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In the current work, Goldmann constants and Norris-Landzberg acceleration 

factors have been developed for eutectic Tin Lead and Lead free solders (SAC 305) with 

the help of statistical tools including Principal Component Regression for reliability 

prediction and part selection of Plastic Ball grid array packages. Two types of PCB 

assemblies including PCBs with integral copper core and PCBs with no integral copper 

core have been tested.  The models have been developed based on thermo-mechanical 

reliability data acquired on packages subjected to several different thermal cycling 

conditions. The thermal cycling conditions differ in temperature range, dwell times, 

maximum temperature, minimum temperature to enable development of constants needed 

for life prediction and assessment of acceleration factors. 
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Goldmann constants and the Norris-Landzberg acceleration factors have been 

benchmarked against previously published values. In addition, model predictors have 

been validated against validation datasets which have not been used for model 

development. Convergence of statistical models with experimental data has been 

demonstrated using a single factor design of experiment study for individual factors 

including temperature cycle magnitude, relative coefficient of thermal expansion, solder 

volume, diagonal length of chip, etc. The predicted and measured acceleration factors 

have also been computed and correlated. The correlations achieved are of a good 

accuracy for different parameters examined. Statistics based log transformed models have 

been presented to show their power dependencies. Box – Tidwell power law modeling 

has been demonstrated.  The presented methodology is valuable in development of 

fatigue damage constants for the application specific accelerated test data-sets and 

provide a method to develop institutional learning based on prior accelerated test data. 
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CHAPTER 1  

INTRODUCTION 

The increasing pressure for developing small, reliable and cheap packages on the 

microelectronics industry have lead to the use of area array packages. After their wide 

spread use in the commercial field, PBGAs are now implemented in aerospace and 

military applications [Ghaffarian 2005]. Considering the various factors like geometric 

parameters, material properties, thermal cycling conditions which govern the reliability of 

electronic packages, statistical models have been developed for the data obtained by 

accelerated life cycling of different boards with Cu core and No core PCB substrates. 

Principal component regression models are used for life prediction of these packages 

which are subjected to harsh environments. 

It is very important to understand the underlying physics and the mechanical 

failure theories which govern the failure of the solder joint. The mismatch between the 

coefficient of thermal expansion between the chip and the module due to the thermal 

cycling which the chip undergoes, results in shear strains in the solder joint. Thus the 

mechanical strain along with the time and temperature factors has to be taken into 

consideration while evaluating the fatigue behavior of solder interconnections under 

accelerated conditions. Previously researchers have studied the behavior of the solder and 

developed life predictions for Eutectic Tin Lead solder. With the Electronic industry 
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going Lead free, there have been many challenges for the researchers to predict 

the behavior of the solder and thus their failure.  

L

hAt Stress Free Temperature (T) 

At Temperature T2 (T2<T) 

At Temperature T1 (T1>T) 

Silicon 

PCB

 

Figure 1.1: Solder joint fatigue failure due to thermal cycling 

When the package under goes thermal cycling, may it be an accelerated one or 

one in the field, the PCB which has a higher coefficient of thermal expansion heats up 

and expands more than the silicon. When the temperature decreases, due to cessation of 

the operation or environment, the PCB will contract faster. The expansion and 

contraction introduces shear strains and shear stresses in the solder joint. High shear 

stress can cause delamination of various interfaces like UBM/intermetallic, 

solder/underfill etc. Apart from delamination, the repeated heating and cooling can 
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eventually cause fatigue of the solder joints. The high shear stresses would enhance the 

fatigue initiation making solder interconnect more susceptible to such fatigue failures as 

shown in Figure 1.1 [Singh 2006] represents the same. Hence evaluation of stresses at the 

joints has become critical to predict the reliability of the assembly. 

The Classical Coffin Manson’s Equation which related the plastic strain that 

develops due to the difference in coefficient of thermal expansion is given in the equation 

1.1 below: 

C)(N n
p           Eqn 1.1 

Where, 

p  is the plastic strain, 

N is number of cycles to failure, 

n is empirical constant observed to be 2 for nearly all metals, 

C is the proportionality factor. 
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Goldmann developed his form of the Coffin Manson which is given in Equation 1.2 

below 

Goldmann`s Equation: 
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Where, 

TK  is a constant which is a function only of parameters of the testing cycle, 

uT  is ultimate shear strength of the critical interface, 

       rf  is the radius of the critical interface, 

      A and   are constants in the stress strain relationship, 

      h is the height of the solder joint, 

      V is the volume of the solder joint, 

       is the shear deformation of the joint  

     m is an empirical constant. 
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The Norris Landzberg Model is given in the following equation 1.3 below: 
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Where, 

AF is the Acceleration factor. 

Subscript U stands for use-conditions and Subscript A is used for accelerated-test 

conditions  

NU and NA are the lives of the packages fU and fA are the frequencies 

TA and TU are the temperature excursions 

Tmax is the maximum temperature of the cycle in Kelvin 

The Equation is often in used in the form [Lau 1997] given by Equation 1.4 below 
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Principal Component Regression is used to formulate these equations in the 

statistical model. In case of the Goldmann Equation, the Number of cycles to failure is 

taken as the response variable and the terms on the right hand side of the equation like the 

ultimate shear strength of the critical interface, height of the solder joint, volume of the 

solder joint are taken as the response variables. In case of the Norris Landzberg`s model 

the Acceleration Factor which is the ratio of the lives of the package is taken as the 

response variable and the parameters on the right hand side of the equation like the ratio 

of the frequencies and the ratio of temperature excursions are taken as the predictor 

variables.  
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Principal Component Regression is a method to overcome the multi-colinearity in 

a regression model by transforming the original predictor variables to a new dataset with 

the help of Eigen vectors and then transforming the original variables back after the 

regression is done. It will be discussed in details in the further chapters. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Experimental Techniques 

Various experimental tests, such as Accelerated Thermal Cycling (ATC), Thermal 

Shock, HAST (highly accelerated stress test) and vibration test, have been used by the 

researchers to analyze the solder joint fatigue life for qualifying the components for 

different applications. ATC exposes the packages to a series of low and high 

temperatures usually in a single air chamber in which the temperature ramp can be 

controlled carefully. Thus accelerating the failure modes caused by cyclic stresses. 

Thermal shock testing is a liquid-liquid test in which two liquid chambers at different 

temperatures are used. Thermal shock tests generate very high ramp rates.  

Darveaux, et al. [2000] conducted several board level thermal cycle reliability 

tests, the packages used included Flex-BGA, Tape Array Ball Grid Array, PBGA and 

Micro-BGA. He tested wide range of package and board variables and reported findings 

about life of the package by changing dies size, package size thickness of test boards etc. 

He also reported 1.6X acceleration factor between -40°C to 125°C and 0°C to 100°C 

temperature cycling ranges.  

Mercado, et al. [2000] conducted test on flip chip PBGA package for FSRAM 

(Fast Static RAM) application in order to analyze the effect of pad size and substrate 

thickness on the solder joint reliability. It was reported that C5 solder joints with larger 
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solder pad and thicker substrates demonstrated higher reliability. Hung, et al. [2000] 

investigated the effect of chip size, surface finish, Au plating thickness, epoxy thickness, 

polyimide thickness and underfilling on the interconnect thermal cyclic fatigue life by 

conducting experimental test on Flex-BGA packages. Chip size, polyimide thickness and 

underfilling were found to have significant impacts on the joint fatigue life, epoxy 

thickness was found to have little effect on the joint fatigue life. 

Suhling, et.al. [2004] presented research on the thermal cycling reliability of lead 

free solder joints for use in the automotive industry. Four solder compounds were tested: 

95.5Sn3.8Ag0.7Cu and three variations of lead free SAC solder that incorporate small 

additions of bismuth and indium to enhance fatigue resistance. These solder joint 

compounds were thermally cycled under two test conditions: -40 C to 125 C, and -40 C 

to 150 C. Results from this study showed that the eutectic SAC alloy 95.5Sn3.8Ag0.7Cu 

gave comparable reliability results to standard 63Sn37Pb solder alloy during the -40 C to 

125 C temperature condition, but differed greatly, demonstrating much lower reliability 

relative to the 63Sn37Pb alloy, when subjected to the more harsh -40 C to 150 C 

temperature range. It was also shown that adding trace amounts of bismuth and indium 

can enhance the -40 to 150 C thermal cycling fatigue resistance relative to 

95.5Sn3.8Ag0.7Cu. 
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2.2 Physics of failure based models 

Manson and Coffin [1965, 1954] developed an equation that related plastic strain 

∆εp, with number of cycles to failure. Goldmann [1969] analyzed a controlled collapse 

joint with spherical dimensions for developing an equation that related the plastic strain 

of a joint with relative thermal expansion coefficients of chip to substrate, distance from 

chip neutral point to substrate, height of the solder, volume of solder, radius of the cross 

section under consideration and exponent from plastic shear stress strain relationship. The 

plastic strain obtained from Goldmann formulation can be substituted in Coffin- Manson 

equation for predicting the number of cycles for fatigue failure.  

