AN ADAPTIVE SINGLE-HoP MEDIUM AccESS CONTROL LAYER FOR NoOISY

CHANNELS

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee.
This dissertation does not include proprietary or classified information.

Derek T. Sanders

Certificate of Approval:

Richard O. Chapman

Associate Professor

Computer Science and Software
Engineering

David A. Umphress

Associate Professor

Computer Science and Software
Engineering

John A. Hamilton, Jr., Chair
Associate Professor

Computer Science and Software
Engineering

Martin C. Carlisle

Professor

Department of Computer Science
United States Air Force Academy

George T. Flowers
Dean
Graduate School

AN ADAPTIVE SINGLE-HoP MEDIUM AccESS CONTROL LAYER FoOR NoOIsy

CHANNELS

Derek T. Sanders

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
August 10, 2009

AN ADAPTIVE SINGLE-HoP MEDIUM AccESS CONTROL LAYER FOR NoOISY

CHANNELS

Derek T. Sanders

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon the request of individuals or institutions and at
their expense. The author reserves all publication rights.

Signature of Author

Date of Graduation

1ii

DISSERTATION ABSTRACT
AN ADAPTIVE SINGLE-HoP MEDIUM AcckESS CONTROL LAYER FoRr NoOISYy

CHANNELS

Derek T. Sanders

Doctor of Philosophy, August 10, 2009
(Master of Software Engineering, Auburn University, AL, 2008)
(Bachelor of Wireless Engineering, Auburn University, AL, 2006)

351 Typed Pages

Directed by John A. Hamilton, Jr.

The work presented in this dissertation is for a contribution to the data link
layer and its responsibility of managing the physical channel in a mobile ad-hoc net-
work (MANET). Wireless networks in general are susceptible to noise in the spectrum,
which can result in low throughput, loss of critical resources, and high re-transmission
rates at the physical and link layers. As a result, there is a growing need for wireless
technology that can continue to operate in the presence of noise. A mathematical al-
gorithm has recently been developed which uses concurrent and super-imposed codes,
which when applied to wireless communications allows for jam-resistant communica-
tions without a pre-shared secret. By leveraging this algorithm, the research for this
dissertation will create a jam-resistant single-hop medium access control (MAC) pro-
tocol that adapts to the level of noise in the channel. The protocol will dynamically

adjust the parameters for encoding to overcome the varying levels of interference.

v

The new protocol will allow for communications to continue in the presence of noise

or jamming attacks.

ACKNOWLEDGMENTS

A special thank you to my parents and my six siblings who have supported me

during this milestone in my life.

Thank you to my graduate advisor and committee members for their support,

advice, and encouragement.

Thank you to the Information Assurance Center graduate students at Auburn

University for your support.

Thanks to the US Air Force Academy Professors Bill Bahn, Leemon Baird, and

Martin Carlisle for their support, advice, and expertise.

Thank you to my friend, Mark Kuhr, for keeping me motivated.

Thank you to all my other friends who have been there for support and knowl-

edge.

Thank you to RAM Laboratories, Inc. who have funded me through this re-

search.

vi

Style manual or journal used Journal of Approximation Theory (together with

the style known as “aums”). Bibliography follows van Leunen’s A Handbook for

Scholars.

Computer software used The document preparation package TEX (specifically

IXTEX) together with the departmental style-file aums.sty.

vil

TABLE OF CONTENTS

LisT oF FIGURES

LisT oF TABLES

1 INTRODUCTION

1.1 Goals e
1.2 Challenges
1.3 Outline.

2 WIRELESS TECHNOLOGY OVERVIEW
2.1 Chapter Introduction
2.2 Mobile Radio Propagation,
2.3 Physical Multiplexing and Spreading Techniques
2.4 Signal Jammingo
2.5 BBC Algorithm Overview
2.5.1 Introduction
2.5.2 BBC Encoding o
2.5.3 BBC Decodingo
2.5.4 BBC Decoding With Noise
2.6 Chapter Conclusion

3 MEebpIuM AcciEss CONTROL LAYER
3.1 Chapter Introduction
3.2 Flow and Error Control Protocols
3.3 Wireless Medium Access Control Protocols
3.3.1 Contention Free Schemes
3.3.2 Contention Based Schemes
3.4 Chapter Conclusion,

4 BBC-MAC InITIAL PROTOCOL DESIGN
4.1 Chapter Introduction
4.2 Protocol Requirements L.
4.3 Chapter Conclusion

viil

28
28
28
31
32
34
52

5 ProTOoCOL DESIGN AND IMPLEMENTATION PHASE

5.1 Chapter Introduction L
5.2 System Components

5.2.1 Hardware Components

5.2.2 Software Components
5.3 Physical Layer Implementation
54 BBC-MAC Implementation
5.5 Chapter Conclusion

6 PHASE I EXPERIMENTS: ADAPTIVE CODING INVESTIGATION
6.1 Chapter Introduction oL
6.2 Experiment Setupo
6.3 Experiments
6.3.1 Jammer RSSI Experiment
6.3.2 Pulse Jammer Experiment
6.3.3 Gaussian Jammer Experiment
6.4 Chapter Conclusion

7 PHASE II EXPERIMENTS: PROTOCOL VALIDATION

7.1 Chapter Introduction
7.2 Experiment Setup
7.3 Experiments

7.3.1 Initial Protocol Implementation Experiment

7.3.2 Refined Protocol Implementation Experiment
7.4 Adaptive vs Non-Adaptive
7.5 Chapter Conclusion

8 KEY CONTRIBUTIONS
9 CONCLUSION
BIBLIOGRAPHY
APPENDICES

A SOURCE CODE LISTING
A.1 BBC-MAC Data Link Layer Code
A.1.1 Interface Class (interface.py)
A.1.2 Receiver Class (Receiver.py)
A.1.3 Receiver Handler Class (RxHandler.py)

X

o8
58
99
60
64
73
75
36

87
87
88
92
92
93
102
110

113
113
114
117
117
128
140
145

147

148

151

161

A2

A3

A4

A.1.4 Transmitter Class (Transmitter.py) 176

A.1.5 Transmitter Handler Class (TxHandler.py) 177
A.1.6 BBC Config Class (bbc_config.py) 181
A.1.7 BBC-MAC Frame Class (bbc_frame.py) 183
A.1.8 Utilities Class (utilities.py) 184
A.1.9 CRCI16 Class (crelb.py) oo oo oo 185
A.1.10 Stats Module (stats.py) 187
Radio Scripts Code 188
A.2.1 USRP Receiver Script (usrp.rx_cfile.py) 188
A.2.2 USRP Transmitter Script (bbe_tx.py) 193
BBC Source Code 199
A.3.1 bbeftph 199
A.3.2 bbeftpe . .. 201
A33 bufferh 206
A34 bufferc 208
A35 bytesh 212
A3.6 bytes.c 214
A3.7 codech 215
A3.8 codec.c. 219
A39 configh 230
A.3.10 config.c 233
A311 dirtyd.h .. oo 242
A312 dirtyd.c . ..o 245
A313modem.h. 270
A3 14 modem.c. 272
A3.15shal.h 278
A3.16 shal.co 279
A317sinkh ... 288
A318 sink.c 289
A3.19 sourceh 297
A.3.20 source.c ... 298
A321 usrp.c . . .o 306
A.3.22 Makefile 314
Jammer Source Codeo 317
A.4.1 Main Program Source (jammer.c) 317
A.4.2 Modified BBC modem.h Source 319
A.4.3 Modified BBC modem.c Source 321
A.4.4 Modified BBC sink.h Source 325
A.4.5 Modified BBC sink.c Source 327

A.4.6 Jammer Makefile

B MISCELLANEOUS FILES
B.1 Data Frame Hexadecimal String
B.2 RTS Frame Hexadecimal String

x1

2.1

2.2

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Li1sT OF FIGURES

Hidden Terminal Problem 17
Exposed Terminal Problem 18
Universal Software Radio Peripheral External View 60
Universal Software Radio Peripheral Internal Hardware 61
RFX-1200 Transceiver Daughterboard 63
VERT400 Antenna 64
BBC Encoded Transmission without Noise 72
BBC Encoded Transmission with Pulse Jammer Noise. 72
Physical Layer State Diagram 74
BBC-MAC State Diagram 76
RSSI Value vs Jamming Level 92
Collective Pulse Jammer Results 94
Pulse Jammer with Expansion 50 96
Pulse Jammer with Expansion 75 96
Pulse Jammer with Expansion 100 97
Pulse Jammer with Expansion 125 98
Pulse Jammer with Expansion 150 99
Pulse Jammer with Expansion 175 99
Pulse Jammer with Expansion 200 100

x1i

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15

Pulse Jammer with RTS Frame at Expansion 500 101

Collective Gaussian Jammer Results 103
Gaussian Jammer with Expansion 50 104
Gaussian Jammer with Expansion 75 105
Gaussian Jammer with Expansion 100 105
Gaussian Jammer with Expansion 125 106
Gaussian Jammer with Expansion 150 107
Gaussian Jammer with Expansion 175 108
Gaussian Jammer with Expansion 200 108
Gaussian Jammer with RTS Frame At Expansion 500 109
Experiment I Latency By Jammer Level 119
Experiment I Latency By Expansion Level 120
Experiment I RTS Transmits By Jammer Level 122
Experiment I RTS Transmits By Expansion Level 123
Experiment I Data Transmits By Jammer Level 126
Experiment I Data Transmits By Expansion Level 126
Experiment II Latency By Jammer Level 131
Experiment II Latency By Expansion Level 132
Experiment II RTS Transmits By Jammer Level 134
Experiment IT RTS Transmits By Expansion Level 135
Experiment II Data Transmits By Jammer Level 137
Experiment II Data Transmits By Expansion Level 138
Adaptive vs Non-Adaptive by DATA-ACK Exchanges 142
Adaptive vs Non-Adaptive Convergence 143
Pulse Jammer with RTS Frame at Expansion 175 145

xiil

LisT oF TABLES

2.1 Prefix Hash Table 22
2.2 Transmission Buckets 22
2.3 Received Buckets With Noise 25
6.1 Expansion Factor Impact 0L 90
6.2 Pulse Jammer Results 95
6.3 Gaussian Jammer Results 0L 103
6.4 RSSI Failure Levels oo 111
7.1 Expansion RSSI Range 114
7.2 Experiment I Latency By Jammer Level 119
7.3 Experiment I Latency By Expansion Level 119
7.4 Experiment I RTS Transmits By Jammer Level 121
7.5 Experiment I RTS Transmits By Expansion Level 122
7.6 Experiment I Data Transmits By Jammer Level 125
7.7 Experiment I Data Transmits By Expansion Level 125
7.8 Experiment I Message Errors By Jammer Level 127
7.9 Experiment I Message Errors By Expansion Level 128
7.10 Experiment II Latency By Jammer Level 131
7.11 Experiment II Latency By Expansion Level 131
7.12 Experiment II RTS Transmits By Jammer Level 133

Xiv

7.13 Experiment II RTS Transmits By Expansion Level 134

7.14 Experiment II Data Transmits By Jammer Level 136
7.15 Experiment II Data Transmits By Expansion Level 137
7.16 Experiment II Message Errors By Jammer Level 139
7.17 Experiment II Message Errors By Expansion Level 140
7.18 Adaptive vs Non-Adaptive 141
7.19 Adaptive vs Non-Adaptive with Modification 141

XV

CHAPTER 1

INTRODUCTION

The earliest wireless communications and transmission control project known as
ALOHA [Abramson 1970] evolved into the wireless technology seen today. The Packet
Radio Network (PRNET) [Jubin and Tornow 1987] grew out of the development of
ALOHA and became one of the earliest multi-hop multiple access packet networks. To
distinguish multi-hop from single-hop, multi-hop systems or layers are concerned with
the movement of packets across multiple nodes or hops. Single-hop, on the other hand,
is only concerned with the link between two nodes or hops. As technology progressed,
the hardware needed to create diverse networks shrank into a more manageable form
and has subsequently allowed for the evolution of small mobile devices in which each
device can act as a repeater. This sort of network is commonly referred to as a Mobile
Ad-Hoc Network (MANET). These networks can be viewed as simple peer-to-peer
networks in which each node will receive packets and either keep it for itself or forward
it onto the next destination. Fach of the nodes in this network communicates via the
wireless medium with other nodes in range without relying on internal infrastructure.
The MANET is said to be self-organizing since it should automatically detect any
new nodes and infuse them with the rest of the network effortlessly. Due to the high
mobility of these networks it is often difficult to effectively coordinate access to the
medium. This is due to the fact that incoming nodes and moving nodes transmissions

can easily inject noise into a previously reserved channel.

Some of the characteristics that can be generalized for MANETS are as follows

[Agrawal and Zeng 2006]:

e Dynamic Topologies: Mobility in the network causes the network topology
to change at random, and it is often hard to predict where a node may be for
the next transmission. The high degree of mobility also has an impact on the
power constraints for the nodes. As nodes move, a previously visible node may

not be reachable due to one node being limited by antenna power.

e Bandwidth Constraints: Bandwidth is a two-fold constraint when referring
to wireless communications. There is the physical bandwidth of the channel
and there is also the overall throughput of the link’s bandwidth. Most ad-
hoc networks are constrained to the Industrial, Scientific, and Medical (ISM)
band, and are in turn required by FCC mandates that any radio in the ISM
use either Frequency Hopping Spread Spectrum (FHSS) or Direct Sequence
Spread Spectrum (DSSS). When considering the bandwidth of a MANET it is
important to note that the already limited bandwidth is further reduced after
the effects of multiple access, fading, and interference have been considered. A
problem of particular concern is channel saturation, which leads to congestion.
This problem is compounded by the addition of noise and jamming attacks.
This is due to the fact that the wireless spectrum is inherently error prone

which further reduces the effective throughput of the channel.

e Limited Energy Potential: Due to the nature of mobile networks it is likely
that the nodes will be running on a battery store. This impacts the nodes
transmitting power. As previously mentioned, the different transmission powers
coupled with mobility can sometimes create a unidirectional link. That is, one

node is able to transmit to another but not vice versa.

e Limited Physical Security: Due to the fact that MANETSs have no infras-
tructure, security is a particular problem. Negotiating security trust levels and
key exchanges is a hard problem with no central authority to handle these cre-
dentials. Further problems can be found in the areas of Denial of Service (DoS)

attacks, man-in-the-middle attacks, and eavesdropping.

Noise and jamming, whether caused by other nodes in the network or intention-
ally injected into the channel by an adversary, can significantly affect the ability of
network communications to carry on. With the increase in noise there is also an in-
crease in channel saturation, leading to higher re-transmissions at the data link layer
which can pose further threats to the sustainability of the node in terms of its power
source. Current mechanisms for handling noise (or avoiding collisions) are handled
by the Medium Access Control (MAC) layer protocol. The current protocols do not
necessarily handle the noise, rather, they try to avoid collisions in the channel by
using various techniques including sensing it before transmission or by splitting the
channel into smaller channels. It is inefficient to divide the channel due to the limited

bandwidth already asserted in the ISM, and current channel-sensing protocols can

starve their node in the presence of noise. These issues can have a significant impact
on the ability on the network to sustain data flow and for other layers in the stack to
properly carry out tasks.

To address interference, a new MAC layer is needed that can continue to operate
in the presence of noise. A new error-correcting code based upon concurrent codes
forms the backbone of this new protocol. The BBC (named after the creators Baird,
Bahn, and Collins) algorithm [Baird, Bahn, Collins, Carlisle and Butler 2007], a
subset of concurrent codes, is the specific coding scheme that will be applied to
this research. Early research with this algorithm has shown that it can aid in the
recovery of a message that has been affected by noise or collisions. Noise can affect
transmissions by flipping bits, either 0’s to 1’s or vice versa. However, by leveraging
this new algorithm the messages contained in the transmission can still be recovered
up to a certain bit-error rate (BER). This research will create a new MAC layer, and
its supporting facilities, which take advantage of the error correcting abilities of the
BBC algorithm.

The data link layer transforms the raw transmission ability of the physical layer
into a reliable link, which is responsible for the hop-to-hop communications. This
layer also transforms the data from the network layer into manageable chunks of data
called frames. It is the responsibility of the MAC sub-layer to handle error correction
either through correcting code or by retransmitting corrupted frames. Furthermore,

the MAC layer is responsible for solving channel access conflicts and coordinating the

transmission from one node to the next. The data link layer is traditionally thought

to handle these four main tasks:

e Framing: The data link layer separates messages either from the network layer
into smaller transmissions frames, or combines frames from the physical layer
into their original message for delivery to the network layer. The degree of

framing (variable-size) has a direct impact on the error control facility.

e Flow Control: This facility coordinates the data that can be outstanding
before an acknowledgement is received for proper transmission. Flow control
effectively determines the channel saturation from the viewpoint of a single

node.

e Error Control: During transmission at the physical layer the data can become
corrupted. It is the responsibility of this facility to either detect and request
retransmissions, or attempt to correct the bit errors. Types of correcting codes
are block codes, linear block codes, and cyclic codes. One of the simplest forms
of error detection falls into checksums. Another aspect of error control is to

determine which frames have been lost and need to be retransmitted.

e Medium Access Control: In literature the MAC sub-layer is traditionally
in control of the previous mentioned facilities in the data link layer. The main
focus however is coordinating the access to a shared medium. It is responsible
for resolving the problems that can arise when multiple nodes wish to access

the channel.

The MAC layer’s ability to manage the physical medium has a direct effect on
how reliable a link is. It also has an impact on how efficient the link is in terms of
overall data throughput. In other words, the MAC layer is the ultimate decider in the
level of Quality of Service (QoS) a network can maintain. For this reason the design
of a MAC protocol which handles the varying reliability of channel is of considerable

importance.

1.1 Goals

At the conclusion of this research effort, this dissertation should demonstrate:

e A contribution to the area of MAC protocols for MANETSs. This research will
incorporate the BBC algorithm into a new MAC layer, called BBC-MAC. BBC-
MAC will be a new approach to providing adaptive jam-resistant communica-
tions without a pre-shared secret. This will be validated using software-defined

radios.

e A contribution to the current BBC algorithm by providing methods to vary the
coding parameters to allow for various levels of jam-resistance to be used. This
will allow BBC-MAC to adjust to varying levels of interference. This will be

validated using software-defined radios.

e The main research contribution contained in this proposal is a MAC layer so-

lution to providing jam-resistant communications that can continue during a

jamming attack. The layer will achieve this by dynamically adjusting the cur-

rent level of jam resistance with respect to the level of interference.

1.2 Challenges

Creating a new MAC layer that is jam-resistant and that can be proven on a
real-world test bed presents several challenges. As previously mentioned, the MAC
layer has a direct impact on the QoS for a link, and creating one that in the end
improves upon the current state of MAC protocols is the main challenge. However,
by incorporating the BBC algorithm into this new layer, the current state of MANET
communications can be advanced to provide greater data transfer reliability. However,

the following challenges will need to be addressed.

e The new layer must be able to effectively incorporate the BBC algorithm such
that the coding parameters can be altered on a link-state basis. If the link has a
low degree of noise, the level of encoding can be changed such that throughput
goes up. Conversely, if the link has a high degree of noise, the layer should

adjust the algorithm such that greater jam-resistance is achieved.

e The new layer must effectively handle the congestion and saturation of the
channel by incorporating the proper flow and error control facilities. These
facilities must be adopted to take advantage of the important jam-resistant

nature of the BBC algorithm.

1.3

The MAC protocol must effectively coordinate access to the transmission chan-
nel amongst multiple nodes while maintaining the proper level QoS. It is unclear
how to properly configure the MAC protocol to control all the other facilities

of the data link layer, and is the main focus of this research.

Outline

The remainder of this document is organized as follows:

Chapter 2 gives an overview of the lower functions of wireless communications
including radio propagation and the physical multiplexing that occurs at the
physical level. The chapter concludes with an overview of the BBC algorithm

and its operations.

Chapter 3 introduces the specific duties of the data link layer with a main focus
on the discussion of current and past medium access control (MAC) protocols

for consideration.

Chapter 4 discusses the initial design of the protocol.

Chapter 5 covers the protocol design and implementation.

Chapter 6 covers the initial experiements for determining the proper configura-

tions needed to create the adaptive protocol.

Chapter 7 covers the experiments and validation for the adaptive protocol.

e Chapter 8 discusses the contribution to the research field.

e Chapter 9 concludes with a discussion of this dissertation and future work.

CHAPTER 2

WIRELESS TECHNOLOGY OVERVIEW

2.1 Chapter Introduction

Understanding the important functions of the lower layers of the wireless protocol
stack is crucial for gaining insight into the problems that mobile wireless networks
are faced with. The lowest level of interaction is at the physical layer and it is at this
layer where noise makes its impact. A layer up sits the data link layer that is tasked
with transforming the raw data transmissions provided by the physical layer into a
reliable data link usable by the upper layers. This chapter is focused upon giving
the reader an overview of the important components in wireless communications.
The important concepts within radio propagation will be covered. Additional topics
include an explanation of the physical multiplexing techniques, an overview of signal
jamming, and an in depth overview of the BBC algorithm.

Before continuing into the details of wireless communications a lexicon of terms
is provided for the reader as a friendly reminder of the definitions [Forouzan 2007].

Terminology:

e Bandwidth: The difference between the highest and the lowest frequencies

of a composite signal.

e Channel: A communications pathway.

10

e Guard Band: The bandwidth separating two signals in a composite signal.

e Link: The physical communications pathway that transfers data from one

device to another.

e Multiplexing: The process of combining signals from multiple sources for

transmission across a single data link.
e Spectrum: The range of frequencies of a signal.

e Spread Spectrum: A wireless transmission technique that requires a band-

width several times the original bandwidth.

2.2 Mobile Radio Propagation

Communications in a MANET use a wireless transmission medium in order to
exchange data. For this reason it is important to understand the distinguishing
characteristics for radio propagation. Ideally, radio waves would move freely in space
without any obstacles and free from interference. However, this is not possible in
the real world except in a lab environment where the waves are propagating through
a vacuum. When a radio wave does encounter an obstacle it can affect the wave

through reflection, diffraction, or scattering. [Agrawal and Zeng 2006]

1. Reflection: Reflection occurs when the radio wave encounters an object that
is larger compared to the size of its wavelength. This can be seen when the

radio wave hits the side of a building, where it will be reflected off the building.

11

This scenario can be viewed as a positive event since it allows more waves to
reach the receiver than would normally, but it also presents a problem since the

receiver will have multiple copies of the same wave.

2. Diffraction: Diffraction occurs when radio waves are blocked by an object
with sharp irregular edges. The radio waves will bend around the corner to
reach the receiver. Like reflection this allows waves to reach the receiver even

in situations where line of sight does not exist.

3. Scattering: Scattering occurs when the radio wave encounters an object that
is smaller compared to the size of its wavelength and the incoming wave is
scattered into several weaker outgoing signals. An example would be when a

radio wave hits street signs or lampposts.

2.3 Physical Multiplexing and Spreading Techniques

The physical layer of the network stack is charged with the physical movement
of bits from one node to the next. It is the interface that connects the rest of the
protocol stack to the physical medium for transport. This physical layer operates on
a stream of bits that are encoded or modulated into an electrical or optical signal
for transport. The layer is also concerned with the data rate over the medium. The
upper bound on the communications network is always going to be the number of
sustainable bits sent each second over the physical medium. The physical layer also

handles the synchronization that is required at the bit level for communications to

12

take place. The final important aspect to the physical layer is how it multiplexes
the digital stream of bits into a transport form over the wireless medium. Applying
specific multiplexing and spreading techniques can efficiently use the bandwidth of the
channel. When using multiplexing the goal is to create an efficient use of the channel
by combining multiple signals into a single signal. Spreading the signal allows for
privacy and the resistance to signal jamming. These techniques generally fall into the

domains of time, frequency, and spreading [Forouzan 2007, Agrawal and Zeng 2006].

e Frequency-Division Multiplexing (FDM): Frequency-division multiplexing is an
analog multiplexing technique that combines multiple signals. This is used when
the bandwidth (hertz) of a link is greater than that of the combined signals being
transmitted. The individual signals generated by the devices are modulated on
different carrier frequencies. These are then combined into a single composite
signal to be sent out over the medium. The carrier frequencies are sufficiently

separated by guard bands to prevent overlap between the individual signals.

e Time-Division Multiplexing (TDM): Time-division multiplexing is a digital mul-
tiplexing technique that combines multiple low-rate channels into a single high-
rate channel. In contrast to FDM, TDM shares time on the medium versus
frequency as in FDM. Each node that is connected to the medium is given a
certain portion of time on the link in which it can occupy. There are two prevail-
ing methods of doing TDM: synchronous and statistical. The main difference

between the two is that in synchronous mode, a node is allocated a time slot

13

even if the node does not have any data to send. Statistical TDM dynamically

allocates time units as needed which improves the bandwidth efficiency.

Orthogonal Frequency-Division Multiplexing (OFDM): Orthogonal frequency-
division multiplexing is a technique to split high-rate radio signals into several
low-rate signals that are then transmitted over several orthogonal carrier fre-
quencies. The sending node breaks down the high-rate streams into n parallel
low-speed streams that are then modulated. The key difference between OFDM
and FDM is that in OFDM all the sub-bands are used by a single source at one
time, instead of in FDM where the sub-bands are taken up by separate sources.

OFDM is used as the multiplexing technique in 802.11a/g/n.

Spread Spectrum (SS): Spread spectrum is a technique like multiplexing that
brings together multiple signals for transmission. SS was originally designed
for military use to avoid jamming in the wireless spectrum. In wireless com-
munications, nodes must be able to share the medium in a manner that allows
for privacy from eavesdropping and without being susceptible to jamming. SS
takes the original signal’s required bandwidth and expands it such that the
spreaded bandwidth is much larger (usually twice) that of the original band-
width. After the signal has been created, the spreading process uses a spreading
code or chip-sequence, which determines how the original signal is spread in the

new bandwidth. Currently there are two main techniques for spreading the

14

bandwidth: Direct Sequence Spread Spectrum (DSS) and Frequency Hopping

Spread Spectrum (FHSS).

1. Direct Sequence Spread Spectrum (DSSS): Direct sequence spread spec-
trum multiplies the original signal by a pseudorandom sequence of bits
that is much larger than the original signal, effectively spreading the origi-
nal signals bandwidth. In other words, each data bit in the original signal
is multiplied by the chip sequence using polar non-return to zero (NRZ)
encoding. DSSS provides privacy from eavesdropping as long as no other
nodes have access to the code. DSSS is resistant to interference in the

spectrum if each node uses a different spreading sequence.

2. Frequency Hopping Spread Spectrum (FHSS): Frequency hopping spread
spectrum uses a pseudorandom sequence to spread the original signal
across a larger bandwidth. The sequence determines how the radio sig-

nal hops between the multiple carrier frequencies.

2.4 Signal Jamming

Wireless communications are prone to errors during transmission. Signal jam-
ming disrupts the transmission and can occur through un-intentional means such as
interference, collisions, or noise. This type of jamming can occur in situations of high

network saturation where competing nodes are causing collisions in the spectrum. A

15

more significant threat are jamming attacks from adversaries attempting to disrupt

or bring down the network.

e Unintentional Jamming:
Friendly jamming is a common occurrence in current wireless communication
systems such as 802.11. The collisions that occur at the physical layer are
resolved by the data link layer, and generally go unnoticed by the user operating
at the application layer. It is only in situations of high network congestion
and noise where the problem can be seen in terms of lost packets and high
latency. Collisions occur when multiple stations transmit at the same time
onto a channel that was designed to only support one transmission. When this
happens the signals are combined, which effectively destroys or corrupts the
data from the individual transmissions. The two most familiar situations that
can cause unintentional jamming are the exposed and hidden terminal problems

[Forouzan 2007].

1. Hidden Terminal Problem: The hidden terminal problem is depicted in
Figure 2.1. In this situation terminal A is able to see the signals broad-
casted from both B and C, but B and C are hidden from each other with
respect to A. Consider the scenario when terminal B is sending data to
terminal A. While this transmission is occurring terminal C also wishes
to send data to terminal A. The problem is terminal C can’t sense the

channel to see that terminal B is transmitting since C is out of range of

16

B’s transmission radius. When the two begin to transmit it will cause a

collision corrupting the data A is receiving.

Range of

C

Figure 2.1: Hidden Terminal Problem

2. Fzxposed Terminal Problem: The exposed terminal problem is depicted in
Figure 2.2. In this situation the problem is that terminal C is exposed to
the transmissions from terminal A to B. Consider the scenario where ter-
minal C wishes to send data to terminal D, and at the same time terminal
A is transmitting data to terminal B. Terminal C could send data to D
without interfering with the data from A to B, however, since it is being
exposed to the transmissions from A to B, it will not begin transmitting
to D. In other words, terminal C is wasting time and the actual channel

availability by waiting for terminal A to complete its transmission to B.

e Intentional Jamming:
As mentioned before the second type of jamming occurs when an adversary
wishes to attack a network. Jamming is a relatively easy task since in the

general case no special hardware is needed to carry out the attack, and it can be

17

Range of A

e ———

e ===

Figure 2.2: Exposed Terminal Problem

implemented by merely listening to the medium and broadcasting at the same
frequency, and when carried out correctly it can lead to significant network
and communications disruptions [Awerbuch, Richa and Scheideler 2008]. The
method of attack is usually targeted at the physical medium for the network,
but more sophisticated attacks can target the specific way the MAC protocol
operates in the data link layer. Methods for carrying out jamming attacks have
been studied and validated through simulation [Chiang and Hu 2007, Law, van
Hoesel, Doumen, Hartel and Havinga 2005, Li, Koutsopoulos and Poovendran
2007, Xu, Trappe, Zhang and Wood 2005]. Current defenses against jamming
focus on special techniques at the physical layer, such as spreading techniques
[Forouzan 2007, Liu, Noubir, Sundaram and Tan 2007, Navda, Bohra, Ganguly
and Rubenstein 2007]. Current wireless technologies like 802.11b use a form
of spread spectrum. However, 802.11b uses narrow spreading which allows
an attacker to jam only a small set of frequencies rendering spread spectrum

useless. Furthermore, the MAC protocol in 802.11 does not offer any protection

18

to even the simplest jamming techniques [Forouzan 2007, Bayraktaroglu, King,

Liu, Noubir, Rajaraman and Thapa 2008].

2.5 BBC Algorithm Overview

The goal of this research is to create a new MAC layer that provides jam-
resistance without a pre-shared secret by taking advantage of the BBC algorithm
[Baird, Bahn, Collins, Carlisle and Butler 2007]. Given its pivotal role in this re-
search effort it is important to gain a clear understanding of how it will allow the
new layer to accomplish the task of maintaining a reliable link even in the presence
of noise. This section will cover the terminology used when referring to BBC opera-
tions, explain by example how the algorithm conducts its encode and decode steps,
and finally noise will be added to the example to illustrate how it overcomes that

obstacle.

2.5.1 Introduction

Current technologies such as spread spectrum provide jam-resistance, however,
the two communicating parties must possess the same chip sequence in order to com-
municate in a private and jam-resistant manner [Forouzan 2007|. Managing the chip
sequences for every node is similar to the problem that was faced by the cryptographic
community prior to the movement to a public key infrastructure. Prior to public key
cryptography both parties had to know the symmetric key in order to cipher messages

between the each other. In order to overcome this problem, new wireless technologies

19

are needed that allow for communications to occur which provide jam-resistance and
privacy, but also eliminate the need for secret knowledge (chip sequence). The cre-
ators of the BBC algorithm had this problem in mind when creating the algorithm.
The algorithm allows the communicating parties to talk without a pre-shared key
while affording jam-resistance.
Terminology

The following glossary of terms is presented for the reader. Many of these terms
will be used when referencing the BBC algorithm in this Section and the remainder

of the dissertation.

Indelible Mark The location of a 1 bit, or a high pulse in a transmission. It is

assumed that the mark can never be transformed from a 1 to a 0.

Data The payload that is encapsulated in a message.

Message The fully constructed message including the necessary checksum bits and

header information.

Packet This is the combination of multiple messages that are combined with a
bitwise OR. The packet is the final data which the BBC algorithms are enacted

upon.

The BBC algorithm operates in two modes: encoding and decoding. The en-
coding stage transforms binary data into a form, which determines how it is to be

physically transmitted. The parameters given to the encoder determine the level

20

of jam-resistance it affords. The following sections show by example how the BBC

algorithm operates.

2.5.2 BBC Encoding

Algorithm 1 BBCEncode(M)
This function encodes an m-bit message M [1...m] adding k checksum bits to the
end of the message. H is a hash function. The definition of H and the value of m
and k are public (not secret). The definition of indelible mark” and “location” are
specific to the physical instantiation of BBC used.

Append k zero bits to the end of M
fori=1.. m+kdo

Make an indelible mark at the location given by H(M[1...7])
end for

The BBC Encoding algorithm is shown by Algorithm 1 [Baird, Bahn, Collins,
Carlisle and Butler 2007]. Tt is a fairly straightforward process, compared to the steps
taken during decoding. The first thing that is done is the original message is appended
with k checksum (zero) bits. The number of bits is determined in advance based upon
the coding parameters and the expected number of errors that is determined by the
current interference detected. Next, each prefix of the bit string is sent through a
hash function that maps a variable length bit string to some desired mapping where
the indelible mark will be. In this example pulse broadcast is used and so it is
conceptually mapped to a bucket number representing a period of time where a pulse
would be. Using the algorithm, and the example in [Baird, Bahn, Collins, Carlisle
and Butler 2007] which uses 25 buckets and 2 checksum bits, the encoding of the

message M = 1000 proceeds as follows:

21

1. Append two checksum zeros to M: 100000.

2. Encode each prefix string, s, using the hash function, H as shown in Table 2.1.

s H(s)
1 21
10 9
100 20
1000 14
10000 | 6
100000 | 10

Table 2.1: Prefix Hash Table

3. Broadcast this message by transmitting a pulse where there is a corresponding
1 in the buckets from Table 2.1. The result of this broadcast in the time period

conceptualized by the buckets [0,25] is seen in Table 2.2.

ot

Bucket | 12|34 678191011 |12 |13 |14 |15 |16 |17 |18 19|20 |21 22|23 |24]|25
1000 |(0|0f0O}0Oj0O}1}j0/0O}2}{2 0002 |OJ0O]0]O0O]0O]1T]21T)0]0]0]O0

Table 2.2: Transmission Buckets

2.5.3 BBC Decoding

Decoding on the receiver’s end is considerably more complex than the steps taken
to encode the message. This is because the receiver is unaware of what is sent and
must begin at the very beginning of any root message and systematically reduce the
set of possible messages. The algorithm for decoding the received message is given
by Algorithm 2 [Baird, Bahn, Collins, Carlisle and Butler 2007]. Tt is assumed that
the receiver knows the hash function, length of messages, and the length of k. From

the encoding example, assuming there was no noise induced in the message, and

22

Algorithm 2 BBCDecode(n)
This recursive function can be used to decode all the messages found in a given
packet by calling BBCDecode(1). There must be a global M[1...m + k] which is a
string of m + k bits. The number of bits in a message is m, and the number of
checksum zeros appended to the message is k. The definition of H and the value of
m and k are public (not secret). The definition of "indelible mark” and "location”
are specific to the physical instantiation of BBC used.

if n=m+k+1 then
print "One of the messages is:" M [1...m]
else
if n > m then
limit <= 0
else
limit < 1
end if
for i =0 ... limit do
if there is an indelible mark at location H(M[1...n]) then
BBCDecode(M,n + 1)
end if
end for
end if

the receiver began listening at the proper time the queue would look like Table 2.2.
Following the decoding algorithm the steps to decode this message would proceed as

follows:

1. Determine whether a 0 or 1 was transmitted. H(0) = 4 and H(1) = 21. The
receiver will listen for pulses at time slots 4 and 21. From Table 2.2 it is seen
that bucket 21 has a pulse, and thus the receiver knows that the message begins

witha 1. M’ = 1.

23

2. Next, the current set of prefixes are appended with 0 and 1 to account for all
prefixes. M’ = 10, 11. H(10) = 9 and H(11) = 21. Both of these locations have

pulses and will survive onto the next decoding iteration. M’ = 10, 11.

3. Again, the current set of prefixes are appended with a 0 and 1. M’ = 100, 101,
110, 111. H(100) = 20, H(101) = 24, H(110) = 16, and H(111) = 2. Cross-
referencing with Table 2.2, it can be seen that only bucket 20 has a pulse and

thus 100 is the only survivor. M’ = 100.

4. Appending the current set of prefixes gives M’ = 1000, 1001. H(1000) = 14,

H(1000) = 1. Only bucket 14 has a pulse and reduces the set to M’ = 1000.

5. At this stage the length of the original message has been reached. Thus, from
this point on the surviving prefixes will be appending with the checksum bits (0-
bits) for at most k times. H(10000) = 6. This does have a pulse and continues

onto the final decoding stage. M’ = 10000.

6. This is the last decoding step since this is the last checksum bit to be appended.
H(100000) = 10, and bucket 10 does indeed have a pulse. Removing the k
checksum bits from the surviving set of M’ reveals that the only message was

sent = 1000, and this matches up with what was encoded in Section 2.5.2.

2.5.4 BBC Decoding With Noise

The decoding example in section 2.5.3 illustrated the basic concept of how to use

the BBC algorithm for physical encoding and decoding of the messages. However,

24

it lacked the illustration of how the algorithm will decode when a few of the bits
are flipped during transmission. It is assumed that the induction of power into the
spectrum can only flip the bits from 0 to 1 and not vice versa. For the sake of
completeness it will be shown how the algorithm decodes the message when just two
bits are flipped, or in this case, there are two buckets that get pulses. Using Table
2.2 as the basis, the following buckets are given pulses: 2 and 24. These buckets are
marked with an X in Table 2.3 to differentiate them from the true pulses sent out by

the sender.

Bucket (1|2 |3|4|5/6|7(8[9]10|11 (12|13 |14 15|16 |17 |18 19|20 |21 |22|23 |24 |25
1000 |0|X|O|O|O|21|OfO)2) 2| O0OjJOjO|2]O]O]O]O]O0O]1T|1T|0|0|X]|O

Table 2.3: Received Buckets With Noise

The decoding proceeds as follows:

1. Determine whether a 0 or 1 was transmitted. H(0) = 4 and H(1) = 21. The
receiver will listen for pulses at time slots 4 and 21. From Table 2.2 it is seen

that bucket 21 has a pulse, and thus the receiver knows that the message begins

witha 1. M =

2. Next, the current set of prefixes are appended with 0 and 1 to account for all
prefixes. M’ = 10, 11. H(10) = 9 and H(11) = 21. Both of these locations have

pulses and will survive onto the next decoding iteration. M’ = 10, 11.

25

3. Again, the current set of prefixes are appended with a 0 and 1. M’ = 100, 101,
110, 111. H(100) = 20, H(101) = 24, H(110) = 16, and H(111) = 2. Cross-
referencing with Table 2.3, it can be seen that buckets 20, 24, and 2 have pulses.

M’ = 100, 101, 111.

4. Appending the current set of prefixes gives M’ = 1000,1001,1010,1011,1110,1111.
H(1000) = 14, H(1000) = 1, H(1010) = 15, H(1010) = 2, H(1110) = 14, H(1110)
= 23. Buckets 14 and 23 have pulses, and two of the prefixes mapped to 14

which gives the set M’ = 1000, 1011, 1110.

5. At this stage the length of the original message has been reached. Thus, from
this point on the surviving prefixes will be appending with the checksum bits
(0-bits) for at most k times. H(10000) = 6, H(10110) = 14, H(11100) = 13.
Bucket 6 and 14 have transmissions and the follow prefix set survives: M’ =

10000, 10110.

6. This is the last decoding step since this is the last checksum bit to be appended.
H(100000) = 10, H(101100) = 12. Only bucket 10 has a pulse leaving M’ =
100000. Removing the k checksum bits from the surviving set of M’ reveals that
only message was sent = 1000, and this matches up with what was encoded in

Section 2.5.2.

This example illustrated clearly how the algorithm reduces the set of possible
prefixes to get the actual message even in the presence of corrupted transmissions.

The interesting occurrences are the two surviving messages past the original message’s

26

length. These two messages that got eliminated are called hallucinations as termed
by the authors of [Baird, Bahn, Collins, Carlisle and Butler 2007]. This example
illustrates the importance of the k checksum bits. In the previous decoding example
it might have been thought to just stop decoding since the original message was
recovered. However, in this example if that were to have occurred three messages
would have thought to been received, and even onto the second to last stage two
messages would have been received. It is only after the final decoding step where it

is determined how many true messages were sent.

2.6 Chapter Conclusion

This chapter began with an introduction to wireless communications and the op-
erations that occur at the physical layer for transport. An introduction to the various
signal jamming scenarios was presented, and the chapter concluded with an introduc-
tion to the BBC algorithm. A toy example was worked through that demonstrated
how the BBC algorithm encodes and decodes data, and finally, a decoding example

where noise was artificially induced was given.

27

CHAPTER 3

MeDIUM AccESS CONTROL LAYER

3.1 Chapter Introduction

In relationship to the OSI model, the IEEE 802 standard specifies that the data
link layer be divided into two sub-layers: the logical link control (LLC) layer and
the medium access control (MAC) layer. The separation is made to allow the MAC
protocol layer to be specific to the type of physical medium used. For example, the
LLC in the IEEE 802 standard is the same across all the different local area network
(LAN) protocols, and it is only the MAC that is modified as necessary [Forouzan
2007]. For instance, IEEE 802.3 Wired Ethernet LAN uses a Carrier Sense Multiple
Access (CSMA) with Collision Detection, and IEEE 802.11 Wireless LAN uses a
specialized version of CSMA with Collision Avoidance, but both use the same IEEE

802.2 LLC.

3.2 Flow and Error Control Protocols

The specific duties assigned to the LLC according the IEEE 802 standard are
to provide flow and error control. Flow control refers to the set of mechanisms that
dictate the number of outstanding frames that the sender can transmit without re-

ceiving an acknowledgement (ACK) frame. Error control is the correction of the

28

problem when an acknowledgement is never received, the receiver never gets an un-
expected frame, or the receiver gets a corrupted frame. It is based on the concept
of automatic repeat request, or the retransmission of data. Flow and error control
are accomplished through the use of a single protocol, with the exception of the error
detection mechanisms. The following lists the most familiar protocols to accomplish

error and flow control [Forouzan 2007].

e Stop-and-Wait Automatic Repeat Request:

This is the simplest of the flow and error control protocols. This protocol will
have one outstanding frame at any point in time. It will send one frame, and
then wait for an ACK frame to be returned from the receiver, or for a timer
to expire, in which it will automatically re-transmit the unacknowledged frame.
The error control is achieved through the use of the timer. It is assumed that if
there isn’t an ACK received after a specific time that an error has occurred dur-
ing transmission and the frame never arrived or the receiver received a corrupted
frame. Sequence numbers are used for identifying frames, based on modulo-2
arithmetic. The sequence number inside the returned ACK frame is the number

for the frame that the receiver is expecting next.

e Go-Back-N Automatic Repeat Request:

This protocol expands upon the previous one by allowing multiple frames to be
sent at once. An abstraction known as the sliding window is used, where within

the sliding window resides the frames with the sequence numbers that have not

29

been acknowledged. The window can only slide when a valid acknowledgement
is received. Generally, the window can only slide one slot at a time. However,
since it is assumed that the receiver only sends back the ACK for the next
frame expected, the window can slide directly to that frame number, and send
out any frames in the window. This is because the receiver may not send back
an ACK for every frame it receives, just the most recent in order frame. Like
the Stop-and-Wait protocol, this also uses timers for error control. However,
there is only one timer that is kept track of, versus one for each frame. The
timer is only maintained for the oldest outstanding frame, and if that timer

expires all of the frames within the window are retransmitted.

Selective Repeat Automatic Repeat Request:

The previous two protocols simplified the process carried out at the receiver’s
end. The receiver only had to maintain one buffer, the space for the next frame
expected. Any out of order frames that were received were simply discarded, and
this is a very inefficient use of the link. This problem can be further compounded
in noisy channels, like that in wireless communications, where a frame has a
high probability of being corrupted. These retransmissions use valuable link
bandwidth and further add to the probability of a corrupted frame. Selective
Repeat is a protocol meant for noisy channels. In this protocol instead of the
sender sending back all the frames in the window, it only retransmits those that

have not been acknowledged or have been corrupted. This allows for efficient use

30

of the link, but makes the processing on the receiver’s end much more complex.
The receiver can receive as many out of order frames as the window size and
will store them until enough in order frames arrive to deliver to the upper layer.
The receiver makes use of non-acknowledgment (NAK) frames, which are sent
to the sender to remind them to retransmit a specific frame. A final level of
complexity in this protocol is that every frame is given a timer, since it is only

sending back the corrupted frames, and not all the frames in the window.

These protocols provide the necessary functionality for error and flow control at
the data link layer. This research will however not distinguish them from the MAC
layer, and will instead consider them to be under the control of the protocol guiding

the access to the medium.

3.3 Wireless Medium Access Control Protocols

The MAC layer is responsible for solving the errors and anomalies that can
occur at the physical layer. It is the responsibility of this layer to resolve the conflicts
that arise when multiple nodes wish to use a single channel. The specific protocol
used can have a direct impact on the efficiency of the link and for this reason it is
important to consider the quality of service (QoS) constraints when designing a new
MAC layer. The protocols can be divided into two main categories: contention free
and contention based schemes, and then there are those that combine the two to form
hybrid protocols. Contention based schemes can be further divided into those which

operate on random access versus those that attempt to reserve the channel and resolve

31

collision. These protocols can be further divided into single channel, multi channel,
power aware, and quality of service (QoS) based protocols [Kumar, Raghavan and

Deng 2006].

3.3.1 Contention Free Schemes

Contention free schemes are those that divide the channel in such a way that
no two nodes should ever be competing for access to the channel at any point in
time. These are sometimes called channelization access schemes. These types of
schemes divide the available bandwidth of the link into multiple channels through
time, frequency, or through codes, and others use polling or are token-based systems.

The most familiar of these protocols are

e Frequency Division Multiple Access (FDMA):

Frequency division multiple access (FDMA) divides the available bandwidth
into multiple frequency bands. Each node is then allocated a specific band on
which it can transmit data. Like in FDM, guard bands separate the individ-
ual bands. However, while FDM and FDMA conceptually operate the same
there is a key difference. As mentioned in Section 2.3, FDM is a physical layer
multiplexing technique that combines the data from multiple low-bandwidth
channels and transmits them over a single high-bandwidth channel. The dif-
ference is that FDMA tells the physical layer to make a band pass signal from

the data that is given to it limiting the frequency that the node is transmitting

32

on. The signals from each station are then transmitting at different frequen-
cies and are combined when they put on the single channel [Forouzan 2007].
FDMA has been applied to various multiplexing schemes in literature including
the OFDM-FDMA and OFDM-interleaved-FDMA [Wong, Cheng, Lataief and

Murch 1999] schemes.

Time Division Multiple Access (TDMA):

Time division multiple access (TDMA) divides the channel in time. Each node is
given a specific time slot in which data can be transmitted on its behalf. TDMA
suffers from a synchronization issue since each station needs to know exactly
when a new time slot is beginning in order to effectively transmit at the correct
time. Again, it needs to be clear that TDMA and TDM as mentioned in Section
2.3 are conceptually the same, but achieve different goals. TDM combines the
data of slower channels into a single faster channel using a multiplexer that
interleaves the data. TDMA however tells the physical layer to use a specific
time slot [Forouzan 2007]. TDMA has been supplemented as an access scheme
in literature [Wang and Xiang 2006, van Hoesel, Nieberg, Kip and Havinga

2004, Kanzaki, Hara and Nishio 2007, Gerla and Tzu-Chieh Tsai 1995].

Code Division Multiple Access (CDMA):

Code division multiple access (CDMA) is a scheme in which a single channel
carries all the data from multiple nodes simultaneously. It is based on cod-

ing theory, much like the spreading techniques described in Section 2.3. While

33

CDMA and DSSS might seem similar there is a clear distinction. CDMA uses
multiple orthogonal spreading sequences to allow for the multiple node access
on the same frequency. However, in the implementation of 802.11b DSSS; ev-
ery node uses the same spreading sequence, but allows the nodes to choose
from multiple frequencies for simultaneous operation. In CDMA each station
is given a specific code called a chip sequence. By assigning each station their
own code multiple stations can communicate on a single channel without inter-
fering with other communicating nodes, assuming they know each other’s chip
sequence [Forouzan 2007]. CDMA has been proposed [Muqattash and Krunz
2003, Garcia-Luna-Aceves and Raju 1997, Joa-Ng and Lu 1999, Lee and Cho
1995, Sousa and Silvester 1988] and tested [Hui 1984] as a protocol for MANETS

in literature.

3.3.2 Contention Based Schemes

Protocols that operate on the foundation that nodes must compete for access

to the channel are considered contention-based schemes. These are generally called

random access protocols where no station is considered to be superior to another. For

this reason the MAC layer for contention based schemes can be considerably more

complicated than those for controlled access or channelized layers.

e ALOHA:

ALOHA is the earliest random access protocol developed by the University of

Hawaii in the early 1970’s. The original protocol is sometimes referred to as

34

pure ALOHA. The protocol is simple in that whenever a station wishes to send
a frame it does so. To recover from errors the protocol uses acknowledgments
from the receiver. If the sender doesn’t receive an acknowledgment after a
time-out period it assumes that frame has been lost. This is similar to the
error control protocols discussed in Section 3.2. When the timeout does occur
pure ALOHA requires that the sending node wait a random amount of time
before retransmitting. By waiting a random period time, the idea is to avoid
more collisions. Additionally, in order to avoid congestion from retransmits
the protocol further dictates that after a specified number of retransmits the
station must give up on that frame. A later modification to ALOHA is with
slotted ALOHA. Much like TDMA, slotted ALOHA divides channel access
into periods of time called slots, where a node is only allowed to transmit during
their specified slot. However, collision can still occur if two stations try to send

at the same time slot [Forouzan 2007, Abramson 1970].

Carrier Sense Multiple Access (CSMA):

Carrier Sense Multiple Access (CSMA) is a protocol where a station is required
to sense the medium prior to transmitting. CSMA is an evolution of ALOHA
in the sense that it is reducing the chance of a collision because it senses the
channel, but it cannot eliminate collisions. When the station senses that the
channel is idle or busy there are three methods that can be used to determine

how to precede [Agrawal and Zeng 2006].

35

— 1-Persistent Method: If the channel is idle, send the frame immedi-

ately. If it is busy, keep listening until it is idle and then transmit.

— Non-persistent Method: If the channel is idle, send the frame imme-
diately. If it is busy, wait a random amount of time and then sense the

channel again.

— p-Persistent Method: In this method time is considered to be slotted.
Each time slot is considered to be the contention period, usually equal to
the round trip propagation time. When there is a frame to send the station
first senses the channel. If it finds the channel to be idle it follows these

steps:
1. With probability p, the station sends its frame.
2. With probability ¢ = 1 - p, the station waits for the beginning of the
next time slot and senses the channel again.
(a) If the line is idle, proceed to step 1.

(b) If the line is busy, acts the same way as in a collision. Waits a

random amount of time and starts all over.

e Carrier Sense Multiple Access with Collision Avoidance (CSMA /CA):
The basic CSMA with collision avoidance (CSMA/CA) protocol relies upon
three important strategies in order to provide collision avoidance: inter-frame
space, contention window, and acknowledgements. When a station has a frame

to send it senses the channel. If it is idle the station will not send immediately,

36

but rather defer transmitting for a specified amount of time called the inter-
frame space (IFS). After this time it senses the channel again, if it is idle the
station can transmit after waiting for a period of time to pass called the con-
tention time. The contention window is a time period divided into slots. When
the station is ready to transmit it must chose a random number of slots to wait
before the transmission can occur. At each time slot the channel is sensed, and
if it is busy it must stop its timer, and can only start the timer when the channel
is sensed idle again. Once the timer goes to zero, the transmission can occur.
Even with the other precautions a collision can occur. The protocol uses timers

and acknowledgments to recover from corrupt or lost frames.

The basic CSMA /CA protocol still suffers from the hidden and exposed terminal
problems discussed in Section 2.4. In order to overcome these problems channel
reservation mechanisms have been amended to CSMA/CA. The most basic
solution is through the use of request-to-send (RTS) and clear-to-send (CTS)
control frames. When a station wishes to send a frame it sends a RTS frame
to the receiver. Tobagi and Kleinrock first proposed the exchange of RT'S/CTS
in the split-channel reservation multiple access (SRMA) scheme [Tobagi and
Kleinrock 1976]. The receiver will reply with a CTS frame. The exchange of
these frames still follows the protocol explained previously for sending a data
frame. The idea with this exchange is that the channel has been reserved for
communication between these two stations. The RTS also lets the receiver

know that data is coming and gives it the ability to allocate buffer space for the

37

transmission. Any other station that received these RTS or CTS frames will
defer its own transmissions to further reduce the chance of collisions [Forouzan

2007, Agrawal and Zeng 2006].

Multiple Access Collision Avoidance (MACA):

The Multiple Access Collision Avoidance (MACA) protocol was proposed by
Karn to overcome the problems faced by the basic CSMA /CA protocol discussed
above, namely the hidden and exposed terminal problems [Karn 1990]. MACA
uses small signaling packets like the RTS and CTS control packets used in
CSMA/CA. However, the author drops the carrier sense aspect of CSMA, and
instead focuses on extending the CA aspect. The dropping of the CS amounts
to the ALOHA protocol with RTS and CTS control frames. As mentioned
previously, when other stations overhear a RTS or CTS control frame they
are required to defer their transmission for some period of time. It is unclear
however how long these stations should defer using the channel, and this is
where Karn’s work is important. In MACA the sender includes the size of the
data being transferred in the RTS frame, and the receiver will return that same
information in the CTS frame. Any node that receives these frames will know
approximately how long they should defer transmitting based on the size of
the data. A further benefit of this protocol is that the size of the RT'S/CTS
frames is quite small, compared to the data packets, reducing the probability

and risk that collisions between them present. However, MACA does not use

38

acknowledgement frames for the data packets at the MAC layer, and instead

leaves it up to the error control facility in the transport layer.

