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Dissertation Abstract

Impacts of Kinematic Links with a Granular Material

Seunghun Lee

Doctor of Philosophy, August 10, 2009
(M.S., University of Tsukuba, 2000)

186 Typed Pages

Directed by Dan B. Marghitu

The impact of kinematic links into a granular material is studied. In the impact

process through the granular material defined as a conglomeration of discrete solids, the

most important force governing the motion of a body is the resistance force of the granular

matter. The resistance force acting on the body is studied as a linear superposition of

a static (depth-dependent) resistance force and a dynamic (velocity-dependent) frictional

force by considering the characteristics of the granular material acting like solid and liquid.

The impact models considered are spheres, mathematical pendulum, compound pendulum,

open kinematic chains, and elastic links. The impact is observed from the contact moment

until the rest using various initial conditions. In this study, the impact angle and the initial

velocity are the dominant conditions deciding the whole impact process. The results of the

simulations and the experiments are analyzed based on the initial impact conditions. For

most of the analyzed impact systems including elastic objects, the system under high force

impact (higher initial velocity) comes to rest faster in the granular matter than the same

system under low-force impacts (lower initial velocity).
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Chapter 1

Introduction

A granular material is a simple mixture of solid particles. Grains such as rice, soils

including sand, and artificial granules such as fertilizer, glass beads, ball bearings, and pills

can be classified as granular materials. Even snow is considered as a granular medium in

the study of avalanche phenomenon. Powder is a special class of granular material. It is

composed of much fine particles compared with the usual granular material. Due to its

characteristics, inhomogeneous, disordered, and anisotropic on a microscopic scale [1], the

powder can flow much easily when agitated.

An individual granule is solid and shares the physical properties of solid matter. A

granular in its conglomerated state acts like a solid in the case when the kinetic energy

of individual grains is low and the grains keep a stationary state. However individual

grains begin to loose the stationary state and the granular material begins to fluidize acting

liquid-like in case when the external driving forces including tilting and shaking exceed the

stationary conditions. Roughly speaking the granular medium may flow such as ordinary

fluids. According to circumstances, the granular material may act even like a gas when the

external driving forces act intensively and the contacts between the grains become highly

sporadic.

The first approach of the granular medium was based on the contact and the collision of

solid particles [2, 3, 4, 5, 6, 7, 8, 9, 10]. The other approach was based on fluid mechanics and

hydrodynamics approach taking the fluid-like characteristics of the materials into account

[11, 12, 13, 14, 15].

Even though granular materials show similarities, they exhibit unusual behaviors com-

pared with solids, liquids, or gases. For example, when granular materials are oscillated by

shaking or vibrating containers, they become inhomogeneous in space and time. They are
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segregated and reorganized [16, 17, 18, 19, 20, 21, 22]. And the compaction happens also by

the vibration of the package container [23, 24, 25, 26, 27, 28]. In some cases, the pressure of

a granular material located in tall containers is non-linear with the depth of the material due

to the contact force generated between granules or between granules and the container walls

[29]. These contact forces constitute a network of forces at large scale [30, 31, 32, 33, 34, 35].

Granular materials show also complicated behaviors such as formation of arches, convection

rolls, pattern formation, and dynamical instabilities [36].

In industry, the granular materials are the second-most manipulated material (the first

one is water) [36]. Not only most raw materials exist as the form of granules but also many

final products are manufactured as granular materials. Therefore the study of this material

can be applied to industries such as food, pharmaceutical, mining, chemical, semiconductor,

agriculture, and construction. Disasters in nature such as landslides and avalanches show

the importance of the study of the granular medium.

The impact with a granular material is also an interesting subject in the field of engi-

neering. The impact with a granular material is not a simple problem because the phenom-

ena of contact, collision, and flow simultaneously happen when a body impacts the material.

Of course, the major phase state of granular material is decided by the penetrating velocity

of an impacting body in the granular material. In the case of high speed impact, the char-

acteristic of the granular material in the vicinity of a rigid body is similar to a fluid. The

granular material acts like a solid when the penetrating speed of the body is slow. However

in usual impact cases the behaviors of the granular materials exhibit the combined form of

these characteristics.

Most early studies of the impact penetrating problems started from high speed impact

and were motivated by military applications. Benjamin Robins carried out experiments in

gunnery and wrote “New Principles in Gunnery” (1742), which contains a description of

his ballistic pendulum. His work was translated into German by Leonhard Euler (1745)

[37] and Euler added annotations of his own. Jean-Victor Poncelet developed Poncelet’s

model in his book “Cours de Mecanique Industrielle” (1829). This model is considered as

2



the most venerable and classical empirical formula to calculate the penetration resistance

of a target stricken by a flat-nosed projectile [38].

The study having begun from high speed impact area attracts attention recently again

at relatively low speed regime in granular physics. Penetrating granular medium with a

rigid body at very low speed and the impact cratering including the impact penetration

are the representative areas. In the area of penetrating granular medium at low speed,

the horizontal resistance force by granular materials [39], jamming and fluctuations of the

resistance force [40, 41], shape effects on the resistance force [42], and the vertical resistance

force [43, 44] were studied. In the case of the impact cratering, the size, the depth, and

the form of the crater with the initial impact conditions of a rigid body were studied

[45, 46, 47, 48, 49, 50, 51, 52]. To develop a force law model for the granular impacts and

to find a mathematical formula in order to measure the impact force of objects dropped

represent a new interest in this field of the study [51].

The resistance force models, linear to the depth of a body [50, 53], linear to the velocity

of a body [46], and linear to the square of velocity of a body [49] have been studied to explain

the motion in the granular materials. Tsimring and Volfson studied the impact cratering

by penetration of large projectiles into a dry granular medium [48]. In their study they

proposed for the resistance force model the sum of a velocity dependent drag force and

a depth dependent resistance force. A depth dependent resistance force (static resistance

force) of a rigid body in a granular matter has been studied in granular physics prior to

their study. The static resistance force model has been developed for the horizontal motion

in [39, 40, 41, 42] and for the vertical motion in [43, 44].

The models of the resistance force impeding the motion of a rigid body in a granular

materials and high speed motion capture cameras enabled to simulate and to confirm the

velocity of the bodies. Ambroso, Kamien, and Durian [49] studied the time dependance of

a rigid sphere impacting and concluded the stopping time taking for a rigid body to stop

from the moment of impact is a function of the geometry and the initial impact velocities.

Hou, Peng, Liu, Lu, and Chan [50] studied the deceleration of projectiles impacting with

3



the medium and they concluded the stopping time is not a linear function of initial impact

velocity. The paper of Katsuragi and Durian has sparkled new interest in the field of impact

with a granular matter regarding the stopping time of a rigid body. They introduced the

resistance force model proposed by [48] to study the impact of a rigid sphere and verified

with a line-scan digital CCD camera [51]. They analyzed an interesting phenomenon, how

rapidly a sphere impacting a granular medium slows upon collision and they clarified the

relation between the stopping time of a rigid body and the initial impact velocity in a

vertical impact situation. Analysis shows that as the speed at which the spheres impact

the medium increases, the sooner it will come to rest for the vertical impact. Lee and

Marghitu extended the study to the model of a rigid body obliquely impacting the medium

and reported similar results even in the case of oblique impact [54].

As mentioned, granular materials are ubiquitous. Hence the impact with a granular can

take place in various granular material environments. This means its study can be applied

in numerous areas such as robotic locomotion, tracked vehicles, and heavy duty construction

equipments. Especially military operation environments are closely related with this study

because in general the military operations happens in outfields such as soil, sand, mud,

or mixed environments. Therefore developing or planning to develop multi-legged military

robots for surveillance or carrying cannot avoid the continuous impact with the granular

materials. From this view point, the study of the impact with granular medium can be

applied to development including the design, the manufacture, and the optimization of the

operations of these multi-body systems.

In this study we focused on modeling and simulation of kinematic chains impacting a

granular medium using the resistance force model verified by Katsuragi [51] as the sum of a

velocity dependent drag force and a depth dependent resistance force. We also analyzed the

relation among initial impact velocities, stopping time, and penetrating depth based on the

experimental and the simulation results. To our best knowledge this is the first time when

a mathematical model is proposed, analyzed, and experimentally verified for the impact of

kinematic links impacting into a granular matter.
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Chapter 2

Description of the problem

The purpose of this study is to analyze the impact and penetrating motion of a particle

and kinematic chains into a granular material. As introduced, the impact of spheres and

cylinders with a granular material have been studied by various researches from high to low

speed impact taking into account the depth and the width of the crater. However, most

studies were restricted in one vertical direction. There had not been studies regrading the

general impact conditions such as oblique impact and penetration with low initial impact

velocity although almost all real impact problems happen under this oblique condition.

In this study, the motions of impact bodies are restricted to planar motion. In order

to analyze the collision effect, the models of a single impact point and multiple impact

points are chosen as analytical models. The single impact point model includes the oblique

impact of a sphere, a mathematical pendulum, and single impact of a planar kinematic

chain. For multiple impact points model, a planar kinematic chain having multi contacts

with a granular medium is studied. The impact of a planar kinematic chain is separately

studied as a rigid and as a flexible model.

Basically the most important component in modeling the impact with a granular mate-

rial is to understand the resistance forces originated from the granular material. There had

been studies about granular physics in order to explain the unusual characteristics of gran-

ular materials at high and low speeds. However there are not enough researches studying

the problems of resistance forces impeding the motion of a rigid body in a granular mate-

rial. In this study, the resistance forces affecting the motion of a body are studied based

on the characteristics of a granular material acting fluid-like and solid-like. Based on these
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characteristics of a granular material, the resistance forces are studied as the dynamic fric-

tional force (velocity-dependent force) which is modeled from fluid dynamics and the static

resistance force (depth-dependent force) which is modeled from solid particle contacts.

There are various mathematical modeling methods such as the equations of Newton-

Euler, Lagrange, and Kane. In this study, the descriptions of the dynamics of the system of

particles and kinematic chains are formulated using the Newton-Euler equations. Lagrange’s

and Kane’s equations can be also applied and were tested but there are no differences in

the numerical results using different methods.

Initial impact conditions are decisive factors for the motion of the particle and the

kinematic chain during penetration phase in the case that there are no drive force and no

moment to move and to rotate the links. Of course, the initial states of a granular material

including density and volume fraction are also a very important components because the re-

sistance forces strongly depend on them. However the initial states of the granular material

utilized in experiments and simulations are assumed not to change during the experiments

in order to investigate the effects of the initial impact conditions. An actual granular ma-

terial test bed was prepared as equally as possible at every impact experiment. Under this

assumption, the most important initial conditions for impact problem are the angle and the

velocity at the impact moment. The experiments and the simulations are performed under

these conditions of various initial impact angles and velocities and the results are compared.

The simulations of the models are basically performed utilizing NDSolve function of

Mathematica and this software is considered as sufficient to solve the O.D.E.s formulated

by Newton-Euler equations. Due to the characteristics of the resistance forces acting always

opposite to the direction of motion of an impact object, the simulation should solve repeat-

edly, should start and stop when the motion of the rigid body changes direction until the

rest of the rigid body. The simulation are performed with variable and fixed step methods.

The experiments are performed several times for a certain initial impact angle and

velocity. At every experiment, the granular material of test bed is plowed and flatted

to provide almost the same state of the material and to avoid ageing effects arising in
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repeated experiments. The data attained from the repeated experiments are averaged to

minimize the effects of abnormalities such as fluctuation phenomenon which can occur

during experiments. Experimental data are applied to find the resistance force coefficients

and the experimental results will be compared with the simulation results to verify the

impact models. As an experimental equipment, NDI (Northern Digital Inc.) optotrak

system is utilized for the motion capturing of impact objects and the digitizing of the

captured data. The system can capture the position of markers within the RMS accuracy

of 0.1mm and can track up to 256 markers. The position of the impact body was captured

with 3D data cartesian coordinate system with 500 frames/s.

The impact and penetrating motions of a particle and kinematic chains obtained from

simulations and experiments will be analyzed and compared based on the initial impact

conditions. We analyze how the initial impact conditions affect the penetration including

the depth and transition of the velocity after impact. Especially, the effects of the initial

impact conditions, deceleration and stopping time from the moment of impact until the rest

of an impact body will be evaluated. Until now only the vertical impact of a sphere type

was reported [51] and our study will evaluate the effects of initial impact angle including

oblique impact for rigid and elastic links.

2.1 Coordinate system

The motion of the considered systems are in 2D (planar motion). For describing the

motion of the impact object composed of rigid bodies, the system utilizes a fixed frame

because it is sufficient to describe the planar motion of the models with a fixed cartesian

coordinate system. The x-axis is horizontal, with the positive sense directed to the right,

the z-axis is vertical, with the positive sense directed downward, and y-axis is perpendicular

to the plane of motion as shown in Fig. 2.1. The planar motion of an impact rigid body

will be in the xz plane. The origin of the coordinate system will be fixed. The unit vectors

for the x-axis is ı0, the y-axis is 0, and the z-axis is k0. The angle between the z-axis

and the link i of kinematic chain consisting of n interconnected rigid links is denoted by qi
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Figure 2.1: Coordinate system for rigid impact bodies

k0

0


0ı

(0) O

q
1

k

ı

(1)

Granular medium

Figure 2.2: Coordinate system for flexible impact bodies
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(i = 1, 2, 3, . . . , n). The displacement from the origin to a certain point is denoted by qx

in x-axis and by qz in z-axis. For describing the motion of kinematic chain composed of

flexible bodies, the system utilizes a fixed frame and a rotating reference frame as shown in

Fig. 2.1. The motion of the flexible bodies are described in a fixed reference frame (0) of

unit vectors [ı0, 0,k0] and a mobile (rotating) reference frame (1) of unit vectors [ı, ,k].

2.2 Description of the models

2.2.1 Impact of a rigid sphere

A general representations of a sphere and a mathematical pendulum impacting a gran-

ular material are shown in Figs. 2.3 and 2.4. The impact is initiated when the sphere (mass

ms and diameter ds) strikes the surface of a granular material. In this study, its diameter ds

is considered relatively small and then its motion is assumed to be the motion of a particle.

The initial impact conditions are represented as initial linear velocity and initial impact

angle. The motion of the sphere will be observed based on the initial impact conditions.

In particular, the impact by the sphere does not change the direction of the velocity after

the impact moment but the mathematical pendulum can changes the direction of the ve-

locity on z direction when the sphere passes through vertical axis. Therefore the impact by

the mathematical pendulum may lead to several outcomes depending on initial impact the

angles and the velocity.

2.2.2 Single impact of a planar kinematic chain

Impact of a free link

The link utilized for the impact model has the length L, the mass mc, and the diameter

dc as shown in Fig. 2.5. The impact is initiated when the end T strikes the surface of a gran-

ular material. This problem is studied based on the continuum modeling and additionally a

flexible model is simulated in order to compare the flexible elastic body and the rigid body.

The initial conditions are given by the linear vertical impact velocity and angular position.
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Figure 2.3: Oblique impact of a sphere
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Figure 2.4: Impact of a mathematical pendulum
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Figure 2.5: Impact of a free link

Even though there is no tangential force at the initial impact moment, after impact the

horizontal resistance force is generated by the rotating link.

Single impact of a planar kinematic chain with n links

A schematic representation of a kinematic chain consisting of n interconnected rigid

links 1, 2, 3, . . . , n is shown in Fig. 2.6. The kinematic chain has the rotational joints at

Ai (i = 0, 1, 2, . . . , n − 1) and each link i has the length Li, the mass mi, and the same

diameter as dc. The impact is initiated when the end last T of the link n strikes the surface

of a granular material. The initial combination of the linear and rotational impact motion

are considered as initial impact conditions. The impact may lead to several consequences

depending on initial conditions such as the initial impact angles of the links and the velocity

of the tip at the impact moment as well as the characteristics of a granular medium such as

resistance force coefficients. The case when only the last link n is penetrating the granular

medium is considered and modeled in this study. This problem is also studied as an elastic

model and a rigid model for the special case n = 1 (compound pendulum).
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Figure 2.6: Single impact of a kinematic chain

2.2.3 Multiple impacts of a planar kinematic chain with n links

A schematic representation of a kinematic chain consisting of n interconnected rigid

links 1, 2, 3, . . . , n and l joints Ai (i = 1, 2, 3, . . . , l) is shown in Fig. 2.7. Each link i has

the length Li, the mass mi, and the same diameter, dc. Immediately before impact the

end links of the kinematic chain can be resting on the surface surfaces, impacting the

surface, or not interacting with the surface. The impact is initiated when a specific end

Tj (j = 1, 2, 3, . . . ,m) or all ends of the chain strike the surface Sj . The angle of the

surface with the horizontal is θj . The combination of the linear and the rotational impact

displacements are considered as initial impact conditions. The impact initiated at Tj may

also lead to several outcomes depending on the initial impact conditions as well as the

characteristics of a granular medium.
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Figure 2.7: Multiple impacts of a kinematic chain

2.3 Generalized coordinates

In the case of the oblique impact of a sphere, the impact and the penetrating motion of

the rigid body is restricted to xz plane. The numbers of degrees of freedom for the oblique

impact of the sphere is 2. Hence the generalized coordinates of the model can be expressed

by displacements in the xz plane as

q = {qx, qz}T , (2.1)

where qx and qz represents the displacements from the origin to the mass center of the

sphere in x-axis and in z-axis respectively.

In order to describe the motion of a rigid free link impacting and penetrating a granular

medium, at least three position coordinates are required even though the motion is restricted

to xz plane. Two displacement coordinates qx and qz and one angular position coordinates
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q can be considered as generalized coordinates of the model as

q = {qx, qz, q}T . (2.2)

For a flexible free link, the generalized coordinates include the coordinates of the rigid free

link and additionally the elastic coordinates because the position of each point on the link

depends on the deformation of the link which is represented by infinity superposition of

deformation. The generalized coordinates can be given as

q = {qx, qz, q1, q2 . . . q∞}T . (2.3)

In the model of a single impact of kinematic chains, the impact and the penetrating

motion of each link is translational and rotational simultaneously (Fig. 2.6). Each link i

has one relative degree of freedom with respect to the link i− 1, and therefore the number

of D.O.F. is n. Angles, qis, are changing with time at the instant of interest and even

translational motion of each link can be described by the angles. Therefore the angles qis

are appropriate generalized coordinates describing the motion of the kinematic chain and

the generalized coordinates can be expressed by n× 1-dimensional vector as

q = {q1, q2, q3, . . . , qn}T . (2.4)

The mathematical and the compound pendulum are particular cases with n = 1. However,

for the flexible compound pendulum, the generalized coordinates can be represented as the

rigid and elastic coordinates as

q = {q1, q2, q3, . . . q∞}T . (2.5)

For multiple impacts of a planar kinematic chain, the number of D.O.F. is n + 2

(Fig. 2.7). The generalized coordinates, qx and qz, are the displacements form the origin to a
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certain particular point. The angles, qi, and the displacements, qx and qz, are changing with

time at the instant of interest and can be considered as generalized coordinates describing

the motion of the kinematic chain. The generalized coordinates can be expressed by (n +

2)× 1-dimensional vector as

q = {qx, qz, q1, q2, q3, . . . , qn}T . (2.6)
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Chapter 3

Force analysis

For the impact with penetration into a granular medium, the most important inter-

action forces between the body and the medium is the resistance force of the medium on

the body from the moment of impact until the body stops. Even after the body stops,

the reaction forces between the kinematic chain and the granular medium exist due to the

gravity force and the static resistance force.

There are various models of resistance forces that act upon the body during penetration

process. The Bingham’s model is defined as FR = F0 + b v and has been utilized in the case

when the drag is viscous. The model is originated for a viscoplastic material that behaves

as a solid at low stresses but flows as a viscous fluid at high stress. Bruyn and Walsh

applied this model and calculated the penetration of spheres into loose granular material

[46]. The Poncelet’s model FR = F0 + c v2 is originated from high speed impact and has

been applied in the situation when the drag is inertia, where v is velocity of the body

relative to a medium, b and c are drag coefficients. The Bingham’s model has recently been

advocated for granular impact, while the Poncelet’s model has long been used for ballistics

applications [49].

Allen, Mayfield, and Morrison [55, 56] suggested the resistance force model including

the Bingham’s and the Poncelet’s model as FR = Av2 + B v + C in the study of projectile

penetrating sand, where A is a classical fluid dynamic drag parameter, B is a deceleration

parameter due to kinetic fiction on the surface of the projectile, and C is the deceleration

force due to the inherent structural characteristics of the target material.

However, some recent research results [39, 40, 41, 42, 43, 44] indicate that the static

resistance force, defined as a constant for the Bingham’s and the Poncelet’s models, depends

on the depth of penetration linearly or non-linearly. Lohse, Rauhe, Bergmann, and van der
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Meer formulated the resistance force model made up of the only static resistance force

[53]. They suggested the resistance force as FR = k z, where k is a constant and z is the

penetrated depth. Tsimring and Volfson [48] proposed a resistance force model based on

the Poncelet’s model and the static resistance force model studied in [39] as a generalized

Poncelet’s model. The total resistance forces acting on a moving body into a granular

matter can be generalized as the sum of the static resistance force characterized by a

depth-dependent friction force as well as the dynamic frictional force characterized by a

velocity-dependent drag force as

FR = Fs(z) + Fd(v), (3.1)

where Fs is the static resistance force and Fd is the dynamic frictional force. With this

approach the resistance force model can utilize the solid-like and fluid-like characteristics

simultaneously.

Anther possible force impeding the body penetrating a granular medium is generated

by air resistance. In some case, air drag force plays an important role adding the disturbing

force to an object moving such as the motion of a car. The air drag force depends on the

density of the medium and on the velocity of the moving object. However the effect of this

resistance force in the problem of the impacting with a granular is not important because

the simulation results show ignorable differences.

3.1 Dynamic frictional force Fd

The dynamic frictional force Fd is conceptually the same force as “drag” widely used

in the field of fluid dynamics. Even though the state of a granular matter is not a fluid but

a solid, individual grains begin to loose stationary state in their contacts and a granular

material begins to fluidize acting liquid-like when external driving forces including tilting

and shaking exceed the condition of stationary. From this fluid-like behavior of a granular
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matter, the resistance force is assumed to be as a drag force impeding the body motion

[57, 58, 59, 60, 61].

In case of the impact with a granular material, once a body penetrates through the

granular matter after impact, the matter contacting with the moving body partly acts like a

fluid and this resistance force begins to be generated by the relative movement of the body

with the granular material and acts in a direction opposite to the instantaneous relative

velocity of the body. Hence, in the case of impact with the granular material, the force is

generated from the moment of impact until the rest of the body. The dynamic frictional

force acts no more as the resistance force impeding the motion of a body when the body

and the granular material keep stationary state. The force is a velocity-dependent force

unlike ordinary resistive friction force such as the static resistance force which depends on

depth of body in a granular material.

Like the drag force model in fluid dynamics, the dynamic frictional force Fd also had

been modeled as a linear drag force or a quadratic drag force. Therefore the Bingham’s

model utilizing a linear drag force model had been advocated for low speed granular impact,

while the Poncelet’s model utilizing a quadratic drag force had long been used for ballistics

applications [49]. However the research results using a dilute granular flow condition which

is not affected by the static resistance force [57, 59, 61] and the research results at low speed

impact [48, 51] show that the quadratic drag force model is more suitable for the dynamic

frictional force Fd than the linear drag force model even at relatively low speed regime. The

dynamic frictional force can be modeled as

Fd = − v
|v| ηd ρg Ar v · v, (3.2)

where −v/|v| term is applied because the dynamic frictional force acting on the opposed

direction of the velocity vector v, ηd is a drag coefficient determined from experimental

results, ρg is the density of the granular medium, and Ar is the reference area of the body.
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3.2 Static resistance force Fs

The static resistance force is an internal resisting force and appears when an external

force is applied to a body. This resistance force does not depend on the velocity or the

acceleration of a body and acts as an internal stress. Therefore this force acts as a main

resistance force when a body penetrates a granular medium at low speed.