Norris and Landzberg [1969] studied the effect of cycling frequency and 

maximum temperature of cycling on fatigue failure of solder joints and added an 

empirical correction factor for time dependent and temperature dependent effects for the 

thermal fatigue model. 

Solomon [1986] analyzed the fatigue failure of 60Sn/40Pb solder for various 

temperatures and developed an isothermal low cycle fatigue equation that correlated the 

number of cycles to failure with applied shear strain range.  He also studied the influence 

of frequency, and temperature changes and added corrections that account for 

temperature changes, cycling wave shape and joint geometries. 

Engelmaier [1990] developed a surface mount solder joint reliability prediction 

model containing all the parameters influencing the shear fatigue life of a solder joint due 

to shear displacement caused by thermal expansion mismatch between component and 

substrate. Engelmaier developed separate equation for stiff solder joints and compliant 

solder joints. The parameters of the model include effective solder joint area, solder joint 
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height, diagonal flexural stiffness, distance from neutral point and thermal coefficient 

mismatch thermal cycling conditions, degree of completeness of stress relaxation and 

slope of weibull distribution.  

Knecht and Fox [1991] developed a strain based model using creep shear strain as 

damage metric to determine the number of cycles to failure. The creep shear strain 

included creep of component due to matrix creep alone ignoring the plastic work. The 

equation was applicable to both 60Sn40Pb and 63Sn37Pb solder joints.  

Vandevelde [1998] developed thermo-mechanical models for evaluating the 

solder joint forces and stresses. Barker et al [2002] synthesized the Vandevelde models 

for calculating the solder joint shear forces in ceramic and plastic ball grid array 

packages. 

 Clech [1996] developed a solder reliability solutions model for leadless and 

leaded eutectic solder assemblies and extended it to area array and CSP packages. Clech 

obtained the inelastic strain energy density from area of solder joint hysteresis loop and 

developed a prediction equation correlating inelastic strain energy density with number of 

cycles to failure.  

Singh [2006] developed failure mechanics based models for solder joint life 

prediction of ball array and flip chip packages. He calculated the maximum shear strain a 

using a simplified DNP formula which was then used for initiating a hysteresis loop 

iteration for both global and local thermal mismatch. Inelastic strain energy was then 

calculated from the area of the hysteresis loop for both the thermal mismatch cases. The 

number of cycles for failure was determined using Lall [2003] model. 
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2.3 Statistical Analysis 

Researchers have used different statistical methods for the analysis of the 

experimental test failure data, the most common being regression analysis and Weibull 

distribution.  Clech, et al. [1994] presented statistical analysis of thermo-mechanical wear 

out failure data from 26 accelerated tests and tested the goodness-of-fit using two and 

three parameter Weibull and log-normal distributions. It was concluded that the three 

parameter Weibull treatment provides more accurate reliability projections and failure 

free time prediction, potentially qualifying component assemblies that would be rated 

marginal or unacceptable based on conservative two parameter Weibull or log-normal 

analysis. 

Stoyanov [2002] used a design of experiments and response surface modeling 

methodology for building a quadratic equation that related underfill modulus, underfill 

CTE, stand off height and substrate thickness with number of cycles to failure for a flip 

chip package. The data for model building was collected from a finite element analysis of 

a flip chip package. Residual analysis, analysis of variance and statistical efficiency 

measure were used for validating the models. Taguchi optimization technique was used 

by Lai [2005] for optimizing the thermo-mechanical reliability of a package on package 

for various design parameters. The package parameters considered for optimization 

included die thickness, package size, mold thickness, substrate thickness and solder joint 

stand off.  

Muncy, et al. [2003, 2004] conducted thermal reliability test including air-to-air 

thermal cycling (AATC) and liquid-to-liquid thermal shock (LLTS) on various 

configurations of flip-chip on board (FCOB) packages. The failure data was then 
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analyzed using multiple linear regression and ANOVA (analysis of variance) to 

determine the parameters that had influence on the reliability performance of the 

components in accelerated life testing, the input parameters investigated included, 

substrate metallization, substrate mask opening area versus the UBM area of the flip chip 

bump, die size, perimeter or area array flip chip interconnect pattern, underfill material, 

location of the die on the test board, frequency of cycling, number of I/O, and percent 

area voiding. A model based on regression analysis was developed in order to quantify 

the effect of process and design decisions on the reliability of a flip chip on board 

assembly.  

Perkins [2004] developed a multiple linear regression based polynomial equation 

for correlating fatigue life of a ceramic package with its design parameters. A data matrix 

was formulated using a full factorial design of simulation study for the five design 

parameters including substrate size, substrate thickness, CTE mismatch between substrate 

and board, board thickness and solder ball pitch with two levels each. Simulations were 

run for each data point using a finite element analysis and the fatigue life was extracted. 

Interactions between the predictor variables were studied and a regression model with 

both main terms and interaction terms was built. 

Iyer [2005] correlated the reliability of a flip chip package with its properties of 

underfill and flux using a regression and back propagation neural networks based models. 

Data from accelerated life testing of flip chip package with 95 different underfill flux 

combinations was used for model building. The underfill parameters for model building 

included modulus of elasticity, coefficient of thermal expansion, glass transition 

temperature and filler content. The flux parameters studied include acid number and 
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viscosity. The regression models and the neural network models were validated using a 

test data set and the neural networks model was found to outperform the regression model 

owing to minimum residual mean square errors.  

Singh [2006] developed multivariate regression based models for life prediction 

of BGA packages. The input data for model building was collected from published 

literature and accelerated test reliability database based on the harsh environment testing 

of BGA packages by the researchers at the NSF Center for Advanced Vehicle Electronics 

(CAVE). The predictor variables considered for model building included  die, die to body 

ratio, ball count, ball diameter, solder mask definition, printed circuit board surface finish 

printed circuit board thickness, encapsulant mold compound filler content and deltaT. 

Dummy variables were used for categorical variables like borad finish, encapsulant mold 

compound filler content and solder mask definition. Linear, modified linear and non-

linear models were developed using regression analysis and analysis of variance and 

validated with experimental data. 

Hariharan [2007] developed MLR and PCR model for Predicting the reliability of 

various Ball Grid Array Packages including Flex-BGA, CBGA, CCGA and Flip Chip 

Packages. He also demonstrated the power law dependencies of the various parameters in 

the regression model with Box Tidwell Power law modeling. 
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CHAPTER 3  

 

DATASET AND THERMAL CYCLING CONDITIONS 

The table 3.1 gives a brief idea of the scope of the packages and the range of the 

data which was tested for accelerated life and the failure data was utilized for statistical 

analysis.   The database is fairly diverse in terms of materials and geometry parameters.       

The dataset used for model building has been accumulated from an extensive accelerated 

test reliability database of plastic ball-grid array (PBGA) and chip-array ball-grid array 

(CABGA) devices based on the harsh environment accelerated test database developed 

by the researchers at the NSF Center for Advanced Vehicle Electronics.  Each data point 

in the database is based on the Weibull-Parameters including the time to one-percent 

failure, characteristic life, and the shape parameter for the area array devices of a given 

configuration tested under harsh thermal cycling or thermal shock conditions.  The 

material properties and the geometric parameters investigated include die thickness, die 

size, die to body ratio, substrate thickness, ball count, ball pitch, board finish, solder joint 

height, solder joint volume, bump size, weight of the package and printed circuit board 

thickness.  
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Table 3.1 Scope of the Test Dataset 
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The figure 3.1 and Figure 3.2 shows the individual packages which were mounted two 

different types of boards viz. PCB with integral Copper Core and PCB without integral 

Copper Core for thermal cycling. 