An extension to the basic MACA scheme was proposed by Bharghavan et
al. [Bharghavan, Demers, Shenker and Zhang 1994] called MACA for wireless
(MACAW). MACAW adds acknowledgement frames to the protocol giving it
the ability to recover from errors faster than MACA. Other variations of MACA
include MACA for underwater acoustic networks with packet train for multiple
neighbors (MACA-MN) [Chirdchoo, Soh and Chua 2008], MACA by invita-
tion (MACA-BI) [Talucci and Gerla 1997], and the Floor Acquisition Multiple

Access protocol [Garcia-Luna-Aceves and Fullmer 1999].

Floor Acquisition Multiple Access (FAMA):

The Floor Acquisition Multiple Access (FAMA) protocol proposed by Garcia-
Luna-Aceves et al. is a MACA based scheme that dictates that every trans-
mitting node must acquire explicit control of the channel prior to transmitting
[Garcia-Luna-Aceves and Fullmer 1999]. This protocol differs from the MACA
and MACAW schemes since it requires that both the sender and the receiver
take an active role in the collision avoidance process. To ”acquire the floor”,
as the authors put it, the sender sends out a RTS frame either by the FAMA
non-persistent packet sensing (FAMA-NPS) or the FAMA non-persistent carrier
sensing (FAMA-NCS) scheme. The receiver will reply with a CTS containing

the address of the initiating station. Any other station that receives an error

39

free CTS frame will know that the terminal addressed in the CTS frame has
reserved the channel. This is the floor acquisition aspect of FAMA. To fur-
ther ensure that the channel has been reserved, the CTS are repeated enough
times in order to jam any hidden station who did not hear the original RTS

acknowledgment.

Multiple Access Collision Avoidance by invitation (M ACA-BI):

The MACA by invitation (MACA-BI) proposed by Talucci and Gerla is a re-
ceiver initiated based protocol [Talucci and Gerla 1997]. In sender-initiated
protocols the sender will attempt to gain access to the channel by initiating
the RTS-CTS handshake. However, MACA-BI requires that the receiver re-
quest the data from the sender by using a ready-to-receive (RTR) frame. This
reduces the overhead in the exchange by making it an RTR-DATA versus an
RTS-CTS-DATA process. This protocol appears to be meant for service net-
works where the communications are one way, that is, where the receiver has
information it knows the other party has, it will send out a RTR that will be

followed by the data.

Collision-free Receiver Oriented MAC (CROMA):

Collision-free Receiver Oriented MAC (CROMA) [Coupechoux, Baynat, Bonnet
and Kumar 2005] is a receiver initiated MAC protocol similar to MACA-BIL
CROMA divides time into frames, where each frame is further divided into a

fixed number N time-slots. Each slot is broken into three sub-slots: request

40

(REQ), ready-to-receiver (RTR), and a data (DATA) slot. The REQ slot is
used by nodes to send a REQ frame to a receiving node. The RTR slot is
used to acknowledge the REQ frames sent and to poll the nodes that previously
sent a successful request and reservation. A DATA frame is then sent once the
sender in the RTR slot has been successfully polled. The reservation of the
channel is achieved through the polling frames sent in the RTR slot, and this
is what makes CROMA a receiver oriented protocol versus a sending oriented
one. CROMA differs from MACA-BI since it does not need to use a traffic
prediction algorithm. The division of these slots makes CROMA a collision-free

contention-based protocol.

IEEE 802.11 MAC:

The IEEE 802.11 standard defines two MAC sub-layers: the point coordination
function (PCF) and the distributed coordination function (DCF). The DCF
mode of operations was meant for ad hoc networks whereas the PCF mode
was meant for infrastructure-supported networks. The DCF function uses CS-
MA /CA with acknowledgment and RT'S/CTS frames (RTS-CTS-DATA-ACK).
The protocol operates much in the same way as described in the CSMA and
CSMA/CA description with several differences [Forouzan 2007, Agrawal and

Zeng 2006].

1. Sending node first senses the channel by monitoring the energy level on

the carrier frequency.

41

(a) If found to be busy a persistent strategy with a back-off timer is used

until the channel is idle.

(b) Once the channel is found to be idle, the station must wait for a
period time called the distributed interframe space (DIFS). After this

duration the sender transmits a RTS frame.

2. Upon receiving the RTS frame, the receiver must wait for a period of time
called the short interframe space (SIFS) to pass prior to replying with a

CTS frame.

3. When the sender successfully receives the CTS frame it must wait for the

SIF'S to pass prior to sending a data frame.

4. Upon successful reception of a data frame, the receiver must wait for the

SIF'S to pass prior to returning an ACK frame.

This protocol makes use of the SIFS to further reduce the chance of collisions.
An additional important addition of the DCF is the network allocation vector
(NAV). When a sending station transmits a RT'S it includes the duration of time
it expect to occupy the channel. Any stations that receive the RTS or replying
CTS use this time to create a timer that determines how much time must pass
before the station can sense the channel for idleness. Anytime a node wishes to
check the channel for idleness it must first check to see whether the NAV timer
has expired. This is similar to the protocol used by MACA where the size of

the data is sent along with the RT'S/CTS frames. The DCF is the most widely

42

used protocol for wireless local area networks (LANs). It has its roots in the
previously explained protocols, and many of the protocols [Fang, Bensaou and
Yuan 2004, You, Yeh and Hassanein 2003, Wang and Zhuang 2008, Lau and

Chan 2006] found in literature use it as a base of reference.

Dual-Channel MAC (DUCHA):

Zhai et al. propose the Dual-Channel MAC (DUCHA) scheme that uses two
distinct channels to overcome the receiver blocking problem and the hidden and
exposed terminal problems [Zhai, Wang and Fang 2006, Zhai, Wang, Fang and
Wu 2004]. The receiver blocking problem is a specialized case of the exposed
terminal problem where a receiver cannot respond to incoming RTS intended
for itself due to the transmissions occurring in its sensing range. DUCHA
separates the channels into one for control and the other for data. It also uses a
busy tone, much like busy tone multiple access (BTMA) [Wu and Li 1988] and
dual busy tone multiple access (DBMTA) [Haas and Deng 2002], to establish
channel control to overcome the hidden terminal problem. The blocking receiver
problem is solved through negative CTS (NCTS) frames. The authors don’t use
ACK frames since they claim collisions in the data channel are guaranteed to
not occur. However, they do use a NACK busy tone from the receiver that
will be used if the receiver thinks it has received corrupted data. The message

exchange proceeds as follows:

43

1. RTS: The sender follows the rules employed by 802.11 with regard to the
use of the SIFS and DIFS wait times prior to sending a message. Any node
must sense the control channel to be free from a signal or busy tone for a
period equal to DIFS prior to sending. If the channel is found to be busy

it waits for a period of time to pass prior to sending its frame.

2. CTS/NCTS: In DUCHA any node that overhears a RTS responds with
a CTS frame after waiting a period equal to the SIFS regardless if the
control channel is busy if the data channel is idle. If both are busy, it
will ignore the RTS to avoid interfering with the reception of CTS frames
at the sender. NCTS frames are returned when the control channel has
been found to be idle for at least one CTS frame length long, and the data
channel is busy. The NCTS also provides the sender an estimation for how

much longer the data channel will be busy .

3. DATA: Once the sender receives a CTS it should begin to send the data
if no busy tone signal is present. If it receives a NCTS, it will defer trans-
mitting for the estimated time included in the NCTS frame. If neither is
received, it assumes a collision has occurred on the control channel and

uses a back off strategy accordingly.

4. Busy Tone: The receiver will begin to sense the channel data channel
prior to sending the CTA frame to listen for the data from the sender. If it

doesn’t begin to receive the first bits of the frame in due time (determined

44

by the information in the RTS) it will assume the sender couldn’t trans-
mit. Otherwise, once the receiver begins to receive data it will transmit a
busy tone signal on the control channel to prevent hidden terminals from

transmitting.

5. NACK: The NACK is used by the receiver to notify the sender of a prob-
lem receiving the data. The receiver uses a timer to determine how long it
should take for the data frames to finish sending. If the timer expires and
the receiver hasn’t collected the correct data packet, it assumes a problem
has occurred and will extend the busy tone signal for a period past the
timer expiration. If it successfully received the packet it discontinues the
busy tone signal. The sender assumes that if it doesn’t hear the NACK
busy tone during the NACK period that the transmission succeeded, oth-

erwise if it sees the signal it will begin its retransmission procedure.

e Multi Channel CSMA MAC:

A multi-channel CSMA protocol was proposed by Nasipuri et al. [Nasipuri,
Zhuang and Das 1999] where the total bandwidth of the channel was divided
into N distinct channels. The channels can be divided either through CDMA
or FDMA. The protocol follows the basic principles described in the section of
CSMA. When a station wishes to send, it first senses the last channel it used
to determine whether it is available. If the channel is not free a new one is

chosen at random, and if no free channel is located it uses a back off protocol to

45

retry later. The author’s later extended the protocol in [Nasipuri and Das 2000]
where the optimal channel is chosen based on the power of the signal observed at
the sender side. It was further supplemented in [Jain, Das and Nasipuri 2001]
to add an additional control channel to the N divided data channels. This
channel is used to exchange control frames that allow the sender to determine
the best channel to send the data on. The optimal channel is chosen based on

the signal-to-noise ratio (SNR) observed at the receiver.

Hop-Reservation Multiple Access (HRMA):

Hop-reservation multiple access (HRMA) [Yang and Garcia-Luna-Aceves 1999,
Tang and Garcia-Luna-Aceves 1998] is a multi-channel protocol for radios using
the FHSS spreading technique described in Section 2.3. Previous work has been
done with frequency hopping radios [Pursley 1987, Ephremides, Wieselthier and
Baker 1987] to use CDMA in an effective way that required the radios to switch
frequencies part way through data packets. HRMA uses very-slow FHSS in
order to take advantage of the time-slotting properties that allow an entire
frame to be sent in the same hop. HRMA does not do any carrier sensing
prior to transmission, and employs the use of control frames in order for a
pair of communicating nodes to reserve a hopping sequence (channel). HRMA
requires synchronization where one the N available frequencies is dedicated to
synchronization. The remaining frequencies are further divided into L%j pairs,

where the first frequency is used for the hop reservation (HR), CTS, RTS, and

46

data frames, and the second frequency is reserved exclusively for ACK frames.
This protocol allows for collision free communications even in the presence of

hidden terminals [Yang and Garcia-Luna-Aceves 1999.

Multi-Channel Medium Access Control (MMAC):

Multi-channel MAC (MMAC) is a protocol meant to extend the functionality
of the DCF in IEEE 802.11 by allowing it to dynamically switch between the
11 available channels [So and Vaidya 2003]. Although 802.11 has the support
for these multiple channels it can only utilize one channel at a time. This is for
backwards compatibility since hosts with a half-duplex radio can either be in
receiving or transmit modes. The protocol divides time into multiple fixed-time
beacon intervals. At the beginning of each of the intervals is an ad-hoc traffic in-
dication message (ATIM) window in which ATIM frames are exchanged between
communicating nodes so as to coordinate channel assignments. This protocol is
efficient since it doesn’t require that the nodes have multiple radio transceivers
as is the case for other multi-channel protocols [Jain, Das and Nasipuri 2001,
Wu, Lin, Tseng and Sheu 2000, Tseng, Wu, Lin and Sheu 2001]. The protocol
does however require that at the beginning of these ATIM windows, or beacon
intervals, every node must synchronize itself with all other nodes on a synchro-
nization channel in which these ATIM frames are exchanged. Additionally, each
node maintains a preferred channel list (PCL) that keeps track of the channels

for prioritization. The authors validated the protocol through simulations, and

47

their results demonstrated that MMAC outperformed IEEE 802.11 with regards

to throughput.

A Jamming-Resistant MAC Protocol for Single-Hop Wireless Net-

works:

Awerbuch et al. propose a MAC protocol for maintaining link capacity in the
presence of adaptive adversarial jamming attacks [Awerbuch, Richa and Schei-
deler 2008]. The authors assume that all nodes are synchronized in time steps,
and that an adversary can only jam a (1 — €)-fraction of the time steps for
some constant € > 0, and that it must make a decision to jam that time step
prior to knowing the actions of other nodes at the current time step. As is
expected, the nodes on the network are unable to distinguish between adver-
sarial jamming and whether other nodes on the network are simply using the
channel. The nodes then use mathematical probabilities in order to determine
when they are able to transmit. The nodes keep track of the overall time in
which the channel is idle and when exactly one successful transmission occurs.
It then uses this information to adjust the probability of a time step in which
the transmission can occur. The nodes however, do not consider the time steps
in which their transmissions have been blocked making the decision algorithm
robust to jamming attacks. The algorithm attempts to adjust the probabilities
such that the number of time steps that the channel is found idle is equal to

the number of time steps in which exactly one message transmitted. If this is

48

not the case, than the probabilities are adapted to make this true. The authors
claim that this protocol is robust to adaptive jamming attacks and is energy
efficient. However, the paper does not include any simulation results or data
from a physical implementation. Furthermore, the authors assume that the ad-
versary is limited by the number of time steps that they can jam, and is limited
to “bursty jamming”. Another interesting problem is the protocol relies upon
the knowledge of when a successful transmission occurred, and it assumes it

will know when this is true.

Advanced MAC (aMAC):

Lau and Chan propose a new protocol call advanced MAC (aMAC) [Lau and
Chan 2006] that is based off a previous protocol called the Fair MAC with Co-
operation between Sender and Receiver (FMAC/CSR) [Li, Gupta and Nandi
n.d.]. The goal of FMAC/CSR is to maintain fairness between contending flow
for single-hop flows. However, Lau and Chan show that when it is extended to
multi-hop flows the fairness breaks down. This is attributed to the use of the
802.11 binary exponential back off (BEB) algorithm that is used for contention
resolution which has been shown to be unfair [Li, Nandi and Gupta 2006, Kloul
and Valois 2005, Razafindralambo and Valois 2006]. aMAC aims to resolve the
unfairness issues in FMAC/CSR by replacing BEB with the exponential in-
crease exponential decrease (EIED) back off algorithm proposed by Song et al.

[Song, Kwak, Song and Miller 2003]. The protocol follows four steps: channel

49

estimation, unfairness detection, sender contention, and the EIED algorithm.
Channel estimation monitors the channel to estimate flow’s fair share and ac-
tual share. Unfairness detection compares the actual share to the fair share to
determine how much the actual shared has deviated from the fare share. The
sender contention determines the state of a MAC flow (aggressive, normal, or
restrictive). Finally, the EIED algorithm is used to govern the contention win-
dow. By integrating EIED the authors state that preliminary results show that
aMAC maintains superior medium fairness when compared to similar fairness

oriented schemes.

Real-time MAC (RT-MAC):

Real-time MAC (RT-MAC) is a quality of service (QoS) oriented scheme pro-
posed by Baldwin et al. that is a variation of the IEEE 802.11 protocol [Baldwin,
Nathaniel J. Davis and Midkiff 1999]. When IEEE 802.11 is used with real-time
traffic constraints two issues impact the efficiency of the network: expired dead-
lines and collisions. Since IEEE 802.11 has no method of determining whether
a frame has exceeded its deadline it will continue to re-transmit these frames,
even though they are no longer useful to the receiver. These collisions and
re-transmits waste resources needed by other frames to meet their deadlines.
RT-MAC remedies this by avoiding the transmission of expired frames. This is
achieved by adding transmission deadlines to the packets received from the net-

work layer and by using an enhanced collision avoidance mechanism. Whenever

20

a packet is marked as real-time it is marked with a time stamp from the orig-
inating station indicating when the packet should be transmitted. The check
for an expired packet occurs at several points: when the back off timer expires,
prior to sending, and upon the expiration of the timer for the acknowledgment
frame. If at any of these points the frame missed the deadline, it is dropped
from the transmission queue. RT-MAC has a unique method for improving the
collision avoidance mechanism of 802.11. Prior to sending the frame the send-
ing nodes chooses the next back off counter value and records it in this frames
header. Any station that overhears this frame being sent out will see this back
off value and chose one such that it is different. This further eliminates the

possibility of collisions.

Controlled Access CDMA (CA-CDMA):

The authors [Mugattash and Krunz 2003] present the Controlled Access CDMA
(CA-CDMA) multi-channel protocol which is based on CDMA. It was men-
tioned in the prior section that CDMA is a contention free algorithm, however,
the authors of CA-CDMA make the statement their modification is actually a
contention-based scheme. Much like CSMA/CA, CA-CDMA makes use of the
control RTS and CTS packets as a channel reservation mechanism. These con-
trol packets are transmitted on a control channel separate from the data channel,
at fixed power. Just like IEEE 802.11 every node receives these packets, how-

ever, nodes may continue to transmit if they meet certain criteria determined

o1

by the interference margin algorithm presented in [Muqattash and Krunz 2003].
The nodes use the power levels of the received CTS and RTS packets to deter-
mine the power that the node can transmit at without interfering with other

transmissions.

3.4 Chapter Conclusion

This chapter reviewed the protocols necessary to understanding the current state
of MAC layers for ad-hoc wireless networks. The protocols vary from those which rely
on contention free schemes, to those concerned about quality of service (QoS), and
to the protocols that use multiple channels for either doing control or for multiple
data paths. In relation to the jam-resistant goals of this research only one such
protocol was found which directly concerned itself with adversarial jamming of the
wireless channel. Awerbuch et al. [Awerbuch, Richa and Scheideler 2008] proposed
the Jamming-Resistant MAC Protocol for this purpose, but only handled jamming
by attempting to send when it predicted no adversarial jamming was occuring. Many
of the other protocols address the hidden and exposed terminal problems through the
use of control frames, and multiple channels. Protocols such as CSMA /CA, MACAW,
DUCHA, and FAMA provide many different approaches to solving the hidden and

exposed terminal problems, and will be considered for the design of BBC-MAC.

52

CHAPTER 4

BBC-MAC INITIAL PROTOCOL DESIGN

4.1 Chapter Introduction

The medium access control layer for noisy channels will build upon the current
state of ad hoc wireless communications by creating a reliable data link through the
use of the BBC algorithm and its error-correcting properties. Combining BBC with
the traditional facilities of the data link layer will transform the raw data transmission
facility provided by the software-defined radios into a jam-resistant communications
link for mobile ad-hoc networks. This layer will work as a single-hop protocol that will
only be concerned with delivery of data to the next terminal, and will not consider
multi-path routes for node-to-node delivery. It will be left to the network layer to

determine how to properly route the data.

4.2 Protocol Requirements

To achieve a reliable data link the new layer must address the issues of framing,
addressing, flow and error control, and a primary focus on controlling the channel. A
final requirement for the algorithm to operate properly is the ability to dynamically
adjust the coding properties of the BBC algorithm to adjust to the level of noise. By
adjusting the coding properties that determine the level of jam-resistance, the layer

can sustain link communications up to a certain level of noise.

93

e Framing: Physical limitations of the software defined radios and coding
parameters of the BBC algorithm will require that larger packets received from
the network layer be broken into smaller frames for encoding and transmission.
On the receiving end these will have to be re-combined for proper delivery to
the upper layers. The size of the frames can be a fixed or dynamic size, but
since the size of the frames could be in direct relation to the message length
that is encoded by the BBC algorithm, it will have to be a dynamic size. While
this was initially determined a requirement, I realized that the BBC algorithm
already does framing of data, and for the prototype implementation I considered

any data the upper layer passed to be a single data frame.

e Addressing: Every node in the transmission range must have a unique iden-
tifier so that a node receiving a message knows whether they are to be discarded
or when the message was meant for it . As mentioned previously, the routing
will be considered a job of the network layer, and it assumed the network layer
will have a unique identifier for this purpose. This same identifier will be used
at the data link layer for addressing. Considering the requirement of the rout-
ing, it is anticipated at this time that the data link layer will not keep state
information pertaining to nodes in its transmission range. However, this might
prove to be useful during research and will not be taken away from considera-
tion. The final protocol prototype assumes that it will be given the address of

the node upon initialization.

o4

e Flow and Error Control: An important property for creating a reliable
link is in the flow and error control algorithms. Flow control must alleviate
congestion of the link by limiting the amount of data it sends, and error control
must be able to recover from frames that the BBC algorithm’s error correcting
facility could not handle. It is anticipated a modified version of the selective
repeat automatic repeat request algorithm described in Section 3.2 will be used
for this purpose. The final implementation does error control on the single
data frame it sends by using an acknowledgment frame. Future work would be

directed at doing error control on the individual BBC codec frames as well.

e Access Control: Controlling access to the channel is the most important
aspect of this protocol. While the BBC algorithm allows for communications
to continue even in the presence of interference, avoiding channel saturation is
important. If nodes were left to freely transmit whenever they chose, the level of
noise (jamming/collisions) on the channel would continue to grow to the point
where the error correcting aspect of BBC could not overcome the problem. To
overcome the hidden and exposed terminal problems described in Section 2.4,
techniques inspired by the protocols discussed in Section 3.3 will be used. It is
anticipated that the protocol will not rely on carrier sensing much like MACA
and MACAW, but will incorporate control frames to reserve channel access.
The control frames will carry several important pieces of information. The first
is the the size of the data that is going to be transferred in the DATA frame.

This will allow any node that overhears this transmission to know how long it

95

should defer its transmissions. The second parameter included in both frames
will be the received signal strength indicator (RSSI) value. Upon sending a
RTS frame, the sender will include its most recent RSSI, and the receiver will
similarly reply with its most recent RSSI value. This is used to prepare the
nodes for the proper level of jam-resistance. The final protocol implementation
does use the control frames to reserve the channel for the two communicating

nodes for a limited amount of time.

Dynamic BBC: Maintaining the link will rely upon the BBC algorithm to
overcome noise in the channel. However, the level of noise is likely to be dy-
namic in relation to the number of nodes active in the network, and the level of
determination by an adversarial jammer. For this reason the layer must be able
to adjust the coding parameters of BBC to allow for dynamic jam-resistance.
The specific properties at this time that changes the level of jam-resistance are
the hash function and the expansion size of the original data. These two prop-
erties determine how large the BBC packet is and where the indelible marks
can be placed. The RSSI value included RTS/CTS frames will be used to de-
termine at which level of jam-resistance the two nodes will communicate. The
node with the highest RSSI value will be the determining level that the remain-
ing DATA-ACK communications occur at. This service will also be available
for upper layers to adjust. This is a requirement for allowing varying levels of
priority from upper layer packets. The final prototype achieves dynamic BBC

by altering the packet expansion in the BBC codec, and adjusting this value

o6

based upon the Received Signal Strength Indicator (RSSI) value contained in

the control frames.

4.3 Chapter Conclusion

The Single-Hop Medium Access Control Layer for Noisy Channels protocol has
been conceived to address the many problems that currently affect the current state
of medium access control for MANETS. The protocol will be designed to maintain a
reliable communications link in the presence of noise, via either intentional or unin-
tentional jamming, and will dynamically adjust either by the layers own mechanism or
as dictated by upper layers. The protocol aims to provide data transfer reliability by
developing a new layer built upon the foundation of the BBC algorithm. By focusing
on maintaining a communications link in the presence of jamming, it is expected that
the protocol will be able to overcome obstacles such as adversarial attacks, pre-shared

secrets, and the hidden and exposed terminal problems that other protocols fail to.

o7

CHAPTER 5

PRrROTOCOL DESIGN AND IMPLEMENTATION PHASE

5.1 Chapter Introduction

The previous chapter discussed the initial protocol design and reviewed some of
the basic requirements and rudimentary methods for achieving the goals of the proto-
col. This chapter covers the end design for the protocol, and how it is implemented.
The protocol requires the use of many different software and hardware components.
Implementation and testing for so many pieces becomes more difficult as the complex-
ity of the layer increases. Initially, many of the pieces were built simultaneously and
then an attempt at testing was made. However, later development required that new
pieces be tested individually in order to reduce the new number of variables which
needed to be accounted for when the component failed.

As previously noted, one of the goals of this research is to implement and validate
the protocol on physical hardware. However, the MAC layer requires that a physical
layer exist prior to any implementation on it occuring. The creators of the BBC
[Baird, Bahn, Collins, Carlisle and Butler 2007] algorithm had created a basic physical
layer implementation for the purposes of research. Their implementation takes a file
as an input, encodes it using the BBC algorithm, and then modulates it for proper
transmission with the Software Defined Radios (SDRs). The modulated data is then

transmitted with a python script that repeats until user-terminated. A similar series

o8

of steps occurs on the receiver’s end. A python script receives data from the USRP
until user terminated. Then the demodulator is run on the received data and the
decoder. If a successful transmission occurred, the same file sent should be in the
receivers folder. The code base from this prototype was used as the starting point for
the creation of the new upper-layer MAC protocol.

The remainder of this chapter begins with a breakdown of the system components
used for the creation of this new layer, and then follows with a detailed look at the

various operations at the physical layer and those which occur in the BBC-MAC layer.

5.2 System Components

The final implementation presented here relies upon many software and hardware
components to create the end prototype. This section covers the different components
in order to familiarize the reader with the equipment used. Certain components have
a direct relation to the way the protocol was designed, specifically, components like
the Universal Software Radio Peripheral (USRP) and the type of daughterboard used

have an impact on the hardware abilities of the layer.

29

5.2.1 Hardware Components

e Universal Software Radio Peripheral (USRP):

i AR

Ettus o7 | |
———

o T T
| | L® Research

winne el s.com

Figure 5.1: Universal Software Radio Peripheral External View

The Universal Software Radio Peripheral (USRP) is the main hardware compo-
nent used for developing Software Defined Radios (SDRs). Figure 5.1 shows the
external casing of this component. The USRP1, developed by Ettus Research,
LLC, pictured in Figure 5.2, was used for the development and testing during
this research. The USRP1 contains an Altera Cyclone Field Programmable
Gate Array (FPGA), and has four extension sockets that support up to four
daughterboards. The FPGA drives four high-speed 12-bit analog-to-digital con-
verters (ADC) capable of 64 Mega-Samples/second and four high-speed 14-bit

digital-to-analog (DAC) converters capable of 128 Mega-Samples/second. The

60

ADCs are used during the receive chain, and the effective sampling rate is deter-
mined by the decimation rate. Likewise, the DACs are used during the transmit
chain and the effective sampling rate is determined by the interpolation rate.
The USRP connects to the external computer through a Cypress EZ-USB FX2
High-speed USB 2.0 controller that allows for speeds approaching 32 Mbytes/s.
USB 2.0 specification allows for up to 480 Mbit/s or 60 Mbytes/sec, but the
current FPGA used doesn’t support the full bandwidth of USB 2.0. This is
because the Cypress USB controller uses the bulk transfer mode of USB 2.0,

which is limited to roughly 32 Mbytes/s.

PR e s s N T T T R P T T

......

Figure 5.2: Universal Software Radio Peripheral Internal Hardware

61

¢ RFX-1200 Daughterboard:

The USRP has the support for two transmit sockets and two receive sockets, al-
lowing for up to two receive daughterboards and two transmit daughterboards,
or two transceiver daughterboards. The daughterboard used during this re-
search is the RFX-1200 transceiver, pictured in Figure 5.3, that operates in the
1150-1450MHz frequency range with a transmit power of 200+mW (23dBm).
The board supports both transmitting and receiving on the same connector,
but also supports an auxiliary receive port which allows transmit and receive
to occur on separate frequencies. The board has a 30 MHz bandwidth and 70
dB Automatic Gain Control (AGC) range with adjustable transmit power. The
final useful feature which is crucial to this research is the built-in analog Re-
ceived Signal Strength Indicator (RSSI) measurement from an auxiliary ADC.

This research uses two RFX-1200s in each USRP.

e VERT400 Vertical Omnidirectional Antenna:

The final component for the radios is the VERT400 omnidirectional antenna
pictured in Figure 5.4. This is a seven inch tri-band antenna operating at the
144Mhz, 400Mhz, and 1200Mhz frequencies. Each USRP has two daughter-

boards and so there are two of these antennas on each USRP.

62

co2em | | ©

g atin on e o n)

Figure 5.3: RFX-1200 Transceiver Daughterboard

e Laptop Computer:

The final hardware component is the computer used to drive the USRPs. In
this research, an Apple MacBook Pro running an Intel Core 2 Duo operating at
2.53 GHz with 4GB of DDR3 system memory was used. The computer has an
impact in several stages of this research. The first is at the USB interface where

this laptop has two USB 2.0 ports. The second is during the decoding stage of

63

Figure 5.4: VERT400 Antenna

received data. The speed of the processor can have a significant impact on how
fast this stage occurs. Furthermore, the amount of system memory available
impacts how many samples from the received sink file the computer can load

into memory at a single time for decoding.

5.2.2 Software Components

The software components involved in this system are limited to C and Python.
The BBC program and the jammer for this research were both written in C. The
remainder of the software components were all written in Python due to its ease of
development and because the GNU Radio API for USRP interaction is written in

Python.

e GNU Radio Software Library:

GNU Radio is a free software toolkit created to give users the ability to learn and

create wireless protocols. The GNU Radio Library contains all the necessary

64

runtime and processing blocks to interact with the USRP. The client library is

largely written in Python with the signal processing blocks developed in C++.

BBC Encoder:

The BBC software is written in C and can be found at the site maintained by
William Bahn [Bahn March 2009]. This software performs the BBC encoding
and also takes on the physical layer task of modulating data into the proper
format for the radio transmit script for transmission. The algorithmic details

of this software were discussed in Section 2.5.

When data is being encoded the following steps occur:

1. The data to be encoded is dumped to a file specified by the configuration

file, and loaded into memory.
2. The data is then split up into BBC Frames with the following format:

— StreamlID: 16-bit integer that identifies the data stream.
— Checksum: 32-bit checksum value for the payload.

— Sequence Number: 16-bit integer indicating which sequence number

in the stream this frame is.

— Data Bits: 16-bit integer indicating that actual number of bits con-

tained in the payload

— Data: The payload for this frame. Size is determined by the configu-

ration file.

65

3. Each frame is then sent to the BBC Encoder where the frame is encoded

and placed into the packet buffer.

4. The contents of the buffer are then modulated into the proper format and

placed in a sink file for transmission.

The software was largely left untouched with the exception of a modification
for the configuration file to accept absolute paths to the source and sink files.
The source is compiled into a binary executable which is called upon in the

interface.

BBC Decoder:

The BBC decoder is part of the same piece of software as the encoder and was
written by William Bahn [Bahn March 2009]. The BBC decoder performs simi-
larly to the encoder, but in reverse. When there is data available for processing

the following steps occur:

1. The data that has been received from the radios is loaded into memory
and sent to the demodulator, where the received data is transformed into

bytes and placed in a buffer for processing.

2. Each buffer read location is then sent to the decoder where it attempts to

decode valid messages. Those that it does find are sent to the sink module.

3. The sink module collects the messages belonging to the same streamid and

places them in order for output to the sink file.

66

4. At the end of the execution the sink module purges its contents to the sink

file.

This part of the code has also been left mostly unaltered, with one exception.
If, during the purge of the sink, it is discovered that there are missing sequence
numbers, the sink will not dump the contents to the file. BBC-MAC is not
doing frame control on the BBC frames at this time, it is unnecessary to output
to the file if parts of the transmission are missing. From the point of view of
the layer it is just considered a failed transmit or receive. The final source code

for the BBC software used during this research is listed in Section A.3.

Python USRP Receiver Script:

In order for the layer to interact with the radios, a receiver script is necessary.
This is a modified version of the example usrp_rx_cfile.py script that comes with
the GNU Radio library. The source code can be found in Section A.2.1. The

script accepts several important parameters:

— freq: This is the frequency that the radio should be tuned to.

— nsamples: This is used to tell the receiver it should collect nsamples
samples and then exit. This parameter is used to limit the size of the file

the BBC decoder can load into memory.

— decim: This parameter is the decimation rate of the FPGA. The FPGA

can receive at 64 Mega-Samples/second. If the decimation rate is set to

128 then the effective sampling rate is %686 = 500000 Samples/sec.

67

Beyond initiating the communications with the radios and collecting the sam-
ples, this script also performs the important task of collecting the Received
Signal Strength Indicator (RSSI) value. Upon starting the receiver script a sep-
arate thread of execution is initiated that continuously calls the auxiliary ADC
and asks for the RSSI measurement. The thread averages the last 1141 calls
and outputs the highest average from the last twenty averages to a file located
in the folder for the specified radio. These operations can be found in Listing
5.1. The number of reads to the ADC in a single second is roughly 1141, and
by only returning the highest average in the last twenty seconds we are able to
give the layer a better idea of what level of jamming has recently occured. This
is a better safe than sorry approach to the configuration of the jam-resistance.
It allows the communicating nodes to configure their jam-resitance levels to
an appropriate level of jamming which has recently been measured, and could

possibly occur again in the middle of the transmission.

def GetRSSI(self, d, t):

reads = []

avgs = []

while self.rssi_run:
tmp = self.u.read_aux_adc(self.rx_subdev [0],0)
reads .append (tmp)
self.rssi = sum(reads[—1140:]) /1140
avgs.append(self.rssi)
file = open(receive.fn+4”ssi”, 7"wt”)
file.write(str (max(avgs[—20:])))

file .close ()

Listing 5.1: usrp_rx_cfile.py lines 190-200

68

e Python USRP Transmitter Script:

The transmitter script handles the duties of transmitting the encoded data with
the USRPs. The source for this file can be seen in Section A.2.2. It is a modified
version of the bbc_tx.py script included on the BBC Real-time Research Engine

website. The important parameters for this script are:

— rf_freq: This is the frequency that the radio should be tuned to.

— interp: This parameter is the interpolation rate of the FPGA. The FPGA
can transmit at 128 Mega-Samples/second. If the interpolation rate is set
12866

to 256 then the effective sampling rate is ~525> = 500000 Samples/sec.

— jammer: This parameter tells the script how to create the transmission
flow graph. 0 = no jammer, 1 = pulse jammer, 2 = Gaussian jammer.
— jammer _level: This parameter indicates the jamming level to be used if

a jammer type is specified.

— tx_time: This parameter tells the flow graph how long it should transmit
the data. This time is determined by the BBC-MAC layer based upon the

size of data and the configuration options for the encoder.

The modifications were made so that it was possible to transmit on both daugh-
terboards simultaneously. This is required since whenever a valid transmission

is occurring there are three possible configurations:

1. The encoded data is being transmitted on one of the daughterboards only.

69

2. The encoded data is being transmitted on one daughterboard and simul-

taneously the pulse jammer is being transmitted on the other.

3. The encoded data is being transmitted on one daughterboard and the

Gaussian jammer is being transmitted on the other.

e Pulse Jammer:

In order to test the error-correcting ability of the BBC algorithm I created a
novel jammer that would send out data at the same symbol rate and modulation
scheme as is used by the BBC executable. The main program is a modified
version of the BBC source code with only the necessary components remaining.
The source code for this jammer can be found in Section A.4. It accepts as
parameters the jammer level to be used and the number of samples to create.
The jammer level is a value in the range of [0,64]. The level indicates that
for every 64 time steps, that level time steps should contain a high pulse. The
relevant code for this is seen in Listing 5.2. For example, if the jamming level was
13, the program would randomly select 13 locations to set the bit to high in an
64-bit variable. The program also guarantees that there will be 13 locations by
ensuring that each new value was not already chosen. The program then pushes
the four bytes of that variable onto the buffer and send it to the modulator.

This is repeated for as many samples as are needed.

70

for (i = 0;i<(samples/(32«sizeof(unsigned long long)));i++){
sbuf_number = 0;
sran-number = 0;
for (j=0;j < jammer_level;j++){
sran_number = rand () %(8+*sizeof(unsigned long long));
while (marked[*ran_number]==1){
*ran_number = rand()%(8«xsizeof(unsigned long long));
}
marked [*ran_number] = 1;
//set the bit at ran_number to 1
#buf_number |= (1 << *ran_number);
¥
memcpy (buffer —>buffer+buffer —>write , buf_-number, sizeof(unsigned long long));

buffer —>writet+=sizeof (unsigned long long);

for (j=0;j<sizeof (unsigned long long);j++){
buffer —>ready = 1;
Modulate (config , buffer , modem, sink);

}

memset (marked ,0x00, sizeof(unsigned long long) *8);

Listing 5.2: jammer.c lines 71-91

The goal of the jammer is to create an attack on the protocol by transmitting
random data in the same fashion as the valid encoded data. It aims to test the
limits of the error correction of the BBC algorithm and demonstrate an actual
interference in a similar fashion as the toy example with noise did in Section
2.5.4. To illustrate how this will affect the data being transmitted, Figure
5.5 shows what BBC encoded transmission looks like on a software oscilloscope
without interference, and Figure 5.6 shows how it looks once we run this jammer
at level 20 jamming. While these images are not taken at the same time in the

transmission, it is clear that in Figure 5.5 the pulses are fairly distinct with

71

proper spacing, but in Figure 5.6 we see some interference and a significantly

higher density.

8000,

4000 1 i il l
i — 1t T j

[TH] LT A N R T [Ip | [l
200 _\ li |I -HN_ ||| -\ﬂ(M
o . — i =

Figure 5.5: BBC Encoded Transmission without Noise

o I Al | \
O SOR| OT N Tl /| |-

R A LA A A Y i AT N Y A A
B A AT AT VWALV A N Al
9N 1 B 1 A

Figure 5.6: BBC Encoded Transmission with Pulse Jammer Noise

e Gaussian Jammer:

The other jammer used during testing is a Gaussian noise source generator that
is part of the GNU Radio library. The generator asks for an amplitude as a
parameter which determines the max amplitude of the signal containing the
noise. Again, in the script the jammer level is in the range of [0,64] where
the level is multiplied by 500 to determine the max amplitude to pass to the

Gaussian noise generator.

72

5.3 Physical Layer Implementation

This section will cover in greater capacity the operations that are carried out
at the physical layer to allow for the BBC-MAC layer to function properly. The
physical layer is responsible for the physical transmission of the data that the upper
layer passes to it. These responsibilities include the communication with the USRPs,
BBC encoding and decoding, and modulation of data for proper transmission. This
protocol assumes that all operations with the BBC algorithm are considered part
of the physical layer, and the upper layers simply control the operations through
configuration adjustments as necessary.

The task of communicating with the USRPs is handled by the radio scripts
discussed in Section 5.2.2. The scripts are then controlled by the interface class of
the BBC-MAC software which handles the control of the physical interface. This class
can be found in Section A.1.1. It also handles the execution of the BBC executable
for the encoding and decoding of data. The BBC executable handles the complex
task of encoding and modulation and the reverse task of demodulation and decoding
as discussed in Section 5.2.2. Figure 5.7 shows a high-level depiction of the operations
at the physical layer.

Whenever the radio is in receiver mode, the decoder is being continually ran on
the data that has been received. The transition from receiver to idle can occur as the

result of the following situations:

1. When the interface has been told to transmit data by the BBC-MAC layer.

73

Rx Camplete Decodar Tmens

WAy Timer

Timer Acthee

Transmitting

Figure 5.7: Physical Layer State Diagram

2. If the decoder signals that that it has successfully decoded data, the receiver
script is exited and the received data purged, and then the receiver is started
again. The data that has been decoded is passed onto the BBC-MAC Receiver

class for processing.

3. When the receiver script has collected the number of samples specified by the
nsamples parameter. This implementation will exit after collecting 16 million
samples. The decoder is allowed to finish a final attempt to decode the data

before the sink is purged and the receiver restarted.

4. If the decoder has been running longer than the time allotted for it to run. In
this situation the data in the sink file is considered unusable, the receiver is

stopped, and the sink data is purged before beginning the receiver again.

The node is never in an intentional continuous state of idleness. Any received
data is handed to the upper layer for processing and the node returns to receiving as

quickly as possible. In this sense idle is a transitional state.

74

A final component of the interface is the Network Allocation Vector (NAV) timer.
Recall from the overview of the 802.11 protocol in Section 3.3.2 that it uses this timer
to determine how long it should defer transmitting for. Likewise in this protocol, if
this value has been set by the BBC-MAC layer, then the interface will not transmit
any frames until it has expired. The majority of the states that the physical layer
can be in are controlled by the BBC-MAC layer. Design characteristics of that layer

determine whether a node can transmit data or if it should be in receive mode.

5.4 BBC-MAC Implementation

BBC-MAC is where the majority of all work has been directed. It controls and
directs the physical layer and transforms it into a reliable medium for communica-
tions. The implementation of the protocol is a non-trivial approach to creating a
jam-resistant Medium Access Control (MAC) layer that can adapt to the level of
noise in the channel. The protocol adapts by measuring the interference in the chan-
nel and changing the coding configuration used at the physical layer. The layer is
made up of many different software components that can be seen in Section A.1. This
section will cover the main components of the protocol in such a way as to give com-
plete coverage of operations at the layer. Figure 5.8 shows the high level operations

in the BBC-MAC implementation.

5

Dielivery Reques: | Ddivery Status

Dt Drshvery

Roonived

RxHandler

Oebvery Request | Delvery Stahs

TxHandlar

Frame
Transmisswan

Received Frame

Figure 5.8: BBC-MAC State Diagram

¢ BBC-MAC Frame:

The layer uses a common header format for all frame types. The header is

relatively small, only 21 bytes. The format of the header is as follows:

— Destination Address: This is a 16-bit integer that indicates the address

of the node where this data is being delivered to.

— Source Address: This is a 16-bit integer indicating the address of origi-

nating node for this message.

— Type: This is an 8-bit integer indicating the type of the frame. 1 is a
Request-to-Send (RTS) frame. 2 is a Clear-to-Send (CTS) frame. 3 is a

Data frame and 4 is an Acknowledgement (ACK) frame.

76

— Source Stream ID: This is a 16-bit integer indicating the stream ID that
this data belongs on the transmitter. It is used for identifying the handler

the data is destined to on the transmitters end.

— Destination Stream ID: This is a 16-bit integer indicating the stream
ID that this data belongs to on the recipients end. It is used for proper

delivery of data to the handler for the stream on the receivers end.

— RSSI: This is a 16-bit integer for the Received Signal Strength Indicator
(RSSI) level at the time of transmission. It is used during the RTS/CTS

handshake for configuration of the encoding for subsequent data frames.

— CRC: This is a 16-bit integer containing the Cyclic Redundancy Check

(CRC) of the payload.

— Timestamp: This is a 64-bit integer containing the time at which this

frame was transmitted.

— Payload: Field containing the payload of the frame.

e Receiver:

The Receiver is the module that interacts with the interface class for all inbound
data. The layer views all communications in the forms of streams, where every
stream should have an ID associated with it. The Receiver maintains a list of all
handlers managing existing streams for both inbound and outbound streams.

Whenever data has been received at the interface it is enqueued in the Receiver’s

7

inbound queue. Once the receiver is ready to process the data it will examine

the Destination Stream ID field in the header and the following steps take place:

— ID is zero:

1. First attempt to locate a handler which has marked its destination
stream ID as the one listed as the Source Stream ID in the current

frame.

2. If no such handler exists then this is a new stream. Create a new

RxHandler with a stream ID unique to this node.
— ID is non-zero:

1. First attempt to locate a handler with the ID matching this ID, and

pass the data to it.

2. If no such handler exists, create a new RxHandler with a stream ID

matching the Destination ID from the header.

The final component of the Receiver is the callback routine. This is used when
an RxHandler has ended itself. If the handler was controlling the interface it
will relinquish control of the interface. This will remove the handler from the
list of handlers, clean up the memory it was occupying, and then if the statistics
module has been turned on it will print out the statistics that it maintained for
that stream. The routine also accepts the data that the RxHandler received, if

any, and passes it to the upper layer.

78

e Transmitter:

The Transmitter module handles all interactions with the upper layer for data
that is outbound. Whenever the upper layer has data to transmit it enqueues
it in this module’s queue. The data is immediately popped from the queue
and a TxHandler is created with a unique Stream ID to handle the remainder
of the operations associated with the outbound data. Like the Receiver, the
Transmitter has a callback routine that is used when the handler has terminated
itself. The handler will pass the routine a message to deliver to the upper layer
indicating a failure or a success. It will then remove the handler from the list
of handlers and clean up the memory being occupied by the handler. If this
handler was controlling the interface it relinquishes control of the interface.
Finally, if the statistics module is on it will print out the statistics that the

handler maintained for the stream.

¢ Handlers:

The handlers are where most of the decisions in the protocol are made. They
maintain the data and operations associated with a stream. There is a handler
for inbound streams called an RxHandler and likewise for outbound streams
there is a TxHandler. The interface maintains a queue of handlers that are
waiting for control of the interface. The handlers also are what make the adap-
tive protocol possible. After the RTS/CTS handshake is made the handlers

will adjust the configuration to the appropriate jam-resistance level based on

79

the RSSI value. There are five configurations where each weigh the benefits of
throughput versus jam-resistance. The following outlines the detailed opera-

tions of the handlers:

— TxHandler:

As soon as the Transmitter has data in its queue it creates a TxHandler
with a new stream ID. This ID becomes the source stream ID in any
outbound BBC-MAC frames from this handler. The handler maintains
two queues. The first is a send queue that is used by the interface to get
the next frame that it should transmit from this handler. The second is the
receive queue. Recall that when the interface receives data it passes it onto
the Receiver module, which then locates the proper handler for the data.
This queue is where the Receiver will push the data. Finally, the handler
maintains a BBC Configuration object that holds the configuration options
that should be passed to the BBC encoder/decoder executable whenever
this handler has control of the interface. The following steps outline what

happens after the TxHandler has been created:

1. Set the configuration’s source ID to the current stream ID. Recall that
at the BBC encoding stage each time data is sent to the encoder it
creates individual BBC frames with sequence numbers belonging to a

stream ID. This is that value.

80

2. If the interface is operating in dynamic mode the configuration should
be set for the highest jam-resistance level, otherwise leave the config-

uration as is.

3. Create a Request-to-Send frame with the node’s current RSSI value.
RTS frames contain the size of the data to be transmitted as the

payload.

4. Enqueue the RTS frame in the queue and then place this handler in

the interface’s handler queue.

Once this initial phase has occurred, the handler must now wait for the
interface to signal it via a callback routine that it has transmitted the
frame. When the callback is signaled, the interface passes it a copy of the
frame it just transmitted and the length of time the interface passed to the
bbec_tx.py script. The following outlines what occurs when the callback is

called with the two frame types that the transmitter sends:

* Request-to-Send Frame: The handler makes a blocking call to the
receive queue that times out after a length of time equal to the transmit

time plus buffer time.
- Blocking Call Returns:

1. The received frame is checked to make sure it is a RTS frame.
If it is not, a node is responding with an incorrect frame and it

is ignored.

81

2. The RSSI value in the frame is compared to the RSSI value
which was sent in the RTS. If it is larger than our RSSI value,
then it is used as the determining value for the jam-resistance

level.

3. If the interface is in dynamic mode, adjust the configuration
to the appropriate jam-resistance level based on the RSSI value.
Once the RSSI value is obtained, the handler will do a secondary
check on the current RSSI value at the node. If the current value
would cause the configuration to jump to the next level of jam-
resistance, a new RTS frame is created and sent out to re-adjust
the receiver. This step is ignored if we are at the limit of RTS
re-transmit attempts, and continue on to transmitting the data

frame.
4. Create the data frame and place it in our outbound queue.
- Blocking Call Times Out:

1. Check to make sure we have not exceeded our retransmit at-
tempt value. If we have, then the handler will terminate itself
and pass a failure message to the Transmitter module.

2. Otherwise, the frame is updated with the current RSSI value

and placed in our outbound queue.

82

* Data Frame:
The handler will make a blocking call to the receive queue to get data
that will timeout after thirty seconds.
- Blocking Call Returns:

1. The received frame is checked to make sure it is an ACK frame.
If it is not, a node is responding with an incorrect frame and it
is ignored.

2. Otherwise, the handler has received an ACK frame and this
stream has been completed. The handler will terminate itself
and signal a successful transmission to the Transmitter module.

- Blocking Call Times Out:

1. Check to make sure we have not exceeded our retransmit at-
tempt value. If we have, then the handler will terminate itself
and pass a failure message to the Transmitter module.

2. Otherwise, the frame is re-enqueued in our outbound queue.

If the handler is capable of receiving the CTS from the other commu-
nicating node, it will claim ownership of the interface and start a timer
equal to the length of time in the CTS frame that was received. The
handler will continually check to see if the timer has expired, and if it
has then the handler must give up control of the interface and signal
a failure to the upper layer. This is to ensure fairness on this node

for other handlers to gain control of the interface, as well as maintain

83

the mutual agreement of how long any two communicating nodes can

claim ownership of the channel.

— RxHandler:

The RxHandler is created by the Receiver class, and has a significantly less
complex role than the TxHandler. Upon creation, it is given a stream ID
to use as a self identifier. Any frames that it transmits will use this as the
Source Stream ID in the BBC-MAC frame header. Like the TxHandler,
the RxHandler maintains two queues. The first is the receive queue where
any date from the Receiver module is placed, and the second is the send
queue used by the interface to get the data it is to send from this handler.
When data is placed in the handler’s receive queue, the following steps

occur for each of the following frames:

* RTS Frame:

1. The frame is first checked to make sure the destination address is
equal to the address specified in the interface. If it is not, then the
frame is discarded.

2. Compare the RSSI value in the frame to the current RSSI at this
node. Select the higher value as the RSSI value for the purposes
of configuration adjustments.

3. Create a CTS frame with the selected RSSI value and enqueue it

in our send queue.

84

4. At this point this node should have the higher of the two RSSI
values. Using the size of the data in the RTS payload this node
will estimate the time needed on the channel for the codec con-
figuration based on the RSSI value and the size of the data and
place this in the CTS frames payload.

5. The handler will now wait for the interface to signal that it has
transmitted this frame and begin a timer equal to the length of
time that was previously estimated that the channel would be
needed for.

6. Adjust the jam-resistance level based on the RSSI value and claim
ownership of the interface.

x CTS Frame: If an RxHandler gets a CTS frame it indicates that this
CTS was not destined for this node and two other nodes are trying to
claim the channel. The value in the payload is extracted and the NAV
timer on the interface is updated with that value.

* Data Frame:

1. The frame is checked to make sure it was destined for this node.
If not, it is discarded.

2. An ACK frame is created and placed in the send queue.

3. The handler signals the Receiver class of a successful data recep-

tion via the Callback and the handler is terminated.

85

* ACK Frame: This frame should have been delivered to a TxHandler
if it was meant for this node. The frame is discarded and the handler

terminated.

5.5 Chapter Conclusion

The purpose of this chapter was to introduce the reader to the main components
that make up the implementation of the BBC-MAC protocol. The chapter began
with an introduction to the hardware and software components that make it possible
to achieve the goal of testing the protocol on physical hardware. We then discussed
the new jammer that was created to be used during the subsequent experimental
phases. The implementation details of the physical layer and the BBC-MAC protocol
were covered in appropriate detail in order familiarize the reader with how the layers
interact in order to create the reliable data link layer. The implementation presented
in this chapter was meant to create a working prototype in order to demonstrate the
feasibility in creating a MAC layer that can adapt to the level of noise detected on
the channel. Some of the design decisions in the protocol could have been taken in
other directions, but the prototype that has been developed here suits the purpose of
demonstrating technical capability of incorporating the BBC algorithm into a protocol

stack in order to provide adaptive jam-resistant communications.

86

CHAPTER 6

PuAsSE I EXPERIMENTS: ADAPTIVE CODING INVESTIGATION

6.1 Chapter Introduction

As noted in the previous chapter, the protocol must adjust the coding param-
eters used on the BBC algorithm to meet the current needs of the channel. If the
channel has a low degree of noise then minimal jam-resistance is needed to increase
the throughput. The reverse situation must also be addressed. If there is a high
level of interference then greater jam-resistance should be used in order to over-
come the noise. In the explanation of the protocol, I settled on using five levels of
jam-resistance, plus an additional level for the smaller RTS/CTS frames. By using
five levels of jam-resistance, the protocol will be able to demonstrate its capacity to
adapt to the level of noise in the channel. The goal of this experiment is to test each
configuration against different levels of jamming, and against several jammers. The
experiment clearly showed the tradeoff between jam-resistance and throughput, and
illustrated that with just one parameter adjustment of the BBC algorithm different
levels of resistance can be achieved. However, in both jammer types an upper bound
was reached where the adjustment made no statistical difference in the reliability of

the configuration.

87

6.2 Experiment Setup

The hardware configuration for this experiment required two USRPs, and at
least one must have two daughterboards. The USRPs were fairly close to each other;
only four feet separated them. Inside each USRP are two daughterboards, where the
antennas in each are separated by 3.5 inches.

The experiment calls for a jammer to be running while a transmission is occur-
ring. I made the design decision to always have the jammer running for at least as
long as the transmission was occurring. This allows me to guarantee that the origi-
nating signal is always being jammed from the source of the transmission. For this
reason, the jammer code was incorporated in the transmitter script so this could be
achieved. Two types of jammers were used during this phase of experiments. The
first is a pulse jammer that I created to be a targeted attack on the decoder and the
modulation scheme currently used. The second is a Gaussian noise source generator
that is part of the GNU Radio API. Each jammer has a range of [0,64] to select for
the jamming level. On the pulse jammer the level indicates how many time steps
should contain a high pulse, and the Gaussian jammer uses the level to determine
the max amplitude. For this experiment the data used for encoding and transmission
was a single 802.3 ethernet frame that is 1514 bytes long. The hexadecimal string for
this data is listed in Section B.1.

