The Activity Metric for Low Resource, On-Line Character Recognition
Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory
committee. This dissertation does not include
proprietary or classified information.
William James Confer
Certificate of Approval:
W. Homer Carlisle
Associate Professor
Department of Computer Science and
Software Engineering
Richard Chapman, Chair
Associate Professor
Department of Computer Science and
Software Engineering
Dean Hendrix
Associate Professor
Department of Computer Science and
Software Engineering
Stephen L. McFarland
Acting Dean
Graduate School
The Activity Metric for Low Resource, On-Line Character Recognition
William James Confer
A Dissertation
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of
Doctor of Philosophy
Auburn, Alabama
16 December 2005
The Activity Metric for Low Resource, On-Line Character Recognition
William James Confer
Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon the request of individuals or institutions and at their expense.
The author reserves all publication rights.
Signature of Author
16 December 2005
Date of Graduation
iii
Vita
William Confer began his career in the field of Computer Science early, being exposed to
programming in the early 1980?s at home and at the Classical Junior Academy of St. Louis,
Missouri. Upon completing the Computer Science program at Illinois College in 1999,
William worked as a software developer for the Department of Veteran Affairs, Veteran
Hospital Division and then moved south to Auburn, Alabama where he began his graduate
career. While at Auburn University, William has worked hard in the fields of character
recognition and wireless software development. His efforts in character recognition have
culminated in this doctoral work and a U.S. patent he shares with his advisor, Richard
Chapman.
iv
Dissertation Abstract
The Activity Metric for Low Resource, On-Line Character Recognition
William James Confer
Doctor of Philosophy, 16 December 2005
(M.S., Auburn University, 2005)
(B.A., Illinois College, 1999)
196 Typed Pages
Directed by Richard Chapman
This work presents an algorithm for on-line character recognition that is fast, portable,
and consumes very little memory for code or data. The algorithm is alphabet-independent,
and does not require training beyond entering the alphabet once. This algorithm uses a
novel, parameter-based method of feature extraction, activity, to achieve high recognition
accuracy. Recognition accuracy is shown to be improvable dynamically without further
input from the user. The algorithm brings the capability to do character recognition to
classes of devices that heretofore have not possessed that capability because of limited com-
puting resources, including mobile handsets, PDAs, pagers, toys, and other small devices.
It achieves recognition speeds of 16.8 characters per second on a 20MHz, 8-bit microcon-
troller without floating-point. The alphabet-independent nature of the algorithm combined
with its inherent resistance to regular noise interference may allow it to enhance the capa-
bility of persons with impaired motor or nervous systems to communicate with devices by
writing or gesturing commands. Additionally, two human studies demonstrate the effec-
tiveness of a simple, activity-based recognizer for users of the stylized Graffiti alphabet and
for non-stylized variants of the English alphabet. A final experiment shows how recognition
v
accuracy can be improved per user by modifying the parameters of the activity metric over
samples collected in the non-stylized study.
vi
Acknowledgments
This work is dedicated to the memories of my grandmother, Lois Hoffman, and my
truest friend, Jacob Palmatier. Lois passed recently after a twenty-plus year battle with
multiple sclerosis. She is the inspiration behind the majority of my work with character
recognition. Jacob was killed by a roadside bomb in Iraq while retrieving the mail. He was
my only friend who didn?t criticize pursuing higher degrees for all these years. I miss each
of them terribly.
I would like to thank each of my committee members, especially Richard Chapman,
and my outside reader, Chwan-Hwa Wu, for their support over the years. Jaun Gilbert
supplied the tablet computers used to collect samples for my final studies. Gerry Dozier?s
assistance in evolutionary techniques was crucial to the success of my attempts to opti-
mize recognition. Mike Spiegel, an undergraduate student from Depauw University, was
a tremendous help in organizing and collecting character samples. I would also like to
acknowledge the contributions of the following students for their assistance in the past:
Charlton Barker, Tyson Begly, David Boyette, Barry Burton, Crystal Collings, Jim Han,
Travia Holder, Kevin Jackson, Justin Limbaugh, Adam Luter, Deitrick Mathews, John
Morley, Christopher Nuby, Marcus Parker, and Bradley Scott. An additional round of
thanks go to Auburn University Technology Transfer for assistance in acquiring the patent
and in seeking licensees for activity-based recognizers.
This work was sponsored in part by the Auburn University Center for Innovations in
Mobile, Pervasive, Agile Computing Technologies (IMPACT) and the U.S. Department of
Education Graduate Assistance in Areas of National Need (GAANN) Fellowship.
vii
Style manual or journal used Journal of Approximation Theory (together with the style
known as ?aums?). Bibliography follows van Leunen?s A Handbook for Scholars.