The existence of this force not existing in a fluid can be observed easily. When a body is

put on the granular material, the body starts to penetrate vertically through the granular

material but does not sink beyond a certain depth. The body stops to penetrate in the

material due to this resistance force unlike an usual fluid in which a body sinks unlimitedly

without a lift force such as buoyancy.

Even though this resistance force play an important role in a body penetrating a gran-

ular material, the force had not been highlighted comparatively in the early studies. Most

models including the Bingham’s and the Poncelet’s models have considered this force as a

mere constant. Because the dynamic frictional force originated from a velocity-dependent

drag force acts as a main resistance force in the study at relatively high speed impact, the

static resistance force was modeled using a simple form.

However, the theoretical modeling of this force originated from the characteristics of

a granular material even in stationary state is not that easy to be determined. Various

research results explain the origin of this resistance force as the network of forces generated

from contacts between granules within the material pile [30, 33, 31, 34, 32, 35].

In the case of impact with a granular material problem, the force acting on a body is not

generated only by interacting between granules in contacts. Describing interacting forces

of a certain moment during the continuous penetrating process, the force interacts between

a penetrating body and granules located on the body circumference and the interacts of

the contacting forces among the granules in the vicinity of the body are expanded to other

granules of a granular container. As a consequence, the interacts of the contacts between

granules become to form a force chain in a granular containing bed as bulk scale.
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The reason this resistance force is not easy explained in the impact penetrating problem

is that the force is transmitted following consecutive granular medium movement propaga-

tion such as chain reaction beginning with serial displacements of granules placed at the path

of the moving body and ending with large scale reorganization of granules in the container.

That means the forces and their spatial correlations, specifically in response to forces at the

granular system boundaries do not represent fixed structure. Force chains are connected

newly or disconnected continuously until the rest of penetration. This process is strongly

influenced by properties of a granular matter, the external shape of a body, packaging

state of medium, even the form of a vessel containing medium [41, 62]. Any insignificant

changes during the continuous penetration can increase uncertainties of the propagation

chain. These uncertainties in a real impact problem make the forces not to propagate

uniformly through the granular matter but localized along directional force chains. The

inhomogeneous force propagation and the irregular grain reorganization cause the fluctua-

tion of the static resistance force in direction and magnitude [41, 42, 63, 64, 65]. Due to

this complicated process of transmitting the force, there are few general continuum theories

completely describing the static resistance force [44]. In this study, we considered horizontal

and vertical static resistance forces developed by theoretical and empirical approaches.

3.2.1 Horizontal static resistance force Fsh

Horizontal static resistance force is defined as an internal impeding force acting on the

horizontal direction. When a body penetrates a granular material, it is not easy to separate

and to measure this force individually without the effect of dynamic frictional force Fd. The

experiments related with the horizontal static resistance forces were performed at very slow

speed such as 0.04 - 1.4 mm/s [39, 40, 41].

Albert, Pfeifer, Barabási, and Schiffer [39] applied a probability approach to model

this resistance force. They used the force chain model developed by Coppersmith, Liu,

Majumdar, Narayan, and Witten [30] in order to model the mean horizontal static resistance

force. According to the chain model of Coppersmith et al., the force chains transmitting the
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propagation of contact forces are built up based on the force fractions that act on a given

particle of the matter. The force fraction is unequally split and transmitted to the adjacent

particles. The traces of these force fractions are built as the form of chain in the granular

material pile. For a particle to move horizontally relative to a granular matter which is

restricted by the force chain, the probability of the particle immersed at a certain depth

position, exceeding a critical force necessary to make the granule slip relative to another,

should be 1 when a certain external force is applied horizontally on this particle. Expanding

this concept of small particle to a body, the probabilities of all granules contacting with a

body, exceeding a critical force necessary to make the granules slip relative to others, should

simultaneously be 1 at any depth position when a certain external force F is applied on a

body horizontally for a body immersed in the granular matter to penetrate horizontally.

The calculated minimum force F satisfying this probability condition of a vertically

immersed cylinder type body is F = ηh g ρg H2 dc, where g is the gravitational acceleration,

H is the immersed length of the cylinder, dc is the diameter of the cylinder, and ηh is a

constant depending on the medium properties such as surface friction, morphology, packing

of the grains, etc. [39]. Using the same process, the horizontal static resistance force of the

cylinder including the state of immersion, at any slope, can be generalized as

Fsh = − vh

|vh| ηh g ρg z2
T dc , (3.3)

where vh is the horizontal velocity vector of a body and zT is the depth of the immersed

cylinder tip. For a sphere, the horizontal static resistance force is

Fsh = − vh

|vh| ηh g ρg ds
2 zT , (3.4)

where ds is the diameter of the sphere. Equations (3.3) and (3.4) show that the horizontal

static resistance force is a function of the granular properties, the immersed surface area,

and the depth.

21



Even though Eqs. (3.3) and (3.4) do not reflect the periodical force fluctuation such

as stick and slip phenomena which were confirmed in some real cases, experimental data

show that the equation can be applied for the static resistance force model not only in the

case of little fluctuation phenomenon but also for large fluctuation because the calculated

force represents the average static force of fluctuation [41, 42]. In addition, this modeling

approach reveals that inertia of the body and the friction force between granules and the

body surface in contact have negligible contribution to the horizontal static resistance force.

In other words, any body only with the same shape can cause almost the same results

regardless of the body’s properties such as density and surface friction.

3.2.2 Vertical static resistance force Fsv

The vertical static resistance force is defined as an internal impeding resistance acting

on the vertical axis. Although most researches regarding the impact with a granular material

focus on the vertical direction, the studies about the static resistance force in this direction

are not enough or are limited. Simple models of this force applied as a mere constant [46, 49]

and linear function of the immersed depth of a body in a restricted range [51, 53]. However,

basically this force is known as a nonlinear function of the immersion depth [43, 44].

The reason that there are very few continuum models for this force in a granular

system is originated from complex force distribution. Even simple experimental result

shows the contacts of granules increase exponentially by the force loaded externally [31, 34]

and especially the effects by the container bottom boundary increase the non-linearity of

this resistance force [43, 62]. In addition, the problem of the direction loaded by external

force makes the modeling of this force even more difficult.

Hill, Yeung, and Koehler [44] suggested an empirical equation with coefficients calcu-

lated from the experimental data as

Fsv = − vv

|vv| ηv (zT /l)λ g ρg V , (3.5)
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where vv is the vertical velocity vector of a body, V is the immersed volume of the body,

and l is the lateral dimension. The coefficients ηv and λ are depending on the shape of

the body, the properties of the granular matter, the shape of medium container, and the

moving direction such as plunging and withdrawing.

When Eq. (3.5) is applied with the coefficients ηv and λ to a dynamic model, the

noticeable conditions for modeling are the inclination and the moving direction of the body.

The coefficients based on the empirical data [44] reveal that the inclination of a body has

little effect on the vertical static resistance force however this force changes drastically by

the moving directions. For the cylinder type body, whether the axis is vertical or horizontal,

the coefficients ηv and λ are approximately 10 and 1.4 for plunging motion and 0.5 and 1.7

for withdrawing motion in their experiments.

3.3 Air drag force

Air can also act as the medium impeding the motion of an impacting body besides

the granular medium. For some cases, the air drag force acts as a main resistance force

disturbing the motion. However, the air drag force that can act as an additional resistance

force acting on the impact object is not considered in this study because the force is too

weak compared with the resistance force of the granular medium. The simulation of a

moving compound pendulum shows the difference between the air drag force applied to the

model and not applied to the model is as small as possibly to be ignored. The calculated

time of the force applied to the compound pendulum model for the pendulum released at

45o to pass through vertical plane is 0.164954 s and that of the model not applying the force

is 0.164932 s. The difference between these times is only 0.000022 s. The air drag force is

calculated as F = 1/2Cd Ar ρair v2
C where Cd is the drag coefficient, ρair is the density of

air, and vC is the velocity of the center of the mass [66]. As the condition of air for this

simulation, the air density ρair = 1.2045 kg/m3 (20 ◦C and 1 ATM) and the drag coefficients

Cd = 0.93 for cylinder [66] are utilized. The applied dimensions of the compound pendulum

are the length 0.15 m, the diameter 0.00635 m, and the density of the steel 7.7×103 kg/m3.
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Figure 3.1: Air drag force impeding the motion of the compound pendulum

Figure 3.1 shows the air drag force acting at the compound pendulum. The reason that the

air drag resistance is small even compared with the dynamic frictional force is the difference

between the density of the air and the granular medium (sand). In this study, the density

of the sand applied as a granular medium is 2500 kg/m3. Considering the weakness of the

air drag resistance force, only resistance force by the granular medium is assumed to act

against an impact in this study.

3.4 Application to the impact models

In the case when the impact object is considered as a particle, there is no restriction

to apply Eqs. (3.2), (3.3), (3.4), and (3.5) because the acting points of the dynamic fric-

tional force and the static resistance force are consistent with each other. In addition the

magnitude and the direction of the dynamic frictional force depend only on that acting

point. However, in the case when the impact object is regarded as a continuum, there can

be differences between the application points of the resistance forces (between the dynamic

frictional force and the static resistance force). It is also difficult to decide the magnitude
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and the direction of the dynamic frictional force because the magnitude and the direction

of the velocities of points on the impact object are not the same.

In this study, the centroid point of the immersed part of the body is assumed to be

application point for the resistance force. Under these assumptions, Eqs. (3.2), (3.3), (3.4),

and (3.5) are newly rewritten as

Fd = − vE

|vE | ηd ρg Ar vE · vE = −vE ηd ρg Ar |vE |, (3.6)

Fsh = − vEx

|vEx |
ηh g ρg z2

T dc =
[−sign(vEx) ηh g ρg z2

T dc

]
ı0, (3.7)

Fsh = − vEx

|vEx |
ηh g ρg d2

s zT =
[−sign(vEx) ηh g ρg ds

2 zT

]
ı0, (3.8)

Fsv = − vEz

|vEz |
ηv (zT /l)λ g ρg V =

[
−sign(vEz) ηv (zT /l)λ g ρg V

]
k0, (3.9)

where vE is the velocity vector of the centroid point of the immersed part of a body,

vEx represents the velocity vector composed of the horizontal component of vE , and vEz

represents the velocity vector of the vertical component of vE . Equations (3.7) and (3.8)

represent the horizontal static resistance force for a cylinder type body and for a sphere

respectively. With this approach, the resistance force FR is applied as FR(vE , zT ) in the

equations of motion.

When the impact object is characterized as a particle, the terms of the resistance force

are calculated easily. The velocity vector of the resistance force application point E, vE ,

is the same as the velocity vector of the mass center C, vC . The reference area Ar is

calculated as π d2
s/4 for sphere type objects. The immersed depth zT is the same as the

vertical coordinate of the mass center C and the immersed volume V is calculated as π d3
s/6

for the sphere type objects and d3
s for rectangular typed objects. In this case, the term of

lateral dimension l for calculating the vertical static resistance force is ds. Therefore the
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resistance force of a small sphere type object is calculated as

FR = Fd + Fsh + Fsv

=

[
− vCx ηd ρg

π d2
s

4

√
v2
Cx

+ v2
Cz
− sign(vCx) ηh g ρg q2

z ds

]
ı0

[
− vCz ηd ρg

π d2
s

4

√
v2
Cx

+ v2
Cz
− sign(vCz) ηv (qz/ds)λ g ρg

π ds
3

6

]
k0, (3.10)

where qz is the scalar value of the vertical position vector of the mass center C.

For a link in planar motion (see Fig. 3.2), the position and the velocity vector of the

resistance force application point E should be defined in order to calculate the resistance

force of link type objects. The reference area Ar is calculated as

Ar = dc
zT

cos q
| sin (q − qm)| , (3.11)

qm = tan−1

(
vEx

vEz

)
, (3.12)

where q is the angle between vertical plane and the object and qm represents the moving

angle of the link penetrating the granular medium as shown in Fig. 3.2. The term, lateral
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dimension l, for calculating the vertical static resistance force for this case is dc and the

immersed volume V is calculated with

V =
π dc

2

4
zT

cos q
. (3.13)

Therefore the resistance force of a cylinder type link is calculated as

FR = Fd + Fsh + Fsv

=

[
− vEx ηd ρg dc

zT

cos q

∣∣∣∣ sin
(

q − tan−1

(
vEx

vEz

))∣∣∣∣
√

v2
Ex

+ v2
Ez

−sign(vEx) ηh g ρg z2
T ds

]
ı0

[
− vEz ηd ρg dc

zT

cos q

∣∣∣∣ sin
(

q − tan−1

(
vEx

vEz

))∣∣∣∣
√

v2
Ex

+ v2
Ez

−sign(vEz) ηv (zT /ds)λ g ρg
π dc

2

4
zT

cos q

]
k0. (3.14)
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Chapter 4

Impact of rigid objects

In this chapter, rigid bodies impacting a granular medium are studied. Their equations

of motion (E.O.M.) are formulated and simulated. The resistance forces and the gravity

forces are considered in the E.O.M.s of the system. The E.O.M.s are formulated using

Newton-Euler equations. Other equations such as Lagrange’s equation and Kane’s dynami-

cal equation also can be applied to find the E.O.M.s. The simulation results of the E.O.M.s

are the same as Newton-Euler equations.

First, a one degree of freedom (D.O.F.) mathematical pendulum is studied. An oblique

impact of a sphere also studied as the motion of a particle has two D.O.F. After modeling of

the motion of a particle type sphere, the impacts of rigid bodies are studied. Single impact

of a planar kinematic chain including a compound pendulum and a double pendulum are

studied. Additionally the impact of a free rigid link is modeled as the special case of the

single impact of a planar kinematic chain. In order to confirm the effect of resistance forces

acting on multiple links simultaneously, multiple impacts of a planar kinematic chain are

modeled.

As mentioned previously the planar motions of the models are described in a fixed

cartesian coordinate system. The x-axis is horizontal, with the positive sense directed to

the right, the z-axis is vertical, with the positive sense directed downward, and y-axis is

perpendicular to the plane of motion. The unit vectors for the fixed frame are ı0, 0, and k0.

The angle between the z-axis and the link i is denoted by qi, (i = 1, 2, 3, . . . , n). The x and

z-axis distances from the origin to a reference point are denoted by qx and qz respectively.

The simulation is performed using Mathematica and the equations of motion is solved

by NDSolve function. When the fixed step is required to solve E.O.M.s, the applied step

size is 10−6 s. Various initial impact angles are applied as initial conditions in simulations
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Figure 4.1: Free body diagram of a mathematical pendulum in impact

from low to high impact angle in order to confirm the effects of initial impact angles to

the penetrating process from the impact moment until the kinematic chain stops. The

simulation results are basically compared using different initial impact velocities from low

to relatively high for the same initial impact angle.

In this study, the penetrating velocity and the penetrated distance are considered as

the basic data for analyzing the impact with a granular medium. The penetrating velocity

is analyzed by comparing the stopping times meaning the time intervals from the impact

moment until the kinematic chains stop.

4.1 Impact of a rigid sphere

4.1.1 Impact of a mathematical pendulum

Modeling

First, the impact of a single mathematical pendulum into the granular material is

modeled. For the mathematical pendulum the net forces acting on the sphere are the

gravity G, the static resistance force Fs, and the dynamic frictional force Fd as shown in

Fig. 4.1.

29



All the forces act at the center of the mass of the sphere of the mathematical pendulum.

In the vertical z-axis, the forces acting on the mathematical pendulum are composed of

the gravity force G, the vertical static resistance force Fsv, and the vertical component of

dynamic frictional force, Fdv. The forces acting in x-axis are the horizontal static resistance

force Fsh and the horizontal component of dynamic frictional force, Fdh. The Newton-Euler

equation is given by

ms L2 q̈ · 0 =
[
rC × (G + Fs + Fd)

]
· 0 , (4.1)

where L is the length of the pendulum, q is the angle of pendulum with the vertical, and q̈

is the angular acceleration. The vector rC is the position vector from the origin O to the

mass center C and given as

rC = L sin q ı0 + L cos q k0. (4.2)

The vector of gravity force G is also represented as

G = ms g k0. (4.3)

All the forces acting on the sphere are assumed to have their application point at the mass

center of the sphere, C. Therefore the velocity vector of the resistance force application

point E and the dynamic frictional force Fd calculated by Eq. (3.6) are represented as

vE = vC = L q̇ cos q ı0 − L q̇ sin q k0 (4.4)

Fd = −vE ηd ρg Ar |vE | = −vC ηd ρg Ar |vC |

= ηd ρg Ar L2 | q̇ |
[
− q̇ cos q ı0 + q̇ sin q k0

]
, (4.5)
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where the reference area is calculated as Ar = π d2
s/4. The horizontal and vertical static

resistance forces, Fsh and Fvh, are

Fsh = −sign(q̇ cos q) ηh g ρg z2
T ds ı0, (4.6)

Fsv = sign(q̇ sin q) ηv (zT /ds)λ g ρg V k0, (4.7)

where the immersed volume is calculated as V = π ds
3/6 and the immersed depth of the

mathematical pendulum, zT , is calculated as

zT = L cos q − L cos q(0). (4.8)

The initial condition q(0) is the angle of the mathematical pendulum at the impact moment.

The resistance force FR is represented by Eqs. (4.5), (4.6), (4.7), and (4.8) as

FR = Fd + Fsh + Fsv

= −
[
ηd ρg

πds
2

4
L2 | q̇ | q̇ cos q + sign(q̇ cos q) ηhgρg

(
L cos q − L cos q(0)

)2

ds

]
ı0

+

[
ηd ρg

πds
2

4
L2 | q̇ | q̇ sin q

+sign(q̇ sin q) ηv

(
L cos q − L cos q(0)

ds

)λ

gρg
πds

3

6

]
k0. (4.9)

Simulation results

Figures 4.2, 4.3, and 4.4 represent the simulation results of the impact of the math-

ematical pendulum, depicted in Figs. 2.4 and 4.1. The length from the joint to the mass

center of the sphere is L = 0.5 m, the diameter of the sphere is ds = 0.0254 m, its density

is ρs = 7.7 × 103 kg/m3, and the density of the granular medium (sand) is ρg = 2.5 × 103

kg/m3. The dynamic frictional force coefficient ηd = 6.5, the horizontal static resistance

force coefficient ηh = 8, and the vertical static resistance force coefficients ηv = 22 and λ

= 1.1 are used in the simulation. The gravitational acceleration g is utilized as 9.81 m/s2
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Table 4.1: Stopping time of the mathematical pendulum into a granular medium

Impact angle (o) q̇(0) (rad/s) ts (s)

-1 0.0642752

15 -3 0.0513544

-5 0.0471527

-1 0.0381696

45 -3 0.0295588

-5 0.0267668

-1 0.0354039

75 -3 0.0267909

-5 0.0240349

in this study. The simulation is performed for the different impact angles (q(0) = 15, 45,

and 75o) and the different impact angular velocities (q̇(0) = -1, -3, and -5 rad/s) from the

impact moment until the angular velocity q̇ becomes zero.

As shown in Figs. 4.2, 4.3, and 4.4, the penetrating angle increases when the initial

impact angular velocity is increasing. However, the stopping time defined as the time

interval from the impact moment until the angular velocity of the pendulum becomes zero,

ts, decreases as shown in table 4.1. The increasing of the initial velocity causes the stopping

time into the granular medium to decrease. The faster the mass of the mathematical

pendulum impacts the surface of the granular medium, the sooner it will come to a stop.

This interesting phenomenon involving how rapidly a particle type rigid body vertically

strikes the granular medium slowing down upon contact was reported in [51]. The results

observed only in vertical impact are kept in the impact of the mathematical pendulum

which has both horizontal and vertical components of penetrating motion as the initial

impact velocity v(0) at which a particle vertically impacts the medium increases the sooner

it will come to a stop.
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Figure 4.5: Free body diagram of a rigid sphere in oblique impact

4.1.2 Oblique impact of a rigid sphere

Modeling

The model of a planar oblique impact of a rigid sphere into a granular matter is

presented. The net forces acting on the oblique planar impact penetrating a granular

medium are the same as the previous case. The gravity force, the static resistance force Fs,

and the dynamic frictional force Fd act as shown in Fig. 4.5. Neglecting the rotation of the

body, Newton’s second law for the sphere gives:

ms r̈C = G + Fs + Fd, (4.10)

where r̈C is the acceleration vector of the position vector of the mass center of the sphere,

rC = qx ı + qz k, and ms is the mass of the sphere. There is no rebound at the impact

moment regardless the initial velocity and the initial impact angle.

All the forces acting on the sphere are also assumed to have their resistance force

application point at the center of the sphere. In the vertical z-axis, the forces acting on the

sphere are: the gravity force G, the vertical static resistance force, Fsv, and the vertical

component of dynamic frictional force Fdv. The forces acting in x-axis are: the horizontal

36



static resistance force Fsh and the horizontal component of dynamic frictional force, Fdh.

The vector of gravity force G is represented as

G = ms g k0. (4.11)

The resistance force FR is calculated by Eqs. (3.6), (3.7), and (3.9). Because the resistance

force is assumed to act at the mass center C, the dynamic frictional force Fd is calculated

by Eq. (3.6) as

Fd = −vE ηd ρg Ar |vE | = −vC ηd ρg Ar |vC |

= ηd ρg Ar

√
q̇2
x + q̇2

z

[
− q̇x ı0 − q̇z k0

]
. (4.12)

The reference area Ar for the sphere is the same as that of the mathematical pendulum as

Ar =
π d2

s

4
. (4.13)

The horizontal and vertical static resistance forces, Fsh and Fvh, are

Fsh = −sign(q̇x) ηh g ρg q2
z ds ı0, (4.14)

Fsv = −sign(q̇z) ηv (qz/ds)λ g ρg V k0, (4.15)

where the immersed volume V is calculated as the volume of the sphere.

V =
π d3

s

6
. (4.16)
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Table 4.2: Stopping time of the rigid sphere into a granular medium

Impact angle (o) vp(0) (m/s) ts (s)

1 0.0565723

15 3 0.04457

5 0.0376819

1 0.0364601

45 3 0.0272604

5 0.0243122

1 0.0324081

75 3 0.0251294

5 0.0227529

The resistance force FR, the sum of the dynamic frictional force vector Fd and the static

resistance force vector Fs, is represented by the sum of Eqs. (4.12), (4.14), and (4.15) as

FR = Fd + Fsh + Fsv

=

[
− q̇x ηd ρg

π d2
s

4

√
q̇2
x + q̇2

z − sign(q̇x) ηh g ρg q2
z ds

]
ı0

[
− q̇z ηd ρg

π d2
s

4

√
q̇2
x + q̇2

z − sign(q̇z) ηv (qz/ds)λ g ρg
π ds

3

6

]
k0. (4.17)

Simulation results

Figures 4.6, 4.7, and 4.8 represent the simulation results of the oblique impact of the

sphere, depicted in Figs. 2.3 and 4.5. All data for the second simulation such as the density

and the diameter of the sphere, the density of the granular medium, and the resistance force

coefficients are applied as the same data applied to the simulation of the mathematical

pendulum. The simulation is performed for the different impact angles (q(0) = 15, 45,

and 75o) and the different impact linear velocities (vp(0) = 1, 3, and 5 m/s) from the

impact moment until the velocity of the sphere, vp, becomes zero. The penetrating distance
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(dp =
∫

vp dt) increases but the penetrating motion of the rigid sphere comes to stops fast

when the initial impact velocity v(0) is increased as shown in Figs. 4.6, 4.7, and 4.8 and in

table 4.2. These simulation results show that the results confirmed in the simulation for one

D.O.F. motion of the particle type sphere as the mathematical pendulum and the vertical

impact are kept in two D.O.F. motion of the particle type sphere.