After examining notes about the BBC algorithm and reviewing the source code,

it is fairly obvious how greater jam-resistance can be achieved. An examination of

88

Algorithm 2 in Section 2.5.3 shows that the upper bound on the decoder is O(2").
The decoder time grows exponentially with respect to the number of 1 bits in the
“buckets” for the current message being decoded, or essentially the mark density. On
the BBC Real-time Engine website [Bahn March 2009], it is stated that in general,
in order to achieve greater jam-resistance the configurations need to lower the mark
density during the encoding. There are two parameters which determine the length of
a packet and therein the mark density. The first is the codec_message_bits paremeter,
which says how many bits long should a message be. The second is the codec_expansion
parameter, which determines the length in which a BBC packet will be. Multiplying
the codec_message_bits X codec_expansion gives the length of a BBC packet or the
packet_bits parameter. The value also impacts the spreadability of the prefix hashing
done when determining where a pulse should be located at, and in some cases how

many marks there will be.

// Generate mark location for present prefix
location = 0;
for (i = 0; i < SHA1IHASHDWORDS; i++)
location += ((codec—>digest)—>Message_Digest[i])<<i;

location %= c—>packet_bits;

Listing 6.1: codec.c lines 343-347

The code snippet above shows where in the code this is of importance. The upper
bound of where a location can be is in the unsigned integer variable location. How-

ever, it is further impacted by the packet_bits discussed before. By raising or lowering

89

the codec_expansion different mark densities can be achieved. A rough estimation for
the stream density can be done by dividing the number of marks the encoder created,
N, by the number of samples that were created, S. The increase in expansion also
increases the number of marks produced. This is because the modular operation on
the location is on a larger number, and thus fewer prefix hashes will map to the same

location increasing the spreading of the marks.

Expansion N S Density | Transmit Time | Throughput
20 31768 | 716832 4.43% 6s 2019bps
75 32865 | 1075232 | 3.06% 9s 1346bps
100 33451 | 1433632 | 2.33% 12s 1009bps
125 33873 | 1792032 | 1.89% 15s 807bps
150 34054 | 2150432 | 1.58% 18s 673bps
175 34257 | 2508832 | 1.37% 21s 578bps
200 34404 | 2867232 | 1.19% 23s 527bps

RTS @ 500 | 3406 | 1433632 | 0.24% 12s 19bps

Table 6.1: Expansion Factor Impact

I decided to leave the codec_message_bits parameter at the default of 512 bits or
64 bytes, and instead vary the codec_ezpansion. This decision was made because [
wanted to reduce the number variables changed during testing and implementation,
and instead focus on adjusting the parameter which varies the mark density. Table
6.1 shows the result of running the encoder for the chosen levels of expansions. It
also lists the transmit time required to transmit each configuration. Recall that for
these tests a 1514 byte ethernet frame was used. The transmission time is a simple

calculation based around the number of samples that were created. The sampling

90

rate of the USRP’s is 500,000 samples a second, and for each bit modulated there are
4 samples created, and so the time required to transmit is [4 * m]. The ceiling of
that value is used in order to obtain an integer result. This information also lets us
display the nominal throughput as a function of time. The table clearly illustrates
that as we increase the expansion factor we decrease the stream mark density, but
also decrease the throughput.

For each expansion factor, thirty messages were sent at each jamming level until
it reached two levels in which no messages made it through. It was decided to stop
the tests at that point since even if one or two messages got through in subsequent
levels it would be statistically irrelevant. A script was created which would begin the
receiver, then begin the transmitter, and once the transmitter was finished it would
end the receiver script and begin the decoder. The decoder was given thirty seconds
to decode the data received. Once that time was expired it was considered a failed
transmission. Successful decodes where then checked for proper CRC16 values, and
only those that had matching CRC16 values were considered a success. A final test
was carried out on the highest expansion factor that resulted in a reasonable amount
of transmit time for a RTS frame in order to determine its resilience to jamming.
This is important since these frames are significantly smaller than the ethernet frame
used during the rest of the tests, and are required in the protocol for establishing
channel control and coding configurations for the communicating parties. The RTS
frame is just a BBC-MAC header plus a payload containing the time the initiating

node estimates it will need the channel for. For these tests it was only 28 bytes,

91

which, conveniently, an expansion of 500 resulted a transmit time of 12 seconds with

an extremely low mark density of just 0.24%.

6.3 Experiments

6.3.1 Jammer RSSI Experiment

To gain an initial insight into how the two jammers would affect the channel,
the first experiment was to run both jammers at each level of jamming and collect
the RSSI value. As noted in the previous chapter, the RSSI value is continuously
collected during the receiver’s script. The experiments were executed such that only

the noise data generated by the respective jammers were transmitted.

4000 T —

3500 +© / ,N’ﬁ
3000 + / ./_/-
2500 + / /J
2000
F l/ ==Pulse Jammer
1500 +
1000 /
500 :: /
0 e B e —
0 20 40 60

RSSI Value

Gaussian Jammer

Jammer Level

Figure 6.1: RSSI Value vs Jamming Level

92

Figure 6.1 shows the results of this experiment. The pulse jammer presents
a uniform increase in RSSI value, while the Gaussian jammer displays a half bell
curve increase. This is not surprising since the random generator used in the pulse
jammer is of uniform distribution, while the Gaussian uses a Raleigh distribution.
This information is necessary in order to correlate the results of the next series of

tests with the configuration needed for a specific range of RSSI values.

6.3.2 Pulse Jammer Experiment

The pulse jammer that I created is meant to attack the decoder in a similar way
as my demonstration of the BBC decoder in Section 2.5.4. The jammer places a high
pulse where it otherwise would not be. As explained in the previous chapter, the
jammer accepts an input level in the range [0,64], where the level given determines
how many time steps will contain a pulse. For example, if the level is 13, the jammer
will output a sink file where every 64 time steps is guaranteed to contain 13 pulses.
This can create a significant amount of error and noise for the decoder, but it can
not guarantee that it will induce a 5 ~ 20.31% error rate. This is because if the
sender was already sending a 1 where the jammer outputted a 1, it would not affect
the signal, and thus it is a maximum of 20.31% bit error rate and not a guaranteed
error rate.

Figure 6.2 and Table 6.2 show the results of all the tests on the ethernet frame.

What is clear from the graph is that each expansion factor gives an advantage over

the prior one, but as we increase the expansion we notice less improvement over the

93

35

30
====Expansion 50

25

Expansion 75

Expansion 100

== Expansion 125

-
o\ |
N U

0

Number Received
[}
o
l
[
##
—
#_ﬂ'

Expansion 150

Expansion 175

Expansion 200

~==RTS @ 500

Jammer Level

Figure 6.2: Collective Pulse Jammer Results

previous expansion. Starting at expansion 100 we begin to see the steady decrease in
advantage over the previous level. This makes sense since looking back at Table 6.1,
there is a very minimal decrease in mark density as we increase the expansion from

100.

94

Jammer Level | 50 | 75 | 100 | 125 | 150 | 175 | 200 | RTS @ 500
0 25 129 | 30 26 27 28 28 22
1 26 | 27 | 23 27 27 26 23 27
2 16 | 28 | 30 24 29 27 15 27
3 4 |28 | 25 26 30 24 20 26
4 0 | 28| 24 26 28 22 21 23
5 0 [26]| 24 23 27 21 20 27
6 0 [26| 26 28 29 24 22 27
7 0 |14 | 26 24 29 25 23 28
8 010 24 26 28 22 22 30
9 010 24 28 29 18 24 26

10 010 22 28 29 23 20 28
11 0] 0 0 26 28 26 26 28
12 010 0 1 29 21 24 25
13 010 0 0 0 21 27 28
14 010 0 0 0 0 11 29
15 010 0 0 0 0 0 26
16 010 0 0 0 0 0 29
17 010 0 0 0 0 0 28
18 010 0 0 0 0 0 30
19 010 0 0 0 0 0 11
20 010 0 0 0 0 0 0

21 010 0 0 0 0 0 0

Table 6.2: Pulse Jammer Results

Figure 6.3 shows the results of tests with an expansion of 50. This configuration
does well through level one jamming where it gets 26 messages through, but then it
begins to lose ground with only 16 in level two jamming, and statistically becomes
unstable at level three jamming. This configuration was meant to operate in areas
of little-to-no noise in order to give high throughput. It can clearly tolerate this

requirement.

95

Number Received

35

30

A
i\
-\
-\

Expansion 50

10

Jammer Level

Figure 6.3: Pulse Jammer with Expansion 50

Number Received

35

30

25

o\
; \
; \

15

Expansion 75

10

Jammer Level

Figure 6.4: Pulse Jammer with Expansion 75

96

Figure 6.4 displays the results of the test on expansion 75. Expansion 75 does
significantly better than 50. It manages to get 26 messages through at level six jam-

ming, and then 14 at level seven before it goes to zero.

35

TTTT

30

25

20

T TTTT T T

15
====Expansion 100

Number Received

TTT T T TTT

o —"—t——t I B
0 5 10 15 20

Jammer Level

Figure 6.5: Pulse Jammer with Expansion 100

Figure 6.5 shows the results of tests on expansion 100. This expansion had
several jamming levels where it had just barely over 20 messages through. However,
while monitoring a lot of these tests, sometimes the radios would cause buffer under
runs where the received data was lost. Combined with the randomness of the data,
this can add to the low numbers on many of these early jamming levels where we
should be seeing high success rates. This configuration did significantly better than
the previous one. It got 22 messages through on level ten jamming, but then zero on

the subsequent levels.

97

35

30

~/\

)YY TTTT

25

20

15

T T T T T

=== Expansion 125

Number Received

10

u
TTTTTTT

Jammer Level

Figure 6.6: Pulse Jammer with Expansion 125

Expansion 125 shown in Figure 6.6 did only one level better than the previous
one. After level 11 jamming it manages just one successful transmission before going
to zero. As mentioned earlier, this is where we begin to see only minor improvements
in jam-resistance.

Again, the next level of resistance at expansion 150 in Figure 6.7 shows that we
are able to compensate for just one more level of jamming. This configuration got 29
messages through on level 12 jamming, but then got zero through on the subsequent

tests.

98

Number Received

35

30_/\/\/\1

25

20

15

10

Jammer Level

====Expansion 150

Figure 6.7: Pulse Jammer with Expansion 150

Number Received

35

30

TN\

20E vV

15

10

Jammer Level

====Expansion 175

Figure 6.8: Pulse Jammer with Expansion 175

99

Expansion 175 shown in Figure 6.8 displays problems early during the jamming
tests of just getting data decoded. This configuration manages to get to level 13

jamming with 21 of the messages getting through, and then decays to zero.

35

TTTTT

A\NaYA

15

T T T T T

====Expansion 200

Number Received

TTT T T TTT

u

10 e e E—
0 5 10 15 20

Jammer Level

Figure 6.9: Pulse Jammer with Expansion 200

Expansion 200 shown in Figure 6.9 displays the same problems as 175 did early
on in the jamming experiment. However, it did just better than 175 at level 13 with 27
messages being received, and at level 14 it got just 11 messages through. Statistically,
200 does only marginally better than 175. After reviewing the logs on this test, a lot
of the problems seen in the early jamming levels were not due to the decoder timing
out, but rather that the decoder was indicating a significant amount of the sequence

numbers were missing and so it dropped the data.

100

35

30;
-~/ M\ / V)
\%

25:/

\
\

15

===RTS @ 500

Number Received

10 T

0 5 10 15 20

Jammer Level

Figure 6.10: Pulse Jammer with RTS Frame at Expansion 500

The final test ran was on the RTS frame with an expansion of 500. Recalling the
protocol design, the RTS and CTS frames are used for determining the proper level
of jam-resistance needed between the two communicating parties. This requires that
we have a high degree of certainty that the these frames are successfully transmitted.
Figure 6.10 shows that this configuration allows the frame to make it through level
18 jamming with 30 messages being received, and 11 received at jamming level 19

before decaying to zero.

6.3.2.1 Pulse Jammer Experiment Conclusion

This experiment showed how the various configurations can resist the pulse jam-
mer up to a certain level. Each of the configurations offers a benefit over the other

in the form of throughput or jam-resistance. The highest expansion factor manages

101

to resist a jamming level of 13 which equates to roughly a 20.31% bit error rate at
the maximum. Finally, the tests on the RTS frame demonstrate several important
factors. The first is that we can successfully transmit these frames at very high levels
of jamming. The expansion of 500 resisted a jamming level of 18 which is roughly a
28.13% bit error rate at the maximum. The second important piece of information is
that the smaller frame size was able to do better than the larger at getting successful

receptions, but at also a significantly lower throughput.

6.3.3 Gaussian Jammer Experiment

The Gaussian jammer is a noise source generator part the GNU Radio API li-
brary. It accepts as a parameter the maximum amplitude and then uses a Gaussian
distribution random generator to determine what amplitude the output signal should
be. The generator accepts a jammer level in the range [0,64], where each step con-
stitutes and increase in amplitude of 500. The maximum value for the amplitude is
32000, which conveniently works out to 64 levels.

Figure 6.11 and Table 6.3 show the results of all the tests on the ethernet frame
and the last one on the RTS frame. Again we see the pattern of gradual decrease
in resistance as we increase the expansion, but there also appears to be area of con-
centration where the limits of the expansions are met. Recalling Figure 6.2 from the
pulse test, we notice that there was quite a bit more distinction between the config-
urations. However, looking at how the RSSI values increase from Figure 6.1 for the

Gaussian jammer versus the pulse jammer, this rapid decline seems expected.

102

Number Received

5 10

Jammer Level

15

20

====Expansion 50
====Expansion 75

—==Expansion 100

Expansion 125
====Expansion 150

—===Expansion 175

Expansion 200
===RTS @ 500

Figure 6.11: Collective Gaussian Jammer Results

Jammer Level | 50 | 75 | 100 | 125 | 150 | 175 | 200 | RTS @ 500
0 28 129 | 30 30 30 29 24 24
1 26 | 27 | 29 28 28 26 19 27
2 26 | 25 | 30 30 28 24 15 27
3 24 | 23 | 28 28 30 27 20 23
4 26 | 26 | 30 26 30 29 24 27
5 25 | 28 | 30 28 30 29 17 28
6 21 | 28 | 29 30 29 28 9 24
7 9 [26| 29 29 28 28 18 26
8 0 |26 | 27 30 30 23 10 27
9 0 | 26| 28 30 27 25 9 25
10 0] 2| 26 27 29 28 6 28
11 0] 0 1 26 24 27 10 28
12 0] 0 0 8 11 2 0 22
13 0] 0 0 0 0 0 0 0
14 010 0 0 0 0 0 0

Table 6.3: Gaussian Jammer Results

103

35

30

25

20

15’ \

10

Expansion 50

Number Received

0
0 5 10 15 20

Jammer Level

Figure 6.12: Gaussian Jammer with Expansion 50

Figure 6.12 shows the results of tests with an expansion of 50. The configuration
is able to cope with jamming level six, but then declines at seven with just nine
successful transmissions, and finally going to zero. Again, this configuration is meant
to be used in areas of low noise so as to increase the throughput.

Figure 6.13 displays the results of the test on expansion 75. This configurations
is able to edge out the previous by several levels, allowing 26 messages through on

level nine jamming, and then just two on level 10 before declining to zero.

104

Number Received

35

30

?.5E AV 4

20

15

10

0 +—————j——
0 5 10

Jammer Level

15

20

====Expansion 75

Figure 6.13: Gaussian Jammer with Expansion 75

Number Received

35

30

25

20

15

10

L

0 +——— 4y
0 5 10

Jammer Level

15

20

====Expansion 100

Figure 6.14: Gaussian Jammer with Expansion 100

105

Figure 6.14 shows the results of tests on expansion 100. This expansion was only
able to do just one level better than expansion 75. There were 26 successful receives
on level ten jamming, and just one on 11. At this configuration we begin to see the
decline in jam-resistance advantage over the previous configuration. However, com-
paring the results of this test to the pulse jammer, this expansion was more stable in

the Guassian jammer than in the pulse.

35

N
\
; \
| \

15

Expansion 125

Number Received

10

Jammer Level

Figure 6.15: Gaussian Jammer with Expansion 125

Expansion 125 shown in Figure 6.15 did only one level better than 100. The
configuration allowed 26 messages through on level 11 and eight on level 12 before

the decoder began to timeout on the subsequent levels.

106

35

LT

©
2
Q
& 20
F \
2 15 7
E . \ ===Expansion 150
Z 10 ¢ \
' L
0 e e
0 5 10 15 20

Jammer Level

Figure 6.16: Gaussian Jammer with Expansion 150

Figure 6.16 shows the results of expansion 150. Beginning at this configuration we
stop seeing a statistical advantage in raising the expansion. At level 11, 24 messages
were received, and at level 12 jamming just 11 messages were received.

Expansion 175 shown in Figure 6.17 doesn’t show the same problems as this
respective test did on the pulse jammer. However, again this expansion was not able
to do better than the previous two. It was able to get twenty-seven messages through

on jamming level eleven, and just two on jamming level twelve.

107

Number Received

35

30

25

20

15

10

...... .

10 15

Jammer Level

20

Expansion 175

Figure 6.17: Gaussian Jammer with Expansion 175

Number Received

35

30

25

20

15

10

0 5 10 15

Jammer Level

====Expansion 200

Figure 6.18: Gaussian Jammer with Expansion 200

108

Expansion 200 shown in Figure 6.18 displays similar issues as the respective test
did in the pulse jammer, but did significantly worse. Again, looking at the logs for
this test it was observed that the decoder wasn’t timing out, but rather that it was

missing many sequence numbers.

35

30

TaVaV_Va

25 V

20

15
==RTS @ 500

Number Received

10

0]
0 5 10 15 20

Jammer Level

Figure 6.19: Gaussian Jammer with RTS Frame At Expansion 500

Finally, the test on the RTS frame with an expansion of 500 was ran. Figure 6.19
shows the results of this test. Again, using this configuration the RTS frame could be
successfully received at a jamming level beyond what any of the data frames made it
to. The configuration allowed the frame to be received 22 times on level 12 jamming

before declining to zero on the remaining levels.

109

6.3.3.1 Gaussian Jammer Experiment Conclusion

This second experiment on the Gaussian jammer demonstrated that even against
a different type of jammer the configurations can successfully use different configu-
rations for the proper level of interference in the channel. The configurations were
able to resist the jammer up to a certain point just as in the pulse test, but this time
it was seen that the limit was approached far quicker than in the pulse experiment.
This can be explained by the fact that the increase in jamming levels for the Gaussian
noise source beyond level ten begin to increase the RSSI value significantly more than

with the pulse jammer.

6.4 Chapter Conclusion

When comparing the results of the configurations from the two jammers, on the
surface it seems that the lower expansions were able to resist more of the jamming
levels on the Gaussian test than they did on the pulse. However, to effectively see
how the configurations fared against the two jammers one must look at what RSSI
value the particular jamming level creates for the respective jammer. If we consider
anything less than a 50 percent success rate a failure and map the last jamming level
that particular configuration was successful on, to the RSSI value from Figure 6.1, we
get the results found in Table 6.4. The Gaussian jammer trials show that the upper
bound for the configuration to correct the errors was reached at level ten jamming.
However, what is really happening is they were not able to overcome the next level

of jamming which produces an RSSI value of 1603. When the results are compared

110

this way it illustrates that for both jammers, the RSSI value will give us the proper
estimation for which configuration to use. Then, with this information in mind, we
can ignore the type of jammer used and base the decision on the RSSI. This is im-
portant since the protocol will not have forehand knowledge of the jammer type and

instead will only be using the RSSI as a determination factor.

Jammer | 50 | 75 | 100 | 125 | 150 | 175 | 200 | RTS @ 500
Pulse 385 | 790 | 1161 | 1256 | 1356 | 1433 | 1433 1769
Gaussian | 312 | 792 | 1028 | 1263 | 1263 | 1263 | 596 1603

Table 6.4: RSSI Failure Levels

This phase of experiments provided the necessary information to complete the
adaptive BBC-MAC protocol. The results showed that by adjusting the expansion
factor, we can adapt the encoding to better suit the needs of the channel. Increas-
ing the expansion factor reduces our throughput, but gives us greater jam-resistance.
While lowering it increases our throughput but leaves us susceptible to weaker jam-
ming attacks. The goal of this experiment was to arrive at five configurations for the
data frames and an additional one for the RTS and CTS frames. I tested seven con-
figurations on an 1514 byte ethernet frame and demonstrated each of their abilities
to resist different levels of jamming on several jammers. After analyzing the results,
the configurations chosen for the protocol are expansions 50, 75, 100, 150, and 175.
Expansion 200 was dropped for several reasons. The most obvious is that it is entirely
too unstable to be incorporated in the protocol. The second is that in both jammer

tests, it gave no statistical advantage over expansion 175. Expansion 125 was not

111

chosen since in terms of RSSI value it only did one level better than expansion 100
and I wanted a more significant buffer between the configurations. The expansion of
500 for the RTS and CTS proved to be more than adequate as evidenced by the fact
that it was successfully received at RSSI levels well beyond what the configurations

for the data frame achieved.

112

CHAPTER 7

PHASE II EXPERIMENTS: PROTOCOL VALIDATION

7.1 Chapter Introduction

The final phase of experiments presented in this chapter focuses on using the
data from the first phase of experiments conducted in Chapter 6. In that phase, an
investigation into the BBC algorithm was conducted to determine what must be done
to allow for varying levels of jam-resistance. The experiments showed that in order to
produce greater jam-resistance the mark density of a message must be reduced. After
an examination of the algorithm, the analysis shows that in order to achieve varying
levels of mark density, and thus jam-resistance, the expansion factor used in the codec
must be altered. Seven variations of that value were tested against two jammers and
the results showed that each variation provided a benefit in either jam-resistance or
throughput. The values chosen for protocol implementation are 50, 75, 100, 150 and
175. This chapter will include those in the BBC-MAC protocol and conduct the
experiments necessary to illustrate how the protocol can use these to adapt to the
level of noise. The first experiment presented in this chapter shows the results of the
original protocol with those values. The information from that experiment revealed a
problem in the implementation and an important modification was made to improve

the overall performance of the protocol.

113

7.2 Experiment Setup

The physical layout of these experiments remains the same as the experiments
conducted in Chapter 6. The USRPs are roughly four feet apart with two transceiver
daughterboards in each, where their respective antennas are 3.5 inches apart.

The information from the previous set of experiments has been used and applied
to the BBC-MAC protocol implementation. Table 7.1 shows the range of RSSI val-
ues that each expansion is applied to. These ranges are based on the jamming level
that the expansion was able to resist and then correlated to the average RSSI value

produced at that level.

Expansion | Min RSSI | Max RSSI
50 0 300
75 301 700
100 701 1050
150 1051 1350
175 1351 4092

Table 7.1: Expansion RSSI Range

Prior to conducting the experiments a statistics module was created to allow
both a RxHandler and a TxHandler to keep track of relevant information for the

stream they are currently managing. The information kept by the TxHandler is:

e RTS Count: The number of RTS frames that were sent.

e Data Count: The number of data frames that were sent.

114

e Send Time: The Network Time Protocol (NTP) time that the first RT'S frame

was sent at.
e ACK Time: The NTP time that the ACK was received.
e RTS Fail: Flag set if this stream failed at the RT'S/CTS exchange stage.
e Data Fail: Flag set if this stream failed at the DATA /ACK exchange stage.
e RSSI: Final RSSI value used for determining the expansion to use.
e Expansion: The expansion used for the Data transmission.

e Channel Latency: The difference in time between the Send and ACK time.

On the recipients end the RxHandler also maintains some information:

e RTS Count: The number of RTS frames that were received.
e Data Count: The number of Data frames that were received.

e Data Time: The NTP time that the data frame was received and delivered to

the upper layer.

e ACK Count: The number of ACK frames transmitted. This should be equal

to the number of data frames received.

e CTS Count: The number of CTS frames transmitted. This should be equal

to the number of RTS frames received.

115

In the experiments. the following terms will be used to discuss the analysis of
the data collected by the statistics on the transmit and receive end for each message

that was sent:

e False Negative: This is where the transmitter signaled its upper layer of a
failure to deliver the data, but the receiver had actually received the data and

delivered it to its upper layer.

e False Positive: This is where the transmitter signaled its upper layer of a

failure to deliver the data and the other node did not receive it.

e Nominal Latency: This is the difference between the Send Time in the Tx-
Handler statistics and the Data Time in the RxHandler statistics. It is the time
between when the sender first initiated communications by sending an RTS and
when the recipient delivered the data to the upper layer. Under optimal con-
ditions this is just the Channel Latency minus the time to deliver the ACK.
However, under conditions where the data frame is unnecessarily re-transmited

due to a missed ACK, this can be significantly lower than the Channel Latency.

e Optimal Nominal Latency: This is the Nominal Latency when everything
worked perfectly. That is, only one RTS frame had to be sent and only one

Data frame had to be sent.

The experiments were tested with the pulser jammer only. This choice was made

since it gave a uniform increase in RSSI value allowing for more granularity of the

116

tests. For each experiment 30 messages were sent at each jammer level in the range
of [0,10]. The goal of the experiments are to show that the protocol would adapt to
different levels of noise and not the demonstration of absolute failure. The expansions
respective failure limits were demonstrated in Chapter 6. As with the experiments
conducted before, whenever a data transmission was occurring on the radio, a jammer

was running on the author daughterboard.

7.3 Experiments

7.3.1 Initial Protocol Implementation Experiment

The initial protocol implementation operates in the same fashion as explained in

Section 5.4. The flow of a message has the following sequence:
1. The sender encodes a RT'S frame with an expansion factor of 500 and transmits.
2. The recipient will respond with a CTS frame encoded with an expansion of 500.

3. The two nodes should now be in agreement on which configuration to use for

subsequent frames.

4. The sender now encodes the data frame using the agreed expansion and trans-

mits.
5. The recipient will reply with an ACK frame encoded at the agreed expansion.

This RTS-CTS-DATA-ACK flow is the complete stream assuming everything is

received without error. Recall from Section 5.4 that if upon receiving the CTS the

117

sender requests further expansion refinement, it will re-transmit a RTS to inform the
recipient of a new configuration to which they should agree upon. To overcome the
possible corruption of RT'S and CTS frames, the sender can re-transmit an RT'S frame
up to two more times past the initial request. The time that the channel is allocated
for the two nodes is the time needed for three transmissions of the data frame plus
the time needed for a timeout. The decoder is given 30 seconds to decode the data
received by the receiver before the data is considered too corrupt for processing and
the data purged.

The experiment was conducted by sending 30 messages at each jammer level and
recording the results from the statistics for analysis. The data used as payload is the
same 1514 byte ethernet frame that was used in the experiments from Chapter 6, and
the hexadecimal string of the frame can be found in Section B.1.

Beginning first with an analysis of the latency, we can see in Figures 7.1 and 7.2
that on all three measurements there is a gradual increase in latency as we increase
the jammer level and thus the expansion factor needed. Tables 7.2 and 7.3 show
the numbers that each graph displays, respectively. We can clearly see that there
is a benefit in using the lowest jam-resistance level. Compared to the highest jam-
resistance level, we are able to transmit almost 16 seconds faster in optimal conditions.
Furthermore, as we go from one expansion to the next, there is an increase in latency.

These two graphs demonstrate the latency tradeoff by adjusting the expansion factor.

118

Jammer Level | Channel Latency (s) | Nominal Latency (s) | Optimal Latency (s)
0 52.5 47.3 43.9
1 55.8 46.5 44.7
2 64.5 49.1 45.7
3 62.4 47.2 46.7
4 53.3 47.2 47.3
) 62.1 50.9 48.4
6 56.8 49.1 49.2
7 71.1 62.3 56.2
8 70.6 64.1 57.3
9 78.3 66.1 60.6
10 79.6 66.0 57.7
Table 7.2: Experiment I Latency By Jammer Level
Expansion | Channel Latency (s) | Nominal Latency (s) | Optimal Latency (s)
50 53.0 47.1 42.6
75 60.5 47.6 45.8
100 57.6 49.6 48.3
150 72.1 63.6 57.3
175 78.4 65.3 58.9
Table 7.3: Experiment I Latency By Expansion Level
90
80
__ 10
3 60 - /-V.—‘
] =&—Nominal Latency
o 50 R
Z 40
c = Channel Latency
b
< 30
-
20 Optimal Nominal
10 Latency
0 T T T T T T T T 1

Jammer Level

Figure 7.1: Experiment I Latency By Jammer Level

119

Latency (seconds)

90

50
40
30

80 /I

70
=&®—Nominal Latency
= Channel Latency

20 === QOptimal Nominal

10 Latency

0 T T T T 1
50 75 100 125 150 175

Expansion Factor

Figure 7.2: Experiment I Latency By Expansion Level

120

Continuing on to an analysis of the RTS frames, in Figures 7.3 and 7.4 we see
how many RTS frames were sent, how many of those were received, and how many
messages were sent. Under optimal conditions there should be a 1:1 ratio between
the number sent and received, and not necessarily a 1:1 ratio between the number
of RTS frames sent and the number of messages sent. This is because more RTS
frames might be sent as needed by the protocol to adjust the expansion factor used
in subsequent data and ACK frames. However, the figures clearly indicate that there
was a minimal error in the RTS frames and only at level eight jamming was there
increase in the adjustments made. The raw data from where this data was collected
indicates several times in which expansion 175 had to be used in level eight jamming,
accounting for the small separation between the number of RTS received and the

number of messages sent at that level. Tables 7.4 and 7.5 numerically display the

same data.
Jammer Level | Messages Sent | RT'S Sent | RTS Received
0 30 33 30
1 30 30 30
2 30 32 30
3 30 30 30
4 30 30 30
5 30 30 30
6 30 30 30
7 30 31 30
8 30 34 33
9 30 33 30
10 30 36 32
All 330 349 335

Table 7.4: Experiment I RTS Transmits By Jammer Level

121

50
45
40

35 ” s =:
30

25 —&—RTS Sent
20

15
10

=l—RTS Received

Frame Count

~i=Messages Sent

Jammer Level

Figure 7.3: Experiment I RTS Transmits By Jammer Level

Expansion | Messages Sent | RTS Sent | RTS Received
50 24 27 24
75 96 98 96
100 91 91 91
150 71 78 74
175 48 55 20
All 330 349 334

Table 7.5: Experiment I RTS Transmits By Expansion Level

122

120

100

80 /
60 / =& Messages Sent
—l—RTS Sent

40
1 ~==RTS Received

20

Frame Count

0 T T T T 1
50 75 100 125 150 175

Expansion Factor

Figure 7.4: Experiment I RTS Transmits By Expansion Level

123

Moving onto an analysis of the data frames, Figures 7.5 and 7.6 show the results
of all the data transmissions at each jammer level and expansion factor, respectively.
The difference listed in Tables 7.6 and 7.7 and the figures, represents the difference
between the number of data frames received and the number of messages sent. Be-
ginning with the breakdown by jammer level, we can see that from levels one through
three there is an extremely high difference between the number of messages sent and
the number of data frames received, and only a minor difference between the number
of data frames sent and received. This indicates a problem in data frames being
acknowledged at those levels. If we move to Figure 7.6 with the breakdown by ex-
pansion, we can see that expansion 75 is the main expansion used at those levels
and presents a problem getting ACK frames through. However, as we move up in
expansions this problem seems to to disappear, indicating that as we increase the

expansion the ACK frames have a smaller error rate.

124

Jammer Level | Messages Sent | Data Sent | Data Received | Difference
0 30 32 32 2
1 30 43 42 12
2 30 43 42 12
3 30 43 43 13
4 30 32 32 2
5 30 38 35 5
6 30 32 32 2
7 30 34 31 1
8 30 31 30 0
9 30 33 33 3
10 30 38 33 3

All 330 399 385 55
Table 7.6: Experiment I Data Transmits By Jammer Level
Expansion | Messages Sent | Data Sent | Data Received | Difference
50 24 26 26 2
75 96 136 134 38
100 91 103 99 8
150 71 76 73 2
175 48 58 53 5
All 330 399 385 95

Table 7.7: Experiment I Data Transmits By Expansion Level

125

50
45

V4 \ é P
30
25

20
15

L1/ \

Frame Count

Jammer Level

=&—Data Sent
- Data Received
= Messages Sent
=>&=Difference

Figure 7.5: Experiment I Data Transmits By Jammer Level

160

140

N\

120

100 A

80 //

/\
\’.‘\.

100

Frame Count

20
—-—)I<

50 75 125 150 175

Expansion Factor

=—&— Messages Sent
=~ Data Sent
=== Data Received
=>¢=Difference

Figure 7.6: Experiment I Data Transmits By Expansion Level

126

Finally, we conclude by looking at the overall message failure rate broke down
by jammer level and expansion factor in Tables 7.8 and 7.9. The tables display the
number of false negatives (FN) and false positives (FP) at each jammer level and ex-
pansion. Recall the problems with ACK frames from the analysis of the data frames
indicates how these FNs can come about. The FN for expansion 75 is at three with
only one other FN occurring at the highest jammer level. The FN at the highest
jammer level is not surprising since it is approaching the limit of what expansion 175
is able to tolerate. However, the most important statistic is that on no level was there

a FP or a failure to actually deliver the data message.

Jammer Level | Messages Sent | False Negatives | False Positives
0 30 0 0
1 30 2 0
2 30 1 0
3 30 0 0
4 30 0 0
5 30 0 0
6 30 0 0
7 30 0 0
8 30 0 0
9 30 0 0
10 30 1 0
All 330 4 0

Table 7.8: Experiment I Message Errors By Jammer Level

127

Expansion | Messages Sent | False Negatives | False Positives
50 24 0 0
75 96 3 0
100 91 0 0
150 71 0 0
175 48 1 0
All 330 4 0

Table 7.9: Experiment I Message Errors By Expansion Level

This experiment demonstrated the initial capability of the BBC-MAC protocol
and its capacity to adjust to the level of noise in the channel. The analysis of the data
collected clearly shows that by adjusting the jam-resistance level we can either gain a
benefit in throughput or a benefit in the ability to cope with greater jamming levels at
the cost of throughput. However, the analysis of the data frames indicated that there
was a serious problem at the lower jam-resistance levels in being able to return ACK
frames successfully. The next section aims to address this problem by modifying the

way the protocol implements the RT'S-CTS-DATA-ACK frame exchange sequence.

7.3.2 Refined Protocol Implementation Experiment

After the initial protocol implementation experiment was conducted, the results
show that there was a problem on the lower jam-resistance configurations in getting
the ACK frames back to the sender. The analysis showed that there was a relatively
small separation between the number of data frames sent and the number received,
indicating the weakness in the protocols implementation of the RTS-CTS-DATA-

ACK frame exchange. Upon further analysis, this was result of the ACK frames

128

being so small in size, that on the lower resistance levels the smallest amount of noise
would corrupt the frame easily. This can then result in much higher data frame re-
transmission rates, and as seen, higher levels of false negatives. The simple solution
then becomes to always encode the ACK frames at a high jam-resistance level. This
final experiment makes only this modification to the protocol and will encode the
ACK frames at the same expansion as the RTS and CTS frames. The exchange of

frames now follows this series:

1. The sender encodes a RTS frame with an expansion of 500 and transmits.

2. The recipient will respond with a CTS frame encoded with an expansion of 500.

3. The two nodes should now be in agreement about which configuration to use

for subsequent messages.

4. The sender now encodes the data frame using the agreed expansion and trans-
mits. Once the transmission is complete the transmitter adjusts its codec ex-
pansion to be listening on expansion 500. If a timeout occurs, it will adjust its

configuration back to the agreed upon level and re-transmit the data frame.

5. The recipient will reply with an ACK frame encoded at expansion 500. Once the
transmission is complete, it will adjust its codec expansion back to the previous
expansion used for the data frames. This is in case the sender still didn’t receive

the ACK and re-transmits the data frame.

129

The goal of this modification is to reduce the number of unnecessary re-transmits
of the data frames, and increase the channel efficiency by eliminating the need to own
it for so long. This should also further reduce the number of false negatives seen at
the lower expansions. However, this will also increase the channel latency since it
will take longer to transmit the ACK frame encoded at the higher expansion. The
experiment is then conducted in the same manner as the one in Section 7.3.1. Thirty
messages sent at each jammer level, using the pulse jammer that is always running
whenever a transmission is occurring.

Beginning again by looking at the latencies in Figures 7.7 and 7.8, we see the
same increase in latency from the lowest expansion up to the highest. This is not a
siginifcant change in the optimal latency, as expected, since the modification doesn’t
affect the time it takes to get a RTS-CTS-DATA through in optimal conditions.
However, we are also seeing an increase in the channel latency. It was expected to
increase, but it increased significantly more than what we see in Figures 7.1 and 7.1.
This larger-than-expected jump is due to a higher rate of RTS re-transmissions than
what we saw in the prior experiment. However, we again see that each expansion

gives us the benefit of either increased throughput or increased jam-resitance.

130

Jammer Level | Channel Latency (s) | Nominal Latency (s) | Optimal Latency (s)
0 58.8 48.1 43.4
1 63.2 49.2 46.3
2 69.0 56.7 47.9
3 69.7 97.5 47.8
4 71.6 57.7 51.3
5 77.3 66.4 50.7
6 78.2 68.1 04.5
7 79.8 64.6 56.4
8 84.5 71.2 97.5
9 78.5 68.0 59.4
10 86.6 74.0 60.9

Table 7.10: Experiment II Latency By Jammer Level

Expansion | Channel Latency (s) | Nominal Latency (s) | Optimal Latency (s)
50 58.8 48.1 43,4
75 67.2 54.3 47.2
100 72.8 60.9 51.2
150 79.3 66.3 56.4
175 86.1 74.0 60.1

Table 7.11: Experiment II Latency By Expansion Level

100

)
§ =&—Nominal Latency
2
g = Channel Latency
8 30

20 Optimal Nominal

10 Latency

0 — T —

Jammer Level

Figure 7.7: Experiment II Latency By Jammer Level

131

Latency (seconds)

100
90
80

60 =&—Nominal Latency
50
40 == Channel Latency
30

20 ~f=0Optimal Nominal
10 Latency

0 T T T T 1
50 75 100 125 150 175

Expansion Factor

Figure 7.8: Experiment II Latency By Expansion Level

132

Figures 7.9 and 7.10 show the RTS transmit rates for this experiment. As noted,
we see a slightly higher transmission rate of RTS frames. Some of this can be at-
tributed to the larger number of expansion adjustments that took place. This is
evidenced by the fact that the number of frames received is steadily increasing over
the number of frames sent, but there are several levels that display higher RTS er-
ror rates. Reviewing the logs of the trials indicated that an unusually large number
of RTS transmissions began while the receiver was in an unprepared state, or the
receiver had to stop receiving due to sample limitations in the middle of an RTS
transmission. However, the protocol never failed at the RTS-CTS handshake, and

resolved the problems with re-transmissions.

Jammer Level | Messages Sent | RT'S Sent | RTS Received
0 30 30 30
1 30 31 31
2 30 34 31
3 30 37 33
4 30 34 33
5 30 40 35
6 30 40 36
7 30 36 35
8 30 37 36
9 30 34 34
10 30 32 32
All 330 385 366

Table 7.12: Experiment II RTS Transmits By Jammer Level

133

50
45

40
35 -
30

25 =#—RTS Sent
20

15
10

Frame Count

= RTS Received

==l Messages Sent

Jammer Level

Figure 7.9: Experiment II RTS Transmits By Jammer Level

Expansion | Messages Sent | RTS Sent | RTS Received
50 30 30 30
75 86 97 90
100 71 86 80
150 74 92 87
175 69 80 79
All 330 385 366

Table 7.13: Experiment II RTS Transmits By Expansion Level

134

120

100

80 A

60 - =&=RTS Sent

Frame Count

== RTS Received

40 J
= Messages Sent
20

0 T T T T 1
50 75 100 125 150 175

Expansion Factor

Figure 7.10: Experiment II RTS Transmits By Expansion Level

135

We now move onto the analysis of the data frame re-transmit rates. Figures 7.11
7.12 show the results of this experiment. The graphs clearly show that the modi-
fication resolved the problem of unnecessary re-transmissions of data frames. The
difference seen from the previous experiment is included on the graphs, and there is
a large margin between the two differences. This indicates that we have successfully
reduced the number of data transmissions that went unacknowledged and the num-

bers can be seen in Tables 7.14 and 7.15.

Jammer Level | Messages Sent | Data Sent | Data Received | Difference
0 30 34 31 1
1 30 34 33 3
2 30 33 31 1
3 30 31 31 1
4 30 32 31 1
5 30 31 30 0
6 30 30 30 0
7 30 32 32 2
8 30 34 31 1
9 30 32 30 0
10 30 41 31 1

All 330 364 341 11

Table 7.14: Experiment II Data Transmits By Jammer Level

136

45
40
35
30
25
20
15
10

Frame Count

Jammer Level

=&— Data Sent

= Data Received
~l—Messages Sent
=>&=Difference I

=i Difference |

Figure 7.11: Experiment II Data Transmits By Jammer Level

Expansion | Messages Sent | Data Sent | Data Received | Difference
50 30 34 31 1
75 86 94 91 5
100 71 74 72 1
150 74 7 76 2
175 69 85 71 2
All 330 364 341 11

Table 7.15: Experiment II Data Transmits By Expansion Level

137

100

=&—Data Sent

=l Data Received

Frame Count

~=i=Messages Sent

=>&=Difference ||

10 / \ == Difference |
e e——— ek

50 75 100 125 150 175

Expansion Factor

Figure 7.12: Experiment II Data Transmits By Expansion Level

138

Finally, we conclude by analyzing the message failure rates of this experiment.
Tables 7.16 and 7.17 show that on only level ten jamming did we see false negatives,
and at no point was there a false positive, or a failure to deliver the data. The seem-
ingly static number of false negatives at jammer level ten appears to be an indication
that expansion 175 is just barely capable of handling the amount of interference in-
duced by that jammer level. However, the number of false positives at the lower
jamming levels have been successfully eliminated by the modification made for this

experiment.

Jammer Level | Messages Sent | False Negatives | False Positives
0 30 0 0
1 30 0 0
2 30 0 0
3 30 0 0
4 30 0 0
5 30 0 0
6 30 0 0
7 30 0 0
8 30 0 0
9 30 0 0
10 30 2 0
All 330 2 0

Table 7.16: Experiment IT Message Errors By Jammer Level

139

Expansion | Messages Sent | False Negatives | False Positives
50 30 0 0
75 86 0 0
100 71 0 0
150 74 0 0
175 69 2 0
All 330 2 0

Table 7.17: Experiment IT Message Errors By Expansion Level

This experiment focused on addressing the issue in data frame acknowledgments
that we exposed in the first experiment in Section 7.3.1. The analysis of this ex-
periment shows that with the modification of encoding the ACK frames at the same
expansion level as the RTS and CTS frames, we are able to reduce the number of
unnecessary re-transmissions of data frames at the lower expansion levels, and further

reduce the number of false negatives.

7.4 Adaptive vs Non-Adaptive

To wrap up the discussion on the BBC-MAC protocol I would like to show how
the protocol performs when we remove the adaptive portion. Removing the adaptive
portion would then eliminate the RTS-CTS exchange, and instead no matter the level
of noise the highest expansion of 175 would be used for the DATA frame, and then
the expansion 500 on the ACK. Under perfect situations, the RT'S/CTS/ACK frames
encoded at 500 take 12 seconds to transmit. Table 7.18 then shows the Round Trip
Time (RTT) for a single DATA-ACK exchange for the non-adaptive, and then the

adaptive protocol at their respective expansion levels.

140

Configuration | 50 | 75 | 100 | 150 | 175 | Non-Adaptive
RTT (s) 42 1 45 | 48 | 54 | 57 32

Table 7.18: Adaptive vs Non-Adaptive

The table highlights an issue where even at our lowest jam-resistance level, we
are not transmitting faster than the non-adaptive protocol. The problem is in the
encoding of the RTS/CTS/ACK frames. Since these are encoded at such a high ex-
pansion, they require a lot of time to transmit, and thus there is a significant penalty
in simply transmitting only one DATA-ACK exchange post the RTS-CTS exchange.
In order to resolve this problem, we need to lower the penalty incurred by using the
RTS-CTS exchange to setup both nodes. I propose that instead of encoding the RT-
S/CTS/ACK frames at expansion 500, we lower this to only be as high as the highest
expansion used of 175. The frames will now only require five seconds to transmit,
and again assuming perfect conditions, Table 7.19 shows how this modification affects
the time needed to complete a transmission with a single DATA-ACK exchange. The
modification will also reduce the time needed for the non-adaptive protocol since the

ACK frame is no longer encoded at 500.

Configuration | 50 | 75 | 100 | 150 | 175 | Non-Adaptive
RTT (s) 21 (24| 27 | 33 | 36 26

Table 7.19: Adaptive vs Non-Adaptive with Modification

With this modification we now have significantly reduced overhead in a single

DATA-ACK exchange. However, several of the adaptive configurations still take

141

longer than the non-adaptive protocol for a single DATA-ACK exchange. Most MAC
protocols support fragmentation, and thus support multiple DATA-ACK exchanges.
802.11 supports multiple of these exchanges after a single RTS-CTS handshake, as
long as the individual fragments do not exceed the length specified by the station, and
can support up to 16 of the DATA-ACK exchanges for a single RTS-CTS handshake
[IEEE 2007]. If we now look at how the adaptive protocol performs against the non-
adptive protocol when we allow up to 16 exchanges to occur we arrive at Figure 7.13.
Referring to Figure 7.13, the adaptive protocol shows faster round trip transmission
times than the non-adaptive protocol in all but the highest expansion level case. As
expected, the adaptive 175 never splits because it always has the overhead of the
RTS/CTS handshake. However, this handshake is what allows the lower expansions

to be used when necessary.

450

400
% 350
-E 300 =& Adaptive-50
.E 220 =l— Adaptive-75
g 200 = Adaptive-100
E 190 =>é=Adaptive-150
-0 == Adaptive-175

52 S —&—Non-Adaptive

DATA-ACK Exchanges

Figure 7.13: Adaptive vs Non-Adaptive by DATA-ACK Exchanges

142

A final thought on the non-adaptive versus adaptive is how well would it perform
when an adversary is jamming for some period of time, and then stops jamming. For
example, if we were to transmit 100 messages, and the adversary would jam a certain
percentage of those, at what point does the non-adaptive protocol start to outperform
the adaptive protocol. Assuming that the jammer is either running at full capacity
for that percentage or not at all, the adaptive protocol is either using expansion 175
or expansion 50 for those respective scenarios. Figure 7.14 shows at what percentage

the adaptive protocol converges with the non-adaptive protocol with respect to the

number of DATA-ACK exchanges that occur after the initial RT'S-C'TS handshake.

0.9
0.8

0.7 -
0.6 /

04 ‘ =&—Convergence
03 £

0.2
0.1 =
0 f—— B e E—

0 5 10 15

Percent of Messages Jammed

DATA-ACK Exchanges

Figure 7.14: Adaptive vs Non-Adaptive Convergence

As expected, the percentage of jamming that the adaptive protocol tolerates over

the non-adaptive increases with the respect to the number of DATA-ACK exchanges.

143

The adaptive protocol demonstrates its superiority over the non-adaptive protocol
as there are more of these exchanges, and this because the penalty incurred by the
RTS-CTS handshake is minimal compared to the number of DATA-ACK exchanges.
However, even if there was a single DATA-ACK exchange, the adaptive protocol will
still outperform the non-adaptive protocol 33% of the time. Given that we can never
gauge how much of the time an adversary will jam, or how much data will need to
be framed from the upper layer, we can see that the adaptive protocol will provide a
benefit in either situation.

The final aspect of this modification that needs to be validated is the RTS frame
encoded at expansion 175’s ability to resist at least the same amount of jamming
levels that that the highest expansion was able to with the data frames. To test this
I ran the same resilience test that was run in Section 6.3.2. The RTS frame was
encoded at expansion 175 and I transmitted the frame 30 times at each jammer level
until there were two levels where zero frames were successfully received. Figure 7.15
shows the results of this trial. The graph shows that the modification allows the
RTS frame to be successfully received through level 13 jamming. Recall from Section
6.3.2, that the data frame encoded at expansion 175 was also successful at completing

transmissions through level 13 jamming.

144

35

30:
255/_.4/-/\'\\
r' v

20

15

Number Received

10

Jammer Level

Figure 7.15: Pulse Jammer with RTS Frame at Expansion 175

The modification made to the protocol improves the performance by reducing
the time needed to complete the RTS-CTS-DATA-ACK exchange of frames between
the sender and the receiver. The modification does not alter the effectiveness of
the protocol in adapting to the level noise, and only improves the time required to
complete a transmission at all the the resistance levels. The results of the modifica-
tion demonstrates the adaptive BBC-MAC protocols superiority to the non-adaptive

protocol that would be using the highest expansion level at all times.

7.5 Chapter Conclusion

This chapter presented the final phase of experiments for the BBC-MAC proto-
col. The experiments in this chapter verified the capability of the protocol to adapt to

the level of noise by controlling the configuration of the BBC encoder and decoder at

145

the physical layer. The first experiment implemented the information obtained from
the first phase in Chapter 6. After analyzing the results, it was shown that there was
an issue in the frame exchange where at lower jam-resistance levels the ACK frame
was easily being corrupted. In the second experiment, I proposed a solution where
the ACK frames are always encoded at the same jam-resistance level as the RT'S and
CTS frames. With this one modification I was able to improve the efficiency of the
protocol by significantly reducing the number of unnecessary data frame transmits
due to a missed acknowledgment. The second experiment further solidified the pro-
tocol’s ability to cope with a sundry of jamming levels by only using the necessary
jam-resistance as indicated by the RSSI value. A final discussion of how the pro-
tocol performs against a non-adaptive version was given. The analysis showed that
the implementation after the second set of experiments was not able to outperform
a non-adaptive protocol. A modification to the protocol was presented where the
RTS/CTS/ACK frames would be encoded at the highest expansion available for the
DATA frames. The analysis of this modification demonstrated that it was now able
to outperform the non-adaptive protocol, and the performance gap increased with
respect to the number of DATA-ACK exchanges that occur for each RT'S-CTS hand-
shake. By controlling the codec configuration used at the physical layer, BBC-MAC
is able to provide higher throughput in exchange for lower jam-resistance and vice

versa, effectively adapting to channel needs.

146

CHAPTER 8

KEY CONTRIBUTIONS

Designed a Medium Access Control (MAC) layer for wireless nodes that can

adapt to the level of noise detected in the channel.

Implemented a working prototype of a protocol stack for adaptive jam-resistance
communications on software defined radios (SDRs) including the physical layer

and a data link layer based on the design presented in the dissertation.

Demonstrated how the BBC algorithm could be modified and controlled to

provide different jam-resistance levels.

Demonstrated that by altering the configuration options on the BBC algorithm,
specific levels of jam-resistance can be achieved that provide greater throughput

or greater jam-resistance.

Proved that by combining the BBC algorithm with the BBC-MAC implemen-
tation, an adaptive protocol can be created that proactively determines the

proper configurations to use based on channel needs.

Improved upon the initial design of the BBC-MAC implementation by altering

the frame exchange sequence.

Performed a literature review on wireless communications and technologies, the

BBC algorithm, and the MAC layer and its supporting facilities.

147

CHAPTER 9

CONCLUSION

This dissertation presents the relevant technologies and literature for wireless
communications, and presents a novel approach to providing jam-resistance at the
MAC layer. The current state of MAC layer research has not used the approach to
solving noise in the channel that has been presented in this dissertation. Noise on
the channel can be induced by many factors including environmental interference,
unintentional jamming from other nodes, or intentional jamming. Current protocols
attempt to solve the problems induced by unintentional jamming by relying on control
frames, multiple channels, or mathematical probabilities. Only one MAC protocol has
been presented that is directly concerned with adversarial wireless jamming [Awer-
buch, Richa and Scheideler 2008]. However, the protocol attempts predict the time
steps that jamming is not occurring, and has no mechanism to allow communications
to occur while jamming is taking place. The protocol presented in this dissertation
allows communications to continue in the presence of a jamming attack. Corruption
of transmissions due to jamming is overcome by leveraging a recent coding algorithm
for error-correction. Furthermore, the protocol dynamically adjusts the coding prop-
erties of the algorithm to change the level of jam-resistance with respect to the level
of noise detected in the channel. By leveraging the BBC message encoding, this re-
search provides a MAC layer which is resistant to jamming unlike any other MAC

layer protocol currently in existence.

148

Future work with this protocol stack should be directed at using a new modula-
tion scheme for the physical transmission of the encoded data. While the modulation
scheme used in the prototype served the purposes of demonstrating the technical fea-
sibility of the protocol, it also takes a significant amount of time to transmit. By
combining this research with a mature modulation scheme, the latency of the pro-
tocol would be significantly improved. The ultimate test of latency is how well does
the protocol support voice communications. Future work should be directed at im-
proving the latency not only through testing different modulation schemes, but also
by optimizing the BBC decoder. If the decoder could be optimized to not only have
a tighter upper bound, but also to spend less time looking at invalid messages, the
latency of the communications could be significantly reduced.

This research effort created a bi-layer protocol stack for wireless mobile nodes.
A physical layer was implemented based on previous work that handles the coding
and modulation of data for transmission, and the necessary components to interact
with physical hardware. A MAC layer was then created that would control all ac-
tivities at the physical layer. The layer proactively adjusts the coding configuration
used at the physical layer to provide an adaptive jam-resistant protocol stack. By
adapting to channel needs, BBC-MAC is able to provide only the necessary amount of
jam-resistance in order to provide better throughput when possible, and greater jam-
resistance when necessary. Uncommon to MAC layers in literature, this dissertation

presents a prototype that has been implemented and validated on physical hardware

149

instead of through a computer simulation. The results of the various phases of exper-
imentation demonstrate the ability of the layer to react to channel conditions. Based
on the experiments in this dissertation it was shown that the protocol is capable of
adapting to the level of jamming. The dissertation contributed to the field of wireless

communications by creating an adaptive single-hop MAC layer for noisy channels.

