp(s , "MODEM CUSHION PCT")) c >modem cushion pct = vf ;
168 // SINK Configuration
236
// SOURCE FILE NAME processed above due to string value
170 else if (! strcmp(s , "SINK SAMPLE LIMIT")) c >sink sample limit = vi ;
g
172 g
174 //
// PUBLIC FUNCTION DEFINITIONS
176 //
178 CONFIG CONFIG Del(CONFIG p)
f
180 if (p)
f
182 if (p >source name)
f
184 free (p >source name) ;
p >source name = NULL;
186 g
if (p >sink name)
188 f
free (p >sink name) ;
190 p >sink name = NULL;
g
192 free (p) ;
p = NULL;
194 g
196 return p;
g
198
CONFIG CONFIG New(char filename , DWORD errcode)
200 f
CONFIG p;
202 FILE fp ;
DWORD err ;
204 int i ;
char s ;
206
p = NULL;
208 err = 0;
s = NULL;
210
p = (CONFIG) malloc(sizeof(CONFIG)) ;
212 if (!p)
err j= 1 << 0;
237
214
if (! err)
216 f
//
218 // NOTE: Establish default values and then overwrite with f i l e data
//
220
p >diagnostics = FALSE;
222
// Direction
224 p >scheduler TX notRX = TRUE;
p >scheduler realtime = FALSE;
226
// Source Parameters
228 p >path = NULL;
p >source name = NULL;
230 p >source id = 0;
232 // Codec Parameters
p >codec message bits = 512;
234 p >codec random bits = 0;
p >codec clamp bits = 1;
236 p >codec fragment bits = 1;
p >codec stop bits = 100;
238 p >codec expansion = 100;
p >codec packet load = 5;
240 p >codec decode limit = 100;
242 // Buffer Parameters
p >buffer packets = 2.0;
244 p >buffer lambda = 1.0;
246 // Modem Parameters
p >modem packet rate bps = 500000;
248 p >modem cushion pct = 10.0;
p >modem samples per bit = 4;
250 p >modem threshold pct = 46.3744;
p >modem hysteresis pct = 5.0;
252 p >modem gain dB = 80.0;
p >modem channel loss dB = 3.0;
254 p >modem jitter bits = 3.0;
256 // Sink Parameters
p >sink name = NULL;
258 p >sink sample limit = 0;
238
p >sink sample size bytes = 0;
260
//
262 // Update values from configuration f i l e
//
264
if (filename)
266 f
fp = fopen(filename , "rt") ;
268 if (fp)
f
270 while (! feof (fp))
f
272 s = fdgets (fp) ;
UpdateConfig(p, s) ;
274 if (s)
free (s) ;
276 s = NULL;
g
278 fclose (fp) ;
g
280 else
err j= 1 << 1;
282 g
284 //
// Calculate derived parameters
286 //
288 // bitmasks to mask bits within a byte .
for (i = 0; i < 8; i++)
290 p >bitmask [i] = ((BYTE) 1) << i ;
292 // Set USRP sample size to two floats (complex IQ)
if (p >scheduler TX notRX)
294 p >sink sample size bytes = USRP SAMPLE SIZE;
else
296 p >source sample size bytes = USRP SAMPLE SIZE;
298 // Set sink sample limit
if (!p >sink sample limit)
300 f
if (p >scheduler TX notRX)
302 p >sink sample limit = 2000000;
else
239
304 p >sink sample limit = 1000;
g
306
// Set source filename to default if not set by config f i l e
308 if (!p >source name)
f
310 if (p >scheduler TX notRX)
f
312 p >source name = malloc(strlen ("usrp . txd")+1);
if (p >source name)
314 strcpy (p >source name , "usrp . txd") ;
g
316 else
f
318 p >source name = malloc(strlen ("usrp . srp")+1);
if (p >source name)
320 strcpy (p >source name , "usrp . srp") ;
g
322 g
324 // Set sink filename to default if not set by config f i l e
if (!p >sink name)
326 f
if (p >scheduler TX notRX)
328 f
// Sink Parameters
330 p >sink name = malloc(strlen ("usrp . srp")+1);
if (p >sink name)
332 strcpy (p >sink name , "usrp . srp") ;
g
334 else
f
336 // Sink Parameters
p >sink name = malloc(strlen ("usrp . rxd")+1);
338 if (p >sink name)
strcpy (p >sink name , "usrp . rxd") ;
340 g
g
342
// Calculate and store derived quantities
344 p >bytes per message = p >codec message bits /8;
if (p >bytes per message % 8)
346 p >bytes per message++;
p >packet bits = (p >codec message bits p >codec expansion) ;
348 p >last packet bit = p >packet bits 1;
240
350 p >bytes per packet = p >packet bits /8;
if (p >bytes per packet % 8)
352 p >bytes per packet++;
p >bufferbytes per packet = p >bytes per packet + 1;
354 p >buffer advance = (DWORD) (p >bytes per packet p >buffer lambda) ;
356 p >cushion bits = (DWORD) (p >packet bits p >modem cushion pct / 100.0) ;
358 p >nominal tx signal = pow(10.0 , (p >modem gain dB) /20.0) ;
p >nominal rx signal = pow(10.0 , (p >modem gain dB p >modem channel loss dB) /20.0) ;
360
// Compute storage requirments for BBC decode tree
362 if ((0 == p >codec clamp bits)jj(0 == p >codec fragment bits))
f
364 p >codec clamp bits = 0;
p >codec fragment bits = p >codec random bits + p >codec message bits ;
366 g
p >fragments = (p >codec random bits + p >codec message bits)/p >codec fragment bits ;
368 p >padded message bits = p >fragments (p >codec clamp bits + p >codec fragment bits) ;
if ((p >codec random bits + p >codec message bits) % p >codec fragment bits)
370 f
p >padded message bits += p >codec clamp bits ;
372 p >padded message bits += (p >codec random bits + p >codec message bits)%p >
codec fragment bits ;
g
374 p >padded message bits += p >codec stop bits ;
376 //Lookup tables
// 0 and 1 represented as BYTEs that can be passed by reference
378 p >bitptr [0] = 0;
p >bitptr [1] = 1;
380
// Tally counters ;
382 p >message count = 0;
384 // State information
p >marks = 0;
386
// Tally Counters
388 p >actual trx bytes = 0;
p >nominal trx bytes = 0;
390 p >dem ticks = 0;
p >dec ticks = 0;
392 p >ticks = 0;
241
p >tot ticks = 0;
394
p >trx bytes per packet byte = 8 p >modem samples per bit USRP SAMPLE SIZE;
396 p >bytespertick = (p >modem packet rate bps
 p >modem samples per bit
398 USRP SAMPLE SIZE
) / ((double)CLOCKS PER SEC) ;
400 g
if (err)
402 p = CONFIG Del(p) ;
404
 errcode = err ;
406 return p;
g
408
//
A.3.11 dirtyd.h
/
2 ===
 PROGRAMMER "BAHN, William"
4 TITLE "Simple Utilty Functions"
 CREATED 08 FEB 07
6 MODIFIED 08 FEB 07
 FILENAME " dirtyd . c"
8 ===
 /
10
/
12 ===
 GENERAL DESCRIPTION
14
 This f i l e contains many useful functions and more are added from time
16 to time .
 ===
18 /
20 /
 ===
22 REVISION HISTORY

24 REV 2: 02 DEC 03
 Added the GetBoundedInt () function
242
26 Added the InBounds () macro
 Added the GetDouble () function
28
 REV 1: 28 NOV 03
30 Added the PI macro (good to 20 digits)
 Added the StripCR () function .
32 Added the ClearBuffer () function .
 Added the WaitForKey() function .
34
 REV 0: 09 NOV 03
36
 Initial Creation .
38 ===
 /
40
42 #ifndef DirtyD H
#define DirtyD H
44
// This directive prevents the prototypes and , most importantly , the
46 // function definitions (which would normally be in a separate . c f i l e)
// from being included more than once .
48 //
// At the end of the excluded block of code , the identifier is defined .
50
//===
52 //== INCLUDE FILES ==
//===
54 #include <stdio .h> // FILE
#include "bytes .h"
56
//===
58 //== MACRO DEFINITIONS ==
//===
60
#define FALSE (0)
62 #define TRUE (!FALSE)
64 #define LO (FALSE)
#define HI (TRUE)
66
#define PI (3.1415926358979323846)
68
#define RET DEFAULT (0)
70 #define RET CLIPPED (1)
243
72 #define DD CLIP NONE (0x00)
#define DD CLIP MIN (0x01)
74 #define DD CLIP MAX (0x02)
#define DD CLIP MINMAX (0x03)
76
#define BLANKLINE putc(?nn ? , stdout) ;
78 #define EMPTYLOOP fg
#define NUL (?n0 ?)
80
#define InBounds(min, test , max) (((min) <= (test)) && ((test) < (max)))
82
//===
84 //== FUNCTION PROTOTYPES ==
//===
86
// Get input from a stream
88 char fdgets (FILE fp) ;
char fdgetc (FILE fp) ;
90 int fdgeti (FILE fp) ;
long int fdgetl (FILE fp) ;
92 float fdgetf (FILE fp) ;
double fdgetd (FILE fp) ;
94
// Get input from stdin
96 char dgets (void) ;
char dgetc(void) ;
98 int dgeti (void) ;
long int dgetl (void) ;
100 float dgetf (void) ;
double dgetd(void) ;
102
104 void PrintHeader(void) ;
char StripCR(char s) ;
106 char GetFileName(char name, char ext , int size) ;
FILE OpenAndVerify(char name, char mode) ;
108 int rand int (int min, int max) ;
double rand norm(void) ;
110 double rand fp (double xmin , double max) ;
void ExitIfError (int errcode) ;
112 int GetBoundedInt(int min, int max, int def , int mode) ;
double GetBoundedDouble(double min, double max, double def , int mode) ;
114 double BoundedDouble(double x, double min, double max, int mode) ;
double StringToBoundedDouble(char s , double def , double min, double max, int mode) ;
244
116
int GetInt(int min, int max) ;
118 double GetDouble(double min, double max) ;
120 void my memory(FILE log , void p, size t bytes , int action , char s) ;
void free1D(void p) ;
122 void malloc1D(size t cols , size t size) ;
void free2D(void p, size t rows) ;
124 void malloc2D(size t rows , size t cols , size t size) ;
void free3D(void p, size t sheets , size t rows) ;
126 void malloc3D(size t sheets , size t rows , size t cols , size t size) ;
128 DWORD Bits2Bytes(DWORD bits) ;
BYTE MemorySet(BYTE p, DWORD bytes , BYTE v) ;
130 BYTE MemoryCopy(BYTE dest , BYTE src , DWORD bytes) ;
void DisplayHEX(FILE fp , BYTE p, DWORD bytes , int mode) ;
132
BYTE GetBit(BYTE d, size t size , DWORD bit) ;
134 void SetBit (BYTE d, size t size , DWORD bit , int v) ;
136 char ParseString (char s , char fdelim , char tdelim) ;
138 DWORD rand DWORD(DWORD max) ;
140 int memequal(char s1 , char s2 , DWORD bytes) ;
142 #endif
A.3.12 dirtyd.c
1 /
 ===
3 PROGRAMMER "BAHN, William"
 TITLE "Simple Utilty Functions"
5 CREATED 08 FEB 07
 MODIFIED 08 FEB 07
7 FILENAME " dirtyd . c"
 ===
9 /
11 /
 ===
13 GENERAL DESCRIPTION

15 This f i l e contains many useful functions and more are added from time
245
 to time .
17 ===
 /
19
/
21 ===
 REVISION HISTORY
23
 REV 2: 02 DEC 03
25 Added the GetBoundedInt () function
 Added the InBounds () macro
27 Added the GetDouble () function
29 REV 1: 28 NOV 03
 Added the PI macro (good to 20 digits)
31 Added the StripCR () function .
 Added the ClearBuffer () function .
33 Added the WaitForKey() function .
35 REV 0: 09 NOV 03

37 Initial Creation .
 ===
39 /
41
//===
43 //== INCLUDE FILES ==
//===
45 #include <stdlib .h> // exit ()
#include <string .h> // strlen ()
47 #include <ctype .h>
#include "dirtyd .h"
49
//===
51 //== FUNCTION DEFINITIONS ===
//===
53
//===
55 // FUNCTION: PrintHeader ()
// #include <stdio .h> // printf ()
57 //===
#ifdef PROGRAMMER
59
// This function assumes that the #define statements that create these
246
61 // identifiers are used , typically in the function where main() is defined .
//
63 // By checking if one of them is declared , this function can be skipped if
// necessary so that the other functions can be used . However , if this
65 // function IS to be available , then it is important that the compiler
// encounter the necessary #define statements before this f i l e is included
67 // for the very fi r s t time .
69 void PrintHeader(void)
f
71 printf ("=="
"=======================================nn") ;
73 printf ("Course %s %i (%s %i)nn" , COURSE, SECTION, TERM, YEAR) ;
printf ("Programmer . . . %s (%s)nn" , PROGRAMMER, PROGCODE) ;
75 printf ("Assignment . . . %s (Rev %i) (Source Code in %s)nn" ,
ASSIGNMENT, REVISION, FILENAME) ;
77 printf ("Description .. %snn" , TITLE) ;
printf (" %snn" , SUBTITLE) ;
79 printf ("=="
"=======================================nn") ;
81 return;
g
83 #endif
85 / ===
 INPUT FUNCTIONS
87
 In general , the use of scanf () and its sister functions is to be
89 avoided at nearly all costs . These functions can be quite useful and
 certainly have their place , but for the vast majority of users , they
91 cause for more problems than they are worth .

93 The preferred method is to use fgets () , which provides enough
 information to permit quite robust input validation .
95
 char fgets (char s , int n, FILE fp)
97
 The pointer ?s ? (which is also the return value of the function) must
99 point to a writeable string in memory containing at least ?n ? bytes .

101 The function will read from the input stream ? fp ? until either (n 1)
 bytes or a newline character has been read from the stream , which ever
103 comes fi r st . All bytes read from the stream , including the newline
 character , are copied to the string pointed to by ?s ?. The string is
105 then terminated by a NUL character .
247

107 The reason that the newline character is copied is so that an inspection
 of the returned string can determine if the entire line was retrieved
109 or if there were too many characters to f i t into the available string .