 

 

Figure 3.1 Individual Packages tested for ATC 
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Figure 3.2: Representative List of Different Package Architectures 

 

 

Table 3.2 shows the temperature ranges, dwell times, and ramp rates for the four 

thermal cycling profiles labeled as TC1, TC1, TC3 and TC4.  
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Table 3.2: Thermal Cycling Conditions  

 

Profile 

Low Temp 

(
o
C) 

High Temp 

(
o
C) 

Low Dwell 

(min) 

High Dwell 

(min) 

Ramp Rate 

(
o
C/min) 

TC1 -40 95 30 30 3 

TC2 -55 125 30 30 3 

TC3 3 100 30 30 3 

TC4 -20 60 30 30 3 

TC5 -20 80 30 30 3 

TC6 0 100 15 15 3 

TC7 0 100 10 10 3 

TC8 -55 125 15 15 3 

TC9 -40 125 15 15 3 
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Pictures of the boards which were subjected to thermal cycles are shown in 

Figures 3.3 to Figure 3.8 below: 

 

 

Figure 3.3 Front Side of test board CCA 091-099 (TC2: -55C to 125C). 
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Figure 3.4 Back Side of test board CCA 091-099 (TC2: -55C to 125C). 
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Figure 3.5 Front Side of test board CCA 136-144 (TC3: 3C to 100C) 
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Figure 3.6 Back Side of Test Board CCA 136-144 (TC3: 3C to 100C).  
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Figure 3.7 Front Side of test board CCA 145-154 (TC4: -20C to 60C). 
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Figure 3.8 Back Side of test board CCA 145-154 (TC4: -20C to 60C).  
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CHAPTER 4  
 

APPROACH AND PROCEDURE FOR PRINCIPAL COMPONENT 

REGRESSION 

 Multiple linear regression methods assume the predictor variables to be 

independent of each other. Linearly dependent variables result in multi-collinearity, 

instability and variability of the regression coefficients [Cook et al. 1977].  Principal 

components models have been used for dealing with multi-collinearity and producing 

stable and meaningful estimates for regression coefficients [Fritts et al 1971].  The Figure 

4.1 shows the modeling methodology and procedure for developing the PCR models. The 

different parameters like part architecture and geometry, thermal cycling environment 

have been used to formulate the mission requirements using the different statistical 

techniques like Principal Component Regression, Box Tidwell Transformation. Models 

have been validated using the other reliability database by comparing the results with 

failure mechanics models. The effects of the output design parameters and acceleration 

factors have been presented.  

 

 

 

 



 

 

26 

 

 

 

Figure 4.1 Flow Chart for Modeling Methodology 
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Methodology for developing a Principal Component Regression Model is 

presented here: 

Matrix Notation for the model is given in the Eqn 4.1 below: 

}{}]{X[}y{ ε+β=        Eqn 4.1 
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Multi-collinearity of predictor variables may cause, large variance and co-

variance of individual regression coefficients, high standard error of individual regression 

coefficients in spite of high R
2
 values, instable regression models fluctuating in 

magnitude and sign of regression coefficients for small changes in the specification, and 

wider confidence intervals of regression coefficients.  Previously the problem of multi-

collinearity has been overcome by removing one of the variables which resulted in loss of 
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some influential parameters. The principal components technique determines a linear 

transformation for transforming the set of X predictor variables into new set Z predictor 

variables known as the principal components. The set of new Z variables are uncorrelated 

with each other and together account for much of variation in X. The principal 

components correspond to the principal axes of the ellipsoid formed by scatter of simple 

points in the n dimensional space having X as a basis. The principal component 

transformation is thus a rotation from the original x coordinate system to the system 

defined by the principal axes of this ellipsoid. The principal component transformation is 

used to rank the new orthogonal principal components in the order of their importance.  

 Multiple linear regression is then performed with the original response variable 

and reduced set of principal components. The principal components estimators are then 

transformed back to original predictor variables using the same linear transformation. 

Since the ordinary least square method is used on principal components, which are pair 

wise independent, the new set of predictor coefficients are more reliable. The Pearson’s 

Co-relation matrix is calculated to check for the multicolinearity in the matrix X. And the 

Eigen values are used in transforming the original predictor variables in the new Z 

variables. Scree plots, Eigen values and proportion of total variance explained by each 

principal component are then used to eliminate the least important principal components. 

The Equation for calculation of the Eigen values and the Eigen vector is given in 

the Eqn 4.2 below:  

]V])[I[]C([ λ−         Eqn 4.2 

 

0]I[]X[]X[ *T* =λ−        Eqn 4.3 
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Where λ  is the eigen value and V is the eigen vector matrix.  The original set of 

predictors has been transformed (matrix A) to a new set of predictor variables (matrix Z) 

called the principal components.  The principal component matrix Z contains exactly the 

same information as the original centered and scaled matrix A, except that the data are 

arranged into a set of new variables which are completely uncorrelated with one another 

and which can be ordered or ranked with respect to the magnitude of their Eigen values 

(Draper and Smith 1981, Myers 1986). 

jZ =[ *

1x  *

2x  …….. *

3x ] 

���
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   Eqn 4.4 

MLR has been performed with the transformed predictor variables and the 

original response variable. The coefficients obtained as a result of this regression model 

are stored in a variable named alpha. Matrix notation for the same is given by the 

Equation 4.5: 

1*k

*
k*k

T

1*k }{]V[}{ β=α         Eqn 4.5 

The Principal Components have been transformed back to the Original variables.  

To eliminate the principal components the coefficients are transformed back to the 

original ones by using the reverse transformation given in the Equation 4.6 below.  

1*kk*k1*k }{]V[}{ α=β        Eqn 4.6 

The overall adequacy of the model is tested using ANOVA table. Small P value 

of the ANOVA table rejects the null hypothesis and proves the overall adequacy of the 
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model. Individual T tests on the coefficients of regression of principal components 

yielded very small P values indicate the statistical significance of all the predictor 

variables.  

The individual T test values of principal components regression components are 

then used for conducting individual T test on the coefficients of regression of original 

variables. The test statistic proposed by Mansfield et al.[1997] and Gunst et al. [1980] for 

obtaining the significance of coefficients of regression of original variables is given in the 

Equation 4.7 below:  
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      Eqn 4.7 

 

Where bj,pc is the coefficient of regression of the j
th
 principal component, MSE is 

the mean square error of the regression model with l principal components as its predictor 

variables, vjm  is the j
th 
element of the Eigen vector vm and  λm is its corresponding Eigen 

value. M takes the values from 1 to l, where l is the number of principal components in 

the model.  The test statistic follows a students T distribution with (n-k-1) degrees of 

freedom. The P values of individual T tests retaining values < 0.05 prove the statistical 

significance of individual regression coefficients of original predictor variables at a 95 % 

confidence. 
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CHAPTER 5  

PRINCIPAL COMPONENT REGRESSION ON COPPER CORE ASSEMBLIES  

A superset of predictor variables including Area of the chip, Board finish, Die 

length, Die to body ratio, Ball count, Ball Pitch, Solder ball diameter, Weight of the 

package, Solder ball height, Solder Volume, Package pad area, and Thermal cycling 

conditions has been created. The predictor variables have then been checked for being 

correlated to each other since independence of predictor variables is one of the most 

important assumptions of a linear regression model. Predictor variables with very strong 

correlation for e.g. die length and area of the die, which have a correlation factor of 

almost 1 have been tackled by eliminating one of the two as they convey more or less the 

same information from analysis point of view. Predictor variables that are needed for 

model building are then selected through stepwise regression and method of best subsets 

using the following criteria: Maximization of Coefficient of determination R
2
, 

Maximization of Adjusted R
2 
and

 
Minimization of Residual Errors. Predictor variables 

which contribute significantly with a confidence level of 95 % and more are retained in 

the model. The procedure for Principal component regression which is discussed in 

Chapter 4 in details is then followed to construct the model. 

A check for determining the presence of multi-colinearity was done. The 

Pearson’s co-relation matrix and the Variance Inflation Factors have been used to gauge 



 

 

32 

the intensity of the multi-colinearity. The VIF values in the table 5.1 below are 

more than 10 and confirm the presence of Multi-colinearity in the model. 

 

Table 5.1 Checking the VIF values 

 

Predictor Coef SE Coef T P VIF 

Constant 24370 5479 4.45 0   

BrdFinis 66.69 28.6 2.33 0.026 1.1 

DieLenMM -227.75 57.26 -3.98 0 89.2 

DieToBod -254.6 264 -0.96 0.342 4.6 

BallCoun 3.314 2.315 1.43 0.162 28 

BallPtch -4745 1296 -3.66 0.001 167.7 

BallHgtM 10628 2412 4.41 0 246.2 

SdrVol 0.08249 0.0892 0.92 0.362 5.7 

1/TmeanK -5855583 1481712 -3.95 0 36.2 

DeltaT -20.564 3.363 -6.12 0 37.1 

 

The Pearson`s correlation matrix in the Table 5.2 below also shows many values 

greater than 0.8 which suggest the same.   
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Table 5.2 Pearson’s Correlation Matrix 