150

BIBLIOGRAPHY

Abramson, N. [1970], THE ALOHA SYSTEM-Another alternative for computer
communications, in ‘Proceeding of the Fall Joint Computer Conference’, Vol. 37,

pp- 281-285.

Agrawal, D. and Zeng, Q. [2006], Introduction to Wireless and Mobile Systems, Nel-

son, chapter 3,6,7, pp. 57-78, 125-168.

Awerbuch, B.; Richa, A. and Scheideler, C. [2008], A Jamming-Resistant MAC Pro-
tocol for Single-Hop Wireless Networks, in ‘PODC '08: Proceedings of the twenty-
seventh ACM symposium on Principles of distributed computing’, ACM, New York,

NY, USA, pp. 45-54.

Bahn, W. [March 2009], ‘BBC Real-time Engine’.

URL: http://www.williambahn.com /bbc/software /real_time_engine /index.htm

Baird, L. C., Bahn, W. L., Collins, M. D., Carlisle, M. C. and Butler, S. C. [2007],
Keyless Jam Resistance, in ‘Proc. IEEE SMC Information Assurance and Security

Workshop IAW ’07’, pp. 143-150.

Baldwin, R. O., Nathaniel J. Davis, 1. and Midkiff, S. F. [1999], ‘A Real-time Medium
Access Control Protocol for Ad Hoc Wireless Local Area Networks’, SIGMOBILE

Mob. Comput. Commun. Rev. 3(2), 20-27.

151

Bayraktaroglu, E., King, C., Liu, X., Noubir, G., Rajaraman, R. and Thapa, B.
[2008], On the Performance of IEEE 802.11 under Jamming, in ‘Proc. INFOCOM

2008. The 27th Conference on Computer Communications. IEEE’, pp. 1265-1273.

Bharghavan, V., Demers, A., Shenker, S. and Zhang, L. [1994], MACAW: A Media
Access Protocol for Wireless LAN’s; in ‘SIGCOMM ’94: Proceedings of the con-

ference on Communications architectures, protocols and applications’, ACM, New

York, NY, USA, pp. 212-225.

Chiang, J. T. and Hu, Y.-C. [2007], Cross-Layer Jamming Detection and Mitigation
in Wireless Broadcast Networks, in ‘MobiCom '07: Proceedings of the 13th annual

ACM international conference on Mobile computing and networking’, ACM, New

York, NY, USA, pp. 346-349.

Chirdchoo, N.; Soh, W.-S. and Chua, K. C. [2008], MACA-MN: A MACA-Based
MAC Protocol for Underwater Acoustic Networks with Packet Train for Multiple
Neighbors, in ‘Proc. IEEE Vehicular Technology Conference VTC Spring 2008’

pp- 46-50.

Coupechoux, M., Baynat, B., Bonnet, C. and Kumar, V. [2005], ‘CROMA — An
Enhanced Slotted MAC Protocol for MANETS’, Mob. Netw. Appl. 10(1-2), 183—

197.

Ephremides, A., Wieselthier, J. and Baker, D. [1987], ‘A Design Concept for Reliable

Mobile Radio Networks with Frequency Hopping Signaling’, Proceedings of the

152

IEEE 75(1), 56-73.

Fang, Z., Bensaou, B. and Yuan, J. [2004], Collision-Free MAC Scheduling Algo-
rithms For Wireless Ad Hoc Networks, in ‘Proc. IEEE Global Telecommunications

Conference GLOBECOM ’04’, Vol. 5, pp. 2770-2774.

Forouzan, B. [2007], Data Communications and Networking, fourth, international
edition edn, McGraw-Hill, 1221 Avenue, New York, NY, 10020, chapter 6, 11-14,

pp. 161-190, 307-444.

Garcia-Luna-Aceves, J. J. and Fullmer, C. L. [1999], ‘Floor acquisition multiple access

(FAMA) in single-channel wireless networks’, Mob. Netw. Appl. 4(3), 157-174.

Garcia-Luna-Aceves, J. J. and Raju, J. [1997], Distributed Assignment of Codes for

Multihop Packet-Radio Networks, in ‘Proc. MILCOM 97, Vol. 1, pp. 450-454.

Gerla, M. and Tzu-Chieh Tsai, J. [1995], ‘Multicluster, Mobile, Multimedia Radio
Network’, Wireless Networks 1(3), 255-265.

URL: http://dz.doi.org/10.1007/BF01200845

Haas, Z. and Deng, J. [2002], ‘Dual Busy Tone Multiple Access (DBTMA)-A Multiple
Access Control Scheme for Ad Hoc Networks’, Communications, IEEE Transac-

tions on 50(6), 975-985.

Hui, J. [1984], ‘Throughput Analysis for Code Division Multiple Accessing of
the Spread Spectrum Channel’, Vehicular Technology, IEEE Transactions on

33(3), 98-102.

153

IEEE [2007], ‘IEEE Standard For Information Technology-Telecommunications And
Information Exchange Between Systems-Local And Metropolitan Area Networks-
Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC)
And Physical Layer (PHY) Specifications’, IEEE Std 802.11-2007 (Revision of

IEEFE Std 802.11-1999) pp. C1-1184.

Jain, N., Das, S. R. and Nasipuri, A. [2001], A Multichannel CSMA MAC Pro-
tocol with Receiver-Based Channel Selection for Multihop Wireless Networks, in
‘Proc. Tenth International Conference on Computer Communications and Net-

works’, pp. 432-439.

Joa-Ng, M. and Lu, L-T. [1999], Spread Spectrum Medium Access Protocol with
Collision Avoidance in Mobile Ad-hoc Wireless Network, in ‘Proc. IEEE Eighteenth
Annual Joint Conference of the IEEE Computer and Communications Societies

INFOCOM 99’ Vol. 2, pp. 776-783.

Jubin, J. and Tornow, J. [1987], ‘The DARPA Packet Radio Network Protocols’,

Proceedings of the IEEE 75(1), 21-32.

Kanzaki, A., Hara, T. and Nishio, S. [2007], An Efficient TDMA Slot Assignment
Protocol in Mobile Ad Hoc Networks, in ‘SAC ’07: Proceedings of the 2007 ACM

symposium on Applied computing’, ACM, New York, NY, USA, pp. 891-895.

Karn, P. [1990], MACA - A New Channel Access Method for Packet Radio, in ‘Com-

puter Networking Conference’, Vol. 9, pp. 134-140.

154

Kloul, L. and Valois, F. [2005], Investigating Unfairness Scenarios in MANET using
802.11b, in ‘PE-WASUN ’05: Proceedings of the 2nd ACM international workshop

on Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks’,

ACM, New York, NY, USA, pp. 1-8.

Kumar, S., Raghavan, V. S. and Deng, J. [2006], ‘Medium Access Control protocols
for ad hoc wireless networks: A survey’, Ad Hoc Networks 4(3), 326 — 358.
URL: http: //www.sciencedirect.com/science/article/B7576-4DPGSVH-

1/2/58¢0f2f528f8d27ecd834b2e92c¢21515

Lau, T. H. and Chan, K. S. [2006], aMAC: Advanced MAC Scheme for Mobile Ad-

hoc Networks, in ‘Proc. Asia-Pacific Conference on Communications APCC ’06’,

pp- 1-5.

Law, Y. W., van Hoesel, L., Doumen, J., Hartel, P. and Havinga, P. [2005], Energy-
Efficient Link-Layer Jamming Attacks against Wireless Sensor Network MAC Pro-
tocols, in ‘SASN ’05: Proceedings of the 3rd ACM workshop on Security of ad hoc

and sensor networks’, ACM, New York, NY, USA, pp. 76-88.

Lee, S. W. and Cho, D. H. [1995], Distributed Reservation CDMA for Wireless LAN,
in ‘Proc. IEEE Global Telecommunications Conference GLOBECOM ’95’, Vol. 1,

pp. 360-364.

Li, M., Koutsopoulos, I. and Poovendran, R. [2007], Optimal Jamming Attacks

and Network Defense Policies in Wireless Sensor Networks, in ‘Proc. INFOCOM

155

2007. 26th TEEE International Conference on Computer Communications. IEEE’,

pp- 1307-1315.

Li, Z., Gupta, A. K. and Nandi, S. [n.d.], ‘FMAC/CSR: A Fair MAC Protocol for
Wireless Ad-hoc Networks’.

URL: http://www.cs.jhu.edu/ zfli/fmac-csr.pdf

Li, Z., Nandi, S. and Gupta, A. K. [2006], ‘Modeling the Short-term Unfairness of

[EEE 802.11 in Presence of Hidden Terminals’, Perform. Eval. 63(4), 441-462.

Liu, X., Noubir, G., Sundaram, R. and Tan, S. [2007], SPREAD: Foiling Smart Jam-
mers Using Multi-Layer Agility, in ‘Proc. INFOCOM 2007. 26th IEEE International

Conference on Computer Communications. IEEE’, pp. 2536-2540.

Mugattash, A. and Krunz, M. [2003], CDMA-Based MAC Protocol for Wireless Ad
Hoc Networks, in ‘MobiHoc ’03: Proceedings of the 4th ACM international sym-
posium on Mobile ad hoc networking & computing’, ACM, New York, NY, USA,

pp- 153-164.

Nasipuri, A. and Das, S. R. [2000], Multichannel CSMA with Signal Power-Based
Channel Selection for Multihop Wireless Networks, in ‘Proc. 52nd Vehicular Tech-

nology Conference IEEE VTS-Fall VTC 2000, Vol. 1, pp. 211-218.

Nasipuri, A., Zhuang, J. and Das, S. R. [1999], A Multichannel CSMA MAC Protocol
for Multihop Wireless Networks, in ‘Proc. WCNC Wireless Communications and

Networking Conference 1999 IEEE’, pp. 1402-1406.

156

Navda, V., Bohra, A., Ganguly, S. and Rubenstein, D. [2007], Using Channel Hopping
to Increase 802.11 Resilience to Jamming Attacks, in ‘Proc. INFOCOM 2007. 26th

IEEE International Conference on Computer Communications. IEEE’, pp. 2526—

2530.

Pursley, M. [1987], ‘The Role of Spread Spectrum in Packet Radio Networks’, Pro-

ceedings of the IEEE 75(1), 116-134.

Razafindralambo, T. and Valois, F. [2006], Performance Evaluation of Backoff Algo-
rithms in 802.11 Ad-Hoc Networks, in ‘PE-WASUN ’06: Proceedings of the 3rd
ACM international workshop on Performance evaluation of wireless ad hoc, sensor

and ubiquitous networks’, ACM, New York, NY, USA, pp. 82-89.

So, J. and Vaidya, N. [2003], ‘A Multi-Channel MAC Protocol for Ad Hoc Wireless
Networks’.

URL: citeseer.ist.psu.edu/so03multichannel. html

Song, N.-O., Kwak, B.-J., Song, J. and Miller, M. [2003], ‘Enhancement of ITEEE
802.11 Distributed Coordination Function with Exponential Increase Exponential
Decrease Backoff Algorithm’, Vehicular Technology Conference, 2003. VTC 2003-

Spring. The 57th IEEE Semiannual 4, 27752778 vol.4.

Sousa, E. and Silvester, J. [1988], ‘Spreading Code Protocols for Distributed
Spread-Spectrum Packet Radio Networks’, Communications, IEEE Transactions

on 36(3), 272-281.

157

Talucci, F. and Gerla, M. [1997], MACA-BI (MACA by invitation): A Wireless
MAC Protocol for High Speed Ad Hoc Networking, in ‘IEEE 6th International

Conference on Universal Personal Communications Record Conference Record’,

Vol. 2, pp. 913-917.

Tang, Z. and Garcia-Luna-Aceves, J. J. [1998], Hop Reservation Multiple Access
(HRMA) for Multichannel Packet Radio Networks, in ‘Proc. 7th International Con-

ference on Computer Communications and Networks’, pp. 388-395.

Tobagi, F. and Kleinrock, L. [1976], ‘Packet Switching in Radio Channels: Part
[ITI-Polling and (Dynamic) Split-Channel Reservation Multiple Access’, Communi-

cations, IEEE Transactions on 24(8), 832-845.

Tseng, Y.-C., Wu, S.-L., Lin, C.-Y. and Sheu, J.-P. [2001], A Multi-Channel MAC
Protocol with Power Control for Multi-Hop Mobile Ad Hoc Networks, in ‘Proc.

International Conference on Distributed Computing Systems Workshop’, pp. 419-

424.

van Hoesel, L. F. W., Nieberg, T., Kip, H. J. and Havinga, P. J. M. [2004], Advantages
of a TDMA based, energy-efficient, self-organizing MAC protocol for WSNs, in
‘Proc. VT'C 2004-Spring Vehicular Technology Conference 2004 IEEE 59th’; Vol. 3,

pp- 1598-1602.

Wang, P. and Zhuang, W. [2008], A Collision-Free MAC Scheme for Multimedia Wire-

less Mesh Backbone, in ‘Proc. IEEE International Conference on Communications

158

ICC 08", pp. 4708-4712.

Wang, X. and Xiang, W. [2006], ‘An OFDM-TDMA/SA MAC Protocol with QoS
Constraints for Broadband Wireless LANs’, Wireless Networks 12(2), 159-170.

URL: http://dz.doi.org/10.1007/s11276-005-5263-1

Wong, C. Y., Cheng, R., Lataief, K. and Murch, R. [1999], ‘Multiuser OFDM with
adaptive subcarrier, bit, and power allocation’, Selected Areas in Communications,

IEEE Journal on 17(10), 1747-1758.

Wu, C. and Li, V. [1988], Receiver-Initiated Busy-Tone Multiple Access in Packet Ra-
dio Networks, in ‘SIGCOMM ’87: Proceedings of the ACM workshop on Frontiers

in computer communications technology’, ACM, New York, NY, USA, pp. 336-342.

Wu, S.-L., Lin, C.-Y., Tseng, Y.-C. and Sheu, J.-L. [2000], A New Multi-Channel
MAC Protocol with On-Demand Channel Assignment for Multi-Hop Mobile Ad
Hoc Networks, in ‘Proc. International Symposium on Parallel Architectures, Algo-

rithms and Networks I-SPAN 2000’, pp. 232-237.

Xu, W., Trappe, W., Zhang, Y. and Wood, T. [2005], The Feasibility of Launching
and Detecting Jamming Attacks in Wireless Networks, in ‘MobiHoc "05: Proceed-
ings of the 6th ACM international symposium on Mobile ad hoc networking and

computing’, ACM, New York, NY, USA, pp. 46-57.

Yang, Z. and Garcia-Luna-Aceves, J. J. [1999], Hop-Reservation Multiple Access

(HRMA) for Ad-Hoc Networks, in ‘Proc. IEEE Eighteenth Annual Joint Conference

159

of the IEEE Computer and Communications Societies INFOCOM 99, Vol. 1,

pp- 194-201.

You, T., Yeh, C.-H. and Hassanein, H. [2003], CSMA /IC: A New Class of Collision-
Free MAC Protocols for Ad Hoc Wireless Networks, in ‘Proc. Eighth IEEE Interna-

tional Symposium on Computers and Communication (ISCC 2003)’, pp. 843-848.

Zhai, H., Wang, J. and Fang, Y. [2006], ‘DUCHA: A New Dual-Channel MAC Proto-
col for Multihop Ad Hoc Networks’, Wireless Communications, IEEE Transactions

on 5(11), 3224-3233.

Zhai, H., Wang, J., Fang, Y. and Wu, D. [2004], A Dual-Channel MAC Protocol for
Mobile Ad Hoc Networks, in ‘Proc. IEEE Global Telecommunications Conference

Workshops GlobeCom Workshops 2004’, pp. 27-32.

160

APPENDICES

161

11

13

15

17

19

21

23

25

27

29

31

33

APPENDIX A

SOURCE CODE LISTING

A.1 BBC-MAC Data Link Layer Code

A.1.1 Interface Class (interface.py)

If you can find someone who can debug two million lines of code
eight connection machines for what I bid for this job, I’d love
s
import sys
import os
from stat import =*
import threading
from subprocess import x
import Queue
import Receiver, Transmitter
import time, random
import ethernet_frame
import bbc_frame
from optparse import OptionParser
from gnuradio import gr, gru
from gnuradio import usrp
from gnuradio.eng_-option import eng_option
from gnuradio import eng_notation
from gnuradio.eng_notation import num_to_str, str_to_num
from utilities import =
import bbc_config
class interface (threading.Thread):
def __init_-_(self, usb, usrp-side, path, address, verbose,

threading . Thread. __init__(self)

random . seed ()

self .name = "BBC-MAC Interface”

self .mode = 1

self.dynamic = dynamic
self.experiment_-mode = experiment_mode
self .running = True

self.config_change = False

162

and

to

chat ,

interface

see

him try

dynamic,

experiment_mode) :

35

37

39

41

43

45

47

49

51

53

55

57

61

63

65

67

69

71

73

75

77

def

def

self.handlerQueue = Queue. Queue ()

self . tx_rx_pid = — 1
self.decoder_pid = — 1
self.rssi =0

self.address = address
self .usb = usb
self . usrp_side = usrp_.side

self.usrp_-path = path

self.verbose = verbose
self.chat_mode = chat
self . handlers = []
self.interface_handler = None
self . block_transmit = time.time ()
self.jammer_type = 0
self.jammer_level = 0
self . rcv_start = 0

self.default_config = bbc_config.bbc_config(path)

if self.dynamic:

self . default_config.SetResistance (4092, 200)
self .nav = 0.0
self . transmitter = Transmitter. Transmitter(self.address,
self . receiver = Receiver.Receiver(self.address, self)

ShutDown (self):

self .mode = — 1
self .running = False
try:

os. kill (self.tx_rx_pid,
except:

pass

try:
os. kill (self.decoder_pid ,
except:

pass

self.receiver .ShutDown ()

for i in range(len(self.handlers)):

try:

self.handlers[i].Shutdown ()

except:

pass

run(self):

self .receiver.start ()

9)

9)

163

self)

79

81

83

85

87

89

91

93

95

97

99

101

105

107

109

111

113

115

117

119

121

self . transmitter.start ()

while self.running:
#This ts our simple way of not doing anything wuntil the nav
if self.nav > 0:
if self.verbose:
print " Deferring for” ,self .nav,”seconds.”
time.sleep (self.nav)

self .nav = 0.0

self.receive ()

if self.interface_handler == None:
try:
self . interface_handler = self.handlerQueue.get (True,

if self.verbose:

print "%s %s: %s” % (time.strftime ("%H:%M:%S” , time.gmtime()),

self.interface_handler .name+” now owns the

if time.time() > self.block_transmit or self.experiment_-mode ==

expires

1)

interface”)

frame = self.interface_handler.send_queue.get(True,

self . transmit (frame, self.interface_handler)
except Queue.Empty:
pass
except Queue.Empty:
pass

else:

self .name,

False:

if time.time() > self.block_transmit or self.experiment_.mode == False:

frame = self.interface_handler.send_queue.get(True, 1)

self . transmit (frame, self.interface_handler)
except Queue.Empty:

pass
self .mode = 1

def transmit(self, frame, handler, tx_time=0):
#dump payload to file
frame.timestamp = time.time ()
f = open(self.usrp_path + 7 /t”7, "w”)
f.write(frame.serialize ())

f.close ()

try:
os. kill(self.decoder_pid, 9)

164

123

125

127

129

131

133

135

137

139

141

143

145

147

149

151

153

155

159

161

except:

pass

try:
os. kill(self.tx_rx_pid, 9)
except:

pass

ret_code = call ([self.usrp_path + ”/usrp”, handler.config.tx ()], stdout=PIPE, stderr=PIPE
)
if tx_-time == 0:

tx-time = EstimateTransmitTime (len (frame.serialize ()), handler.config)

try:
os. kill(ret_-code.pid, 9)
except:

pass

if frame.type == 4:
tx_timex=1.1
elif frame.type == 2: # or frame.type == 4:

tx_timex=1.5

#tx_time = 12.0
#transmit
if self.verbose:
print "%s %s: %s” % (time.strftime ("%H:%M:%S” , time.gmtime()), self.name, ”Radio

transmitter started”)

ret_code = call ([self.usrp_path 4+ ”/bbc_tx.py”, "-U”, self.usb, "-T”, self.usrp.side, 7"—f”
”1250M” , "—i”, ”256”, ”"—S8” self.usrp_-path + ”/r”, "—L”, str(tx-time), 7"—=J”, str(
self .jammer_type), "——jammer_level”, str(self.jammer_level)], stdout=PIPE, stderr=
PIPE)
try:

os. kill (ret_code.pid, 9)
except:
pass
if self.verbose:
print "%s %s: %s” % (time.strftime ("%H:%M:%S” , time.gmtime()), self.name, ”Transmitted
a frame”)

print frame

#inform the handler that we sent the frame

handler. Callback (frame, tx_-time)

165

163

165

167

169

171

173

175

177

179

181

185

187

189

191

193

195

197

199

return
def SetJammerType(self, type):

self.jammer_type = type

def SetJammerLevel(self , level):

self.jammer_level = level

def receive(self):

try:
os.remove(self.usrp_path 4+ 7/t”)

except OSError:
pass

while self.running and self.mode == 1 and self.CheckInterfaceQueue () == False:
try:

os.remove(self.usrp_path + 7 /r”)

except OSError:

pass
self . tx_rx_pid = Popen([self.usrp_path + ”/usrp_rx_cfile.py”, "-U”, self.usb, "-R”,
self.usrp_side, ”—f”, 71250M”, 7—d”, 7128”, 7-N”, 716000000”, self.usrp_path+4”/r”

], stdout=PIPE, stderr=PIPE) . pid
self . rcv_start = time.time ()
if self.tx_rx_pid != 0 and self.tx_rx_pid != None:
if self.verbose:
print "%s %s: %s pid=%i” % (time.strftime ("%H:%M:%S” , time.gmtime()), self.
name, ”"Radio receiver started”, self.tx_rx_pid)
else:
if self.verbose:
print "%s %s: %s” % (time.strftime ("%H:%M:%S” , time.gmtime()), self.name, ”

Unable to start radio receiver”)

while self.CheckReceiveExit () :

data = None

if self.interface_handler != None:
data = self.Decode(self.interface_handler.config)
#0
if self.interface_handler != None and data == None and self.interface_handler.

stage==1 and self.CheckReceiveExit () :

#print "%s %s: %s” % (time.strftime("%BH:%M:%S”, time.gmtime()), self.

name, ”Decoder timeout on handler’s expansion, testing default”)

data = self.Decode(self.default_config, 5.5)

if data == —1: #Don’t necessarily want to trash the data because this

timed out

166

201

203

205

207

209

211

213

215

217

219

221

223

225

227

229

231

233

237

data = None

#00
else:
data = self.Decode(self.default_config)
if data == —1:
print "%s %s: %s” % (time.strftime ("%H:%M:%S” ,
Decoder preempted”)
break
elif data != None:
try:
s.remove(self.usrp_path + 7 /t”)
except:
pass
self.rssi = GetRSSI(self.usrp_path)
#pass the data off to a receive handler
frame = bbc_frame.bbc_frame (data)
if self.verbose:
print "%s %s: %s” % (time.strftime ("%H:%M:%S” ,
”Received a frame”)
print frame
self . receiver . Enqueue(frame)
break
Kill the Radio Receive
try:
os. kill(self.tx_rx_pid, 2)
if self.verbose:
print "%s %s: %s” % (time.strftime ("%H:%M:%S” ,
Radio receiver stopped”)
except:
if self.verbose:
print "%s %s: %s” % (time.strftime ("%H:%M:%S” ,
Radio receiver stopped”)
pass

def Decode(self, config, timeout=30.0):

if self.config_change:

self.config_change = False

#print "%s

%s: %s” % (time.strftime("%H:%M:%S”, time.gmtime()),

")

self.decoder_pid = Popen([self.usrp_path + ”/usrp”,
PIPE) . pid

time_now = time.time ()

167

config.rx ()],

time.gmtime ()),

time.gmtime ()),

time.gmtime ()) ,

self.name,

time.gmtime()) ,

stdout=PIPE,

self .name,

self .name,

self .name,

»

self .name,

»

»

”Decoder Start

stderr=

241

243

245

247

249

251

253

255

257

259

261

265

267

269

271

273

275

277

279

def

def

def

success = False

while time.time() — time.now < timeout and self.CheckDecodeExit () :

try:
pid, x = os.waitpid(self.decoder_pid , os .WNOHANG)
if pid!=0:
success = True
break
except:
success = True
break
time.sleep (0.1)
#print "%s %s: %s” % (time.strftime("%H:%M:%S”, time.gmtime()), self.name, ”Decoder Ezit %
is” % (time.time ()—time_-now))
if success == False:
try:
os. kill (self.decoder_pid, 9)
except:
pass

#return —1

Check for file exzistence, open stats file anyways, no need for two steps
f = open(self.usrp_path + ”/t”, ”"r”)
data = f.read ()
f.close ()
return data
except IOError:
if success == False:
return -1
else:

return None

CheckReceiveExit (self):
return self.CheckInterfaceQueue () == False and self.mode == 1 and CheckPID(self.tx_rx_pid)

and self.running and time.time() — self.rcv_start < 33

InformConfigChange(self):

self.config_change = True
CheckDecodeExit (self):
return self.CheckInterfaceQueue() == False and self.mode == 1 and self.running and self.

config_change == False

CheckInterfaceQueue (self):

168

281

285

287

289

291

293

295

297

299

301

303

305

307

309

311

313

315

317

319

321

323

def

def

def

def

def

def

if self.interface_handler == None:
return self.handlerQueue.empty() == False
else:

return self.interface_handler.send_queue.empty() == False

RelinquishInterfaceControl (self , handler, time_left):
self.block_transmit = time_left

self.interface_handler = None

UpdateNAV (self , timer):

if self.interface_handler == None: #Make sure someone doesn’t already
before setting the NAV
self .nav = timer

self .mode = 0

Enqueue(self, handler):
if self.verbose:
print "%s %s: %s” % (time.strftime ("%H:%M:%S” , time.gmtime()), sel
+” added to handler queue”)
self.handlerQueue.put(handler)

#self.mode = 0

LocateHandler (self ,streamid):
for i in range(len(self.handlers)):
if self.handlers[i].streamid == streamid:
return self.handlers[i]

return None

LocateHandlerBySource (self ,sstreamid):
for i in range(len(self.handlers)):
if self.handlers[i].destination_streamid == sstreamid:
return self.handlers[i]

return None

GetNewStreamID (self):

return random.randint (1,65535)

def main():

parser = OptionParser (option_class=eng_option)

parser.add_option (”"—X", "——txrx_subdev_spec”, type=

»

string”, default="A",

help="select USRP TxRx side A or B”)

parser.add_option (”"-U”, "——usb_num”, type="string”, default=0,

help="select USRP USB location 0 or 1 (default=0)")

169

own the interface

f .name, handler.

dest="side” ,

name

325

327

329

331

333

335

337

339

341

343

345

347

349

351

353

355

357

parser.add_-option (”—A”, "——node_address”, type="int”, default=None, help="Address for this
node”)
parser.add-option ("—P”, "——usrp_path”, type="string”, default=None, help="path to usrp folder
with scripts”)
parser .add_option (”’—C” , "——chat_mode”, action="store_true”)
parser.add_option(”—J”, "——jammer_type” , type="int”, default=0)
parser.add-option ("——jammer_level”, type="eng_float”, default=16e3,
help="set waveform amplitude to AMPLITUDE [default=%default]”, metavar="
AMPL")
parser.add-option ("—v”, "——verbose”, action="store_true”, dest="verbose”,
help="print everything to stdout”)
parser .add-option (’——dynamic”, action="store_true”, default=False, help="Enable dynamic jam—

resistance”)

parser.add_option (”"——experiment” ,

handlers running for as long as the channel

(options, args) = parser.)

parse_args

f = open(options.usrp_path4”/ftp_frame_1514.fr”)

data = f.read ()

f.close ()

i = interface(options.usb_.num, options.side, opt
verbose, options.chat_mode, options.dynamic,

i.start ()

while True:

cmd

raw_input ()
cmds = cmd. split (”

2y

if cmd == 7 exit”:

i.ShutDown ()
raise SystemExit

elif cmds[0]

?send” :

i.transmitter .Enqueue(data, 2222)

elif cmds[0]

== 7 kick”:
i.interface_-handler .Shutdown ()

elif cmds[0] == "jam”:
i.SetJammerType(int (cmds[1]))
i.SetJammerLevel (int (cmds[2]))
if ? __main__":

--name._._

main ()

A.1.2 Receiver Class (Receiver.py)

import threading

170

action="store_true” ,

default=False, help="Used to leave
was allocated”)
ions.usrp-path, options.node_address, options.

options.experiment)

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

import Queue
import bbc_frame
import RxHandler
import sys

import time

class Receiver(threading.Thread):
def __init__(self, address, interface):
threading . Thread. __init__(self)
self.handlers = [] # This should also include TzHandlers in order to properly give

their CTS/ACK Frames

self .queue = Queue. Queue ()
self.running = 1
self.address = address
self.interface = interface
self .name = ” Receiver”

def run(self):

while self.running:

them

self .

try:
frame = self.queue.get(True,1)
if frame.dstream_-id == 0:
#Check to see if this a duplicate and if the source streamid matches the
destination of a handler
handler = self.interface.LocateHandlerBySource (frame.sstream_id)
if handler != None:
handler . Enqueue (frame)
else:
temp = RxHandler.RxHandler (frame, self.interface.GetNewStreamID () ,
Callback, self.address, self.interface)
self.interface.handlers.append (temp)
temp.start ()
else:
handler = self.interface.LocateHandler (frame.dstream_id)
if handler != None:

handler . Enqueue (frame)
else:
temp = RxHandler. RxHandler (frame, frame.dstream_id, self.Callback,
address, self.interface)
self.interface.handlers.append(temp)
temp.start ()
except Queue.Empty:

pass

def Enqueue(self, frame):

171

self .

44

46

48

50

52

54

56

58

60

62

10

12

14

16

18

20

self .queue.put_nowait (frame)

def ShutDown(self):

self .running = 0

def Callback(self, obj, data=None):
print obj.stats
if data!=None:
print "%s %s: %s” % (time.strftime ("%dH:%M:%S” , time.gmtime()), self.name, obj

delivered data from stream ”+str (obj.streamid))

if self.interface.interface_handler == obj:

print "%s %s: %s” % (time.strftime ("%H:%M:%S” , time.gmtime()), self.name,
”+obj.name+” as interface handler”)

self.interface.interface_handler = None
self.interface.InformConfigChange ()

self .interface.handlers.remove(obj)

del obj

except:
print ”Unexpected error:”, sys.exc_info () [0]

pass

A.1.3 Receiver Handler Class (RxHandler.py)

import Queue

import bbc_frame

import ethernet_frame

import threading

import bbc_config

from

from

utilities import =

stats import x

import time

clas

s RxHandler(threading.Thread) :

def __init__(self, frame, streamid, callback, address, interface):
threading.Thread. __init__(self)
self .streamid = streamid

self.callback = callback

self .recv_queue = Queue. Queue ()
self .send_queue = Queue.Queue ()
self .running = True
self.address = address
self.interface = interface

self .stats = RxStats ()

172

.name+"

”removed

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

self.stage = 0

self .name = ”RxHandler ”"+4str (self.streamid)

self.rssi = None

self.data = None

self.config = bbc_config.bbc_config(self.interface.usrp_path)

self.config .SOURCE.ID = self.streamid

if self.interface.dynamic:
self.config.SetResistance (4092, 175)

self.destination_address = frame.src_addr

self.destination_streamid = frame.sstream._id

self.flag = 0

self.last_frame = None

self .t1 = 0

self.timeout = 0

self . Enqueue(frame)

def Enqueue(self, frame):
if self.last_frame == None:
self.last_frame = frame
elif frame.timestamp <= self.last_frame.timestamp:
if self.interface.verbose:
print "%s %s: %s” % (time.strftime ("%H:%M:%S” , time.gmtime()), self.name,
discarded (old or duplicate)”)
return
elif frame.corrupt:
if self.interface.verbose:
print "%s %s: %s” % (time.strftime ("%H:%M:%S” , time.gmtime()), self.name,
discarded (corrupt)”)
return
self.last_frame = frame

self . recv_queue.put_nowait (frame)

def Shutdown(self):
self .running = False

#self.callback (self, self.data)

def run(self):
while self.running:
try:
frame = self.recv_queue.get(True,1)
if frame.type == 1:

#Received a RTS, Check to see if this was for us.

if frame.dest_addr == self.address:
self.destination_address = frame.src_addr
self.destination_streamid = frame.sstream-.id

173

” Frame

”Frame

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

data_len = int (frame.payload)

self .rssi = self.interface.rssi
if frame.rssi > self.rssi:

self . rssi = frame.rssi

self.timeout = EstimateChannelTime(data_len ,self.config,6 self.config.

GetExpansionByRSSI(self.rssi))

if self.interface.dynamic:
self.config.SetResistance (4092, 175)

new_frame = bbc_frame.bbc_frame ((self.destination_address, self.address,

2, self.streamid, self.destination_streamid , self.rssi, self.timeout))

#return a CTS with our current RSSI

diff = frame.timestamp + EstimateTransmitTime (len (frame.serialize()), self

.config) + 3 — time.time()

#while time.time () < frame.timestamp+EstimateTransmitTime (len (frame.
serialize ()), self.config)+2:#14.0: #Hack so I’'m not transmitting
while they 're still transmitting this frame

continue

if diff > 0.0:
time.sleep (diff)

self.config .SOURCEID = self.streamid

self.send_queue.put_nowait (new_frame)

if self.flag = 0:
self.interface .Enqueue(self)
self.flag = 1

self.stats.rts_count+=1

elif frame.type == 2:

#Received a CTS, Exztract the time wvalue and update the NAV timer
t = float (frame.payload)
self.interface.UpdateNAV(t)

self .running = False

elif frame.type == 3:

#Received Data
if frame.dest_addr == self.address:

self.stage = 0

self.destination_address = frame.src_addr

self.destination_streamid = frame.sstream_id

new_frame = bbc_frame.bbc_frame ((self.destination_address , self.address,
4, self.streamid, self.destination_streamid ,self.rssi, 7"ACK”))

#return a ACK

diff = frame.timestamp + EstimateTransmitTime (len (frame.serialize()), self

.config) + 3 — time.time ()

174

102

104

106

110

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

142

#while time.time () < frame.timestamp+EstimateTransmitTime (len (frame.

serialize ()), self.config)+3:#14.0: #Hack so

while they ’'re still transmitting
continue
if diff > 0.0:

time.sleep (diff)

this frame

self.config .SOURCE.ID = self.streamid + 1

if self.interface.dynamic:
self.config.SetResistance (4092, 17
self.send_queue.put_nowait (new_frame)
if self.flag = O:
self .interface .Enqueue(self)
self.flag = 1

self.data = frame.payload

if self.stats.data_count=
self.stats.data_time = time.time ()
self.stats.data_count+=1
elif frame.type == 4:

#Received an ACK

5)

#this should have been given to a TxHandler, but one

self .running = False
except Queue.Empty:
if self.tl !=0:
if time.time() — self.tl > self.timeout:
self .running = False
pass

self.callback (self, self.data)
def Callback(self, frame, tx_time):

if frame.type == 2: #Sent out the CTS, now adjust our
if self.interface.dynamic:
self.config.SetResistance(self.rssi)
self.interface.InformConfigChange ()
#if self.tl == 0:
if self.interface.verbose:
print "%s %s: %s” % (time.strftime ("%H:%M:%S” ,
Reserved channel for 7"+4str(self.timeout)+”
self . t1 = time.time ()
self.stats.cts_count+=1
self.stage = 1
elif frame.type == 4:
self.stats.ack_count+=1
if self.interface.dynamic:

self.config.SetResistance(self.rssi)

175

config and

I’m not

doesn

start

time.gmtime()),

seconds.”)

the

transmitting

't exist ,

timer

self .name,

144

146

10

12

14

16

18

20

22

24

26

28

30

32

34

self.interface.InformConfigChange ()

#if frame.type ==

self.running = False

A.1.4 Transmitter Class (Transmitter.py)

import threading
import Queue
import bbc_frame
import TxHandler
import time

import sys

class Transmitter (threading . Thread):
def __init_-_(self, address, interface):

threading . Thread. __init__(self)

self.address = address
self .interface = interface
self.queue = Queue.Queue ()
self . running = True

self .name = ”Transmitter”

def run(self):
while self.running:
try:

payload, destination = self.queue.get(True,1)

temp = TxHandler. TxHandler(self.interface.GetNewStreamID () ,

Callback , payload, destination, self.interface)

self.interface.handlers.append (temp)
except Queue.Empty:

pass

def Enqueue(self, payload, destination):

self.queue.put_nowait ((payload, destination))

def Callback(self, obj, message=None, time_left=0.0):
print obj.stats

if message!=None:

print "%s %s: %s” % (time.strftime ("%H:%M:%S” , time.gmtime()),

reports that stream 7+str(obj.streamid)+” was a “+message)

if self.interface.interface_handler == obj:
print "%s %s: %s” % (time.strftime ("%H:%M:%S” ,

”+obj.name+” as interface handler”)

176

time.gmtime ()),

self.address ,

self .name, obj

self .name,

self.

.name+"

”removed

36

38

40

42

44

10

12

14

16

18

20

22

24

26

28

30

32

self.interface.RelinquishInterfaceControl (obj,

#self.interface.interface_-handler = None

self.interface.InformConfigChange ()

self .interface.handlers.remove(obj)
del obj
except:
»

print ”Unexpected error:”, sys.exc_info () [0]

pass

A.1.5 Transmitter Handler Class (TxHandler.py)

import
import
import
import
import

import

Queue
bbc_frame
bbc_config
ethernet_frame
thread

time

from utilities import x

from st

ats import =

class TxHandler:

def

__init__(self, streamid, address, callback,6 data,
self.address = address

self.destination_address = destination
self.destination_streamid = 0

self.streamid = streamid

self.callback = callback

self .recv_queue = Queue. Queue ()

self .send_queue = Queue. Queue ()
self.interface = interface

self .stats = TxStats(data)

self .name = ” TxHandler "+4str (self.streamid)
self.rssi = None

self.data = data

self.config = bbc_config.bbc_config(self.interface.

self.config .SOURCE.ID = self.streamid

if self.interface.dynamic:
self.config.SetResistance (4092, 175)

self .running = True

rts_frame = self.CreateRTS()

self .send_queue.put_-nowait(rts_frame) #Enqueue the

self.interface .Enqueue(self) #Enqueue our handle
self.stats.rts_count+=1

self.stage = 0

177

in the

destination ,

usrp_path)

initial frame out outbound queue

time_left)

interface):

interface

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

self . rtx_count = 0
self.thread_-id = None
self.last_frame = None
self.timeout = 0

self .t1 =0

#print 7 Created”, self.name

def Enqueue(self, frame):
if self.last_frame == None:
self.last_frame = frame
elif frame.timestamp <= self.last_frame.timestamp:
if self.interface.verbose:
print "%s %s: %s” % (time.strftime ("%H:%M:%S” ,
discarded (old or duplicate)”)
return
elif frame.corrupt:
if self.interface.verbose:
print "%s %s: %s” % (time.strftime ("%H:%M:%S” ,
discarded (corrupt)”)
return
self.last_frame = frame

self .recv_queue.put_nowait (frame)

def Shutdown(self , message=None):
try:
self.thread_id.exit ()
except:
pass

self.callback (self , message, self.tl + self.timeout)

def Callback(self, frame, tx_time):

if frame.type==1 and self.stats.rts_count==1:

self.stats.send_time = time.time()—tx_time #This is

actual transmit
if frame.type =— 3:
if self.interface.dynamic:
self.config.SetResistance (4092, 175)

self .interface.InformConfigChange ()

time.gmtime ()),

time.gmtime()),

the wvery first

self.thread_-id = thread.start_new_thread (self.thread ,(frame,tx_time))

def thread(self, frame, tx_time):
if frame.type == 1: #We are waiting for a CTS

try:

178

self .name,

self .name,

”Frame

” Frame

callback for the

76

78

80

82

84

86

88

90

92

94

96

98

102

104

108

110

rcv_frame = self.recv_queue.get(True, 30) #Fasy way to do a timer, use the queue

timeout
if rcv_frame.type == 2: #We got the CTS, send out Data
self.destination_streamid = rcv_frame.sstream_id

if rcv_frame.rssi > self.rssi:

self.rssi = rcv_frame.rssi
tmp-rssi = self.interface.rssi
self.stats.rssi = self.rssi
diff = rcv_frame.timestamp + 1.5%xEstimateTransmitTime(len(rcv_frame.serialize

()), self.config) + 3 — time.time()

#while time.time () < rcv_frame.timestamp+EstimateTransmitTime (len (rcv_frame.

serialize ()), self.config)+38:#14.0: #Hack so I’m not transmitting while

they 're still transmitting this frame

continue
if diff > 0.0:
time.sleep (diff)
if self.interface.dynamic:
self.config.SetResistance(self.rssi)
if self.interface.dynamic and self.config.GetExpansionByRSSI(tmp_rssi) > self.
config . CODEC_EXPANSION and self.rtx_count < 2: #catch it early and re—
transmit the RTS
self.config.SetResistance (4092, 175)
rts_frame = self.CreateRTS(tmp_rssi)
if self.interface.verbose:
print "%s %s: %s” % (time.strftime (?%H:%M:%S” , time.gmtime()), self.
name, ”Expansion adjustment needed, re—sending RTS”)
self.send_queue.put_nowait(rts_frame)
self.stats.rts_count+=1
self.rtx_count+4+=1
else:

self.timeout = float (rcv_-frame.payload)
if self.interface.verbose:

print "%s %s: %s” % (time.strftime (?%H:%M:%S” , time.gmtime()), self.

name, ”Reserved channel for ”"+4str(self.timeout)+” seconds.”)
if self.tl == 0:
self.tl = time.time ()

self.stats.expansion = self.config.CODEC.EXPANSION
self.config .SOURCEID = self.streamid + 1
data_frame = self.CreateDataFrame ()
self.send_queue.put_nowait(data_frame)

self.stats.data_-count+=1

179

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

142

144

146

148

150

self.rtx_count = 0

except Queue.Empty:

if self.rtx_count < 2:

self.config .SOURCE.ID = self.streamid

Tt

s_frame = self.CreateRTS()

self .send_queue.put_nowait(rts_frame)

if

self.interface.verbose:

print "%s %s: %s” % (time.strftime ("%H:%M:%S” , time.gmtime()),

”CTS timeout, re—sending RTS”)

self.stats.rts_count+=1

self.rtx_count+=1

else:

die

print "%s %s: %s” % (time.strftime ("%H:%M:%S” , time.gmtime()),

#3x 1s max retransmit time to
if self.interface.verbose:
"RTS retransmission maxed,
#signal upper layer
self.stats.rts_fail = True

self .Shutdown(” failure”)

giving up”)

elif frame.type == 3: #We are waiting for an ACK
try:
rcv_frame = self.recv_queue.get(True, 30) #Fasy way to do a timer, use
timeout
if rcv_frame.type == 4:
if self.interface.verbose:

print "%s %s: %s” % (time.

"received ack”)

self.stats.ack_time = time.time ()

self.stats.latency = self.stats.

self .Shutdown(” success”)

except Queue.Empty:

if self.rtx_count < 2 and time.time() —

if

self.config .SOURCEID =

self.interface.verbose:

print "%s %s: %s” % (time.

strftime ("YH:%M:%S” , time.gmtime()),

ack_time — self.stats.send_-time

self.tl < self.timeout:

strftime (PYH: %M:%S” , time.gmtime()),

"ACK time out, re—sending data frame”)

data_frame = self.CreateDataFrame ()

if

self.interface.dynamic:

self.streamid + 1

self.config.SetResistance(self.rssi)

self .send_queue.put_nowait (data_frame)

#self.interface.

se

1f . rtx_count4+= 1

self.stats.data_count4+=1

else:

if

#3x is mazx retransmit time to

self.interface.verbose:

180

die

Enqueue (self.CreateDataFrame (), self)

self .name,

self .name,

the queue

self .name,

self .name,

154

156

158

160

162

164

166

168

170

11

13

15

17

def

def

def

A.l1.6

print "%s %s: %s” % (time.strftime ("%H:%M:%S” , time.gmtime()), self.name,

”Exceeded channel allocation , giving up”)
#Signal upper layer
self.stats.data_fail = True

self .Shutdown (” failure”)

CreateRTS (self , rssi=None):
if rssi==None:
self.rssi = GetRSSI(self.interface.usrp_path)
else:
self.rssi = rssi
Create a config based on the RSSI we have and use it for the estimation
#self.timeout = EstimateChannelTime (self.data, self.config)
return bbc_frame.bbc_frame ((self.destination_address , self.address, 1, self.streamid,

.destination_streamid , self.rssi, str(len(self.data))))

CreateDataFrame(self):

return bbc_frame.bbc_frame ((self.destination_address , self.address, 3, self.streamid,
.destination_streamid , self.rssi, self.data))

Encode(self , frame):

return

BBC Config Class (bbc_config.py)

from cStringlO import StringlO

class bbc_config:

def

_-init__(self, path):
self .DIAGNOSTICS = False

self .PATH = path

SCHEDULER Configuration
self .SCHEDULER_TX_notRX = 0
self .SCHEDULER_REALTIME

Il
o

SOURCE Configuration
self .SOURCENAME = 7r”
self .SOURCEID = 1

CODEC Configuration

self . CODEC_.MESSAGE_BITS = 512
self . CODEC_.RANDOM.BITS = 8

181

self

self

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

def

def

self . CODEC_.CLAMP_BITS = 1
self . CODEC_FRAGMENTBITS = 1

self .CODEC_STOP_BITS = 100
self . CODEC_EXPANSION = 500
self .CODEC_PACKET LOAD = 2
self . CODEC_DECODE_LIMIT = 2

BUFFER Configuration
self .BUFFER_.PACKETS = 4.0
self .BUFFER.LAMBDA = 0.4

MODEM Configuration

self .MODEM_PACKET RATEBPS = 500000
self .MODEM_SAMPLES_PER.BIT = 4

self .MODEM_GAIN.DB = 80.0

self .MODEM_CHANNEL.LOSSDB = 8.0
self .MODEM.THRESHOLD PCT = 46.3744
self .MODEM_HYSTERESIS PCT = 5.0

self .MODEM_JITTER._BITS = 2.0

self . MODEM_CUSHION_PCT 10.0

SINK Configuration
self .SINK.NAME = 7 t¢”
self .SINK_.SAMPLE_LIMIT = 16000000

tx(self):

self .SOURCENAME = " t”

self .SINK.NAME = ”r”

self .MODEM_CHANNEL_LOSSDB = 3.0
self .SCHEDULER_-TX notRX = 1

f = open(self PATHH” /tx.ini”, "wt”)
f.write(self.format())

f.close ()

return self . PATH4” /tx.ini”

rx(self):

self .SOURCENAME = ”r”

self .SINK.NAME = ”t”

self .MODEM_CHANNEL_LOSSDB = 16.0
self .SCHEDULER_-TX_ notRX = 0

f = open(self . PATHH” /rx.ini”, "wt”)
f.write(self.format())

f.close ()

return self .PATH+” /rx.ini”

182

65

67

69

71

73

75

7

79

81

83

85

87

89

91

93

11

def format(self):

def

def

s = StringlO ()

for k,v in self.__dict__.items():
if str (k) == ”"DIAGNOSTICS” :
if v:

elif str(k) == "PATH” or str(k) == ”SINK.NAME”

s.write (?DIAGNOSTICS\n”)

s.write ("%s=\"%s\"\n” % (k,v))

else:

s.write ("%s=%s\n’ % (k,v))

return s.getvalue ()

SetResistance (self , rssi, value=None):

if value!=None:

self . CODEC_EXPANSION = value

return

or str (k) == "SOURCENAME” :

self .CODEC_EXPANSION = self.GetExpansionByRSSI(rssi)

GetExpansionByRSSI(self , rssi):

if rssi <= 350:

return 50

elif

rssi <= 700:

return 75

elif

rssi <= 1050:

return 100

elif

rssi <= 1350:

return 150

else:

return 175

A.1.7 BBC-MAC Frame Class (bbc_frame.py)

import struct
import time
from crcl6 import =
class bbc_frame:
def __init__(self, raw_frame):
self .types = (1,2,3,4) # RTS CTS DATA ACK
self .timestamp = time.time ()
if isinstance (raw_frame, str):
self .raw_frame = raw_frame
try:

183

13

15

17

19

21

23

25

27

29

31

33

35

10

self.dest_addr, self.src_addr, self.type, self.sstream_id, self.dstream_id, self.rssi,

self.crc, self.timestamp = struct.unpack(” |HHBHHHHd” , raw_frame [:21])

self.payload = raw_frame[21:]
if self.crc != crcl6(str(self.payload)):
self.corrupt = True
else:
self.corrupt = False
except:
self.corrupt = True
else:
self.dest_addr, self.src_addr, self.type, self.sstream_id, self.dstream_id, self.rssi,
self.payload = raw_frame
self.crc = crcl6(str(self.payload))
#self.raw_frame = self.serialize ()

def toString(self):
s = 7"Destination: 7+4str(self.dest_addr)+”\nSource: 7+str(self.src_addr)4”\nType: "+str(self.
type)+’\nSource StreamID: "+4str(self.sstream_id)+”\nDestination StreamID: "4str (self.
dstream_id)+” \nRSSI: 7+str(self.rssi)4+”\nCRC: 7+str(self.crc)+”\nTimestamp: "+str(self.
timestamp)#+"\nPayload:\n"+str (self.payload)

return s

def __repr__(self):

return self.toString ()

def serialize(self):
return struct.pack(” !HHBHHHHd” , self.dest_addr, self.src_addr, self.type, self.sstream_id,

self.dstream_id, self.rssi, self.crc, self.timestamp) + str(self.payload)

def size(self):

return len(self.serialize())

A.1.8 Utilities Class (utilities.py)

import os

import bbc_config
from crcl6 import =x
from math import x

crc = CRC16()

def GetRSSI(path):
while True:
try:
f = open(path4+”/rssi”, "rt”)

rssi = int(f.read())

184

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

2 # This

def

def

return

EstimateChannelTime (data_len ,

t

f.close ()
break
except:
continue
rssi
config , expansion=None):
= 3*(EstimateTransmitTime(data_len ,

config ,

estimation , ACK and RTS frames are same size

return t

EstimateTransmitTime (data_-len ,

config , expansion=None):

if expansion == None:

one =
two =
three =
res =

return

expansion = config.CODEC_EXPANSION

ceil((data-len /((config.CODEC.MESSAGEBITS/8.0) —

((config . CODEC_MESSAGE_BITS+*expansion) /8) + 1

res

CheckPID (pid) :

try:

os. kill (pid, 0)

return True

except:

return False

StatFileSize (path):

try:

return os.stat (path).st_size

except:

return 0

GetCRC(data) :

crc.update (str (data))

return crc.checksum ()

A.1.9 CRC16 Class (crcl6.py)

crcl6.py by Bryan G. Olson,

distributed wunder

PERY

2005

module is free software and may be used and

the same terms as Python itself.

CRC—16 in Python, as standard as possible. This is

185

expansion)+30) #+ 12 + 18 + 12# Worst

cast

10.0))/config . CODEC.PACKET_LOAD

((config . CODEC_.MESSAGE BITS*expansion) /8)*config . BUFFER.LAMBDA

ceil (4% (((onextwo + three)*8%4)/config . MODEM_PACKET_RATEBPS))

)

the ’reflected’ wersion , which is wusually what people
8 want. See Ross N. Williams’ /A Painless Guide to
CRC error detection algorithms /.

10 77”7

12 from array import array

14
def crcl6(string , value=0):
16 777 Single—function interface , like gzip module’s crc32
P
18 for ch in string:
value = table[ord(ch) ~ (value & 0xff)] ~ (value >> 8)

20 return value

22
class CRCl16(object):
24 777 (Class tnterface , like the Python library’s cryptographic

hash functions (which CRC’s are definitely mnot.)