111 PHILOSOPHY

113 Most of the time , Users want to get single items from the keyboard and
 if something goes wrong (e . g . , the User types a string longer than can
115 be handled) then it is usually sufficient to make that known to the
 program and let the programmer worry about how to deal with it .
117
 The "input string longer than the input buffer " problem can be dealt
119 with by using a dynamically allocated buffer that grows to accommodate
 the length of the string actually entered .
121
 ===
123 /
125 //===
//== FUNCTION DEFINITIONS ===
127 //===
129 char fdgets (FILE fp)
f
131 char s ; // Pointer to the dynamically growing string buffer .
size t size ; // Present length of the string buffer .
133 size t len ; // Present length of the string in the string buffer .
int c ; // Character read from the input stream
135
s = NULL;
137 size = 1; // Initial size that will be allocated .
len = 0;
139
if (NULL == fp)
141 fp = stdin ;
143 while ((NULL == s) jj (NUL != s [len 1]))
f
145 // Double the buffer size
if (2 size < size) // Protect against wrap around
147 f
if (s)
149 f
free (s) ;
248
151 s = NULL;
g
153 return s ;
g
155
size = 2;
157 s = (char) realloc (s , size) ;
if (NULL == s)
159 return s ; // Failed to reallocate string buffer
161 // Read in more characters up to the buffer capacity
do
163 f
c = fgetc (fp) ;
165 s [len++] = ((EOF == c)jj(?nn ? == c))? NUL : (char) c ;
g while ((len < size) && (NUL != s [len 1])) ;
167 g
return s ;
169 g
171 char fdgetc (FILE fp)
f
173 char s ;
char n;
175
s = fdgets (fp) ;
177 n = 0;
if (s)
179 f
n = s ;
181 free (s) ;
g
183
return n;
185 g
187 int fdgeti (FILE fp)
f
189 char s ;
int n;
191
s = fdgets (fp) ;
193 n = 0;
if (s)
195 f
249
n = atoi (s) ;
197 free (s) ;
g
199
return n;
201 g
203 long int fdgetl (FILE fp)
f
205 char s ;
long int n;
207
s = fdgets (fp) ;
209 n = 0;
if (s)
211 f
n = atol (s) ;
213 free (s) ;
g
215
return n;
217 g
219 float fdgetf (FILE fp)
f
221 char s ;
float n;
223
s = fdgets (fp) ;
225 n = 0;
if (s)
227 f
n = (float) atof (s) ;
229 free (s) ;
g
231
return n;
233 g
235 double fdgetd (FILE fp)
f
237 char s ;
double n;
239
s = fdgets (fp) ;
250
241 n = 0;
if (s)
243 f
n = atof (s) ;
245 free (s) ;
g
247
return n;
249 g
// Functions that get only from stdin
251 char dgets (void)
f
253 return fdgets (stdin) ;
g
255
char dgetc(void)
257 f
return fdgetc (stdin) ;
259 g
261 int dgeti (void)
f
263 return fdgeti (stdin) ;
g
265
long int dgetl (void)
267 f
return fdgetl (stdin) ;
269 g
271 float dgetf (void)
f
273 return fdgetf (stdin) ;
g
275
double dgetd(void)
277 f
return fdgetd (stdin) ;
279 g
281 / ===
 FUNCTION: StripCR ()
283 ===
 This functions strips any trailing Carriage Returns from the end of a
285 string . In order to catch carriage returns that might be embedded in
251
 the middle of a string , it scans the string from the beginning and looks
287 for a Line Feed , or a Carriage Return and replaces the fi r s t occurance
 with a NULL terminator . The use of a do/while () loop allows the test
289 to operate on the character just examined (and possibly modified) so
 that is exits correctly regardless of the NULL terminitor found was
291 inserted by the loop or was part of the original string .
 ===
293 /
295 char StripCR(char s)
f
297 int i ;
299 i = 1;
do
301 f
switch(s[++i])
303 f
case 10: // Line Feed
305 case 13: // Carriage Return
s [i] = ?n0 ? ;
307 g
g while(?n0 ? != s [i]) ;
309
return(s) ;
311 g
313 //===
// FUNCTION: GetFileName ()
315 //===
// This functions gets the a f i l e name from the standard input device and
317 // returns a string pointer to it . There are several modes in which it can
// be used .
319 //
// The simplest is to pass null arguments for the name and ext variables
321 // and 0 for the size . This t e l l s the function to dynamically allocate
// enough memory to accommodate whatever is submitted and to return a
323 // pointer to the allocated memory.
//
325 // Example :
//
327 // char filename ;
//
329 // filename = GetFileName(NULL, NULL, 0) ;
//
252
331 // The next easiest way is to allocate memory yourself for the string and
// t e l l the function where that memory is located . This is most often done
333 // using a statically allocate character array but previously allocated
// dynamic memory will work the same way. Here you MUST t e l l the function
335 // how much memory is available for the string . The function will ensure
// that the string does not exceed the indicated size , including the null
337 // terminator .
//
339 // Example :
//
341 // char filename [13];
//
343 // GetFileName(filename , NULL, 13) ;
//
345 // If you provide a non NULL pointer for name and you indicate a size of
// zero , the function will assume that the pointer is for previously
347 // allocated memory that is to be freed and then the pointer re used to
// point to new memory. Therefore , do NOT pass the name of a static array
349 // under these conditions as a runtime error will result .
//
351 // The ext argument can be used to provide a default f i l e extension . If
// the user enters an extension , this parameter will be ignored . If the
353 // user does not include an extension , the one supplied will be appended .
// Whether the user entered an extension is determined by checking for the
355 // presence of a period anywhere in the string .
//
357 // If the given value for ext is NULL, then no extension will be added
// even if the user does not supply one . If the value given for ext is
359 // a pointer to a null string (i . e . , "") , then if an extension is not
// supplied by the user an empty extension will be added meaning that
361 // the ?. ? delimiter will be added but nothing more.
363 char GetFileName(char name, char ext , int size)
f
365 int length ;
char c ;
367 int endloop ;
int extgiven ;
369
// Check if size is negative
371 if(0>size)
return(NULL) ;
373
// Check to see if string is static or dynamic
375 if ((NULL == name) jj (0 == size))
253
f
377 // String is dynamic
length = 0;
379 name = realloc (name, length + 1) ;
name[length] = ?n0 ? ;
381 g
else
383 f
// String is static or fixed length
385 if (size < (int) (strlen (ext)+3)) // Extension too long , ignore it .
ext = NULL;
387 g
389 endloop = FALSE;
extgiven = FALSE;
391
while (! endloop)
393 f
// Check if there is enough room for another character in string .
395 if ((0 < size) && !(length < size))
endloop = TRUE;
397
switch(c = getchar ())
399 f
case EOF: // End of File found
401 case 10: // Form Feed encountered
case 13: // Carriage Return encountered
403
endloop = TRUE;
405 break;
407 case ? . ? : // Extension Delimiter found
extgiven = TRUE;
409
default : // All characters (including delimiter above)
411 name = realloc (name, length + 2) ;
name[length++] = c ;
413 name[length] = ?n0 ? ;
break;
415 g
g
417
// Check if user supplied an extension and use default if appropriate .
419 if ((! extgiven)&&(NULL != ext))
f
254
421 if (0 == size) // dynamic array
f
423 // Allocated additional memory for the extension
name = realloc (name, length + strlen (ext) + 2) ;
425 g
else // static or fixed length array
427 f
// Ensure that the static array can take the extension
429 name[size strlen (ext) 2] = ?n0 ? ;
g
431
strcat (name, ".") ;
433 strcat (name, ext) ;
g
435
return(name) ;
437 g
439 //===
// FUNCTION: OpenAndVerify ()
441 // #include <stdio .h> // fopen () , FILE, printf ()
// #include <s t l i b .h> // exit ()
443 //===
FILE OpenAndVerify(char name, char mode)
445 f
FILE fp ;
447
fp = fopen(name, mode) ;
449 if (NULL == fp)
f
451 printf ("ABORT! Failed to open file <%s> (mode %s)nn" , name, mode) ;
exit (1) ;
453 g
return fp ;
455 g
457 //===
// FUNCTION: rand int ()
459 // #include <s t l i b .h> // rand ()
//===
461 // This function returns a random integer value between min and max
// inclusive .
463
int rand int (int min, int max)
465 f
255
return(rand()%((max min) + 1) + min) ;
467 g
469 //===
// FUNCTION: rand norm ()
471 // #include <s t l i b .h> // rand () , RANDMAX
//===
473 // This function returns a random floating point value between 0.0 and 1.0
// inclusive .
475
double rand norm(void)
477 f
return((double)rand() /(double)RANDMAX) ;
479 g
481 //===
// FUNCTION: rand fp ()
483 //===
// This function returns a random floating point value between min and max
485 // inclusive .
487 double rand fp (double min, double max)
f
489 return(min + rand norm() (max min)) ;
g
491
//===
493 // FUNCTION: ExitIfError ()
//===
495 void ExitIfError (int errcode)
f
497 if (errcode)
f
499 printf ("Abort ! (Error #%i detected)nn" , errcode) ;
exit (errcode) ;
501 g
return;
503 g
505 //===
// GetBoundedInt ()
507 // This function gets an int from the keyboard and checks if it is within
// the specified limits . If it is , then that value is returned , otherwise
509 // the limit that is violated is returned if the mode is set RET CLIPPED.
// Otherwise , the def (ault) value is returned (use RET DEFAULT) .
256
511 //===
int GetBoundedInt(int min, int max, int def , int mode)
513 f
int i ;
515
i = dgeti () ;
517
if (i < min)
519 i = (RET CLIPPED == mode)? min : def ;
521 if (i > max)
i = (RET CLIPPED == mode)? max : def ;
523
return(i) ;
525 g
527 //===
// GetBoundedDouble ()
529 // This function gets a double from the keyboard and checks if it is within
// the specified limits . If it is , then that value is returned , otherwise
531 // the limit that is violated is returned if the mode is set RET CLIPPED
// Otherwise , the def (ault) value is returned (use RET DEFAULT) .
533 //===
double GetBoundedDouble(double min, double max, double def , int mode)
535 f
double x;
537
x = dgetd () ;
539
if (x < min)
541 x = (RET CLIPPED == mode)? min : def ;
543 if (x > max)
x = (RET CLIPPED == mode)? max : def ;
545
return(x) ;
547 g
549 double BoundedDouble(double x, double min, double max, int mode)
f
551
if ((DD CLIP MINMAX == mode)jj(DD CLIP MIN == mode))
553 if (x < min)
x = min;
555 if ((DD CLIP MINMAX == mode)jj(DD CLIP MAX == mode))
257
if (x > max)
557 x = max;
return x;
559 g
561 double StringToBoundedDouble(char s , double def , double min, double max, int mode)
f
563 double x;
565 x = (s)? atof (s) : def ;
567 return BoundedDouble(x, min, max, mode) ;
g
569
//===
571 // GetInt ()
// This function calls GetBoundedInt with an embedded CLIPPED option .
573 //===
int GetInt(int min, int max)
575 f
return(GetBoundedInt(min, max, 0, RET CLIPPED)) ;
577 g
579 //===
// GetDouble ()
581 // This function calls GetBoundedDouble with an embedded CLIPPED option .
//===
583 double GetDouble(double min, double max)
f
585 return(GetBoundedDouble(min, max, 0, RET CLIPPED)) ;
g
587
589 //===
// DYNAMICALLY ALLOCATED ARRAYS
591 //===
593 #define MYMEMMALLOC (0)
#define MYMEMFREE (1)
595 #define MYMEMCREATE (2)
#define MYMEMDESTROY (3)
597 #define MYMEM LINES (8192)
599 void my memory(FILE log , void p, size t bytes , int action , char s)
f
258
601 #ifdef MYMEM
static FILE memlog = NULL;
603 static long int Allocations = 0;
static long int Deallocations = 0;
605 static long int NetAllocations = 0;
static long int MaxAllocations = 0;
607 static long int TotalBytes ;
609 static size t map bytes = NULL;
static void map ptrs = NULL;
611 static int map entries = 0;
613 int i ;
#endif
615
switch (action)
617 f
case MYMEMCREATE:
619 #ifdef MYMEM
memlog = log ;
621 if (memlog)
f
623 fprintf (memlog, "%snn" , s) ;
g
625 map bytes = (size t) my memory(NULL, NULL, MYMEM LINES (sizeof(size t)) , MYMEMMALLOC, "
MAP bytes") ;
map ptrs = (void) my memory(NULL, NULL, MYMEM LINES (sizeof(void)) , MYMEMMALLOC, "
MAP ptrs") ;
627 if (map bytes && map ptrs)
f
629 for (i = 0; i < MYMEM LINES; i++)
f
631 map ptrs [i] = NULL;
map bytes [i] = 0;
633 g
map entries = 0;
635 g
#else
637 break;
#endif
639 break;
641 case MYMEMMALLOC:
p = malloc(bytes) ;
643
259
#ifdef MYMEM
645 Allocations++;
NetAllocations++;
647 TotalBytes += bytes ;
if (NetAllocations > MaxAllocations)
649 MaxAllocations = NetAllocations ;
651 if (memlog)
f
653 fprintf (memlog, "REQUESTED: %6u bytes" , bytes) ;
655 if (p)
fprintf (memlog, " [%p]" , p) ;
657 else
fprintf (memlog, " [] DENIED!") ;
659
fprintf (memlog, " Allocs : %10li (%10 li net %10li)" , Allocations , NetAllocations ,
TotalBytes) ;
661
if (s)
663 fprintf (memlog, " %s" , s) ;
665 fprintf (memlog, "nn") ;
fflush (memlog) ;
667 g
669 if (map bytes && map ptrs)
f
671 if (map entries < MYMEM LINES)
f
673 map ptrs [map entries] = p;
map bytes [map entries] = bytes ;
675 map entries++;
g
677 else
f
679 fprintf (memlog, "Pointer Map entry limit exceedednn") ;
g
681 g
#endif
683
break;
685
case MYMEMFREE:
687
260
#ifdef MYMEM
689 Deallocations++;
NetAllocations ;
691
if (memlog)
693 f
fprintf (memlog, "FREEING. . : ") ;
695
if (p)
697 fprintf (memlog, " [%p]" , p) ;
else
699 fprintf (memlog, " [] NULL PTR!") ;
701 fprintf (memlog, " Deallocs : %10li (%10 li net %10li)" , Deallocations , NetAllocations ,
TotalBytes) ;
703 if (s)
fprintf (memlog, " %s" , s) ;
705
fprintf (memlog, "nn") ;
707
fflush (memlog) ;
709 g
if (p)
711 f
if (map bytes && map ptrs)
713 f
for (i = (map entries 1); (i >= 0) && (p != map ptrs [i]) ; i)
715 ; // EMPTY LOOP;
if (i >= 0)
717 f
TotalBytes = map bytes [i];
719 map entries ;
while (i < map entries)
721 f
map ptrs [i] = map ptrs [i +1];
723 map bytes [i] = map bytes [i +1];
i++;
725 g
g
727 else
f
729 fprintf (memlog, "Pointer Map entry not found!nn") ;
g
731 g
261
g
733 #endif
735 if (p)
free (p) ;
737
break;
739
case MYMEMDESTROY:
741
#ifdef MYMEM
743 if (memlog)
f
745 fprintf (memlog, "==nn") ;
fprintf (memlog, "%snn" , s) ;
747 fprintf (memlog, "RESIDUAL MEMORY ALLOCATIONSnn") ;
fprintf (memlog, "==nn") ;
749
if (map bytes && map ptrs)
751 for (i = 0; i < map entries ; i++)
f
753 if (map ptrs [i] = NULL)
fprintf (memlog, "[%p] %li bytesnn" , map ptrs [i] , ((long int) map bytes [i])) ;
755 g
fprintf (memlog, "==nn") ;
757 g
759 my memory(NULL, map bytes , 0, MYMEMFREE, "MAP bytes") ;
my memory(NULL, map ptrs , 0, MYMEMFREE, "MAP ptrs") ;
761 #else
break;
763 #endif
765 break;
767 default :
break;
769 g
return p;
771 g
773 void free1D(void p)
f
775 my memory(NULL, p, 0, MYMEMFREE, "1D") ;
g
262
777
void malloc1D(size t cols , size t size)
779 f
void array ;
781 size t bytes ;
783 bytes = cols size ;
785 if (0 == bytes)
return NULL;
787
array = my memory(NULL, NULL, bytes , MYMEMMALLOC, "1D") ;
789
return array ;
791 g
793
void free2D(void p, size t rows)
795 f
if (p)
797 while (rows)
if (p[rows])
799 my memory(NULL, p[rows] , 0, MYMEMFREE, "2D row") ;
my memory(NULL, p, 0, MYMEMFREE, "2D base") ;
801 g
803 void malloc2D(size t rows , size t cols , size t size)
f
805 void array ;
size t i ;
807 size t bytes ;
809 if (!(rows && cols && size))
return NULL;
811
bytes = rows sizeof(void) ;
813
if (NULL == (array = my memory(NULL, NULL, bytes , MYMEMMALLOC, "2D base")))
815 return NULL;
817 for (i = 0; i < rows ; i++)
f
819 if (NULL == (array [i] = malloc1D(cols , size)))
f
821 while (i)
263
f
823 i ;
my memory(NULL, array [i] , 0, MYMEMFREE, "2D failed row") ;
825 g
my memory(NULL, array , 0, MYMEMFREE, "2D failed base") ;
827 i = rows ;
g
829 g
831 return array ;
g
833
void free3D(void p, size t sheets , size t rows)
835 f
if (p)
837 while (sheets)
if (p[sheets])
839 free2D(p[sheets] , rows) ;
my memory(NULL, p, 0, MYMEMFREE, "3D base") ;
841 g
843 void malloc3D(size t sheets , size t rows , size t cols , size t size)
f
845 void array ;
size t i ;
847 size t bytes ;
849 if (!(rows && cols && size))
return NULL;
851
bytes = sheets sizeof(void) ;
853
if (NULL == (array = my memory(NULL, NULL, bytes , MYMEMMALLOC, "3D base")))
855 return NULL;
857 for (i = 0; i < sheets ; i++)
f
859 if (NULL == (array [i] = malloc2D(rows , cols , size)))
f
861 while (i)
f
863 i ;
my memory(NULL, array [i] , 0, MYMEMFREE, "3D failed row") ;
865 g
my memory(NULL, array , 0, MYMEMFREE, "3D failed base") ;
264
867 i = sheets ;
g
869 g
871 return array ;
g
873
DWORD Bits2Bytes(DWORD bits)
875 f
return (bits / (8 sizeof(BYTE))) + ((bits % (8 sizeof(BYTE)))? 1:0) ;
877 g
879 BYTE MemorySet(BYTE p, DWORD bytes , BYTE v)
f
881 DWORD byte ;
883 if (p)
for (byte = 0; byte < bytes ; byte++)
885 p[byte] = v;
887 return p;
g
889
BYTE MemoryCopy(BYTE dest , BYTE src , DWORD bytes)
891 f
DWORD i ;
893
for (i = 0; i < bytes ; i++)
895 dest [i] = src [i];
897 return dest ;
g
899
void DisplayHEX(FILE fp , BYTE p, DWORD bytes , int mode)
901 f
DWORD byte ;
903 DWORD line ;
WORD i ;
905
switch (mode)
907 f
case 0:
909 case 1:
default :
911 fprintf (fp , "nn") ;
265
fprintf (fp , " ") ;
913 fprintf (fp , " ") ;
fprintf (fp , "nn") ;
915 fprintf (fp , " ") ;
for (i = 0; i < 16; i++)
917 f
fprintf (fp , "%2X " , i) ;
919 g
fprintf (fp , " ") ;
921 for (i = 0; i < 16; i++)
f
923 fprintf (fp , "%1X" , i) ;
g
925 fprintf (fp , "nn") ;
fprintf (fp , " ") ;
927 fprintf (fp , " ") ;
fprintf (fp , "nn") ;
929 for (line = byte = 0; byte < bytes ; line++, byte+=16)
f
931 fprintf (fp , " [%06X] " , line) ;
for (i = 0; i < 16; i++)
933 f
if (byte+i < bytes)
935 fprintf (fp , "%02X " , p[byte+i]) ;
else
937 fprintf (fp , " ") ;
g
939 fprintf (fp , " ") ;
for (i = 0; i < 16; i++)
941 f
if (byte+i < bytes)
943 fprintf (fp , "%1c" , (isprint (p[byte+i]) ? p[byte+i]: ? . ?)) ;
else
945 fprintf (fp , " ") ;
g
947 fprintf (fp , "nn") ;
g
949 fprintf (fp , " ") ;
fprintf (fp , " ") ;
951 fprintf (fp , "nn") ;
break;
953 g
g
955
266
957
WORD GetBitIndex(DWORD bit)
959 f
WORD index ;
961
index = bit /8;
963
return index ;
965 g
967 BYTE GetBitMask(DWORD bit)
f
969 BYTE offset ;
BYTE mask;
971
mask = 0x80 ;
973 offset = bit%8;
mask >>= offset ;
975
return mask;
977 g
979 BYTE GetBit(BYTE d, size t size , DWORD bit)
f
981 WORD index ;
BYTE mask;
983
index = GetBitIndex(bit) ;
985 mask = GetBitMask(bit) ;
987 return (d[index] & mask)? 1 : 0;
g
989
991 void SetBit (BYTE d, size t size , DWORD bit , int v)
f
993 WORD index ;
BYTE mask;
995
index = GetBitIndex(bit) ;
997 mask = GetBitMask(bit) ;
999 if (v)
d[index] j= mask;
1001 else
267
d[index] &= ~mask;
1003
g
1005
typedef struct STRINGPARSER STRINGPARSER;
1007
struct STRINGPARSER
1009 f
char string ;
1011 int length ;
char next ;
1013 g;
1015 int IsIn (char c , char s)
f
1017 int i ;
1019 for (i = 0; s [i] && (c != s [i]) ; i++)
EMPTYLOOP;
1021
return s [i];
1023 g
1025 char ParseString (char s , char fdelim , char tdelim)
f
1027 static STRINGPARSER p = NULL;
int i , n;
1029 char substring ;
1031 if (!p)
f
1033 p = (STRINGPARSER) malloc(sizeof(STRINGPARSER)) ;
if (p)
1035 f
p >string = NULL;
1037 p >length = 0;
p >next = NULL;
1039 g
else
1041 return NULL;
g
1043
if (NULL == s)
1045 f
free (p) ;
268
1047 p = NULL;
return NULL;
1049 g
1051 if (p >string != s)
f
1053 p >string = s ;
p >length = strlen (s) ;
1055 p >next = s ;
g
1057
for (; (p >next < (p >string + p >length)) && (IsIn ((p >next) , fdelim)) ; p >next++)
1059 EMPTYLOOP;
1061 if ((p >next p >string) >= p >length)
f
1063 p >string = NULL;
p >length = 0;
1065 p >next = NULL;
return NULL;
1067 g
1069 for (n = 0; (p >next+n < (p >string + p >length)) && (! IsIn ((p >next+n) , tdelim)) ; n++);
EMPTYLOOP;
1071
substring = malloc(n+1);
1073
if (substring)
1075 f
for (i = 0; i < n; i++)
1077 substring [i] = p >next [i];
substring [n] = NUL;
1079 g
1081 p >next += n;
1083 return substring ;
g
1085
DWORD rand DWORD(DWORD max)
1087 f
DWORD mask, value ;
1089
for (mask = 1; mask < max; mask = (mask<<1) + 1)
1091 EMPTYLOOP;
269
do
1093 f
value = (rand()<<(8 sizeof(WORD))) + rand() ;
1095 value &= mask;
g while (value > max) ;
1097
return value ;
1099 g
1101 int memequal(char s1 , char s2 , DWORD bytes)
f
1103 DWORD i ;
1105 for (i = 0; i < bytes ; i++)
if (s1 [i] != s2 [i])
1107 return FALSE;
1109 return TRUE;
g
A.3.13 modem.h
1 /
 MODEM for the Real time BBC Codec/Modem
3
 William L. Bahn
5 Academy Center for Information Security
 Department of Computer Science
7 United States Air Force Academy
 USAFA, CO 80840
9
 FILE : modem.h
11 DATE CREATED: 06 SEP 07
 DATE MODIFIED : . . . 06 SEP 07
13