 
  BF DLmm DTB BC BaPtmm PPdDmm PWtgm BHgtmm SdrVol DeltaT 

B
F
 

1 -0.01 

-

0.01 

-

0.01 0.02 0.02 -0.00 0.00 -0.00 -0.01 

D
L
m
m
 

-

0.01 1 0.64 0.89 0.78 0.78 0.92 0.84 0.71 -0.05 

D
T
B
 

-

0.01 0.64 1 0.67 0.14 0.14 0.63 0.20 0.19 -0.09 

B
C
 

-

0.01 0.89 0.68 1 0.62 0.62 0.99 0.63 0.52 -0.08 

B
a
P
tm
m
 

0.01 0.78 0.14 0.62 1 1 0.72 0.98 0.86 -0.01 

P
P
d
D
m
m
 

0.01 0.78 0.14 0.62 1 1 0.72 0.98 0.86 -0.01 

P
W
tg
m
 

-

0.00 0.92 0.63 0.99 0.72 0.72 1 0.72 0.59 -0.08 

B
H
g
tm
m
 

0.00 0.84 0.20 0.63 0.98 0.98 0.72 1 0.85 0.00 

S
d
rV
o
l 

-

0.00 0.71 0.19 0.52 0.86 0.86 0.59 0.86 1 -0.03 

D
el
ta
T
 

-

0.01 -0.05 

-

0.09 

-

0.08 -0.02 -0.01 -0.08 0.00 -0.00 1 
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Figure 5.1 is the plot of Principal component on X-axis and the Cumulative % 

contribution of the Eigen value on the Y-axis 

 
 

Figure 5.1 Contribution of each Principal Component 

 

The variable selection was done based on the stepwise regression procedure and 

the partial F-tests which help in selecting the variables which contribute significantly to 

the linear regression model. One of the tests for ball pitch is demonstrated below: 

Partial F test:  

Hypothesis: H0: 05 =β , where 5β is the slope for ball count 

Test statistic: 

ducedRe

ducedRe,sRe

ducedReFull

ducedRe,sReFull,sRe

0

Df

SS

DfDf

SSSS

F
−

−

=       Eqn 5.1 
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2856834
9394

2856834-2866013

−=   

     298808.0
64516.30718

9179
==  

 

As F0 = 0.2988 < F0.05,1,93 = 3.94, 

We Accept H0: 04 =β  which implies that the parameter ball count does not 

contribute significantly to form a linear model. Similarly, all the other variables viz. 

board finish, area of the chip, Solder Volume and Solder Ball Diameter  which fail to 

contribute significantly to form a linear regression model have been eliminated. A 

regression model with the rest of the predictor variables is then developed. Results and 

discussion of the same has been presented below. 

The regression equation obtained by regressing the Z predictor variables against 

the N1% life of the package is given by Eqn 5.2 below: 

7Z*1.3826Z*1.8475Z*38.303

4Z*5.10423Z*9.7662Z*2.10751Z*4.3903.2859%1N

+−+

−+−−=
            Eqn 5.2 

The Table 5.3 shown below represents a detailed result of the regression of 

principal components against the N1% life of the packages. The P-values of all the 

predictors are less than 0.05 suggesting the statistical significance of the 7 predictors with 

95% confidence. 
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Table 5.3 : Transformed Z variable regression for Cu Core Assemblies 

 

Predictor Coef SE Coef T P 

Constant 2859.3 237.7 12.03 0 

Z1 -390.4 100.6 -3.88 0 

Z2 -1075.2 201.9 -5.33 0 

Z3 766.9 196.5 3.9 0 

Z4 1042.5 270.1 3.86 0 

Z5 303.38 62.8 4.83 0 

Z6 -847.1 176.6 -4.8 0 

Z7 382.1 80.86 4.73 0 

 

The Table 5.4 below represents the Analysis of Variance used initially to prove 

that the predictors have a linear relationship with the response variable N1% 

 

Table 5.4 : ANOVA table for Cu Core Assemblies 

 

Source DF SS MS F P 

Regression 7 5156023 736575 32.56 0 

Residual Error 90 2035939 22622   

Total 97 7191962    

 

 

Regression equation for original variables is given by Eqn 5.3 below 

DeltaTDEGC*95.6PkgWtGM*49.312QMMPkgPdAreaS

*55.1301PitchMM*53.632atioDietoBodyR*61.1319

DiagLenMM*66.55MMChipAreaSQ*17.606.2859%1N

−−

+−−

−+=

             Eqn 5.3 
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The Table 5.5 below gives a detailed result of the regression between the transformed 

original variables and N1% 

Table 5.5: Transforming Z back to Original Variables in the Cu Core Assemblies 

 

Predictors Coeff SE 

(a0, fk) (bk) Coeff 

 

T Value 

 

P-Value 

Constant 2859.06 
237.66 

12.03 0 

ChipAreaSQMM 6.17 
1.59 

3.88 0 

DiagLengthMM -55.66 
10.44 

-5.33 0 

DietoBodyRatio -1319.61 338.36 -3.9 0 

PitchMM. -632.53 
163.87 

-3.86 0 

PkgPdAreaSQMM 1301.55 
269.47 

4.83 0 

PkgWgtGM -312.49 
65.102 

-4.8 0 

DeltaTDEGC -6.95 
1.47 

-4.73 0 
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Model Adequacy Checking: 

 

 
 

Figure 5.2: Residual Analysis for PCR on Cu Core Assemblies  

 

From the above Figure 5.2, the plot of residuals Vs Fits we do not observe any 

specific pattern which implies that the linearity assumptions are met.  

The plot does not show any signs of the scatter increasing with the fitted values which 

implies that the constant variance assumptions are satisfied. 

Normality Test:  

The Shapiro –Wilk test was performed to check if the normality assumptions are 

satisfied. A P-value of 0.3076 which is > 0.05 confirms the normality assumptions the 

dataset. The results for the same are shown in Table 5.6 below 

Table 5.6: Shapiro Wilk Test 
 

Test Test Statistic (W) P-value 

Shapiro-Wilk 0.985305 0.3076 
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The Figure 5.3, plot of studentized residuals Vs Normal Quantiles also produces 

points close to a straight line suggesting that the normality assumptions are met same. 

 

 

Figure 5.3 Plot of Studentized residuals Vs Normal Quantiles 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Plot of Studentized residuals Vs Normal Quantiles 
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Model Validation: 

 

Figure 5.4 below shows the correlation of the actual N1% life obtained from the 

experimentation and predicted N1% life obtained from the PCR Model. 

 

 
 

Figure 5.4 Plot of Actual Vs the Predicted Life for the PCR Model for Cu Core 

Assemblies 
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CHAPTER 6  
 

PRINCIPAL COMPONENT REGRESSION ON NO COPPER CORE  

 

ASSEMBLIES  

 

An approach similar to the one discussed in Chapter 7 for the Ball Grid Array 

Packages on copper core Assemblies is used for the assemblies with no Copper core 

PCBs. A log transformation is done on all the predictor variables to have a better fit to the 

dataset. Principal Component Regression is used to overcome the Multi-colinearity which 

exists between the predictor variables. Different Predictor variables like Area of the chip, 

Chip to Package Ratio, Ball Count, Board finish, Die length, Die to body ratio, Ball 

Pitch, Solder ball diameter, Weight of the package, Package Pad Diameter, Delta T and 

Solder Volume have been selected as input variables in the model. The original Matrix X 

of predictor variable has been transformed to a new matrix Z by multiplying it with the 

Eigen vector matrix of the correlation coefficients. The contribution of the individual 

variables has been checked for a 95 % level of significance and only those variables 

which contribute significantly to form a linear model have been retained. The figure 

below shows the contribution of individual principal components to the model. The main 

aim for implementation of Principal Components here is to overcome the multi-

colinearity and not dimensional reduction. The following Figure 6.1 is the plot of % 

cumulative contribution of each Eigen value:  
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Figure 6.1: Contribution of each Principal Component for PCR of Cu Core 

Assemblies 

 Stepwise regression led to the elimination of variables which do not contribute 

significantly to form a linear regression model with 95 % confidence. The variables 

which got eliminated in this process are: Board finish, Solder Ball diameter, Package 

Weight, Ball Pitch and Package length. 

Regression equation for Z predictor variables: 

The regression equation obtained by regressing the Z predictor variables against 

the Log transformed N1% life of the package is given by equation 6.1 below: 

 

6Z*2462.25Z*7727.04Z*685.1

3Z*1781.32Z*857.41Z*856.2492.24%1LnN

+++

−−+=
              Eqn 6.1 
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The Table 6.1 shown below represents a detailed result of the regression of 6 

principal components against the Ln N1% life of the packages. The P-values of all the 

predictors are less than 0.05 suggesting the statistical significance of the 6 predictors with 

95% confidence.  