26
28 def __init__(self, string=’’):
self.val = 0
30 if string:
self .update(string)
32
def update(self, string):
34 self.val = crcl6(string, self.val)
36 def checksum(self):
return chr(self.val >> 8) 4+ chr(self.val & 0xff)
38
def hexchecksum (self):
40 return *%04x’ % self.val
42 def copy(self):
clone = CRC16()
44 clone.val = self.val
return clone
46

48 # CRC—16 poly: p(xz) = zx*x16 + z*x*x15 + z*x%x2 + 1
top bit implicit, reflected
50 poly = 0xa001

table = array (’H’)

186

52

56

58

60

10

12

14

16

18

20

22

24

26

28

30

32

for byte

in range (256):
=0
bit in range(8):
if (byte ~ crc) & 1:
crc = (crc >> 1) ~ poly
else:
crc >>=1

byte >>= 1

table.append(crc)

A.1.10 Stats Module (stats.py)

from cSt

ringIO import StringIO

class TxStats:

def

def

def

—-init__(self, data):

self.raw_data = data
self.rts_count = 0
self.data_count = 0
self . rts_fail = False
self.data_fail = False
self.send_time = 0
self.ack_time = 0

self .rssi = 0
self.expansion = 0
self.latency = 0

__-repr__(self):

return self.toString ()

toString (self):
s = StringlO ()

for k,v in self.__dict__.items():

if str(k) == 7raw_data”:
continue
s.write ("%s\t’ % k)

s.write(’\n"’)

for k,v in self.__dict__.items():
if str(k) == "raw._data”:
continue

s.write ("%s\t’ % v)

s.write(’\n’)

187

34

38

40

42

44

46

48

50

52

54

56

58

60

class

return

RxStats:

def __init

self.r

s.getvalue ()

__(self):

ts_count = 0

self.data_count = 0

self.ack_count = 0

self.c

Il
o

ts_count

self.data_time = 0

def __repr

def

A.2

return

s = St
for k,

if

S .

s.writ

for k,

if

S .

s.writ

return

—_(self):

self.toString ()

toString (self):

ringlO ()

v in self.__dict__.items():

str(k) == "raw_data”:

continue

write ("%s\t’ % k)

e(’\n’)

v in self.__dict-_.items():

str (k) == ”"raw_data”:

continue

write ("%s\t’ % v)

e(’\n’)

s.getvalue ()

Radio Scripts Code

A.2.1 USRP Receiver Script (usrp_rx_cfile.py)

#!/usr/bin/env python

29

Read

samples from the USRP and write to file

outputs single

PR

from

#from

short

gnuradio

gnuradio

precision complexr float wvalues

integers).

import gr, gru,

import audio

eng_notation

formatted as

or complex

188

binary

short

values

(interleaved 16 bit

signed

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

from gnuradio import usrp

from gnuradio.eng-option import eng_option
from optparse import OptionParser

from usrpm import usrp-dbid

import time

import sys

import thread

class my_graph(gr.flow_graph):

#class my_graph(gr.top_-block):

def __init_-_(self):
gr.flow_graph. __init__(self)

#gr.top_block. __init__(self)

self .rssi = 0
usage="%prog: [options] output_filename output_filename2”
parser = OptionParser(option_class=eng_option, usage=usage)
parser.add_option(”-R”, "——rx—subdev—spec”, type="subdev”, default=(0, 0),

help="select USRP Rx side A or B (default=A)")
parser.add_option (”"-U”, "——usb_num”, type="int”, default=0,

help="select USRP USB location 0 or 1 (default=0)")
parser.add-option (”—d”, "——decim” , type="int”, default=16,

help="set fgpa decimation rate to DECIM [default=%default]”)
parser .add-option(”—f”, "——freq”, type="eng_float”, default=None,

help="set frequency to FREQ”, metavar="FREQ’)
parser.add-option (”—g”, "——gain”, type="eng-_float”, default=None,

help="set gain in dB (default is midpoint)”)
parser.add_option (”—8", "——width—8”, action="store_true”, default=False,

help="Enable 8—bit samples across USB”)
parser.add_option(”——no—hb” , action="store_true”, default=False,

help="don’t use halfband filter in usrp”)
parser.add-option("—s” ,”——output—shorts”, action="store_true”, default=False,

help="output interleaved shorts in stead of complex floats”)
parser .add-option(”-N”, "——nsamples”, type="eng-_-float”, default=None,

help="number of samples to collect [default=+inf]”)
parser.add_-option (”—C”, "——nchan”, type="int”, default=1,

help="set number of channels to use (RX on both daughterboards)”)
(options , args) = parser.parse_args ()

if len(args) < 1:
parser . print_help ()

raise SystemExit, 1

#with multiple channels, need multiple files for receiver sinks so both receivers

189

57

59

61

63

65

67

69

71

73

75

7

79

81

83

85

87

89

91

93

95

writing to the same file on the driver computer

if options.nchan > 1:

filename_A = args [0]

filename_B = args|[1]
else:

filename = args[0]
self.fn = filename

if options.freq is None:
parser.print_help ()
sys.stderr.write(’You must specify the frequency with —f FREQ\n’);

raise SystemExit, 1

if options.no_hb or (options.decim<8):
self.fpga_filename="std_4rx_0tx .rbf” #Min decimation of this firmware is 4. contains /4
Rz paths without halfbands and 0 tz paths.
if options.output_shorts:
self .u = usrp.source_s (which=options.usb_num,decim_rate=options.decim,
fpga_filename=self.fpga_filename)
else:
self .u = usrp.source_c (which=options.usb_num,decim_rate=options.decim,
fpga_filename=self.fpga_filename)
else:
#standard fpga firmware 7std_2rxzhb_2tx.rbf” contains 2 Rz paths with halfband filters
and 2 tz paths (the default) min decimation 8
if options.output_shorts:
self .u = usrp.source_s (which=options.usb.num,decim_rate=options.decim)
else:

self .u = usrp.source_c (which=options.usb_num,decim_rate=options.decim)

#use more than 1 channel if specified
#this will allow a USRP to TX or RX on both daughterboards simultaneously
if options.nchan > 1:
nchan = options.nchan
if self.u.nddc() < nchan:
sys.stderr.write(’This code requires an FPGA build with %d DDCs. This FPGA has
only %d.\n’ % (nchan, self.u.nddc()))

raise SystemExit
if not self.u.set_nchannels(nchan):
sys.stderr.write(’set_nchannels(%d) failed\n’ % (nchan,))

raise SystemExit

#self.subdev = self.u.db[0] + self.u.db[1]

190

97

99

101

103

107

109

111

113

115

117

119

121

123

125

127

129

131

135

137

self .subdev = (self.u.db[0][0], self.u.db[1][0])

print ”Using RX daughterboard %s” % (self.subdev|[0].side_and_name() ,)

print " Using RX daughterboard %s” % (self.subdev[1].side_and_name() ,)

if options.gain is None:
g-A = self.subdev [0]. gain_range ()

options.gain = float (g-A[0]+g-A[1])/2

#use the same gain for both sides

self .subdev [0].set_gain(options.gain)

self .subdev [1l].set_gain(options.gain)

r = usrp.tune(self.u, i, self.subdev/[i], target_freq)

r.A = self.u.tune(0,self.subdev[0],options.freq)

if not r_A:

sys.stderr.write(’Failed to set frequency for RX daughterboard %s\n’ % (self.

subdev [0]. side_and_name ()))

raise SystemExit, 1

r.B = self.u.tune(1l,self.subdev[1l],options.freq)
if not r_B:
sys.stderr.write (’Failed to set frequency for RX daughterboard %s\n’ % (self.
subdev [1].side_and_name ()))

raise SystemExit, 1

else:
using only 1 channel in this case
determine the daughterboard subdevice we’re wusing per argument list
self .subdev = usrp.selected_subdev (self.u, options.rx_subdev_spec)

print " Using RX daughterboard %s” % (self.subdev.side_and_name() ,)

#set the gain

if options.gain is None:
if mo gain was specified, use the mid—point in dB
g = self.subdev.gain_range ()

options.gain = float (g[0]+g[1]) /2
self .subdev.set_gain(options.gain)
r = self.u.tune(0, self.subdev, options.freq)
if not r:
sys.stderr.write(’Failed to set frequency\n’)

raise SystemExit, 1

if options.width_8:

191

141

143

145

147

149

151

153

157

159

161

163

165

167

169

171

173

175

177

179

181

183

if options.

sample_width = 8

sample_shift = 8

format

= self.u.make_format(sample_width ,

r = self.u.set_format (format)

output_-shorts:

sample_shift)

#default value is fine here for multiple channels since

#we will be wusing complex

self.dst = gr.file_sink (gr.sizeof_short ,

else:

if options.nsamples

if options.nchan == 1:

self.dst = gr.file_sink (gr.

else:

floats

sizeof_gr_complex ,

filename)

#establish separate file sinks for the two channels

self .dst_.A = gr.file_sink (gr.

self .dst_-B = gr.file_sink (gr.

if options.nchan == 1:

self.connect(self.u,

else:

di

#multiple channels

is None:#this is the default

self.dst)

sizeof_gr_complex ,

sizeof_gr_complex ,

= gr.deinterleave (gr.sizeof_gr_complex)

self.connect(self.u,

self .

self .

else:

if options.

self

if options.output_shorts:

self

else:

.head = gr.head(gr.

self.head = gr.head(gr.

self .connect(self.u, self

rx_subdev_spec is

options.rx_subdev_spec =

.rx-subdev = options.rx._s

di)

connect ((di,0) ,self.dst_A)

connect ((di,1) ,self.dst_B)

sizeof_short , int(options

sizeof_gr_complex ,

.head, self.dst)

None:

int (options.

usrp . pick_rx_subdevice (self.u)

ubdev_spec

self . u.set_mux (usrp.determine_rx_mux_value(self.u, options.

#self . u.set-muz (gru. hezint (0xf3f2f1f0))

#PRINT STATEMENTS

print

if (options.

print

else:

print

nchan > 1):

”Using %d Channels”

”?Using %d Channel”

”»Using USB Port %d” % (options.usb_num)

% (options.nchan)

% (options.nchan)

192

filename)

filename_A)

filename_B)

.nsamples) x2)

nsamples))

rx_subdev_spec))

185

187

189

191

195

197

199

201

203

205

211

213

10

12

AN

#display USB sample rate

input_-rate = self.u.adc_freq() / self.u.decim_rate ()

print 7"USB sample rate %s” % (eng_-notation.num_to_str (input_rate))

self.rssi_run = True

def GetRSSI(self, d, t):

reads = []

aves = []

while self.rssi_run:
tmp = self.u.read_-aux_adc(self.rx_subdev[0],0)
reads .append (tmp)
self.rssi = sum(reads|[—1140:]) /1140
avgs.append(self.rssi)
file = open(receive.fn4+”ssi”, "wt”)
file.write(str (max(avgs[—20:])))

file .close ()
if __name__ == ’__main__

receive = my_graph()

thread.start_new_-thread (receive.GetRSSI,(0,0))
receive.run ()

print ”Receiving Complete.”

receive.rssi_run = False
except KeyboardInterrupt:
pass

receive.rssi_run = False

receive.stop ()

A.2.2 USRP Transmitter Script (bbc_tx.py)

#!/usr/bin/env python

i3

it to the USRP for broadcast.

This file was derived from the wusrp-siggen.py file that came with
GNU Radio. It was stripped to just the essentials meeded to transmit

a baseband signal from a complex file source.
The file format is complex IQ data pairs where both wvalues are IEEE

single—precision floating point numbers in little endian format.

The first wvalue is I and the second wvalue is Q. The data is present

193

This program reads waveform data from the file 7bbc_tz.dat” and sends

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

only on the I data. The @Q data is all zeros.

from gnuradio import gr, gru

from gnuradio import usrp

from gnuradio.eng_option import eng_option

from gnuradio import eng_notation

from gnuradio.eng_notation import num_to_str, str_to_num
from optparse import OptionParser

import sys

import time

import os

from subprocess import x

class bbc_tx_graph(gr.top-block):

def __init__ (self, usb_num, sink_path, jammer, jammer_level=0, sink_path_B=None): #included
usb_num from parameter list to define which wusb
gr.top_block. __init__(self)
#default interpolator rate
self.interp = 64
if jammer==0:
self.txfile = gr.file_source (gr.sizeof_gr_complex , sink_path 1)
self .usrp = usrp.sink_c (usb_num, self.interp) # change from 0 to 1 if necessary
self.connect (self.txfile, self.usrp)
elif jammer==
call ([”/Users/Derek/Desktop/jammer/jammer” , "—C” ,” /Users/Derek/Desktop/jammer/tx.ini”
, ”=N”, ”1000000” ,”—J”, str(jammer_level)])
self.txfileA = gr.file_source (gr.sizeof_gr_complex , sink_path, 1)
self . txfileB = gr.file_source (gr.sizeof_gr_complex, ”/Users/Derek/Desktop/jammer/r” ,
1)
self .usrp = usrp.sink_c(which=usb_.num, interp_rate=self.interp ,nchan=2)

#do connect
intl = gr.interleave(gr.sizeof_gr_complex)
self.connect(self.txfileA , (intl, 0))
self .connect(self.txfileB, (intl, 1))
self .connect(intl ,self.usrp)
elif jammer==2:
self.txfileA = gr.file_source (gr.sizeof_gr_complex , sink_path, 1)
self . noisegen = gr.noise_source_c (gr.GR-GAUSSIAN, 500x*jammer_level)
self .usrp = usrp.sink_c(which=usb_.num, interp_rate=self.interp ,nchan=2)
#do connect
intl = gr.interleave(gr.sizeof_gr_complex)

self .connect(self.txfileA , (intl, 0))

194

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

def

def

def

def

def

self.connect(self.noisegen,

self

elif jammer==3:

self .nois
self .usrp

self

usb_freq (sel

return

.connect

egen = gr.

= usrp.sink_c

f):

self .usrp.dac_freq () /

usb_throughput (self):

return

set_interpola

self.interp =

self.usrp.set

set_freq-single (self ,

» 0

Set the

@param target_-freq:

@rypte: bool

Tuning ts a two step process.

tune as close to the desired frequency
the result of that operation and our
determine the wvalue for the digital up

29

r = self.usrp
if r:
print "r.
print
print
print "r.

print

cente

.dxc_freq =

.residual_freq

self . usb_freq () x* 4

tor (self,
interp

_interp_rate

r frequency

.tune(self.subdev.

baseband_freq =

inverted

OK”

return True

return False

set_freq-multi(self ,

» 9

Set the

@param side :

cente

side ,

r frequency

0 = side A, 1 =

(self.noisegen ,

we 're

frequency

we 're

(intl,

.connect (intl ,self.usrp)

noise_source_c

(usb_num,

self

1))

(gr . GR_.GAUSSIAN,

500*jammer_level)

self .interp) # change from 0 to 1

.usrp)

self.interp

interp):

(interp)

target_freq):

in Hz

interested

in .

First we ask the front—end to

-which ,

, eng_-notation .
, eng_notation .

, eng_notation .

, T.

side B

target_frequency

interested

as 1t can.
converter.

self .subdev,

num-_to_str (

num-_to_str (

inverted

target_freq):

in .

195

num-_to_str(r

Then we use

to

target_freq)

.baseband_freq)
r.dxc_freq)

r.residual_freq)

if

necessary

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

@param target_-freq: frequency in Hz

@rtype: bool

Tuning is a two step process. First we ask the front—end to
tune as close to the desired frequency as it can. Then we use
the result of that operation and our target_frequency to

determine the wvalue for the digital up converter.

PER

print ”"Tuning side %s to %sHz” % ((”A”, "B”)[side], num_to_str(target_freq))
r = self . usrp.tune(self.subdev|[side]._which, self.subdev[side], target_freq)
if r:

print ” r.baseband_freq =", num_to_str(r.baseband_freq)

print 7 r.dxc-freq =", num_to_str(r.dxc-freq)

print 7 r.residual_freq =", num_to_str(r.residual_freq)

print ” r.inverted =", r.inverted

print 7 OK”

return True

else:

print ” Failed!”

return False

main () :
parser = OptionParser (option_class=eng_option)
parser.add-option (”"-T”, "——tx_subdev_spec”, type="subdev”, default=(0, 0),
help="select USRP Tx side A or B (may also use A:0 or A:1 format)”)
parser .add_option ("—f”, "——rf_freq”, type="eng_float”, default=None,
help="set RF center frequency to FREQ”)
parser .add_option (”"—i”, "——interp”, type="int”, default=64,
help="set fgpa interpolation rate to INTERP”)
parser.add-option (”-U”, ?——usb_num” , type="int”, default=0,
help="select USRP USB location 0 or 1 (default=0)")
parser .add-option (”—J”, "——jammer” , type="int”, default=0, help="0 = None, 1 = Pulse Jammer, 2
= Gaussian Jammer”)
parser.add_option ("——jammer_level”, type="int”, default=32,

help="set the jammer level [0,64]”)

» »

parser .add_option(”—S”, "——sink_path” ,type="string” ,default=None, help="set sink file path for
transmission 17)

parser .add_option (”’—Q”, "——sink_path_B” type="string” ,default=None, help="set sink file path
for transmission 27)

parser.add-option ("—P”, "——tx_subdev_spec_B”, type="subdev”, default=(0, 0),

help="select USRP Tx side A or B (may also use A:0 or A:1 format)”)

196

142

144

146

148

150

152

154

156

158

160

162

164

166

168

170

172

174

176

180

182

parser .add-option ("—L”, "——tx_time” ,type="float”, default=8.0, help
transmit for”)

(options , args) = parser.parse_args ()
if len(args) != 0:
parser. print_help ()

raise SystemExit

if options.rf_freq is None:

="set the

length to

sys.stderr.write(” usrp_siggen: must specify RF center frequency with —f RF.FREQ\n”)

parser.print_help ()

raise SystemExit

fg = bbc_-tx_graph(options.usb_.num,options.sink_path, options.jammer, options
options.sink_path_B)
fg.set_interpolator (options.interp)
print " Using USB Port %d” % (options.usb_num)
print ”Sink path: %s” % (options.sink_path)
if (options.jammer) :
print ”Jammer running at level: %i” % (options.jammer_level)
if options.jammer==0:
print ”Using 1 Channel”
determine the daughterboard subdevice we’re wusing
if options.tx_subdev_spec is None:
options.tx_subdev_spec = usrp.pick_tx_subdevice (fg.u)
m = usrp.determine_tx_mux_value(fg.usrp, options.tx_subdev_spec)
#print "muzr = %#04x” % (m,)
fg.usrp.set_-mux (m)
#fg.usrp.set_muz (0zba9d8)
fg.subdev = usrp.selected_-subdev (fg.usrp, options.tx_subdev_spec)
print " Using TX daughterboard %s” % (fg.subdev.side_and_name() ,)
fg.subdev.set_gain (fg.subdev.gain_range () [1]) # set mazx Tz gain

if not fg.set_freq-single (options.rf_freq):
sys.stderr.write(’Failed to set RF frequency\n’)

raise SystemExit

fg.subdev.set_enable (True)# enable transmitter

197

.jammer_level ,

184

188

190

192

194

196

198

202

204

206

208

210

212

214

216

218

220

222

224

226

228

else: # we’re wusing both daughterboard slots ,

print ”Using 2 Channels”

thus

fg.subdev = (fg.usrp.db[0][0], fg.usrp.db[1][0])

print " Using TX daughterboard %s” % (fg.subdev [0].

print " Using TX daughterboard %s” % (fg.subdev[1].

#m_-A = usrp.determine_tx_muz_-value (fg.usrp,

#m_B = usrp.determine_tz_muz_value (fg.usrp,

#print "muz = %#04x” % (m,)
#fg.subdev [0]. set_muz (m_A)
#fg . subdev [1]. set_-muz (m-B)
#fg . usrp.set_muz (m-A)

fg.usrp.set_mux(gru.hexint (0xBA98))

options .

options .

fg.subdev [0].set_gain (fg.subdev [0]. gain_range () [1])

fg.subdev [1].set_gain (fg.subdev[1l]. gain_range () [1])

#use same frequency for both transmitters

fg.set_freq-multi (0, options.rf_freq)
fg.set_freq-multi (1, options.rf_freq)
#fg.subdev [0]. set_freq (options.rf_fregq)

#fg.subdev [1]. set_freq(options.rf_fregq)

fg.subdev [0]. set_enable (True) # enable

fg.subdev [1].set_enable (True) # enable

#size = os.stat(options.sink_path).st_size

transmitter

transmitter

subdev is a 2—tuple

side_and_name () ,)

side_and_-name () ,)

tr_subdev_spec)

tz_subdev_spec_B)

set mazr Tz gain

set mazr Tz gain

#tx_sec = (size —163840)/(fg.usb_freq()) # num_samples/tz_samples_sec

#if tx_sec > 8:

tr_sec = 8

print " Transmitting for”, str(options.tx_time)

#t1 = time.time ()

#fg . run()

#t2 = time.time ()

#print "%i” % (t2—t1)

fg.start ()

time.sleep (options.tx_time)

fg.stop ()

print ”Transmission Completed.\n”
except KeyboardInterrupt:

#pass

fg.stop ()

198

230

1

11

13

15

17

19

21

23

25

27

29

31

33

35

if __name_.. == ’__main__":

main ()

A.3 BBC Source Code

A.3.1 Dbbcftp.h

/**
* Application Layer for the Real—time BBC Codec/Modem *

sk sk sk sk sk sk ok ok ok ok ok K Rk sk sk sk sk sk sk sk sk sk oK ok ok ok K R Rk sk sk sk sk sk sk sk sk sk oK oK ok ok K R Kk sk sk sk sk sk Sk sk sk oK oK oK ok ok K Rk sk ok sk sk ok ok Sk Sk oK K K X

* William L. Bahn *
* Academy Center for Information Security *
* Department of Computer Science *
* United States Air Force Academy *
* USAFA, CO 80840 *

sk sk sk sk sk ok ok sk ok sk ok sk sk sk sk ok sk ok sk ok sk sk sk sk sk sk ok ok ok sk ok sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk ok sk ok Sk ok ok ok sk sk sk sk ok sk ok sk ok sk sk sk sk ok sk ok Ok ok sk ok ok ok

« FILE :............ bbeftp . h *
« DATE CREATED:.... 138 SEP 07 *
* DATE MODIFIED :... 138 SEP 07 *

sk sk sk sk sk sk ok ok ok ok ok K Kk sk sk sk sk sk ok sk sk sk oK oK ok ok K R Kk sk sk sk sk sk sk sk sk sk oK oK ok ok K R Kk sk sk sk sk sk sk sk sk oK K oK ok oK K R Kk ok sk sk ok ok Sk ok oK K K X
*

* REVISION HISTORY

*

sk sk sk sk sk sk ok ok ok ok K K Kk s sk sk sk sk ok sk sk ok oK oK ok K K K K K ok sk sk sk sk sk sk sk ok oK oK ok K K K Kk ok sk sk sk ok ok sk sk oK oK oK ok K K K K ok ok sk ok ok ok ok ok K K K X
*

« DESCRIPTION

*

*/

#ifndef BBCFTPdotH
#define BBCFTPdotH

//
// REQUIRED INCLUDES

//

#include ”config.h”
#include ”source.h”
#include ”codec.h”
#include ” buffer .h”
#include ”modem.h”

#include ”sink.h”

199

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

#include 7 dirtyd.h”

//
// PARAMETER DEFINITIONS

//

#define BBCFTP_BYTES CHECKSUM (4)

#define BBC_FTP_BYTES_SEQNUM (2)

#define BBCFTP_BYTES_LOADBITS (2)

#define BBC_FTP_.BYTES_ID (2)

#define BBCFTP_.OFFSET_-CHECKSUM (0)

#define BBC_FTP_OFFSET_ID (BBC_FTP_.OFFSET_CHECKSUM + BBC_FTP_BYTES_CHECKSUM)
#define BBC_FTP_.OFFSET_SEQNUM (BBC_FTP_.OFFSET_ID + BBC_FTP_BYTES_ID)
#define BBC_FTP_.OFFSET_LOADBITS (BBC_FTP-OFFSET_SEQNUM + BBCFTPBYTES_SEQNUM)
#define BBC_FTP_OFFSET PAYLOAD (BBC_FTP_OFFSET_LOADBITS + BBC_FTP_BYTES_LOADBITS)
#define BBCFTP_.HEADER_BYTES (BBC_FTP_OFFSET_PAYLOAD)

//

// STRUCTURE TYPE DEFINITIONS

//

typedef struct BBCFTP BBCFTP;

//

// STRUCTURE DEFINITIONS

/

// NOTE: Normally the structure definition would be in the =*.c file to make
// the structure members inaccessible to outside functions except through
// public function calls. But for the real—time code it has been decided
// to make the structure members directly wvisible to the functions that

// manipulate them.

struct BBCFTP

{
CONFIG *config;
SOURCE x*source ;
CODEC #*codec;

BUFFER xbuffer ;

MODEM

*modem ;

SINK *sink ;

//

200

83

85

87

89

91

93

95

97

99

101

103

[

11

13

15

17

19

// PUBLIC FUNCTION PROTOTYPES
//

BBCFTP *BBCFTP_Del (BBCFTP *p) ;

BBCFTP *BBCFTP_New(char xfilename , DWORD xerrcode) ;

void PrintMessage (BYTE xbase);

void SetMessageChecksum (BYTE #base , DWORD v) ;
void SetMessageSeq (BYTE xbase, WORD v) ;

void SetMessageLoadBits (BYTE xbase, WORD v) ;
void SetMessagelD (BYTE xbase, WORD v);

void SetMessagePayload (BYTE x*base, BYTE xsource, DWORD bytes, int offset);

DWORD GetMessageChecksum (BYTE xbase) ;
WORD GetMessageSeq (BYTE xbase) ;
WORD GetMessageLoadBits (BYTE xbase) ;
WORD GetMessagelD (BYTE xbase) ;

BYTE *GetMessagePayload (BYTE *base) ;

//
#Hendif

A.3.2 Dbbcftp.c

/**
* Application Layer Module for the Real—time BBC Codec/Modem FTP program *

sk sk sk sk ok sk sk sk sk ok sk sk Sk ok sk ok sk ok ok sk ok sk sk sk sk ok ok ok sk sk ok sk sk sk ok sk ok sk sk ok Sk sk sk sk sk Sk sk ok sk sk Sk ok sk sk sk kol sk ok sk ok Sk sk ok sk ok Sk sk ok o ok kR ok Rk

* William L. Bahn *
* Academy Center for Information Security *
* Department of Computer Science *
* United States Air Force Academy *
* USAFA, CO 80840 *

sk sk sk sk sk sk ok ok ok ok ok kR sk ks sk sk sk sk sk sk sk oK ok ok ok K R Rk sk sk sk sk sk sk sk sk sk oK oK ok ok K R Kk sk sk sk sk sk sk sk sk sk oK oK ok ok K R Kk sk sk sk ok ok ok ok oK K K X

« FILE :............ bbeftp . c *
« DATE CREATED:.... 18 SEP 07 *
* DATE MODIFIED :... 18 SEP 07 *

sk sk sk sk sk sk ok ok ok ok K K Kk ks sk sk sk ok sk sk ok oK oK ok K K K K K sk sk sk sk sk sk sk ok oK oK ok K K K Kk ok sk sk sk ok sk sk sk oK oK K ok K K K Kk ok sk sk ok ok ok ok oK K K X
*

« REVISION HISTORY

*

sk sk sk sk ok ok ok ok ok ok ok K K ks sk sk ok ok sk sk ok ok ok ok ok ok K K K K sk sk sk ok sk sk sk ok ok oK oK ok K K K Kk ok sk sk sk ok ok sk ok ok oK oK ok K K K K sk ok ok ok ok ok ok ok ok K K K
*

* DESCRIPTION

201

21

23

25

27

29

31

33

35

37

39

41

43

47

49

51

53

55

57

59

61

63

*
* This module provides the crude application layer functions for the ftp

* demo.

*/

//
// REQUIRED INCLUDES

//
#include <stdlib.h> // malloc (), free()
#include <stdio.h> // printf()

#include <string.h> // memmove()

#include ”bbcftp.h”

//

// STRUCTURE DEFINITIONS

//

// NOTE: Normally the structure definition would be in the x.c file to make

// the structure members inaccessible to outside functions except through
// public function calls. But for the real—time code it has been decided
// to make the structure members directly wvisible to the functions that

// manipulate them.

//

// PRIVATE FUNCTION DEFINITIONS
//

//

// PUBLIC FUNCTION DEFINITIONS
//

BBCFTP *BBCFTP_Del (BBCFTP x*p)

{

if (p)

{
p—>config = CONFIG_Del(p—>config);
p—>source = SOURCE_Del(p—>source) ;
p—>codec = CODEC_Del(p—>codec);
p—>buffer = BUFFER_Del(p—>buffer);
p—>modem = MODEM._Del(p—>modem) ;
p—>sink = SINK_Del(p—>sink);

202

65

67

69

71

73

75

7

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

return NULL;

BBCFTP «*BBCFTP_New(char *filename , DWORD xerrcode)

{
BBCFTP *p;
DWORD err ;
p = NULL;
err = 0;
xerrcode = 0;
p = (BBCFTP *) malloc (sizeof (BBCFIP)) ;
if (!p) xerrcode |= 1 << 0;
if (!xerrcode)
{
p—>config = CONFIG_New (filename , &err);
if (err) xerrcode |= 1 << 1;
}
if (!xerrcode)
{
p—>source = SOURCE_New(p—>config , &err);
if (err) xerrcode |= 1 << 2;
p—>codec = CODECNew(p—>config,6 &err);
if (err) xerrcode |= 1 << 3;
p—>buffer = BUFFERNew(p—>config , &err);
if (err) xerrcode |= 1 << 4;
p—>modem = MODEMNew(p—>config , &err);
if (err) xerrcode |= 1 << 5;
p—>sink = SINK_New (p—>config , &err);
if (err) xerrcode |= 1 << 6;
}
return p;
¥
void BBCFTP_ErrorCodes (DWORD err)

{
if (err & ((DWORD) 1 << 0))

printf ("BBC-FTP System Constructor failed to allocate\n”);

if (err & ((DWORD) 1 << 1))

printf (”CONFIG Constructor exited with errors\n”);

if (err & ((DWORD) 1 << 2))

203

111

113

115

117

119 }

printf (?SOURCE Constructor exited
if (err & ((DWORD) 1 << 3))

printf (?”CODEC Constructor exited
if (err & ((DWORD) 1 << 4))

printf ("BUFFER Constructor exited
if (err & ((DWORD) 1 << 5))

printf ("MODEM Constructor exited
if (err & ((DWORD) 1 << 6))

printf (”SINK Constructor exited

121 void PrintMessage (BYTE xbase)

{

123

125

127

129

131

137

139

141

143

145

147

149

int i;

int chunk_size_bytes;

DWORD checksum ;
WORD seqnum, loadbits , id;

checksum = GetMessageChecksum (base)
seqnum = GetMessageSeq(base) ;
loadbits = GetMessageLoadBits(base)

id = GetMessagelD (base) ;

printf (”?[%041lu] 7, (unsigned long)
printf(”[%041lu] 7, (unsigned long)
printf (”[%041lu] 7, (unsigned long)
printf (?[%041lu] 7, (unsigned long)

chunk_size_bytes = loadbits /8;

printf (" [");
for (i = 0; i < chunk_size_bytes; i

{

with

with

with

with

with

3

3

errors\n”);

errors\n”);

errors\n”);

errors\n”);

errors\n”);

checksum) ;

seqnum) ;

loadbits);

id);

++)

putc (*(base + BBCFTP.OFFSET-PAYLOAD + i), stdout);

I

printf(”]\n”);

void SetMessageChecksum (BYTE xbase, DWORD v)

151 {

153 }

memmove (base+BBC_FTP_OFFSET_CHECKSUM, &v,

BBC_FTP BYTES_CHECKSUM) ;

204

159

161

163

165

167

169

171

173

175

177

179

181

183

185

189

191

193

195

197

199

void SetMessageSeq (BYTE xbase, WORD v)

{

memmove (base+BBC_FTP_.OFFSET_SEQNUM, &v, BBC_FTP_BYTES_SEQNUM) ;

void SetMessageLoadBits (BYTE xbase, WORD v)

{

memmove (base+BBC_FTP_.OFFSET_LOADBITS, &v, BBC_FTP_BYTES_LOADBITS) ;

void SetMessagelD (BYTE xbase, WORD v)

{

memmove (base+BBC_FTP_.OFFSET_ID, &v, BBC_FTP_BYTES.ID) ;

void SetMessagePayload (BYTE *xbase, BYTE xsource , DWORD bytes,

{

memmove (base+BBC_FTP_OFFSET_ PAYLOAD+offset , source,

DWORD GetMessageChecksum (BYTE xbase)

{

return *((DWORD x) (base + BBCFTP.OFFSET_.CHECKSUM)) ;

WORD GetMessageSeq (BYTE *base)

{

return x((WORD x*) (base + BBCFTP_.OFFSET_SEQNUM)) ;

WORD GetMessageLoadBits (BYTE xbase)

{

return *((WORD *)(base + BBC_FTP_.OFFSET_LOADBITS)) ;

WORD GetMessagelD (BYTE xbase)

{

return x((WORD x*)(base + BBC_FTP_OFFSET.ID)) ;

BYTE xGetMessagePayload (BYTE xbase)

{

return (BYTE x)(base + BBCFTP.OFFSET_PAYLOAD) ;

205

bytes);

int

offset)

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

A.3.3 Dbuffer.h

/3 ok ook ook sk ok sk ok sk ok o ok R sk ok sk ok o oK R kR ook sk ok o ok R kR oK R R ok R ok R ok ok sk ok R ok R kR ok ok SR ok R ok ok ok R o oK R sk R oK oK ok o ok R ok ok K R
* Data Buffer for the Real—time BBC Codec/Modem *

sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk ok ok sk sk sk ok ok ok

* William L. Bahn *
* Academy Center for Information Security *
* Department of Computer Science *
* United States Air Force Academy *
* USAFA, CO 80840 *

sk sk sk sk ok sk sk Sk sk ok sk sk sk k sk sk sk ok sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk Sk sk sk sk sk Sk sk sk sk sk k sk sk sk sk sk sk sk ok sk sk Sk sk ok ok sk sk ok ok ok ok

« FILE :............ buffer.h *
* DATE CREATED:.... 01 SEP 07 *
* DATE MODIFIED :... 01 SEP 07 *

sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk ok sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk sk ok sk sk sk ok ok ok

* REVISION HISTORY

sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok ok sk ok sk sk sk sk sk ko sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok ok sk sk sk ok ok sk sk koo ok sk sk sk sk ok sk sk sk sk sk ok ok sk ok ok ok ok
*

* DESCRIPTION

* The data buffer stores packet data between the codec and the modem.

* In the receiver , the buffer accepts packet data from the codec and

* feeds that data to the modem. In the transmitter , it accepts data from
* the modem and feeds it to the codec. While the modem, by its mnature,

* generally produces and consumes data at a uniform rate, the codec

* can be quite erratic in its data rate. Therefore the buffer must be

* sized sufficiently large to allow for the resulting ebb and flow.

* This s particularly important in the case of the receiver since, if
* the buffer can’t accommodate the data as the modem delivers it, data
« will be lost. This is mnot as critical with the transmitter , depending
* on the nature of the data source and its buffering strategy , since it
* will mormally only reduce the effective data rate as opposed to causing

* dropped packets.

*« The data 1is stored in a circular buffer with the following wvariables:

*
* buffer: Pointer to the block of memory where the buffer starts.

* read : Index of the first byte of the present packet.

* write : Index of the mnext unused buffer location.

* margin: How many bytes are in buffer beyond the scope of the decoder.

206

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

* unused: How many unused bytes are avatlable in the

*

* The buffer is seen by two functions, the one that is

* data packet and the one that is decoding the resulting data.

buffer.

demodulating

the

The

* demodulating function writes to the buffer at a mominally constant

* rate dictated by the communications link. In this application , this 1is

* simulated by reading the stored waveform data from a file and querying

* the clock to determine how many bytes to add to the buffer each time

* the function is called. The decoding function , on the other hand, always
* to decodes eight packets each time it is called provided sufficient data
* 1s available. Specifically , it decodes the eight packets that start with
« the bits in the byte stored at the "read” pointer. Since it can’t decode
*x packets that are mot completely contained in the buffer , the decoding

* function first checks to see if 7 fill” is non—negative. If it isn’t, then
* it returns immediately. At the other end of the spectrum , the demodulator
* may run out of unused memory to write to. If this happens, data is going
* to be lost. It is cleaner to throw away old data instead of introducing
* a gap in present data, therefore the demodulator will push the ”"read”

* pointer forward as it overwrites the beginning of the exzisting packet

* data .

*

-/

#ifndef BUFFERdotH
#define BUFFERdotH

/

// REQUIRED INCLUDES

//

#include ”config.h”
#include ”dirtyd.h”

//

// STRUCTURE DECLARATIONS

//

typedef struct BUFFER BUFFER;

/

// STRUCTURE DEFINITIONS
//

// NOTE: Normally the
// the

structure

structure members

inaccessible

definition would be in the

to outside functions

207

x.c file

except

to make

through

88

90

92

94

96

98

100

102

104

106

108

110

112

114

11

13

// public function calls. But for the real—time code it has been decided
// to make the structure members directly wvisible to the functions that

// manipulate them.

struct BUFFER

{

size_t size; // Allocated size of buffer (in bytes)
size_t minsize ; // Minimum acceptable buffer size (in bytes)
BYTE *buffer ; // Pointer to the actual buffer

DWORD read ; // Index of mext position to be read.

DWORD write; // Index of mnext position to be written.
DWORD scope; // The number of bytes recipient must.
SDWORD margin; // Number of bytes beyond scope of recipient
DWORD empty; // Number of bytes awvailable for new data.
DWORD ready ; // Number of bytes ready for modulation.

DWORD buffermask; // The used bits in the buffer size

DWORD overflows; // Number of data pushes into read pointer.

}s

/
// PUBLIC FUNCTION PROTOTYPES

//

BUFFER *BUFFER_Del (BUFFER xp) ;
BUFFER *BUFFER-New (CONFIG xc, DWORD *errcode) ;

/
#endif

A.3.4 Dbuffer.c

/% ok ok ok o ok o ok ok ok oK ok ok o ok K oK oK oK oK oK oK R ok R oK oK oK oK o ok K oK R oK oK K ok K ok R ok ok oK oK R ok R oK K oK oK K oK R ok ok oK K oK oK R oK R oK K oK oK K ok K oK K K K
* Data Buffer for the Real—time BBC Codec/Modem *

sk sk sk sk sk sk sk sk sk ok sk sk ko ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ok sk sk sk koo sk sk sk sk sk sk sk sk sk sk sk ok ok ko ok ok ok

* William L. Bahn *
* Academy Center for Information Security *
* Department of Computer Science *
* United States Air Force Academy *
* USAFA, CO 80840 *

sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk ok sk sk ok sk sk sk sk ok ok sk sk sk ok ok ok

s« FILE :............ buffer.c *
« DATE CREATED:.... 01 SEP 07 *
« DATE MODIFIED :... 01 SEP 07 *

sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok ok sk ok sk ok sk sk sk sk k sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk ok ok sk ok sk sk ok sk sk sk sk ok ok ok sk ok ok ok K

*

208

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

* REVISION HISTORY

*

sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk ok sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok ok sk sk sk ok ok ok

*
« DESCRIPTION

*

* The data buffer and its

*

programmer

interface is described in buffer.h.

sk sk sk sk ok sk sk sk sk ok sk sk Sk ok sk sk sk ok ok sk ok sk sk sk sk ok sk sk sk sk ok sk sk sk ok sk sk sk sk sk sk sk sk sk sk Sk sk sk sk sk Sk sk sk sk sk k sk sk ok sk sk Sk sk ok ok sk Sk sk ok ok sk sk ok ok ok ok

*/

//

// REQUIRED INCLUDES

/

#include <stdlib.h> // malloc (),

#include <string.h> // memset()

free()

#include ” buffer.h”

//

// STRUCTURE DEFINITIONS

//

// NOTE: Normally the structure definition would be in the *.c file to make
// the structure members itnaccessible to outside functions except through
// public function calls. But for the real—time code it has been decided
// to make the structure members directly wvisible to the functions that
// manipulate them.

//

// PRIMITIVE FUNCTION DEFINITIONS

//

//

// PRIVATE FUNCTION DEFINITIONS

/

//

// PUBLIC FUNCTION DEFINITIONS

//

BUFFER *BUFFER_Del (BUFFER #p)

{
(p)

209

if (p—>buffer) { free (p—>buffer); p—>buffer = NULL; }
}

return NULL;

BUFFER *BUFFER_New (CONFIG #c, DWORD *errcode)
{
BUFFER *p;

DWORD err ;

p = NULL;

err = 0;

if (lerr)

{
p = (BUFFER x) malloc(sizeof (BUFFER)) ;
if (!p)

err |= 1 << 1;

if (lerr)

{
p—>minsize = (size_-t) (c—>bufferbytes_per_packet % c—>buffer_packets);
p—>size = 1;
while ((0 != p—>size)&&(p—>size < p—>minsize))

p—>size <<= 1;

if (0 == p—>size)
err |= 1 << 2;
}
if (lerr)
{

// Allocate buffer memory
p—>buffer = (BYTE x*) malloc(p—>sizex*sizeof (BYTIE));
if (!p—>buffer)

err |= 1 << 3;

// Initialize buffer state

// Common to TX and RX

p—>buffermask = p—>size — 1;
p—>scope = c—>bufferbytes_per_packet;
p—>read = 0;

p—>write = 0;

210

105 p—>overflows = 0;

107 // TX and RX specific
if (c—>scheduler.TX_notRX)
109 {
p—>margin = p—>size — p—>scope;
111 p—>ready = 0;

p—>empty = 0; // Not used

113 1
else
115 {
p—>margin = —((SDWORD)p—>scope) ;
117 p—>ready = 0; // Not wused

p—>empty = p—>size;
119 }

121
// Clear entire buffer
123 if (lerr)
memset (p—>buffer, 0, p—>size);
125
if (err)
127 p = BUFFER_Del(p) ;

129 if (c—>diagnostics)

{
131 // Diagnostic Report
printf (” \n”) ;
133 printf (?PACKET BUFFER\n”) :
printf(” Creation :............... %s\n” , ((err)? ”"FAILED” :”SUCCEEDED”)) ;
135 printf (” Location :............... Y%p\n”, (void x) p);
printf(” Minimum buffer size:.... %lu bytes\n”, (unsigned long) p—>minsize);
137 printf (” Buffer size :............ %lu bytes\n”, (unsigned long) p—>size);
printf(” Buffer location :........ %p\n” , (void =) p—>buffer);
139 printf(” Packet size in buffer:.. %lu bytes\n”, (unsigned long) p—>scope);
printf(”? read:......... %lu bytes\n”, (unsigned long) p—>read);
141 printf (” write :. ... %lu bytes\n”, (unsigned long) p—>write);
printf(” empty:.................. %lu bytes\n”, (unsigned long) p—>empty);
143 printf(” ready :.................. %lu bytes\n”, (unsigned long) p—>ready);
printf(” margin :................. %1i bytes\n”, (long) p—>margin);
145 printf(” overflows :.............. %lu bytes\n”, (unsigned long) p—>overflows);
printf (” \n”) ;
147 }
149 xerrcode = err;

211

151

153

1

11

13

15

17

19

21

23

25

27

29

31

33

35

37

}

/

return p;

A.3.5 bytes.h

/*

PROGRAMMER ”BAHN, William?”

TITLE 7Integer Storage Size Type Definitions”
CREATED 06 FEB 07

MODIFIED 06 FEB 07

FILENAME "bytes.h”

GENERAL DESCRIPTION

This file contains type definitions so that porting from one processor

to another is simpler.

SIZE DEFINITIONS

The following definitions are used:

SIZE UNSIGNED SIGNED

8—bit BYTE SBYTE
16— bit WORD SWORD
82— bit DWORD SDWORD
64— bit QWORD SQWORD (not awvailable on most systems)

To Verify Sizes

Use the VerifySIZES () function passing the largest integer size, in

bits , that is of interest.

The function returns TRUE if conflicts are found.

If an argument of 0 is wused, then the return wvalue has a bit set for
each type definition that didn’t wverify, starting with the shortest
length in the LSB.

Ezample — you are interested only in integer sizes up to 32— bits.

VerifySIZES (832) or VerifySIZES (BITSinDWORD) ;

212

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

7

79

81

83

*/

#ifndef BYTESdotH

#define BYTESdotH

#define BITSinBYTE (8)

#define BITSinWORD (16)

#define BITSinDWORD (32)

#define BITSinQWORD (64)

/*

Normal definitions

This the only section that should need to be changed.

Determine which integer type is the correct number of bits and update

the following list. Do mnot worry about signed/unsigned.

It is mot recommended that you actually wuse these definitions in your

code — they are simply used in the following type definitions.

*/

#define NBYTE char

#define NWORD short

#define NDWORD int

#define NQWORD long

/*

*

*

UNSIGNED TYPE DEFINITIONS

*/

typ
typ
typ

typ

edef unsigned NBYTE BYTE;
edef unsigned NWORD WORD;
edef unsigned NDWORD DWORD;
edef unsigned NQWORD QWORD;

/*

* SIGNED TYPE DEFINITIONS

*

*/

typ

edef signed NBYTE SBYTE;

213

typedef signed NWORD SWORD;

85 typedef signed NDWORD SDWORD;

87

89

91

93

10

12

14

16

22

24

26

28

30

typedef signed NQWORD SQWORD;

/*
*
*

*

UTILITY FUNCTIONS

/

unsigned int VerifySIZES (unsigned int maxlength);

#endif

A.3.6 Dbytes.c

/*

*

PROGRAMMER 7”BAHN, William?”

TITLE ?Integer Storage Size Type Definitions”
CREATED 06 FEB 07

MODIFIED 06 FEB 07

FILENAME “bytes.c”

GENERAL DESCRIPTION

NOTE: ANY AVAILABLE 7USER GUIDE” IS IN THE ASSOCIATED HEADER FILE.

This file contains type definitions so that porting from omne processor

to another is simpler.

/

#include ”"bytes.h”

in

{

in

{

in

t VerifyBYTE (void)

return (8xsizeof (BYTE) != BITSinBYTE) ;

t VerifyWORD (void)

return (8xsizeof (WORD) != BITSinWORD) ;

t Verify DWORD (void)

214

34

36

38

42

44

46

48

50

52

54

58

60

62

64

66

70

72

return (8xsizeof (DWORD) != BITSinDWORD) ;

int VerifyQWORD (void)

{

return (8xsizeof (QWORD) != BITSinQWORD) ;

unsigned int VerifySIZES (unsigned int maxlength)

{

unsigned int flags;

unsigned int mask;

// Generate a flag wvector with a 1 set anyplace that does not
// wverify properly. Note that the bit position is equal to base—2

// log of the number of bytes in the integer type.

flags = 0;

flags

(flags << 1) VerifyQWORD () ;

flags (flags << 1)

+
flags = (flags << 1) + Verify DWORD() ;
+ VerifyWORD () ;
+

flags = (flags << 1) VerifyBYTE () ;

// Convert length from bits to smallest compatible number of bytes.

maxlength = (maxlength/8) 4+ ((maxlength%8)?71:0);

// Generate a mask that is set only in those flag positions of interest.

if (maxlength) // report on sizes up to and including mazlength.
for (mask = 0; maxlength > 0; maxlength /= 2)
{
mask = (mask << 1) + 1;
if ((maxlength > 1)&&(maxlength%2))
mask = (mask << 1) + 1;
}
else // report on all defined sizes

mask = 70;

return (flags & mask);

A.3.7 codec.h

215

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

/3 ook ook ook sk ok sk ok sk ok o ok R ok ok sk ok o ok R sk R ok ok sk ok o ok R ook oK R o ok R ok R ok ok S ok R ok R kR sk ok SR ok R ok ok oK R Sk oK R ok R oK ok ok o ok ok ok K R
* CODEC for the Real—time BBC Codec/Modem *

sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok ok sk sk sk ok ok ok

* William L. Bahn *
* Academy Center for Information Security *
*x Department of Computer Science *
* United States Air Force Academy *
* USAFA, CO 80840 *

sk sk sk sk ok sk sk sk sk ok sk sk sk ok sk sk sk ok ok sk ok sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk Sk sk ok sk sk Sk sk sk sk sk sk sk sk ok sk sk Sk sk ok sk sk Sk sk ok ok sk sk ok ok ok ok

« FILE :............ codec . h *
* DATE CREATED:.... 06 SEP 07 *
* DATE MODIFIED :... 06 SEP 07 *

Sk 3k 3k sk sk sk sk sk sk sk sk sk ok ok ok ok k ok ok sk 3k sk sk sk sk sk sk sk sk sk sk ok ok >k >k >k sk 3k 3k sk sk sk sk sk sk sk sk ok ok sk >k >k ok %k >k ok sk sk 3k sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok
*

* REVISION HISTORY

*
EEEEEEEESEREEEREEEEERERSEESEESESSESESESESSEESS
*

« DESCRIPTION

*

* The codec encodes and decodes messages to/from BBC-encoded packets.

*

sk sk sk sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok ok sk sk sk ok ok ok

*/

#ifndef CODECdotH
#define CODECdotH

//
// REQUIRED INCLUDES

//

#include ”config.h”

#include
#include
#include
#include
#include

”source.h”

" buffer .h”
"sink .h”
“dirtyd.h”

?shal.h”

typedef struct thread_data thread_data;

//

// STRUCTURE DECLARATIONS

216

46

48

50

52

54

56

58

60

62

64

66

68

70

74

76

78

80

82

84

86

88

90

/

typedef struct CODEC CODEC;

//

// STRUCTURE DEFINITIONS

/

// NOTE: Normally the structure definition would be in the *.c file to make
// the structure members inaccessible to outside functions except through
// public function calls. But for the real—time code it has been decided
// to make the structure members directly wvisible to the functions that

// manipulate them.

struct CODEC

{

// State information
SHA1Context *state;
SHA1Context *digest ;
// Decode buffer
BYTE *MSg ;
BYTE kxcheckbit ;

SHA1Context xhashstate;
+s

struct thread_data

// Pointer to single SHA1 structure

// Pointer to single SHA1 structure

the bit contents

// Array
// Array
// Array of SHAI1

containing message

(1

a message

bit per byte)

indicating whether each bit is or check bit

structures

{
CONFIG =xconfig;
BUFFER *buffer;
CODEC x*codec;
SINK ssink ;
int *running;
int number;
}s
/
// PUBLIC FUNCTION PROTOTYPES
//
CODEC *CODEC_Del (CODEC *p) ;

CODEC *CODEC_New (CONFIG x*c ,

void Encode (CONFIG x*c,

void Decode (CONFIG xc, BUFFER xbuf, CODEC *codec,

DWORD xerrcode) ;

SOURCE xsource , CODEC *codec , BUFFER xbuffer);

SINK =sink) ;

217

92

94

96

98

102

104

106

108

110

112

114

116

118

120

122

124

126

128

132

134

/*

DECODER

The decoder decodes all eight of the packets that start with each of the

eight bits in the byte located at the present ”"read” location of the buffer.

»

The wvalue of the wvartable originbit” determines which of the eight offsets

from the beginning of the byte the present packet starts at. The wvariable

7location” refers to the location of the bit in question relative to the

beginning of the packet. Therefore, relative to the beginning of the byte

the the location”. This

offset.
of

7index”

where packet starts , location is simply “origin +

into an index and and The

buffer
that

combined location must then be turned

7index” refers to within the contains the bit interest

"offset”

must further account for the

which byte

while the identifies the bit within byte. The value

fact that the in the packet is

buffer

examined so

first byte

located at the "read” within the index and that the is circular.

P offset”
of

point

The value must be used to mask the byte being that only

the bit interest is considered. For speed purposes, this mask is provided

by a lookup table 7bitmask”.

Taking all of this into the will check

particular packet

account , following steps

if a

bit is set:

index = {read + floor [(location + originbit)/8]} mod bufferlength

offset = (location + originbit) mod 8

status = buffer [index] & bitmask[offset]

Since the buffer length is exactly 2°n long, the residue of the index can
be taken by simply retaining only the lower n bits. Similarly, the residue
of the offset modulo—8 can be taken by only retaining the lower 3 bits. Both
of these can be done by performing a bitwise—AND with an appropriate mask.
Finally , the division of the effective location within the packet can be

performed by right—shifting the sum by 8 bits. Hence we have the following

equations :

index = (read + ((location + originbit) >> 8)) & buffermask;

offset = (location + originbit) & 0z00000007;

status = buffer [index] & bitmask[offset]

The most challenging part of the decoding algorithm is the backtracking that
must take place when the present partial message is finished , either because

it was found to be a dead end or because it resulted in an actual message.

The bastc task is to traverse the decoding tree backwards wuntil the last
partial message bit that was a zero is found. Then that bit is changed to a one
and decoding moves forward again. Two special cases have to be taken into
account. First, if there are no message bits that are zero, then the decoding

218

140

142

144

11

13

15

17

19

21

23

25

27

29

31

* of that packet is finished. Second, checksum bits are always zero and the
* decoder must skip owver them without turning them to ones.

* index 0128456789....

* check 1001001001....

* msg 0010110110....

*/

//
#Hendif

A.3.8 codec.c

/**
* CODEC for the Real—time BBC Codec/Modem *

sk sk sk sk ok sk sk sk sk ok sk sk Sk ok sk ok sk ok ok sk ok sk sk sk sk ok ok sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk Sk sk ok sk sk Sk sk ok sk sk Sk ok sk ok sk sk Sk sk ok sk sk Sk sk ok ok ok sk k ok R ok

* William L. Bahn *
* Academy Center for Information Security *
* Department of Computer Science *
* United States Air Force Academy *
* USAFA, CO 80840 *

sk sk sk sk ok sk ok ok ok ok ok ok ok ok sk ok sk ok ok sk ok sk ok sk sk ok ok ok sk sk ok ok ki ok ok ok sk sk ko sk ok sk sk Sk sk ok sk sk R Ok ok ok sk R Ok sk ok sk ok Ok sk ok ok ok Ok sk ok o ok kR ok Rk

* FILE :............ codec.c *
* DATE CREATED:.... 06 SEP 07 *
* DATE MODIFIED :... 06 SEP 07 *

3k >k 3k >k 5k %k 5k 3k 3k %k 5k 3k 5k 3k 5k 3k >k 3k 3k 3k 3k 3k ok 3k >k 3k >k 3k >k 3k >k 3k >k sk >k 5k >k sk >k 5k >k 3k >k 5k 3k 5k >k 5k %k 5k 3k 5k %k 5k 3k 5k %k 5k %k 5k 3k 5k %k >k 3k 3k %k >k 3k %k %k %k %k %k k %
*

* REVISION HISTORY

*

3k 3k 3k 3k sk 3k 5k 3k ok 3k ok 3k ok 3k ok 3k >k 3k ok 3k >k 3k ok 3k >k 3k >k 3k >k 3k >k 3k >k 3k >k 5k >k sk >k 5k 3k 5k >k 5k 3k 5k >k sk 3k 5k 3k sk 3k 5k 3k >k 3k 5k 3k >k 3k 5k 3k >k 3k %k 3k >k 3k %k 3k %k 3k k k k
*

« DESCRIPTION

*

* The codec and its public interface are described in codec.h

*

sk sk sk sk ok sk sk sk sk sk sk sk sk ok sk ok sk ok ok sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk Sk sk sk sk sk Sk sk sk sk sk sk sk sk ok sk ok Sk sk ok ok sk Sk sk ok ok sk sk ok ok ok ok

*/

//
// REQUIRED INCLUDES

/

#include <stdlib.h> // free (), malloc()

#include ”codec.h”

219

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

#include ”shal.h”

#define DECODE_LIMIT 0.05%*(double)CLOCKS PER_SEC

//

// STRUCTURE DEFINITIONS

/

// NOTE: Normally the structure definition would be in the *.c file to make

// the structure members inaccessible to outside functions
// public function calls. But for the real—time code it

// to make the structure members directly visible to the functions

// manipulate them.