15 REVISION HISTORY

17

19 DESCRIPTION

21 The modem converts baseband signal data to/from packet data .

23 /
270
25 #ifndef MODEMdotH
#define MODEMdotH
27
//
29 // REQUIRED INCLUDES
//
31
#include <time .h> // clock t
33
#include "config .h"
35 #include "source .h"
#include "buffer .h"
37 #include "sink .h"
#include "dirtyd .h"
39
//
41 // STRUCTURE DECLARATIONS
//
43
typedef struct MODEM MODEM;
45
//
47 // STRUCTURE DEFINITIONS
//
49
// NOTE: Normally the structure definition would be in the .c f i l e to make
51 // the structure members inaccessible to outside functions except through
// public function calls . But for the real time code it has been decided
53 // to make the structure members directly visible to the functions that
// manipulate them .
55
struct MODEM
57 f
// Derived quantities
59 DWORD jitter samples ;
double alpha ;
61 double t hi , t lo ;
63 // State information
DWORD state ;
65 double integrator ;
SDWORD stamp;
67 g;
271
69 //
// PUBLIC FUNCTION PROTOTYPES
71 //
73 MODEM MODEM Del(MODEM p) ;
MODEM MODEMNew(CONFIG c , DWORD errcode) ;
75 void Modulate(CONFIG c , BUFFER buffer , MODEM modem, SINK sink) ;
void Demodulate(CONFIG c , SOURCE source , MODEM modem, BUFFER buf) ;
77
//
79 #endif
A.3.14 modem.c
1 /
 MODEM for the Real time BBC Codec/Modem
3
 William L. Bahn
5 Academy Center for Information Security
 Department of Computer Science
7 United States Air Force Academy
 USAFA, CO 80840
9
 FILE : modem. c
11 DATE CREATED: 06 SEP 07
 DATE MODIFIED : . . . 28 FEB 09
13

15 REVISION HISTORY
 Modified to support only the requirements of providing same symbol
17 rate data as a means to create a jammer.
 2/28/2009 Derek Sanders
19

21
 DESCRIPTION
23
 The modem and its public interface is described in modem.h.
25

27 /
29 //
// REQUIRED INCLUDES
31 //
272
33 #include <stdlib .h> // malloc ()
#include <math.h> // exp ()
35 #include "modem.h"
37 //
// STRUCTURE DEFINITIONS
39 //
41 // NOTE: Normally the structure definition would be in the .c f i l e to make
// the structure members inaccessible to outside functions except through
43 // public function calls . But for the real time code it has been decided
// to make the structure members directly visible to the functions that
45 // manipulate them .
47 //
// PUBLIC FUNCTION DEFINITIONS
49 //
51 MODEM MODEM Del(MODEM p)
f
53 if (p)
f
55 free (p) ;
g
57 return NULL;
g
59
MODEM MODEMNew(CONFIG c , DWORD errcode)
61 f
MODEM p;
63 DWORD err ;
double nominal steady state peak ;
65
p = NULL;
67 err = 0;
69 p = (MODEM) malloc(sizeof(MODEM)) ;
if (!p)
71 err j= 1 << 0;
73 if (! err)
f
75 // Derived quantities
p >jitter samples = (int)(c >modem samples per bit c >modem jitter bits) ;
273
77
// Integrator parameter
79 p >alpha = exp((2.0/c >modem samples per bit) 1.0) ;
81 // Threshold parameters
nominal steady state peak = (c >nominal rx signal c >nominal rx signal) (1.0/(1.0 p >alpha))
;
83 p >t hi = nominal steady state peak ((c >modem threshold pct + c >modem hysteresis pct /2.0)
/100.0) ;
p >t lo = nominal steady state peak ((c >modem threshold pct c >modem hysteresis pct /2.0)
/100.0) ;
85
// State information
87 p >state = 0;
p >integrator = 0.0;
89 p >stamp = 0;
g
91
if (err)
93 p = MODEM Del(p) ;
95 if (c >diagnostics)
f
97 // Diagnostic Report
printf (" nn") ;
99 printf ("MODEMnn") ;
printf (" Creation : %snn" , ((err)? "FAILED":"SUCCEEDED")) ;
101 printf (" Location : %pnn" , (void) p) ;
printf (" Integrator alpha : %fnn" , p >alpha) ;
103 printf (" Jitter tolerance : %fnn" , p >jitter samples) ;
printf (" Modem gain : %f (%f dB)nn" , c >nominal tx signal , c >modem gain dB) ;
105 printf (" Nominal channel loss : %f dBnn" , c >modem channel loss dB) ;
printf (" Nominal rx signal peak : %f (%f dB)nn" , c >nominal rx signal , (c >modem gain dB c
 >modem channel loss dB)) ;
107 printf (" Nominal integrator peak : . . . %fnn" , nominal steady state peak) ;
printf (" LO > HI threshold : %fnn" , p >t hi) ;
109 printf (" HI > LO threshold : %fnn" , p >t lo) ;
printf (" nn") ;
111 g
113 errcode = err ;
return p;
115 g
117 //
274
119 / MODEM

121 The MODEM reads/writes USRP in bursts of samples corresponding to
 8 packet bits . The calling function is responsible for ensuring that
123 valid data and/or sufficient room for new data exists in the buffer .