4.2 Single impact with a granular medium

4.2.1 Impact of a free rigid link

Modeling

The model of the impact of a free rigid link into a granular matter is presented. Previous

the impact of the sphere are modeled based on the motion of particle. However, from the

impact of a rigid link the impact with a granular is modeled based on the motion of rigid

body. In the vertical z-axis, the forces acting on the link are: the gravity force G, the

vertical static resistance force Fsv, and the vertical component of the dynamic frictional

force Fd. The forces acting in x-axis are: the horizontal static resistance force Fsh and the

horizontal component of the dynamic frictional force Fd. The gravity force G acts at the

center of mass, C, of the link and the resistance force, FR, including Fs and Fd acts at the

point E, where point E is the centroid point of immersed part as shown in Fig. 4.9. The

general equation of motion for the planar kinematic chain can be written in the following

form

mc r̈C · ı0 =
(
Fs + Fd

)
· ı0, (4.18)

mc r̈C · k0 =
(
G + Fs + Fd

)
· k0, (4.19)

IC q̈ · 0 =

[
rCE ×

(
Fs + Fd

)]
· 0, (4.20)

where r̈C is the acceleration vector of the position vector of the mass center of the rigid

bar, and q̈ is the angular acceleration vector of the angular vector of pendulum with the
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vertical, q = q 0. The position vector rCE represents vector from the mass center C to the

resistance force application point E, mc is the mass of the link, and IC = mc L2/12 is the

mass moment of inertia of the link with regard to its center.

rC = qx ı0 + qz k0, (4.21)

q̈ =
d2q

dt2
0. (4.22)

The position vector from the mass center to the resistance force application point E, rCE ,

is represented as

rCE = LCE sin q ı0 + LCE sin q k0, (4.23)

where LCE is the length between the mass center C and the resistance force application

point E and calculated as

LCE =
L

2
− zT

2 cos q
. (4.24)
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The immersed depth of the end T , zT , is expressed as

zT = rC · k +
L

2
cos q = qz +

L

2
cos q. (4.25)

The velocity vector of the resistance force acting point E, vE , the reference area of the

penetrating bar Ar, and the moving angle qm for calculating the dynamic frictional force

are represented as

vE =
drC

dt
+

dq
dt
× rCE =

(
q̇x + LCE q̇ cos q

)
ı +

(
q̇z − LCE q̇ sin q

)
k, (4.26)

Ar = dc
zT

cos q
| sin (q − qm) |, (4.27)

qm = tan−1

(
vEx

vEz

)
= tan−1

(
q̇x + LCE q̇ cos q

q̇z − LCE q̇ sin q

)
. (4.28)

The dynamic frictional force Fd is calculated by Eq. (3.6) as

Fd = ηd ρg dc
zT

cos q

∣∣∣∣sin
(

q − tan−1

(
q̇x + LCE q̇ cos q

q̇z − LCE q̇ sin q

))∣∣∣∣

√(
q̇x + LCE q̇ cos q

)2
+

(
q̇z − LCE q̇ sin q

)2

[
−

(
q̇x + LCE q̇ cos q

)
ı0 −

(
q̇z − LCE q̇ sin q

)
k0

]
. (4.29)

The immersed volume V for calculating the static resistance force is calculated as

V =
π dc

2

4
zT

cos q
. (4.30)

Hence, the horizontal and vertical static resistance forces, Fsh and Fvh, are

Fsh = −sign
(
q̇x + LCE q̇ cos q

)
ηh g ρg z2

T dc ı0, (4.31)

Fsv = −sign
(
q̇z − LCE q̇ sin q

)
ηv

(
zT

dc

)λ

g ρg
π dc

2

4
zT

cos q
k0. (4.32)
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The resistance force FR, the sum of the dynamic frictional force vector Fd and the static

resistance force vector Fs, is represented by the sum of Eqs. (4.29), (4.31), and (4.32) as

FR = Fd + Fsh + Fsv

=

[
− ηd ρg dc

zT

cos q

∣∣∣∣sin
(

q − tan−1

(
q̇x + LCE q̇ cos q

q̇z − LCE q̇ sin q

))∣∣∣∣

√(
q̇x + LCE q̇ cos q

)2
+

(
q̇z − LCE q̇ sin q

)2 (
q̇x + LCE q̇ cos q

)

−sign
(
q̇x + LCE q̇ cos q

)
ηh g ρg z2

T dc

]
ı0 +

[
− ηd ρg dc

zT

cos q

∣∣∣∣sin
(

q − tan−1

(
q̇x + LCE q̇ cos q

q̇z − LCE q̇ sin q

))∣∣∣∣

√(
q̇x + LCE q̇ cos q

)2
+

(
q̇z − LCE q̇ sin q

)2 (
q̇z − LCE q̇ sin q

)

−sign
(
q̇z − LCE q̇ sin q

)
ηv

(
zT

dc

)λ

gρg
πdc

2

4
zT

cos q

]
k0. (4.33)

Simulation results

Figure 4.10 represents the simulation results of the penetrating depth of the link end

T , zT , and the vertical velocity of link end T , vTz, of the impact of the vertically dropped

cylinder type rigid link depicted in Figs. 2.5 and 4.9. The applied dimensions of the link are

the length L = 0.1524 m and the diameter dc = 0.00635 m. The density of the link, ρc, is

also 7.7× 103 kg/m3 and the density of a granular medium (sand), ρg, is 2.5× 103 kg/m3.

The dynamic frictional force coefficient ηd = 6.5, the horizontal static resistance force

coefficient ηh = 8, and the vertical static resistance force coefficients ηv = 22 and λ = 1.1 are

used in the simulation. This simulation is performed for the different initial impact vertical
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Table 4.3: Stopping time of the free link

q(0) (o) vTz(0) (m/s) tz (s)

1.53 0.0331795

0 2.06 0.029688

2.47 0.0277679

1.26 0.0275914

32 1.87 0.0229915

2.33 0.0206495

1.45 0.017818

55 1.98 0.0150461

2.43 0.0133007

velocities (q̇z(0) = 1.53, 2.06, and 2.47 m/s) from the impact moment until the link stop.

As shown in Fig. 4.10, the penetrating depth of the link increases but the time interval of

the link decreases as initial impacting velocity increases. The resistance force acting at the

rigid link is shown in Figs. 4.11 and 4.12. The dynamic frictional force depending on the

velocity acts as governing resistance force at first. However, when the penetrating depth

increases and the velocity of the link decreases, the static resistance force depending on the

immersed depth acts as governing resistance force.

Figures 4.13 and 4.14 represent the simulation results performed for the different impact

angle q(0) and the different initial impact vertical velocities (q̇z(0) = 1.26, 1.87, and 2.33 m/s

for q(0) = 32o, and q̇z(0) = 1.45, 1.98, and 2.43 m/s for q(0) = 55o). For these simulations,

we observed a stopping time tz representing the time interval from the moment of impact

until the vertical velocity of the link end, vTz. Even though the link impacts obliquely,

the penetrating depth of the link end T , zT , increases but the vertical velocity of link end

T , vTz, becomes zero fast when the initial vertical impact velocity increases as shown in

Figs. 4.10, 4.13, and 4.14 and in table 4.3. This result shows that the relations among the
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Figure 4.10: Impact results of the rigid cylinder type link for q(0) = 0o
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stopping time, the penetrating depth, and the initial impact velocity are kept in even multi

D.O.F penetrating motion.
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Figure 4.15: Free body diagram of a single impact of a planar kinematic chain

4.2.2 Impact of a planar kinematic chain

Modeling

As mentioned in chapter 2, the angles denoted by qis between the z-axis and the link

i are the generalized coordinates. The external forces acting on the kinematic chain is the

gravity force and the resistance forces as shown in Fig. 4.15. The gravity force Gi acts at

the center of mass, Ci, of the link i and the resistance force, FR including Fs and Fd, acts

at the point E of the last link n, where the point E is the centroid of the immersed part as

shown in Fig. 4.15. The general equation of motion for the planar kinematic chain can be
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written in the following form

M(q) q̈ + C(q̇,q) + G(q) = T + D(q)F, (4.34)

where q = (q1, . . . , qn)T is the n×1 generalized coordinates, M(q) is the n×n mass matrix,

C(q̇,q) is an n × 1 vector, G(q) is the n × 1 gravity vector, T is the n × 1 joint moment

vector, D(q) is an n×2 matrix, and F = (FRx , FRz)T is the resistance force vector.

Under the assumption that the joint moments do not exist, the Newton-Euler’s equa-

tions is applied to formulate the differential equation of motion. For a compound pendulum

(n = 1), the equation of motion can be written as

I q̈ =
(
rC ×G + rE × FR

)
· 0, (4.35)

where I is the mass moment of inertia with regard to the joint. The vector rC representing

the position vector from the joint to the mass center C is given as

rC = LC

(
sin q ı0 + cos q k0

)
, (4.36)

where LC is the length from the joint to the mass center of the pendulum. The position

vector from the joint to the resistance force application point E, rE , and the resistance

force FR will be formulated in the case of the n link multi kinematic chain and can be

particularized for n = 1.

In the case of a multi link kinematic chain, a force and a moment equation for each

link i = 1, 2, . . . , n− 1 can be written

mi aCi = Fi−1,i + Fi+1,i + Gi, (4.37)

Ii q̈i =
(
rCiAi−1 × Fi−1,i + rCiAi × Fi+1,i

)
· 0, (4.38)

53



and for the last link i = n

mn aCn = Fn−1,n + Gn + FR, (4.39)

In q̈n =
(
rCnAn−1 × Fn−1,n + rCnE × FR

)
· 0, (4.40)

where mi is the mass of the link i, Ii is the mass moment of inertia of the link i with regard

to its center, and Li is the length of the link i. The force Fi−1,i is the reaction force of the

link i− 1 on the link i at Ai−1, Gi is the gravity force vector acting on the mass center Ci

of the link i, and FR is the resistance force vector acting on the last link n. The vector aCi

is the acceleration vector of the position vector rCi and rCiAi−1 is the position vector from

the mass center of the link i to the point Ai−1 of the link i. The gravity force vector Gi,

the acceleration vector aCi , and the position vectors rCi , rCiAi−1 are represented as

Gi = mi g k0, (4.41)

rCi =




i−1∑

j=1

Lj sin qj + LCi sin qi


 ı0 +




i−1∑

j=1

Lj cos qj + LCi cos qi


k0, (4.42)

aCi =
d2rCi

dt2
=




i−1∑

j=1

Lj

(
q̈j cos qj − q̇2

j sin qj

)
+ LCi

(
q̈i cos qi − q̇2

i sin qi

)

 ı0

−



i−1∑

j=1

Lj

(
q̈j sin qj + q̇2

j cos qj

)
+ LCi

(
q̈i sin qi + q̇2

i cos qi

)

k0, (4.43)

rCiAi−1 = −LCi sin qi ı0 − LCi cos qi k0, (4.44)

rCiAi = (Li − LCi) sin qi ı0 + (Li − LCi) cos qi k0, (4.45)

where LCi is the length from the joint Ai−1 to the mass center Ci of the link i. The vector

rCnE representing the position vector from the mass center of the last link n, Cn, to the

resistance force acting point E is calculated from the vector rE representing the position
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vector from the origin to the force acting point E as

rE =




n−1∑

j=1

Lj sin qj + LE sin qn


 ı0 +




n−1∑

j=1

Lj cos qj + LE cos qn


k0, (4.46)

rCnE = rE − rCn =
(
LE − LCn

)(
sin qnı0 + cos qnk0

)
, (4.47)

where LE , the length from the last joint An−1 to the resistance force acting point E, is

represented as

LE = Ln − 1
2

zT

cos qn
. (4.48)

The immersed depth of the last link n, zT , is calculated as

zT =
n∑

i=1

Li cos qi −
n∑

i=1

Li cos qi(0), (4.49)

where qi(0) is the initial impact angle of qi.

The other variable of the resistance force vector FR(vE , zT ), the velocity vector vE , is

calculated as

vE = vCn + vCnE =
drCn

dt
+ qn 0 × rCnE

=




n−1∑

j=1

Lj q̇j cos qj + LE q̇n cos qn


 ı0 −




n−1∑

j=1

Lj q̇j sin qj + LE q̇n sin qn


k0. (4.50)

The reference area Ar and the moving angle qm of the penetrating last link n for calculating

the dynamic frictional force are represented as

Ar = dc
zT

cos qn
| sin (qn − qm) |, (4.51)

qm = tan−1

(
−

∑n−1
j=1 Lj q̇j cos qj + LE q̇n cos qn∑n−1
j=1 Lj q̇j sin qj + LE q̇n sin qn

)
. (4.52)
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Therefore the dynamic frictional force Fd is given by Eq. (3.6) as

Fd = ηd ρg dc
zT

cos qn

∣∣∣∣∣sin
(

qn − tan−1

(
−

∑n−1
j=1 Lj q̇j cos qj + LE q̇n cos qn∑n−1
j=1 Lj q̇j sin qj + LE q̇n sin qn

))∣∣∣∣∣
√√√√√




n−1∑

j=1

Lj q̇j cos qj + LE q̇n cos qn




2

+




n−1∑

j=1

Lj q̇j sin qj + LE q̇n sin qn




2

[
−




n−1∑

j=1

Lj q̇j cos qj + LE q̇n cos qn


 ı0

+




n−1∑

j=1

Lj q̇j sin qj + LE q̇n sin qn


k0

]
. (4.53)

The immersed volume V for the static resistance force is calculated as

V =
π dc

2

4
zT

cos q
. (4.54)

Hence, the horizontal and vertical static resistance forces, Fsh and Fvh are

Fsh = −sign




n−1∑

j=1

Lj q̇j cos qj + LE q̇n cos qn


 ηh g ρg z2

T dc ı0, (4.55)

Fsv = sign




n−1∑

j=1

Lj q̇j sin qj + LE q̇n sin qn


 ηv

(
zT

dc

)λ

g ρg
π dc

2

4
zT

cos q
k0, (4.56)

The resistance force FR, the sum of the dynamic frictional force vector Fd and the static

resistance force vector Fs, is represented by the sum of Eqs. (4.53), (4.55), and (4.56).

The joint reaction force Fi−1,i can be calculated using the relations Fi+1,i = −Fi,i+1

and Eqs. (4.37) and (4.39) as

Fi−1,i =
n∑

j=i

mj aCj −Gj − FR. (4.57)
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The equations of motion described by Eqs. (4.37), (4.38), (4.39), and (4.40) can be simplified

and rewritten for each link i = 1, 2, . . . , n− 1

Ii q̈i = −
[
LCi

(
sin qi ı0 + cos qi k0

)
×




n∑

j=i

mj aCj −Gj − FR


 +

(
Li − LCi

)(
sin qi ı0 + cos qi k0

)
×




n∑

j=i+1

mj aCj −Gj − FR




]
· 0,(4.58)

and for the last link i = n

In q̈n =

[
− LCn

(
sin qn ı0 + cos qn k0

)
×

(
mn aCn −Gn − FR

)
+

(
LE − LCn

)(
sin qn ı0 + cos qn k0

)
× FR

]
· 0. (4.59)

The final nonlinear equations of motion will have the form as

fi

(
q̈i, q̇i,mi, Li, g, FR

)
= 0. (4.60)

Simulation results of a compound pendulum

The dimensions of the rigid compound pendulum are shown in Fig. 4.16. The dimen-

sions of the pendulum are the length Lp1 = 0.78" (= 0.019812 m), Lp2 = 0.6" (= 0.01524

m), Lp3 = 9.4" (= 0.23876 m) and the diameter dp1 = 0.75" (= 0.01905 m), dp2 = 0.6" (=

0.01524 m), dp3 = dc = 0.25" (= 0.00635m). The density of the link, ρc, is also 7.7 × 103

kg/m3 and the density of a granular medium (sand), ρg, is applied as 2.5× 103 kg/m3. The

dynamic frictional force coefficient ηd = 6.5, the horizontal static resistance force coefficient

ηh = 8, and the vertical static resistance force coefficients ηv = 22 and λ = 1.1 are used

in the simulation. Figures 4.17, 4.18, 4.19, and 4.20 represent the simulation results of the

impact of the rigid compound pendulum.

The simulations are performed for different impact angle q(0) and different initial im-

pact velocities (q̇(0) = -1.75, -3.38, and -4.66 rad/s for q(0) = 22o, q̇(0) = -3.31, -6.24, and
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Figure 4.16: Compound pendulum

-8.41 rad/s for q(0) = 31o, q̇(0) = -2.66, -6.47, and -9.06 rad/s for q(0) = 45o, and q̇(0) =

-2.70, -6.54, and -9.17 rad/s for q(0) is 61.5o) from the impact moment until the angular

velocity of the pendulum, q̇, becomes zero. As shown in Figs. 4.17, 4.18, 4.19, and 4.20 and

in table 4.4, the penetrating angle q of the pendulum increases but the time the angular

velocity q̇ becomes zero decreases when the initial vertical impact velocity increases as the

results of previous models.
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Table 4.4: Stopping time of the rigid compound pendulum

q(0) (o) q̇(0) (rad/s) ts (s)

-1.75 0.107212

22 -3.38 0.0861789

-4.66 0.0775028

-3.31 0.0609829

31 -6.24 0.0485081

-8.41 0.043819

-2.66 0.046688

45 -6.47 0.0333638

-9.06 0.0295578

-2.70 0.0343956

61.5 -6.54 0.0245294

-9.17 0.0216994
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Simulation results of a double pendulum

The double pendulum under consideration is shown in Fig. 4.21. As the numerical data

applied to the simulation, the lengthes of link 1 and 2, L1 = 0.2 m and L2 = 0.6 m, the

diameter dc = 0.0254 m, the density of the link ρc = 7.7× 103 kg/m3, and the density of a

granular medium (sand) ρg = 2.5× 103 kg/m3, the dynamic frictional force coefficient ηd =

6.5, the horizontal static resistance force coefficient ηh = 8, and the vertical static resistance

force coefficients ηv = 22 and λ = 1.1 are used in the simulation.

Figures 4.22 and 4.23 represent the simulation results for the double pendulum with

the following initial conditions: q1(0) = 30o, q2(0) = 75o (q1(0) < q2(0)) and q̇1(0) = q̇2(0)

= -1, -3, -5 rad/s. The initial vertical tip velocity vTz(0) of the impact point and horizontal

one vTx(0) are increasing. The total stopping time tt is defined as the time starting from

the impact moment until q̇1 and q̇2 become zero simultaneously (q̇1(tt) = q̇2(tt) = 0). For

this case the total stopping time tt is decreasing with the increasing of the initial velocity

as shown in Fig. 4.22 and table 4.5. The vertical tip velocity vTz stops first and the total

stopping time tt is dictated by the horizontal tip velocities vTx as shown in Fig. 4.23. For

this case the tip velocities vTz and vTx do not change the sign.

For this simulation, we also observed an additional stopping time tz representing the

time from the moment of impact until the vertical velocity of the pendulum tip, vTz, becomes

Table 4.5: Stopping time and penetrating depth results of the double pendulum for q1(0)
= 30o and q2(0) = 75o

q̇1(0) (rad/s) q̇2(0) (rad/s) tt (s) tz (s) zT (m)

-1 -1 0.440289 0.0546257 0.0277009

-3 -3 0.309807 0.0355301 0.0347221

-5 -5 0.260902 0.0289713 0.0389723

-1 0.319782 0.0450784 0.0288578

-5 -3 0.286156 0.0338793 0.0347693

-5 0.260902 0.0289713 0.0389723
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Figure 4.24: Angular velocities q̇1 and q̇2 results of the double pendulum impact for q1(0) =
75o, q2(0) = 30o, q̇1(0) = -5 rad/s, and q̇2(0) = -1, -3, -5 rad/s
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Figure 4.25: Velocities vTx and vTz results of the double pendulum impact for q1(0) = 75o,
q2(0) = 30o, q̇1(0) = -5 rad/s, and q̇2(0) = -1, -3, -5 rad/s
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zero. For this interval of time we represent the penetrating depth of the pendulum tip, zT .

As shown in table 4.5, the stopping time tz is decreasing and the penetrating depth of the

pendulum tip, zT is increasing with the increasing of the initial velocity. Using different

initial impact velocities, (q̇1(0) = -5 rad/s, q̇2(0) = -1, -3, -5 rad/s), the simulation results

are presented in table 4.5. For these cases we can draw the same remarks about tt, tz, and

zT .

Using a different initial geometry for the links (q1(0) = 75o and q2(0) = 30o (q1(0) >

q2(0))) and and initial impact velocity configurations (q̇1(0) = −q̇2(0) = 1, 3, 5 rad/s), the

simulation results for tt, tz, and zT are shown in table 4.6. For these simulations the total

stopping time tt and the stopping time for z direction are decreasing and the penetrating

depth of the pendulum tip, zT , is increasing with the initial impact velocities as previous

initial geometric conditions.

A different phenomenon is observed for the same configurations (q1(0) = 75o and

q2(0) = 30o) but different initial velocities (q̇1(0) = -5 rad/s and q̇2(0) = -1, -3, -5 rad/s).

The stopping times are almost the same at the end of the simulation time as shown in

Figs. 4.24 and 4.25. The vertical tip velocity vTz stops first and the total stopping time

tt is dictated by the horizontal tip velocities vTx as shown in Fig. 4.25. For this case the

vertical tip velocity vTz and the horizontal tip velocity vTx change the sign during the

impact process. The stopping time behavior is also different from the previous case because

for q̇2(0) = -3 rad/s the total stopping time tt is increasing even though tt is again decreasing

for q̇2(0) = -5 rad/s as shown in table 4.6. Furthermore the stopping time tz is increasing

with the initial velocities for all the cases. The withdrawing motion (vTz ¡ 0) of the link 2

happening during the impact process might affect the stopping time. From these simulation

results for the initial impact conditions (q1(0) ¿ q2(0) and q̇1(0) ¿ q̇2(0)), the stopping time

of the double pendulum can be affected by the withdrawing motion of the link 2. The

stopping times increase or decrease depending on the effects of the withdrawing motion.

For this case the differences between stopping time are observed to be small. However, the
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Table 4.6: Stopping time and penetrating depth results of the double pendulum for q1(0)
= 75o and q2(0) = 30o

q̇1(0) (rad/s) q̇2(0) (rad/s) tt (s) tz (s) zT (m)

-1 -1 0.470185 0.133222 0.0674095

-3 -3 0.416271 0.112135 0.0826002

-5 -5 0.378573 0.0865091 0.0898785

-1 0.370393 0.0795579 0.067502

-5 -3 0.383146 0.0833189 0.0810202

-5 0.378573 0.0865091 0.0898785

penetrating depth of the pendulum tip zT is increasing with the initial velocities the same

as the previous simulation results.

4.3 Multiple impacts of a planar kinematic chain

Modeling

The angle between the z-axis and the link i is denoted by qi, (i = 1, 2, 3, . . . , n). The

x and z-axis distances from the origin to a point (joint A1 in this model) are denoted by qx

and qz respectively as shown in Fig. 2.7. The gravity force Gi acts at the mass center Ci

of the link i. The resistance force FRj acts at the point Ej of the link j interacting with

the granular medium, where the point Ej is the centroid point of the immersed part of the

link j. The equations of motion for the planar kinematic chain with multiple contact points

shown in Fig. 4.26 can be written in the following general form

M(q)q̈ + C(q, q̇) + G(q) =




T

0

0




+




D1(q)

D2


F, (4.61)
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Figure 4.26: Free body diagram of multiple impacts of a planar kinematic chain
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Figure 4.27: Two link kinematic chain with two impact points model
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where q = (q1, . . . , qn, qx, qz)T is the (n + 2) × 1 - dimensional vector of generalized co-

ordinates; q̇ = (q̇1, . . . , q̇n, q̇x, q̇z)T is the (n + 2) × 1 - dimensional vector of generalized

velocities, q̈ = (q̈1, . . . , q̈n, q̈x, q̈z)T is the (n + 2) × 1 - dimensional vector of generalized

accelerations, M(q) is the (n + 2) × (n + 2) mass matrix, C(q, q̇) is a (n + 2) × 1 vec-

tor, G(q) is the (n + 2) × 1 vector of gravity terms, T is the n×1 vector of joint mo-

ments, D1(q) is an n × 2k matrix, D2 = (1, 0, 1, 0, . . . ; 0, 1, 0, 1, . . .) is the 2 × 2k matrix,

F = (FR1x, FR1z, FR2x, FR2z, . . . , FRkx, FRkz)T is the 2k × 1 vector of resistance forces, and

the components FRjx and FRjz are the x-axis and the z-axis components of the resistance

force FRj respectively. Applying Newton-Euler’s equations for the kinematic chain, the

matrices M, C, G, T, D1, D2, and F can be calculated for a specific example.