//

except

through

been decided

that

// PRIVATE FUNCTION DEFINITIONS

/

#define SHA1_HASH.DWORDS (5)

void ExportMessage (CONFIG xc, CODEC #codec, SINK xsink)

{
DWORD i ;
DWORD bit ;

DWORD index, offset;

BYTE xmessage;

// Create pointer to mnezt element in sink memory

message = sink—>v + (sink—>samples % sink—>sample_size_bytes);

// Discard leading random bits

for (bit = 0, i = 0; i < c—>codec_random_bits; i++4, bit4++4)

{
while (codec—>checkbit [bit])
bit++;

// Eztract message bits and pack into byte string
for (i = 0; i < c—>codec_-message_bits; i++4, bit4++)
{

while (codec—>checkbit [bit])

bit++;
index = i1 >> 3;
offset = i & 0x00000007;

220

message [index] &= “c—>bitmask[7—offset |;

79 if (codec—>msg[bit])

message [index] |= c—>bitmask[7—offset |;

81}

83 // Zero pad remainder of last byte if mnecessary

while (7 != offset)
85 {
i+
87 offset = i & 0x00000007;

message [index] &= “c—>bitmask[7—offset |;

89 1}

91 // NUL terminate byte string

index++;
93 message [index] = ’\0’;
J/printf(7\t\t%s\n”,message) ;
95 // Advance sink memory pointer

sink —>samples++;
97 }

99 //-
// PUBLIC FUNCTION DEFINITIONS

101 /

103 CODEC *CODEC_Del (CODEC *p)

{
105 if (p)
{
107 if (p—>state) { free(p—>state);
if (p—>digest) { free(p—>digest);
109 if (p—>hashstate) { free(p—>hashstate);
if (p—>msg) { free(p—>msg);
111 if (p—>checkbit) { free(p—>checkbit);
¥
113 return NULL;
¥
115
CODEC *CODECNew (CONFIG *c, DWORD xerrcode)
117 {

CODEC *p;
119 DWORD err ;
DWORD check;
121 DWORD i, run;

err = 0;

p—>state = NULL;
p—>digest = NULL;
p—>hashstate = NULL;
p—>msg = NULL;

p—>checkbit = NULL;

221

e e

123

125

127

129

131

133

135

137

141

143

145

147

149

151

153

157

159

161

163

165

167

p = (CODEC %) malloc(sizeof (CODEC)) ;

if (!p)

if
{

if
{

err

// State

p—>state

p—>digest

// Decode

(!

=1 << 0;

err)

p—>msg

p—>checkbit

p—>hashstate

//
if

if

if

if

if

Verify successful
(!'(p—>state))

(!'(p—>digest))

(! (p—>msg)

(!'(p—>checkbit))

)

= (SHA1Context

Buffer

information

= (SHA1Context *) malloc(sizeof (SHA1Context)) ;

*) malloc(sizeof (SHA1Context));

(BYTE %) malloc(c—>padded_message_bits);

(BYTE %) malloc(c—>padded_message_bits);

(SHA1Context *) malloc(c—>padded_-message_bitsxsizeof (SHA1Context)) ;

err |

(!(p—>hashstate)) err |

(terr)

// Initialize

for (check = TRUE,

{

switch (check)

{

case TRUE

if (run >= c—>codec_clamp_bits)

{

checkbit

run = 0,

check = FALSE;

run =

}
break;

03

case FALSE:

markers

i

<<
<<
<<
<<
<<

= 0;

i

memory allocation

<

(c—>padded-message_bits — c—>codec_stop_bits);

if (run >= c—>codec_fragment_bits)

222

)

169

171

173

175

179

181

183

185

187

189

191

195

197

199

201

203

205

209

211

/*
*
*

*

}
p—>checkbit [i] = check;
run-+-;

for (i = 0; i < c—>codec_stop_bits; i++)

p—>checkbit [c—>padded_message_bits — c—>codec.stop_-bits + i] = TRUE;

if (c—>diagnostics)
{

// Diagnostic Report

printf (” \n”) ;

printf (”CODEC\n”) ;

printf(” Creation :............... %s\n” , ((err)? ”"FAILED” :”SUCCEEDED”)) ;
printf(” Location :............... Y%p\n” , (void *) p);
printf(” Message bits :........... %1i\n”, (unsigned long) c—>codec_message_bits);
printf(” Random bits:............ %1i\n”, (unsigned long) c—>codec_.random_bits);
printf(”? Clamp bits :............. %1li\n”, (unsigned long) c—>codec_clamp_bits);
printf(” Fragment bits :.......... %1i\n” , (unsigned long) c—>codec_fragment_bits);
printf(” Stop bits:.............. %1i\n”, (unsigned long) c—>codec_.stop_bits);
printf(” Padded message length:.. %li\n”, (unsigned long) c—>padded_message_bits);
printf (” Packet expansion :....... %1i\n” , (unsigned long) c—>codec_expansion) ;
printf(” Packet load:............ %1li messages\n”, (unsigned long) c—>codec_packet_load);
printf(” Decode limit :........... %li messages\n”, (unsigned long) c—>codec_decode_limit);
printf(” Message buffer at:...... %p\n” , p—>msg) ;
printf(” Checksum buffer at:..... %p\n” , p—>checkbit);
printf(” Hash buffer at:......... %p\n” , p—>hashstate);
printf (” State buffer at:........ %p\n” , p—>state);
printf (” Digest buffer at:....... %p\n” , p—>digest);
printf (” \n”);
}
if (err)

p = CODEC_Del(p) ;

xerrcode = err;

return p;

DECODER

The decoder decodes all eight of the packets that start with each of the

eight bits in the byte located at the present "read” location of the buffer.

223

213

215

217

219

221

223

225

227

229

231

233

235

237

239

241

243

245

247

249

251

253

255

257

The wvalue of the wvariable 7

originbit” determines which of the eight offsets
from the beginning of the byte the present packet starts at. The wvariable
7location” refers to the location of the bit in question relative to the
beginning of the packet. Therefore, relative to the beginning of the byte
where the packet starts, the location is simply “origin + location”. This
combined location must then be turned into an index and and offset. The
7index” refers to which byte within the buffer contains the bit of interest
while the 7offset” identifies the bit within that byte. The ”indezx” wvalue
must further account for the fact that the first byte in the packet 1is
located at the "read” point within the index and that the buffer is circular.
The ”"offset” walue must be used to mask the byte being examined so that only
the bit of interest is considered. For speed purposes, this mask is provided

by a lookup table 7bitmask”.

Taking all of this into account, the following steps will check if a

particular packet bit is set:

index = {read + floor [(location + originbit)/8]} mod bufferlength
offset = (location + originbit) mod 8

status = buffer [index] & bitmask[offset]

Since the buffer length is exactly 2°n long, the residue of the index can
be taken by simply retaining only the lower n bits. Similarly , the residue
of the offset modulo—8 can be taken by only retaining the lower 3 bits. Both
of these can be done by performing a bitwise—AND with an appropriate mask.
Finally , the division of the effective location within the packet can be
performed by right—shifting the sum by 3 bits. Hence we have the following

equations :

inder = (read + ((location + originbit) >> 3)) & buffermask;
offset = (location + originbit) & 0z00000007;

status = buffer [index] & bitmask[offset]

The most challenging part of the decoding algorithm is the backtracking that
must take place when the present partial message is finished , either because
it was found to be a dead end or because it resulted in an actual message.

The basic task ts to traverse the decoding tree backwards until the last

partial message bit that was a zero is found. Then that bit is changed to a one

and decoding moves forward again. Two special cases have to be taken into
account. First, if there are mo message bits that are zero, then the decoding
of that packet is finished. Second, checksum bits are always zero and the
decoder must skip owver them without turning them to ones.

index 0123456789....

check 1001001001....

224

259

261

263

265

269

271

273

275

277

279

281

285

287

289

291

293

295

299

301

* msg 0010110110....

*
*/

//

/*

%« The encoding function can be implemented in a more compact, efficient
* way. The method used here is intended to mirror the decode operation
* as closely as possible. This is reasonable because the encoding

* operation requires constant time regardless of message and is

* well constrained .

*

*/

void Encode (CONFIG xc, SOURCE xsource, CODEC *xcodec, BUFFER xbuffer)

{

DWORD msg_bit, pmsg_-bit, r, i, index, offset;
unsigned int location;

int bit_value;

BYTE s*msg;

DWORD message-stop ;

clock_t ticks;

DWORD marks;

ticks = clock ();
marks = 0;
message_stop = source—>sample 4+ c—>codec_packet_load;

if (message_stop > source—>samples)

message_-stop = source—>samples;

// Place bookend marks

location = 0;

index = (buffer—>write + (location >> 3)) & buffer—>buffermask;
offset = location & 0x00000007;

if (buffer—>buffer [index] & c—>bitmask[offset])

marks ——;
buffer —>buffer [index] |= c—>bitmask|[offset];
marks+-;
location = c—>last_packet_bit;

index = (buffer—>write 4+ (location >> 3)) & buffer —>buffermask;
offset = location & 0x00000007;

if (buffer—>buffer [index]| & c—>bitmask|[offset])

225

303

305

307

309

311

313

315

317

319

321

323

325

327

329

331

333

335

337

339

341

343

345

347

buffer —>buffer [index]

marks ——;

marks—+-+;

while (source—>sample < message_stop)

{

if (c—>diagnostics)

printf(”Encoding message #%lu\n”,

= c—>bitmask[offset];

source —>sample) ;

// Compute pointer to beginning of present message in source

msg = (BYTE %) source—>v + source—>sample % source—>sample_size_bytes;

// Initialize Hash Function state to

SHA1Reset (codec—>state);

the

// Load message into the codec’s message

for (pmsg_bit = 0, r = 0, msg_bit =

{

if (codec—>checkbit [pmsg_bit])

bit_-value = 0;
else
{
if (r < c—>codec.random_bits)
{
bit_value = rand() < (RANDMAX >> 1);
T++;
}
else
{
index = msg_bit >> 3;
offset = msg_bit & 0x00000007;
bit_value = (msg[index] & c—>bitmask[7T—offset])? 1
msg_-bit++;
}
}

0 3

Initial

buffer

pmsg_bit < c—>padded_message_bits;

SHA1lInput (codec—>state , c—>bitptr + bit_value,

// Compute hash result for present

*(codec—>digest) = *(codec—>state);

SHA1Result (codec—>digest);

// Generate mark location for pres

location = O0;

for (i = 0; i < SHA1HASH DWORDS;

location += ((codec—>digest)—>Message_Digest[i])<<i;

location %= c—>packet_bits;

prefix

;

ent

i++)

prefiz

226

Vector

1)

0;

buffer

pmsg_bit++)

349

351

353

355

357

359

361

363

365

367

369

371

373

375

377

379

381

383

385

387

389

391

// Place mark for present prefiz

index = (buffer—>write + (location >> 3)) & buffer—>buffermask;

offset = location & 0x00000007;
if (buffer—>buffer [index] & c—>bitmask|[offset])
marks ——;
buffer —>buffer [index] |= c—>bitmask[offset];
marks+-+;
¥

source —>sample++;

if (source—>sample >= source—>samples)

{
// Last packet has been encoded. Advance buffer past
source—>streaming = FALSE;
c—>buffer_advance = c—>bufferbytes_per_packet;

}

// Advance buffer write pointer to nexzt packelt write

last packet.

location .

buffer —>write = (buffer—>write + c—>buffer_advance) & buffer —>buffermask;

buffer —>margin —= c—>buffer_advance;

buffer —>ready 4= c—>buffer_advance;

c—>dec_ticks 4= clock () — ticks;

void Decode (CONFIG xc, BUFFER xbuf, CODEC %codec, SINK *sink)

{

SDWORD i, bit;

DWORD location , index, offset , originbit;
clock_t ticks;

DWORD limit ;

ticks = clock ();

//if (¢c=>diagnostics)

//printf(”Begining new Decode buf-—>read=[%i]\n”, buf-—>read);

// Process all 8 packets that begin within the byte

at

the front of the buffer

for (originbit = 0; originbit < 8; originbit++ /+88 (clock() — ticks) < DECODE_LIMITx/)

{
if ((sink—>sample_limit — sink—>samples) > c—>codec_decode_limit)
limit = (sink—>sample_limit — sink—>samples);
else
limit = c—>codec-decode-limit;

227

393

395

397

399

401

403

405

407

411

413

415

417

419

421

423

425

427

429

431

433

435

// Check for bookend marks

index = (buf->read + (originbit >> 3)) & buf-—>buffermask;
offset = (originbit) & 0x00000007;

if (!(buf—>buffer[index] & c—>bitmask[offset]))

break;

index = (buf->read + ((originbit 4+ c—>last_packet_bit) >> 3)) & buf—>buffermask;
offset = (originbit 4+ c—>last_packet_bit) & 0x00000007;
if (!(buf—>buffer [index] & c—>bitmask[offset]))

break;

// Initialize Hash Function state to the Initial Vector
SHA1Reset (codec—>state);
bit = 0;
codec—>msg [bit] = 0;
J/printf(”index=[%i] offset=[%i]\n”,index, offset);
while (TRUE) // Loop will terminate with a "break” call
{

Jxif ((clock() — ticks) > DECODE.LIMIT)

break;*/
// Update the hash state for the new message bit

SHA1lInput (codec—>state , c—>bitptr + codec—>msg[bit], 1);

// Compute the packet bit location corresponding to the hash
*(codec—>digest) = *x(codec—>state);
SHA1Result (codec—>digest);
location = 0;
for (i = 0; i < SHAILHASH.DWORDS; i++)
location += ((codec—>digest)—>Message_Digest[i])<<i;

location %= c—>packet_bits;

// Check for mark at calculated location
index = (buf->read + ((originbit + location) >> 3)) & buf-—>buffermask;

offset = (originbit + location) & 0x00000007;

J/printf(7"\ tindex=[%i] offset=[%i] location=[%i] (buf->buffer=[%i] & c—>bitmask=[%1])=[%i]\n

7,index , offset ,location ,buf—>buffer [index], c—>bitmask[offset],

//(buf—>buffer [index] & c—>bitmask[offset]));
if (buf—>buffer [index] & c—>bitmask|[offset])
{

//printf("\t\tEnter\n”);

// Update hash state for present partial message

codec—>hashstate [bit] = *(codec—>state);

bit++;

// IF a complete message hasn’t been decoded yet

228

441

443

445

447

449

451

455

457

459

461

463

465

467

471

473

475

477

479

481

if ((DWORD) bit < c—>padded_message_bits)
{
// Start with 0 for mnexzt bit in partial message
codec—>msg[bit] = 0;
//printf (*\ t\tContinue\n”) ;
continue;
}
// ELSE a complete message has been found
J//printf(”\t\tComplete message found\n”);
c—>message_count+4-+;

ExportMessage (¢, codec, sink);

bit ——;

limit ——;

if (0 == limit){
J/printf("\t\tlimit==0 break\n”);
break;

}

// Backtrack to last message bit that is a zero
while ((bit >= 0) && (codec—>checkbit[bit] || codec—>msg[bit]))

bit ——;

// If no bits are zero, then decoding is finished
if (bit < 0)

break;

// Change last zero bit to a one

codec—>msg[bit] = 1;

// Reset hash state
if (0 == bit) // to initial wvector
SHA1Reset (codec—>state);
else // to wector of previous partial message

*(codec—>state) = codec—>hashstate [bit —1];

}
buf—>read = (buf->read + 1) & buf-—>buffermask;

buf—>empty++;

buf—>margin ——;

//if (c—>diagnostics)

// printf(”\tDecode time: %0.05f\n”, ((clock() — ticks)/(double) CLOCKS_.PER.SEC)) ;

c—>dec_ticks 4= clock () — ticks;;

229

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

A.3.9 config.h

/3 sk sk s ok sk sk ok sk sk sk sk ok sk sk ok sk sk ok sk sk sk Sk ok sk sk ok sk R sk sk ok sk s ok sk R ok sk R sk sk ok sk R ok sk sk sk Sk K sk S ok sk Sk sk Sk R sk Sk ok sk S ok sk R sk sk ok sk ok Sk K oK

#
7

//

* Configuration Module for the Real—time BBC Codec/Modem *

sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk ok ok sk sk sk ok ok ok

* William L. Bahn *
* Academy Center for Information Security *
* Department of Computer Science *
* United States Air Force Academy *
* USAFA, CO 80840 *

sk sk sk sk ok sk sk Sk sk ok sk sk sk k sk sk sk ok sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk Sk sk sk sk sk Sk sk sk sk sk k sk sk sk sk sk sk sk ok sk sk Sk sk ok ok sk sk ok ok ok ok

« FILE :............ config.h *
* DATE CREATED:.... 03 SEP 07 *
* DATE MODIFIED :... 08 SEP 07 *

sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk ok sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk sk ok sk sk sk ok ok ok

* REVISION HISTORY

sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok ok sk ok sk sk sk sk sk ko sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok ok sk sk sk ok ok sk sk koo ok sk sk sk sk ok sk sk sk sk sk ok ok sk ok ok ok ok
*

* DESCRIPTION

% This module imports and manages the configuration information for the

* modem and the codec.

*/

ifndef CONFIGdotH
define CONFIGdotH

// REQUIRED INCLUDES

/

#

/

include <time.h>

#include ”dirtyd.h”

/
/
/

/ STRUCTURE DECLARATIONS
/-

typedef struct CONFIG CONFIG;

230

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

//

// STRUCTURE DEFINITIONS

// NOTE: Normally the structure definition would be in the =*.c file

// the structure members inaccessible to outside functions except

// public function calls. But for the real—time code

// to make the structure members directly wvisible to

// manipulate them.

struct CONFIG

{

int diagnostics;

// Direction
int scheduler.TX_notRX;

int scheduler_realtime;

// Source Parameters

char xpath;

char xsource_name;

DWORD source_sample_size_bytes;
DWORD source_sample_limit ;

WORD source-id;

// Codec Parameters
DWORD codec-message_-bits;
DWORD codec_random_bits;
DWORD codec_clamp_bits;
DWORD codec-fragment_bits;
DWORD codec-stop-bits;
DWORD codec_expansion ;
DWORD codec-decode_limit ;

DWORD codec-packet_-load ;

// Derived Codec Parameters

DWORD fragments; // Number of complete fragement

DWORD padded_-message_bits; // Length of message
DWORD packet_bits;

DWORD last_-packet_bit;

DWORD bytes_per_message ;

DWORD bytes_per_packet ;

DWORD bufferbytes_per_packet;

231

to make

through

it has been decided

the functions

after padding with random and

that

in padded message

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

// Buffer Parameters
double buffer_packets;
double buffer_lambda;

DWORD buffer_advance;

// Modem Parameters

DWORD modem_packet_rate_bps;
DWORD modem-_samples_per_bit;
double modem_gain_dB;

double modem_channel_loss_dB;
double modem_threshold_pct;
double modem_hysteresis_pct;
double modem_jitter_bits;
double modem_cushion_pct;

// Derived Modem Parameters
//DWORD bytes_per_sample ;
double nominal_tx_signal;
double nominal_rx_signal;
DWORD trx_bytes_per_packet_byte;

DWORD cushion_bits;

// Sink Parameters
char xsink_name;
DWORD sink_sample_size_bytes;

DWORD sink_-sample_limit ;

// Misc
DWORD message-count ;

DWORD marks;

// Lookup tables
BYTE Dbitptr [2]; // 0 and 1 represented

BYTE bitmask [8]; // Masks to pick off the bits

// Tally Counters
DWORD actual_trx_bytes;
DWORD nominal_trx_bytes;
double bytespertick;
clock_t dem_ticks;
clock_t dec_ticks;
clock_t ticks;

clock_t tot_ticks;

232

as BYTEs that

within a byte

can be passed by

reference

132

134

136

138

140

10

12

14

16

18

20

22

24

26

28

30

32

/
// PUBLIC FUNCTION PROTOTYPES

//

CONFIG #*CONFIG_Del (CONFIG #p) ;
CONFIG *CONFIG_New (char xfilename , DWORD xerrcode) ;

//
#endif

A.3.10 config.c

/K K sk sk ok sk o ok sk ok sk ok ok ok K ok o oK sk K sk ok K sk ok ok sk K ok sk K sk ok ok sk o ok ok K ok sk K ok oK oK ok o ok ok K ok ok K ok o oK ok K sk ok K sk oK ok sk K ok ok K ok ok ok ok K K
* Configuration Module for the Real—time BBC Codec/Modem *

sk sk sk sk sk sk sk sk ok ok ok sk Rk sk sk sk sk sk sk sk sk sk sk ok ok ok K sk Rk sk sk sk sk sk sk sk sk sk sk ok ok ok ok R Rk sk sk sk sk sk sk sk sk sk oK ok ok ok sk Rk sk sk sk sk ok ok sk Sk ok K oK K

* William L. Bahn *
* Academy Center for Information Security *
« Department of Computer Science *
* United States Air Force Academy *
* USAFA, CO 80840 *

sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok ok sk ok sk sk sk sk sk ko sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok ok sk sk sk ok ok sk sk koo ok sk sk sk sk ok sk sk sk sk sk ok ok sk ok ok ok ok

« FILE :............ config.c *
*x DATE CREATED:.... 038 SEP 07 *
* DATE MODIFIED :... 08 SEP 07 *

sk sk sk sk sk sk sk ok ok ok ok sk Rk sk sk sk sk sk sk sk sk sk sk ok ok ok K R Rk sk sk sk sk sk sk sk sk sk oK oK ok ok K R Rk sk sk sk sk sk sk sk sk sk oK ok ok ok K R Kk sk sk sk ok ok sk ok ok K K X
*

* REVISION HISTORY

*

sk sk sk sk sk sk ok ok ok ok K K K Kk sk sk sk sk ok sk sk ok oK oK ok ok K K Kk sk sk sk sk sk sk sk ok oK oK ok K K K Kk sk sk sk sk ok ok sk sk oK oK oK ok K K K Kk ok sk sk ok ok ok ok oK K K X
*

* DESCRIPTION

* This module imports and manages the configuration information for the

* modem and the codec.

*/

//
// REQUIRED INCLUDES

//
#include <stdlib.h> // malloc (), free()

#include <math.h>
#include <string.h>

#include <ctype.h>

233

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

#include ”config.h”
#include ”dirtyd.h”

#define USRP_SAMPLE_SIZE (2+sizeof(float))

//
// STRUCTURE DEFINITIONS

//

// NOTE: Normally the structure definition would be in the =*.c file

to make

// the structure members inaccessible to outside functions except through

// public function calls. But for the real—time code it has been decided

// to make the structure members directly visible to the functions

// manipulate them.

//

that

// PRIVATE FUNCTION DEFINITIONS
//

// Nominal String: zzz”filename” zzzx

// If both double quotes are not found, a NULL pointer is returned.

char xExtractName (char =xs)
{

char xfilename;

char x*t;

int len;
filename = NULL;

// Advance s to first double quote or end of string
while ((*xs)&&(’\”’ != xs))

s++;
// If double quote found, advance to mnext character
if (xs)

s++;
// Advance t to mext double quote or end of string
for (t = s; (*xt)&&(\77 != *t); t++4)

EMPTYLOOP;

// Calculate length of string between first pair of double quotes

len = t — s;

t = filename = malloc(len + 1);

234

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

if (filename)
{
while (len——)
#t++ = xs++;

"\O 5

*t

return filename;

// NOTE: The character

void UpdateConfig (CONFIG *c, char xstring)

string may me changed by

this function .

{
char x*xs, xv;
DWORD vi ;
double vf;
if (1) || (!string))
return;
// Advance into string to first non—whitespace character
for (s = string; isspace(*s); s++)
EMPTYLOOP;
// Ignore blank or comment lines
if ((NUL = xs) || (%' = x5))
return;
// Identify parameter keyword and convert to uppercase
for (v = s5 (xv) & (!((isspace(xv)) || (7: == xv) [| (=" == v))); vi+)
*v = toupper(xv);
// Terminate keyword and start value immediately after (if anything there)
if (xv)
svi++ = NUL;
// Skip over whitespace, colons, and equal signs.
while ((isspace(*xv)) || (’:7 == *v) || ('=" == =*v))
v+t
// Process those parameters that use string wvalues
if (!stremp (s, ”"PATH”)) c—>path = ExtractName(v);
else if (!strcmp (s, "SOURCENAME”)) c—>source_name = ExtractName(v);
else if (!strcmp (s, "SINKNAME”)) c—>sink_name = ExtractName (v);
else if (!strcmp (s, "DIAGNOSTICS”))
/*{

235

124

126

128

130

132

134

136

138

140

142

144

146

148

150

152

154

158

160

162

164

166

168

if (I'stremp (v,” True”)) =/

//}

else

{

c—>diagnostics = TRUE;

// Process remaining parameters

// Eztract wvalue from string

vi =

vi =

atoi(v);

atof (v);

// SCHEDULER Configuration

if (!strcmp (s, "SCHEDULER.TX_NOTRX”))

else

if

(!'strcmp (s, ”SCHEDULER_REALTIME”))

// SOURCE Configuration

else

if

(!'stremp (s, "SOURCE.ID”))

// SOURCENAME processed above due to string

// CODEC Configuration

else
else
else
else
else
else
else

else

if
if
if
if
if
if
if
if

(!'strcmp (s, "CODECMESSAGEBITS”))
(!'stremp (s, ”CODEC_RANDOM.BITS”))
(!'strcmp (s, "CODEC.CLAMP_BITS”))
(!'strcmp (s, "CODECFRAGMENT.BITS”))
(!'strcmp (s, "CODEC_STOP_BITS”))
(!'stremp (s, "CODECEXPANSION”))
(!'stremp (s, ”CODECPACKET.LOAD”))
(!'strcmp (s, ”"CODEC_DECODE_LIMIT”))

// BUFFER Configuration

else

else

if

if

(!'strcmp (s, "BUFFERPACKETS”))
(!'stremp (s, "BUFFERLAMBDA”))

// MODEM Configuration

else
else
else
else
else
else
else

else

if
if
if
if
if
if
if

if

// SINK

(!'strcmp (s, "MODEM_PACKET RATEBPS”))
(!'strcmp (s, "MODEM_SAMPLES_PER_BIT”))
(!'strcmp (s, "MODEM.GAIN.DB”))

(!'strcmp (s, ”"MODEM_CHANNEL_LOSS.DB”))
(!'stremp (s, "MODEM.THRESHOLDPCT”))
(!'strcmp (s, "MODEM_HYSTERESIS_PCT”))
(!'strcmp (s, "MODEM_JITTER_BITS”))

(!'strcmp (s, "MODEM_CUSHION_PCT”))

Configuration

c—>scheduler_.TX_notRX = vi

13

c—>scheduler_realtime

c—>source-id = vi;

value

c—>codec_-message_bits

c—>codec_random_bits

c—>codec_clamp_bits =

c—>codec_fragment_bi
c—>codec_stop_bits =
c—>codec_expansion =

c—>codec-packet_load

ts

c—>codec_decode_limit

c—>buffer_packets =

c—>buffer_lambda = v

c—>modem_packet_rate_bps

c—>modem_samples_per_bit

c—>modem_gain.dB = v

c—>modem_channel_loss_dB

c—>modem_threshold_p

Vi

£

f;

ct

3

c—>modem_hysteresis_pct

c—>modem_jitter_bits

c—>modem_cushion_pct

236

vi;

vij

vi

vi

;

;

= vi;

vi;

vi;

vi;

= vf;

vf;

vf;

vi;

// SOURCE_FILE_NAME processed above due to
170 else if (!strcmp(s, "SINK.SAMPLE_LIMIT”))
}

172}

string wvalue

c—>sink_sample_limit

vi;

5

174/ /-
// PUBLIC FUNCTION DEFINITIONS

176/ /-

178 CONFIG x*CONFIG_Del (CONFIG xp)

{
180 if (p)
{
182 if (p—>source_name)
{
184 free (p—>source_name) ;
p—>source_name = NULL;
186 !
if (p—>sink_name)
188 {
free (p—>sink_name) ;
190 p—>sink_name = NULL;
}
192 free(p);
p = NULL;
194}
196 return p;
}
198
CONFIG *CONFIG_New (char xfilename , DWORD xerrcode)
200 {

CONFIG *p;
202 FILE =xfp;

DWORD err ;
204 int i;

char xs;
206

p = NULL;
208 err = 0;

s = NULL;
210

p = (CONFIG *) malloc(sizeof (CONFIG)) ;
212 if (!p)

err |= 1 << 0;

237

214

216

218

220

222

224

226

228

232

234

236

238

240

242

244

246

248

250

252

254

256

258

if

(terr)

/

// NOTE: Establish default values and then overwrite with file data
//
p—>diagnostics = FALSE;
// Direction
p—>scheduler . TX_notRX = TRUE;
p—>scheduler_realtime = FALSE;
// Source Parameters
p—>path = NULL;
p—>source_name = NULL;
p—>source_id = 0;
// Codec Parameters
p—>codec_message_bits = 512;
p—>codec_-random_bits = 0;
p—>codec_clamp_bits = 1;
p—>codec_fragment_bits = 1;
p—>codec_stop_-bits = 100;
p—>codec_expansion = 100;
p—>codec_packet_load = 5;
p—>codec_decode_limit = 100;
// Buffer Parameters
p—>buffer_packets = 2.0;
p—>buffer_lambda = 1.0;
// Modem Parameters
p—>modem_packet_rate_bps = 500000;
p—>modem_cushion_pct = 10.0;
p—>modem_samples_per_bit = 4;
p—>modem_threshold_pct = 46.3744;
p—>modem_hysteresis_pct = 5.0;

p—>modem_gain_.dB =

80.0;

p—>modem_channel_loss.dB = 3.0;

p—>modem_jitter_bits

// Sink Parameters
p—>sink_name = NULL;

p—>sink_sample_limit

= 3.0;

238

260

262

264

266

270

272

274

276

278

280

282

284

286

288

290

292

294

296

300

302

p—>sink_sample_size_bytes = 0;

//

// Update values from configuration file

//

if (filename)
{
fp = fopen(filename, "rt”);
if (fp)
{
while (!feof(fp))
{
s = fdgets (fp);
UpdateConfig(p, s);
if (s)
free(s);
s = NULL;
}

fclose (fp);

//

// Calculate derived parameters

//

// bitmasks to mask bits within a byte.
for (i = 0; i < 8; i++)

p—>bitmask[i] = ((BYTE) 1) << i;

// Set USRP sample size to two floats (complex 1Q)
if (p—>scheduler.TX_notRX)

p—>sink_sample_size_bytes = USRP.SAMPLE_SIZE;
else

p—>source_sample_size_bytes = USRP_.SAMPLE_SIZE;

// Set sink sample limit
if (!p—>sink_sample_limit)
{
if (p—>scheduler_TX_notRX)
p—>sink_sample_limit = 2000000;

else

239

304

306

308

310

312

314

316

318

320

322

324

326

328

330

332

334

336

338

340

342

344

346

348

p—>sink_sample_limit = 1000;

// Set source filename to default if not set by config file

if (!p—>source._name)

{
if (p—>scheduler_.TX_notRX)
{
p—>source_name = malloc(strlen ("usrp.txd”)+1);
if (p—>source_name)
strcpy (p—>source_name, ”usrp.txd”);
¥
else
{
p—>source_-name = malloc(strlen ("usrp.srp”)+1);
if (p—>source_name)
strcpy (p—>source_name, ”usrp.srp”’);
}
¥

// Set sink filename to default if not set
if (!p—>sink_name)
{

if (p—>scheduler_-TX_notRX)

{

// Sink Parameters

by config file

p—>sink_name = malloc(strlen (”usrp.srp”)+1);

if (p—>sink_name)

strcpy (p—>sink_name, ”usrp.srp”);

else

// Sink Parameters

p—>sink_name = malloc(strlen (”usrp.rxd”)+1);

if (p—>sink_name)

strcpy (p—>sink_name, ”usrp.rxd”);

// Calculate and store derived quantities

p—>bytes_per_message = p—>codec_message_bits /8;

if (p—>bytes_per_message % 8)

p—>bytes_per_message++;

p—>packet_bits = (p—>codec_message_bits % p—>codec_expansion);

p—>last_packet_bit = p—>packet_bits — 1;

240

p—>bytes_per_packet = p—>packet_bits /8;

if (p—>bytes_per_packet % 8)
p—>bytes_per_packet++;

p—>bufferbytes_per_packet = p—>bytes_per_packet + 1;

p—>buffer_advance = (DWORD) (p—>bytes_per_packet * p—>buffer_lambda);

356

358

360

362

364

366

368

370

372

374

376

378

380

382

384

386

388

390

392

p—>cushion_bits = (DWORD)

p—>nominal_tx_signal

p—>nominal_rx_signal

// Compute

storage

pow (10.0,

pow (10.0,

requirments for BBC decode

(p—>packet_bits

* p—>modem_cushion_pct / 100.0);

(p—>modem_gain_dB) /20.0) ;

(p—>modem_gain.dB — p—>modem_channel_loss_.dB) /20.0);

tree

if ((0 == p—>codec_clamp_bits)||(0 == p—>codec_fragment_bits))

{

p—>codec_clamp_bits

p—>codec_fragment_bits

}

0;

= p—>codec_random_bits + p—>codec_message_bits;

p—>fragments = (p—>codec_random_bits + p—>codec_message_bits)/p—>codec_fragment_bits;

p—>padded_-message_bits

= p—>fragments =*

(p—>codec_clamp_bits + p—>codec_fragment_bits);

if ((p—>codec_.random_bits 4+ p—>codec_message_bits) % p—>codec_fragment_bits)

{

p—>padded_message_bits += p—>codec_clamp_bits;

p—>padded_-message_bits += (p—>codec_-random_bits 4+ p—>codec_message_bits)%p—>

codec-fragment_bits;

}

p—>padded_-message_bits += p—>codec_stop_bits;

//Lookup tables
// 0 and 1
p—>bitptr [0] = 0;

p—>bitptr [1] = 1;

// Tally

p—>message_count = 0;

counters ;

// State information

p—>marks = 0;

// Tally Counters

represented as

p—>actual_trx_bytes =

p—>nominal_trx_bytes
p—>dem_ticks = 0;
p—>dec_ticks = 0;

p—>ticks = 0;

)

BYTEs that

can be passed by reference

241

394

396

398

400

402

404

406

408

10

12

14

16

18

20

22

24

p—>tot_-ticks = 0;

p—>trx_bytes_per_packet_byte = 8 * p—>modem_samples_per_bit

p—>bytespertick = (p—>modem_packet_rate_bps

* p—>modem_samples_per_bit

+ USRP_SAMPLE_SIZE
) / ((double)CLOCKS_PER.SEC) ;

}
if (err)

p = CONFIG_Del(p);
kerrcode = err;

return p;

* USRP_SAMPLE_SIZE;

A.3.11 dirtyd.h

/*

* PROGRAMMER 7”BAHN, Wdilliam?”

*x TITLE 7Simple Utilty Functions”
* CREATED 08 FEB 07

* MODIFIED 08 FEB 07

* FILENAME Pdirtyd.c”

*/

/*

* GENERAL DESCRIPTION

* This file contains many wuseful functions —

* to time.

and more

are

added from

time

* REVISION HISTORY

* REV 2: 02 DEC 03
* Added the GetBoundedInt() function

242

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

* Added the InBounds () macro

* Added the GetDouble() function

* REV 1: 28 NOV 03

* Added the PI macro (good to 20 digits)
* Added the StripCR () function .

* Added the ClearBuffer () function.

* Added the WaitForKey() function.

* REV 0: 09 NOV 038

* Initial Creation.

*/

#ifndef _DirtyD_H

#define _DirtyD_H

// This directive prevents the prototypes and, most
// function definitions (which would normally be in

// from being included more than once.

importantly ,

a separate

the

.c file)

//

// At the end of the excluded block of code, the identifier is defined.
//

//== INCLUDE FILES

//

#include <stdio.h> // FILE

#include ”bytes.h”

//
//== MACRO DEFINITIONS

//

#define FALSE (0)
#define TRUE (!FALSE)

#define LO (FALSE)
#define HI (TRUE)

#define PI (3.1415926358979323846)

#define RET_DEFAULT (0)
#define RET-CLIPPED (1)

243

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

#defin
#defin
#defin
#defin

#defin

#defin

#defin

#defin

//

e DD.CLIP.NONE (0x00)
e DD_CLIP_MIN (0x01)
e DD_CLIP_.MAX (0x02)
e DD_CLIP.MINMAX (0x03)

e BLANKLINE putc(’\n’, stdout);
e EMPTYLOOP {}

e NUL (’'\0°)

e InBounds(min, test, max) (((min) <= (test)) && ((test) < (max)))

//== FUNCTION PROTOTYPES

//

// Get
char
char

int

input from a stream
«fdgets (FILE xfp);
fdgetc (FILE x*fp);

fdgeti (FILE *fp);

long int fdgetl (FILE xfp);

float

double

// Get

char
char

int

fdgetf (FILE xfp);

fdgetd (FILE xfp);

input from stdin
xdgets (void) ;
dgetc (void) ;

dgeti(void) ;

long int dgetl(void);

float

double

void
char
char
FILE
int
double
double
void
int
double
double
double

dgetf(void) ;

dgetd (void) ;

PrintHeader (void) ;

*StripCR (char x*s);

*GetFileName (char xname, char *xext, int size);
*OpenAndVerify (char *xname, char xmode) ;

rand_int (int min, int max);

rand_norm (void) ;

rand_fp (double xmin, double max) ;

ExitIfError (int errcode);

GetBoundedInt (int min, int max, int def, int mode);
GetBoundedDouble (double min, double max, double def, int mode);
BoundedDouble (double x, double min, double max, int mode);

StringToBoundedDouble (char *s, double def, double min, double max,

244

int mode) ;

116

118

120

122

124

126

128

130

132

134

136

138

140

142

11

13

int GetInt (int min, int max);

double GetDouble(double min, double max) ;

void smy_memory (FILE xlog, void xp, size_t bytes,

void freelD (void x*p);

void xmalloclD (size_t cols, size_t size);

void free2D (void *xp, size_t rows);

void xxmalloc2D (size_t rows, size_t cols, siz

void free3D (void *xxp, size_t sheets, size_t

void xxxmalloc3D(size_t sheets, size_t rows,

DWORD Bits2Bytes (DWORD bits) ;

e_t size);

rows) ;

int action ,

size_-t cols ,

BYTE xMemorySet (BYTE *p, DWORD bytes, BYTE v);

BYTE *MemoryCopy (BYTE xdest , BYTE xsrc, DWORD bytes);

void DisplayHEX (FILE xfp, BYTE *xp, DWORD bytes,

BYTE GetBit (BYTE xd, size_-t size , DWORD bit);

void SetBit (BYTE *d, size_t size, DWORD bit ,

char xParseString (char xs, charx fdelim , char

DWORD rand_DWORD (DWORD max) ;

int memequal(char xsl1, char *s2, DWORD bytes)

#endif

A.3.12 dirtyd.c

/*

int v);

*tdelim) ;

H

int mode) ;

char xs);

size_t size);

* PROGRAMMER ”BAHN, William?”

x TITLE 7Simple Utilty Functions”
* CREATED 08 FEB 07
« MODIFIED 08 FEB 07
* FILENAME 7dirtyd.c”
*
-/
/*
*

* GENERAL DESCRIPTION

*

* This file

contains many useful functions —

and more

245

are

added from

time

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

* to time.

* REVISION HISTORY

* REV 2: 02 DEC 03

* Added the GetBoundedInt() function
* Added the InBounds () macro

* Added the GetDouble() function

* REV 1: 28 NOV 03

* Added the PI macro (good to 20 digits)
* Added the StripCR () function.

* Added the ClearBuffer () function.

* Added the WaitForKey () function.

* REV 0: 09 NOV 08

* Initial Creation.

//
//== INCLUDE FILES

//
#include <stdlib.h> // exit ()
#include <string.h> // strien ()
#include <ctype.h>

#include 7 dirtyd .h”

//
//== FUNCTION DEFINITIONS
//
//
// FUNCTION: PrintHeader ()

// #include <stdio.h> // printf()
1/

#ifdef PROGRAMMER

// This function assumes that the #define statements that

246

create

these

61

63

65

67

69

71

73

75

7

79

81

85

87

89

91

93

95

97

99

101

103

105

//
7/
//
//
7/
7/
//

identifiers are wused, typically in the function where main() is defined.

By checking if one of them is declared, this function can be skipped if
necessary so that the other functions can be wused. However, if this
function IS to be available , then it is important that the compiler
encounter the necessary #define statements before this file is included

for the wery first time.

void PrintHeader (void)

{

printf (”

» n”);
5

printf(”Course Y%s—%i (%s %i)\n”, COURSE, SECTION, TERM, YEAR) ;
printf(”Programmer ... %s (%s)\n”, PROGRAMMER, PROG.CODE) ;
printf(” Assignment ... %s (Rev %i) (Source Code in %s)\n”,

ASSIGNMENT, REVISION, FILENAME) ;

printf (” Description.. %s\n”, TITLE);

printf(” %s\n” , SUBTITLE) ;
printf (” >
” n")

return;
¥
#Hendif
/*

* INPUT FUNCTIONS

*

* In general, the use of scanf() and its sister functions is to be

* avotded at mearly all costs. These functions can be quite useful and
* certaitnly have their place, but for the wvast majority of wusers, they
% cause for more problems than they are worth.

*

* The preferred method is to wuse fgets (), which provides enough

* information to permit quite robust input wvalidation .

*

* char xfgets (char *xs, int n, FILE xfp)

*

* The pointer ’s’ (which is also the return value of the function) must
* point to a writeable string in memory containing at least ’'n’ bytes.
*

* The function will read from the input stream ’'fp’ ' until either (n—1)
* bytes or a newline character has been read from the stream , which ever
* comes first. All bytes read from the stream , including the mnewline
% character, are copied to the string pointed to by ’s’. The string is
* then terminated by a NUL character.

247

107 % The reason that the newline character is copied is so that an imspection
* of the returned string can determine if the entire line was retrieved

109 * or if there were too many characters to fit into the awvailable string.

111 = PHILOSOPHY

113 * Most of the time, Users want to get single items from the keyboard and
* if something goes wrong (e.g., the User types a string longer than can
115 * be handled) then it is wsually sufficient to make that known to the
* program and let the programmer worry about how to deal with it.
117 =
*« The ”input string longer than the input buffer” problem can be dealt
119 % with by wusing a dynamically allocated buffer that grows to accommodate
* the length of the string actually entered.

121 *

123 x/

125 //

//== FUNCTION DEFINITIONS

127 //

129 char xfdgets (FILE xfp)

{

131 char =xs; // Pointer to the dynmnamically growing string buffer.

size_t size; // Present length of the string buffer.
133 size_t len; // Present length of the string in the string buffer.

int c; // Character read from the input stream
135

s = NULL;
137 size = 1; // Initial size that will be allocated.

len = 0;
139

if (NULL = fp)
141 fp = stdin;
143 while ((NULL == s) || (NUL != s[len —1]))

{
145 // Double the buffer size

if (2xsize < size) // Protect against wrap—around
147 {
if (s)
149 {
free(s);

248

151

155

157

159

161

163

165

169

171

173

175

177

179

181

185

187

189

191

193

195

s

El

s = NULL;

return s;

ize *= 2;

= (char x) realloc(s, size);

if (NULL == s)

return s;

// Read in more

do

{

} while ((len <

c = fgetc(fp);

// Failed to r

eallocate string buffer

characters up to the buffer capacity

s[len++4] = ((EOF == c¢) ||(’\n’ ==

return s;

size) && (NUL !=

char fdgetc (FILE xfp)

{

char x*s;

char n;

if

fdgets (fp);
03
(s)

free(s);

return n;

int fdgeti (FILE xfp)

{

char x*s;

int n;

if

fdgets (fp);
03
(s)

c))? NUL : (char) c;
s(len—1]));

249

n = atoi(s);

197 free(s);

199
return n;

201 }

203 long int fdgetl (FILE xfp)
{

205 char xs;

long int n;
207

s = fdgets(fp);
209 n = 0;

if (s)
211 {

n = atol(s);

213 free(s);

215
return n;

217 }

219 float fdgetf(FILE xfp)
{

221 char #s;

float n;
223

s = fdgets(fp);
225 n = 0;

if (s)
227 |

n = (float) atof(s);

229 free(s);

231
return n;

233 }

235 double fdgetd (FILE x=fp)
{
237 char xs;
double n;
239
s = fdgets (fp);

250

241

245

247

249

251

253

255

259

261

263

265

267

269

271

275

277

279

281

283

285

n = 0;
if (s)
{

n = atof(s);

free(s);

return n;

¥
// Functions that get only from stdin

char xdgets(void)

{

return fdgets(stdin);

char dgetc(void)

{

return fdgetc(stdin);

int dgeti(void)
{

return fdgeti(stdin);

long int dgetl(void)

{

return fdgetl(stdin);

float dgetf(void)
{

return fdgetf(stdin);

double dgetd (void)

{

return fdgetd (stdin);

/%

* FUNCTION: StripCR ()

* This functions strips any trailing

* string. In order to catch carriage

Carriage

returns

Returns from

that might be

251

the end of a

embedded

in

287

289

291

293

295

297

299

301

303

305

307

309

311

313

315

317

319

321

323

325

327

329

* the middle of a string, it scans the string from the beginning and looks
* for a Line Feed, or a Carriage Return and replaces the first occurance
* with a NULL terminator. The use of a do/while() loop allows the test
* to operate on the character just examined (and possibly modified) so
* that s exits correctly regardless of the NULL terminitor found was
* itnserted by the loop or was part of the original string.
*/
char *StripCR (char xs)
{
int i;
i = —1;
do
{
switch (s[++1i])
{
case 10: // Line Feed
case 13: // Carriage Return
s[i] = "\0’;
¥
} while(’\0’ != s[i]);
return(s);
}
//
// FUNCTION: GetFileName ()
//
// This functions gets the a file name from the standard input device and
// returns a string pointer to tt. There are several modes in which it can
// be wused.
//
// The simplest is to pass null arguments for the name and ezt wvariables
// and 0 for the size. This tells the function to dynamically allocate
// enough memory to accommodate whatever is submitted and to return a
// pointer to the allocated memory.
//
// Ezample :
//
// char xfilename ;
//
// filename = GetFileName (NULL, NULL, 0);
//

252

331

333

335

337

339

341

343

345

347

349

351

353

355

357

359

361

363

365

367

369

371

373

375

//
7/
//
//
7/
7/
//
//
//
//
//
7/
//
//
7/
//
//
7/
7/
//
//
7/
//
//
7/
//
//
7/
7/
//
//

ch

{

The next easiest way is to allocate memory yourself for the string and

tell the function where that memory is located. This is most often done
using a statically allocate character array but previously allocated
dynamic memory will work the same way. Here you MUST tell the function
how much memory is available for the string. The function will ensure
that the string does not exceed the indicated size, including the null
terminator .

Exzample :

char filename [13];

GetFileName (filename , NULL, 18);

If you provide a non—NULL pointer for mame and you indicate a size of
zero, the function will assume that the pointer is for previously
allocated memory that ts to be freed and then the pointer re—used to
point to mew memory. Therefore, do NOT pass the name of a static array
under these conditions as a rTuntime error will result.

The ezt argument can be used to prowvide a default file extension. If
the wuser enters an exztension , this parameter will be ignored. If the
user does mnot include an extension , the one supplied will be appended.
Whether the wuser entered an extension is determined by checking for the
presence of a period anywhere in the string.

If the given walue for ext is NULL, then no extension will be added
even if the wuser does not supply one. If the wvalue given for ezt is

a pointer to a null string (t.e., 7”), thenm if an extension is not
supplied by the wuser an empty extension will be added — meaning that
the 7.7 delimiter will be added but nothing more.

ar xGetFileName (char *name, char *ext, int size)

int length;
char c;
int endloop;

int extgiven;
// Check if size 1is mnegative
if(0>size)

return (NULL) ;

// Check to see if string is static or dynamic

if ((NULL == name) || (0 == size))

253

377

379

381

383

385

387

389

391

393

395

397

399

401

403

405

407

409

411

413

415

417

419

// String is

length = 0;

dynamic

name = realloc (name, length + 1);
name [length] = ’\0’;

¥

else

{
// String is static or fized length
if (size < (int) (strlen(ext)+3)) // Eztension too

ext = NULL;

¥

endloop = FALSE;

extgiven = FALSE;

while (! endloop)

{

// Check if there is enough room for another

if((0 < size) && !(length < size))

endloop = TRUE;

switch(c = getchar())

long ,

character

ignore it .

in string.

{
case EOF: // End of File found
case 10: // Form Feed encountered
case 13: // Carriage Return encountered
endloop = TRUE;
break;
case .’ : // Eztension Delimiter found
extgiven = TRUE;
default // All characters (including delimiter above)
name = realloc (name, length + 2);
name [length+4] = c;
name[length] = ’\0’;
break;
}
}
// Check if wuser supplied an extension and wuse default

if ((!extgiven)&&(NULL !=
{

ext))

254

if

appropriate .

421

423

425

427

429

431

433

435

437

439

441

443

445

447

449

451

455

457

459

461

463

465

if (0 == size) // dynamic array

{
// Allocated additional memory for the exztemnsion
name = realloc(name, length 4+ strlen (ext) 4+ 2);
}
else // static or fized length array
{
// Ensure that the static array can take the exztension
name[size — strlen(ext) — 2] = "\0’;
}
strcat (name, ”.7);

strcat (name, ext);

return (name) ;

//
// FUNCTION: OpenAndVerify()

// #include <stdio.h> // fopen (), FILE, printf()
// #include <stlib.h> // exit()

//
FILE *OpenAndVerify (char xname, char sxmode)
{
FILE xfp;
fp = fopen (name, mode);
if (NULL == fp)
{
printf (”ABORT! — Failed to open file <%s> (mode %s)\n”, name, mode);
exit (1);
}
return fp;
}
//

// FUNCTION: rand_int ()

// #include <stlib.h> // rand()

// This function returns a random integer value between min and mazx

// inclusive.

int rand_int (int min, int max)

{

255

467

469

471

473

477

479

481

483

485

487

491

493

495

497

499

501

503

505

507

509

}

//

return(rand ()%((max—min) 4+ 1) 4+ min);

7/
7/
//

FUNCTION: rand_-norm ()
#include <stlib.h> // rand(), RAND.MAX

//
//

do
{

This function returns a random floating point value between 0.0 and 1.0

inclusive .

uble rand_norm (void)

return((double)rand () /(double)RANDMAX) ;

//
//
//

FUNCTION: rand_-fp ()

7/
//

This function returns a random floating point wvalue between min and maz

inclusive .

double rand._fp (double min, double max)

{

return (min + rand_norm () *(max—min)) ;

//
7/

FUNCTION: EzitlfError ()

//

void ExitIfError (int errcode)

{

if (errcode)

{
printf (”Abort! (Error #%i detected)\n”, errcode);

exit (errcode);

I

return;

//
7/
//
//
//
7/

GetBoundedInt ()

This function gets an int from the keyboard and checks if it is within
the specified limits. If it is, then that wvalue is returned, otherwise
the limit that ts wiolated 1is returned if the mode is set RET_-CLIPPED.

Otherwise , the def(ault) value is returned (use RET-DEFAULT).

256

511

513

515

517

519

521

523

525

527

529

531

533

535

537

539

541

543

545

547

//

in

{

//

t GetBoundedInt(int min, int max, int def, int

int i;

i = dgeti();

if (i < min)

i = (RET_CLIPPED == mode)? min : def;

if (i > max)

i = (RET-CLIPPED == mode)? max : def;

return(i);

mode)

7/
7/
//
//
7/
//

GetBoundedDouble ()
This function gets a double from the keyboard
the specified limits. If it is, thenm that wval

the limit that ts wviolated 1is returned if the

and checks if it

ue 1is

mode

returned ,

i 5

Otherwise , the def(ault) value is returned (use RET-DEFAULT).

i85

within

otherwise

set RET_-CLIPPED

double GetBoundedDouble(double min, double max,

{

double x;

x = dgetd () ;

if (x < min)

x = (RET_CLIPPED == mode)? min : def;

if (x > max)

x = (RET_-CLIPPED == mode)? max : def;

return(x);

double def,

549 double BoundedDouble (double x, double min, double max,

551

553

555

{

if ((DD_CLIP.MINMAX == mode) | | (DD_CLIP_.MIN ==
if (x < min)
X = min;

if ((DD_-CLIP.MINMAX == mode) | | (DD-CLIP.MAX ==

mode))

mode))

257

int mode)

int mode)

557

559

561

563

565

567

569

571

573

575

577

579

583

585

587

589

591

593

595

597

599

if (x > max)
X = max;

return x;

double StringToBoundedDouble(char *s, double def, double min, double max,int mode)

{

double x;

x = (s)? atof(s) : def;

return BoundedDouble(x, min, max, mode);
}
//

// GetInt ()
// This function calls GetBoundedInt with an embedded CLIPPED option.