125 /
127 / MODULATOR

129 The modulator reads one byte of packet data from the buffer and generates
 USRP data for the entire set of 8 packet bits .
131
 /
133
void Modulate(CONFIG c , BUFFER buffer , MODEM modem, SINK sink)
135 f
DWORD originbit , sample ;
137 float signal ;
clock t ticks ;
139 float v;
ticks = clock () ;
141
// Push write pointer if packet byte is not available
143 if (! buffer >ready)
f
145 buffer >write = (buffer >write + 1) & buffer >buffermask ;
buffer >ready++;
147 buffer >margin ;
g
149
// For each bit in the packet byte at the buffer ?s read pointer
151 for (originbit = 0; originbit < 8; originbit++)
f
153 // Determine if the bit is a mark or a space
if (buffer >buffer [buffer >read] & c >bitmask [originbit])
155 f
c >marks++;
157 signal = (float) c >nominal tx signal ;
g
159 else
signal = 0.0;
161
// Determine if the sink can take all the samples for the present bit
275
163 if (sink >samples + c >modem samples per bit < sink >sample limit)
f
165 // Establish the base location within the sink ?s buffer
v = ((float) sink >v) + (2 sink >samples) ;
167
// Generate and write the baseband samples to the sink
169 for (sample = 0; sample < c >modem samples per bit ; sample++)
f
171 v[2 sample] = signal ; // I (t) (actual data)
v[2 sample + 1] = 0.0; // Q(t) (forced to zero)
173 g
sink >samples += c >modem samples per bit ;
175 g
else
177 sink >streaming = FALSE;
g
179
buffer >buffer [buffer >read] = 0;
181 buffer >read = (buffer >read + 1) & buffer >buffermask ;
buffer >ready ;
183 buffer >margin++;
185 c >actual trx bytes += c >trx bytes per packet byte ;
c >dem ticks += clock () ticks ;
187 g
189 void Demodulate(CONFIG c , SOURCE source , MODEM modem, BUFFER buf)
f
191 DWORD sample ;
DWORD originbit ;
193 clock t ticks ;
float v;
195 double v2;
197 ticks = clock () ;
199 for (originbit = 0; originbit < 8; originbit++)
f
201 v = ((float) source >v) + (2 source >samples) ;
for (sample = 0; sample < c >modem samples per bit ; sample++)
203 f
if (source >samples < source >sample limit)
205 f
207 v2 = v[2 sample] v[2 sample] + v[2 sample+1] v[2 sample+1];
276
source >samples++;
209 g
else
211 f
v2 = 0;
213 source >streaming = FALSE;
g
215
modem >integrator = v2 + modem >alpha (modem >integrator v2) ;
217
switch (modem >state)
219 f
case 0:
221 if (modem >integrator > modem >t hi)
f
223 modem >state = 1;
g
225 break;
case 1:
227 if (modem >integrator < modem >t lo)
f
229 modem >state = 2;
modem >stamp = (SDWORD) (sample + modem >jitter samples) ;
231 g
break;
233 case 2:
if (modem >integrator > modem >t hi)
235 modem >state = 1;
else
237 if (((SDWORD) sample > modem >stamp)&&(modem >integrator < modem >t lo))
f
239 modem >state = 0;
g
241 break;
g
243 g
modem >stamp = c >modem samples per bit ;
245
if (0 == buf >empty)
247 f
buf >read = (buf >read + 1) & buf >buffermask ;
249 buf >empty++;
buf >margin ;
251 buf >overflows++;
g
277
253
// Step packet forward and mark next location
255 if (modem >state > 0)
f
257 c >marks++;
buf >buffer [buf >write] j= c >bitmask [originbit];
259 g
else
261 buf >buffer [buf >write] &= ~c >bitmask [originbit];
g
263
buf >write = (buf >write + 1) & buf >buffermask ;
265 buf >margin++;
buf >empty ;
267
c >actual trx bytes += c >trx bytes per packet byte ;
269 c >dem ticks += clock () ticks ;
g
271
//
A.3.15 sha1.h
/
2 sha1 .h

4 Copyright (C) 1998
 Paul E. Jones <paulej@arid . us>
6 All Rights Reserved

8
 $Id : sha1 .h , v 1.2 2004/03/27 18:00:33 paulej Exp $
10

12 Description :
 This class implements the Secure Hashing Standard as defined
14 in FIPS PUB 180 1 published April 17, 1995.

16 Many of the variable names in the SHA1Context , especially the
 single character names , were used because those were the names
18 used in the publication .

20 Please read the f i l e sha1 . c for more information .

22 /
278
24 #ifndef SHA1 H
#define SHA1 H
26
/
28 This structure will hold context information for the hashing
 operation
30 /
32 typedef struct SHA1Context
f
34 unsigned Message Digest [5]; / Message Digest (output) /
36 unsigned Length Low ; / Message length in bits /
unsigned Length High ; / Message length in bits /
38
unsigned char Message Block [64]; / 512 bit message blocks /
40 int Message Block Index ; / Index into message block array /
42 int Computed; / Is the digest computed? /
int Corrupted ; / Is the message digest corruped? /
44 g SHA1Context;
46 /
 Function Prototypes
48 /
void SHA1Reset(SHA1Context) ;
50 int SHA1Result(SHA1Context) ;
void SHA1Input(SHA1Context ,
52 const unsigned char ,
unsigned) ;
54
#endif
A.3.16 sha1.c
1 /
 sha1 . c
3
 Copyright (C) 1998
5 Paul E. Jones <paulej@arid . us>
 All Rights Reserved
7

9 $Id : sha1 .c , v 1.2 2004/03/27 18:00:33 paulej Exp $
279

11
 Description :
13 This f i l e implements the Secure Hashing Standard as defined
 in FIPS PUB 180 1 published April 17, 1995.
15
 The Secure Hashing Standard , which uses the Secure Hashing
17 Algorithm (SHA) , produces a 160 bit message digest for a
 given data stream . In theory , it is highly improbable that
19 two messages will produce the same message digest . Therefore ,
 this algorithm can serve as a means of providing a " fingerprint "
21 for a message .

23 Portability Issues :
 SHA 1 is defined in terms of 32 bit "words ". This code was
25 written with the expectation that the processor has at least
 a 32 bit machine word size . If the machine word size is larger ,
27 the code should s t i l l function properly . One caveat to that
 is that the input functions taking characters and character
29 arrays assume that only 8 bits of information are stored in each
 character .
31
 Caveats :
33 SHA 1 is designed to work with messages less than 2^64 bits
 long . Although SHA 1 allows a message digest to be generated for
35 messages of any number of bits less than 2^64, this
 implementation only works with messages with a length that is a
37 multiple of the size of an 8 bit character .

39 /
41 #include "sha1 .h"
43 /
 Define the circular shift macro
45 /
#define SHA1CircularShift(bits ,word) n
47 ((((word) << (bits)) & 0xFFFFFFFF) j n
((word) >> (32 (bits))))
49
/ Function prototypes /
51 void SHA1ProcessMessageBlock(SHA1Context) ;
void SHA1PadMessage(SHA1Context) ;
53
/
280
55 SHA1Reset

57 Description :
 This function will i n i t i a l i z e the SHA1Context in preparation
59 for computing a new message digest .

61 Parameters :
 context : [in/out]
63 The context to reset .

65 Returns :
 Nothing .
67
 Comments:
69
 /
71 void SHA1Reset(SHA1Context context)
f
73 context >Length Low = 0;
context >Length High = 0;
75 context >Message Block Index = 0;
77 context >Message Digest [0] = 0x67452301 ;
context >Message Digest [1] = 0xEFCDAB89;
79 context >Message Digest [2] = 0x98BADCFE;
context >Message Digest [3] = 0x10325476 ;
81 context >Message Digest [4] = 0xC3D2E1F0;
83 context >Computed = 0;
context >Corrupted = 0;
85 g
87 /
 SHA1Result
89
 Description :
91 This function will return the 160 bit message digest into the
 Message Digest array within the SHA1Context provided
93
 Parameters :
95 context : [in/out]
 The context to use to calculate the SHA 1 hash .
97
 Returns :
99 1 if successful , 0 if it failed .
281

101 Comments:

103 /
int SHA1Result(SHA1Context context)
105 f
107 if (context >Corrupted)
f
109 return 0;
g
111
if (! context >Computed)
113 f
SHA1PadMessage(context) ;
115 context >Computed = 1;
g
117
return 1;
119 g
121 /
 SHA1Input
123
 Description :
125 This function accepts an array of octets as the next portion of
 the message .
127
 Parameters :
129 context : [in/out]
 The SHA 1 context to update
131 message array : [in]
 An array of characters representing the next portion of the
133 message .
 length : [in]
135 The length of the message in message array

137 Returns :
 Nothing .
139
 Comments:
141
 /
143 void SHA1Input(SHA1Context context ,
const unsigned char message array ,
282
145 unsigned length)
f
147 if (! length)
f
149 return;
g
151
if (context >Computed jj context >Corrupted)
153 f
context >Corrupted = 1;
155 return;
g
157
while(length && ! context >Corrupted)
159 f
context >Message Block [context >Message Block Index++] =
161 (message array & 0xFF) ;
163 context >Length Low += 8;
/ Force it to 32 bits /
165 context >Length Low &= 0xFFFFFFFF;
if (context >Length Low == 0)
167 f
context >Length High++;
169 / Force it to 32 bits /
context >Length High &= 0xFFFFFFFF;
171 if (context >Length High == 0)
f
173 / Message is too long /
context >Corrupted = 1;
175 g
g
177
if (context >Message Block Index == 64)
179 f
SHA1ProcessMessageBlock(context) ;
181 g
183 message array++;
g
185 g
187 /
 SHA1ProcessMessageBlock
189
283
 Description :
191 This function will process the next 512 bits of the message
 stored in the Message Block array .
193
 Parameters :
195 None.

197 Returns :
 Nothing .
199
 Comments:
201 Many of the variable names in the SHAContext , especially the
 single character names , were used because those were the names
203 used in the publication .

205
 /
207 void SHA1ProcessMessageBlock(SHA1Context context)
f
209 const unsigned K[] = / Constants defined in SHA 1 /
f
211 0x5A827999 ,
0x6ED9EBA1,
213 0x8F1BBCDC,
0xCA62C1D6
215 g;
int t ; / Loop counter /
217 unsigned temp; / Temporary word value /
unsigned W[80]; / Word sequence /
219 unsigned A, B, C, D, E; / Word buffers /
221 /
 Initialize the fi r st 16 words in the array W
223 /
for(t = 0; t < 16; t++)
225 f
W[t] = ((unsigned) context >Message Block [t 4]) << 24;
227 W[t] j= ((unsigned) context >Message Block [t 4 + 1]) << 16;
W[t] j= ((unsigned) context >Message Block [t 4 + 2]) << 8;
229 W[t] j= ((unsigned) context >Message Block [t 4 + 3]) ;
g
231
for(t = 16; t < 80; t++)
233 f
W[t] = SHA1CircularShift (1 ,W[t 3] ^ W[t 8] ^ W[t 14] ^ W[t 16]) ;
284
235 g
237 A = context >Message Digest [0];
B = context >Message Digest [1];
239 C = context >Message Digest [2];
D = context >Message Digest [3];
241 E = context >Message Digest [4];
243 for(t = 0; t < 20; t++)
f
245 temp = SHA1CircularShift (5 ,A) +
((B & C) j ((~B) & D)) + E + W[t] + K[0];
247 temp &= 0xFFFFFFFF;
E = D;
249 D = C;
C = SHA1CircularShift (30 ,B) ;
251 B = A;
A = temp;
253 g
255 for(t = 20; t < 40; t++)
f
257 temp = SHA1CircularShift (5 ,A) + (B ^ C ^ D) + E + W[t] + K[1];
temp &= 0xFFFFFFFF;
259 E = D;
D = C;
261 C = SHA1CircularShift (30 ,B) ;
B = A;
263 A = temp;
g
265
for(t = 40; t < 60; t++)
267 f
temp = SHA1CircularShift (5 ,A) +
269 ((B & C) j (B & D) j (C & D)) + E + W[t] + K[2];
temp &= 0xFFFFFFFF;
271 E = D;
D = C;
273 C = SHA1CircularShift (30 ,B) ;
B = A;
275 A = temp;
g
277
for(t = 60; t < 80; t++)
279 f
285
temp = SHA1CircularShift (5 ,A) + (B ^ C ^ D) + E + W[t] + K[3];
281 temp &= 0xFFFFFFFF;
E = D;
283 D = C;
C = SHA1CircularShift (30 ,B) ;
285 B = A;
A = temp;
287 g
289 context >Message Digest [0] =
(context >Message Digest [0] + A) & 0xFFFFFFFF;
291 context >Message Digest [1] =
(context >Message Digest [1] + B) & 0xFFFFFFFF;
293 context >Message Digest [2] =
(context >Message Digest [2] + C) & 0xFFFFFFFF;
295 context >Message Digest [3] =
(context >Message Digest [3] + D) & 0xFFFFFFFF;
297 context >Message Digest [4] =
(context >Message Digest [4] + E) & 0xFFFFFFFF;
299
context >Message Block Index = 0;
301 g
303 /
 SHA1PadMessage
305
 Description :
307 According to the standard , the message must be padded to an even
 512 bits . The f i r st padding bit must be a ?1 ?. The last 64
309 bits represent the length of the original message . All bits in
 between should be 0. This function will pad the message
311 according to those rules by f i l l i n g the Message Block array
 accordingly . It will also call SHA1ProcessMessageBlock ()
313 appropriately . When it returns , it can be assumed that the
 message digest has been computed .
315
 Parameters :
317 context : [in/out]
 The context to pad
319
 Returns :
321 Nothing .