In this study, an ideal two link chain are considered as the simplified application of the

kinematic chain model, as shown in Fig. 4.27. The number of D.O.F. is 4 and its generalized

coordinates are q = (q1, q2, qx, qz)T . Under the same assumption that the joint moment does

not exist, the Newton-Euler’s equations give the governing differential equations for the two

link chain:

m1 aC1 = G1 + FR1 + F2,1, (4.62)

m2 aC2 = G2 + FR2 + F1,2, (4.63)

I1 q̈1  = rC1A × F2,1 + rC1E1 × FR1

= rC1A × (m1 aC1 −G1 − FR1) + rC1E1 × FR1 , (4.64)

I2 q̈2  = rC2A × F1,2 + rC2E2 × FR2

= rC2A × (m2 aC2 −G2 − FR2) + rC2E2 × FR2 , (4.65)

where mi is the mass of the link i, Ii = mi L
2
i /12 is the mass moment of inertia of the link

i with regard to its mass center Ci, and Li is the length of the link i. The force F1,2 is the

reaction force of the link 2 on the link 1 at the joint A and the force F2,1 is vice versa. Gi is

the gravity force vector acting on the mass center Ci of the link i, and FRi is the resistance
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force vector acting on the last link n. Equations (4.62) and (4.63) can be simplified when

these equations are summed due to the characteristics of the reaction forces as

m1 aC1 + m2 aC2 = G1 + G2 + FR1 + FR2 . (4.66)

Equation (4.66) can be divided into x and z components as

m1 aC1x + m2 aC2x = FR1x + FR2x, (4.67)

m1 aC1z + m2 aC2z = G1 + G2 + FR1z + FR2z. (4.68)

Finally the motion of the chain can be described by Eqs. (4.64), (4.65), (4.67), and (4.68).

The vector aCi is the acceleration vector of the position vector rCi . The position vector

rCi is represented as the sum of the vector rOA and the vector rACi . The vector rOA is

the position vector from the origin O to the joint point A. The vector rCiA is the position

vector from the mass center of the link i, Ci, to the joint point A and rCiEi is the position

vector from the mass center of the link i, Ci, to the resistance force acting point of the

link i, Ei. The position vector rOA, rCiA, rCiEi , rCi , and the acceleration vector aCi , are

represented as

rOA = qx ı0 + qz k0, (4.69)

rCiA = −Li

2
sin qi ı0 − Li

2
cos qi k0, (4.70)

rACi = −rCiA =
Li

2
sin qi ı0 +

Li

2
cos qi k0, (4.71)

rCiEi = rAEi − rACi =
(

LEi −
Li

2

)
(sin qi ı0 + cos qi k0) , (4.72)

rCi = rOA + rACi =
(

qx +
Li

2
sin qi

)
ı0 +

(
qz +

Li

2
cos qi

)
k0, (4.73)

aCi =
[
q̈x +

Li

2

(
q̈i cos qi − q̇2

i sin qi

)]
ı0 +

[
q̈z − Li

2

(
q̈i sin qi + q̇2

i cos qi

)]
k0, (4.74)
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where LEi , the length from the joint A to each resistance force acting point Ei, is calculated

as

LEi = Li − 1
2

zTi

cos qi
. (4.75)

The immersed depth of each link i, zTi , is calculated as

zTi = Li cos qi + qz. (4.76)

Each static resistance force is depending on the immersed depth zTi . The velocity vector

of the force acting point Ei, vEi , for deciding the resistance forces is calculated from the

position vector of each force acting point Ei, rEi as

rEi = rOA + rAEi = (qx + LEi sin qi) ı + (qz + LEi cos qi)k, (4.77)

vEi =
drOA

dt
+ qi × rEi = (q̇x + LEi q̇i cos qi) ı + (q̇z − LEi q̇i sin qi)k. (4.78)

The resistance force FR is also calculated by Eqs. (3.6), (3.8), and (3.9). The reference

area Ari and the moving angle qmi of the link i are calculated as

Ari = dc
zTi

cos qi
| sin (qi − qmi) |, (4.79)

qmi = tan−1

(
q̇x + LEi q̇i cos qi

q̇z − LEi q̇i sin qi

)
. (4.80)

Therefore the dynamic frictional force acting at the link i, Fdi
, is

Fdi = ηd ρg dc
zTi

cos qi

∣∣∣∣sin
(

qi − tan−1

(
q̇x + LEi q̇i cos qi

q̇z − LEi q̇i sin qi

))∣∣∣∣

√(
q̇x + LEi q̇i cos qi

)2
+

(
q̇z − LEi q̇i sin qi

)2

[
−

(
q̇x + LEi q̇i cos qi

)
ı0 −

(
q̇z − LEi q̇i sin qi

)
k0

]
. (4.81)
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The immersed volume of the link i, V , is calculated as

Vi =
π dc

2

4
zTi

cos qi
. (4.82)

The horizontal and vertical static resistance force of the link i, Fsh and Fvh, are

Fshi = −sign
(
q̇x + LEi q̇i cos qi

)
ηh g ρg

(
Li cos qi + qz

)2
dc ı0, (4.83)

Fsvi = −sign
(
q̇z − LEi q̇i sin qi

)
ηv

(
Li cos qi + qz

dc

)λ

g ρg
π dc

2

4
zTi

cos qi
k0. (4.84)

The resistance force FR, the sum of the dynamic frictional force vector Fd and the static

resistance force vector Fs, is represented as the sum of Eqs. (4.81), (4.83), and (4.84).

FRi = Fdi + Fshi + Fsvi

=

[
− ηd ρg dc

zTi

cos qi

∣∣∣∣sin
(

qi − tan−1

(
q̇x + LEi q̇i cos qi

q̇z − LEi q̇i sin qi

))∣∣∣∣

√(
q̇x + LEi q̇i cos qi

)2
+

(
q̇z − LEi q̇i sin qi

)2 (
q̇x + LEi q̇i cos qi

)

−sign
(
q̇x + LEi q̇i cos qi

)
ηh g ρg

(
Li cos qi + qz

)2
dc

]
ı0 +

[
− ηd ρg dc

zTi

cos qi

∣∣∣∣sin
(

qi − tan−1

(
q̇x + LEi q̇i cos qi

q̇z − LEi q̇i sin qi

))∣∣∣∣

√(
q̇x + LEi q̇i cos qi

)2
+

(
q̇z − LEi q̇i sin qi

)2 (
q̇z − LEi q̇i sin qi

)

−sign
(
q̇z − LEi q̇i sin qi

)
ηv

(
Li cos qi + qz

dc

)λ

g ρg
π dc

2

4
zTi

cos qi

]
k0. (4.85)
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Simulation results

Figure 4.28 represents the simulation results of the vertical velocities of the ends T1

and T2, vT1z and vT2z, of the two link chain shown in Fig. 4.27 with the following initial

conditions: q1(0) = 330o, q2(0) = 45o, q̇1(0) = q̇2(0) = 0 rad/s, vAx(0) = 0 m/s, and vAz(0)

= 1, 3, 5 m/s. As the dimensions applied to this simulation, the length of link 1 L1 = 0.3 m,

the length of link 2 L2 = L1 cos q1(0)/ cos q2(0) m, and the diameter dc = 0.0254 m are

utilized. The density of the link ρc = 7.7 × 103 kg/m3, the density of a granular medium

(sand) ρg = 2.5×103 kg/m3, the dynamic frictional force coefficient ηd = 6.5, the horizontal

static resistance force coefficient ηh = 8, and the vertical static resistance force coefficients

ηv = 22 and λ = 1.1 are applied in the simulation. For these initial conditions, the initial

vertical velocities of the impact points T1 and T2, vT1(0) and vT2(0), have the only vertical

velocity components. The stopping times for the two ends, tzT1 and tzT2 , are defined as the

time interval until the vertical velocities of the tips T1 and T2, vT1z and vT2z, respectively

become zero. For this case the stopping time tzT1 is decreasing with the increasing of the

initial velocity and the stopping time tzT2 is also decreasing. It is observed that the vertical

tip velocity of the long link, vT2z, stops much rapidly compared with the vertical tip velocity

of the short link.

Using different combinations of the initial impact velocities for the links (q̇1(0) = −q̇2(0)

= 1, 3, 5 rad/s and vAx(0) = vAz(0) = 0 m/s) and the same initial geometry (q1(0) = 330o,

q2(0) = 45o), the simulation results for the vertical direction velocities of the both ends of

links are shown in Fig. 4.29. For these simulations the stopping times tzT1 and tzT2 are

decreasing with the initial impact angular velocities. It is observed that the vertical tip

velocity of the long link, vT2z, also stops fast compared with the vertical tip velocity of the

short link. The same results have been noticed using different initial condition (symmetric

cases: −q1(0) = q2(0) = 15o, 45o, and 75o, asymmetric cases: q1(0) = 330o, q2(0) = 60o and

75o) for symmetric (L1 = L2) and asymmetric cases (L1 6= L2).

Figures 4.30 and 4.31 show the simulation results in case when one end of a link is

resting initially and the other link impacts the granular medium with some initial angular
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Figure 4.28: Velocities vT1z and vT2z results of the two link kinematic chain for q1(0) = 330o,
q2(0) = 45o, and vAz(0) = 1, 3, 5 m/s
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Figure 4.30: Velocities vT1z and vT2z results of the two link kinematic chain for q1(0) = 330o,
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Figure 4.31: Velocities vT1z and vT2z results of the two link kinematic chain for q1(0) = 330o,
q2(0) = 45o, and q̇2(0) = -1, -3, -5 rad/s
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velocities. For the initial impact angles (q1(0) = 330o, q2(0) = 45o) and the initial impact

velocities (q̇1(0) = 1, 3, 5 rad/s, q̇2(0) = 0 rad/s, and vAx(0) = vAz(0) = 0 m/s), the

stopping time of the impacting link, tzT1 , is decreasing with the increasing of the initial

angular velocity and the stopping time of the resting link, tzT2 , is little affected by the

initial impact angular velocity but decreasing when the initial impact angular velocity of

link 1 is increasing as shown in Fig. 4.30. For the initial impact geometry (q1(0) = 330o,

q2(0) = 60o), the tendency of the stopping times of the impacting link 1 and the resting

link 2 is also kept as the same as the case of the initial impact angles (q1(0) = 330o,

q2(0) = 45o). The simulation results in the case that the short link is resting initially and

the long link impacts the granular medium are represented in Fig. 4.31. For the initial

impact angles (q1(0) = 330o, q2(0) = 45o) and the initial impact velocities (q̇1(0) = 0 rad/s,

q̇2(0) = −1,−3,−5 rad/s and vAx(0) = vAz(0) = 0 m/s, the stopping time of the impacting

link, tzT2 , is also decreasing with the increasing of the initial angular velocity and the

stopping time of the resting link, tzT1 , is little affected by the initial impact angular velocity

but decreasing when the initial impact angular velocity of link 2 is increasing as shown in

Fig. 4.31. For the initial impact geometry (q1(0) = 330o, q2(0) = 60o), the similar results

are observed as the case of the initial impact angles (q1(0) = 330o, q2(0) = 45o).

From these simulation results, the stopping time can be concluded as that for the cases

when one link is resting and the other one is impacting the stopping time of the impact link

is decreasing when the initial impact angular velocity increasing and the differences between

the stopping time of the resting link is not conspicuous but the stopping time decreases with

the initial impact angular velocity of the impact link.
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Table 4.7: Stopping time results of two link chain for q1(0) = 330o and q2(0) = 45o

vAz(0)(m/s) q̇1(0) (rad/s) q̇2(0) (rad/s) tzT1 (s) tzT2 (s)

1 0 0 0.0788529 0.0693035

3 0 0 0.0509913 0.0447269

5 0 0 0.0416282 0.0363391

0 1 -1 0.129307 0.109857

0 3 -3 0.115935 0.0857099

0 5 -3 0.105224 0.0714128

0 1 0 0.132282 0.125619

0 3 0 0.122285 0.122267

0 5 0 0.112958 0.118263

0 0 -1 0.135093 0.110255

0 0 -3 0.130274 0.0830734

0 0 -5 0.124795 0.0662946
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Chapter 5

Impact of flexible links

In this chapter, the impact with a granular medium of a flexible link is studied in

order to confirm the effects of the deformation of the link during the penetrating process.

A cylinder type flexible link impacting a granular medium is utilized. The impacts of a

free elastic link and of an elastic compound pendulum are modeled based on the rigid body

models mentioned in chapter 4. The approach to the external forces such as the resistance

and the gravity force is the same as that of the rigid body models. What is different from

the rigid body impact modeling is the elastic deformation of a elastic link (the elastic mode

shape).

Figure 5.1 shows a flexible link of length L, constant flexural rigidity EI, cross sectional

area Ac, and density ρc. When there are no external forces acting on the link, small flexural

vibrations of the link are governed by the following equation

EI
∂4x(z, t)

∂z4
+ ρc Ac

∂2x(z, t)
∂t2

= 0. (5.1)

z
x

P

L

O k

ı

Figure 5.1: Transverse vibrations of a flexible link
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The general solution of Eq. (5.1) can be expressed as

x(z, t) =
∞∑

i=1

Φi(z) qi(t). (5.2)

The functions of z and t, Φi(z) and qi(t), defined respectively as

Φi = A sin
λiz

L
+ B cos

λiz

L
+ C sinh

λiz

L
+ D cosh

λiz

L
, (5.3)

and

qi = αi cos pit + βi sin pit, (5.4)

where λi, i = 1, . . . ,∞ are the consecutive roots of the transcendental equation satisfying

the boundary conditions of the flexible link.

z x P
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L

C

A

k
0

k

0

0
ı

ı

(0)
O

G
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Granular medium

qx

qz

q1

(1)

dc

Figure 5.2: Free elastic link
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5.1 Free elastic link

5.1.1 Transverse vibration of a free link

In Fig. 5.2, a schematic representation of a free elastic link is given. The shear force

and the bending moment of the both ends of the link are always zero in the case of the free

link. The boundary conditions (free ends) are

x
′′
(0, t) = x

′′
(L, t) = x

′′′
(0, t) = x

′′′
(L, t) = 0. (5.5)

Using the boundary conditions given by Eq. (5.5), the relation between the constants A, B,

C, and D can be written as




0 −λ2
i

L2
0

λ2
i

L2

−λ2
i sinλi

L2
−λ2

i cosλi

L2

λ2
i sinhλi

L2

λ2
i coshλi

L2

−λ3
i

L3
0

λ3
i

L3
0

−λ3
i cosλi

L3

λ3
i sinλi

L3

λ3
i coshλi

L3

λ3
i sinhλi

L3







A

B

C

D




=




0

0

0

0




. (5.6)

For non-zero solution, the determinant of the matrix of Eq. (5.6) should be zero as the

following equation

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −λ2
i

L2
0

λ2
i

L2

−λ2
i sinλi

L2
−λ2

i cosλi

L2

λ2
i sinhλi

L2

λ2
i coshλi

L2

−λ3
i

L3
0

λ3
i

L3
0

−λ3
i cosλi

L3

λ3
i sinλi

L3

λ3
i coshλi

L3

λ3
i sinhλi

L3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (5.7)
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The general solution satisfying these boundary conditions is calculated as

Φi = cos
λiz

L
+ cosh

λiz

L
− coshλi − cosλi

sinhλi − sinλi

(
sin

λiz

L
+ sinh

λiz

L

)
. (5.8)

Equation (5.7) is simplified as

cosλi coshλi = 1. (5.9)

The roots of this characteristic equation are shown in table 5.1. The pi variable from

Eq. (5.4) is calculated as

pi =
(

λi

L

)2 (
EI

ρc Ac

)1/2

. (5.10)

The constants αi and βi of Eq. (5.4) depend upon the initial conditions. The functions

Φi(z) satisfy the orthogonality relations

∫ L

0
Φi Φj dz = Lδij (i, j = 1, . . . ,∞), (5.11)

where δij is the Kronecker delta, δij =





1, if i = j ,

0, if i 6= j .

Table 5.1: Roots of characteristic equations for free elastic link
characteristic equation

root (cosλi coshλi = 1)

λ1 4.7300

λ2 7.8532

λ3 10.996

λ4 14.137
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5.1.2 Modeling

Kinematics

As shown in Fig. 5.2, the system is formed by an uniform flexible link of length L with

the diameter dc, the cross sectional area Ac = π d2
c/4, the flexural rigidity EI, and the

density ρc. Only planar motions of the link in a fixed reference frame (0) of unit vectors

[ı0, 0, k0] will be considered.

To characterize the instantaneous configuration of the link, generalized coordinates

qx, qz, andq1 are employed. The generalized coordinate qx denotes the distance from the end

A to the vertical axis of the reference frame (0) and the generalized coordinate qz denotes

the distance from A to the horizontal axis of reference frame (0). The last generalized

coordinate q1 designates the radian measure of the rotation angle between the undeformed

link and the vertical axis. These are the generalized coordinates of the rigid body.

A fixed reference frame (0) of unit vectors [ı0, 0,k0] and a mobile reference frame (1)

of unit vectors [ı, ,k] are considered. The unit vectors ı0, 0, and k0 can be expressed as

ı0 = cos q1 ı + sin q1 k,

0 = ,

k0 = − sin q1 ı + cos q1 k, (5.12)

and the unit vectors ı, , and k can be also expressed as

ı = cos q1 ı0 − sin q1 k0,

 = 0,

k = sin q1 ı0 + cos q1 k0. (5.13)

The deformations of the elastic link can be discussed in terms of the deformed displace-

ment x(z, t) of a generic point P on the link. The point P is situated at a distance z from
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the end point A of the link. The displacement x can be expressed as

x(z, t) =
n∑

i=1

Φi(z) q1+i(t),

=
n∑

i=1

[
cos

λiz

L
+ cosh

λiz

L
− coshλi − cosλi

sinhλi − sinλi

(
sin

λiz

L
+ sinh

λiz

L

)]
q1+i(t), (5.14)

where Φi(z) is a shape function by z, the elastic generalized coordinate q1+i(t) is a function

of time t, and i is any positive integer.

The position of the end A in (0) is

rA = qx ı0 + qz k0. (5.15)

The position vector from the end A to a generic point P (x, z) of the elastic link in (0) is

rAP = x ı + z k =

[(
n∑

i=1

Φi(z) q1+i

)
ı + z k

]

=

[
n∑

i=1

Φi(z) q1+i cos q1 + z sin q1

]
ı0 +

[
−

n∑

i=1

Φi(z) q1+i sin q1 + z cos q1

]
k0. (5.16)

The position vector of the point P of the elastic link in (0) is

rP = rA + rAP

=

[
qx +

n∑

i=1

Φi(z) q1+i cos q1 + z sin q1

]
ı0 +

[
qz −

n∑

i=1

Φi(z) q1+i sin q1 + z cos q1

]
k0. (5.17)
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The velocity and acceleration vector of the arbitrary point P of the uniform elastic link in

(0) is

vP =
d

dt
rP =

[
q̇x +

n∑

i=1

(
Φi(z) q̇1+i cos q1 − Φi(z) q1+i q̇1 sin q1

)
+ z q̇1 cos q1

]
ı0

+

[
q̇z −

n∑

i=1

(
Φi(z) q̇1+i sin q1 + Φi(z) q1+i q̇1 cos q1

)
− z q̇1 sin q1

]
k0, (5.18)

aP =
d

dt
vP

=

[
q̈x +

n∑

i=1

Φi(z)
(

q̈1+i cos q1 − 2 q̇1+i q̇1 sin q1 − q1+i q̈1 sin q1 − q1+i q̇
2
1 cos q1

)

+ z q̈1 cos q1 − z q̇2
1 sin q1

]
ı0

+

[
q̈z −

n∑

i=1

Φi(z)
(

q̈1+i sin q1 + 2q̇1+i q̇1 cos q1 + q1+i q̈1 cos q1 − q1+i q̇
2
1 sin q1

)

− z q̈1 sin q1 − z q̇2
1 cos q1

]
k0. (5.19)

The angular acceleration of the link in the reference frame (0) is

α = ω̇ = q̈1 0. (5.20)

5.1.3 Equations of motion

The Newton-Euler’s equations can be used to find the differential equations of motion.

A force and a moment equation before impact can be written as

∫ L

0
ρc Ac aP dz = G, (5.21)

∫ L

0

(
rAP × ρc Ac aP

)
dz = rAC ×G, (5.22)

where G is the gravity force acting on the mass center of the link and rAC = rAP (z = 0.5L)

is the position vector from A to the mass center C. Equation (5.21) is separated into x and

z components.
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The relationship in dz, a generic differential element of the link, between the external

force Fext and the shear V can be expressed as

Fext · ı dz +
∂VP (z, t)

∂z
dz = ρc AcaP (z, t) · ı dz, (5.23)

where VP (z, t) is the shear at a certain point P and all force terms are expressed in fixed

reference frame (0) in terms of mobile frame (1) of ı, , k. If the rotatory inertia is neglected,

then V (z, t) may be expressed in terms of the bending moment M(z, t) as

∂M(z, t)
∂z

= −V (z, t). (5.24)

Since

M = EI
∂2x(z, t)

∂z2
, (5.25)

Eqs. (5.23) and (5.24) yield

EI
∂4x(z, t)

∂z4
+ ρc Aca(z, t) · ı = Fext · ı. (5.26)

The variables of Eq. (5.26) are separated by Eq. (5.14) as

EI

∞∑

i=1

(
λi

L

)4

Φi(z) q1+i(t) + ρc Aca(z, t) · ı = Fext · ı. (5.27)

Equation (5.27) is simplified by multiplying Φj(z) and integrating from 0 to L. By the

orthogonality relations represented in Eq. (5.11), the first term of Eq. (5.27) becomes

∫ L

0
EI

∞∑

i=1

(
λi

L

)4

Φi(z)Φj(z) q1+i(t) dz = EI L

(
λi

L

)4

q1+i(t), (5.28)

and Eq. (5.27) becomes

EI L

(
λi

L

)4

q1+i(t) +
∫ L

0
ρc Ac aP · ıΦi(z) dz =

∫ L

0
Fext · ıΦi(z) dz. (5.29)
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When the external force Fext is supposed to be a concentrated force on the link, Fext can

be expressed as Fextδ(z − zact) and the right hand side of Eq. (5.29) can be rewritten as

Fext · ıΦi(zact). In the model, for the existing external force is G, Eq. (5.29) becomes

EI L

(
λi

L

)4

q1+i(t) +
∫ L

0
ρc Ac aP · ıΦi(z) dz = G · ıΦi

(
L

2

)
. (5.30)

Equations (5.21), (5.22), and (5.30) are the equations of motion for the elastic free link

before the impact.

When the multiple external forces Fextk (k = 1, . . . , n) including the resistance force

of the granular medium, the governing equations of motion, Eqs. (5.21), (5.22), and (5.30),

can be written as

∫ L

0
ρc Ac aP dz = G +

n∑

k=1

Fextk , (5.31)

∫ L

0
(rAP × ρc Ac aP ) dz = rAC ×G +

n∑

k=1

rAEk
× Fextk , (5.32)

EI L

(
λi

L

)4

q1+i(t) +
∫ L

0
ρc Ac aP · ıΦi(z) dz =

G · ıΦi

(
L

2

)
+

n∑

k=1

Fextk · ıΦi(LEk
), (5.33)

where rAEk
is the position vector from the end A to the external force Fextk acting point Ek

and LEk
is the length from the end A to the external force application point Ek. In the case

of the impact of the elastic free link, external forces are restricted to the resistance force

FR. The equations of motion of the elastic free link during the impact with the granular

medium are given as

∫ L

0
ρc Ac aP dz = G + FR, (5.34)

∫ L

0
(rAP × ρc Ac aP ) dz = rAC ×G + rAE × FR, (5.35)

EI L

(
λi

L

)4

q1+i(t) +
∫ L

0
ρcAcaP · ıΦi(z) dz = G · ıΦi

(
L

2

)
+ FR · ıΦi(LE),(5.36)
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where rAE = rAP (z = LE) is the position vector from A to the resistance force application

point E and the length from the end A to E, LE , is calculated as

LE = L− zT

2 cos q1
. (5.37)

The immersed depth zT , the vertical component of the position vector of the end point T ,

is calculated by Eq. (5.17) as zT = rP (z = L) · k0.