Table 6.1: Transformed Z variable regression for PCR on No Cu Core Assemblies 

 

 

Predictor Coef SE Coef T P 

Constant 24.492 2.714 9.03 0 

Z1 2.856 0.7961 3.59 0.001 

Z2 -4.5857 0.8566 -5.35 0 

Z3 -3.1781 0.5787 -5.49 0 

Z4 1.685 0.433 3.89 0 

Z5 0.7727 0.3517 2.2 0.033 

Z6 2.2462 0.5403 4.16 0 

 

 

 

The Table 6.2 below represents the Analysis of Variance used initially to prove 

that the predictors have a linear relationship with the response variable N1%. The P-value 

of < 0.05 suggests that at least one predictor has a significant linear relationship with the 

response variable.  
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Table 6.2: Analysis of Variance for PCR on No Cu Core Assemblies 

Source DF SS MS F P 

Regression 6 19.51 3.22 21.32 0 

Residual Error 51 7.77 0.15   

Total 57 27.29    

 

 

Table 6.3: Transforming Z back to Original Variables in the N-L Model for Cu 

Core Assemblies 

 

Predictor Coef SE Coef T P 

Constant 24.49 2.71 9.03 0 

LnChipAreaSQMM -1.23 0.34 -3.59 0.001 

LnChipToPkgRatio 0.038 0.0071 5.35 0 

LnBallCount 0.095 0.017 5.49 0 

LnPkgPadDiaMM 6.54 1.68 3.89 0 

LnDeltaTDEG C -1.79 0.815 -2.2 0.033 

LnSolderVolCUMM -0.38 0.091 -4.16 0 

 

 

 

The Principal Components are then transformed back to the original variables 

using the same back transformation. Table 6.3 above gives a detailed result of the 

regression between the log transformed original predictors and log N1% Life of the 

package. 
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Regression equation for original predictor variables is given in the Equation 6.2 below: 

 

MMLnSdrVolCU*38.0

GCLnDeltaTDE*79.1MMLnPkgPdDia*54.6tLnBallCoun*095.0

gRatioLnChipToPk*038.0SQMMLnChipArea*23.149.24%1LnN

−

−++

+−=

           Eqn 6.2 

 

Model Adequacy Checking: 

 

 
 

Figure 6.2 Analysis of Residuals for PCR on No Cu Core Assemblies 

 

From the above Figure 6.2, Plot of residuals Vs Fits we do not observe any 

specific pattern which implies that the linearity assumptions are met.  

The plot does not show any signs of the scatter increasing with the fitted values which 

implies that the constant variance assumptions are satisfied. 
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Normality test:  

The Shapiro–Wilk test was performed to check if the normality assumptions are satisfied. 

A P-value of 0.4838 which is > 0.05 confirms the normality assumptions. Table 6.4 

below gives details of the test. 

Table 6.4 Results for the Shapiro Wilk test on No Cu Core Assemblies 

 

Test Test Statistic (W) P-value 

Shapiro-Wilk 0.980468 0.4838 

 

 
 

Figure 6.3 Plot of studentized residuals Vs Normal Quantiles 
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The figure 6.3 above, plot of studentized residuals Vs Normal Quantiles also 

produces points close to a straight line suggesting that the normality assumptions are met 

same. 

Model Validation: 

 

Figure 6.4 below shows the correlation of the actual N1% life obtained from the 

experimentation and predicted N1% life obtained from the PCR Model on No Cu Core  

Assemblies 

.  

Figure 6.4 Plot of Actual Vs the Predicted Life for the PCR Model for No Cu Core 

Assemblies 
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CHAPTER 7  

 

POWER LAW DEPENDENCY OF PREDICTOR VARIABLES: 

 

Power law relationship of predictor variables with N1% life have been developed 

for various area array packages including PBGAs, flip chip BGA and CABGA packages. 

These power law relationships form the basis of reliability models in determining the 

appropriate family of transformations for linearizing the predictor variables for building 

robust multiple linear regression models that describe the data more efficiently. The 

power law relationship also help determining the appropriate transformation of predictor 

variables for coping with multi-collinearity, non normality and hetro-skedasticity. The 

power law dependence of predictor variables have been obtained using Box-Tidwell 

power law modeling and compared with traditional failure mechanics values.  

BOX TIDWELL POWER LAW MODELLING: 

Box-Tidwell power law model attempts to model the power law dependence 

between predictor variable and a response variable. The relationship is expressed as an 

equation that predicts a response variable from a function of predictor variables and 

parameters. The parameter is adjusted so that residual sum of squares is minimized. The 

prediction equation is of the form given by the equation 7.1 below 

( )∏
=

λ=
n

1k

k0%1
kfaN                   Eqn 7.1 
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Where, parameter %1N  on the left hand side of the equation represents the 1 percent 

failures of three-parameter Weibull distribution for the PBGA packages when subjected 

to accelerated thermo-mechanical stresses. The parameters on the right hand side of the 

equation are the predictor variables or the various parameters that influence the reliability 

of the package and the parameter λk is the power law value obtained from box Tidwell 

method. 

The Box-Tidwell method has been used to identify a transformation from the 

family of power transformations on predictor variables. Box, et. al. [1962] described an 

analytical procedure for determining the form of the transformation on regressor 

variables, so that the relation between the response and the transformed regressor 

variables can be determined.  Assume that the response variable t, is related to a power of 

the regressor,  

( ) ( ) ξβ+β=ββξ= 1010 ,,ftE                  Eqn 7.2 

Where, 
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and βo , β1, α are unknown parameters. Suppose that αo is the initial guess of the constant 

α. Usually the first guess is 10 =α , so that xx 0

0 ==ξ α
, or that no transformation at all 

is applied in the first iteration. Expanding about the initial uses in Taylor series,   
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and ignoring terms of higher than first order gives the Equation 7.2 below,  
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 Now if the terms in braces in Equation 7.3 were known, it could be treated as an 

additional regressor variable, and it would be possible to estimate the parameters βo , β1, 

and  α by method of least squares. This way the value necessary to linearize the regressor 

variable can be determined.   

This procedure has been carried out for both the Copper core as well as no core 

PBGAs for each of its predictor variable and the results are tabulated and compared with 

power law dependence values obtained from failure mechanics method. The power law 

dependence values obtained from Box-Tidwell method are found be very close to the 

power law dependence values obtained from failure mechanics models. Table 7.1 below 

shows the comparison of these values: 

Table 7.1: Comparison of Power Law Dependence values 

 

Parameter Box-Tidwell A B C 

  

Cu Core 

PBGAs 

No Core 

PBGAs       

Die Length -2.7 -1.2 -2 -2.3 -2 

Delta T -1.6 -7.8 -2.3 -2 -2 
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INTERACTION EFFECT MODEL: 

Predictor variables for model building have been selected by developing a super-

set of variables that are known to influence the characteristic life of an area array package 

and then selecting the potentially important variables using stepwise regression and 

method of best subsets. Coefficient of multiple determination, adjusted R
2
, residual mean 

squares and induced bias has been used as criteria for variable selection. Coefficient of 

multiple determinations (R
2
 which measures the overall adequacy of the regression model 

and variables that create a significant increase in coefficient of multiple determination are 

retained in the model. As coefficient of multiple determination increases marginally for 

every newly added variable, adjusted R
2 

has been used for studying the overall adequacy 

of the model and variables that create significant increase in adjusted R
2
 are retained in 

the model. A PCR model with the interaction term between Delta T and Half Diagonal 

Length along with the original predictor variables has been developed. The  

 shows the results for regression between the transformed Z variables as 

predictors and N1% life as the response variable 

Table 7.2: PCR Model for Cu Core Assemblies with the Interaction Effect between 

Delta T and Half Diagonal Length 

 

Predictor Coef SE Coef T P 

Constant 2081.1 423.3 4.92 0 

Z1 -954.5 392.9 -2.43 0.017 

Z2 3908 1617 2.42 0.018 

Z3 4587 1833 2.5 0.014 

Z4 -5355 2227 -2.4 0.018 

Z5 3189 1464 2.18 0.032 

Z6 -84.39 50.62 -1.67 0.099 

Z7 -1362.6 863.9 -1.58 0.118 

Z8 -2906 1389 -2.09 0.039 
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The Analysis of Variance given below is used to check if a linear relationship 

exists between the response variable and at lease one of the predictor variables. 

Table 7.3: ANOVA Table for Interaction Effect Model 

 

Source DF SS MS F P 

Regression 8 4541750 567719 18.08 0 

Residual Error 91 2858166 31408   

Total 99 7399916    

 

To establish the relationship between the Response variable and the original 

predictor variables, the Principal components have to be back transformed using the same 

back transformation which was used to convert them into Principal components. The 

table below shows the relation between the response variable and the original predictor 

variables. 

 

Table 7.4:  Transforming the Z`s Back to the Original Variables in the Interaction 

Effect Model 

 

Predictor variable 

PCR 

Coeffs. 

S.E. 