323 Comments:

286
325 /
void SHA1PadMessage(SHA1Context context)
327 f
/
329 Check to see if the current message block is too small to hold
 the init ial padding bits and length . If so , we will pad the
331 block , process it , and then continue padding into a second
 block .
333 /
if (context >Message Block Index > 55)
335 f
context >Message Block [context >Message Block Index++] = 0x80 ;
337 while(context >Message Block Index < 64)
f
339 context >Message Block [context >Message Block Index++] = 0;
g
341
SHA1ProcessMessageBlock(context) ;
343
while(context >Message Block Index < 56)
345 f
context >Message Block [context >Message Block Index++] = 0;
347 g
g
349 else
f
351 context >Message Block [context >Message Block Index++] = 0x80 ;
while(context >Message Block Index < 56)
353 f
context >Message Block [context >Message Block Index++] = 0;
355 g
g
357
/
359 Store the message length as the last 8 octets
 /
361 context >Message Block [56] = (context >Length High >> 24) & 0xFF;
context >Message Block [57] = (context >Length High >> 16) & 0xFF;
363 context >Message Block [58] = (context >Length High >> 8) & 0xFF;
context >Message Block [59] = (context >Length High) & 0xFF;
365 context >Message Block [60] = (context >Length Low >> 24) & 0xFF;
context >Message Block [61] = (context >Length Low >> 16) & 0xFF;
367 context >Message Block [62] = (context >Length Low >> 8) & 0xFF;
context >Message Block [63] = (context >Length Low) & 0xFF;
369
287
SHA1ProcessMessageBlock(context) ;
371 g
A.3.17 sink.h
1 /
 Signal Sink Module for the Real time BBC Codec/Modem
3
 William L. Bahn
5 Academy Center for Information Security
 Department of Computer Science
7 United States Air Force Academy
 USAFA, CO 80840
9
 FILE : sink .h
11 DATE CREATED: 08 SEP 07
 DATE MODIFIED : . . . 08 SEP 07
13

15 REVISION HISTORY

17

19 DESCRIPTION

21 This module supports the signal sink for both the TX and the RX

23 /
25 #ifndef SINKdotH
#define SINKdotH
27
//
29 // REQUIRED INCLUDES
//
31
#include "config .h"
33 #include "dirtyd .h"
35 //
// STRUCTURE DECLARATIONS
37 //
39 typedef struct SINK SINK;
288
41 //
// STRUCTURE DEFINITIONS
43 //
45 // NOTE: Normally the structure definition would be in the .c f i l e to make
// the structure members inaccessible to outside functions except through
47 // public function calls . But for the real time code it has been decided
// to make the structure members directly visible to the functions that
49 // manipulate them .
51 struct SINK
f
53 FILE fp ;
int streaming ;
55 DWORD samples ;
DWORD sample size bytes ;
57 DWORD sample limit ;
BYTE v;
59
size t buffer size ;
61 g;
63 //
// PUBLIC FUNCTION PROTOTYPES
65 //
67 SINK SINK Del(SINK p) ;
SINK SINK New(CONFIG config , DWORD errcode) ;
69 void SINK Purge(CONFIG config , SINK p) ;
71 //
#endif
A.3.18 sink.c
/
2 Signal Sink Module for the Real time BBC Codec/Modem

4 William L. Bahn
 Academy Center for Information Security
6 Department of Computer Science
 United States Air Force Academy
8 USAFA, CO 80840

10 FILE : sink . c
289
 DATE CREATED: 08 SEP 07
12 DATE MODIFIED : . . . 08 SEP 07

14
 REVISION HISTORY
16

18
 DESCRIPTION
20
 This module supports the signal sink for both the TX and the RX
22
 /
24
//
26 // REQUIRED INCLUDES
//
28
#include <stdlib .h> // malloc () , free ()
30 #include <string .h> // memmove()
32 #include "sink .h"
#include "bbcftp .h"
34 #include "dirtyd .h"
36 //
// STRUCTURE DEFINITIONS
38 //
40 // NOTE: Normally the structure definition would be in the .c f i l e to make
// the structure members inaccessible to outside functions except through
42 // public function calls . But for the real time code it has been decided
// to make the structure members directly visible to the functions that
44 // manipulate them .
46 //
// PUBLIC FUNCTION DEFINITIONS
48 //
50 SINK SINK Del(SINK p)
f
52 if (p)
f
54 if (p >fp)
if (stdout != p >fp)
290
56 f
fclose (p >fp) ;
58 p >fp = NULL;
g
60 if (p >v) f free (p >v) ; p >v = NULL; g
free (p) ;
62 p = NULL;
g
64
return p;
66 g
68 // Sufficient memory is allocated up front
// to handle a maximum amount of data . However , the present
70 // contents of the buffer can be purged using SINK Purge() .
72 SINK SINK New(CONFIG c , DWORD errcode)
f
74 SINK p;
DWORD err ;
76
p = NULL;
78 err = 0;
80 p = (SINK) malloc(sizeof(SINK)) ;
if (!p)
82 err j= 1 << 0;
84 // Open Data Sink f i l e
if (! err)
86 f
/ p >fp = NULL;
88 if (c >sink name)
f
90 char path [256];
strcpy (path , c >path) ;
92 strcat (path ,c >sink name) ;
p >fp = fopen (path , "wb") ;
94 if (!p >fp)
err j= 1 << 7;
96 g
else
98 p >fp = stdout ; /
g
100
291
// Initialize state information
102 if (! err)
f
104 p >samples = 0;
p >streaming = TRUE;
106
if (c >sink sample limit)
108 p >sample limit = c >sink sample limit ;
else
110 f
if (c >scheduler TX notRX)
112 f
p >sample limit = 4 c >modem samples per bit c >packet bits ;
114 g
else
116 f
p >sample limit = 1000;
118 g
g
120
if (c >sink sample size bytes)
122 p >sample size bytes = c >sink sample size bytes ;
else
124 f
if (c >scheduler TX notRX)
126 f
p >sample size bytes = 2 sizeof(float) ;
128 g
else
130 f
// One byte for each eight f u l l bits of message
132 p >sample size bytes = c >codec message bits / 8;
// Add a final byte , if necessary , to hold leftover bits
134 if (c >codec message bits % 8)
p >sample size bytes++;
136 // Add one byte for terminating NUL character
p >sample size bytes++;
138 g
g
140
g
142
// Allocate Memory for sink data
144 if (! err)
f
292
146 p >buffer size = p >sample limit p >sample size bytes ;
p >v = malloc(p >buffer size) ;
148 if (!p >v)
err j= 1 << 1;
150 g
152 #ifdef DIAGNOSTICS
// Diagnostic Report
154 printf (" nn") ;
printf ("SINKnn") ;
156 printf (" Creation : %snn" , ((err)? "FAILED":"SUCCEEDED")) ;
printf (" Location : %pnn" , (void) p) ;
158 printf (" Sample size : %lu bytesnn" , (unsigned long) p >sample size bytes) ;
printf (" Sample limit : %lunn" , (unsigned long) p >sample limit) ;
160 printf (" Buffer size : %lu bytesnn" , (unsigned long) p >buffer size) ;
printf (" Buffer location : %pnn" , (void) p >v) ;
162 printf (" nn") ;
#endif
164
if (err)
166 SINK Del(p) ;
168 errcode = err ;
return p;
170 g
172 void SINK Purge(CONFIG c , SINK p)
f
174 DWORD i , seq , missing , distinct ;
BYTE base ;
176 int found , complete ;
WORD id , stream id , last stream id ;
178 char filename [256];
int filenamelen ;
180 FILE fp ;
182 // Transmitter
if (c >scheduler TX notRX)
184 f
p >fp = NULL;
186 if (c >sink name)
f
188 char path [256];
strcpy (path , c >path) ;
190 strcat (path ,c >sink name) ;
293
p >fp = fopen(path , "wb") ;
192 // if (!p >fp)
// err j= 1 << 7;
194 g
else
196 p >fp = stdout ;
198 // Leading cushion
for (i = 0; i < c >cushion bits c >modem samples per bit ; i++)
200 fwrite(&c >bitptr [0] , sizeof(float) , 1, p >fp) ;
202 // Buffer dump
fwrite (p >v, p >sample size bytes , p >samples , p >fp) ;
204
// Trailing cushion
206 for (i = 0; i < c >cushion bits c >modem samples per bit ; i++)
fwrite(&c >bitptr [0] , sizeof(float) , 1, p >fp) ;
208 g
// Receiver
210 else
f
212 if (c >diagnostics)
f
214 for (i = 0; i < p >samples ; i++)
f
216 base = p >v + i p >sample size bytes ;
PrintMessage(base) ;
218 g
g
220
// The assumption is that there are multiple message streams contained
222 // in the data . So as to operate in fixed memory, the message streams
// are processed one at a time , starting with the lowest ID. This is
224 // not an approach that is very consistent with the notion of a streaming
// real time system , but it is a start .
226
// Stream ID ?s of zero will be ignored . They are used to push messages
228 // that the decoder must receive and process and are assumed to be
// discriminated against at the decoder level .
230
stream id = 0;
232 fp = NULL;
do
234 f
// Find next larger sequence ID that has a sequence number of zero .
294
236 last stream id = stream id ;
for (i = 0; i < p >samples ; i++)
238 f
base = p >v + i p >sample size bytes ;
240 if (0 == GetMessageSeq(base))
f
242 id = GetMessageID(base) ;
if (id > last stream id)
244 if ((id < stream id)jj(stream id == last stream id))
stream id = id ;
246 g
g
248
// Process the next stream (if one was found)
250 if (stream id > last stream id)
f
252 if (c >diagnostics)
printf ("Stream ID: %lu .nn" , (unsigned int) stream id) ;
254 missing = 0;
distinct = 0;
256 complete = FALSE;
for (seq = 0; (! complete) && (seq < p >samples) ; seq++)
258 f
found = FALSE;
260 for (i = 0; (! found) && (i < p >samples) ; i++)
f
262 base = p >v + i p >sample size bytes ;
if ((seq == GetMessageSeq(base))&&(stream id == GetMessageID(base)))
264 f
found = TRUE;
266 distinct++;
g
268 g
if (found)
270 f
// Extract f i l e name from header message and open f i l e
272 if (0 == seq)
f
274 filenamelen = GetMessageLoadBits(base) /8;
if (filenamelen < 255)
276 f
memmove(filename , c >path , strlen (c >path)) ;
278 memmove(filename+strlen (c >path) , GetMessagePayload(base) , filenamelen) ;
filename [filenamelen+strlen (c >path)] = NUL;
280 fp = fopen(filename , "wb") ;
295
g
282 g
// Process non header messages
284 else
f
286 // Check for terminal message
if (0 == GetMessageLoadBits(base))
288 complete = TRUE;
// Transfer next data fragment to f i l e
290 else
if (fp)
292 fwrite (GetMessagePayload(base) , 1, GetMessageLoadBits(base)/8, fp) ;
g
294 g
else
296 f
if (c >diagnostics)
298 printf (" Missing Sequence #: %lunn" , (unsigned int) seq) ;
missing++;
300 g
g
302
if (c >diagnostics)
304 f
if (! complete)
306 printf ("Terminal message not found.nn") ;
printf ("Total Missing Sequences : %lunn" , (unsigned int) missing) ;
308 printf ("Total Distinct Messages : %lunn" , (unsigned int) distinct) ;
g
310 g
if (fp)
312 f
fclose (fp) ;
314 fp = NULL;
if (! complete jj missing > 0) // delete the f i l ef
316 f
printf ("Removing the file %snn" , filename) ;
318 remove(filename) ;
g
320 g
322 g while (stream id > last stream id) ;
g
324 p >samples = 0;
g
296
A.3.19 source.h
1 /
 Signal Source Module for the Real time BBC Codec/Modem
3
 William L. Bahn
5 Academy Center for Information Security
 Department of Computer Science
7 United States Air Force Academy
 USAFA, CO 80840
9
 FILE : source .h
11 DATE CREATED: 08 SEP 07
 DATE MODIFIED : . . . 08 SEP 07
13

15 REVISION HISTORY

17

19 DESCRIPTION

21 This module supports the signal source for both the TX and the RX

23 /
25 #ifndef SOURCEdotH
#define SOURCEdotH
27
//
29 // REQUIRED INCLUDES
//
31
#include "config .h"
33 #include "dirtyd .h"
35 //
// STRUCTURE DECLARATIONS
37 //
39 typedef struct SOURCE SOURCE;
41 //
// STRUCTURE DEFINITIONS
43 //
297
45 // NOTE: Normally the structure definition would be in the .c f i l e to make
// the structure members inaccessible to outside functions except through
47 // public function calls . But for the real time code it has been decided
// to make the structure members directly visible to the functions that
49 // manipulate them .
51 struct SOURCE
f
53 int streaming ; // Buffer active flag
DWORD sample ; // Number of samples that have been processed
55 DWORD samples ; // Number of samples in buffer
DWORD sample size bytes ; // Bytes required per sample
57 DWORD sample limit ; // Number of samples space is allocated for
BYTE v; // Buffer address
59
DWORD file bytes ; // File size based on seek test
61 size t chunk size ; // File bytes bytes per message
size t buffer size ; // Size of allocated source buffer
63 g;
65 //
// PUBLIC FUNCTION PROTOTYPES
67 //
69 SOURCE SOURCE Del(SOURCE p) ;
SOURCE SOURCE New(CONFIG c , DWORD errcode) ;
71
//
73 #endif
A.3.20 source.c
1 /
 Data Source Module for the Real time BBC Codec/Modem
3
 William L. Bahn
5 Academy Center for Information Security
 Department of Computer Science
7 United States Air Force Academy
 USAFA, CO 80840
9
 FILE : source . c
11 DATE CREATED: 08 SEP 07
 DATE MODIFIED : . . . 08 SEP 07
298
13

15 REVISION HISTORY

17

19 DESCRIPTION

21 This module supports the data source for both the TX and the RX.

23 /
25 //
// REQUIRED INCLUDES
27 //
29 #include <string .h> // memmove()
#include <stdlib .h> // malloc () , free ()
31
#include "bbcftp .h"
33 #include "source .h"
#include "dirtyd .h"
35
//
37 // STRUCTURE DEFINITIONS
//
39
// NOTE: Normally the structure definition would be in the .c f i l e to make
41 // the structure members inaccessible to outside functions except through
// public function calls . But for the real time code it has been decided
43 // to make the structure members directly visible to the functions that
// manipulate them .
45
//
47 // PUBLIC FUNCTION DEFINITIONS
//
49
SOURCE SOURCE Del(SOURCE p)
51 f
if (p)
53 f
if (p >v) f free (p >v) ; p >v = NULL; g
55 free (p) ;
p = NULL;
57 g
299
59 return p;
g
61
/
63 Eventually the source and sink will be Gnu Radio and therefore very
 l i t t l e effort has been made to make this temporary source f l e x i b l e
65 or sophisticated . The SOURCE New() function opens the source file ,
 allocated memory for the entire contents , loads the entire contents
67 into memory, and then closes the source f i l e .

69 TX: If configured as a transmitter , the data f i l e is assumed to be a
 binary f i l e that is to be transmitted across a BBC link . The f i l e
71 is brought up into memory as a series of messages using the following
 format :
73
 [Checksum] [SeqNum] [DataBits] [Data]
75
 The sequence number is a 16 bit number starting at 0 and incrementing
77 by one for each packet . The length field is also a 16 bit number that
 contains the number of bits of actual data follows . The data field
79 contains a string of bits read directly from the f i l e being transmitted .
 It is a fixed width field and is zero padded if necessary . The checksum
81 field is the last 32 bits of the message and contains a CRC checksum for
 message up to , but not including , the checksum field . At the present time ,
83 the checksum field is set to all zeros .