The resistance force FR is calculated by Eqs. (3.6), (3.8), and (3.9). The dynamic

frictional force Fd is

Fd = −vE ηd ρg Ar |vE |

= −ηd ρg Ar

[(
q̇x +

n∑

i=1

(
Φi(LE) q̇1+i cos q1 − Φi(LE) q1+i q̇1 sin q1

)
+ LE q̇1 cos q1

)2

+

(
q̇z −

n∑

i=1

(
Φi(LE) q̇1+i sin q1 + Φi(LE) q1+i q̇1 cos q1

)
− LE q̇1 sin q1

)2]0.5

[(
q̇x +

n∑

i=1

(
Φi(LE) q̇1+i cos q1 − Φi(LE) q1+i q̇1 sin q1

)
+ LE q̇1 cos q1

)
ı0 +

(
q̇z −

n∑

i=1

(
Φi(LE) q̇1+i sin q1 + Φi(LE) q1+i q̇1 cos q1

)
− LE q̇1 sin q1

)
k0

]
, (5.38)

where the velocity vector vE is the velocity of the resistance force acting point E and this

vector calculated by Eq. (5.18) as vE = vP (z = LE). The reference area Ar is

Ar =
dc zT

cos q1
| sin(q1 − qm) | . (5.39)
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The moving angle qm is calculated as

qm = tan−1

(
vEx

vEz

)
(5.40)

= tan−1




q̇x +
∑n

i=1

(
Φi(LE) q̇1+i cos q1 − Φi(LE) q1+i q̇1 sin q1

)
+ LE q̇1 cos q1

q̇z −
∑n

i=1

(
Φi(LE) q̇1+i sin q1 + Φi(LE) q1+i q̇1 cos q1

)
− LE q̇1 sin q1


 .

The horizontal and vertical static resistance force Fsh, Fvh are

Fsh = −sign

[
q̇x +

n∑

i=1

(
Φi(LE) q̇1+i cos q1 − Φi(LE) q1+i q̇1 sin q1

)
+ LE q̇1 cos q1

]

ηh g ρg z2
T dc ı0, (5.41)

Fsv = −sign

[
q̇z −

n∑

i=1

(
Φi(LE) q̇1+i sin q1 + Φi(LE) q1+i q̇1 cos q1

)
− LE q̇1 sin q1

]

ηv

(
zT

dc

)λ

g ρg V k0, (5.42)

where the immersed volume V is calculated as

V =
π dc

2

4
zT

cos q1
. (5.43)

The resistance force FR, the sum of the dynamic frictional force vector Fd and the static

resistance force vector Fs, is represented as the sum of Eqs. (5.38), (5.41), and (5.42).

5.1.4 Simulation results

Figures 5.3, 5.4, 5.5, and 5.6 show the simulation results for the impact of the elastic

free link shown in Fig. 5.2. The simulations are performed for different impact angles and

different initial impact velocities (q̇z(0) = 1.26, 1.87, and 2.33 m/s for q1(0) = 32o, and

q̇z(0) = 1.45, 1.98, and 2.43 m/s for q1(0) = 55o). The initial deformation conditions are
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Table 5.2: Stopping time of the elastic and the rigid free link

q1(0) (o) q̇z(0) (m/s) ts,r (s) ts,e (s)

1.26 0.0275914 0.0275865

32 1.87 0.0229915 0.0229956

2.33 0.0206495 0.0206516

1.45 0.017818 0.0178181

55 1.98 0.0150461 0.0150411

2.43 0.0133007 0.0133043

applied as q2(0) = 0 m and q̇2(0) = 0 m/s. The dimensions of the elastic free link applied

to this simulation are completely the same as those applied for the simulation of the impact

of the rigid free link as L = 0.1524 m, the diameter dc = 0.00635 m, and the density

ρc = 7.7× 103 kg/m3. The flexural rigidity EI is applied as 15.1642 N m2. The density of

a granular medium (sand), ρg, is applied as 2.5× 103 kg/m3. The dynamic frictional force

coefficient is ηd = 6.5, the horizontal static resistance force coefficient is ηh = 8, and the

vertical static resistance force coefficients are ηv = 22 and λ = 1.1. The simulations are

performed from the impact moment until the vertical penetrating velocity of the end T of

the link, vTz, becomes zero and the first mode of the shape function of Eq. (5.8) is only

considered (λ1=4.7300). As shown in Figs. 5.3 and 5.5, the velocity of the end T of the link,

vTz, becomes zero more quickly when the initial impact velocity increases. The simulation

results of the elastic free link compared with the results of the rigid free link are shown

in table 5.2. These simulation results show that the stopping time of the impact of a free

link decreases whether a rigid link or an elastic one as the velocity of the impact moment

increases. The deformation of the link, q2, increases when the initial impact velocity and

angle increase as shown in Figs. 5.4 and 5.6. We do not observe much difference between

the rigid model and the flexible model for our particular system. The elastic deformations

will be important for longer and more elastic links and multiple impacts with the sand

where the vibrations are more important.
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Figure 5.3: Displacement zT and velocity vTz results of the flexible link for q1(0) = 32o and
q̇z(0) = 1.26, 1.87, 2.33 m/s
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Figure 5.5: Displacement zT and velocity vTz results of the flexible link for q1(0) = 55o and
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5.2 Elastic compound pendulum

5.2.1 Transverse vibration of an elastic compound pendulum

In the case of an articulated elastic pendulum composed of one end supported by a

joint as shown in Fig. 5.7, the boundary conditions for this pendulum (articulated at one

end free at the other end) can be written as

x(0, t) = x
′′
(0, t) = x

′′
(L, t) = x

′′′
(L, t) = 0. (5.44)

Using the boundary conditions given by Eq. (5.44), the relation between constants A, B,

C, and D can be attained as




0 1 0 1

0 −λ2
i

L2
0

λ2
i

L2

−λ2
i sinλi

L2
−λ2

i cosλi

L2

λ2
i sinhλi

L2

λ2
i coshλi

L2

−λ3
i cosλi

L3

λ3
i sinλi

L3

λ3
i coshλi

L3

λ3
i sinhλi

L3







A

B

C

D




=




0

0

0

0




. (5.45)

For non-zero solution, the determinant of the matrix of Eq. (5.45) should be zero and the

general solution satisfying these boundary conditions is calculated as

Φi =
sinhλi

sinλi
sin

λix

L
+ sinh

λix

L
. (5.46)

The characteristic equation of which roots satisfy Eq. (5.46) is calculated as

cosλi sinhλi − sinλi coshλi = 0. (5.47)

The roots of this characteristic equation are shown in table 5.3.
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In the case of the cantilevered elastic compound pendulum composed of one end sup-

ported by a rigid body shown in Fig. 5.8, the boundary conditions (cantilevered at one end

and free at the other end) can be written as

x(0, t) = x
′
(0, t) = x

′′
(L, t) = x

′′′
(L, t) = 0. (5.48)

Using the boundary conditions given by Eq. (5.48), the relation between constants A, B,

C, and D can be attained as




0 1 0 1

λi

L
0

λi

L
0

−λ2
i sinλi

L2
−λ2

i cosλi

L2

λ2
i sinhλi

L2

λ2
i coshλi

L2

−λ3
i cosλi

L3

λ3
i sinλi

L3

λ3
i coshλi

L3

λ3
i sinhλi

L3







A

B

C

D




=




0

0

0

0




. (5.49)

From Eq. (5.49), the constants A, B, C, and D can be calculated and the general solution

satisfying these boundary condition is given as

Φi = cosh
λiz

L
− cos

λiz

L
− coshλi + cosλi

sinhλi + sinλi

(
sinh

λiz

L
− sin

λiz

L

)
. (5.50)

The characteristic equation of which roots satisfy Eq. (5.50) is given as

cosλi coshλi + 1 = 0. (5.51)

The roots of this characteristic equation are shown in table 5.3.
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Table 5.3: Roots of characteristic equations for elastic compound pendulum
characteristic equation of characteristic equation of

root articulated elastic pendulum cantilevered elastic pendulum
(cosλi sinhλi − sinλi coshλi = 0) (cosλi coshλi + 1 = 0)

λ1 3.9266 1.8751

λ2 7.0686 4.6941

λ3 10.210 7.8548

λ4 13.351 10.996

5.2.2 Modeling of an articulated elastic compound pendulum

As shown in Fig. 5.7, the system is formed by an uniform flexible link of length L

with diameter dc, the cross sectional area Ac = π d2
c/4, the flexural rigidity EI, and the

density ρc. To characterize the instantaneous configuration of the pendulum, generalized

coordinates q1 is employed. The generalized coordinate q1 denotes the radian measure of the

rotation angle between the undeformed pendulum and the vertical axis. A fixed reference

frame (0) of unit vectors [ı0, 0,k0] and a mobile reference frame (1) of unit vectors [ı, ,k]

are considered. The unit vectors ı0, 0, and k0 can be expressed as Eq. (5.12) and the unit

vectors ı, , and k can be also expressed as Eq. (5.13).

Kinematics

The deformations of the articulated elastic compound pendulum can be discussed in

terms of the elastic displacement x(z, t) of a generic point P on the pendulum. The point

P is situated at a distance z from the origin point O. The displacement x can be expressed

as

x(z, t) =
n∑

i=1

Φi(z) q1+i(t),

=
n∑

i=1

[
sinhλi

sinλi
sin

λix

L
+ sinh

λix

L

]
q1+i(t), (5.52)
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where Φi(z) is a shape function by the distance z, the elastic generalized coordinate q1+i(t)

is a function of time t, and i is any positive integer for the articulated elastic compound

pendulum. The position vector from origin point O to the generic point P of the elastic

link in (0) is

rP = x ı + z k =

[(
n∑

i=1

Φi(z) q1+i

)
ı + z k

]

=

[
n∑

i=1

Φi(z) q1+i cos q1 + z sin q1

]
ı0 +

[
−

n∑

i=1

Φi(z) q1+i sin q1 + z cos q1

]
k0. (5.53)

The velocity vector of the arbitrary point P of the uniform elastic link in (0) is

vP =
d

dt
rP =

[
n∑

i=1

(
Φi(z) q̇1+i cos q1 − Φi(z) q1+i q̇1 sin q1

)
+ z q̇1 cos q1

]
ı0

+

[
−

n∑

i=1

(
Φi(z) q̇1+i sin q1 + Φi(z) q1+i q̇1 cos q1

)
− z q̇1 sin q1

]
k0, (5.54)

and the acceleration vector of the arbitrary point P in (0) is

aP =
d

dt
vP

=

[
n∑

i=1

Φi(z)
(

q̈1+i cos q1 − 2 q̇1+i q̇1 sin q1 − q1+i q̈1 sin q1 − q1+i q̇
2
1 cos q1

)

+ z q̈1 cos q1 − z q̇2
1 sin q1

]
ı0

+

[
−

n∑

i=1

Φi(z)
(

q̈1+i sin q1 + 2q̇1+i q̇1 cos q1 + q1+i q̈1 cos q1 − q1+i q̇
2
1 sin q1

)

− z q̈1 sin q1 − z q̇2
1 cos q1

]
k0. (5.55)

The angular acceleration of the link in the reference frame (0) is

α = ω̇ = q̈1 0. (5.56)
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Equations of motion

The Newton-Euler’s equations can be used to find the differential equations of motion.

A moment equation before impact can be written as

∫ L

0
(rP × ρc Ac aP ) dz = rC ×G, (5.57)

where G is the gravity force acting on the mass center of the pendulum and rC = rP (z =

0.5L) is the position vector from the origin O to the mass center C. One more governing

equation of motion regarding the deformation of the pendulum has the same form with

Eq. (5.29) as

EI L

(
λi

L

)4

q1+i(t) +
∫ L

0
ρc Ac aP · ıΦi(z) dz =

∫ L

0
Fext · ıΦi(z) dz. (5.58)

Because the external forces acting on the pendulum are the gravitational force G at the

mass center C and the joint reaction force FO at the origin O, the external forces Fext

can be expressed as G δ(z − 0.5L) + FO δ(z) when the external force Fext is supposed

to be concentrated one on the pendulum. The right hand side of Eq. (5.58) becomes

G · ıΦi(0.5L) + FO · ıΦi(0). However, the value of Φi(0) is always zero in the model.

Equation (5.58) becomes

EI L

(
λi

L

)4

q1+i(t) +
∫ L

0
ρc Ac aP · ıΦi(z) dz = G · ıΦi

(
L

2

)
. (5.59)

Equations (5.57) and (5.59) represent the equations of motion for the articulated elastic

compound pendulum before the impact.

During impacting a granular medium, additionally added external force is restricted

to the resistance force FR. The equations of motion of the articulated elastic pendulum

104



during the impact are given as

∫ L

0
(rP × ρc Ac aP ) dz = rC ×G + rE × FR, (5.60)

EI L

(
λi

L

)4

q1+i(t) +
∫ L

0
ρcAcaP · ıΦi(z) dz =

G · ıΦi

(
L

2

)
+ FR · ıΦi(LE), (5.61)

where rE = rP (z = LE) is the position vector from the origin O to the resistance force

application point E and the length from the origin O to E, LE , is calculated as

LE = L− zT

2 cos q1
. (5.62)

The immersed depth zT , the vertical component of the position vector of the end point T , is

calculated by Eq. (5.53) as zT = rP (z = L) · k0. The resistance force FR is also calculated

by Eqs. (3.6), (3.8), and (3.9). The dynamic frictional force Fd is

Fd = −vE ηd ρg Ar |vE |

= −ηd ρg Ar

[(
n∑

i=1

(
Φi(LE) q̇1+i cos q1 − Φi(LE) q1+i q̇1 sin q1

)
+ LE q̇1 cos q1

)2

+

(
−

n∑

i=1

(
Φi(LE) q̇1+i sin q1 + Φi(LE) q1+i q̇1 cos q1

)
− LE q̇1 sin q1

)2]0.5

[(
+

n∑

i=1

(
Φi(LE) q̇1+i cos q1 − Φi(LE) q1+i q̇1 sin q1

)
+ LE q̇1 cos q1

)
ı0 +

(
−

n∑

i=1

(
Φi(LE) q̇1+i sin q1 + Φi(LE) q1+i q̇1 cos q1

)
− LE q̇1 sin q1

)
k0

]
, (5.63)

where the velocity vector vE is the velocity of the resistance force acting point E and this

vector calculated by Eq. (5.54) as vE = vP (z = LE). The reference area Ar is calculated
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as

Ar =
dc zT

cos q1
. (5.64)

The horizontal and vertical static resistance forces, Fsh and Fvh, are

Fsh = −sign

[
n∑

i=1

(
Φi(LE) q̇1+i cos q1 − Φi(LE) q1+i q̇1 sin q1

)
+ LE q̇1 cos q1

]

ηh g ρg z2
T dc ı0, (5.65)

Fsv = −sign

[
−

n∑

i=1

(
Φi(LE) q̇1+i sin q1 + Φi(LE) q1+i q̇1 cos q1

)
− LE q̇1 sin q1

]

ηv

(
zT

dc

)λ

g ρg V k0, (5.66)

where the immersed volume V is calculated as

V =
π dc

2

4
zT

cos q1
. (5.67)

The resistance force FR, the sum of the dynamic frictional force vector Fd and the static

resistance force vector Fs, is represented as the sum of Eqs. (5.63), (5.65), and (5.66).

5.2.3 Simulation results of the articulated elastic compound pendulum

Figures 5.9, 5.10, 5.11, 5.12, 5.13, and 5.14 show the simulation results for the elastic

compound pendulum as shown in Fig. 5.7 with the following initial conditions: q1(0) = 30o,

60o, 75o, q̇1(0) = -1, -3, -5 rad/s, q2(0) = 0 m, and q̇2(0) = 0 m/s. As the numerical

data applied to this simulation, the length of pendulum is L = 0.15 m, the diameter is

dc = 0.00635 m, the density of the pendulum is ρc = 7.7× 103 kg/m3, the flexural rigidity

is EI = 15.1642 N m2, and the density of a granular medium (sand) is ρg = 2.5 × 103

kg/m3. The dynamic frictional force coefficient ηd = 6.5, the horizontal static resistance
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Figure 5.9: Angle q1 and angular velocity q̇1 results of the articulated elastic compound
pendulum for q1(0) = 30o and q̇1(0) = -1, -3, -5 rad/s
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Figure 5.13: Angle q1 and angular velocity q̇1 results of the articulated elastic compound
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Table 5.4: Stopping time of the articulated elastic compound pendulum and the rigid one

q1(0) (o) q̇1(0) (rad/s) ts,r (s) ts,e (s)

-1 0.0908846 0.0946034

30 -3 0.068481 0.0700719

-5 0.0574613 0.0573489

-1 0.047826 0.0509171

60 -3 0.0353842 0.0372156

-5 0.0292904 0.0299783

-1 0.0371793 0.0403826

75 -3 0.0270217 0.0291454

-5 0.0223565 0.024833

force coefficient ηh = 8, and the vertical static resistance force coefficients ηv = 22 and λ

= 1.1 are used in the simulation. The simulations are performed from the impact moment

until the angular velocity of the pendulum, q̇1, becomes zero and the first mode of the shape

function of Eq. (5.46) is only considered (λ1=3.9266). As shown in Figs. 5.9, 5.11, and 5.13,

the pendulum stops more quickly when the pendulum impact the granular medium with

high velocity. This result means that the faster the impact velocity becomes the sooner

the impact compound pendulum stops whether a rigid pendulum or an elastic one. The

generalized coordinate q2 showing the deformation of the pendulum becomes large when the

initial impact velocity and angle increase as shown in Figs. 5.10, 5.12, and 5.14. Table 5.4

shows the compared results between the rigid and the elastic model. The differences between

the rigid model and the flexible model are not also conspicuous for our particular system.

The articulated elastic deformations of the compound pendulum will be important for longer

and more elastic links.
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5.2.4 Modeling of a cantilevered elastic compound pendulum

As shown in Fig. 5.8, the cantilevered elastic pendulum applied to modeling is supported

by rigid bodies RB1 and RB2. The rigid body RB1 has the diameter dp1 and the length

Lp1 . The rigid body RB2 has the diameter dp2 and the length Lp2 . The flexible part of

the pendulum, B, has an uniform flexible link of the length Lp3 = LB = L, the diameter

dp3 = dc, the cross sectional area Ac = π d2
c/4, the flexural rigidity EI, and density ρc.

The length from the origin to the rigid body end is LRB = dp1/2 + Lp2 and the density of

the rigid bodies are the same as that of the elastic link. To characterize the instantaneous

configuration of the pendulum, the generalized coordinates q1 and qi +1 are employed. The

generalized coordinate q1 denotes the radian measure of the rotation angle between the

undeformed pendulum and the horizontal axis. The generalized coordinate qi + 1 denotes

the deformation of the elastic link part of the pendulum. A fixed reference frame (0) of unit

vectors [ı0, 0,k0] and a mobile reference frame (1) of unit vectors [ı, ,k] are considered.

The unit vectors ı0, 0, and k0 can be expressed as Eq. (5.12) and the unit vectors ı, , and

k can be also expressed as Eq. (5.13).

Kinematics

The deformations of the cantilevered elastic compound pendulum can be also discussed

in terms of the elastic displacement x(z, t) of a generic point P on the elastic part B of the

pendulum. The point P is situated at a distance z from the point at the first end of the

elastic link B. The displacement x can be expressed as

x(z, t) =
n∑

i=1

Φi(z) q1+i(t),

=
n∑

i=1

[
cosh

λiz

L
− cos

λiz

L
− coshλi + cos λi

sinhλi + sin λi

(
sinh

λiz

L
− sin

λiz

L

)]
q1+i(t), (5.68)

where Φi(z) is a shape function of the elastic link by z, the elastic generalized coordinate

q1+i(t) is a function of time t, and i is any positive integer.
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The position of the mass center of the rigid body RB1 is the origin point O and the position

vector from the origin O to the mass center of the rigid body RB2, CRB2, is represented as

rCRB2
=

dp1 + Lp2

2

(
sin q1 ı0 + cos q1 k0

)
. (5.69)

The position vector from the origin point O to a generic point P of the link B in (0) is

rP = x ı + (LRB + z) k =

[(
n∑

i=1

Φi(z) q1+i

)
ı + (LRB + z) k

]

=

[
n∑

i=1

Φi(z) q1+i cos q1 + (LRB + z) sin q1

]
ı0 +

[
−

n∑

i=1

Φi(z) q1+i sin q1 + (LRB + z) cos q1

]
k0. (5.70)

The velocity vector of the generic point P of the elastic link B in (0) is

vP =
d

dt
rP =

[
n∑

i=1

(
Φi(z) q̇1+i cos q1 − Φi(z) q1+i q̇1 sin q1

)
+ (LRB + z) q̇1 cos q1

]
ı0

+

[
−

n∑

i=1

(
Φi(z) q̇1+i sin q1 + Φi(z) q1+i q̇1 cos q1

)
− (LRB + z) q̇1 sin q1

]
k0,

(5.71)

and the acceleration vector of the point P in (0) is

aP =
d

dt
vP

=

[
n∑

i=1

Φi(z)
(

q̈1+i cos q1 − 2 q̇1+i q̇1 sin q1 − q1+i q̈1 sin q1 − q1+i q̇
2
1 cos q1

)

+ (LRB + z) q̈1 cos q1 − (LRB + z) q̇2
1 sin q1

]
ı0

+

[
−

n∑

i=1

Φi(z)
(

q̈1+i sin q1 + 2q̇1+i q̇1 cos q1 + q1+i q̈1 cos q1 − q1+i q̇
2
1 sin q1

)

− (LRB + z) q̈1 sin q1 − (LRB + z) q̇2
1 cos q1

]
k0. (5.72)
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The angular acceleration of the link in the reference frame (0) is

α = ω̇ = q̈1 0. (5.73)

Equations of motion

The Newton-Euler’s equations can be used to find the differential equation of motion.

A moment equation before impact can be written as

IRB q̈1 +
∫ L

0
(rP × ρc Ac aP ) dz = rCRB2

×GRB2 + rC ×GB, (5.74)

where IRB is the mass moment of inertia of the rigid body and the gravity forces GRB2

and GB are acting on the mass center of the rigid body RB2 and on the flexible link B

respectively. The vector rC is the position vector from origin point O to the mass center C

of the flexible link (rC = rP (z = 0.5L)). One more governing equation of motion regarding

deformation of the link has the same form as Eq. (5.29) and the equation becomes

EI L

(
λi

L

)4

q1+i(t) +
∫ L

0
ρc Ac aP · ıΦi(z) dz =

∫ L

0
Fext · ıΦi(z) dz. (5.75)

Because the external forces acting on the elastic link of the pendulum are the gravity force

GB and the joint reaction force FRB2 from the rigid body RB2, the external force Fext can

be written as GB δ(z − 0.5L) + FRB2 δ(z) when the external force Fext is supposed to be

concentrated one on the pendulum. Therefore the right hand side of Eq. (5.75) becomes

GB · ıΦi(0.5L) + FO · ıΦi(0). Because the value of Φi(0) is always zero in the model,

Eq. (5.75) becomes

EI L

(
λi

L

)4

q1+i(t) +
∫ L

0
ρc Ac aP · ıΦi(z) dz = GB · ıΦi

(
L

2

)
. (5.76)

Differential equations (5.74) and (5.76) represent the equations of motion for the cantilevered

elastic pendulum before impact.