Coeffs 

T 

Statistic 

P-

Value 

Constant 2081 422.96 4.92 0 

HalfdiaglenMM -68.1 28.02 -2.43 0.017 

DieToBodyRatio -642.31 265.41 -2.42 0.018 

BallCount -0.5569 0.22 -2.5 0.014 

PkgPdArSQMM 1671.2 696.33 2.4 0.018 

PkgWtGM 2.1949 1.00 2.18 0.032 

Delta T DegC -8.4376 5.05 -1.67 0.099 

Halfdialen* 

DeltaTMM
o
C 0.2965 0.18 1.58 0.118 

SdrVolCUMM. -9107.4 4357.6 -2.09 0.039 
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The regression equation is given below:  

. 

3

o

SdrVolMM*4.9107

DeltaT*HalfDiaLen*2965.0CDeltaT*44.8PkgWtGM

*1949.2MPkgPdArSQM*2.1671BallCount*5569.0

atioDieToBodyR*31.624nMMHalfDiagLe*1.682081%1N

−

+−

++−

−−=

           Eqn 7.5 

 

Residual Model Diagnostics: 

 

 
 

Figure 7.1 Model Adequacy Checking for Interaction effect model 

 

From the Figure 7.1, the Plot of residuals Vs Normal Quantiles shows almost 

straight line. The histogram is also more like a bell shape suggesting that the normality 

assumptions are met. From the plot of residuals Vs Fits we do not observe any specific 

pattern which implies that the linearity assumptions are met. The plot does not show any 
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signs of the scatter increasing with the fitted values which implies that the constant 

variance assumptions are satisfied. 

A Box – Tidwell Transformation was done on the interaction term as the predictor 

variable and the N1% Life of the package as the response variable to estimate the Power 

of the interaction term. The power retained by using SAS is -1.42 whereas the Classical 

models (Norris-Landzberg`s and Goldmann`s Equation) suggest a power transformation 

of -2.  
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Figure 7.2: Plot of Mean Square Error Vs Power Transposed 

 

The figure 7.2 above shows the change in values of the Mean Square Residual 

with the change in Power of the response variable. The value of the mean square error is 

lowest at the power transformation value of about -1.5 which is consistent with our value 

of -1.42 
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CHAPTER 8  

 

STATISTICAL FORM OF THE NORRIS LANDZBERGS MODEL 

 

The Norris-Landzberg Equation is based on the Coffin Mansion Equation and the 

Goldmann Equation. It provides a way of calculating the acceleration factor for 

Controlled Collapse Interconnections [Norris, Landzberg 1969].  The equation 8.1 below 

represents the same 
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Where, 

AF is the Acceleration factor. 

NU and NA are the lives of the packages fU and fA are the frequencies 

∆TA and ∆TU are the temperature excursions 

Tmax is the maximum temperature of the cycle in Kelvin 

This Equation is often used in the form given below [Lau 1997] 
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The Equation can be transformed by computing the natural Log format as follows: 
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This Model was initially developed by Norris and Landzberg [1969] of IBM for 

controlled collapse chip interconnects for 5-95 Sn-Pb solder composition on ceramic 

substrate which had silver-palladium paste, tinned with 10-90 Sn-Pb solder deposition. 

Now we model the above equation into a regression model with ratio of cyclic 

frequencies, Temperature cycle magnitude and the difference of inverse of maximum 

temperatures as the independent predictor variables and the Acceleration factor as the 

response variable. The Solder composition used for this model is lead free SAC 305. 

Due to the presence of Multi-colinearity Principal Component Regression is 

implemented. Regression results of the transformed Principal Components against the 

Acceleration Factor are given in the Table 8.1 below: 

Table 8.1: Transformed Z variable regression for N-L model 

 

Predictor Coef SE Coef T P 

Constant 0.7448 0.1161 6.4123 0 

Z1 3589.0768 1354.5949 2.6496 0.0095 

Z2 285.8296 107.7056 2.6538 0.0094 

Z3 2802.1627 1057.2824 2.6503 0.0095 

 

The ANOVA Table 8.2 below is used to check the presence of a linear 

relationship between the predictor variables and any response variables. P-value less than 

0.05 confirm the presence of a linear relationship between the response variable and 

atlease one predictor variable. 
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Table 8.2: ANOVA Table for Z transformed Variables of N-L model 

Source DF SS MS F P 

Regression 3 2.136 0.712 5.82 0.001 

Residual   Error 90 11.0016 0.1222   

Total 93 13.1375    

 

To get the relationship between the original variables and the response variable, 

we need to back transform the Principal Components using the same back transformation. 

Regression results for the same are given in the Table 8.3 below, 

Table 8.3: Transforming Z back to Original Variables in the N-L Model for Cu 

Core Assemblies 

 

Predictor Coef SE Coef T P 

Constant 0.7448 0.1161 6.4123 0 

Ln(Fu/Fa) 0.3035 0.1145 2.6496 0.0095 

Ln(Delta Ta / Delta Tu) 2.3149 0.8722 2.6538 0.0094 

(1/Tu-1/Ta) 4562.3767 1721.45 2.6503 0.0095 

 

The regression is given as follows 
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The N-L model is given by [Lau 1997]: 
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Writing the equation in the form of the NL equation: 
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The differences in the values of the constants are justified by the difference in the 

solder joint composition of the two models. The original model [Norris, Landzberg 1969] 

was developed for 5-95 Sn-Pb Solder on ceramic substrates whereas, the model which we 

have developed is for Lead Free SAC 305 solder composition for Plastic substrates. The 

type of PCB in our study has an integral copper core which may also be one of the factors 

for the difference in the values of the constants retained. 
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Figure 8.1 Model Adequacy checking for N-L Model 

 

From the Figure 8.1, the Plot of residuals Vs Normal Quantiles shows almost 

straight line. The histogram is also more like a bell shape suggesting that the normality 

assumptions are met. From the plot of residuals Vs Fits we do not observe any specific 

pattern which implies that the linearity assumptions are met. The plot does not show any 

signs of the scatter increasing with the fitted values which implies that the constant 

variance assumptions are satisfied. 
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CHAPTER 9  

STATISTICAL FORM OF GOLDMANN`S MODEL 

L.S. Goldmann of IBM presented his work in mechanical reliability of controlled 

collapse solder joints in May 1969. His main emphasis was on design variability and how 

the shape and dimensions of solder joint and chip affect reliability. He presented a 

systematic technique to optimize pad dimensions. His life prediction equation is 

developed based on the Coffin Manson equation. He used the local shear strain as the 

determinant parameter. The critical parameters like Difference in coefficients of thermal 

expansion, Distance from chip neutral point to interconnections, Temperature excursion 

of the cycle, Volume of the solder, radius and height of the solder ball, are included in the 

equation.  
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 [Goldmann 1969]             Eqn 9.1 

Where, 

Nf is number of cycles to failure, 

u
τ  is the ultimate shear strength of the critical interface. 

relα  is the relative thermal expansion of the chip to substrate, 

d is the distance from chip neutral point to interconnection, 

T∆  is the temperature excursion of the cycle, 
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V is the volume of solder joint, 

r is the radius of cross section under consideration, 

h is the height of solder, 

A andβ  are constants from plastic shear stress-shear strain relationship 

m is empirical constant in Coffin Manson Equation 

 

The equation is rearranged as per our convenience and the values of the exponents 

for 5-95 Sn-Pb solder are given by Equation 9.2 below: 
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The Figure below represents all the terms involved in the Goldmann`s Equation: 
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Figure 9.1: Different predictor variables in the Goldmann`s model 

 

 Using these parameters as predictor variables, we model the Goldmann`s Equation in the 

form of a log transformed Principal Component Regression model for PBGAs assembled 

on Cu Core PCB: 
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A Log transformed X matrix is created using the original predictor variables.  

The X matrix is given by: 






















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=

3559.02145.09053.49708.15627.12

.........................

1117.04721.01930.52911.2061.12

1117.02833.09053.42911.22061.12

1117.04721.09053.42911.22061.12

]x[  

 

The Pearson`s Co-relation matrix is calculated to check for the multicolinearity in 

the matrix X. And the Eigen values are used in transforming the original predictor 

variables in the new Z variables. Scree plots, eigen values and proportion of total 

variance explained by each principal component are then used to eliminate the least 

important principal components. 

The Equation for calculation of the eigen values and the eigen vector is: 

 

]V])[I[]C([ λ−                   Eqn 9.3 

0]I[]C[ =λ− , or                  Eqn 9.4 

0]I[]X[]X[ *T* =λ−                   Eqn 9.5 

Where λ the Eigen value and V is is the matrix of Eigen vectors.   

 

The transformation matrix V of Eigen vectors of the correlation matrix is given by: 
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The principal component matrix Z contains exactly the same information as the 

original matrix, except that the data are arranged into a set of new variables which are 

completely uncorrelated with one another and which can be ordered or ranked with 

respect to the magnitude of their Eigen values (Draper and Smith 1981, Myers 1986). 