85 /
87 DWORD SOURCE NewTX(SOURCE p, CONFIG c)
f
89 DWORD err ;
FILE fp ;
91 BYTE base ;
DWORD bytes read ;
93 WORD seqnum , loadbits , id , length ;
BYTE buffer ;
95
err = 0;
97
// Initialize state information
99 p >streaming = TRUE;
p >sample = 0;
101 p >samples = 0;
300
103 // Data Source
fp = NULL;
105 if (c >source name)
f
107 char path [256];
strcpy (path , c >path) ;
109 strcat (path ,c >source name) ;
fp = fopen(path , "rb") ;
111 if (! fp)
err j= 1 << 7;
113
g
115
// Create Data Read Buffer
117 if (fp)
f
119 // Determine the size of the f i l e
fseek (fp , 0, SEEK END) ;
121 p >file bytes = ftell (fp) ;
fseek (fp , 0, SEEK SET) ;
123
// How much memory each message needs in the Source Buffer
125 p >sample size bytes = c >bytes per message ;
127 // Determine if each message can carry at least one f i l e byte .
if (!((c >codec message bits /8) > BBC FTP HEADER BYTES))
129 err j= 1 << 4;
g
131
if (! err)
133 f
// Calculate how many bytes of the f i l e each message can hold .
135 p >chunk size = (c >codec message bits /8) BBC FTP HEADER BYTES; // File bytes per
message
p >sample limit = p >file bytes / p >chunk size ; // Messages needed for whole chunks
137 if (p >file bytes % p >chunk size) // Plus one for any partial chunk
p >sample limit++;
139 p >sample limit+=2; // Plus one each for header/ trailer
141 p >buffer size = p >sample limit p >sample size bytes ;
if (p >buffer size)
143 p >v = malloc(p >buffer size) ;
else
145 err j= 1 << 2;
if (!p >v)
301
147 err j= 1 << 3;
149 buffer = malloc(p >chunk size) ;
if (! buffer)
151 err j= 1 << 5;
g
153
// Fill Data Buffer
155 if (! err)
f
157 p >samples = 0;
id = c >source id ;
159 seqnum = 0;
bytes read = 0;
161 do
f
163 base = p >v + p >samples p >sample size bytes ;
165 length = p >chunk size ;
if ((p >file bytes bytes read) <= length)
167 length = p >file bytes bytes read ;
169 if (seqnum)
f
171 if (length)
length = fread (buffer , 1, length , fp) ;
173 SetMessagePayload(base , buffer , length , 0) ;
bytes read += length ;
175 g
else
177 f
length = strlen (c >source name) ;
179 if (length > p >chunk size)
length = p >chunk size ;
181 SetMessagePayload(base , c >source name , length , 0) ;
g
183
loadbits = 8 length ;
185 SetMessageChecksum(base , 0) ; // Force checksum to zero (temporary convenience)
SetMessageSeq(base , seqnum) ;
187 SetMessageLoadBits(base , loadbits) ;
SetMessageID(base , c >source id) ;
189
seqnum++;
191 if (c >diagnostics)
302
PrintMessage(base) ;
193 p >samples++;
195 g while (length) ;
197 fclose (fp) ;
fp = NULL;
199 g
201 return err ;
g
203
DWORD SOURCE NewRX(SOURCE p, CONFIG c)
205 f
DWORD err ;
207 FILE fp ;
209 err = 0;
211 // Initialize state information
p >streaming = TRUE;
213 p >samples = 0;
215 // Data Source
fp = NULL;
217 if (c >source name)
f
219 char path [256];
strcpy (path , c >path) ;
221 strcat (path ,c >source name) ;
fp = fopen(path , "rb") ;
223 if (! fp)
err j= 1 << 7;
225 g
227 // Create Data Read Buffer
if (fp)
229 f
// Determine the size of the f i l e
231 fseek (fp , 0, SEEK END) ;
p >file bytes = ftell (fp) ;
233 fseek (fp , 0, SEEK SET) ;
235 p >sample size bytes = c >source sample size bytes ;
// Determine number of complete samples in data f i l e
303
237 p >sample limit = p >file bytes / p >sample size bytes ;
// Adjust sample limit if initialization f i l e sets a lower limit
239 if ((c >source sample limit)&&(p >sample limit > c >source sample limit))
p >sample limit = c >source sample limit ;
241
p >buffer size = p >sample limit p >sample size bytes ;
243 if (p >buffer size)
p >v = malloc(p >buffer size) ;
245 else
err j= 1 << 2;
247 if (!p >v)
err j= 1 << 3;
249 g
251 // Fill Data Buffer
if (! err)
253 f
p >sample limit = fread (p >v, p >sample size bytes , p >sample limit , fp) ;
255 fclose (fp) ;
fp = NULL;
257 g
259 return err ;
g
261
SOURCE SOURCE New(CONFIG c , DWORD errcode)
263 f
DWORD err ;
265 SOURCE p;
267 p = NULL;
err = 0;
269
p = (SOURCE) malloc(sizeof(SOURCE)) ;
271 if (!p)
err j= 1 << 0;
273
if (! err)
275 if (c >scheduler TX notRX)
err = SOURCE NewTX(p, c) ;
277 else
err = SOURCE NewRX(p, c) ;
279 if (c >diagnostics)
f
281 // Diagnostic Report
304
printf (" nn") ;
283 if (c >scheduler TX notRX)
printf ("MESSAGE SOURCEnn") ;
285 else
printf ("USRP SOURCEnn") ;
287 printf (" File name : %snn" , c >source name) ;
printf (" Creation : %snn" , ((err)? "FAILED":"SUCCEEDED")) ;
289 printf (" Location : %pnn" , (void) p) ;
printf (" File size : %lu bytesnn" , (unsigned long) p >file bytes) ;
291 printf (" Chunk size : %lu bytesnn" , (unsigned long) p >chunk size) ;
printf (" Messages needed : %lunn" , (unsigned long) p >sample limit) ;
293 printf (" Message requirements : . . . %lu bytesnn" , (unsigned long) p >sample size bytes) ;
printf (" Buffer size : %lu bytesnn" , (unsigned long) p >buffer size) ;
295 printf (" Buffer location : %pnn" , (void) p >v) ;
printf (" nn") ;
297 g
299 if (err)
SOURCE Del(p) ;
301
 errcode = err ;
303 return p;
g
305
/
307 DWORD SOURCE Run(BBCFTP sys)
f
309 // Load another block of data from the f i l e if possible .
while ((sys >source >fp) && (sys >source >input fifo bytes <= sys >config >file block size))
311 f
bytes read = fread (sys >source >input fifo + sys >source >fifo write , 1, sys >config >
file block size , sys >source >fp) ;
313 sys >source >input fifo bytes += bytes read ;
sys >source >input fifo write = (sys >source >input fifo write + bytes read) & (sys >config >
input fifo mask) ;
315 if (bytes read < sys >config >file block size)
f
317 fclose (sys >source >fp) ;
sys >source >fp = NULL;
319 g
g
321
// Process as much data from input FIFO to output FIFO as possible
323 if ((sys >source >input fifo bytes > sys >source >input chunk size) && (sys >source >
output fifo items < sys >source >output fifo size))
305
f
325 // Process a chunk of data
if (sys >config >scheduler TX notRX)
327 f
// Prepare a message for encoding
329 g
else
331 f
// Transfer raw USRP data for demodulation
333 g
335 sys >source >input fifo bytes = sys >source >input chunk size ;
sys >source >input fifo read = (sys >source >input fifo bytes + sys >source >input chunk size)
& (sys >config >input fifo mask) ;
337
sys >source >output fifo items++;
339 sys >source >output fifo write = (sys >source >output fifo write + sys >source >
output chunk size) & (sys >config >output fifo mask) ;
g
341
// Determine if source can no longer stream data to its successor
343 if (! sys >source >fp)
if (sys >source >input fifo bytes < sys >source >input chunk size)
345 if (0 == sys >source >output fifo items)
sys >source >streaming = FALSE;
347
return 0;
349 g
 /
351
//
A.3.21 usrp.c
/
2 Main TX/RX Module for the Real time BBC Codec/Modem

4 William L. Bahn
 Academy Center for Information Security
6 Department of Computer Science
 United States Air Force Academy
8 USAFA, CO 80840

10 FILE : usrp . c
 DATE CREATED: 03 SEP 07
306
12 DATE MODIFIED : . . . 08 SEP 07

14
 REVISION HISTORY
16

18
 DESCRIPTION
20
 This program implements a simple f i l e transfer protocol using a BBC encoded
22 data channel . Since the purpose of this code is to implement only specific
 real time components , and not all of them , the data source and sinks are
24 kept very simple . In particular , the transmitter reads the entire f i l e into
 memory, formatted as a series of BBC messages , before transmission begins
26 and , similarly , the receiver stores all of the received messages into memory
 before dumping them to disk all at once . This is opposed to the streaming
28 source and sink modules that will be typical of the complete real time
 implementation .
30
 The basic , high level , flow is as follows :
32
 TX: The Transmitter
34
 The transmitter uses the following signal flow :
36
 SOURCE > ENCODER > BUFFER > MODULATOR > SINK
38

40 T
 RX: The Receiver
42
 The receiver used the following signal flow
44
 SOURCE > MODEM > BUFFER > CODEC > SINK
46

48 //
50 the module supports both the transmitter and recevier functions .

52
 /
54 / Real time BBC CODEC

56 This program is designed to process the raw USRP output data and decode
307
 the resulting packets in real time in a streaming fashion . Since it is
58 a real time application , structural overhead has been minimized and
 global variables have been used extensively .
60
 THE DATA BUFFER
62
 The data is stored in a circular buffer with the following variables :
64 buffer : Pointer to the block of memory where the buffer starts .
 read : Index of the f i rs t byte of the present packet .
66 write : Index of the next unused buffer location .
 f i l l : How many bytes are in buffer beyond the scope of the CODEC.
68 unused : How many unused bytes are available in the buffer .