116



During impacting a granular medium, an additionally added external force is restricted

to the resistance force FR. The equations of motion for the cantilevered elastic pendulum

during impacting are given as

IRB q̈1 +
∫ L

0
(rP × ρc Ac aP ) dz = rC ×G + rE × FR, (5.77)

EI L

(
λi

L

)4

q1+i(t) +
∫ L

0
ρcAcaP · ıΦi(z) dz =

GB · ıΦi

(
L

2

)
+ FR · ıΦi(LE), (5.78)

where rE = rP (z = LE) is the position vector from the origin point O to the resistance force

application point E. The length from the origin point O to the resistance force application

point E, LE , is calculated as

LE = L− zT

2 cos q1
. (5.79)

The immersed depth zT , the vertical component of the position vector of the end point T , is

calculated by Eq. (5.70) as zT = rP (z = L) · k0. The resistance force FR is also calculated

by Eqs. (3.6), (3.8), and (3.9). The dynamic frictional force Fd is

Fd = −vE ηd ρg Ar |vE |

= −ηd ρg Ar

[(
n∑

i=1

(
Φi(LE) q̇1+i cos q1 − Φi(LE) q1+i q̇1 sin q1

)
+ (LRB + LE) q̇1 cos q1

)2

+

(
−

n∑

i=1

(
Φi(LE) q̇1+i sin q1 + Φi(LE) q1+i q̇1 cos q1

)
− (LRB + LE) q̇1 sin q1

)2]0.5

[(
+

n∑

i=1

(
Φi(LE) q̇1+i cos q1 − Φi(LE) q1+i q̇1 sin q1

)
+ (LRB + LE) q̇1 cos q1

)
ı0 +

(
−

n∑

i=1

(
Φi(LE) q̇1+i sin q1 + Φi(LE) q1+i q̇1 cos q1

)
− (LRB + LE) q̇1 sin q1

)
k0

]
, (5.80)
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where the velocity vector vE is the velocity of the resistance force acting point E and this

vector calculated by Eq. (5.42) as vE = vP (z = LE). The reference area Ar is represented

as

Ar =
dc zT

cos q1
. (5.81)

The horizontal and vertical static resistance forces, Fsh and Fvh, are

Fsh = −sign

[
n∑

i=1

(
Φi(LE) q̇1+i cos q1 − Φi(LE) q1+i q̇1 sin q1

)
+ (LRB + LE) q̇1 cos q1

]

ηh g ρg z2
T dc ı0, (5.82)

Fsv = −sign

[
−

n∑

i=1

(
Φi(LE) q̇1+i sin q1 + Φi(LE) q1+i q̇1 cos q1

)
− (LRB + LE) q̇1 sin q1

]

ηv

(
zT

dc

)λ

g ρg V k0, (5.83)

where the immersed volume V is calculated as

V =
π dc

2

4
zT

cos q1
. (5.84)

The resistance force FR, the sum of the dynamic frictional force vector Fd and the static

resistance force vector Fs, is represented as the sum of Eqs. (5.80), (5.82), and (5.83).

5.2.5 Simulation results of the cantilevered elastic compound pendulum

Figures 5.15, 5.16, 5.17, 5.18, 5.19, 5.20, 5.21, and 5.22 show the simulation results for

the cantilevered elastic compound pendulum shown in Fig. 5.8. The dimensions applied

to this simulation are the same as those applied for the simulation of the rigid compound

pendulum. The flexural rigidity EI = 15.1642 N m2 are utilized and the other parameters

are the same as those of the previous simulation. The simulations are performed for different
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Figure 5.15: Angle q1 and angular velocity q̇1 results of the cantilevered elastic compound
pendulum for q1(0) = 22o and q̇1(0) = -1.75, -3.38, -4.66 rad/s
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Figure 5.18: Displacement q2 and velocity q̇2 results of the cantilevered elastic compound
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Figure 5.19: Angle q1 and angular velocity q̇1 results of the cantilevered elastic compound
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Figure 5.20: Displacement q2 and velocity q̇2 results of the cantilevered elastic compound
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impact angles and different initial impact angular velocities (q̇(0) = -1.75, -3.38, and -4.66

rad/s for q(0) = 22o, q̇(0) = -3.31, -6.24, and -8.41 rad/s for q(0) = 31o, q̇(0) = -2.66,

-6.47, and -9.06 rad/s for q(0) = 45o, and q̇(0) = -2.70, -6.54, and -9.17 rad/s for q(0) is

61.5o). from the impact moment until the angular velocity of the pendulum, q̇1, becomes

zero and the first mode of the shape function of Eq. (5.50) is only considered (λ1=1.8751).

As shown in Figs. 5.15, 5.17, 5.19, and 5.21, the pendulum stops more quickly when the

pendulum impacts the granular medium with high velocity. The results that the faster the

impact velocity becomes the sooner the compound pendulum stops are kept in the impact

of the cantilevered elastic compound pendulum. The generalized coordinate q2 showing

the deformation of the pendulum becomes large when the initial impact velocity and angle

increase as shown in Figs. 5.16, 5.18, 5.20, and 5.22. Table 5.5 shows the stopping time

results for the rigid model, ts,r, and the elastic model, ts,e, and we do not observe much

Table 5.5: Stopping time of the cantilevered elastic compound pendulum and the rigid one

q1(0) (o) q̇1(0) (rad/s) ts,r (s) ts,e (s)

-1.75 0.107212 0.107366

22 -3.38 0.0861789 0.0861761

-4.66 0.0775028 0.0774967

-3.31 0.0609829 0.0610354

31 -6.24 0.0485081 0.0485343

-8.41 0.043819 0.0438373

-2.66 0.046688 0.046748

45 -6.47 0.0333638 0.0333414

-9.06 0.0295578 0.029574

-2.70 0.0343956 0.0345101

61.5 -6.54 0.0245294 0.0245555

-9.17 0.0216994 0.021729
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difference between the rigid model and the flexible model for our particular system. The

elastic deformations of the cantilever elastic compound pendulum will be important for

longer and more elastic links.
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Chapter 6

Experiments

In this chapter, the experimental system is introduced and the experimental results are

represented. These results are compared with the results of the simulation. As experimental

models, the vertical impact of a rigid cylinder type free link and the impact of a rigid

compound pendulum are utilized. The data attained from the repeated experiments are

averaged to minimize the effects of abnormalities such as fluctuation phenomenon which

can occur during the experiments. The resistance force coefficients are calculated by the

part of the experimental data.

6.1 Experimental system

Figures 6.1 and 6.2 show a free link and a compound pendulum. These two mechanical

systems will be used for the experiments. For the free link shown in Fig. 6.1, the following

dimensions are given: the length L = 0.01524 m and the diameter dc = 0.00635 m. The

density of the link is 7.7× 103 kg/m3. The infra red (I.R.) markers are located at 0.1L and

0.5L as shown in Fig. 6.1. For the compound pendulum shown in Fig. 6.2, the following

dimensions are given: the length Lp1 = 0.019812 m, Lp2 =0.01524 m, Lp3 = 0.23876 m,

the diameter dp1 = 0.01905 m, dp2 = 0.01524 m, and dp3 = 0.00635 m. The density of

the pendulum is 7.7 × 103 kg/m3. Two I.R. markers are located on the rotational joint

point and the center of the Lp3 . In this study, as the motion capturing system to measure

and digitize the position of the impact objects, Northern Digital Inc. (NDI) optotrak 3020

system is used. This system is composed of a position sensor, a control unit, a strober, I.R.

markers, and a PC as shown in Fig. 6.3. The system can measure the position of the markers

within the RMS accuracy of 0.1 mm and can track up to 256 markers simultaneously with

129



L

Marker1

Marker2

0.5L

0.4L

dc

Figure 6.1: Free link applied for experiments

Marker1

Marker2

Lp1

Lp2

Lp3

0.5Lp3

dp1

dp2

dp3

Figure 6.2: Compound pendulum applied for experiments

130



P C

Control

Unit

Position Sensor

IR Markers

Strober

Granular 

metter

CRS A255

Robot

Rigid bar

Figure 6.3: Motion measurement system Optotrak 3020

131



a sample up to 3500 markers/s [68]. The system does not require a calibration process.

The motions of the free link and the compound pendulum are recorded using the two

I.R. markers. The position sensor captures the position of the I.R. markers attached to

the bodies at constant sample rates and measured 3D position data. The PC is used for

operating software controlling the hardware system, saving and transform the measured

data. In the experiments, the positions were measured with 3D data cartesian coordinate

system at 500 frames/s.

There exist so many kinds of granular materials. Grains such as rice, soils including

sand, and artificial granules such as fertilizer, glass beads, and ball bearings. The applied

density of a granular medium for the simulations, ρg, is 2.5×103 kg/m3. The numerical value

of the density is originated from the physical property of the granular medium, “Play sand”

(Quikrete 1113-51) utilized in the impact experiments. The resistance force coefficients

are: the dynamic frictional force coefficient ηd = 6.5, the horizontal static resistance force

coefficient ηh = 8, and the vertical static resistance force coefficients ηv = 22 and λ = 1.1.

These coefficients were determined from experimental data. The gravitational acceleration

g is applied as 9.81 m/s2. The field of the low speed impact with a granular medium is

related with developing multi-body kinematic chain system such as multi legged robots for

surveillance or carrying and these systems cannot avoid slow impact with diversified outfield

granular materials including soil and sand. From this view points, the sand is considered

more appropriate and beneficial than glass beads or other artificial granular medium. The

dimension of impact test box is 0.45 m×0.32 m×0.09 m (W×L×H) and the height of the

sand in the test bed is 0.075 m.

6.2 Experimental results

6.2.1 Impact of a free link

Figures 6.4, 6.5, and 6.6 represent the experimental and the simulation results for the

impact of the free link shown in Figs. 6.1 and 4.9 for different impact angles and different
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initial impact velocities (q̇z(0) = 1.53, 2.06, and 2.47 m/s for q(0) = 0o, q̇z(0) = 1.26,

1.87, and 2.33 m/s for q(0) = 32o, and q̇z(0) = 1.45, 1.98, and 2.43 m/s for q(0) = 55o)

from the impact moment until the vertical velocity of the link end T , vTz , becomes zero.

Thick lines show the results of experiments and black lines represent the simulation results.

The simulation is performed based on the resistance force coefficients determined from the

experimental results.

The penetrating depth of the link end T into the granular matter, zT , is increasing with

the initial velocity for all the cases as shown in Figs. 6.4, 6.5, and 6.6. However the stopping

time into the granular matter is decreasing when the initial velocity is increasing as most

simulation results represented in chapter 4 and 5. In these experiment and simulation, the

stopping time is defined as the time period starting with the moment of impact and ending

when the vertical velocity of the end T into the granular matter is zero.

Even though there are differences between the simulation and the experimental results,

the tendency of the stopping time and the penetrating depth are not changed. In this study,

a relative error [67] was calculated in order to compare the simulation and the experimental

results. The relative error of between the simulation and the experimental results, γ, is

defined as

γ =
∣∣∣∣
qE − qS

qE

∣∣∣∣× 100, (6.1)

where qE and qS mean a position result of experiments and simulations respectively. In the

impact experiments of the link, qE is considered as the position of the end T in the vertical

direction, zT . Table 6.1 shows the difference rate of the experiments and the simulation.
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Figure 6.4: Experimental and simulation results of the cylinder type rigid link for q(0) = 0o
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Table 6.1: Relative error between the experimental and the simulation results of the free
link

Impact angle (o) vTz(0) (m/s) γ (%)

1.53 0.52

0 2.06 0.54

2.47 1.68

1.26 6.19

32 1.87 3.85

2.33 4.28

1.45 2.25

55 1.98 1.10

2.43 1.32

6.2.2 Impact of a rigid compound pendulum

Figures 6.7, 6.8, 6.9, and 6.10 represent the penetrating angle q and the angular velocity

q̇ of the experimental and the simulation results for the impact of the compound pendulum

shown in Figs. 6.2 4.16. The experiments and the simulations are performed for different

impact angles and different initial impact angular velocities (q̇(0) = -1.75, -3.38, and -4.66

rad/s for q(0) = 22o, q̇(0) = -3.31, -6.24, and -8.41 rad/s for q(0) = 31o, q̇(0) = -2.66, -6.47,

and -9.06 rad/s for q(0) ≈ 45o, and q̇(0) = -2.70, -6.54, and -9.17 rad/s for q(0) is 61.5o)

from the impact moment until the angular velocity of the pendulum, q̇, becomes zero. Thick

lines show the results of experiments and black lines represent the simulation results. The

resistance force coefficients are applied the same as those applied to the simulation of the

impact of the free link.

The penetrating angle of the pendulum is increasing with the initial angular velocity

for all the cases as shown in Figs. 6.7, 6.8, 6.9, and 6.10. These experimental results show

also that the stopping time of the pendulum is decreasing as the results of the previous
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experimental results when the initial velocity is increasing. In these experiment and simu-

lation, the stopping time is defined as the time period starting with the moment of impact

and ending when the velocity of the object into the granular matter is zero. The impact

experiments and the simulation results by the compound pendulum show that the tendency

of the stopping time is kept even in the case of the oblique impact with a granular medium.

The phenomenon that the impact of a rigid body stops more rapidly as the initial impact

velocity increases having been confirmed by the experiments and the simulation results by

the impact of the free link which has initially only vertical impact velocity component is also

observed in the impact process of the compound pendulum. Figure 6.11 shows the stopping

time of the compound pendulum. The large markers are representing the simulation results

and the small markers depict the simulation results. The stopping time decreases rapidly

when the initial impact angular increases at the low angular velocity. However the decrease

of the stopping time diminishes at the low angular velocity.

As shown in Figs 6.7, 6.8, 6.9, and 6.10, there are also differences between the simulation

and the experimental results. Table 6.2 shows the relative errors of the experiments and

the simulation. In this comparison, qE and qS mean a penetrating angular position results

of the experiments and simulations respectively. As shown in the table 6.1 and 6.2, the

penetrating end state of the simulation is almost the same as the that of the experiment

even though there are some differences between the results of the stopping time.
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Figure 6.7: Experimental and simulation results of the compound pendulum for q(0) = 22o
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Figure 6.8: Experimental and simulation results of the compound pendulum for q(0) = 31o
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Figure 6.9: Experimental and simulation results of the compound pendulum for q(0) ≈ 45o
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Figure 6.11: Stopping time results of the compound pendulum

Table 6.2: Relative error between the experimental and the simulation results of the com-
pound pendulum

Impact angle (o) q(0) (rad/s) γ (%)

-1.75 1.00

22 -3.38 2.58

-4.66 0.02

-3.31 1.73

31 -6.24 1.98

-8.41 1.80

-2.66 0.81

45 -6.47 1.82

-9.06 1.74

-2.70 6.66

61.5 -6.54 1.96

-9.17 1.78
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Chapter 7

Conclusion

In this study, the dynamics of the impact with a granular medium is studied. The

most important force acting on the kinematic chain impacting with a granular medium is

the resistance force generated by the granular medium from the impact moment until the

process penetrating into the medium stops complectly. Even though a granular medium

is ubiquitous and the phenomenon of the impact with it takes place frequently whether

artificially or naturally in industry and nature, the studies related with the low speed impact

with the granular medium have not been sufficient for understanding the dynamics of the

impact system compared with the field of high speed impact. Up to present, most studies

are restricted to the impact of very low speed regime, to only vertical impact, or to the

limited shape such as a sphere. However, it becomes possible to model the resistance force

generated in a granular medium by separating the force as velocity-dependent (dynamic

frictional force) and depth-dependent (static resistance force) in this study. With this

approach, the problems concerning various shapes of kinematic chains, impact direction,

and impact velocity can be solved as shown in chapter 4, 5, and 6.

From the one D.O.F. motion of a particle such as the mathematical pendulum of a

sphere to the four D.O.F. motion of the multi impacts such as the two link kinematic

chain with two impact points, the impacts of planar rigid kinematic chains are modeled,

simulated, and some experimental results are presented. The simulations of the models

of the mathematical pendulum and the oblique impact of a sphere are performed for the

initial impact angle of 15, 45, 75◦ and for the various initial impact velocities. The simulation

results show that the stopping time is decreasing when the initial velocity of the impact

object is increasing which result had been reported in only vertical directional impact of a

sphere. With these simulation results, it is confirmed that even in the oblique impact with
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a granular medium the stopping time of an impacting sphere is decreasing when the initial

impact velocity of the sphere is increasing. Even though the stopping time is decreasing, the

penetrating distance of the sphere is increasing as the initial impact velocity is increasing

for all the case of the oblique impact of the sphere including the mathematical pendulum.

As the rigid body model of a planar kinematic chain, the compound pendulum is

modeled and simulated. Even though the compound pendulum has the one D.O.F, the

motion of its rotating penetration is impeded by both horizontal and vertical resistance

force components. The simulations performed for the initial impact angles (22, 31, 45,

61.5◦) and for the initial impact angular velocities of (-1.75 ∼ -9.17 rad/s) show the results

that the fast the impact velocity of the pendulum is, the sooner it stops and the deeper it

penetrates. This result means the impact model of a rigid body also is influenced by the

initial impact velocity the same as those of the sphere.

The impact of a dropping link is simulated and observed in the vertical motion of the

impact penetration for the initial impact angles (0, 32, 55◦) and for the initial impact linear

velocities (1.26 ∼ 2.47 m/s). By the observation of the simulation from the impact moment

until the velocity of the link end becomes zero, the stopping time and the penetrating depth

also can be concluded as the same as those of previous impact models.

These simulation results are confirmed by the experimental results. Even though there

exist differences in the stopping times between the results by the simulation and the experi-

ments, the impact experiments of the rigid compound pendulum and the rigid free link show

almost corresponding results with the simulation results. The observations of all impact

model based on the their simulation results are considered as appropriate by comparing

these results.

The simulation results of the impact of an elastic compound pendulum and an elastic

free link exhibit the consistent results observed in rigid models. According to the observation

of the simulation results, the phenomena that the decreased stopping time and the increased

penetrating distance by the increased initial impact velocity happen also in elastic kinematic
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chain models although small differences are observed between the elastic and the rigid

models.

The consistent simulation results are observed to be kept even in the impact of multi

link kinematic chain models such as the double pendulum and the two link kinematic chain

with two impact points for most cases. However, in some cases the stopping time of the

double pendulum models is not decreasing when the initial impact velocity is increasing.

This result is considered to happen because the withdrawing motion of the rigid body of

multi D.O.F. during the impact process might affect the stopping time. The stopping times

are considered to increase or to decrease depending on the effects of the withdrawing motion.

Through this study, I extended the study of the low speed impacting a granular medium

from the vertical direction impact to the oblique impact for the first time. For this study,

the resistance forces are analyzed and the horizontal force component is integrated to the

impact models. Based on this resistance force model, I could model different kinematic

chains at low speed impact with the granular medium. I contributed an experimental set-

up to validate the simulation results for kinematic links.
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APPENDIX  A

MATHEMATICAL  PENDULUM

ClearAll @"Global` ∗" D;

Off @General:: spell D;

Off @General:: spell1 D;

H∗∗∗ Dimensions and basic data ∗∗∗L

H∗length of pendulum @mD: ∗LL = 0.5;

H∗diameter @mD: ∗Lds = 0.0254;

H∗density of spere @kgêm^3D: ∗Lrhos = 7.7 ∗ 10^ 3;

H∗volume of spere @m^3D: ∗LVs = Pi ∗ ds ^3 ê 6;

H∗mass of spere @kgD: ∗Lms = Vs ∗ rhos;

H∗density of sand @kgêm^3D: ∗Lrhog = 2.5 ∗ 10 ^3;

H∗gravtaional acceleration @mês^2 D: ∗Lg = 9.81;

H∗∗∗ Kinematics ∗∗∗L

H∗position vector of C: ∗LrC = 8L ∗ Sin @q@t DD, 0, L ∗ Cos@q@t DD<;

H∗Immersed depth of sphere: ∗LzT = L ∗ Cos@q@t DD − L ∗ Cos@q0D;

H∗position vector of E: ∗LrE = rC;

H∗velocity vector of E: ∗LvE = D@rE, t D;

H∗∗∗ Dynamics ∗∗∗L

H∗gravity force: ∗LG = 80, 0, ms ∗ g<;

H∗dynamic frictional force: Fd ∗L

H∗coefficient : ∗Letad = 6.5;

H∗reference area: ∗LAr = Pi ∗ ds^2 ê 4;

H∗H direction Fd: ∗LFdh = −vE@@1DD ∗ Ar ∗ etad ∗ rhog ∗ HvE.vE L ^0.5;

H∗V direction Fd: ∗LFdv = −vE@@3DD ∗ Ar ∗ etad ∗ rhog ∗ HvE.vE L^0.5;

H∗static resistace force: Fs ∗L

H∗coefficient : ∗Letah = 8; etav = 21; lambda = 1.1;

H∗horizontal Fs: ∗LFsh = −Sign @vE@@1DDD ∗ etah ∗ rhog ∗ g ∗ ds^2 ∗ zT ;

H∗vertical Fs: ∗LFsv = −Sign @vE@@3DDD ∗ etav ∗ HzT ê dsL^ lambda ∗ g ∗ rhog ∗ Vs;

H∗resistace force: ∗LFR = 8Fdh + Fsh, 0, Fdv + Fsv <;

H∗∗∗∗ Equation of motion ∗∗∗L

Eq = ms∗ L^2 ∗ q '' @t D � Cross @rC, HFR+ GLD@@2DD;

H∗∗∗∗ Initial condition ∗∗∗L
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H∗initial angle: ∗Lq0 = 15 ∗ Pi ê 180;

H∗initial angular velocity: ∗Ldq0 = −1;

H∗∗∗ Solving E.O.M ∗∗∗L

sol = NDSolve @8Eq, q @0D � q0, q ' @0D � dq0<, q, 8t, 0, 1 <,

MaxSteps → Infinity, Method → 8"EventLocator ", "Direction" → 1,

"Event" → q ' @t D, "EventAction" � Throw @tend = t;, "StopIntegration " D,

"EventLocationMethod " → "LinearInterpolation ",

"Method" → "ExplicitEuler " <D;

Print @"Stopping time of the pendulum is ", tend, " @sD" D;

Plot @Evaluate @q@t D ∗ 180 ê Pi ê. sol @@1DDD, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "q HdegL" <D

Plot @Evaluate @q ' @t D ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "dq Hrad êsL" <D
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APPENDIX  B

OBLIQUE IMPACT  OF  A  SPHERE

ClearAll @"Global` ∗" D;

Off @General:: spell D;

Off @General:: spell1 D;

H∗∗∗ Dimensions and basic data ∗∗∗L

H∗diameter @mD: ∗Lds = 0.0254;

H∗density of spere @kgêm^3D: ∗Lrhos = 7.7 ∗ 10^ 3;

H∗volume of spere @m^3D: ∗LVs = Pi ∗ ds ^3 ê 6;

H∗mass of spere @kgD: ∗Lms = Vs ∗ rhos;

H∗density of sand @kgêm^3D: ∗Lrhog = 2.5 ∗ 10 ^3;

H∗gravtaional acceleration @mês^2 D: ∗Lg = 9.81;

H∗∗∗ Kinematics ∗∗∗L

H∗position vector of C: ∗LrC = 8qx@t D, 0, qz @t D<;

H∗acceleration vector of C: ∗LaC = D@rC, 8t, 2 <D;

H∗position vector of E: ∗LrE = rC;

H∗velocity vector of E: ∗LvE = D@rE, t D;

H∗∗∗ Dynamics ∗∗∗L

H∗gravity force: ∗L G = 80, 0, ms ∗ g<;

H∗dynamic frictional force: Fd ∗L

H∗coefficient : ∗Letad = 6.5;

H∗reference area: ∗LAr = Pi ∗ ds^2 ê 4;

H∗H direction Fd: ∗LFdh = −vE@@1DD ∗ Ar ∗ etad ∗ rhog ∗ HvE.vE L ^0.5;