The principal components matrix Z is obtained using the transformation: 

 

]V[*]X[]Z[ =                               Eqn 9.6 

 

MLR is performed with the transformed predictor variables and the original response 

variable. The coefficients obtained as a result of this regression model are stored in a 

variable named alpha. Matrix notation for the same is given as: 

1*k

*
k*k

T

1*k }{]V[}{ β=α                  Eqn 9.7 

 

Regressing the transformed Z variables against the N1% life of the packages, we get the 

following results as shown in Table 9.1 

 

 

Table 9.1 Transformed Z variable regression for Goldmann`s model of Cu Core 

Assemblies 

 

 

Predictor Coef SE Coef T P 

Constant 17.014 8.375 2.03 0.047 

Z1 0.8251 0.4777 1.73 0.09 

Z2 0.703 0.4837 1.45 0.152 

Z3 -1.8552 0.3743 -4.96 0 

Z4 1.167 0.193 6.05 0 

Z5 0.8535 0.3332 2.56 0.013 

 

The overall adequacy of the model has been tested using ANOVA table given by 

Table 9.1 above. Small P value of the ANOVA table rejects the null hypothesis proving 

the overall adequacy of the model. Individual T tests on the coefficients of regression of 
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principal components yielded very small P values indicating the statistical significance of 

all the five variables.  

The Table 9.2 below shows the Analysis of variance in the statistical form of the 

Goldmann`s model 

 

Table 9.2: ANOVA Table for Z transformed Variables of Cu Core Assemblies 

 

Source DF SS MS F P 

Regression 7 9.61 1.3721 21.77 0 

Residual 

Error 90 5.67 0.063   

Total 97 15.27    

 

In order to obtain the relationship between the N1% life and original predictor 

variables the Z transformed variables are transformed back using the same back 

transformation   

1*kk*k1*k }{]V[}{ α=β                   Eqn 9.8 

 

The individual T test values of principal components regression components are 

then used for conducting individual T test on the coefficients of regression of original 

variables. The test statistic proposed by Mansfield et al.[1997] and Gunst et al. [1980] for 

obtaining the significance of coefficients of regression of original variables is given in the 

equation 9.9 below:  
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                            Eqn 9.9 

Where bj,pc is the coefficient of regression of the j
th
 principal component, MSE is 

the mean square error of the regression model with l principal components as its predictor 
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variables, vjm  is the j
th 
element of the Eigen vector vm and  λm is its corresponding Eigen 

value. M takes the values from 1 to l, where l is the number of principal components in 

the model.  The test statistic follows a students T distribution with (n-k-1) degrees of 

freedom. The P values of individual T tests given by Table 9.3 below are < 0.05 proving 

the statistical significance of individual regression coefficients of original predictor 

variables at a 95 % confidence. 

Table 9.3: Transforming Z back to Original Variables in the Goldmann`s Model for 

Cu Core Assemblies 

 

Predictor Coef SE Coef T P 

Constant 
-2.651 4.014 -0.66 0.511 








 π

V

hr
ln

2

f  
0.0495 0.0171 2.89 0.005 

ln(h) 0.4121 0.054 7.64 0 

ln(d) -0.3705 0.0476 -7.77 0 

ln(αrel) -1.3721 0.4369 -3.14 0.002 

ln(∆T) -1.56 1.068 -1.46 0.148 

 

The regression equation between the N1% Life and the original predictors is 

given by equation 9.10 below: 

CLnDeltaT*56.1

C/lPPMReLnAlpha*3721.1LenLnHalfDiag*3705.0

LnBallHt*4121.0
V

hr
Ln*0495.065.2Life%1N

o

o

2

f

−

−−

+






 Π
+−=

          Eqn 9.10 

 

 



 

 

66 

We write the model in equation format to compare the values of constants obtained from 

the PCR model with standard values for Cu Core Assemblies. 

Following are the two models: 

 

Goldmann`s Model: 
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V
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Statistical form based on PCR for Goldmann`s Model for Copper Core assemblies is 

given by Equation 9.12 below: 
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The differences in the values of the constants are justified by the difference in the 

solder joint composition of the two models. The original model was developed for 5-95 

Sn-Pb Solder whereas, the model which we have developed is for Lead Free SAC 305 

solder composition. The type of PCB in our study has a integral copper core which may 

also be one of the factors for the difference in the values of the constants retained. 
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Figure 9.2 Model Adequacy Checking for Goldmann model on Cu Core Assemblies 

 

From the above 9.2, the Plot of residuals Vs Normal Quantiles shows almost 

straight line. The histogram is also more like a bell shape suggesting that the normality 

assumptions are met. From the plot of residuals Vs Fits we do not observe any specific 

pattern which implies that the linearity assumptions are met. The plot does not show any 

signs of the scatter increasing with the fitted values which implies that the constant 

variance assumptions are satisfied. 

Results for No Cu Core Assemblies: 

 

A model similar to one developed for the Cu Core Assemblies is also developed 

for the No Cu Core Assemblies. The critical parameters like Difference in coefficients of 

thermal expansion, Distance from chip neutral point to interconnections, Temperature 

excursion of the cycle, Volume of the solder, radius and height of the solder ball, are 
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included in the Goldmann equation. Using these parameters as predictor variables, we 

model the Goldmann`s Equation in the form of a log transformed Principal Component 

Regression model for PBGAs assembled on No Cu Core PCB:  

The procedure for PCR described in Chapter 4 is used to develop the model. The 

results for regression of the transformed Z variables and the Predictor variable are given 

in the Table 9.4 below: 

Table 9.4 Regression of Z variables against N1% life in Goldmanns Equation for No 

Cu Core Dataset 

 

Predictor Coef SE Coef T P 

Constant -2.54 10.96 -0.23 0.818 

Z1 1.2882 0.8402 1.53 0.131 

Z2 0.4325 0.6319 0.68 0.497 

Z3 1.7433 0.4698 3.71 0 

Z4 0.8542 0.2402 3.56 0.001 

Z5 -0.4093 0.2628 -1.56 0.125 

 

The overall adequacy of the model has been tested using ANOVA table given by 

Table 9.5 below. Small P value of the ANOVA table rejects the null hypothesis proving 

the overall adequacy of the model. Individual T tests on the coefficients of regression of 

principal components yielded very small P values indicating the statistical significance of 

all the five variables.  

 

 

Table 9.5: ANOVA Table for Goldmanns Equation on No Cu Core Assemblies 

 

Source DF SS MS F P 

Regression 5 14.5313 2.9063 11.01 0 

Residual Error 55 14.5236 0.2641     

Total 60 29.0549       
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The Principal Components are then transformed back to the original variables 

using the same back transformation. Table 9.6 below gives the detailed results of the 

regression between the log transformed original predictors and log N1% Life of the 

package. 

Table 9.6: Transforming back to the original variables in the Goldmann equation 

for No Core Assemblies 

 

Predictor Coef SE Coef T P 

Constant -2.54 10.96 -0.23 0.818 








 π

V

hr
ln

2

f
 

-0.3733 0.244 -1.53 0.131 

( )hln  0.3109 0.457 -0.68 0.497 

( )dln  -1.2119 0.327 -3.71 0 

( )
rel

αln  -1.2825 0.36 -3.56 0.001 

( )T∆ln  -1.5592 0.999 -1.56 0.125 

 

The regression equation for the model with its original predictors is given in the 

equation 9.13 below 

CLnDeltaT*56.1

C/lPPMReLnAlpha*2825.1LenLnHalfDiag*2119.1

LnBallHt*3109.0
V

hr
Ln*3733.054.2Life%1N

o

o

2

f

−

−−

+






 Π
−−=

          Eqn 9.13 

 

We write the model in equation format to compare the values of constants 

obtained from the PCR model with standard values for No Cu Core Assemblies.  
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Following are the two models: 

Goldmann`s Model: 

( ) C
hr

V
)T()L(N

152.0

12

222
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

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              Eqn 9.14 

Statistical model based on PCR for Goldmann`s Model: 



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The differences in the values of the constants are justified by the difference in the 

solder joint composition of the two models. The original model was developed for 5-95 

Sn-Pb Solder where as, the model which we have developed is for Lead Free SAC 305 

solder composition. 

Now we check if the assumptions of the linear regression model are satisfied, 

 

Figure 9.3 Model Adequacy Checking for No Cu Core Goldmann Model 
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From the above Figure 9.3, the Plot of residuals Vs Normal Quantiles shows 

almost straight line. The histogram is also more like a bell shape suggesting that the 

normality assumptions are met. From the plot of residuals Vs Fits we do not observe any 

specific pattern which implies that the linearity assumptions are met. The plot does not 

show any signs of the scatter increasing with the fitted values which implies that the 

constant variance assumptions are satisfied. 
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CHAPTER 10  

MODEL VALIDATION 

In order to determine the effect of individual design parameters on the thermo-

mechanical reliability of the Cu Core PBGAs, the life of various packages was studied 

and the effect of each parameter was measured by keeping all other parameters at a 

constant level and varying just the parameter under consideration. The effect of 

individual parameter which is gauged by the sensitivity factor is of a great help to build 

confidence in trade-off decisions. Results obtained from the statistical analysis using the 

Principal Component Regression models were used to predict the life of the packages. 