//
int GetInt(int min, int max)
{
return (GetBoundedInt (min, max, 0, RET_.CLIPPED));
}
//

// GetDouble ()
// This function calls GetBoundedDouble with an embedded CLIPPED option.

//
double GetDouble(double min, double max)

{
return (GetBoundedDouble (min, max, 0, RET_.CLIPPED));
}
//
// DYNAMICALLY ALLOCATED ARRAYS
//

#define MYMEMMALLOC (0)
#define MYMEM.FREE (1)
#define MYMEM.CREATE (2)
#define MYMEMDESTROY (3)
#define MYMEM.LINES (8192)

void smy_memory (FILE xlog, void xp, size_t bytes, int action, char xs)

{

258

601

603

605

607

609

611

613

615

617

619

621

623

625

627

629

631

633

635

637

639

641

643

#ifdef MYMEM

static
static
static
static
static

static

static
static

static

int i;

#endif

FILE
long
long
long
long

long

smemlog = NULL;
int Allocations = 0;
int Deallocations = 0;

int NetAllocations =

(=T =]

int MaxAllocations =

int TotalBytes;

size_t s*map_bytes = NULL;

void

s*map._-ptrs = NULL;

int map_entries = 0;

switch (action)

{

case MYMEM.CREATE:

#ifdef MYMEM

memlog

log;

if (memlog)

{
fprintf(memlog, ”"%s\n”, s);
}
map-bytes = (size_-t *) my-memory(NULL, NULL,
MAP — bytes”);
map-ptrs = (void xx) my_-memory(NULL, NULL,

MAP — ptrs”);

if (map_-bytes && map_ptrs)

{
for (i = 0; i < MYMEMLINES; i++)
{
map_ptrs[i] = NULL;
map-_bytes[i] = 0;
¥
map_entries = 0;
}
#else
break;
#endif
break;

case MYMEMMALLOC:

p =

malloc(bytes);

259

MYMEM_LINES* (sizeof(size_t)), MYMEMMALLOC,

MYMEM_LINESx* (sizeof (void

*)), MYMEMMALLOC,

»

»

645

647

649

651

653

655

657

659

661

663

665

667

669

671

673

675

677

679

681

683

685

687

#ifdef MYMEM
Allocations++;
NetAllocations++;
TotalBytes += bytes;
if (NetAllocations > MaxAllocations)

MaxAllocations =

NetAllocations;

if (memlog)

{
fprintf(memlog, "REQUESTED: %6u bytes”, bytes);
if (p)
fprintf (memlog, 7 [%p]”, pP);
else
fprintf(memlog, 7 [-————————] DENIED!”) ;
fprintf(memlog, ” Allocs: %1011 (%101i net — %101i)”,
TotalBytes) ;
if (s)
fprintf (memlog, 7 %s”, s);
fprintf (memlog, ”\n”);
fflush (memlog) ;
}
if (map_-bytes && map_ptrs)
{
if (map_entries < MYMEM_LINES)
{
map_ptrs [map_entries] = p;
map-bytes [map_entries] = bytes;
map_entries—+-;
}
else
{
fprintf(memlog, ”Pointer Map entry limit exceeded\n”);
¥
¥
#endif
break;

case MYMEMFREE:

260

Allocations ,

NetAllocations ,

#ifdef MYMEM
689 Deallocations—++;
NetAllocations ——;
691

if (memlog)

693 {
fprintf(memlog, ”"FREEING..:)
695
if (p)
697 fprintf (memlog, ” [%p]”, p);
else
699 fprintf (memlog, 7 [————————] NULL PTR!”);
701 fprintf (memlog, ” Deallocs: %101i (%101li net — %101i)”, Deallocations, NetAllocations ,
TotalBytes) ;
703 if (s)
fprintf(memlog, 7 %s”, s);
705
fprintf(memlog, 7\n”);
707
fflush (memlog) ;
709 }
if (p)
711 {
if (map_bytes && map_ptrs)
713 {
for (i = (map-entries—1); (i >= 0) && (p != map-ptrs[i]); i——)
715 i // EMPTY LOOP;
if (i >= 0)
717 {
TotalBytes —= map-bytes[i];
719 map-_entries ——;
while (i < map_entries)
721 {
map_ptrs[i] = map_ptrs[i+1];
723 map_bytes[i] = map_bytes[i+1];
i+
725 }
}
727 else
{
729 fprintf (memlog, "Pointer Map entry not found!\n”);
}
731 }

261

}

733 #endif
735 if (p)
free (p);
737
break;
739

case MYMEMDESTROY :

741
#ifdef MYMEM
743 if (memlog)
{
745 fprintf (memlog, ” n”);
fprintf (memlog, "%s\n”, s);
747 fprintf (memlog, ”"RESIDUAL MEMORY ALLOCATIONS\n”) ;
fprintf (memlog, 7 n”);
749
if (map_-bytes && map_ptrs)
751 for (i = 0; i < map_entries; i++4)
{
753 if (map-ptrs[i] = NULL)
fprintf (memlog, ”[%p] %li bytes\n”, map_ptrs[i], ((long int) map_bytes[i]));
755 1
fprintf(memlog, ” n”);
757 }
759 my_-memory (NULL, map_bytes, 0, MYMEMFREE, "MAP — bytes”);
my_memory (NULL, map_ptrs, 0, MYMEMFREE, "MAP — ptrs”);
761 #else
break;
763 #endif
765 break;
767 default:
break;
769 }
return p;
771}

773 void freelD (void *p)

{
775 my_-memory (NULL, p, 0, MYMEMFREE, ”1D”);

262

T

779

781

783

785

787

789

791

793

795

797

799

801

803

805

807

809

811

813

815

817

819

821

void *malloclD (size_-t cols, size_t size)
{
void xarray;
size_-t bytes;
bytes = colsxsize;
if (0 == bytes)
return NULL;
array = my-memory (NULL, NULL, bytes, MYMEMMALLOC, ”1D”);
return array;
¥
void free2D (void *xp, size_t rows)
{
if(p)
while (rows——)
if (p[rows])
my_memory (NULL, p[rows], 0, MYMEMFREE, ”2D — row”);
my_memory (NULL, p, 0, MYMEMFREE, ”2D — base”);
¥
void =x*xmalloc2D (size_t rows, size_t cols, size_t size)
{
void *xarray ;
size_t 1i;
size_-t bytes;
if (!(rows && cols && size))
return NULL;
bytes = rows * sizeof(void=x);
if (NULL == (array = my-memory (NULL, NULL, bytes, MYMEMMALLOC,
return NULL;
for (i = 0; i < rows; i++4)
{
if (NULL == (array[i] = malloclD(cols, size)))
{

while (i)

263

”2D — base”)))

823

825

827

829

831

833

835

837

839

841

843

845

847

849

851

853

855

857

859

863

865

i——

my_memory (NULL, array[i], 0, MYMEMFREE, ”2D failed — row”);
}
my-memory (NULL, array, 0, MYMEMZFREE, 2D failed — base”);
i = rows;
}
}
return array;
}
void free3D (void *x**xp, size_t sheets, size_t rows)
{
if (p)
while (sheets——)
if (p[sheets])
free2D (p[sheets], rows);
my_memory (NULL, p, 0, MYMEMFREE, ”3D — base”);
}
void x*xmalloc3D(size_-t sheets, size_t rows, size_t cols, size_t size)
{
void *x*xarray;
size_t 1i;
size_t bytes;
if (!(rows && cols && size))
return NULL;
bytes = sheets * sizeof(voidx);
if (NULL == (array = my._memory (NULL, NULL, bytes, MYMEMMALLOC, ”3D —
return NULL;
for (i = 0; i < sheets; i++4)
{
if (NULL == (array[i] = malloc2D (rows, cols, size)))
{
while (i)
{
i
my_memory (NULL, array[i], 0, MYMEMFREE, ”3D failed — row”);
}
my-memory (NULL, array, 0, MYMEMFREE, ”3D failed — base”);

264

base”)))

867 i = sheets;

}
869 }
871 return array;
¥
873

DWORD Bits2Bytes (DWORD bits)
875 {
return (bits / (8xsizeof(BYTE))) + ((bits % (8xsizeof(BYTE)))? 1:0);
877 }

879 BYTE *xMemorySet (BYTE xp, DWORD bytes, BYTE v)

{

881 DWORD byte;

883 if (p)

for (byte = 0; byte < bytes; byte4+)

885 plbyte] = v;

887 return p;

}
889
BYTE xMemoryCopy (BYTE xdest , BYTE xsrc, DWORD bytes)
891 {
DWORD i ;
893
for (i = 0; i < bytes; i++4)
895 dest [i] = src[i];

897 return dest;

899
void DisplayHEX (FILE xfp, BYTE %xp, DWORD bytes, int mode)
901 {
DWORD byte ;

903 DWORD line ;

WORD i ;
905
switch (mode)
907 {
case O:
909 case 1:
default:
911 fprintf(fp, ”\n”);

265

913

915

917

919

921

923

925

927

929

931

933

935

937

939

941

943

945

947

949

953

955

fprintf (fp,
fprintf (fp,
fprintf (fp,
fprintf (fp,
for (i = 0;

{

» »

i< 165 i4+4)

fprintf(fp, 7%2X 7, i);

}
fprintf (fp,
for (i = 0;

{

n_ oy,
i< 16; i++)

fprintf (fp, 7%IX”, i);

}

fprintf (fp,
fprintf (fp,
fprintf (fp,
fprintf (fp,
for (line =

{

"\n”) ;

»

)

»

"\n”);

byte = 0; byte < bytes;

fprintf(fp, 7 [%06X] ”

for (i =

{

, line);

0; i < 16; i++)

if (byte+i < bytes)

, plbyteti]);

(isprint (p[byte+i])? p[byte+i]:

fprintf (fp, ”%02X ”
else
fprintf(fp, "— 7);
}
fprintf(fp, ”— 7);
for (i = 0; i < 16; i++)
{
if (byte+i < bytes)
fprintf(fp, ”"%lc”,
else
fprintf(fp, ” 7);
}

fprintf(fp, ”\n”);

}

fprintf (fp,
fprintf (fp,
fprintf (fp,
break;

»

»

"\n”);

266

DF
H
»y .

H

DT
H
F

3

line++4, byte+=16)

DT
H
F

3

957
WORD GetBitIndex (DWORD bit)
959 {
‘WORD index ;

961

index = bit /8;
963

return index;
965 }

967 BYTE GetBitMask (DWORD bit)
{
969 BYTE offset ;
BYTE mask;
971
mask = 0x80;
973 offset = bit%8;
mask >>= offset;
975
return mask;

977 }

979 BYTE GetBit (BYTE *d, size_-t size, DWORD bit)

{
981 WORD index ;

BYTE mask;
983

index = GetBitIndex (bit);
985 mask = GetBitMask(bit);

987 return (d[index] & mask)? 1 : 0;

989

991 void SetBit (BYTE *d, size_-t size, DWORD bit, int v)

{
993 WORD index ;

BYTE mask;
995

index = GetBitIndex (bit);
997 mask = GetBitMask(bit);

999 if (v)
d[index]

= mask;

1001 else

267

1003

1005

1007

1009

1011

1013

1015

1017

1019

1021

1023

1025

1027

1029

1031

1033

1035

1037

1039

1041

1043

1045

d[index] &= T“mask;

typedef struct STRINGPARSER STRINGPARSER;

struct STRINGPARSER

{

}s

char *xstring;

int length;

char xnext;

int IsIn(char c, char xs)

{

int i;

for (i = 0; s[i] && (c

EMPTYLOOP;

return s[i];

= s[i]); i+4)

char xParseString (char *s, charx fdelim, char xtdelim)

{

static STRINGPARSER x*p

int i, n;

char xsubstring;

if (Ip)

{

p = (STRINGPARSER =)

if (p)

{
p—>string = NULL;
p—>length = 0;
p—>next = NULL;

}

else

return NULL;

if (NULL == s)

{

free (p);

= NULL;

malloc (sizeof (STRINGPARSER)) ;

268

1047 p = NULL;

return NULL;

1049}
1051 if (p—>string != s)
{
1053 p—>string = s;
p—>length = strlen(s);
1055 p—>next = s;
}
1057

for (; (p—>next < (p—>string + p—>length)) && (IsIn (*(p—>next), fdelim)); p—>next++)
1059 EMPTYLOOP;

1061 if ((p—>next — p—>string) >= p—>length)
{
1063 p—>string = NULL;
p—>length = 0;
1065 p—>next = NULL;
return NULL;

1067 }

1069 for (n = 0; (p—>next+n < (p—>string + p—>length)) && (!IsIn (*(p—>next+n), tdelim)); n++);

EMPTYLOOP;
1071
substring = malloc(n+1);
1073
if (substring)
1075 {
for (i = 0; i < n; i++)
1077 substring [i] = p—>next[i];
substring [n] = NUL;
1079}

1081 p—>next 4= n;

1083 return substring;

}
1085
DWORD rand_DWORD (DWORD max)
1087 {
DWORD mask, value;
1089
for (mask = 1; mask < max; mask = (mask<<l) + 1)
1091 EMPTYLOOP;

269

1093

1095

1097

1099

1101

1103

1105

1107

1109

1

11

13

15

17

19

21

23

do

value = (rand()<<(8«sizeof (WORD))) + rand();
value &= mask;

} while (value > max);

return value;

int memequal(char xsl1, char *s2, DWORD bytes)

{
DWORD i ;

for (i = 0; i < bytes; i+4)
if (s1[i] != s2[i])

return FALSE;

return TRUE;

A.3.13 modem.h

/**
* MODEM for the Real—time BBC Codec/Modem *

sk sk sk sk sk sk sk ok ok ok ok sk Rk sk sk sk sk sk sk sk sk sk sk ok ok ok K R Rk sk sk sk sk sk sk sk sk sk oK ok ok ok K R Rk sk sk sk sk sk sk sk sk sk oK oK ok ok K R Kk sk sk sk ok ok sk sk ok K K X

* William L. Bahn *
* Academy Center for Information Security *
* Department of Computer Science *
« United States Air Force Academy *
* USAFA, CO 80840 *

sk ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok sk ok ok ok ok sk ok ok ok k sk ok ok ki ok ok ok sk ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok ok Ok ok sk ok ok R Ok sk ok ok ok Ok sk ok ok ok ok ok ok ok K

* FILE :............ modem . h *
« DATE CREATED:.... 06 SEP 07 *
* DATE MODIFIED :... 06 SEP 07 *

sk sk sk sk sk sk ok ok ok ok ok kR sk ks sk sk sk sk sk sk sk oK ok ok ok K R Rk sk sk sk sk sk sk sk sk sk oK oK ok ok K R Kk sk sk sk sk sk sk sk sk sk oK oK ok ok K R Kk sk sk sk ok ok ok ok oK K K X
*

* REVISION HISTORY

*

sk sk sk sk sk sk ok ok ok ok K K Kk ks sk sk sk ok sk sk ok oK oK ok K K K K K sk sk sk sk sk sk sk ok oK oK ok K K K Kk ok sk sk sk ok sk sk sk oK oK K ok K K K Kk ok sk sk ok ok ok ok oK K K X
*

* DESCRIPTION

* The modem converts baseband signal data to/from packet data.

*/

270

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

#ifndef MODEMdotH
#define MODEMdotH

//

// REQUIRED INCLUDES
/

#include <time.h> // clock_t

#include ”config.h”
#include ”source.h”
#include ” buffer .h”
#include ”sink.h”

#include ”dirtyd.h”

/

// STRUCTURE DECLARATIONS

//

typedef struct MODEM MODEM;

//

// STRUCTURE DEFINITIONS
//

// NOTE: Normally the structure definition would be

// the structure members inaccessible to outside functions ezcept

// public function calls. But for the real—time code
// to make the structure members directly wvisible to

// manipulate them.

struct MODEM

{
// Derived quantities
DWORD jitter_samples;
double alpha;

double t_hi, t_-lo;

// State information
DWORD state ;
double integrator;

SDWORD stamp ;

271

in the *x.c file to make

through

it has been decided

the functions

that

69

71

73

75

77

79

11

13

15

17

19

21

23

25

27

29

31

/
// PUBLIC FUNCTION PROTOTYPES

//

MODEM *MODEM _Del (MODEM #p) ;

MODEM *MODEM New (CONFIG *c, DWORD *errcode) ;

void Modulate (CONFIG #c, BUFFER *buffer , MODEM #modem, SINK xsink);
void Demodulate (CONFIG %c, SOURCE ssource , MODEM xmodem, BUFFER xbuf) ;

//
#endif

A.3.14 modem.c

/3 ok ok ok o o ok ok ok ok ok ok o ok R ok ok oK R o oK R KR ok oK Sk ok o ok R Rk oK oK SR ok R ok R ok ok S oK R ok R ok R Sk oK SR ok R ok ok oK R S oK R ok R ok oK oK ok o ok ok ok K K
* MODEM for the Real—time BBC Codec/Modem *

sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk ok ok sk sk sk ok ok ok

* William L. Bahn *
* Academy Center for Information Security *
* Department of Computer Science *
* United States Air Force Academy *
« USAFA, CO 80840 ¥

sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk Sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk Sk sk ok ok sk sk ok ok ok ok

« FILE :............ modem . ¢ *
* DATE CREATED:.... 06 SEP 07 *
« DATE MODIFIED :... 28 FEB 09 *

sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok sk ok sk sk sk ok ok ok
*

* REVISION HISTORY

* Modified to support only the requirements of providing same symbol
* rate data as a means to create a jammer.

* 2/28/2009 Derek Sanders

*

EEEEEEEESEREEEREEEEERERSEESESESSESESESESESEESS
*

« DESCRIPTION

*

% The modem and its public interface is described in modem.h.

*

sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk sk sk sk ok sk ok sk sk ok sk sk sk sk ok ok sk sk sk ok ok ok

*/

//
// REQUIRED INCLUDES

//

272

33

35

37

39

41

43

45

47

49

51

53

55

59

61

63

65

67

69

71

73

75

#include <stdlib.h> // malloc ()

#include <math.h> // ezp()

#include ”modem.h”

//

// STRUCTURE DEFINITIONS

//

// NOTE: Normally the structure definition would be in the x.c file to make

// the structure members inaccessible to outside functions except through

// public function calls. But for the real—time code it has been decided

// to make the structure members directly wvisible to the functions that

// manipulate them.

//

// PUBLIC FUNCTION DEFINITIONS

//

MODEM «MODEM_Del (MODEM *p)

{

if (p)
{

free (p);
}

return NULL;

MODEM *MODEM New (CONFIG *c, DWORD *errcode)

{

MODEM *p;
DWORD err ;

double nominal_steady_state_peak;

p = NULL;

err = 0;

p = (MODEM %) malloc(sizeof (MODEM)) ;
if (1p)

err |= 1 << 0;

if (lerr)
{
// Derived quantities

p—>jitter_.samples = (int)(c—>modem_samples_per_bit * c—>modem_jitter_bits);

273

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115 }

117/ /

if

if

{

*errcode =

// Integrator parameter

p—>alpha =

// Threshold parameters
nominal_steady_state_peak =
5
p—>t_hi =

/100.0) ;
p—>t_lo =
/100.0) ;

// State

p—>state = 0;

information

p—>integrator = 0.0;

p—>stamp = O0;

(err)

p = MODEM.Del(p) ;
(c—>diagnostics)

// Diagnostic Report

nominal_steady_state_peak

nominal_steady_state_peak x*

*

exp ((2.0/c—>modem_samples_per_bit) —

1.0);

(c—>nominal_rx_signal*c—>nominal_rx_signal) =

(1.0/(1.0 —p—>alpha))

((c—>modem_threshold_pct + c—>modem_hysteresis_pct /2.0)

((c—>modem_threshold_pct — c—>modem_hysteresis_pct /2.0)

printf (”

printf (?"MODEM\n”) ;

printf(” Creation :................
printf(” Location:................
printf (” Integrator alpha:........
printf(” Jitter tolerance :........
printf(” Modem gain :..............
printf(” Nominal channel loss :....
printf (” Nominal rx signal peak:.

—>modem_channel_loss_dB)) ;

c—>modem_gain_dB) ;

\n”) ;
%s\n”, ((err)? ”FAILED” :”SUCCEEDED")) ;
%p\n”, (void %) p);
%f\n” , p—>alpha);
%f\n”, p—>jitter_samples);
%t (%f dB)\n”, c—>nominal_tx_signal ,
%f dB\n”, c—>modem_channel_loss_.dB);

%t (%f dB)\n”,

printf(” Nominal integrator peak:... %f\n”, nominal_steady_state_peak);
printf(” LO —> HI threshold :........ %f\n”, p—>t_hi);
printf(” HI —> LO threshold :........ %f\n” , p—>t_lo);
printf (” \n”) ;

err;

return p;

274

c—>nominal_rx_signal ,

(c—>modem_gain_.dB—c

119 /« MODEM

121 * The MODEM reads/writes USRP in bursts of samples corresponding to
* 8 packet bits. The calling function is responsible for ensuring that

123 * walid data and/or sufficient room for new data exzists in the buffer.

125 %/

127 /« MODULATOR

129 * The modulator reads one byte of packet data from the buffer and generates
* USRP data for the entire set of 8 packet bits.

131 *

133
void Modulate (CONFIG *xc, BUFFER xbuffer , MODEM sxmodem, SINK xsink)

135 {

DWORD originbit , sample;
137 float signal;

clock_t ticks;
139 float =*v;

ticks = clock ();
141

// Push write pointer if packet byte is not available

143 if (!buffer—>ready)

{
145 buffer —>write = (buffer—>write + 1) & buffer —>buffermask;
buffer —>ready++;
147 buffer —>margin ——;
}

149
// For each bit in the packet byte at the buffer’s read pointer

151 for (originbit = 0; originbit < 8; originbit4+)

{

153 // Determine if the bit is a mark or a space

if (buffer —>buffer [buffer —>read] & c—>bitmask[originbit])
155 {

c—>marks++;

157 signal = (float) c—>nominal_tx_signal;

}
159 else

signal = 0.0;
161

// Determine if the sink can take all the samples for the present bit

275

167

169

171

173

175

177

181

183

185

187

189

191

193

197

199

201

203

205

207

if (sink—>samples + c—>modem_samples_per_bit < sink—>sample_limit)

{

}

// Establish the base location wit

v

// Generate

fo

{

}

= ((float x*) sink-—>v) + (2

and write the baseband

hin the sink’s

* sink—>samples) ;

samples to the

buffer

sink

r (sample = 0; sample < c—>modem_samples_per_bit; sample++)

v([2xsample]

v[2xsample + 1]

signal; // I(t
0.0; // QU

) (actual data)

) (forced to zero)

sink —>samples += c—>modem_samples_per_bit;

else

sink —>streaming = FALSE;

buffer —>buffer [buffer —>read] = 0;

buffer —>read = (buffer—>read 4+ 1) & buffer —>buffermask;

buffer —>ready ——;

buffer —>margin+4+;

c—>actual_trx_bytes 4= c—>trx_bytes_per_packet_byte;

c—>dem_ticks += clock () — ticks;

void Demodulate (CONFIG xc, SOURCE xsource , MODEM xmodem, BUFFER xbuf)

{

DWORD sample;

DWORD originbit ;

clock_t ticks;

float

*V

double v2;

ticks = clock ();

for (originbit = 0; originbit < 8; originbit4+)
{
v = ((float %) source—>v) + (2 * source—>samples);
for (sample = 0; sample < c—>modem_samples_per_bit;
{
if (source—>samples < source—>sample_limit)

{

v2 = v[2xsample]

* v[2xsample]

+ v[2xsample+1]

276

sample++)

* v[2*sample+1];

209

211

213

215

217

219

221

223

225

227

229

231

235

237

239

241

243

245

247

249

251

source—>samples++;

¥
else
{
v2 = 0;
source—>streaming = FALSE;
}
modem—>integrator = v2 + modem—>alpha*(modem—>integrator — v2);

switch (modem—>state)

modem—>stamp = (SDWORD) (sample + modem—>jitter_samples);

if (((SDWORD) sample > modem—>stamp)&&(modem—>integrator < modem—>t_lo))

{
case O:
if (modem—>integrator > modem—>t_hi)
{
modem—>state = 1;
¥
break;
case 1:
if (modem—>integrator < modem—>t_lo)
{
modem—>state = 2;
}
break;
case 2:
if (modem—>integrator > modem—>t_hi)
modem—>state = 1;
else
{
modem—>state = 0;
}
break;
¥
}
modem—>stamp —= c—>modem_samples_per_bit;
if (0 == buf-—>empty)
{

buf-—>read = (buf->read + 1) & buf—>buffermask;

buf—>empty-++;
buf—>margin ——;

buf—>overflows—++;

277

257

259

261

263

265

267

271

10

12

14

16

18

20

22

// Step packet forward and mark next location
if (modem—>state > 0)
{
c—>marks++;
buf—>buffer [buf—>write] |= c—>bitmask[originbit];
}
else

buf—>buffer [buf-—>write] &= “c—>bitmask[originbit];

buf—>write = (buf—>write + 1) & buf-—>buffermask;
buf—>margin++;

buf—>empty ——;

c—>actual_trx_bytes 4= c—>trx_bytes_per_packet_byte;

c—>dem_ticks 4= clock () — ticks;

A.3.15 shal.h

/*
* shal.h

* Copyright (C) 1998
* Paul E. Jones <paulej@arid.us>
* All Rights Reserved

*

sk sk sk sk ok ok ok sk ok sk ok sk sk sk sk ok sk ok sk ok sk ok sk sk sk sk ok sk ok sk ok sk sk sk sk sk sk ok sk ok sk ok ok ok sk sk sk sk ok sk ok sk ok sk sk ok sk sk sk sk ok ok sk ok sk ok sk sk sk sk ok sk ok Ok ok ok

* $Id: shal.h,v 1.2 2004/03/27 18:00:33 paulej Ezp $

sk sk sk sk ok sk sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk Sk sk ok sk sk Sk sk ok ok ok K

* Description :

* This class implements the Secure Hashing Standard as defined
* in FIPS PUB 180—1 published April 17, 1995.

*

* Many of the wvartable names in the SHAI1Context, especially the
* single character names, were used because those were the names
* used in the publication .

*

* Please read the file shal.c for more information .

*

*/

278

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

#ifndef _SHA1_H_
#define _SHA1_H_

/*

* This structure will hold context information for
* operation

*/

typedef struct SHA1Context

{

the hashing

unsigned Message_Digest [5]; /x Message Digest (output)

unsigned Length_Low; /* Message length in

unsigned Length_High; /* Message length in

bits

bits

unsigned char Message_Block [64]; /+ 512—bit message blocks

int Message_Block_Index; /* Index into message

block array

int Computed; /* Is the digest computed?

int Corrupted; /+* Is the message digest corruped?

} SHA1Context;

/*
* Function Prototypes
*/
void SHA1Reset (SHA1Context =x);
int SHA1Result(SHA1Context x*);
void SHA1lInput(SHA1Context =,
const unsigned char =x,

unsigned) ;

#Hendif

A.3.16 shal.c

/*

* shal.c

* Copyright (C) 1998
* Paul E. Jones <paulej@arid.us>

* All Rights Reserved

sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk ok sk sk sk sk ok ok ok sk sk ok ok ok ok

* $Id: shal.c,v 1.2 2004/03/27 18:00:33 paulej Ezp $

279

*/

*/
*/

*/
*/

*/
*/

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok Rk ke sk sk sk sk ok sk sk sk sk sk ok ok ok ok sk Rk sk sk sk sk sk sk sk sk sk ok ok ok ok sk Rk ke ks ke k sk ok sk sk ok oK ok ok

*

* Description :

* This file implements the Secure Hashing Standard as defined

* in FIPS PUB 180—1 published April 17, 1995.

*

* The Secure Hashing Standard, which uses the Secure Hashing

* Algorithm (SHA), produces a 160—bit message digest for a

* gitven data stream. In theory, it is highly improbable that

* two messages will produce the same message digest. Therefore ,
* this algorithm can serve as a means of providing a ”fingerprint”
* for a message.

*

* Portability Issues:

* SHA—1 is defined in terms of 82— bit “words”. This code was

* written with the exzpectation that the processor has at least

* a 82— bit machine word size. If the machine word size 1is larger,
* the code should still function properly. One caveat to that

* is that the input functions taking characters and character

* arrays assume that only 8 bits of information are stored in each
* character.

*

* Caveats :

* SHA—1 is designed to work with messages less than 2764 bits

* long. Although SHA—1 allows a message digest to be gemerated for
* messages of any number of bits less than 2764, this

* implementation only works with messages with a length that is a
* multiple of the size of an 8—bit character.

*

*/

#include ”shal.h”

/*
* Define the circular shift macro
*/
#define SHA1CircularShift (bits ,word) \
((((word) << (bits)) & OxFFFFFFFF)
((word) >> (32—(bits))))

/* Function prototypes */
void SHA1ProcessMessageBlock (SHA1Context x*);

void SHAlPadMessage(SHA1Context x*);

/*

280

55

59

61

63

65

67

69

71

73

75

7

79

81

83

85

87

89

91

93

95

97

99

*

*/
void SHA1Reset (SHA1Context

{

SHA1Reset

Description :
This function will
for

computing

Parameters :

context: [in/out]
The context to reset.
Returns :
Nothing .
Comments :

context —>Length_Low
context —>Length_High

context —>Message_Block_Index

context—>Message_Digest [0]
context—>Message_Digest [1]
context—>Message_Digest [2]
context—>Message_Digest [3]

context—>Message_Digest [4]

context —>Computed = 0;
context—>Corrupted = 0;
SHA1Result
Description :

This function will return

Message_-Digest

Parameters :

context: [in/out]
The context to wuse to
Returns :
1 tf successful, 0 if it

initialize

a new message

array within

the SHA1Context in

digest .

xcontext)

= 0x67452301;
= 0xEFCDABSY;
= 0x98BADCFE;
= 0x10325476;

= 0xC3D2E1F0;

the 160— bit message digest into

the SHA1Context provided

calculate the SHA—1 hash.

failed .

281

preparation

the

101

103

105

107

111

113

115

117

119

121

123

125

127

129

131

133

135

137

141

143

*
* Comments :
*
*/

int SHA1Result(SHA1Context xcontext)

{

if (context—>Corrupted)

{

return O0;

if (!context—>Computed)

{
SHA1PadMessage (context) ;

context —>Computed = 1;

return 1;

* SHAIInput

* Description :

* This function accepts an array of octets as the
* the message.
*

* Parameters :

* context: [in/out]

* The SHA—1 context to wupdate

* message-array: [in]

* An array of characters representing the next
* message .

* length: [in]

* The length of the message in message_array
*

* Returns :

* Nothing .

* Comments :
*
*/
void SHAI1lInput(SHA1Context

const unsigned char

xcontext ,

*message_array ,

282

next portion

portion

of

of

the

145

147

149

151

153

155

157

159

161

163

165

167

169

171

173

175

179

181

183

185

187

189

/*

*

unsigned length)

if (!length)

{
return;
¥
if (context—>Computed || context—>Corrupted)
{
context —>Corrupted = 1;
return;
}

while (length — && !context—>Corrupted)

{

context —>Message_Block [context —>Message_Block_Index++] =

context —>Length_Low += 8;
/* Force it to 32 bits x/
context—>Length_Low &= OxFFFFFFFF;
if (context—>Length_Low == 0)
{

context—>Length_High+44;

/* Force it to 32 bits x/

context—>Length_High &= OxFFFFFFFF;

if (context—>Length_High == 0)
{
/* Message is too long */
context—>Corrupted = 1;
}
}
if (context—>Message_Block_Index == 64)
{
SHA1ProcessMessageBlock (context) ;
}

message_array—+-+;

SHA1ProcessMessageBlock

(*message_array & OxFF);

283

191

193

195

197

201

203

205

207

209

211

213

215

217

219

221

223

225

227

229

231

233

* Description :

* This function will process the next 512 bits of the
* stored in the Message_Block array.
*

* Parameters :

* None.

* Returns:

* Nothing .

* Comments :

message

* Many of the wvartable names in the SHAContext, especially the
* single character names, were used because those were the names
* used in the publication.

*

*

*/

void SHA1ProcessMessageBlock (SHA1Context *xcontext)

{

const unsigned K[] = /* Constants defined in SHA—1 */
{
0x5A827999 ,
0x6EDYEBA1,
0x8F1BBCDC,
0xCA62C1D6
s
int t; /* Loop counter */
unsigned temp ; /* Temporary word wvalue */
unsigned WI[80]; /* Word sequence */
unsigned A, B, C, D, E; /* Word buffers */
/*
* Initialize the first 16 words in the array W
*/
for(t = 0; t < 16; t++)
{
W[t] = ((unsigned) context—>Message_Block[t * 4]) << 24;
W[t] |= ((unsigned) context—>Message_-Block[t * 4 + 1]) << 16;
W[t] |= ((unsigned) context—>Message_Block[t * 4 + 2]) << 8;
W[t] |= ((unsigned) context—>Message_Block [t * 4 + 3]);
}

for(t = 16; t < 80; t++)

{
W[t] = SHA1CircularShift (1 ,W[t—3] ~ W[t—8] ~ W[t—14]

284

S Wit —16]);

237

239

241

243

245

247

249

251

253

255

257

259

261

263

265

269

271

273

275

277

279

SHA1CircularShift (30,B);

SHA1CircularShift (30,B);

SHA1CircularShift (30,B);

tH+)

= context—>Message_Digest [0];
= context—>Message_Digest [1];
context—>Message_Digest [2];
= context—>Message_Digest [3];

= context—>Message_Digest [4];

SHA1CircularShift (5,A) +

| (("B) & D)) + E +W[t] + K[0];

t++)

SHA1CircularShift (5,A) + (B ~ C ~ D) + E + W[t]

)

SHA1CircularShift (5,A) +

| (B & D)

t++)

A
B
C =
D
E
for(t = 0; t < 20;
{
temp =
((B & ©)
temp &= OxFFFFFFFF;
E = D;
D = C;
C =
B = A;
A = temp;
¥
for(t = 20; t < 40;
{
temp =
temp &= OxFFFFFFFF;
E = D;
D = C;
C =
B = A;
A = temp;
}
for(t = 40; t < 60;
{
temp =
((B & ©)
temp &= OxFFFFFFFF;
E = D;
D = C;
C =
B = A;
A = temp;
¥
for(t = 60; t < 80;
{

(C & D)) + E + W[t]

285

+ K[2];

+ K[1];

281

283

285

287

291

293

295

297

299

301

303

305

307

309

311

313

315

317

319

321

323

temp = SHAI1CircularShift(5,A) + (B ~ C ~ D) + E + W[t] + K[3];
temp &= OxFFFFFFFF;
E = Dj;
D = C;
C = SHA1CircularShift (30,B);
B = A;
A = temp;
¥
context—>Message_Digest [0] =
(context —>Message_Digest [0] + A) & OxFFFFFFFF;
context—>Message_Digest [1] =
(context—>Message_Digest [1] + B) & OxFFFFFFFF;
context—>Message_Digest [2] =
(context—>Message_Digest [2] + C) & OxFFFFFFFF;
context—>Message_Digest [3] =
(context —>Message_Digest [3] + D) & OxFFFFFFFF;
context—>Message_Digest [4] =
(context—>Message_Digest [4] + E) & OxFFFFFFFF;
context—>Message_Block_Index = 0;
SHA1PadMessage
Description :
According to the standard, the message must be padded to an even
512 bits. The first padding bit must be a ’'1°7. The last 64
bits represent the length of the original message. All bits in
between should be 0. This function will pad the message

according to those rules by filling

the Message_-Block array

accordingly . It will also call SHA1ProcessMessageBlock ()

appropriately . When it returns,

message digest has been computed.
Parameters :
context: [in/out]

The contexzt to pad

Returns :

Nothing .

Comments :

it

can be assumed

286

that

the

325 x/

void SHA1lPadMessage(SHA1Context *context)

327 {
/*
329 * Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
331 * block, process it , and then continue padding into a second
* block .
333 y
if (context—>Message_Block_Index > 55)
335 {
context —>Message_-Block [context —>Message_Block_Index++] = 0x80;
337 while (context —>Message_Block_Index < 64)
{
339 context—>Message_Block [context —>Message_-Block_Index++] = 0;
¥
341
SHA1ProcessMessageBlock (context) ;
343
while (context —>Message_Block_Index < 56)
345 {
context—>Message_Block [context —>Message_-Block_-Index++] = 0;
347 }
}
349 else
{
351 context —>Message_Block [context —>Message_Block_Index++] = 0x80;
while (context —>Message_Block_Index < 56)
353 {
context—>Message_Block [context —>Message_Block_Index++] = 0;
355 !
¥
357
/*
359 * Store the message length as the last 8 octets
*/
361 context —>Message_Block [66] = (context—>Length_High >> 24) & OxFF;
context—>Message_Block [57] = (context—>Length_High >> 16) & O0xFF;
363 context—>Message_Block [58] = (context—>Length_High >> 8) & OxFF;
context —>Message_Block [69] = (context—>Length_High) & OxFF;
365 context—>Message_Block [60] = (context—>Length_Low >> 24) & OxFF;
context—>Message_Block [61] = (context—>Length_Low >> 16) & OxFF;
367 context—>Message_Block [62] = (context—>Length_Low >> 8) & OxFF;
context—>Message_Block [63] = (context—>Length_Low) & OxFF;
369

287

371

1

11

13

17

19

21

23

25

27

29

31

33

35

37

39

SHA1ProcessMessageBlock (context) ;

}

A.3.17 sink.h

/3 o ok o ok o ok ok K oK oK ok ok o ok K oK K KK K oK ok K oK oK oK oK o ok K oK R oK oK K ok K ok K oK oK oK oK R ok K oK K oK oK K oK K ok K KK oK oK K oK K oK K KoK K K K K K K K
* Signal Sink Module for the Real—time BBC Codec/Modem *

sk sk sk sk ok ok ok sk ok ok ok sk sk sk sk ok sk ok sk ok ok sk sk sk sk sk ok ok ok ok ok sk sk sk sk ok sk ok sk ok sk sk sk sk ok sk ok ok ok sk ok sk ok sk sk sk ok ok sk ok sk ok sk sk ok sk ok sk ok ok ok ok ok ok ok

* William L. Bahn *
* Academy Center for Information Security *
* Department of Computer Science *
* United States Air Force Academy *
« USAFA, CO 80840 *

sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk ok sk sk sk sk sk sk sk sk sk sk ke sk ok sk sk ko sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk ok ok ok

* FILE :............ sink . h *
« DATE CREATED:.... 08 SEP 07 *
* DATE MODIFIED :... 08 SEP 07 *

sk sk sk sk sk ok ok sk ok sk ok sk sk sk sk ok sk ok sk ok sk sk sk sk sk sk ok ok ok sk ok sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk ok sk ok Sk ok ok ok sk sk sk sk ok sk ok sk ok sk sk sk sk ok sk ok Ok ok sk ok ok ok
*

* REVISION HISTORY

*

ok ok ok sk ok ok ok ok oKk ok ok ok ok ok ok Rk K ok sk ok ok ok ok ok ok ok Sk ok ok ok Rk Ok K ok sk ok Ok ok Ok ok S ok Ok ok ok ok Rk Ok Sk ok sk ok Ok ROk Ok ok
*

* DESCRIPTION

* This module supports the signal sink for both the TX and the RX

*/

#ifndef SINKdotH
#define SINKdotH

//
// REQUIRED INCLUDES

//

#include ”config.h”

#include ”dirtyd.h”

//
// STRUCTURE DECLARATIONS

//

typedef struct SINK SINK;

288

a1 /
// STRUCTURE DEFINITIONS

43 //

45 // NOTE: Normally the structure definition would be in the *x.c file to make
// the structure members itnaccessible to outside functions except through

47 // public function calls. But for the real—time code it has been decided
// to make the structure members directly wvisible to the functions that

49 // manipulate them.

51 struct SINK

{
53 FILE xfp;

int streaming ;
55 DWORD samples ;
DWORD sample_size_bytes;

57 DWORD sample_limit ;

BYTE xv;
59

size_t buffer_size;
61 };
63 //-

// PUBLIC FUNCTION PROTOTYPES
65 //-

67 SINK xSINK_Del (SINK *p) ;
SINK *SINK_New (CONFIG xconfig , DWORD *errcode) ;

69 void SINK_Purge(CONFIG *config , SINK *p);

n//
#endif

A.3.18 sink.c

/K K sk sk ok sk s ok sk ok ok ok ok ok ok oK sk o oK ok K sk ok K sk ok ok ok K ok sk K sk ok ok sk o ok ok K ok sk K ok oK oK ok o ok ok K ok ok K ok o oK ok K sk ok K Sk oK ok sk K ok ok K ok ok ok ok K K
2 * Signal Sink Module for the Real—time BBC Codec/Modem *

sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok K sk Rk sk sk sk sk sk sk sk sk sk sk ok ok ok ok Rk kR sk sk sk ok sk sk sk sk sk oK ok ok ok ok R Rk sk sk sk ok ok sk sk ok K K X

4 * William L. Bahn *
* Academy Center for Information Security *
6 x Department of Computer Science *
* United States Air Force Academy *
8 x USAFA, CO 80840 *

sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok ok sk ok sk sk sk sk sk ko sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk ok ok sk sk sk ok ok sk ok sk sk ok sk sk sk sk ok ok ok sk ok ok ok K

10 *x FILE:............ sink . c *

289

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

* DATE CREATED:.... 08 SEP 07

* DATE MODIFIED :... 08 SEP 07
sk K ok ok ok kK K K oK oK K K oK ok ok K K K oK oK K KK K oK oK K K K oK ok ok KK K oK oK ok R K K oK oK K K oK oK ok kK K oK oK ok R K K oK oK oK KR K K K K K
*
* REVISION HISTORY
*
3k 3k ok ok ok ok sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok Sk sk ok sk sk sk sk sk sk ok ok ok sk ok ok sk ok ok ok ok sk sk sk sk sk sk ok ok ok sk ok ok ok sk ok ok ok ok sk sk ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok
*
* DESCRIPTION
*
% This module supports the signal sink for both the TX and the RX
*
*/
//
// REQUIRED INCLUDES
/
#include <stdlib.h> // malloc (), free()
#include <string.h> // memmove()
#include ”sink.h”
#include ”bbcftp.h”
#include ”dirtyd.h”
//
// STRUCTURE DEFINITIONS
//
// NOTE: Normally the structure definition would be in the x.c file to make
// the structure members inaccessible to outside functions except through
// public function calls. But for the real—time code it has been decided
// to make the structure members directly wvisible to the functions that

// manipulate them.

//

// PUBLIC FUNCTION DEFINITIONS
//

SINK *SINK_Del (SINK #p)

{
if (p)
{
if (p—>fp)
if (stdout != p—>fp)

290

56

60

62

64

66

74

76

78

80

82

84

86

88

90

92

94

96

98

100

{
fclose (p—>fp);
p—>fp = NULL;
}
f (p>v) { free(p—>v);
free (p);
p = NULL;
}
return p;
}

// Sufficient
// to
// contents

memory s
handle a mazimum amount

of the buffer can be

of data.

p—>v = NULL; }

allocated up front

However, the present

purged using SINK_Purge().

SINK *SINK_New (CONFIG xc, DWORD xerrcode)

{
SINK x*p;

DWORD err ;

p = NULL;

err = 0;

p = (SINK %) malloc(sizeof (SINK));

if (Ip)
err |= 1 << 0;

// Open Data Sink file

if

{
/xp—=>fp =

(terr)

NULL ;
if (c—>sink_-name)
{

char path [256];

strcpy (path, c—>path);
strcat (path ,c—>sink_name) ;
p—>fp = fopen(path, "wb”);
if (!p—>fp)

err |= 1 << 7;
}

else

p—>fp = stdout;x/

291

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

142

144

// Initialize state information

if (lerr)
{

p—>samples

= 0;

p—>streaming = TRUE;

if (c—>sink_sample_limit)

p—>sample_limit =

else

{

c—>sink_sample_limit ;

if (c—>scheduler_TX_notRX)

{

p—>sample_limit

else

p—>sample_limit

4xc—>modem_samples_per_bitxc—>packet_bits;

1000;

if (c—>sink_sample_size_bytes)

p—>sample_size_bytes

else

{

if (c—>scheduler_.TX_notRX)

{

p—>sample_size_bytes = 2xsizeof(float);

else

// One byte for

each eight full bits

of mes

= c—>sink_sample_size_bytes;

sage

p—>sample_size_bytes = c—>codec_message_bits / 8;

// Add a final

byte, tf mnecessary,

if (c—>codec_message_bits % 8)

p—>sample_size_bytes++;

// Add one

p—>sample_size_bytes—++;

// Allocate
if (lerr)
{

Memory for

sink data

to

hold

292

leftover

byte for terminating NUL character

bits

146

148

150

152

154

156

158

160

162

164

166

168

170

172

174

176

180

182

184

186

188

190

p—>buffer_size = p—>sample_limit % p—>sample_size_bytes;
p—>v = malloc(p—>buffer_size);
if (!p—>v)

err |= 1 << 13

#ifdef DIAGNOSTICS

// Diagnostic Report

printf (” \n”) ;

printf (”SINK\n”) ;

printf (” Creation :............... Y%s\n” , ((err)? "FAILED”
printf(” Location :............... %p\n” , (void x) p);
printf(” Sample size :............ %lu bytes\n”, (unsigned
printf(” Sample limit :........... %lu\n” , (unsigned long)
printf(” Buffer size:............ %lu bytes\n”, (unsigned
printf(” Buffer location :........ Y%p\n”, (void x) p—>v);
printf(” \n”) ;
#endif

if (err)

SINK_Del (p) ;

kerrcode = err;

return p;

void SINK_Purge (CONFIG xc, SINK xp)

{

DWORD i, seq, missing, distinct;
BYTE xbase;

int found, complete;

WORD id, stream-id, last_stream-id;
char filename [256];

int filenamelen ;

FILE xfp;

// Transmitter
if (c—>scheduler_.TX_notRX)
{
p—>fp = NULL;
if (c—>sink_name)
{
char path[256];
strcpy (path, c—>path);

strcat (path,c—>sink_name) ;

293

: "SUCCEEDED”)) ;

long) p—>sample_size_bytes);
p—>sample_limit);

long) p—>buffer_size);

192

194

196

198

202

204

206

208

210

212

214

216

218

220

222

224

226

228

232

234

p—>fp = fopen (path, ”"wb”);
//if (Ip—=>fp)
J/ err |= 1 << 7;

}

else

p—>fp = stdout;

// Leading cushion
for (i = 0; i < c—>cushion_bits*xc—>modem_samples_per_bit; i++)

fwrite(&c—>bitptr [0], sizeof(float), 1, p—>fp);

// Buffer dump

fwrite (p—>v, p—>sample_size_bytes , p—>samples, p—>fp);

// Trailing cushion
for (i = 0; i < c—>cushion_bits*xc—>modem_samples_per_bit; i+-+)

fwrite(&c—>bitptr [0], sizeof(float), 1, p—>fp);

}
// Receiver
else
{
if (c—>diagnostics)
{
for (i = 0; i < p—>samples; i++)
{
base = p—>v + i * p—>sample_size_bytes;
PrintMessage (base) ;
¥
¥

// The assumption is that there are multiple message streams contained

// in the data. So as to operate in fized—memory, the message streams

// are processed one at a time, starting with the lowest ID. This

// mot an approach that is wery consistent with the notion of a streaming

// real—time system, but it is a start.

// Stream ID’s of zero will be ignored. They are used to push messages

// that the decoder must receive and process and are assumed to be

// discriminated against at the decoder level.

stream_id = 0;
fp = NULL;

do

{

// Find nexzt larger sequence ID that has a sequence number of zero.

294

last_stream_id = stream_id;

for (i = 0; i < p—>samples; i++)

{
base = p—>v 4+ i % p—>sample_size_bytes;
if (0 == GetMessageSeq (base))
{
id = GetMessagelD (base) ;
if (id > last_stream_id)
if ((id < stream_id)||(stream_id == last_stream_id))
stream_id = id;
}
¥

// Process the next stream (if one was found)
if (stream_id > last_stream_id)
{
if (c—>diagnostics)
printf(”?Stream ID: %lu.\n”, (unsigned int) stream_id);
missing = 0;
distinct = 0;
complete = FALSE;
for (seq = 0; (!complete) && (seq < p—>samples); seq++)
{
found = FALSE;
for (i = 0; (!found) && (i < p—>samples); i++)
{
base = p—>v + i * p—>sample_size_bytes;
if ((seq == GetMessageSeq(base))&&(stream_id == GetMessagelD (base)))
{
found = TRUE;

distinct++;

}
}
if (found)
{
// Eztract file mame from header message and open file
if (0 == seq)
{

filenamelen = GetMessageLoadBits(base) /8;
if (filenamelen < 255)
{
memmove (filename , c—>path, strlen (c—>path));
memmove(filename+strlen (c—>path), GetMessagePayload (base), filenamelen);
filename [filenamelen+strlen (c—>path)] = NUL;

fp = fopen(filename, “wb”);

295

282

284

286

288

292

294

296

298

300

302

304

306

308

310

312

314

316

318

320

322

324

}

// Process mon—header messages
else

{

// Check for terminal message
if (0 == GetMessageLoadBits(base))
complete = TRUE;

// Transfer next data fragment to file

else
if (fp)
fwrite (GetMessagePayload(base), 1, GetMessageLoadBits(base) /8,
}
}
else
{
if (c—>diagnostics)
printf (”*x%x Missing Sequence #: %lu\n”, (unsigned int) seq);
missing-++;
}

if (c—>diagnostics)

{
if (!complete)
printf(” Terminal message not found.\n”);
printf(” Total Missing Sequences: %lu\n”, (unsigned int) missing);
printf(” Total Distinct Messages: %lu\n”, (unsigned int) distinct);
¥
}
if (fp)
{
fclose (fp);
fp = NULL;
if (! complete || missing > 0) //delete the file{
{
printf (”Removing the file %s\n” ,filename) ;
remove (filename) ;
}
}

} while (stream_id > last_stream_id);

}

p—>samples = 0;

296

fp);

1

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

A.3.19 source.h

/K K sk sk ok sk ok sk K ok sk ok sk ok oK sk o oK ok K sk ok K sk ok ok 3k K ok sk K sk ok ok sk R ok sk K sk sk ok sk oK oK sk o ok ok K ok ok K ok o oK ok K sk ok K sk o ok sk K ok ok ok ok oK ok ok K K
* Signal Source Module for the Real—time BBC Codec/Modem *

sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk ok sk sk sk sk sk ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok sk sk Rk sk sk ks ok sk sk ok ok oK K

* William L. Bahn *
* Academy Center for Information Security *
* Department of Computer Science *
* United States Air Force Academy *
« USAFA, CO 80840 *

sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk ok sk sk sk sk sk sk sk sk sk sk ks sk ok sk sk ko ok sk sk sk sk sk sk sk sk sk sk ok ok sk sk ok ok ok ok

* FILE :............ source . h *
« DATE CREATED:.... 08 SEP 07 *
* DATE MODIFIED :... 08 SEP 07 *

sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok sk Rk sk sk sk sk sk sk sk sk sk sk ok ok ok ok sk Rk sk sk sk sk sk sk sk sk sk oK ok ok ok sk sk Rk sk sk sk ok ok ok sk ok ok K X
*

* REVISION HISTORY

*

sk sk sk sk sk sk ok ok ok ok K K Rk sk sk sk sk sk ok sk sk sk oK oK ok K K K Kk sk sk sk sk sk sk sk sk sk oK oK ok ok K K Kk sk sk sk sk sk sk sk sk oK oK oK oK ok K K Kk ok sk sk sk ok Sk ok oK K K X
*

* DESCRIPTION

* This module supports the signal source for both the TX and the RX

*/

#ifndef SOURCEdotH
#define SOURCEdotH

//
// REQUIRED INCLUDES

//

#include ”config.h”
#include ”dirtyd.h”

//
// STRUCTURE DECLARATIONS

//

typedef struct SOURCE SOURCE;

//
// STRUCTURE DEFINITIONS

//

297

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

=

11

// NOTE: Normally the structure definition would be in the *.c file to make

// the structure members inaccessible to outside functions except through

// public function calls. But for the real—time code it has been decided

// to make the structure members directly wvisible to the functions that

// manipulate them.

struct SOURCE

{

//

}

int streaming ; // Buffer active flag
DWORD sample; // Number of samples that have been processed
DWORD samples ; // Number of samples in buffer

DWORD sample_size_bytes; // Bytes required per sample

DWORD sample_limit ; // Number of samples space is allocated for
BYTE *v; // Buffer address

DWORD file_bytes; // File size based on seek test

size_-t chunk_size; // File bytes bytes per message

size_t buffer_size; // Size of allocated source buffer

H

// PUBLIC FUNCTION PROTOTYPES

/

SOURCE *SOURCE_Del (SOURCE *p) ;

SOURCE %*SOURCE_New (CONFIG #c, DWORD *errcode) ;

//

#Hendif

A.3.20 source.c

/

Sk 3k 3k ok ok ok ok sk sk ok ok sk sk ok ok ok sk ok ok sk ok ok Sk ok sk sk ok ok Sk sk ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok sk sk ok ok ok ok sk ok ok ok ok ok ok sk ok sk ok Sk sk Sk ok ok ok ok ok ok ok ok ok ok ok
* Data Source Module for the Real—time BBC Codec/Modem *

sk sk sk sk ok sk sk sk sk sk sk sk sk ok sk ok sk ok ok sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk Sk sk sk sk sk Sk sk sk sk sk sk sk sk ok sk ok Sk sk ok ok sk Sk sk ok ok sk sk ok ok ok ok

* William L. Bahn *
* Academy Center for Information Security *
« Department of Computer Science *
* United States Air Force Academy *
« USAFA, CO 80840 *

sk sk sk sk ok sk sk ok sk ok sk sk R Ok sk ok sk ok ok sk ok sk sk sk sk ok ok ok sk sk ok ok sk sk ok sk ok sk sk ok sk sk ok sk sk Sk sk ok sk sk Ok ok ok ok sk R Ok sk ok sk ok Ok sk ok sk sk Sk sk ok o ok kR ok Rk

x FILE :............ source.c *
* DATE CREATED:.... 08 SEP 07 *
* DATE MODIFIED :... 08 SEP 07 *

298

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

sk sk sk sk sk sk sk ok ok ok ok sk sk sk sk sk sk sk ok sk sk sk sk sk ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok sk sk Rk ks ke ok ok ok sk ok ok oK K

*
* REVISION HISTORY

*

sk sk sk sk ok ok sk ok ok ok ok sk ok k sk ok sk ok ok sk ok sk ok sk sk ok ok ok sk sk ok ok sk ko k ok sk ko Sk sk ok sk R Sk sk ok sk sk R Ok ok ok sk R Ok sk ok sk ok Ok sk ok ok ok Sk sk ok o ok Ok Ok Ok R ok

*

* DESCRIPTION

* This module supports the data source for both the TX and the RX.