H∗V direction Fd: ∗LFdv = −vE@@3DD ∗ Ar ∗ etad ∗ rhog ∗ HvE.vE L^0.5;

H∗static resistace force: Fs ∗L

H∗coefficient : ∗Letah = 8; etav = 21; lambda = 1.1;

H∗horizontal Fs: ∗LFsh = −Sign @vE@@1DDD ∗ etah ∗ rhog ∗ g ∗ ds^2 ∗ rC@@3DD ;

H∗vertical Fs: ∗L

Fsv = −Sign @vE@@3DDD ∗ etav ∗ HrC@@3DD ê dsL^ lambda ∗ g ∗ rhog ∗ Vs;

H∗resistace force: ∗LFR = 8Fdh + Fsh, 0, Fdv + Fsv <;

H∗∗∗ Equation of motion ∗∗∗L

H∗sum of all force: ∗LFsum = ms∗ aC − FR− G;

H∗sum of H direction force: ∗LEq1 = Fsum@@1DD � 0;

H∗sum of V direction force: ∗LEq2 = Fsum@@3DD � 0;
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H∗∗∗ Initial condition ∗∗∗L

H∗initial angle: ∗Lq0 = 30 ∗ Pi ê 180;

H∗initial velocity: ∗Lv0 = 1;

H∗initial H direction velocity: ∗Ldqx0 = −v0 ∗Cos@q0D;

H∗initial V direction velocity: ∗Ldqz0 = v0 ∗ Sin @q0D;

H∗∗∗ Solving E.O.M ∗∗∗L

sol = NDSolve @8Eq1, Eq2, qx @0D � 0, qx ' @0D � dqx0, qz @0D � 0, qz ' @0D � dqz0 <,

8qx, qz <, 8t, 0, 1 <, MaxSteps → Infinity,

Method → 8"EventLocator ", "Direction" → −1, "Event" → vE@@3DD, "EventAction" �

Throw @tend = t;, "StopIntegration " D, "EventLocationMethod " →

"LinearInterpolation ", "Method" → "ExplicitEuler " <D;

Print @"Stopping time of the sphere is ", tend, " @sD" D;

H∗velocity: ∗Lvel = FunctionInterpolation @

Evaluate @Sqrt @qx ' @t D^2 + qz ' @t D^2 D ê. sol @@1DDD, 8t, 0, tend <D;

H∗distance: ∗Ldis = Integrate @vel @t D, t D;

Plot @dis, 8t, 0, tend <, PlotRange → All, GridLines → Automatic,

Frame → True, FrameLabel → 8"Time HsL", "d @mD" <D

Plot @vel @t D, 8t, 0, tend <, PlotRange → All, GridLines → Automatic,

Frame → True, FrameLabel → 8"Time HsL", "v @mêsD" <D
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APPENDIX  C

RIGID  FREE  LINK

ClearAll @"Global` ∗" D;

Off @General:: spell D;

Off @General:: spell1 D;

H∗∗∗ Dimensions and basic data ∗∗∗L

H∗length of link @mD: ∗LL = 0.1524;

H∗diameter @mD: ∗Ldc = 0.00635;

H∗density of link @kgêm^3D: ∗Lrhoc = 7.7 ∗ 10 ^3;

H∗mass of link @kgD: ∗Lmc = rhoc ∗ L ∗ Pi ∗ dc ^2 ê 4;

H∗inertia @kg m^2D: ∗LIC = mc∗ L^2 ê 12;

H∗density of sand @kgêm^3D: ∗Lrhog = 2.5 ∗ 10 ^3;

H∗gravtaional acceleration @mês^2 D: ∗Lg = 9.81;

H∗∗∗ Kinematics ∗∗∗L

H∗Position,velocity and acceleration vectors ∗L

H∗pos. vector from O to C: ∗LrC = 8qx@t D, 0, qz @t D<;

H∗acc. vector of rC: ∗LaC = D@rC, 8t, 2 <D;

H∗pos. vector from C to P: ∗LrCP = 8P∗ Sin @q@t DD, 0, P ∗ Cos@q@t DD<;

H∗pos. vector from O to P: ∗LrP = rC + rCP;

H∗vel. vector of rP: ∗LvP = D@rP, t D;

H∗acc. vector of rP: ∗LaP = D@vP, t D;

H∗pos. vector from O to T: ∗LrT = rP ê. P → 0.5 ∗ L;

H∗vel. vector from O to T: ∗LvT = vP ê. P → 0.5 ∗ L;

H∗immered depth of T: ∗LzT = rT @@3DD;

H∗length from C to T: ∗LLE = 0.5 ∗ L − 0.5 ∗ zT ê Cos@q@t DD;

H∗pos. vector from O to E: ∗LrE = rP ê. P → LE;

H∗vel. vector from O to E: ∗LvE = vP ê. P → LE ;

H∗pos. vector from C to E: ∗LrCE = rCP ê. P → LE;

H∗∗∗ Dynamics ∗∗∗L

H∗G force on link: ∗LG = 80, 0, mc ∗ g<;

H∗∗ resistance force ∗∗L

H∗dynamic frictional force: Fd ∗L

H∗coefficient : ∗Letad = 6.5;

H∗moving angle: ∗Lqm= ArcTan @vE@@1DD ê vE@@3DDD;

H∗reference area: ∗LAr = dc ∗ zT ê Cos@q@t DD ∗ Abs@Sin @q@t D − qmDD;

H∗H direction Fd: ∗LFdh = −vE@@1DD ∗ Ar ∗ etad ∗ rhog ∗ Sqrt @vE.vE D;
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H∗V direction Fd: ∗LFdv = −vE@@3DD ∗ Ar ∗ etad ∗ rhog ∗ Sqrt @vE.vE D;

H∗static resistace force: Fs ∗L

H∗coefficients : ∗Letah = 8; etav = 22; lambda = 1.1;

H∗horizontal Fs: ∗LFsh = −Sign @vE@@1DDD ∗ etah ∗ rhog ∗ g ∗ dc ∗ zT ^2 ;

H∗imeresed vol.: ∗LV = Pi ∗ dc ^2 ê 4 ∗ HzT ê Cos@q@t DDL;

H∗vertical Fs: ∗LFsv = −Sign @vE@@3DDD ∗ etav ∗ HzT ê dcL^ lambda ∗ g ∗ rhog ∗ V;

H∗resistace force: ∗LFR = 8Fdh + Fsh, 0, Fdv + Fsv <;

H∗∗∗ Equation of motion ∗∗∗L

Fsum = mc∗ aC − G− FR;

Eq1 = Fsum@@1DD � 0;

Eq2 = Fsum@@3DD � 0;

Eq3 = IC ∗ q '' @t D == Cross @rCE, FR D@@2DD;

H∗∗∗ Initial condition ∗∗∗L

H∗initial angle of link: ∗Lq0 = 32 ê 180 ∗ Pi;

H∗initial horizontal pos. of C: ∗Lqx0 = 0;

H∗initial vertical pos. of C: ∗Lqz0 = −0.5 ∗ L ∗ Cos@q0D;

H∗initial horizontal vel of A: ∗Ldqx0 = 0;

H∗initial vertical vel of A: ∗Ldqz0 = 1.26;

H∗initial angular vel. of link: ∗Ldq0 = 0;

H∗∗∗ Solving E.O.M ∗∗∗L

H∗step size @sD: ∗Lstepsize = 10^ −6;

sol = NDSolve @8Eq1, Eq2, Eq3, qx @0D � qx0, qx ′@0D � dqx0, qz @0D � qz0,

qz ′@0D � dqz0, q @0D � q0, q ′@0D � dq0<, 8qx, qz, q <, 8t, 0, 1 <,

MaxSteps → Infinity, StartingStepSize → stepsize, MaxStepFraction → Infinity,

Method → 8"EventLocator ", "Direction" → −1, "Event" → vT@@3DD,

"EventAction" � 8Throw @tend = t − stepsize;, "StopIntegration " D<,

"EventLocationMethod " → "LinearInterpolation ",

"Method" → 8"FixedStep", "Method" → 8"ExplicitRungeKutta " <<<D;

Print @"stopping time of link is ", tend, " @sD" D

Plot @Evaluate @rT @@3DD ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "zT HmL" <D

Plot @Evaluate @vT@@3DD ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "vTz HmêsL" <D
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APPENDIX  D

RIGID  COMPOUND  PENDULUM

ClearAll @"Global` ∗" D;

Off @General:: spell D;

Off @General:: spell1 D;

H∗∗∗ dimensions and basic data ∗∗∗L

H∗1 part diameter @mD: ∗Ldp1 = 0.01905;

H∗1 part length @mD: ∗LLp1 = 0.01981;

H∗2 part diameter @mD: ∗Ldp2 = 0.01524;

H∗2 part length @mD: ∗LLp2 = 0.01524;

H∗3 part diameter @mD: ∗Ldp3 = 0.00635;

H∗3 part length @mD: ∗LLp3 = 0.23876;

H∗1 part volume @m^3D: ∗L Vp1 = Pi ∗ dp1 ^ 2 ê 4 ∗ Lp1;

H∗2 part volume @m^3D: ∗L Vp2 = Pi ∗ dp2 ^ 2 ê 4 ∗ Lp2;

H∗3 part volume @m^3D: ∗L Vp3 = Pi ∗ dp3 ^ 2 ê 4 ∗ Lp3;

H∗density of link @kgêm^3D: ∗Lrhoc = 7.7 ∗ 10^3;

H∗1 part mass @kgD: ∗Lmp1 = Vp1 ∗ rhoc;

H∗2 part mass @kgD: ∗Lmp2 = Vp2 ∗ rhoc;

H∗3 part mass @kgD: ∗Lmp3 = Vp3 ∗ rhoc;

H∗actual mass @kgD: ∗Lmc = mp2+ mp3;

H∗1 part inertia @kg m^2D: ∗LIp1 = mp1∗ dp1 ^2 ê 8;

H∗2 part inertia @kg m^2D: ∗L

Ip2 = mp2∗ Hdp1 ê 2 + Lp2 ê 2L^2 + mp2∗ H3 ∗ dp2 ^2 ê 4 + Lp2 ^2 L ê 12;

H∗3 part inertia @kg m^2D: ∗L

Ip3 = mp3∗ Hdp1 ê 2 + Lp2 + Lp3 ê 2L^2 + mp3∗ Lp3 ^2 ê 12;

H∗inertia of RB @kg m^2D: ∗LIO = Ip1 + Ip2 + Ip3;

H∗length of flexible link @mD: ∗LL = dp1 ê 2 + Lp2 + Lp3;

H∗length to mass center of link @mD: ∗L

LC = HHdp1 ê 2 + Lp2 ê 2L ∗mp2+ Hdp1 ê 2 + Lp2 + Lp3 ê 2L ∗ mp3L ê mc;

H∗diameter of flexible link @mD: ∗Ldc = dp3;

H∗cross sectional area of link @m^2D: ∗LAc = Pi ∗ dc ^2 ê 4;

H∗density of sand @kgêm^3D: ∗Lrhog = 2.5 ∗ 10 ^3;

H∗gravtaional acceleration @mês^2 D: ∗Lg = 9.81;

H∗∗∗ Kinematics ∗∗∗L

H∗position vector from O to P: ∗LrP = 8P∗ Sin @q@t DD, 0, P ∗ Cos@q@t DD<;

H∗velocity vector rP: ∗LvP = D@rP, t D;

H∗position vector from O to C: ∗LrC = rP ê. P → LC;
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H∗velocity vector rC: ∗LvC = vP ê. P → LC;

H∗position vector from O to T: ∗LrT = rP ê. P → L;

H∗velocity vector rT: ∗LvT = vP ê. P → L;

H∗impact depth: ∗L zT = L ∗ Cos@q@t DD − L ∗ Cos@q0D;

H∗length to E: ∗L LE = L − 0.5 ∗ zT ê Cos@q@t DD;

H∗position vector from O to E: ∗LrE = rP ê. P → LE;

H∗velocity vector rE: ∗LvE = vP ê. P → LE;

H∗∗∗ Dynamics ∗∗∗L

H∗gravity force: ∗L G = 80, 0, mc ∗ g<;

H∗dynamic frictional force: Fd ∗L

H∗coefficient : ∗Letad = 6.5;

H∗reference area: ∗LAr = dc ∗ zT ê Cos@q@t DD;

H∗H direction Fd: ∗LFdh = −vE@@1DD ∗ Ar ∗ etad ∗ rhog ∗ Sqrt @vE.vE D;

H∗V direction Fd: ∗LFdv = −vE@@3DD ∗ Ar ∗ etad ∗ rhog ∗ Sqrt @vE.vE D;

H∗static resistace force: Fs ∗L

H∗coefficients : ∗Letah = 8; etav = 21; lambda = 1.1;

H∗horizontal Fs: ∗LFsh = −Sign @vE@@1DDD ∗ etah ∗ rhog ∗ g ∗ dc ∗ zT ^2 ;

H∗imeresed volume: ∗L V = Pi ∗ dc ^2 ê 4 ∗ HzT êCos@q@t DDL;

H∗vertical Fs: ∗LFsv = −Sign @vE@@3DDD ∗ etav ∗ HzT ê dcL^ lambda ∗ g ∗ rhog ∗ V;

H∗resistace force: ∗LFR = 8Fdh + Fsh, 0, Fdv + Fsv <;

H∗∗∗ equation of motion ∗∗∗L

Eq = IO ∗ q '' @t D == HCross @rC, G D + Cross @rE, FR DL@@2DD;

H∗∗∗ initial condition ∗∗∗L

H∗initial angle: ∗Lq0 = 22 ∗ Pi ê 180;

H∗initial velocity: ∗L dq01 = −1.75;

H∗∗∗ solving E.O.M ∗∗∗L

sol = NDSolve @8Eq, q @0D � q0, q ' @0D � dq01 <, q, 8t, 0, 1 <,

MaxSteps → Infinity, Method → 8"EventLocator ", "Event" → q ' @t D,

"EventAction" � Throw @tend = t;, "StopIntegration " D,

"EventLocationMethod " → "LinearInterpolation ",

"Method" → "ExplicitEuler " <D;

Print @"stopping time of the compound pendulum is ", tend, " @sD" D;

Plot @Evaluate @q@t D ∗ 180 ê Pi ê. sol D, 8t, 0, tend <, PlotRange → All,

D
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GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "q HdegL" <D

Plot @Evaluate @q ' @t D ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "dq Hrad êsL" <D
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APPENDIX  E

RIGID  DOUBLE  PENDULUM

ClearAll @"Global` ∗" D;

Off @General:: spell D;

Off @General:: spell1 D;

H∗∗∗ Dimensions and basic data ∗∗∗L
H∗density of links @kgêm^3D: ∗Lrhoc = 7.7 ∗ 10 ^3;

H∗diameter of links @mD: ∗Ldc = 0.0254;

H∗length of link 1 @mD: ∗LL1 = 0.2;

H∗mass of link 1 @kgD: ∗Lm1= rhoc ∗ L1 ∗ Pi ∗ dc ^2 ê 4;

H∗length of link 2 @mD: ∗LL2 = L1 ∗ 3;

H∗mass of link 2 @kgD: ∗Lm2= rhoc ∗ L2 ∗ Pi ∗ dc ^2 ê 4;

H∗mass inertia link 1 @kg m^2D: ∗LIO = m1ê 3 ∗ HL1^2 L;

H∗mass inertia link 2 @kg m^2D: ∗LIC2 = m2ê 12 ∗ HL2 ^2 L;

H∗gravtaional acceleration @mês^2 D: ∗Lg = 9.81;

H∗density of sand @kgêm^3D: ∗Lrhog = 2.5 ∗ 10 ^3;

H∗∗∗ Kinematics ∗∗∗L
H∗pos. vector from O to A of link 1: ∗L
rA = 8L1 ∗ Sin @q1@t DD, 0, L1 ∗ Cos@q1@t DD<;

H∗pos. vector from A to P of link 2: ∗L
rAP = 8P∗ Sin @q2@t DD, 0, P ∗ Cos@q2@t DD<;

H∗pos. vector from O to P of link 2: ∗LrP = rA + rAP;

H∗vel. vector of rP: ∗LvP = D@rP, t D;

H∗acc. vector of rP: ∗LaP = D@vP, t D;

H∗pos. vector from O to C1 of link 1: ∗LrC1 = rA ê 2;

H∗pos. vector from O to C2 of link 2: ∗LrC2 = rP ê. P → 0.5 ∗ L2;

H∗acc. vector of rC2: ∗LaC2 = aP ê. P → 0.5 ∗ L2;

H∗vel. vector of end of link 2, T: ∗LvT = vP ê. P → L2;

H∗immersed depth of end of link 2, T: ∗L
zT = HrP @@3DD ê. 8P → L2<L − HL1 ∗Cos@q10D + L2 ∗Cos@q20DL;

H∗length from A to E of link 2: ∗LLE = L2 − 0.5 ∗ zT êCos@q2@t DD;

H∗pos. vector from O to E of link 2: ∗LrE = rP ê. P → LE;

H∗vel. vector of rE: ∗LvE = vP ê. P → LE;

H∗∗∗ Dynamics ∗∗∗L
H∗G force on link1: ∗LG1 = 80, 0, m1 ∗ g<;

H∗G force on link2: ∗LG2 = 80, 0, m2 ∗ g<;
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H∗dynamic frictional force: Fd ∗L
H∗coefficient : ∗Letad = 6.5;

H∗moving angle: ∗Lqm= ArcTan @vE@@1DD ê vE@@3DDD;

H∗reference area: ∗LAr = dc ∗ zT ê Cos@q2@t DD ∗ Abs@Sin @q2@t D − qmDD;

H∗H direction Fd: ∗LFdh = −vE@@1DD ∗ Ar ∗ etad ∗ rhog ∗ Sqrt @vE.vE D;

H∗V direction Fd: ∗LFdv = −vE@@3DD ∗ Ar ∗ etad ∗ rhog ∗ Sqrt @vE.vE D;

H∗static resistace force: Fs ∗L
H∗coefficientss : ∗L
etah = 8; etav = Piecewise @8822, vE @@3DD >= 0<, 80.5, vE @@3DD  0<<D;

lambda = 1.1;

H∗horizontal Fs: ∗LFsh = −Sign @vE@@1DDD ∗ etah ∗ rhog ∗ g ∗ dc ∗ zT ^2 ;

H∗imeresed volume: ∗LV = zT ê Cos@q2@t DD ∗ dc ^2 ∗ Pi ê 4;

H∗vertical Fs: ∗LFsv = −Sign @vE@@3DDD ∗ etav ∗ HzT ê dcL^ lambda ∗ g ∗ rhog ∗ V;

H∗resistace force: ∗LFR = 8Fdh + Fsh, 0, Fdv + Fsv <;

H∗∗∗ Equation of motion ∗∗∗L
Eq1 = IO ∗ q1 '' @t D == HCross @rC1, G1 D + Cross @rA, H−m2∗ aC2 + G2+ FRLDL@@2DD;

Eq2 = IC2 ∗ q2 '' @t D ==

HCross @HrA − rC2 L, Hm2∗ aC2 − G2− FRLD + Cross @HrE − rC2 L, FR DL@@2DD;

H∗∗∗ Initial condition ∗∗∗L
H∗initial angle of link 1: ∗Lq10 = 30 ê 180 ∗ Pi;

H∗initial angle of link 2: ∗Lq20 = 75 ê 180 ∗ Pi;

H∗initial angular velocity of link 1: ∗Ldq110 = −1;

H∗initial angular velocity of link 2: ∗Ldq210 = −1;

H∗∗∗∗ Solving E.O.M ∗∗∗L
H∗step size @sD: ∗Lstepsize = 10^ −6;

sol = NDSolve A9Eq1, Eq2, q1 @0D � q10, q1 ′@0D � dq110, q2 @0D � q20,

q2 ′@0D � dq210 =, 8q1, q2 <, 8t, 0, 1 <, MaxSteps → Infinity,

StartingStepSize → stepsize, MaxStepFraction → Infinity,

Method → 8"EventLocator ", "Direction" → 1, "Event" → q1 ' @t D,

"EventAction" 
 Throw @tend = t − stepsize, "StopIntegration " D,

"EventLocationMethod " → "LinearInterpolation ",

"Method" → 8"FixedStep", "Method" → "ExplicitRungeKutta " <<E;

Print @"Complete stopping time of double pendulum is " , tend, " @sD" D;

Plot @Evaluate @q1@t D ∗ 180 ê Pi ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "q1 HdegL" <D
Plot @Evaluate @q2@t D ∗ 180 ê Pi ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "q2 HdegL" <D
Plot @Evaluate @q1 ' @t D ê. sol D, 8t, 0, tend <, PlotRange → All,

D
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GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "dq1 Hrad êsL" <D
Plot @Evaluate @q2 ' @t D ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "dq2 Hrad êsL" <D
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APPENDIX  F

TWO  LINK  KINEMATIC  CHAIN  WITH  TWO  IMPACT  POINTS

ClearAll @"Global` ∗" D;

Off @General:: spell D;

Off @General:: spell1 D;

H∗∗∗ Dimensions and basic data ∗∗∗L
H∗diameter of links @mD: ∗Ldc = 0.0254;

H∗density of links @kgêm^3D: ∗Lrhoc = 7.7 ∗ 10 ^3;

H∗length of link 1 @mD: ∗LL1 = 0.3;

H∗mass of link 1 @kgD: ∗Lm1= rhoc ∗ L1 ∗ Pi ∗ dc ^2 ê 4;

H∗length of link 2 @mD: ∗LL2 = L1 ∗Cos@q10D ê Cos@q20D;

H∗mass of link 2 @kgD: ∗Lm2= rhoc ∗ L2 ∗ Pi ∗ dc ^2 ê 4;

H∗mass inertia link 1 @kg m^2D: ∗LIC1 = m1ê 12 ∗ HL1 ^2 L;

H∗mass inertia link 2 @kg m^2D: ∗LIC2 = m2ê 12 ∗ HL2 ^2 L;

H∗density of sand @kgêm^3D: ∗Lrhog = 2.5 ∗ 10 ^3;

H∗gravtaional acceleration @mês^2 D: ∗Lg = 9.81;

H∗∗∗ Kinematics ∗∗∗L
H∗Position,velocity and acceleration vectors ∗L
H∗pos. vector from O to A: ∗LrOA = 8qx@t D, 0, qz @t D<;

H∗pos. vector from A to P1: ∗LrAP1 = 8P1∗ Sin @q1@t DD, 0, P1 ∗Cos@q1@t DD<;

H∗pos. vector from O to P1: ∗LrP1 = rOA + rAP1;

H∗vel. vector of rP1: ∗LvP1 = D@rP1, t D;

H∗acc. vector of rP1: ∗LaP1 = D@vP1, t D;

H∗pos. vector from O to T1: ∗LrT1 = rP1 ê. P1 → L1;

H∗vel. vector from O to T1: ∗LvT1 = vP1 ê. P1 → L1;

H∗pos. vector from A to C1: ∗LrAC1 = rAP1 ê. P1 → 0.5 ∗ L1;

H∗pos. vector from C1 to A: ∗LrC1A = −rAC1;

H∗pos. vector from O to C1: ∗LrC1 = rP1 ê. P1 → 0.5 ∗ L1;

H∗acc. vector of rC1: ∗LaC1 = aP1 ê. P1 → 0.5 ∗ L1;

H∗pos. vector from A to P2: ∗LrAP2 = 8P2∗ Sin @q2@t DD, 0, P2 ∗Cos@q2@t DD<;

H∗pos. vector from O to P2: ∗LrP2 = rOA + rAP2;

H∗vel. vector of rP2: ∗LvP2 = D@rP2, t D;

H∗acc. vector of rP2: ∗LaP2 = D@vP2, t D;

H∗pos. vector from O to T2: ∗LrT2 = rP2 ê. P2 → L2;

H∗vel. vector from O to T2: ∗LvT2 = vP2 ê. P2 → L2;