70 The buffer is seen by two functions , the one that is demodulating the
 data packet and the one that is decoding the resulting data . The
72 demodulating function writes to the buffer at a nominally constant
 rate dictated by the communications link . In this application , this is
74 simulated by reading the stored waveform data from a f i l e and querying
 the clock to determine how many bytes to add to the buffer each time
76 the function is called . The decoding function , on the other hand , always
 to decodes eight packets each time it is called provided sufficient data
78 is available . Specifically , it decodes the eight packets that start with
 the bits in the byte stored at the "read" pointer . Since it can ? t decode
80 packets that are not completely contained in the buffer , the decoding
 function fi r s t checks to see if " f i l l " is non negative . If it isn ?t , then
82 it returns immediately . At the other end of the spectrum , the MODEM
 may run out of unused memory to write to . If this happens , data is going
84 to be lost . It is cleaner to throw away old data instead of introducing
 a gap in present data , therefore the MODEM will push the "read"
86 pointer forward as it overwrites the beginning of the existing packet
 data .
88
 /
90
//
92 // FILE INCLUSIONS
//
94
#include <stdio .h> // printf ()
96 #include <stdlib .h> // exit () , EXIT SUCCESS, EXIT FAILURE
#include <time .h> // clock () , CLOCKS PER SEC
98
#include "bbcftp .h"
100 #include <pthread .h>
#include "config .h"
308
102 #include "source .h"
#include "codec .h"
104 #include "buffer .h"
#include "modem.h"
106 #include "sink .h"
108
110 //
// TRANSMITTER
112 //
114 int tx(BBCFTP sys)
f
116 int state ;
118 //
// Runtime scheduler
120 //
122 state = 0;
sys >config >tot ticks = clock () ;
124 while ((sys >sink >streaming) && (sys >source >streaming jj sys >buffer >ready))
f
126 switch (state)
f
128 case 0: // Scheduler
if ((sys >sink >streaming) && (sys >config >actual trx bytes < sys >config >
nominal trx bytes))
130 f
state = 1; // Run MODEM until sampling is caught up
132 g
else if ((sys >source >streaming) &&(0 <= sys >buffer >margin))
134 f
state = 2; // Encode packets subject to maximum amount of time .
136 g
else
138 f
if (sys >config >scheduler realtime)
140 sys >config >nominal trx bytes = (DWORD) ((clock () sys >config >tot ticks) sys >
config >bytespertick) ;
else
142 sys >config >nominal trx bytes += 1;//(DWORD) (config >bytespertick) ;
g
144
309
break;
146
case 1: // Modulator
148 if (sys >buffer >ready == 1000)
state = 100;
150 if (sys >buffer >ready == 100)
state = 10;
152 if (sys >buffer >ready == 10)
state = 1;
154 if (sys >buffer >ready == 1)
state = 1;
156 if (sys >buffer >ready == 0)
state = 0;
158 Modulate(sys >config , sys >buffer , sys >modem, sys >sink) ;
state = 0;
160 break;
162 case 2: // Encoder
Encode(sys >config , sys >source , sys >codec , sys >buffer) ;
164 if (! sys >source >streaming)
state = 100;
166 state = 0;
break;
168 g
g
170 sys >config >tot ticks = clock () sys >config >tot ticks ;
172 //
// POST RUN CODE
174 //
176 printf ("nn") ;
printf ("Marks: %linn" , sys >config >marks) ;
178 printf ("Total time : %0.3f sec .nn" , ((double)sys >config >tot ticks / (double)
CLOCKS PER SEC)) ;
printf ("MODEM time : %0.3f sec .nn" , ((double)sys >config >dem ticks / (double)
CLOCKS PER SEC)) ;
180 printf ("CODEC time : %0.3f sec .nn" , ((double)sys >config >dec ticks / (double)
CLOCKS PER SEC)) ;
printf ("Samples created % i .nn" , sys >sink >samples) ;
182 SINK Purge(sys >config , sys >sink) ;
184 return EXIT SUCCESS;
g
186
310
188 //
// RECEVIER
190 //
192
194 int rx(BBCFTP sys)
f
196 int state ;
double vmax;
198
//
200 // Runtime scheduler
//
202
vmax = 0;
204 state = 0;
sys >config >tot ticks = clock () ;
206 while (((sys >source >streaming) jj (0 <= sys >buffer >margin)) / && ((double)(clock () sys
 >config >tot ticks) / (double)CLOCKS PER SEC) < 25.0 /)
f
208 // printf("%i %i %inn", sys >source >streaming , sys >buffer >margin , state) ;
switch (state)
210 f
case 0: // Scheduler
212 if ((sys >source >streaming) && (sys >config >actual trx bytes < sys >config >
nominal trx bytes))
f
214 state = 1; // Run MODEM until sampling is caught up
g
216 else if (0 <= sys >buffer >margin)
f
218 state = 2; // Decode packets subject to maximum amount of time .
g
220 else
f
222 if (sys >config >scheduler realtime)
sys >config >nominal trx bytes = (DWORD) ((clock () sys >config >tot ticks) sys >
config >bytespertick) ;
224 else
sys >config >nominal trx bytes += (DWORD) (sys >config >bytespertick) ;
226 g
228 break;
311
230 case 1: // MODEM
Demodulate(sys >config , sys >source , sys >modem, sys >buffer) ;
232 state = 0;
break;
234
case 2: // CODEC
236 Decode(sys >config , sys >buffer , sys >codec , sys >sink) ;
state = 0;
238 break;
240 g
// printf ("What ?s going on?nn") ;
242 g
sys >config >tot ticks = clock () sys >config >tot ticks ;
244
//
246 // POST RUN CODE
//
248
printf ("nn") ;
250 printf ("Marks: %linn" , sys >config >marks) ;
printf ("Messages found : %lunn" , sys >config >message count) ;
252 printf ("Packets lost : %lunn" , (DWORD) (sys >buffer >overflows 8)) ;
printf ("Total time : %0.3f sec .nn" , ((double)sys >config >tot ticks / (double)
CLOCKS PER SEC)) ;
254 printf ("MODEM time : %0.3f sec .nn" , ((double)sys >config >dem ticks / (double)
CLOCKS PER SEC)) ;
printf ("CODEC time : %0.3f sec .nn" , ((double)sys >config >dec ticks / (double)
CLOCKS PER SEC)) ;
256
SINK Purge(sys >config , sys >sink) ;
258
return EXIT SUCCESS;
260 g
262 //
// MAIN PROGRAM
264 //
266 int main(int argc , char argv [])
f
268 BBCFTP sys ;
270 char config file name ;
312
DWORD errcode ;
272
int res ;
274
//
276 // Read configuration information
//
278
config file name = NULL;
280 if (argc < 2)
f
282 printf ("Mode (T or R) : ") ;
res = getc (stdin) ;
284 switch (res)
f
286 case ?T? :
case ?t ? :
288 config file name = "tx . ini";
break;
290 case ?R? :
case ?r ? :
292 default :
config file name = "rx . ini";
294 g
while (?nn ? != res)
296 res = getc (stdin) ;
g
298 else
config file name = argv [1];
300
sys = BBCFTP New(config file name , &errcode) ;
302 if (errcode)
f
304 printf ("BBC FTP System Constructor exited with error code : %lunn" , errcode) ;
exit (EXIT FAILURE) ;
306 g
308 //
// Launch transmitter or recever as appropriate
310 //
312 if (sys >config >scheduler TX notRX)
tx(sys) ;
314 else
rx(sys) ;
313
316
//
318 // Runtime Scheduler
//
320
// The components of the new scheduler are not yet complete .
322 // while (sys >sink >streaming)
// f
324 // SOURCE Run(sys) ;
// CODEC Run(sys) ;
326 // MODEM Run(sys) ;
// SINK Run(sys) ;
328 // g
330 //
// Final Housekeeping
332 //
334 //BBCFTP Del(sys) ;
336 return EXIT SUCCESS;
g
A.3.22 Make le
1 #
Real time BBC Demodulator and Decoder
3 #
usrp : usrp .o bbcftp .o config .o source .o codec .o buffer .o modem.o sink .o sha1 .o dirtyd .o bytes .o
5 gcc o usrp usrp .o bbcftp .o config .o source .o codec .o buffer .o modem.o sink .o sha1 .o dirtyd .o
bytes .o lm
7 # Top Level Program
9 usrp .o: usrp . c
gcc c O3 usrp . c
11
usrp . c : bbcftp .h config .h source .h codec .h buffer .h modem.h sink .h
13
Application Module
15
bbcftp .o: bbcftp . c
17 gcc c O3 bbcftp . c
19 bbcftp . c : bbcftp .h
314
21 bbcftp .h: config .h source .h codec .h buffer .h modem.h sink .h dirtyd .h
23 # Configuration Module
25 config .o: config . c
gcc c O3 config . c
27
config . c : config .h dirtyd .h
29
config .h: dirtyd .h
31
SOURCE Module
33
source .o: source . c
35 gcc c O3 source . c
37 source . c : bbcftp .h source .h dirtyd .h
39 source .h: config .h dirtyd .h
41 # CODEC Module
43 codec .o: codec . c
45 codec . c : codec .h sha1 .h
gcc c O3 codec . c
47
codec .h: config .h source .h buffer .h sink .h sha1 .h dirtyd .h
49
BUFFER Module
51
buffer .o: buffer . c
53 gcc c O3 buffer . c
55 buffer . c : buffer .h
57 buffer .h: config .h dirtyd .h
59 # MODEM Module
61 modem.o: modem. c
63 modem. c : modem.h sha1 .h
gcc c O3 codec . c
315
65
modem.h: config .h source .h buffer .h sink .h dirtyd .h
67
SINK Module
69
sink .o: sink . c
71 gcc c O3 sink . c
73 sink . c : sink .h dirtyd .h
75 sink .h: config .h dirtyd .h
77 # SHA1 Support Module
79 sha1 .o: sha1 . c
gcc c O3 sha1 . c
81
sha1 . c : sha1 .h
83
DIRTY DEEDS Support Module
85
dirtyd .o: dirtyd . c
87 gcc c O3 dirtyd . c
89 dirtyd . c : dirtyd .h
91 dirtyd .h: bytes .h
93 # BYTE Definitions Support Module
95 bytes .o: bytes . c
gcc c O3 bytes . c
97
bytes . c : bytes .h
99
HOUSEKEEPING TARGETS
101
clean :
103 rm .o
316
A.4 Jammer Source Code
A.4.1 Main Program Source (jammer.c)
1 #include <stdio .h>
#include <stdlib .h>
3 #include <time .h>
#include <string .h>
5 #include "config .h"
#include "buffer .h"
7 #include "modem.h"
#include "sink .h"
9 #include <unistd .h>
11 // return a random integer in the range [0 , n) .
// n should be in the range [1 , RANDMAX].
13 unsigned long long randint (unsigned long long n)
f
15 if (n <= 0) return 1;
if (n > RANDMAX) return 1;
17 unsigned long long r ;
// the trivial rand ()%n implementation does not generate uniform
19 // distributions , so we ignore the top section of the distribution that
// would become nonuniform .
21 do f
r = rand() ;
23 g while (r >= (RANDMAX/n) n) ;
25 return r % n;
g
27
int main(int argc , char argv [])
29 f
extern char optarg ;
31 extern int optind , opterr , optopt ;
char config file name ;
33 DWORD errcode ;
CONFIG config ;
35 BUFFER buffer ;
MODEM modem;
37 SINK sink ;
int jammer level = 12;
39 int samples = 1600;
unsigned char marked[8 sizeof(unsigned long long)];
317
41 int i = 0;
int j = 0;
43 int c ;
unsigned long long ran number = malloc(sizeof(unsigned long long)) ;
45 unsigned long long buf number = malloc(sizeof(unsigned long long)) ;
srand ((unsigned)(time(0))) ;
47
config file name = "tx . ini";
49
while ((c = getopt (argc , argv , "J:N:C:")) != 1) f
51 switch(c) f
case ?J ? :
53 jammer level = atoi (optarg) ;
break;
55 case ?N? :
samples = atoi (optarg) ;
57 break;
case ?C? :
59 config file name = optarg ;
break;
61 g
63
g
65
config = CONFIG New(config file name , &errcode) ;
67 buffer = BUFFER New(config , &errcode) ;
modem = MODEMNew(config , &errcode) ;
69 sink = SINK New(config , &errcode) ;
71 for(i = 0; i<(samples/(32 sizeof(unsigned long long))) ; i++)f
 buf number = 0;
73 ran number = 0;
for(j=0;j < jammer level ; j++)f
75 ran number = rand()%(8 sizeof(unsigned long long)) ;
while (marked[ran number]==1)f
77 ran number = rand()%(8 sizeof(unsigned long long)) ;
g
79 marked[ran number] = 1;
// set the bit at ran number to 1
81 buf number j= (1 << ran number) ;
g
83 memcpy(buffer >buffer+buffer >write , buf number , sizeof(unsigned long long)) ;
buffer >write+=sizeof(unsigned long long) ;
85
318
for(j=0;j<sizeof(unsigned long long) ; j++)f
87 buffer >ready = 1;
Modulate(config , buffer , modem, sink) ;
89 g
memset(marked ,0x00 , sizeof(unsigned long long) 8) ;
91 g
93 printf ("Samples : %inn" ,sink >samples) ;
SINK Purge(config , sink) ;
95 MODEM Del(modem) ;
BUFFER Del(buffer) ;
97 CONFIG Del(config) ;
SINK Del(sink) ;
99
free (ran number) ;
101 free (buf number) ;
return EXIT SUCCESS;
103 g
A.4.2 Modi ed BBC modem.h Source
1 /
 MODEM for the Real time BBC Codec/Modem
3
 William L. Bahn
5 Academy Center for Information Security
 Department of Computer Science
7 United States Air Force Academy
 USAFA, CO 80840
9
 FILE : modem.h
11 DATE CREATED: 06 SEP 07
 DATE MODIFIED : . . . 06 SEP 07
13

15 REVISION HISTORY
 Modified to support only the requirements of providing same symbol
17 rate data as a means to create a jammer.
 2/28/2009 Derek Sanders
19

21
 DESCRIPTION
23
 The modem converts baseband signal data to/from packet data .
319
25
 /
27
#ifndef MODEMdotH
29 #define MODEMdotH
31 //
// REQUIRED INCLUDES
33 //
35 #include <time .h> // clock t
37 #include "config .h"
#include "buffer .h"
39 #include "sink .h"
#include "dirtyd .h"
41
//
43 // STRUCTURE DECLARATIONS
//
45
typedef struct MODEM MODEM;
47
//
49 // STRUCTURE DEFINITIONS
//
51
// NOTE: Normally the structure definition would be in the .c f i l e to make
53 // the structure members inaccessible to outside functions except through
// public function calls . But for the real time code it has been decided
55 // to make the structure members directly visible to the functions that
// manipulate them .
57
struct MODEM
59 f
// Derived quantities
61 DWORD jitter samples ;
double alpha ;
63 double t hi , t lo ;
65 // State information
DWORD state ;
67 double integrator ;
SDWORD stamp;
69 g;
320
71 //
// PUBLIC FUNCTION PROTOTYPES
73 //
75 MODEM MODEM Del(MODEM p) ;
MODEM MODEMNew(CONFIG c , DWORD errcode) ;
77 void Modulate(CONFIG c , BUFFER buffer , MODEM modem, SINK sink) ;
79 //
#endif
A.4.3 Modi ed BBC modem.c Source
/
2 MODEM for the Real time BBC Codec/Modem

4 William L. Bahn
 Academy Center for Information Security
6 Department of Computer Science
 United States Air Force Academy
8 USAFA, CO 80840

10 FILE : modem. c
 DATE CREATED: 06 SEP 07
12 DATE MODIFIED : . . . 06 SEP 07

14
 REVISION HISTORY
16
 Modified to support only the requirements of providing same symbol
18 rate data as a means to create a jammer.
 2/28/2009 Derek Sanders
20

22 DESCRIPTION

24 The modem and its public interface is described in modem.h.

26
 /
28
//
30 // REQUIRED INCLUDES
//
321
32
#include <stdlib .h> // malloc ()
34 #include <math.h> // exp ()
#include "modem.h"
36
//
38 // STRUCTURE DEFINITIONS
//
40
// NOTE: Normally the structure definition would be in the .c f i l e to make
42 // the structure members inaccessible to outside functions except through
// public function calls . But for the real time code it has been decided
44 // to make the structure members directly visible to the functions that
// manipulate them .
46
//
48 // PUBLIC FUNCTION DEFINITIONS
//
50
MODEM MODEM Del(MODEM p)
52 f
if (p)
54 f
free (p) ;
56 g
return NULL;
58 g
60 MODEM MODEMNew(CONFIG c , DWORD errcode)
f
62 MODEM p;
DWORD err ;
64 double nominal steady state peak ;
66 p = NULL;
err = 0;
68
p = (MODEM) malloc(sizeof(MODEM)) ;
70 if (!p)
err j= 1 << 0;
72
if (! err)
74 f
// Derived quantities
76 p >jitter samples = (int)(c >modem samples per bit c >modem jitter bits) ;
322
78 // Integrator parameter
p >alpha = exp((2.0/c >modem samples per bit) 1.0) ;
80
// Threshold parameters
82 nominal steady state peak = (c >nominal rx signal c >nominal rx signal) (1.0/(1.0 p >alpha))
;
p >t hi = nominal steady state peak ((c >modem threshold pct + c >modem hysteresis pct /2.0)
/100.0) ;
84 p >t lo = nominal steady state peak ((c >modem threshold pct c >modem hysteresis pct /2.0)
/100.0) ;
86 // State information
p >state = 0;
88 p >integrator = 0.0;
p >stamp = 0;
90 g
92 if (err)
p = MODEM Del(p) ;
94
if (c >diagnostics)
96 f
// Diagnostic Report
98 printf (" nn") ;
printf ("MODEMnn") ;
100 printf (" Creation : %snn" , ((err)? "FAILED":"SUCCEEDED")) ;
printf (" Location : %pnn" , (void) p) ;
102 printf (" Integrator alpha : %fnn" , p >alpha) ;
printf (" Jitter tolerance : %fnn" , p >jitter samples) ;
104 printf (" Modem gain : %f (%f dB)nn" , c >nominal tx signal , c >modem gain dB) ;
printf (" Nominal channel loss : %f dBnn" , c >modem channel loss dB) ;
106 printf (" Nominal rx signal peak : %f (%f dB)nn" , c >nominal rx signal , (c >modem gain dB c
 >modem channel loss dB)) ;
printf (" Nominal integrator peak : . . . %fnn" , nominal steady state peak) ;
108 printf (" LO > HI threshold : %fnn" , p >t hi) ;
printf (" HI > LO threshold : %fnn" , p >t lo) ;
110 printf (" nn") ;
g
112
 errcode = err ;
114 return p;
g
116
//
323
118
/ MODEM
120
 The MODEM reads/writes USRP in bursts of samples corresponding to
122 8 packet bits . The calling function is responsible for ensuring that
 valid data and/or sufficient room for new data exists in the buffer .
124
 /
126
/ MODULATOR
128
 The modulator reads one byte of packet data from the buffer and generates
130 USRP data for the entire set of 8 packet bits .