The convergence of the predicted values of life with the experimental data has been 

demonstrated in this section.  

Delta T: 

A negative sensitivity factor for Delta T from the PCR models implies that the 

thermo-mechanical reliability of Cu-Core PBGA packages reduces with increase in the 

temperature range of ATC. The life obtained from the experimental data and PCR models 

have been plotted against temperature differences of 180 and 135 deg C. The predicted 

values from the prediction model follow the experimental values quite accurately and 

show the same trend, as in Figure 10.1. 
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Actual N1%

PCR Predicted N1%

Actual N1%

PCR Predicted N1%

 

Figure 10.1: Effect of Delta T on N1% Life of the Packages assembled on Cu Core 

PCBs 

Solder Volume: 

A negative sensitivity factor for Solder Volume from the PCR models implies that 

the thermo-mechanical reliability of Cu-Core PBGA packages reduces with increase in 

the solder volume. The life obtained from the experimental data and PCR models have 

been plotted against the Solder volumes of 1200 and 720 MM
3
. The predicted values 

from the prediction model follow the experimental values quite accurately and show the 

same trend represented in Figure 10.2 This trend is supported by failure mechanics theory 

as, increasing the solder volume would make the solder joint very stiff leading to 

increased stress conditions resulting in higher hysteresis loops with more dissipated 

energy per cycle.  
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Figure 10.2 Effect of Solder Volume on Life of the Package assembled on Cu Core 

PCBs 

Die to Body Ratio: 

A negative sensitivity factor for Die to body ratio from the PCR models implies 

that the thermo-mechanical reliability of No Core PBGA packages reduces with increase 

in Die to body ratio. The life obtained from the experimental data and PCR models have 

been plotted against the Die to body ratio of 0.5 and 0.7407. The predicted values from 

the prediction model shown in Figure 10.3 follow the experimental values quite 

accurately and show the same trend. This is also consistent with the failure mechanics 

standpoint, as the Die to body ratio increases the solder balls in the vicinity of the die 

shadow region undergo much higher strains and are bound to fail faster.  
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Figure 10.3: Effect of Die to body ratio on the life of Package assembled on No Cu 

Core PCBs 

Half Diagonal Length: 

The thermo-mechanical reliability of packages generally decreases with increase 

in the half diagonal length.  This effect has been demonstrated for Goldmanns model and 

Cu Core Assemblies used to develop the same. The predicted values from the prediction 

model follow the experimental values quite accurately and show the same trend.  This 

trend is also consistent from the failure mechanics standpoint, as the solder joints with 

larger die length are subjected to much higher strains due to the increased distance from 

the neutral point, thus having lower reliability. The figure 10.4 represents shows the 

variation in the life with the variation of half diagonal length. 
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Figure 10.4: Effect of Diagonal Length on Life of Package Assembled on Cu Core 

PCBs for Goldmanns Model 

 

Model Validation plots for Norris Landzbergs PCR model: 

 In this section, the effect of individual parameters on the acceleration factor 

predicted by N-L Model for SAC305 area array assemblies has been validated. The 

acceleration factor varies with a 0.3-power with increase in the ratio of frequencies. 

Model predictions agree with the experimental data. In addition, acceleration factor has 

been shown to vary with a 2.3-power of the temperature cycle magnitudes. The figures 

10.5 and 10.6 given below represent the same. 
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Figure 10.5: Effect of cyclic frequency on Acceleration Factor  
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Figure 10.6: Effect of temperature cycle magnitude on Acceleration Factor 
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CHAPTER 11  

 

SUMMARY AND CONCLUSION 

 

A perturbation modeling methodology based on multiple linear regression, 

principal components regression and power law modeling has been presented in this 

research.  The method provides an extremely cost effective and time effective solution for 

doing trade-offs and the thermo-mechanical reliability assessment of various Plastic BGA 

packages, CABGA, Flip-chip BGA subjected to extreme environments.  This 

methodology also allows the user to understand the relative impact of the various 

geometric parameters, material properties and thermal environment on the thermo-

mechanical reliability of the different configurations of BGA packages with leaded as 

well as lead-free solder joints. 

The model predictions from both statistics and failure mechanics based models 

have been validated with the actual ATC test failure data.  The convergence between 

experimental results and the model predictions with higher order of accuracy than 

achieved by any first order closed form models has been demonstrated, which develops 

the confidence for the application of the models for comparing the reliability of the 

different BGA packages for various parametric variations.  The current approach allows 

the user to analyze independent as well as coupled effects of the various parameters on 

the package reliability under harsh environment.  It is recommended to use these models 
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for analyzing the relative influence of the parametric variations on the thermo-

mechanical reliability of the package instead of using them for absolute life calculations.  

 Power law relationship of predictor variables with 63 % characteristic life have 

been developed for various area array Packages. Interaction effects between different 

parameters which are often overlooked are also presented in this work. These power law 

relationships form the basis of reliability models in determining the appropriate family of 

transformations for linearizing the predictor variables for building robust multiple linear 

regression models that describe the data more efficiently. The power law values show 

good conformance with failure mechanics values for most of the variables. Advanced 

power law models can then be developed by transforming each predictor variable with its 

appropriate power law transformation and then conducting a linear regression analysis. 

Such power law transformed linear regression models can describe the data more 

efficiently and resulting in better prediction models. Also, the power law lamda values 

can be used for adding correction factors to existing first order failure mechanics models 

and building power law based models. 

Development of the classical failure mechanics equations like the Norris 

Landzberg`s and the Goldmann equation in the statistical form has been presented. Log 

transformation and has been used to convert the original multiplicative model to additive 

model and the power values of the various terms involved in these equations are 

compared to the ones obtained by statistical PCR model. 
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APPENDIX  

List of Symbols 

   Coefficient of Thermal Expansion 

       Coefficient of regression 

T   Temperature Cycle Magnitude 

  Model random error  

 0   Predictor Variable after Power-Law Transformation ( 0 = 0x
) 

1/TmeanK Inverse of the mean temperature in Kelvin 

AF Acceleration Factor 

[A] Matrix of Predictor Variables, of full column rank 

1/TmeanK Inverse of the mean temperature in Kelvin 

AlphaRelPPMC Difference in CTE between part and PCB in ppm/C 

BGA   Ball Grid Array 

BallCount  Number of solder balls in the package 

BallDiaMM Diameter of the solder ball in millimeters 

BallHtMM Height of the solder ball in    millimeters 

ChipAreaSQMM Area of the chip in Sq. millimeters 

CABGA  Chip array BGA 

Coef      Coefficient  

Cu     Copper  
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DeltaTdegC Temperature cycle range in degree centigrade  

DieLengthMM Chip Length in millimeters 

DietoBodyRatio Ratio of the length of the chip to the length of the package 

ENIG Electroless Nickel Immersion Gold 

fu frequency of temperature cycle under use conditions 

fa frequency of temperature cycle under accelerated test conditions 

h Solder Joint Height 

HalfDiagLenMM Half Diagonal Length of chip in mm.   

HASL Hot Air Solder Leveling 

k     number of predictors 

m   Empirical Constant in Coffin-Manson Equation 

MSres Mean Square of residuals 

n number of data points 

NU Life under Use Conditions 

NA Life under Accelerated Test Conditions 

p  number of variables 

PitchMM  Solder Ball Pitch in millimeters 

Prefix Ln Natural logarithm  

PBGA     Plastic Ball Grid Array 

PCB                             Printed Circuit Board 

PCR    Principal Component Regression 

PkgPadDiaMM Diameter of the package pad in millimeters 

PkgPdAreaSQMM Area of the Package Pad in sq. millimeters 
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PkgWtGM.  Weight of the package in grams 

R2 Multiple coefficient of determination 

2
jR      Adjusted R Square 

s Standard Deviation 

SolderVolCUMM Volume of the solder in cubic mm 

SSres  Sum of Squares of residuals 

Tmax,U Maximum Use Temperature 

Tmax,A Maximum Accelerated Test Temperature 

TU Use Temperature Excursion 

TA Accelerated test temperature Excursion 

V Volume of Solder Joint 

[V] The k x k eigenvector matrix consisting of normalized 

eigenvectors 

VIF    Variance Inflation Factor 

X     Predictor Variable 

[X] Scaled and Centered Predictor Variable Matrix 

Y     Regressor Variable 

[Z] The n x k matrix of principal components 