H∗pos. vector from A to C2: ∗LrAC2 = rAP2 ê. P2 → 0.5 ∗ L2;

H∗pos. vector from C2 to A: ∗LrC2A = −rAC2;
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H∗pos. vector from O to C2: ∗LrC2 = rP2 ê. P2 → 0.5 ∗ L2;

H∗acc. vector of rC2: ∗LaC2 = aP2 ê. P2 → 0.5 ∗ L2;

H∗immersed depth of T1: ∗LzT1 = rT1 @@3DD;

H∗length from A to E1: ∗LLE1 = L1 − 0.5 ∗ zT1 ê Cos@q1@t DD;

H∗pos. vector from A to E1: ∗LrAE1 = rAP1 ê. P1 → LE1;

H∗pos. vector from O to E1: ∗LrE1 = rP1 ê. P1 → LE1;

H∗pos. vector from C1 to E1: ∗LrC1E1 = rAE1 − rAC1;

H∗vel. vector of rE1: ∗LvE1 = vP1 ê. P1 → LE1;

H∗immersed depth of T2: ∗LzT2 = rT2 @@3DD;

H∗length from A to E2: ∗LLE2 = L2 − 0.5 ∗ zT2 ê Cos@q2@t DD;

H∗pos. vector from A to E2: ∗LrAE2 = rAP2 ê. P2 → LE2;

H∗pos. vector from O to E2: ∗LrE2 = rP2 ê. P2 → LE2;

H∗pos. vector from C2 to E2: ∗LrC2E2 = rAE2 − rAC2;

H∗vel. vector of rE2: ∗LvE2 = vP2 ê. P2 → LE2;

H∗∗∗ Dynamics ∗∗∗L
H∗G force on link1: ∗LG1 = 80, 0, m1 ∗ g<;

H∗G force on link2: ∗LG2 = 80, 0, m2 ∗ g<;

H∗∗ resistance force 1 ∗L
H∗dynamic frictional force 1: Fd1 ∗L
H∗coefficient : ∗Letad = 6.5;

H∗moving angle 1: ∗Lqm1 = ArcTan @vE1@@1DD ê vE1@@3DDD;

H∗reference area 1: ∗LAr1 = dc ∗ zT1 ê Cos@q1@t DD ∗ Abs@Sin @q1@t D − qm1DD;

H∗H direction Fd1: ∗LFdh1 = −vE1@@1DD ∗ Ar1 ∗ etad ∗ rhog ∗ Sqrt @vE1.vE1 D;

H∗V direction Fd1: ∗LFdv1 = −vE1@@3DD ∗ Ar1 ∗ etad ∗ rhog ∗ Sqrt @vE1.vE1 D;

H∗static resistace force 1: Fs1 ∗L
H∗coefficients : ∗L
etah = 8; etav1 = Piecewise @8822, vE1 @@3DD >= 0<, 80.5, vE1 @@3DD  0<<D;

lambda1 = Piecewise @881.1, vE1 @@3DD >= 0<, 81.1, vE1 @@3DD  0<<D;

H∗horizontal Fs1: ∗LFsh1 = −Sign @vE1@@1DDD ∗ etah ∗ rhog ∗ g ∗ dc ∗ zT1 ^2 ;

H∗immeresed vol.1: ∗LV1 = Pi ∗ dc ^2 ê 4 ∗ HzT1 ê Cos@q1@t DDL;

H∗vertical Fs1: ∗L
Fsv1 = −Sign @vE1@@3DDD ∗ etav1 ∗ HzT1 ê dcL^ lambda1 ∗ g ∗ rhog ∗ V1;

H∗resistace force 1: ∗LFR1 = 8Fdh1 + Fsh1, 0, Fdv1 + Fsv1 <;

H∗∗ resistance force 2 ∗L
H∗dynamic frictional force 2: Fd2 ∗L
H∗moving angle 2: ∗Lqm2 = ArcTan @vE2@@1DD ê vE2@@3DDD;

H∗reference area 2: ∗LAr2 = dc ∗ zT2 ê Cos@q2@t DD ∗ Abs@Sin @q2@t D − qm2DD;

H∗H direction Fd2: ∗LFdh2 = −vE2@@1DD ∗ Ar2 ∗ etad ∗ rhog ∗ Sqrt @vE2.vE2 D;

H∗V direction Fd2: ∗LFdv2 = −vE2@@3DD ∗ Ar2 ∗ etad ∗ rhog ∗ Sqrt @vE2.vE2 D;
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H∗static resistace force 2: Fs2 ∗L
H∗coefficients : ∗L
etav2 = Piecewise @8822, vE2 @@3DD >= 0<, 80.5, vE2 @@3DD  0<<D;

lambda2 = Piecewise @881.1, vE2 @@3DD >= 0<, 81.1, vE2 @@3DD  0<<D;

H∗horizontal Fs2: ∗LFsh2 = −Sign @vE2@@1DDD ∗ etah ∗ rhog ∗ g ∗ dc ∗ zT2 ^2 ;

H∗immeresed vol.2: ∗LV2 = Pi ∗ dc ^2 ê 4 ∗ HzT2 ê Cos@q2@t DDL;

H∗vertical Fs2: ∗L
Fsv2 = −Sign @vE2@@3DDD ∗ etav2 ∗ HzT2 ê dcL^ lambda2 ∗ g ∗ rhog ∗ V2;

H∗resistace force 2: ∗LFR2 = 8Fdh2 + Fsh2, 0, Fdv2 + Fsv2 <;

H∗∗∗ Equation of motion ∗∗∗L
Fsum = m1∗ aC1 + m2∗ aC2 − G1− G2− FR1 − FR2;

Eqx = Fsum@@1DD � 0;

Eqz = Fsum@@3DD � 0;

Eq1 =

IC1 ∗ q1 '' @t D � HCross @rC1A, Hm1∗ aC1 − G1− FR1LD + Cross @rC1E1, FR1 DL@@2DD;

Eq2 = IC2 ∗ q2 '' @t D � HCross @rC2A, Hm2∗ aC2 − G2− FR2LD + Cross @rC2E2, FR2 DL@@2DD;

H∗∗∗ Initial condition ∗∗∗L
H∗initial angle of link 1: ∗Lq10 = H2 ∗ Pi − 30 ê 180 ∗Pi L êê N;

H∗initial angle of link 2: ∗Lq20 = H45 ê 180 ∗ Pi L êê N;

H∗initial horizontal pos. of A: ∗Lqx0 = 0;

H∗initial vertical pos. of A: ∗Lqz0 = −L2 ∗ Cos@q20D;

H∗initial horizontal vel of A: ∗Ldqx0 = 0;

H∗initial vertical vel of A: ∗Ldqz0 = 1;

H∗initial angular vel. of link 1: ∗Ldq10 = 0;

H∗initial angular vel. of link 2: ∗Ldq20 = 0;

H∗∗∗ Solving E.O.M ∗∗∗L
H∗step size @sD: ∗Lstepsize = 10^ −6;

sol = NDSolve A9Eq1, Eq2, Eqx, Eqz, q1 @0D � q10, q1 ′@0D � dq10, q2 @0D � q20,

q2 ′@0D � dq20, qx @0D � qx0, qx ' @0D � dqx0, qz @0D � qz0, qz ' @0D � dqz0 =,

8q1, q2, qx, qz <, 8t, 0, 1 <, MaxSteps → Infinity,

StartingStepSize → stepsize, MaxStepFraction → Infinity,

Method → 8"EventLocator ", "Direction" → −1,

"Event" → vT1@@3DD, "EventAction" 
 Throw @tend = t;, "StopIntegration " D,

"EventLocationMethod " → "LinearInterpolation ",

"Method" → 8"FixedStep", "Method" → 8"ExplicitRungeKutta " <<<E;

Print @"stopping time of link 1 is ", tend, " @sD" D
Plot @Evaluate @rT1 @@3DD ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "zT1 HmL" <D
Plot @Evaluate @vT1@@3DD ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic , Frame → True , FrameLabel → 8" Time HsL" , " vT1z HmêsL" <D
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APPENDIX  G

ELASTIC  FREE  LINK

ClearAll @"Global` ∗" D;

Off @General:: spell D;

Off @General:: spell1 D;

H∗∗∗ Dimensions and basic data ∗∗∗L
H∗length of link @mD: ∗LL = 0.1524;

H∗diameter @mD: ∗Ldc = 0.00635;

H∗cross sectional area of link @m^2D: ∗LAc = Pi ∗ dc ^2 ê 4;

H∗density of link @kgêm^3D: c ∗Lrhoc = 7.7 ∗ 10^3;

H∗density per unit length @kgêmD: ∗Lrhoa = rhoc ∗ Ac;

H∗mass of link @kgD: ∗Lmc = rhoa ∗ L;

H∗young's modulous @PaD: ∗LEc = 190 ∗ 10 ^9;

H∗2nd inertia @m^4D: ∗LIc = Pi ∗ dc ^4 ê 64;

H∗product of E I: ∗LEI = Ec ∗ Ic;

H∗density of sand @kgêm^3D: ∗Lrhog = 2.5 ∗ 10 ^3;

H∗gravtaional acceleration @mês^2 D: ∗Lg = 9.81;

H∗lambda finding: ∗L
lam = lam ê. FindRoot @8Cos@lam D ∗ Cosh@lam D � 1<, 8lam, 4 <D;

H∗∗∗ Kinematics ∗∗∗L
H∗ H0L − Fix reference frame attached to

the ground with the unit vectors 8i0, j0, k0 < ∗L
H∗ H1L − Mobile reference frame attached to the

base with the unit vectors 8i, j, k < ∗L

H∗ Transformation matrix from H1L to H0L ∗L
R10 = 88Cos@q1@t DD, 0, −Sin @q1@t DD<,

80, 1, 0 <, 8Sin @q1@t DD, 0, Cos @q1@t DD<<;

H∗ Transformation matrix from H0L to H1L ∗L
R01 = 88Cos@q1@t DD, 0, Sin @q1@t DD<,

80, 1, 0 <, 8−Sin @q1@t DD, 0, Cos @q1@t DD<<;

H∗ Elastic deflection of the flexible free link ∗L
H∗shape function: ∗L
phi = Cos@lam ∗ z ê LD + Cosh@lam ∗ z ê LD − HCosh@lam D − Cos@lam DL ê

HSinh @lam D − Sin @lam DL∗ HSin @lam ∗ z ê LD + Sinh @lam ∗ z ê LDL;
H∗deflection: ∗Lx = phi ∗ q2@t D;

H∗∗ Pos. and Vel. vector of left tip of the
beam in H0L expressed in terms of H0L 8i0,j0,k0 < ∗L

H∗pos. vector from O to A: ∗LrA = 8qx@t D, 0, qz @t D<;

H∗vel. vector of rA: ∗LvA = D@rA, t D;
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H∗∗ Pos. and Acc. vector of a current point P on the
beam in H0L expressed in terms of H0L 8i0,j0,k0 < ∗L

H∗pos. vector from A to P: ∗LrAP = 8x, 0, z <.R10;

H∗pos. vector from O to P: ∗LrP = rA + rAP;

H∗vel. vector of rP: ∗LvP = D@rP, t D;
H∗acc. vector of rP: ∗LaP = D@vP, t D;

H∗pos. vector A to P w êo def.: ∗LrAP0 = 80, 0, z <.R10;

H∗pos. vector O to P w êo def.: ∗LrP0 = rA + rAP0;

H∗vel. vector rP w êo def.: ∗LvP0 = D@rP0, t D;

H∗∗ Pos. and Vel. vector of the end T2 on the
beam in H0L expressed in terms of H0L 8i0,j0,k0 < ∗L

H∗pos. vector from O to T: ∗LrT = rP ê. z → L;

H∗vel. vector of rT: ∗LvT = vP ê. z → L;

H∗∗ Pos. vector from A to the mass center C of the
beam in H0L expressed in terms of H0L 8i0,j0,k0 < ∗L

H∗pos. vector from A to C: ∗LrAC = rAP ê. z → 0.5 ∗ L;

H∗∗ vector from the origin O to the resistance application point E∗L
H∗immersed depth of T: ∗LzT = rT @@3DD;

H∗length from A to E: ∗LLE = L − 0.5 ∗ zT ê Cos@q1@t DD;

H∗pos. vector from O to E: ∗LrE = rP ê. z → LE;

H∗vel. vector of rE: ∗LvE = vP ê. z → LE;

H∗∗ Pos. vector from the end A to the resistance application

point E in H0L expressed in terms of H0L 8i0,j0,k0 < ∗L
H∗pos. vector from A to E: ∗LrAE = rAP ê. z → LE;

H∗∗∗ Dynamics ∗∗∗L
H∗gravity force: ∗L G = 80, 0, mc ∗ g<;

H∗dynamic frictional force: Fd ∗L
H∗coefficient : ∗Letad = 6.5;

H∗moving angle: ∗Lqm= ArcTan @vE@@1DD ê vE@@3DDD;

H∗reference area1: ∗LAr = dc ∗ zT ê Cos@q1@t DD ∗ Abs@Sin @q1@t D − qmDD;

H∗H direction Fd: ∗LFdh = −vE@@1DD ∗ etad ∗ rhog ∗ Ar ∗ Sqrt @vE.vE D;

H∗V direction Fd: ∗LFdv = −vE@@3DD ∗ etad ∗ rhog ∗ Ar ∗ Sqrt @vE.vE D;

H∗static resistace force: Fs ∗L
H∗coefficients : ∗Letah = 8; etav = 22; lambda = 1.1;

H∗horizontal Fs: ∗LFsh = −Sign @vE@@1DDD ∗ etah ∗ rhog ∗ g ∗ dc ∗ zT ^2;

H∗immerded volume: ∗LV = zT ê Cos@q1@t DD ∗ dc^2 ∗ Pi ê 4;

H∗vertical Fs: ∗LFsv = −Sign @vE@@3DDD ∗ etav ∗ HzT ê dcL^ lambda ∗ g ∗ rhog ∗ V;

H∗ total FR: ∗LFR = 8Fdh + Fsh, 0, Fdv + Fsv <;
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H∗∗∗ Equations of motion ∗∗∗L
dFB = rhoa ∗ aP;

FBx = Integrate @dFB@@1DD, 8z, 0, L <D;

FBz = Integrate @dFB@@3DD, 8z, 0, L <D;

FB = 8FBx, 0, FBz <;

Fsum = FB − G− FR;

Eq1 = Fsum@@1DD � 0;

Eq2 = Fsum@@3DD � 0;

Eq3 = Chop@Integrate @Cross @rAP, dFB D@@2DD, 8z, 0, L <DD ==

Cross @rAC, G D@@2DD + Cross @rAE, FR D@@2DD;

Eq4 = EI ∗ Hlam ê LL^ 4 ∗ L ∗ q2@t D +

Chop@Integrate @HdFB.R01 L@@1DD ∗ phi, 8z, 0, L <DD ==

HG.R01L@@1DD ∗ Hphi ê. z → 0.5 ∗ LL + HFR.R01 L@@1DD ∗ Hphi ê. z → LEL;

H∗∗∗ Initial condition ∗∗∗L
H∗initial horizontal pos. of A: ∗Lqx0 = 0;

H∗initial vertical pos. of A: ∗Lqz0 = −L ∗Cos@q10D;

H∗initial angle: ∗Lq10 = 55 ∗ Pi ê 180;

H∗initial deflection: ∗Lq20 = 0;

H∗initial horizontal vel of A: ∗Ldqx0 = 0;

H∗initial vertical vel of A: ∗Ldqz0 = 2.43;

H∗initial angular velocity: ∗Ldq10 = 0;

H∗initial deflection derivative: ∗Ldq20 = 0;

H∗∗∗ Solving E.O.M ∗∗∗L
H∗step size @sD: ∗Lstepsize = 10^ −6;

sol = NDSolve A9Eq1, Eq2, Eq3, Eq4, qx @0D � qx0, qx ′@0D � dqx0, qz @0D � qz0,

qz ′@0D � dqz0, q1 @0D � q10, q1 ′@0D � dq10, q2 @0D � q20, q2 ′@0D � dq20 =,

8qx, qz, q1, q2 <, 8t, 0, 1 <, MaxSteps → Infinity,

StartingStepSize → stepsize, MaxStepFraction → Infinity,

Method → 8"EventLocator ", "Direction" → −1, "Event" → vT@@3DD,

"EventAction" � 8Throw @tend = t − stepsize;, "StopIntegration " D<,

"EventLocationMethod " → "LinearInterpolation ",

"Method" → 8"FixedStep", "Method" → 8"ExplicitRungeKutta " <<<E;

Print @"stopping time of the elastic link in vertical direction, t _s , is ",

tend, " @sD" D;

Plot @Evaluate @zT ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "zT HmL" <D
Plot @Evaluate @vT@@3DD ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "vTz HmêsL" <D
Plot @Evaluate @q2@t D ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "q2 HmL" <D
Plot @Evaluate @q2 ' @t D ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "dq2 HmêsL" <D
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APPENDIX  H

ELASTIC  COMPOUND  PENDULUM

ClearAll @"Global` ∗" D;

Off @General:: spell D;

Off @General:: spell1 D;

H∗∗∗ Dimensions and basic data ∗∗∗L
H∗length of link @mD: ∗LL = 0.15;

H∗diameter @mD: ∗Ldc = 0.00635;

H∗cross sectional area of link @m^2D: ∗LAc = Pi ∗ dc ^2 ê 4;

H∗density of link @kgêm^3D: ∗Lrhoc = 7.7 ∗ 10^3;

H∗density per unit length @kgêmD: ∗Lrhoa = rhoc ∗ Ac;

H∗mass of link @kgD: ∗Lmc = rhoa ∗ L;

H∗young's modulous @PaD: ∗LEc = 190 ∗ 10 ^9;

H∗2nd inertia @m^4D: ∗LIc = Pi ∗ dc ^4 ê 64;

H∗product of E I: ∗LEI = Ec ∗ Ic;

H∗density of sand @kgêm^3D: ∗Lrhog = 2.5 ∗ 10 ^3;

H∗gravtaional acceleration @mês^2 D: ∗Lg = 9.81;

H∗lambda finding: ∗L
lam = lam ê. FindRoot @8Cos@lam D ∗ Sinh @lam D − Sin @lam D ∗ Cosh@lam D � 0<, 8lam, 4 <D;

H∗∗∗ Kinematics ∗∗∗L
H∗ H0L − Fix reference frame attached to

the ground with the unit vectors 8i0, j0, k0 < ∗L
H∗ H1L − Mobile reference frame attached to the

base with the unit vectors 8i, j, k < ∗L

H∗ transformation matrix from H1L to H0L ∗L
R10 = 88Cos@q1@t DD, 0, −Sin @q1@t DD<,

80, 1, 0 <, 8Sin @q1@t DD, 0, Cos @q1@t DD<<;

H∗ transformation matrix from H0L to H1L ∗L
R01 = 88Cos@q1@t DD, 0, Sin @q1@t DD<,

80, 1, 0 <, 8−Sin @q1@t DD, 0, Cos @q1@t DD<<;

H∗∗ elastic deflection of the flexible free link ∗∗L
H∗shape function: ∗L
phi = Sinh @lamD êSin @lam D∗Sin @lam ∗ z ê LD + Sinh @lam ∗ z ê LD;
H∗deflection: ∗Lx = phi ∗ q2@t D;

H∗∗ position, velcocity,
and acceleration vector of a current point P on the
link in H0L expressed in terms of H0L 8i0,j0,k0 < ∗L

H∗pos. vector from O to P: ∗LrP = 8x, 0, z <.R10;
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H∗vel. vector of rP: ∗LvP = D@rP, t D;
H∗acc. vector of rP: ∗LaP = D@vP, t D;

H∗∗ position and acceleration vector of the mass center C
on the beam in H0L expressed in terms of H0L 8i0,j0,k0 < ∗L

H∗pos. vector from O to C: ∗LrC = rP ê. z → 0.5 ∗ L;

H∗acc. vector of rC: ∗LaC = aP ê. z → 0.5 ∗ L;

H∗∗ position and velocity vector of the end T on the
beam in H0L expressed in terms of H0L 8i0,j0,k0 < ∗L

H∗pos. vector from O to T: ∗LrT = rP ê. z → L;

H∗∗ vector from the O to the resistance application point

E on the beam in H0L expressed in terms of H0L 8i0,j0,k0 < ∗L
H∗immersed depth of T: ∗LzT = rT @@3DD − L ∗Cos@q10D;

H∗length from O to E: ∗LLE = L − 0.5 ∗ zT ê Cos@q1@t DD;

H∗pos. vector from O to E: ∗LrE = rP ê. z → LE;

H∗vel. vector of rE: ∗LvE = vP ê. z → LE;

H∗∗∗ Dynamics ∗∗∗L
H∗gravity force: ∗L G = 80, 0, mc ∗ g<;

H∗dynamic frictional force: Fd ∗L
H∗coefficient : ∗Letad = 6.5;

H∗reference area: ∗LAr = dc ∗ zT ê Cos@q1@t DD;

H∗H direction Fd: ∗LFdh = −vE@@1DD ∗ Ar ∗ etad ∗ rhog ∗ Sqrt @vE.vE D;

H∗V direction Fd: ∗LFdv = −vE@@3DD ∗ Ar ∗ etad ∗ rhog ∗ Sqrt @vE.vE D;

H∗static resistace force: Fs ∗L
H∗coefficient : ∗Letah = 8; etav = 21; lambda = 1.1;

H∗horizontal Fs: ∗LFsh = −Sign @vE@@1DDD ∗ etah ∗ rhog ∗ g ∗ dc ∗ zT ^2 ;

H∗imeresed volume: ∗LV = zT ê Cos@q1@t DD ∗ Ac;

H∗vertical Fs: ∗LFsv = −Sign @vE@@3DDD ∗ etav ∗ HzT ê dcL^ lambda ∗ g ∗ rhog ∗ V;

H∗resistace force: ∗LFR = 8Fdh + Fsh, 0, Fdv + Fsv <;

H∗∗∗ Equation of motion ∗∗∗L
Eq1 = Chop@Integrate @Cross @rP, rhoa ∗ aPD@@2DD, 8z, 0, L <DD �

Cross @rC, G D@@2DD + Cross @rE, FR D@@2DD;

Eq2 = EI ∗ Hlam ê LL^ 4 ∗ L ∗ q2@t D +

Chop@Integrate @Hrhoa ∗ aP.R01 L@@1DD ∗ phi, 8z, 0, L <DD ==

HG.R01L@@1DD ∗ Hphi ê. z → 0.5 ∗ LL + HFR.R01 L@@1DD ∗ Hphi ê. z → LEL;

H∗∗∗ Initial condition ∗∗∗L
H∗initial angle: ∗Lq10 = 60 ∗ Pi ê 180;
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H∗initial deflection: ∗Lq20 = 0;

H∗initial angular velocity: ∗Ldq10 = −1;

H∗initial deflection derivative: ∗Ldq20 = 0;

H∗∗∗ Solving E.O.M ∗∗∗L
sol = NDSolve A9Eq1, Eq2, q1 @0D � q10, q1 ′@0D � dq10, q2 @0D � q20, q2 ′@0D � dq20 =,

8q1, q2 <, 8t, 0, 1 <, MaxSteps → Infinity,

Method → 8"EventLocator ", "Event" → q1 ' @t D, "EventAction" �

Throw @tend = t;, "StopIntegration " D, "EventLocationMethod " →

"LinearInterpolation ", "Method" → "ExplicitEuler " <E;

Print @"stopping time of the elastic compound pendulum is ", tend, " @sD" D;

Plot @Evaluate @q1@t D ∗ 180 ê Pi ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "q1 HdegL" <D
Plot @Evaluate @q1 ' @t D ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "dq1 Hrad êsL" <D
Plot @Evaluate @q2@t D ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "q2 HmL" <D
Plot @Evaluate @q2 ' @t D ê. sol D, 8t, 0, tend <, PlotRange → All,

GridLines → Automatic, Frame → True, FrameLabel → 8"Time HsL", "dq2 HmêsL" <D
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