132 /
134 void Modulate(CONFIG c , BUFFER buffer , MODEM modem, SINK sink)
f
136 DWORD originbit , sample ;
float signal ;
138 clock t ticks ;
float v;
140 ticks = clock () ;
142 // Push write pointer if packet byte is not available
if (! buffer >ready)
144 f
buffer >write = (buffer >write + 1) & buffer >buffermask ;
146 buffer >ready++;
buffer >margin ;
148 g
150 // For each bit in the packet byte at the buffer ?s read pointer
for (originbit = 0; originbit < 8; originbit++)
152 f
// Determine if the bit is a mark or a space
154 if (buffer >buffer [buffer >read] & c >bitmask [originbit])
f
156 c >marks++;
signal = (float) c >nominal tx signal ;
158 g
else
160 signal = 0.0;
162 // Determine if the sink can take all the samples for the present bit
324
if (sink >samples + c >modem samples per bit < sink >sample limit)
164 f
// Establish the base location within the sink ?s buffer
166 v = ((float) sink >v) + (2 sink >samples) ;
168 // Generate and write the baseband samples to the sink
for (sample = 0; sample < c >modem samples per bit ; sample++)
170 f
v[2 sample] = signal ; // I (t) (actual data)
172 v[2 sample + 1] = 0.0; // Q(t) (forced to zero)
g
174 sink >samples += c >modem samples per bit ;
g
176 else
sink >streaming = FALSE;
178 g
180 buffer >buffer [buffer >read] = 0;
buffer >read = (buffer >read + 1) & buffer >buffermask ;
182 buffer >ready ;
buffer >margin++;
184
c >actual trx bytes += c >trx bytes per packet byte ;
186 c >dem ticks += clock () ticks ;
g
A.4.4 Modi ed BBC sink.h Source
1 /
 Signal Sink Module for the Real time BBC Codec/Modem
3
 William L. Bahn
5 Academy Center for Information Security
 Department of Computer Science
7 United States Air Force Academy
 USAFA, CO 80840
9
 FILE : sink .h
11 DATE CREATED: 08 SEP 07
 DATE MODIFIED : . . . 08 SEP 07
13

15 REVISION HISTORY

17
325

19 DESCRIPTION

21 This module supports the signal sink for both the TX and the RX

23 /
25 #ifndef SINKdotH
#define SINKdotH
27
//
29 // REQUIRED INCLUDES
//
31
#include "config .h"
33 #include "dirtyd .h"
35 //
// STRUCTURE DECLARATIONS
37 //
39 typedef struct SINK SINK;
41 //
// STRUCTURE DEFINITIONS
43 //
45 // NOTE: Normally the structure definition would be in the .c f i l e to make
// the structure members inaccessible to outside functions except through
47 // public function calls . But for the real time code it has been decided
// to make the structure members directly visible to the functions that
49 // manipulate them .
51 struct SINK
f
53 FILE fp ;
int streaming ;
55 DWORD samples ;
DWORD sample size bytes ;
57 DWORD sample limit ;
BYTE v;
59
size t buffer size ;
61 g;
326
63 //
// PUBLIC FUNCTION PROTOTYPES
65 //
67 SINK SINK Del(SINK p) ;
SINK SINK New(CONFIG config , DWORD errcode) ;
69 void SINK Purge(CONFIG config , SINK p) ;
71 //
#endif
A.4.5 Modi ed BBC sink.c Source
/
2 Signal Sink Module for the Real time BBC Codec/Modem

4 William L. Bahn
 Academy Center for Information Security
6 Department of Computer Science
 United States Air Force Academy
8 USAFA, CO 80840

10 FILE : sink . c
 DATE CREATED: 08 SEP 07
12 DATE MODIFIED : . . . 28 FEB 09

14
 REVISION HISTORY
16 Modified to support only the requirements of providing same symbol
 rate data as a means to create a jammer.
18 2/28/2009 Derek Sanders

20

22 DESCRIPTION

24 This module supports the signal sink for both the TX and the RX

26 /
28 //
// REQUIRED INCLUDES
30 //
32 #include <stdlib .h> // malloc () , free ()
327
#include <string .h> // memmove()
34
#include "sink .h"
36 #include "dirtyd .h"
38 //
// STRUCTURE DEFINITIONS
40 //
42 // NOTE: Normally the structure definition would be in the .c f i l e to make
// the structure members inaccessible to outside functions except through
44 // public function calls . But for the real time code it has been decided
// to make the structure members directly visible to the functions that
46 // manipulate them .
48 //
// PUBLIC FUNCTION DEFINITIONS
50 //
52 SINK SINK Del(SINK p)
f
54 if (p)
f
56 if (p >fp)
if (stdout != p >fp)
58 f
fclose (p >fp) ;
60 p >fp = NULL;
g
62 if (p >v) f free (p >v) ; p >v = NULL; g
free (p) ;
64 p = NULL;
g
66
return p;
68 g
70 // Sufficient memory is allocated up front
// to handle a maximum amount of data . However , the present
72 // contents of the buffer can be purged using SINK Purge() .
74 SINK SINK New(CONFIG c , DWORD errcode)
f
76 SINK p;
DWORD err ;
328
78
p = NULL;
80 err = 0;
82 p = (SINK) malloc(sizeof(SINK)) ;
if (!p)
84 err j= 1 << 0;
86 // Open Data Sink f i l e
if (! err)
88 f
/ p >fp = NULL;
90 if (c >sink name)
f
92 char path [256];
strcpy (path , c >path) ;
94 strcat (path ,c >sink name) ;
p >fp = fopen (path , "wb") ;
96 if (!p >fp)
err j= 1 << 7;
98 g
else
100 p >fp = stdout ; /
g
102
// Initialize state information
104 if (! err)
f
106 p >samples = 0;
p >streaming = TRUE;
108
if (c >sink sample limit)
110 p >sample limit = c >sink sample limit ;
else
112 f
if (c >scheduler TX notRX)
114 f
p >sample limit = 4 c >modem samples per bit c >packet bits ;
116 g
else
118 f
p >sample limit = 1000;
120 g
g
122
329
if (c >sink sample size bytes)
124 p >sample size bytes = c >sink sample size bytes ;
else
126 f
if (c >scheduler TX notRX)
128 f
p >sample size bytes = 2 sizeof(float) ;
130 g
else
132 f
// One byte for each eight f u l l bits of message
134 p >sample size bytes = c >codec message bits / 8;
// Add a final byte , if necessary , to hold leftover bits
136 if (c >codec message bits % 8)
p >sample size bytes++;
138 // Add one byte for terminating NUL character
p >sample size bytes++;
140 g
g
142
g
144
// Allocate Memory for sink data
146 if (! err)
f
148 p >buffer size = p >sample limit p >sample size bytes ;
p >v = malloc(p >buffer size) ;
150 if (!p >v)
err j= 1 << 1;
152 g
154 if (c >diagnostics)
f
156 // Diagnostic Report
printf (" nn") ;
158 printf ("SINKnn") ;
printf (" Creation : %snn" , ((err)? "FAILED":"SUCCEEDED")) ;
160 printf (" Location : %pnn" , (void) p) ;
printf (" Sample size : %lu bytesnn" , (unsigned long) p >sample size bytes) ;
162 printf (" Sample limit : %lunn" , (unsigned long) p >sample limit) ;
printf (" Buffer size : %lu bytesnn" , (unsigned long) p >buffer size) ;
164 printf (" Buffer location : %pnn" , (void) p >v) ;
printf (" nn") ;
166 g
330
168 if (err)
SINK Del(p) ;
170
 errcode = err ;
172 return p;
g
174
void SINK Purge(CONFIG c , SINK p)
176 f
DWORD i , seq , missing , distinct ;
178 BYTE base ;
int found , complete ;
180 WORD id , stream id , last stream id ;
char filename [256];
182 int filenamelen ;
FILE fp ;
184
// Transmitter
186 if (c >scheduler TX notRX)
f
188 p >fp = NULL;
if (c >sink name)
190 f
char path [256];
192 strcpy (path , c >path) ;
strcat (path ,c >sink name) ;
194 p >fp = fopen(path , "wb") ;
// if (!p >fp)
196 // err j= 1 << 7;
g
198 else
p >fp = stdout ;
200
// Leading cushion
202 for (i = 0; i < c >cushion bits c >modem samples per bit ; i++)
fwrite(&c >bitptr [0] , sizeof(float) , 1, p >fp) ;
204
// Buffer dump
206 fwrite (p >v, p >sample size bytes , p >samples , p >fp) ;
208 // Trailing cushion
for (i = 0; i < c >cushion bits c >modem samples per bit ; i++)
210 fwrite(&c >bitptr [0] , sizeof(float) , 1, p >fp) ;
g
212
331
p >samples = 0;
214 g
A.4.6 Jammer Make le
#
2 # Real time BBC Demodulator and Decoder
Modified makefile for creating a jammer 2/28/2009 Derek T. Sanders
4 #
6 INCLUDES = ../ usrp0A
jammer: jammer.o config .o buffer .o modem.o dirtyd .o bytes .o sink .o
8 gcc o jammer jammer.o config .o buffer .o modem.o dirtyd .o bytes .o sink .o lm
10 # Top Level Program
12 jammer.o: jammer. c
gcc c O3 jammer. c I$(INCLUDES) I .
14
jammer. c : ../ usrp0A/config .h ../ usrp0A/buffer .h modem.h sink .h
16
Configuration Module
18
config .o: ../ usrp0A/config . c
20 gcc c O3 ../ usrp0A/config . c I$(INCLUDES) I .
22 $(INCLUDES)/config . c : ../ usrp0A/config .h ../ usrp0A/dirtyd .h
24 $(INCLUDES)/config .h: ../ usrp0A/dirtyd .h
26 # BUFFER Module
28 buffer .o: ../ usrp0A/buffer . c
gcc c O3 ../ usrp0A/buffer . c I$(INCLUDES) I .
30
$(INCLUDES)/buffer . c : ../ usrp0A/buffer .h
32
$(INCLUDES)/buffer .h: ../ usrp0A/config .h ../ usrp0A/dirtyd .h
34
MODEM Module
36
modem.o: modem. c
38
modem. c : modem.h
40 gcc c O3 modem. c I$(INCLUDES) I .
332
42 modem.h: ../ usrp0A/config .h ../ usrp0A/buffer .h sink .h ../ usrp0A/dirtyd .h
44 # SINK Module
46 sink .o: sink . c
gcc c O3 sink . c I$(INCLUDES) I .
48
sink . c : sink .h ../ usrp0A/dirtyd .h
50
sink .h: ../ usrp0A/config .h ../ usrp0A/dirtyd .h
52
DIRTY DEEDS Support Module
54
dirtyd .o: ../ usrp0A/dirtyd . c
56 gcc c O3 ../ usrp0A/dirtyd . c I$(INCLUDES) I .
58 $(INCLUDES)/dirtyd . c : ../ usrp0A/dirtyd .h
60 $(INCLUDES)/dirtyd .h: ../ usrp0A/bytes .h
62 # BYTE Definitions Support Module
64 bytes .o: ../ usrp0A/bytes . c
gcc c O3 ../ usrp0A/bytes . c I$(INCLUDES) I .
66
$(INCLUDES)/bytes . c : ../ usrp0A/bytes .h
68
HOUSEKEEPING TARGETS
70
clean :
72 rm .o
333
Appendix B
Miscellaneous Files
B.1 Data Frame Hexadecimal String
0014a54726b200146c1e70be0800450805dcced04000360622d7cc98bf25c0a80
1061f1b080df1d58447c92573 501016d0b13900006f636b696e67206f6e746f
207468652072657175657374206c6f636b20696e2074686520554244206472697
665722c20692e652e2020646f6e2774206c6f636b0a0974686520717565756520
7370696e6c6f636b207768656e2063616c6c65642066726f6d207468652072657
1756573742066756e6374696f6e2e0a090a09496e2064657461696c3a0a090a09
52656e616d65207562645f66696e697368282920746f205f5f7562645f66696e6
97368282920616e642072656d6f7665207562645f696f5f6c6f636b2066726f6d
2069742e20204164640a09777261707065722c207562645f66696e69736828292
c207768696368206772616273206c6f636b206265666f72652063616c6c696e67
205f5f7562645f66696e69736828292e20205570646174650a09646f5f7562645
f7265717565737420746f2075736520746865206c6f636b2066726565205f5f75
62645f66696e697368282920746f2061766f696420646561646c6f636b2e20204
16c736f2c0a096170706172656e746c7920707265706172655f72657175657374
2069732063616c6c65642077697468207562645f696f5f6c6f636b2068656c642
c20736f2072656d6f7665206c6f636b730a0974686572652e0a090a095369676e
65642d6f66662d62793a20436872697320577269676874203c636872697377406
334
f73646c2e6f72673e0a095369676e65642d6f66662d62793a2050616f6c6f2027
426c6169736f72626c616465272047696172727573736f203c626c6169736f726
26c6164655f7370616d407961686f6f2e69743e0a095369676e65642d6f66662d
62793a20416e64726577204d6f72746f6e203c616b706d406f73646c2e6f72673
e0a095369676e65642d6f66662d62793a204c696e757320546f7276616c647320
3c746f7276616c6473406f73646c2e6f72673e0a0a3c626c6169736f72626c616
4655f7370616d407961686f6f2e69743e0a095b50415443485d20756d6c3a2075
736520616c77617973206120736570617261746520696f2074687265616420666
f72205542440a090a0943757272656e746c792c207562643d73796e6320697320
646966666572656e742066726f6d207265706c6163696e6720756264233d20776
974682075626423733d2e2020546869732069730a09616761696e737420507269
6e6369706c65206f66204c656173742053757270726973652c20736f2072656d6
f7665207468697320646966666572656e63652e0a090a09416c736f2074686520
63757272656e74207562643d73796e63206265686176696f757220697320636f6
d706c6574656c79207573656c6573733a20697420697320746f206d616b652073
7572650a0974686174207768656e20746865206b65726e656c206861732073796
e636865642069747320492f4f20746f20746865207669727475616c206469736b
2c2074686520686f737420646f65730a096e6f7420696e76616c6964617465207
46869732077697468206869732063616368696e673b2074686973206361757365
7320526569736572465320636f7272757074696f6e2e0a090a094275742073696
e63652061637475616c6c792077652063616c6c20656e645f7265717565737428
29206f6e6c792061667465722074686520696f5f7468726561642068617320646
335
f6e65206974730a09776f726b2c207765206e65766572206c696520746f207468
6520626c6f636b206c617965722e20205573696e67204f5f53594e43206173207
76520646f207768656e207265706c6163696e670a09756264233d207769746820
75626423733d20697320656e6f7567682e0a090a095369676e65642d6f66662d6
2793a2050616f6c6f2027426c6169736f72626c61646527204769617272757373
6f203c626c6169736f72626c6164655f7370616d407961686f6f2e69743e0a095
369676e65642d6f66662d62793a20416e64726577204d6f72746f6e203c616b70
6d406f73646c2e6f72673e0a095369676e6564
B.2 RTS Frame Hexadecimal String
08ae26b201f0a0000000b0c49741d26f026e5d866232382e34373535
336