*/

//
// REQUIRED INCLUDES

//

#include <string.h> // memmove ()

#include <stdlib.h> // malloc (), free()

#include ”bbcftp.h”
#include ”source.h”

#include ”dirtyd.h”

/
// STRUCTURE DEFINITIONS

//

// NOTE: Normally the structure definition would be in the *.c file to make
// the structure members inaccessible to outside functions except through
// public function calls. But for the real—time code it has been decided
// to make the structure members directly wvisible to the functions that

// manipulate them.

//
// PUBLIC FUNCTION DEFINITIONS

//

SOURCE *SOURCE_Del (SOURCE #p)

{
if (p)
{
if (p—>v) { free(p—>v); p—>v = NULL; }
free (p);
p = NULL;
}

299

61

63

65

67

69

71

73

75

77

79

81

83

85

return p;

* FEventually the source and sink will be Gnu Radio and therefore wvery
* little effort has been made to make this temporary source flexible
* or sophisticated. The SOURCE_New() function opens the source file ,
* allocated memory for the entire contents, loads the entire contents

* into memory, and then closes the source file.

« TX: If configured as a transmitter , the data file is assumed to be a
* binary file that is to be transmitted across a BBC link. The file
* 18 brought up into memory as a series of messages using the following

* format:

* [Checksum] [SeqNum] [DataBits] [Data]

* The sequence number is a 16— bit number starting at 0 and incrementing

* by one for each packet. The length field is also a 16—bit number that

* contains the number of bits of actual data follows. The data field

* contains a string of bits read directly from the file being transmitted.
* It is a fized width field and is zero padded if necessary. The checksum

* field is the last 32— bits of the message and contains a CRC checksum for
* message up to, but mot including , the checksum field. At the present time,

* the checksum field is set to all zeros.

*/

87 DWORD SOURCENewTX (SOURCE x*p, CONFIG x*c)

89

91

93

95

97

99

101

{

DWORD err ;

FILE x*fp;

BYTE *xbase;

DWORD bytes-read;

‘WORD seqnum, loadbits, id, length;

BYTE xbuffer;

err = 0;

// Initialize state information
p—>streaming = TRUE;

p—>sample = 0;

p—>samples = 0;

300

107

109

111

113

115

117

119

121

123

125

127

129

131

133

137

139

141

143

145

// Data Source

fp
if
{

= NULL;

(c—>source_name)

char path[256];

strcpy (path, c—>path);
strcat (path ,c—>source_name) ;
fp = fopen(path, ”"rb”);

if (!fp)

err |= 1 << 7;

// Create Data Read Buffer

if
{

if

{

(fp)

// Determine the size of the fil
fseek (fp, 0, SEEK_END) ;
p—>file_bytes = ftell (fp);

fseek (fp, 0, SEEK_SET);

// How much memory each message

e

needs in the Source Buffer

p—>sample_size_bytes = c—>bytes_per_message;

// Determine if each message can

carry at least one file

byte .

if (!((c—>codec_message_bits/8) > BBCFTP_HEADER BYTES))

err |= 1 << 4;

(terr)

// Calculate how many bytes of t

he file each message can hold.

p—>chunk_size = (c—>codec_message_bits /8) — BBC_FTP_.HEADER_BYTES; // File bytes

message

p—>sample_limit = p—>file_bytes

if (p—>file_bytes % p—>chunk_si
p—>sample_limit+4+;

p—>sample_limit+=2;

p—>buffer_size = p—>sample_limit
if (p—>buffer_size)

p—>v = malloc(p—>buffer_size);

else
err |= 1 << 2;
if (!p—>v)

/ p—>chunk_size; // Messages needed for whole chunks

ze) // Plus
// Plus one

* p—>sample_size_bytes;

301

one for any partial chunk

each for header/trailer

per

147

149

151

153

155

157

159

161

165

167

169

171

173

175

177

181

183

185

187

189

191

err |= 1 << 3;

buffer = malloc(p—>chunk_size);

if

(!'buffer)

err |= 1 << 5;

// Fill Data Buffer

if
{

(terr)
p—>samples = 0;

id = c—>source-id;
seqnum = 0;
bytes_read = 0;
do
{

base = p—>v + p—>samples * p—>sample_size_bytes;
length = p—>chunk_size;
if ((p—>file_-bytes — bytes_read) <= length)

length = p—>file_bytes — bytes_read;

if (seqnum)

{
if (length)
length = fread (buffer , 1, length, fp);
SetMessagePayload (base, buffer, length, 0);
bytes_-read += length;
}
else
{
length = strlen (c—>source_name) ;
if (length > p—>chunk_size)
length = p—>chunk_size;
SetMessagePayload (base, c—>source_name, length, 0);
}

loadbits = 8 % length;

SetMessageChecksum (base, 0); // Force checksum to zero (temporary convenience)
SetMessageSeq (base, seqnum) ;

SetMessageLoadBits (base, loadbits);

SetMessagelD (base, c—>source_id);

seqnum--+;

if (c—>diagnostics)

302

PrintMessage (base) ;

193 p—>samples++;
195 } while (length);
197 fclose (fp);

fp = NULL;
199}
201 return err;

}

203

DWORD SOURCENewRX (SOURCE *p, CONFIG x*c)
205 {
DWORD err ;

207 FILE xfp;

209 err = 0;

211 // Initialize state information

p—>streaming = TRUE;

213 p—>samples = 0;

215 // Data Source

fp = NULL;

217 if (c—>source_name)
{

219 char path[256];

strcpy (path, c—>path);
221 strcat (path ,c—>source_name) ;
fp = fopen(path, ”"rb”);
223 if (!fp)
err |= 1 << 7;
225 }

227 // Create Data Read Buffer
if (fp)
229 {

// Determine the size of the file

231 fseek (fp, 0, SEEK_END) ;
p—>file_bytes = ftell (fp);
233 fseek (fp, 0, SEEK.SET) ;
235 p—>sample_size_bytes = c—>source_sample_size_bytes;

// Determine number of complete samples in data file

303

241

243

245

247

249

251

255

257

259

261

263

265

267

271

273

275

277

279

281

/) Fill

if
{

p—>sample_limit = p—>file_bytes
// Adjust sample

limit if initialization file sets

a

/ p—>sample_size_bytes;

lower limit

if ((c—>source_sample_limit)&&(p—>sample_limit > c—>source_sample_limit))

p—>sample_limit =

p—>buffer_size

if (p—>buffer_

= p—>sample_limit

size)

c—>source_sample_limit;

p—>v = malloc(p—>buffer_size);

else
err |= 1 <<
if (!p—>v)

err |= 1 <<

(terr)

p—>sample_limit = fread (p—>v,

fclose (fp);

fp = NULL;

return err;

2;

33

Data Buffer

p—>sample_size_bytes ,

SOURCE *SOURCE_New (CONFIG *c, DWORD x*errcode)

{

DWORD err ;

SOURCE *p;

P

er

= NULL;

r = 0;

p = (SOURCE %) malloc(sizeof (SOURCE)) ;

if

if

('p)
err |= 1 << 0;

(terr)

if (c—>scheduler_.TX_notRX)

err = SOURCENewTX(p, c¢);

else

err = SOURCENewRX(p, c¢);

if (c—>diagnostics)

{

// Diagnostic

Report

304

* p—>sample_size_bytes;

p—>sample_limit ,

fp);

printf (” \n”) ;

283 if (c—>scheduler.TX_notRX)
printf (?MESSAGE SOURCE\n”) ;
285 else

printf (”USRP SOURCE\n”) ;

287 printf(” File name:.............. %s\n” , c—>source_name) ;
printf(” Creation :............... %s\n” , ((err)? ”"FAILED” :”SUCCEEDED”)) ;
289 printf (” Location :............... %p\n”, (void *) p);
printf (” File size :.............. %lu bytes\n”, (unsigned long) p—>file_bytes);
291 printf(” Chunk size :............. %lu bytes\n”, (unsigned long) p—>chunk_size);
printf (” Messages needed :........ %lu\n” , (unsigned long) p—>sample_limit);
293 printf(” Message requirements:... %lu bytes\n”, (unsigned long) p—>sample_size_bytes);
printf(” Buffer size:............ %lu bytes\n”, (unsigned long) p—>buffer_size);
295 printf(” Buffer location:........ %p\n”, (void x) p—>v);
printf (” \n”) ;
207}

299 if (err)
SOURCE_Del(p) ;
301
xerrcode = err;

303 return p;

305
/*
307 DWORD SOURCE_Run (BBCFTP xsys)
{
309 // Load another block of data from the file if possible.

while ((sys—>source—>fp) &6 (sys—>source—>input_fifo_bytes <= sys—>config—>file_block_size))

311 {
bytes_read = fread(sys—>source—>input_fifo + sys—>source—>fifo_write , 1, sys—>config—>
file_block_size , sys—>source—>fp);
313 sys—>source—>input_fifo_bytes += bytes_read;
sys—>source—>input_fifo_write = (sys—>source—>input_fifo_write + bytes_read) & (sys—>config—>
input_-fifo-mask);
315 if (bytes_read < sys—>config—>file_block_size)
{
317 felose (sys—>source—>fp) ;
sys—>source—>fp = NULL;
319 }
}
321

// Process as much data from input FIFO to output FIFO as possible
323 if ((sys—>source—>input_fifo_bytes > sys—>source—>input_chunk_size) &8 (sys—>source—>

output_-fifo_items < sys—>source—>output_-fifo_size))

305

325 // Process a chunk of data
if (sys—>config—>scheduler.TX_notRX)
327 {

// Prepare a message for encoding

329 }
else
331 {

// Transfer raw USRP data for demodulation

333 1
335 sys—>source—>input_-fifo_bytes —= sys—>source—>input_-chunk_-size ;
sys—>source—>input_fifo_.read = (sys—>source—>input_fifo_bytes + sys—>source—>input_chunk_size)
& (sys—>config—>input_fifo-mask);
337

sys—>source—>output_fifo_items+-+;
339 sys—>source—>output_fifo_write = (sys—>source—>output_fifo_write + sys—>source—>

output_-chunk_size) & (sys—>config—>output_fifo_-mask);

341

// Determine if source can no longer stream data to its successor
343 if (!sys—>source—>fp)

if (sys—>source—>input_fifo_bytes < sys—>source—>input_chunk_size)
345 if (0 == sys—>source—>output_fifo_items)
sys—>source—>streaming = FALSE;

347

return 0;

349 }

351
//
A.3.21 usrp.c
/3 o ok ok ok ok ok ok ok ok oK ok ok o ok K ok ok oK oK S oK R ok R ok oK oK ok o ok R oK R oK oK R ok R ok R ok ok oK oK R oK R oK R ok oK K ok R ok ok oK K oK oK R ok R oK K oK oK R ok K ok K K K
2 *x Main TX/RX Module for the Real—time BBC Codec/Modem *
EEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEESEEEEEREEREEEEEEEEEESEESEEEEESESSEESESESESESEESEESS
4 x William L. Bahn *
* Academy Center for Information Security *
6 * Department of Computer Science *
* United States Air Force Academy *
8 x USAFA, CO 80840 *
ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok sk ok ok ok ok ok koK sk ok ok ok K oKk K ok ok ok ok ok oKk ok oKk ok ok K K ok ok oKk ok sk ok ok ok o ok ok ok ok koK ok ok K ok K ok ok K Kk Kk
10 « FILE :............ usTp . c *

* DATE CREATED:.... 038 SEP 07 *

306

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

52

« DATE MODIFIED :... 08 SEP 07 *
sk sk sk sk sk sk ok ok ok ok ok K Kk ks sk sk ok ok sk sk ok oK oK ok K K K K K sk sk sk sk sk sk sk ok oK oK ok K K K K K sk sk sk sk ok sk sk sk oK oK K oK K K K Kk ok sk sk sk ok ok ok oK K K X
*

* REVISION HISTORY

*

Sk K ok ok ok kK K K oK oK KK K K oK ok K K K K oK oK K KK K oK oK oK K K oK oK oK KK K oK oK K R K K oK oK oK KK K oK oK oK KK K oK oK ok K K K oK oK KR K K K K K K
* DESCRIPTION

* This program implements a simple file transfer protocol wusing a BBC-encoded
% data channel. Since the purpose of this code is to implement only specific

* real—time components, and not all of them, the data source and sinks are

* kept wvery simple. In particular , the transmitter reads the entire file into
* memory, formatted as a series of BBC messages, before transmission begins

* and, similarly , the receiver stores all of the received messages into memory
* before dumping them to disk all at once. This is opposed to the streaming

* source and sink modules that will be typical of the complete real—time

* implementation .

* The basic, high—level , flow is as follows:

* TX: The Transmitter

* The transmitter wuses the following signal flow:

* SOURCE —> ENCODER —> BUFFER —> MODULATOR —> SINK

* T

* RX: The Receiver

*« The receiver used the following signal flow

* SOURCE —> MODEM —> BUFFER —> CODEC —> SINK

* the module supports both the transmitter and recevier functions.
*

*

*/

/* Real—time BBC CODEC

*

* This program is designed to process the raw USRP output data and decode

307

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

% the resulting packets in real—time in a streaming fashion. Since it is

* a real—time application , structural overhead has been minimized and
* global wvariables have been used extensively.
*
* THE DATA BUFFER
*
* The data is stored in a circular buffer with the following wvariables:
* buffer: Pointer to the block of memory where the buffer starts.
* read : Index of the first byte of the present packet.
* write : Index of the mnext unused buffer location.
* fill: How many bytes are in buffer beyond the scope of the CODEC.
* unused: How many unused bytes are avatilable in the buffer.
*
* The buffer is seen by two functions, the one that is demodulating the
* data packet and the one that is decoding the resulting data. The
* demodulating function writes to the buffer at a mominally constant
* rate dictated by the communications link. In this application , this 1is
* simulated by reading the stored waveform data from a file and querying
* the clock to determine how many bytes to add to the buffer each time
* the function is called. The decoding function, on the other hand, always
* to decodes eight packets each time it is called provided sufficient data
* 1s available. Specifically , it decodes the eight packets that start with
% the bits in the byte stored at the "read” pointer. Since it can’t decode
* packets that are mnot completely contained in the buffer , the decoding
* function first checks to see if 7 fill” is mon—negative. If it isn’t, then
* it returns immediately. At the other end of the spectrum , the MODEM
* may run out of unused memory to write to. If this happens, data is going
* to be lost. It is cleaner to throw away old data instead of introducing
* a gap in present data, therefore the MODEM will push the ”read”
* pointer forward as it owverwrites the beginning of the existing packet
* data .
*
./
//
// FILE INCLUSIONS
/

#include <stdio.h> // printf()
#include <stdlib.h> // exzit (), EXIT_.SUCCESS, EXIT_FAILURE
#include <time.h> // clock (), CLOCKS-PER.SEC

#include ”bbcftp.h”

#include <pthread.h>

#include ”config.h”

308

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

142

144

#include
#include
#include
#include
#include

”source .h”
”codec.h”
”buffer .h”
”modem . h”

?sink .h”

//

// TRANSMITTER

//

int tx (B

{

int st

//

BCFTP *sys)

ate;

// Runtime scheduler

//

state
sys—>c
while
{

swit

{

= 0;
onfig—>tot_-ticks = clock ();

((sys—>sink—>streaming) && (sys—>source—>streaming || sys—>buffer—>ready))

ch (state)

case 0: // Scheduler

if ((sys—>sink—>streaming) && (sys—>config—>actual_trx_bytes < sys—>config—>

nominal_trx_bytes))

state = 1; // Run MODEM wuntil sampling is caught up
¥
else if ((sys—>source—>streaming) &&(0 <= sys—>buffer —>margin))

{

state = 2; // Encode packets subject to mazimum amount of time.

else

if (sys—>config—>scheduler_realtime)
sys—>config—>nominal_trx_bytes = (DWORD) ((clock () — sys—>config—>tot_ticks)
config—>bytespertick);
else

sys—>config—>nominal_trx_bytes += 1;//(DWORD) (config—>bytespertick);

309

* Sys—>

146

148

150

152

154

156

158

160

162

164

166

172

174

176

178

180

182

184

186

break;

case 1: // Modulator

if (sys—>buffer —>ready
state = 100;

if (sys—>buffer—>ready
state = 10;

if (sys—>buffer—>ready
state = 1;

if (sys—>buffer—>ready
state = 1;

if (sys—>buffer—>ready
state = 0;

Modulate (sys—>config ,

state = 0;

break;

case 2: // Encoder

Encode (sys—>config , sys—>source,

1000)

100)

10)

1)

0)

sys—>buffer ,

if (!sys—>source—>streaming)

state = 100;

sys—>modem, sys—>sink);

sys—>codec, sys—>buffer);

state = 0;

break;
}
sys—>config—>tot_ticks = clock () — sys—>config—>tot_ticks;
/

// POST RUN CODE

//

printf (”\n”);

printf (”Marks: %li\n”,

printf(” Total time:..........

printf (’MODEM time :

printf (”CODEC time :

printf (”Samples created

SINK_Purge(sys—>config ,

CLOCKS_PER.SEC))

CLOCKS_PER_SEC)) ;

CLOCKS_PER_SEC))

return EXIT_SUCCESS;

sys—>config —>marks) ;

%0.3f sec.\n”,

%0.3f sec.\n”,

%0.3f sec.\n”,

% i.\n",

sys—>sink);

((double)sys—>config—>tot_ticks

((double)sys—>config—>dem_ticks

((double)sys—>config—>dec_ticks

sys—>sink—>samples) ;

310

/ (double)

/ (double)

/ (double)

188 //-

190 /

192

194

198

200

202

204

206

208

210

212

214

216

218

220

222

224

226

228

// RECEVIER

int rx (BBCFTP xsys)

{

int

state;

double vmax;

//
// Runtime scheduler
/
vmax = 0;
state = 0;
sys—>config—>tot_ticks = clock();
while (((sys—>source—>streaming) || (0 <= sys—>buffer—>margin)) /+&& ((double)(clock() — sys
—>config—>tot_ticks) / (double) CLOCKS_.PER.SEC) < 25.0x%/)
{
J/printf("%i %i %i\n”, sys—>source—>streaming, sys—>buffer—>margin, state);
switch (state)
{
case 0: // Scheduler
if ((sys—>source—>streaming) && (sys—>config—>actual_trx_bytes < sys—>config—>
nominal_trx_bytes))
{
state = 1; // Run MODEM wuntil sampling is caught up
}
else if (0 <= sys—>buffer —>margin)
{
state = 2; // Decode packets subject to mazimum amount of time.
}
else
{
if (sys—>config—>scheduler_realtime)
sys—>config—>nominal_trx_bytes = (DWORD) ((clock() — sys—>config—>tot_ticks) * sys—>
config—>bytespertick);
else
sys—>config—>nominal_trx_bytes += (DWORD) (sys—>config—>bytespertick);
}
break;

311

230

232

234

236

240

242

244

246

248

250

case 1: // MODEM

Demodulate (sys—>config , sys—>source, sys—>modem,
state = 0;
break;

case 2: // CODEC

Decode (sys—>config , sys—>buffer, sys—>codec,

state = 0;

break;

}
J//printf(”What’s going onf?\n”);
}
sys—>config—>tot_-ticks = clock () — sys—>config—>tot_ticks;
//
// POST RUN CODE
//

printf(”\n”);

printf (”Marks: %li\n”, sys—>config—>marks);

sys—>buffer);

printf(” Messages found: %lu\n”, sys—>config—>message_count);
printf (” Packets lost: %lu\n”, (DWORD) (sys—>buffer—>overflows x 8));

printf(” Total time:........... %0.3f sec.\n”, ((double)sys—>config—>tot_-ticks / (double)

254

256

260

262

264

266

268

270

/

CLOCKS_PER._SEC)) ;

printf ("MODEM time :........... %0.3f sec.\n”,
CLOCKS_PER-SEC)) ;

printf (?CODEC time :........... %0.3f sec.\n”,
CLOCKS_PER_SEC)) ;

SINK_Purge(sys—>config , sys—>sink);

return EXIT_SUCCESS;

((double)sys—>config—>dem_ticks

((double)sys—>config—>dec_ticks

// MAIN PROGRAM

//

int main(int argc, char sxargv|[])

{

BBCFTP *sys;

char xconfig_file_name;

312

272

274

276

278

282

284

286

288

290

292

294

298

300

302

304

306

308

310

312

314

DWORD errcode;

int res;

/

// Read configuration information
//

config_file_name = NULL;

if (argec < 2)

{
printf(”Mode (T or R): 7);
res = getc(stdin);
switch (res)
{
case 'T’:
case 't ’:
config_file_name = "tx.ini”;
break;
case 'R’:
case ’'r’:
default
config_file_name = "rx.ini”;
}
while (’\n’ != res)
res = getc(stdin);
}
else
config_file_name = argv|[1l];

sys = BBCFTP New(config_file_name , &errcode);

if (errcode)

errcode) ;

{
printf (”BBC FTP System Constructor exited with error code: %lu\n”,
exit (EXIT_.FAILURE) ;

}

/

// Launch transmitter or recever as appropriate

//

if (sys—>config—>scheduler_.TX_notRX)
tx(sys);
else

rx(sys);

313

316

318

320

322

324

326

328

330

332

334

336

11

13

15

17

19

// Runtime Scheduler

//

// The components

of the mew scheduler are mot yet complete.

// while (sys—>sink—>streaming)
/7 A

// SOURCE_Run(sys) ;

// CODEC_Run(sys);

// MODEM_Run(sys) ;

// SINK_Run(sys) ;
/7 }

/

// Final Housekeeping

//

//BBCFTP_Del(sys);

return EXIT_SUCCESS;

A.3.22

#

Makefile

Real—time BBC Demodulator and Decoder

#

usrp: usrp.o bbcftp.o config.o source.o codec.o buffer.o modem.o sink.o shal.o dirtyd.o bytes.o

gcc —o usrp usrp.o bbcftp.o config.o source.o codec.o buffer.o modem.o sink.o shal.o dirtyd.o

bytes.o —Ilm

Top Level Program

usrp.o: usrp.c

gcc —c —03 usrp.c

usrp.c: bbcftp.h config.h

Applicat

bbcftp.o:

ion Module

bbcftp.c

gcc —c —O3 bbcftp.c

bbcftp.c:

bbcftp . h

source.h codec.h buffer.h modem.h sink.h

314

21

23

25

27

29

31

33

35

37

39

41

43

47

49

51

53

55

57

59

61

63

bbecftp.h: config.h source.h codec.h buffer.h modem.h sink.h dirtyd.h

Configuration Module

config.o: config.c

gcc —c —03 config.c

config.c: config.h dirtyd.h

config.h: dirtyd.h

SOURCE Module

source.o: source.c

gcc —c —O3 source.c

source.c: bbcftp.h source.h dirtyd.h

source.h: config.h dirtyd.h

CODEC Module

codec.o: codec.c

codec.c: codec.h shal.h

gcc —c —03 codec.c

codec.h: config.h source.h buffer.

BUFFER Module

buffer.o: buffer.c

gcc —c —03 buffer.c

buffer.c: buffer.h

buffer .h: config.h dirtyd.h

MODEM Module

modem.o: modem.c

modem.c: modem.h shal.h

gcc —c —03 codec.c

h

sink.h shal.h dirtyd.h

315

65

67

69

71

73

75

7

79

81

83

85

87

89

91

93

95

97

99

101

103

modem.h: config.h source.h buffer

SINK Module

sink.o: sink.c

gcc —c —03 sink.c

sink.c: sink.h dirtyd.h

sink.h: config.h dirtyd.h

SHA1l Support Module

shal.o: shal.c

gcc —c —O03 shal.c

shal.c: shal.h

DIRTY DEEDS Support Module

dirtyd.o: dirtyd.c

gcc —c —03 dirtyd.c

dirtyd.c: dirtyd.h

dirtyd.h: bytes.h

BYTE Definitions Support Module

bytes.o: bytes.c

gcc —c —0O3 bytes.c

bytes.c: bytes.h

HOUSEKEEPING TARGETS

clean :

rm *.0

.h

sink .h dirtyd.h

316

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

A.4 Jammer Source Code

A.4.1 Main Program Source (jammer.c)

#include <stdio.h>
#include <stdlib .h>
#include <time.h>
#include <string.h>
#include ”config.h”
#include ” buffer.h”
#include ”modem.h”
#include ”sink.h”

#include <unistd.h>

// return a random integer in the range [0, n).
// n should be in the range [1, RANDMAX].

unsigned long long randint (unsigned long long n)

{
if (n <= 0) return —1;
if (n > RANDMAX) return —1;
unsigned long long r;
// the trivial rand()%n implementation does not generate wuniform
// distributions , so we ignore the top section of the distribution
// would become mnonuniform.
do {
r = rand () ;
} while (r >= (RANDMAX/n)*n) ;
return r % n;
}

int main(int argc, char sxargv|[])
{

extern char xoptarg;

extern int optind, opterr, optopt;

char xconfig_file_name;

DWORD errcode;

CONFIG x*config;

BUFFER *buffer ;

MODEM *modem ;

SINK x*sink;

int jammer_level = 12;

int samples = 1600;

unsigned char marked[8x*sizeof (unsigned long long) |;

317

that

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

s

79

81

83

85

int i = 0;

int j = 0;

int c;

unsigned long long *ran_number = malloc(sizeof(unsigned long long));
unsigned long long *buf_number = malloc(sizeof (unsigned long long));

srand ((unsigned) (time (0)));

config_file_name = 7tx.ini”;

while ((c¢ = getopt(argc, argv, 7J:N:C:7)) != —1) {
switch(c) {
case 'J’:
jammer_level = atoi(optarg);
break;
case 'N’:
samples = atoi(optarg);
break;
case 'C’:
config_file_name = optarg;
break;
}
}
config = CONFIG-New(config_file_name , &errcode);
buffer = BUFFERNew(config , &errcode);
modem = MODEMNew(config , &errcode);
sink = SINK_New(config , &errcode);

for(i = 0;i<(samples/(32xsizeof(unsigned long long)));i++){

*buf_-number = 0;
sran_number = 0;

for(j=0;j < jammer_level; j++){

*ran_-number = rand () %(8xsizeof (unsigned long long));
while (marked [*ran_number]==1){

sran_number = rand()%(8+xsizeof(unsigned long long));
}
marked [* ran_number] = 1;

//set the bit at ran_-number to 1
#*buf_number |= (1 << *ran_number);

}

memcpy (buffer —>buffer+buffer —>write , buf_-number ,

buffer —>write+=sizeof (unsigned long long);

318

sizeof (unsigned long long));

87

89

91

93

95

97

99

101

103

1

11

13

15

17

19

21

23

for (j=0;j<sizeof (unsigned long long);j++){
buffer —>ready = 1;
Modulate (config , buffer, modem, sink);

}

memset (marked ,0x00, sizeof(unsigned long long) *8);

printf(”Samples...........: %i\n” ,sink—>samples);
SINK_Purge(config ,sink);

MODEM _Del (modem) ;

BUFFER.Del(buffer) ;

CONFIG_Del(config) ;

SINK_Del (sink) ;

free (ran_number) ;
free (buf_-number) ;

return EXIT_SUCCESS;

A.4.2 Modified BBC modem.h Source

/K sk sk ok sk ok sk sk ok sk ok sk ok ok sk S oK Sk K sk Sk ok sk S ok sk K ok sk K sk s ok sk R ok sk R sk sk R sk SR oK sk K ok sk K sk Sk K sk s ok Sk K sk ok ok sk S ok Sk K ok ok ok sk s ok Sk K K

* MODEM for the Real—time BBC Codec/Modem *

sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk sk ok sk ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk ok ok ok

* William L. Bahn *
* Academy Center for Information Security *
* Department of Computer Science *
* United States Air Force Academy *
* USAFA, CO 80840 *

sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk ok sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok ok sk sk sk ok ok ok

« FILE :............ modem . h *
« DATE CREATED:.... 06 SEP 07 *
« DATE MODIFIED :... 06 SEP 07 *

sk sk sk sk sk sk sk sk sk ok sk sk ko ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk ok sk sk sk koo sk sk sk sk sk sk sk sk sk sk sk ok ok ko ok ok ok
*

* REVISION HISTORY

* Modified to support only the requirements of providing same symbol
* rate data as a means to create a jammer.

* 2/28/2009 Derek Sanders

*

sk sk sk sk sk ok ok sk ok sk ok sk sk sk sk ok sk ok sk ok ok sk sk sk sk sk ok ok ok sk ok sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk ok ok Sk ok sk ok sk sk sk ok ok sk ok sk ok sk sk sk sk ok sk ok Ok ok Sk ok ok ok
*

* DESCRIPTION

* The modem converts baseband signal data to/from packet data.

319

25 *
*/

27

#ifndef MODEMdotH

29 #define MODEMdotH

31 /
// REQUIRED INCLUDES
33 //-
35 #include <time.h> // clock_t
37 #include ”config.h”
#include ” buffer.h”
39 #include ”sink.h”
#include 7 dirtyd .h”
41
//

43 // STRUCTURE DECLARATIONS

//

45

typedef struct MODEM MODEM;

47

/

49 // STRUCTURE DEFINITIONS

//

51

// NOTE: Normally the structure definition would be in the

53 // the structure members inaccessible to outside functions

// public function calls. But for the real—time code it has

*.c file to make
except through

been decided

55 // to make the structure members directly wvisible to the functions that

// manipulate them.

57

struct MODEM

59 {

61

63

65

67

69 1}

// Derived quantities
DWORD jitter_samples;
double alpha;

double t_hi, t_lo;

// State information
DWORD state ;
double integrator;

SDWORD stamp ;

320

71

73

75

77

79

10

12

14

16

18

20

22

24

26

28

//

// PUBLIC FUNCTION PROTOTYPES

/

MODEM *MODEM._Del (MODEM #p) ;

MODEM +*MODEM_New (CONFIG *c, DWORD xerrcode) ;

v

//

oid Modulate (CONFIG *c, BUFFER *buffer , MODEM smodem, SINK xsink) ;

#endif

A.4.3 Modified BBC modem.c Source

/

//

s sk ok ook ok ok o ok R KR ok oK o ok R ok R ok R oK R R ok R ok R ok ok o ok R ok R KR ok oK R ok R ok ok oK R S oK R sk R KoK oK ok o ok R ok R oK R SR ok R ok R ook oK oK K ok R
* MODEM for the Real—time BBC Codec/Modem *

sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk ok sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk sk ok sk sk sk ok ok ok

* William L. Bahn *
* Academy Center for Information Security *
* Department of Computer Science *
* United States Air Force Academy *
« USAFA, CO 80840 ¥

sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk Sk sk sk sk sk Sk sk sk sk sk ok sk sk sk sk sk sk sk ok sk sk Sk sk ok ok sk sk ok ok ok ok

« FILE :............ modem . ¢ *
* DATE CREATED:.... 06 SEP 07 *
« DATE MODIFIED :... 06 SEP 07 *

sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok ok sk ok sk sk sk ok ok ok
*

* REVISION HISTORY

*
* Modified to support only the requirements of providing same symbol
* rate data as a means to create a jammer.

* 2/28/2009 Derek Sanders

EEEEEEEESEREEEEEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEREEREEERERSEESESESSESESESESESEESS
*

« DESCRIPTION

*

% The modem and its public interface is described in modem.h.

*

sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk ok sk sk ok sk sk sk sk ok ok sk sk sk ok ok ok

*/

30 // REQUIRED INCLUDES

//

321

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

#include <stdlib.h> // malloc ()

#include <math.h> // ezp()

#include ”modem.h”

//

// STRUCTURE DEFINITIONS

//

// NOTE: Normally the structure definition would be in the x.c file to make

// the structure members inaccessible to outside functions except through

// public function calls. But for the real—time code it has been decided

// to make the structure members directly wvisible to the functions that

// manipulate them.

//

// PUBLIC FUNCTION DEFINITIONS

//

MODEM «MODEM_Del (MODEM *p)

{

if (p)
{

free (p);
}

return NULL;

MODEM *MODEM New (CONFIG *c, DWORD *errcode)

{

MODEM *p;
DWORD err ;

double nominal_steady_state_peak;

p = NULL;

err = 0;

p = (MODEM %) malloc(sizeof (MODEM)) ;
if (1p)

err |= 1 << 0;

if (lerr)
{
// Derived quantities

p—>jitter_-samples = (int)(c—>modem_samples_per_bit * c—>modem_jitter_bits);

322

78

80

82

84

86

88

90

92

94

96

98

100

102

104

108

110

112

114

116

(1.0/(1.0 —p—>alpha))

c—>modem_gain_dB) ;

(c—>modem_gain_.dB—c

// Integrator parameter
p—>alpha = exp ((2.0/c—>modem_samples_per_bit) — 1.0);
// Threshold parameters
nominal_steady_state_peak = (c—>nominal_rx_signalxc—>nominal_rx_signal) =
5
p—>t-hi = nominal_steady.state_peak x ((c—>modem_threshold_pct + c—>modem_hysteresis_pct/2.0)
/100.0) ;
p—>t_lo = nominal_steady_state_peak * ((c—>modem_threshold_pct — c—>modem_hysteresis_pct /2.0)
/100.0) ;
// State information
p—>state = 0;
p—>integrator = 0.0;
p—>stamp = O0;
}
if (err)
p = MODEM.Del(p) ;
if (c—>diagnostics)
{
// Diagnostic Report
printf (” \n”) ;
printf (?"MODEM\n”) ;
printf(” Creation :.................. %s\n” , ((err)? ?FAILED” :”SUCCEEDED”)) ;
printf(” Location :.................. Y%p\n” , (void x*) p);
printf(” Integrator alpha:.......... %f\n” , p—>alpha);
printf(” Jitter tolerance :.......... %f\n” , p—>jitter_samples);
printf(”? Modem gain :................ %t (%f dB)\n”, c—>nominal_tx_signal,
printf(” Nominal channel loss :...... %f dB\n”, c—>modem_channel_loss_.dB);
printf(” Nominal rx signal peak:.... %f (%f dB)\n”, c—>nominal_rx_signal,
—>modem_channel_loss_dB)) ;
printf(” Nominal integrator peak:... %f\n”, nominal_steady_state_peak);
printf(” LO —> HI threshold :........ %f\n”, p—>t_hi);
printf(” HI —> LO threshold :........ %f\n” , p—>t_lo);
printf (” \n”) ;
}
xerrcode = err;
return p;
}
//

323

/+ MODEM

* The MODEM reads/writes USRP in bursts of samples corresponding to
* 8 packet bits. The calling function is responsible for ensuring that

* wvalid data and/or sufficient room for new data exzists in the buffer.
*/
/* MODULATOR

* The modulator reads one byte of packet data from the buffer and generates

* USRP data for the entire set of 8 packet bits.

*/

void Modulate (CONFIG *xc, BUFFER xbuffer , MODEM sxmodem, SINK xsink)
{

DWORD originbit , sample;

float signal;

clock_t ticks;

float =*v;

ticks = clock ();

// Push write pointer if packet byte is not available

if (!buffer—>ready)

{
buffer —>write = (buffer—>write + 1) & buffer —>buffermask;
buffer —>ready++;

buffer —>margin ——;

// For each bit in the packet byte at the buffer’s read pointer
for (originbit = 0; originbit < 8; originbit4+)
{
// Determine if the bit is a mark or a space
if (buffer —>buffer [buffer —>read] & c—>bitmask[originbit])
{
c—>marks++;
signal = (float) c—>nominal_tx_signal;
}
else

signal = 0.0;

// Determine if the sink can take all the samples for the present bit

324

164

166

168

170

172

174

176

178

180

182

184

1

11

13

15

17

if (sink—>samples + c—>modem_samples_per_bit < sink—>sample_limit)
{
// Establish the base location within the sink’s buffer

v = ((float %) sink—>v) + (2 * sink—>samples);

// Generate and write the baseband samples to the sink
for (sample = 0; sample < c—>modem_samples_per_bit; sample++)
{
v([2xsample] = signal; // I(t) (actual data)
v([2*sample + 1] = 0.0; // Q(t) (forced to zero)
}
sink —>samples += c—>modem_samples_per_bit;
}
else

sink —>streaming = FALSE;

buffer —>buffer [buffer —>read] = 0;

buffer —>read = (buffer—>read 4+ 1) & buffer —>buffermask;
buffer —>ready ——;

buffer —>margin+4+;

c—>actual_trx_bytes 4= c—>trx_bytes_per_packet_byte;

c—>dem_ticks += clock () — ticks;

A.4.4 Modified BBC sink.h Source

/K sk sk sk ok sk ok sk K ok sk ok sk ok oK sk o oK sk K sk ok K sk o ok sk K ok ok K sk sk ok sk R ok sk K sk sk ok sk SR oK sk o ok ok K sk ok K 3k 3 oK ok K sk ok K Sk R ok Sk K ok ok ok sk oK ok ok K K

* Signal Sink Module for the Real—time BBC Codec/Modem *

sk ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok sk ok ok ok ok sk ok ok ok k sk ok ok ki ok ok ok sk ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok ok Ok ok sk ok ok R Ok sk ok ok ok Ok sk ok ok ok ok ok ok ok K

* William L. Bahn *
* Academy Center for Information Security *
* Department of Computer Science *
* United States Air Force Academy *
« USAFA, CO 80840 *

sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk ok ok ok

* FILE :............ sink . h *
« DATE CREATED:.... 08 SEP 07 *
* DATE MODIFIED :... 08 SEP 07 *

sk sk sk sk sk ok ok sk ok sk ok sk sk sk sk ok sk ok sk ok ok sk sk sk sk sk ok ok ok ok ok sk sk sk sk sk sk ok sk ok sk sk sk sk ok sk sk ok ok Sk ok sk ok sk sk sk sk ok Sk ok sk ok sk sk sk sk ok sk ok Ok ok Sk ok ok ok
*

* REVISION HISTORY

*

sk sk sk sk ok ok ok ok sk ok ok ok ok k sk ok sk ok ok sk ok sk ok sk sk ok sk ok ko k ok sk kol koo sk ok ko sk ok sk R Sk sk ok ok ok Ok Ok ok ok ok R Ok sk ok sk ok Ok sk ok ok ok Sk sk ok ok ok Ok Ok ok Rk

325

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

* DESCRIPTION

* This module supports the signal sink for both the TX and

*/

#ifndef SINKdotH
#define SINKdotH

the RX

//
// REQUIRED INCLUDES

//

#include ”config.h”

#include 7 dirtyd .h”

//

// STRUCTURE DECLARATIONS
/

typedef struct SINK SINK;

/

// STRUCTURE DEFINITIONS

//

// NOTE: Normally the structure definition would be in the *.c file to make

// the structure members inaccessible to outside functions e

// public function calls. But for the real—time code it has

zcept through
been decided

// to make the structure members directly wvisible to the functions that

// manipulate them.

struct SINK

{
FILE xfp;
int streaming ;
DWORD samples ;
DWORD sample_size_bytes;
DWORD sample_limit ;
BYTE xv;
size_t buffer_size;
b

326

63

65

67

69

71

10

12

14

16

18

20

22

24

26

28

30

32

/
// PUBLIC FUNCTION PROTOTYPES

//

SINK *SINK_Del (SINK #p);
SINK *SINK_New (CONFIG xconfig , DWORD *errcode) ;

void SINK_Purge (CONFIG #config , SINK xp);

//
#Hendif

A.4.5 Modified BBC sink.c Source

/**
* Signal Sink Module for the Real—time BBC Codec/Modem *

sk sk sk sk ok sk sk sk sk ok sk sk Sk ok sk ok sk ok ok sk ok ok sk sk sk ok sk sk sk sk ok sk sk sk ok sk sk sk sk ok sk sk sk sk sk Sk sk ok sk sk Sk sk sk sk sk Sk ok sk ok sk ok Sk sk ok ok sk Sk sk ok ok ok sk ok ok ok ok

* William L. Bahn *
* Academy Center for Information Security *
* Department of Computer Science *
* United States Air Force Academy *
* USAFA, CO 80840 *

sk sk sk sk ok sk ok ok ok ok ok sk ok ok sk ok ok ok ok sk ok sk ok sk sk ok ok ok ko k ok ki ok ok ok ki Ok sk sk ok sk R Sk sk ok sk sk R Ok ok ok sk R Ok sk ok sk ok Ok sk ok ok ok Ok sk ok ok ok ok Ok ok R ok

* FILE :............ sink.c *
* DATE CREATED:.... 08 SEP 07 *
* DATE MODIFIED :... 28 FEB 09 *

sk sk sk sk ok sk sk sk sk ok sk sk Sk k sk ok sk ok ok sk ok sk sk sk sk ok sk sk sk sk ok sk sk sk ok sk sk sk sk sk sk sk sk sk sk Sk sk ok sk sk Sk sk sk sk sk kol sk sk sk sk sk sk ok ok sk Sk sk ok ok ok sk ok ok ok ok
*

* REVISION HISTORY

* Modified to support only the requirements of providing same symbol
* rate data as a means to create a jammer.

* 2/28/2009 Derek Sanders

*

sk sk sk sk sk sk sk sk sk ok sk sk sk ok sk ok sk ok sk sk ok sk sk sk sk ok ok sk ok sk sk sk sk ok sk sk sk sk ok ok sk sk sk ok ok ok

* DESCRIPTION

% This module supports the signal sink for both the TX and the RX

*/

/
// REQUIRED INCLUDES

//

#include <stdlib.h> // malloc (), free()

327

34

36

38

40

42

44

46

48

50

52

54

56

60

62

64

66

68

#include <string.h> // memmove()

#include ”sink.h”

#include ”dirtyd.h”

//

// STRUCTURE DEFINITIONS

//

// NOTE: Normally the structure definition would be in the

// the structure members inaccessible to outside functions

// public function calls. But for the real—time code it has

// to make the structure members directly visible to the functions

// manipulate them.

//

// PUBLIC FUNCTION DEFINITIONS
//

SINK *SINK_Del (SINK xp)

{
if (p)

if (p—>fp)
if (stdout != p—>fp)
{
fclose (p—>fp);
p—>fp = NULL;
}
if (p—>v) { free(p—>v); p—>v = NULL;
free(p);
p = NULL;

return p;

// Sufficient memory is allocated up front

// to handle a mazimum amount of data. However, the present

// contents of the buffer can be purged wusing

SINK *SINK_New (CONFIG xc, DWORD *errcode)
{
SINK #pj;

DWORD err ;

SINK_Purge () .

328

been decided

78
p = NULL;

80 err = 0;

82 p = (SINK %) malloc(sizeof (SINK));
if (!p)
84 err |= 1 << 0;

86 // Open Data Sink file
if (lerr)

88 {

/xp—>fp = NULL;
90 if (c—>sink_name)

{
92 char path [256];

strcpy (path, c—>path);

94 strcat (path ,c—>sink_name) ;

p—>fp = fopen(path, "wb”);

96 if (!p—>fp)
err |= 1 << 7;
98 1
else
100 p—>fp = stdout;x/
}
102

// Initialize state information
104 if (lerr)

{
106 p—>samples = 0;

p—>streaming = TRUE;

108
if (c—>sink_sample_limit)
110 p—>sample_limit = c—>sink_sample_limit;
else
112 {
if (c—>scheduler_TX_notRX)
114 {
p—>sample_limit = 4xc—>modem_samples_per_bitxc—>packet_bits;
116 ¥
else
118 {
p—>sample_limit = 1000;
120 }
}
122

329

124

126

128

130

132

134

136

138

140

142

144

146

148

150

152

154

156

158

160

162

164

166

if (c—>sink_sample_size_bytes)

p—>sample_size_bytes = c—>sink_sample_size_bytes;
else
{
if (c—>scheduler_.TX_notRX)
{
p—>sample_size_bytes = 2xsizeof(float);
}
else
{
// One byte for each eight full bits of message
p—>sample_size_bytes = c—>codec_message_bits / 8;
// Add a final byte, if mnecessary, to hold leftover
if (c—>codec_message_bits % 8)
p—>sample_size_bytes++;
// Add one byte for terminating NUL character
p—>sample_size_bytes++;
}
¥

// Allocate Memory for sink data

if (lerr)

{

p—>buffer_size = p—>sample_limit *x p—>sample_size_bytes;

p—>v = malloc(p—>buffer_size);

if (!1p—>v)

err |= 1 << 1;

if (c—>diagnostics)

{

// Diagnostic Report

printf (” \n”) ;

printf (?SINK\n”);

printf(” Creation:............... Y%s\n” , ((err)? "FAILED”
printf(” Location :............... Y%p\n”, (void x) p);
printf(” Sample size :............ %lu bytes\n”, (unsigned
printf(” Sample limit :........... %lu\n”, (unsigned long)
printf(” Buffer size:............ %lu bytes\n”, (unsigned
printf(” Buffer location :........ Y%p\n”, (void x) p—>v);
printf(” \n”) ;

}

330

bits

: "SUCCEEDED”)) ;

long) p—>sample_size_bytes);
p—>sample_limit);

long) p—>buffer_size);

172

174

176

178

180

182

184

186

188

190

192

194

196

198

202

204

206

208

210

212

if (err)

SINK_Del(p);

kerrcode = err;

return p;

void SINK_Purge (CONFIG xc, SINK =xp)

{

DWORD i, seq, missing, distinct;
BYTE *xbase;

int found, complete;

‘WORD id, stream-_id, last_stream_id;
char filename [256];

int filenamelen;

FILE xfp;

// Transmitter
if (c—>scheduler_.TX_notRX)
{
p—>fp = NULL;
if (c—>sink_name)
{
char path[256];
strcpy (path, c—>path);
strcat (path,c—>sink_name) ;
p—>fp = fopen(path, "wb”);
/7l (Ip=>fp)
J/ err |= 1 << 7;
}
else

p—>fp = stdout;

// Leading cushion
for (i = 0; i < c—>cushion_bits*xc—>modem_samples_per_bit;

fwrite(&c—>bitptr [0], sizeof(float), 1, p—>fp);

// Buffer dump

fwrite (p—>v, p—>sample_size_bytes , p—>samples, p—>fp);
// Trailing cushion

for (i = 0; i < c—>cushion_bits*xc—>modem_samples_per_bit;

fwrite(&c—>bitptr [0], sizeof(float), 1, p—>fp);

331

)

i++)

p—>samples = 0;

214 }

A.4.6 Jammer Makefile

#
2 # Real—time BBC Demodulator and Decoder

Modified makefile for creating a jammer 2/28/2009 Derek T. Sanders

4%

6 INCLUDES = ../ usrpOA
jammer: jammer.o config.o buffer.o modem.o dirtyd.o bytes.o sink.o
8 gcc —o jammer jammer.o config.o buffer.o modem.o dirtyd.o bytes.o sink.o —lm

10 # Top Level Program

12 jammer.o: jammer.c
gcc —c —O3 jammer.c —I$ (INCLUDES) —I.

14

jammer.c: ../ usrp0A/config.h ../usrpOA/buffer.h modem.h sink.h
16

Configuration Module
18

config.o: ../usrpOA/config.c
20 gcc —c —0O3 ../ usrp0A/config.c —I$ (INCLUDES) —I.

22 $(INCLUDES) /config.c: ../usrpOA/config.h ../usrpOA/dirtyd.h

24 $(INCLUDES) /config.h: ../usrp0A/dirtyd.h

26 # BUFFER Module

28 buffer.o: ../usrp0OA/buffer.c
gcc —c —O3 ../ usrp0A/buffer.c —I$ (INCLUDES) —I.

30

$ (INCLUDES) /buffer.c: ../usrp0OA/buffer.h
32

$ (INCLUDES) /buffer .h: ../usrpOA/config.h ../usrpOA/dirtyd.h
34

MODEM Module
36

modem . o: modem. c
38

modem . c: modem.h

40 gcc —c¢ —O3 modem.c —I$ (INCLUDES) —I.

332

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

modem.h: ../usrp0A/config.h ../usrp0A/buffer.h

SINK Module

sink.o: sink.c

gcc —c —O3 sink.c —I$ (INCLUDES) —I.

sink.c: sink.h ../usrpOA/dirtyd.h

sink.h: ../usrp0OA/config.h ../usrp0A/dirtyd.h

DIRTY DEEDS Support Module

dirtyd.o: ../usrp0A/dirtyd.c

gcc —c —0O3 ../ usrp0A/dirtyd.c —I$ (INCLUDES) —

$ (INCLUDES) /dirtyd.c: ../usrp0OA/dirtyd.h

$ (INCLUDES) /dirtyd .h: ../usrpOA/bytes.h

BYTE Definitions Support Module

sink .h

I.

bytes.o: ../usrp0OA/bytes.c
gcc —c —O3 ../ usrp0A/bytes.c —I$ (INCLUDES) —I.
$ (INCLUDES) /bytes.c: ../ usrpOA/bytes.h

HOUSEKEEPING TARGETS

clean :

rm *.0

333

../ usrp0A /dirtyd.

APPENDIX B

MISCELLANEOUS FILES

B.1 Data Frame Hexadecimal String

0014a54726b200146¢1e70be0800450805dcced04000360622d7ccI8bt25c¢0a80
1061£1b080df1d58447¢92573£1501016d0b13900006f636b696e67206{6e746f
207468652072657175657374206c6636b20696e2074686520554244206472697
665722¢20692e652e202064616e2774206c6£636b0a097468652071 7565756520
7370696e6¢6£636b207768656€2063616c6c65642066726f6d207468652072657
1756573742066756e6374696{6e2e02090209496e2064657461696¢320a0902a09
52656e616d65207562645166696e697368282920746120515£7562645{66696€6
97368282920616e642072656d6{7665207562645{69615f6c6f636b2066726£6d
2069742e20204164640a09777261707065722c207562645{66696e69736828292
c207768696368206772616273206c6£636b206265666{72652063616c6c696e67
205£5f7562645166696e69736828292e20205570646174650a09646£5{7562645
£7265717565737420746£2075736520746865206c6636b2066726565205£5£75
6264566696e697368282920746{2061766£696420646561646c61636b2e20204
16¢73612c0a096170706172656e746c7920707265706172655£72657175657374
2069732063616c6c656420776974682075626451696£516c6£636b2068656¢642
c2073612072656d6{7665206c6£636b73020974686572652e020902095369676¢

65642d666662d62793a20436872697320577269676874203c¢636872697377406

334

£73646¢2e6£72673e02095369676e65642d6{66662d62793a2050616{6c6£2027
426c6169736£72626c¢616465272047696172727573736£203c626c6169736£726
26c6164655f7370616d407961686{61269743e0a095369676e65642d666662d
62793a20416e64726577204d6{72746£6e203c616b706d406f73646¢2e6f72673
€0a095369676e65642d6£66662d62793a204c696e757320546£7276616c647320
3cT4617276616c6473406{73646c2e6£72673e0a0a3c626c6169736{72626¢616
465517370616d407961686161269743e0a095b50415443485d20756d6¢3a2075
736520616c¢77617973206120736570617261746520696£207468 7265616420666
£72205542440a090a0943757272656e746¢792c¢207562643d73796€6320697320
646966666572656e74206672616d207265706c6163696e6720756264233d20776
974682075626423733d2¢2020546869732069730209616761696e737420507269
6e6369706c65206£66204c656173742053757270726973652¢207362072656d6
7665207468697320646966666572656e63652e0a090a09416¢736£2074686520
63757272656e74207562643d73796e63206265686176696175722069732063616
d706c6574656¢79207573656c6573733a20697420697320746£206d616b652073
7572650a0974686174207768656e20746865206b65726e656c206861732073796
€636865642069747320492{4120746£20746865207669727475616c206469736b
2¢20746865206861737420646£657302096e6£7420696e76616c6964617465207
46869732077697468206869732063616368696e¢673b2074686973206361757365
7320526569736572465320636{7272757074696{6e2e0a0902094275742073696
€63652061637475616c¢6¢792077652063616c6c20656e645{7265717565737428

29206£6e6¢79206166746572207468652069615{7468726561642068617320646

335

£6e65206974730a09776£726b2c207765206e65766572206c696520746{207468
6520626c6£636b206c617965722e20205573696e67204£5153594e43206173207
76520646f207768656€207265706c¢6163696e670a09756264233d207769746820
75626423733d20697320656e6£7567682e0a0902095369676e65642d6£66662d6
2793a205061616c612027426c6169736172626c61646527204769617272757373
6£203c626c6169736172626c6164655£7370616d40796168616{2e69743e02095
369676e65642d6f66662d62793a20416e64726577204d6£72746{6e203c616b70

6d406173646c2e6£72673e0a095369676e6564

B.2 RTS Frame Hexadecimal String

08ae26b201f0a0000000b0c49741d26£026e5d866232382e34373535

336