Computer software used The document preparation package TEX (specifically LATEX)
together with the departmental style-file aums.sty.
viii
Table of Contents
List of Tables xi
List of Figures xii
1 Introduction 1
2 Related Work 4
2.1 On-Line vs. Off-Line Recognition . 4
2.2 Unistrokes . 6
2.3 Self-Disclosing Systems . 7
2.4 MDITIM . 9
2.5 EdgeWrite . 11
2.6 Elastic and Structural Matching . 13
3 The Problem of Character Recognition 18
3.1 e-Studio . 18
3.2 Recognition Qualities . 19
3.2.1 Low resource usage and portability 19
3.2.2 Alphabet Independence and User Dependence 20
3.2.3 Revisable Post-Deployment . 21
3.2.4 Resistance to Noise . 22
3.3 Finding a Sample Corpus for Evaluation . 22
3.3.1 Off-Line Resources . 23
3.3.2 On-Line Resources . 23
4 Activity-Based Recognition 27
4.1 Preprocessing . 27
4.1.1 Resampling . 27
4.1.2 Directional Codes . 28
4.2 Activity . 30
4.2.1 Activity is When Stuff Happens . 32
4.2.2 Activity Regions . 34
4.2.3 When Activity Fails . 34
4.3 Recognition . 35
5 Implementations 38
ix
6 Experiments 42
6.1 Graffiti Experiments . 42
6.2 English Experiment . 50
6.2.1 Non-interactive collection . 51
6.2.2 Phrase set . 52
6.2.3 Generating the phrase set . 52
6.2.4 Collecting Samples . 57
6.2.5 Alphabet Selection . 60
6.2.6 Results . 62
6.3 Optimizing Recognition . 66
6.3.1 Parameters . 70
6.3.2 Genetic Algorithms . 72
6.3.3 Optimization Operators . 78
6.3.4 Genetic Profiling . 82
6.3.5 Results . 84
6.3.6 Optimization Anomalies . 91
7 Conclusions 95
Bibliography 97
Appendices 101
A Genetic Algorithm Profiles 102
B Optimized Parameter Sets 111
C CDROM Contents 178
C.1 Character Samples . 178
C.2 Errors . 179
C.3 Final Optimization Parameters . 180
C.4 Results . 181
x
List of Tables
3.1 Words used the the Kassel phrase set . 26
3.2 Digit sequences used the the Kassel phrase set 26
3.3 Character and digit instance counts for the Kassel data corpus 26
6.1 Character instance counts for the Graffiti experiment 45
6.2 Average results of the Graffiti study . 46
6.3 Accuracy rates of the pilot study with commercial recognizers 47
6.4 Average recognition accuracy of five recognizers 49
6.5 English letter frequencies (A) reported in The Oxford Dictionary of
English [37], (B) reported in Cryptograhical Mathematics [30], (C) based
on three contemporary sources [32] . 54
6.6 Generated phrase set for the English character studies 56
6.7 Overall recognition error of the English study with a stock recognizer . . . 63
6.8 Overall error reduction gained from one ? value to another (English study
with a stock recognizer) . 65
6.9 Overall recognition error of the English study with a stock recognizer and
Oxford letter frequencies . 65
6.10 20 GA profiles examined for the optimization study 83
6.11 Overall recognition error of the English study with optimized parameter sets 85
6.12 Overall error reduction gained from one ? value to another (optimization
parameter set recognizer) . 85
6.13 Overall recognition error of the optimized parameter set recognizer and Ox-
ford letter frequencies . 87
xi
List of Figures
2.1 (A) Vertical histogram of the letter ?a?. (B) Horizontal histogram of the letter
?a?. (C) Compound histogram of the letter ?a?. 5
2.2 (A) Five strokes of the Unistroke alphabet. (B) Unistroke letters that map
directly to their Roman letters. 7
2.3 The Graffiti alphabet . 7
2.4 (A) The alpha character layout of T-Cube. (B) T-Cube flick sequence for
the word ?writing?. 8
2.5 (A) Cirrin stroke for the word ?soap?. (B) Quikwriting stroke for the word
?the?. 9
2.6 (A) Alpha characters of the MDITIM system. (B) The word ?letter? drawn
with as two separate strokes. (C) The word ?letter? drawn as a single stroke
with a pause (shown as a circle) to distinguish the consecutive south move-
ments between the first ?e? and ?l?. 10
2.7 (A) The plastic, EdgeWrite template for a Palm PDA. (B) Example corner
recognition boundaries over the drawing of the character ?s?. 12
2.8 The alpha character representations of the EdgeWrite System. 13
2.9 Structural primitives employed by Chan and Yeung 17
4.1 Resampling of a simple stroke to four coordinates: (A) Original stroke with
three coordinates, (B) Four coordinates placed over the length of the stroke,
(C) Final resampled stroke. 29
4.2 Drawings of the letter ?G? correctly classified by the presented recognizer . 29
4.3 Directional code mappings. (A)?Freeman chain code, (B)?Accurate vertical
and horizontal lines, (C)?Rarely southwestern 31
4.4 Directional Code representations of ?D?, ?P?, ?W?, ?V? and ?A? of the Graffiti
alphabet . 33
xii
4.5 The seven Activity Regions and measures for ?W? 35
5.1 Windows alphabet editor . 39
5.2 Recognition, alphabet, and character editing screens for the Palm OS . . . 40
5.3 Front and back views of the 8-bit microcontroller implementation 41
6.1 The data collection application for the Graffiti experiments 45
6.2 Characters of the Graffiti alphabet grouped by total unique directional codes 48
6.3 Character collection application for the English alphabet studies 58
6.4 From left to right, the letter ?X? as drawn on paper, identified as two strokes,
and as converted to a single stroke . 60
6.5 Average and standard recognition errors over 900 runs for all subjects in the
(A) upper and (B) lower cases. 64
6.6 Recognition error per uppercase letter for all subjects ? sorted by ? = 3 . . 67
6.7 Recognition error per lowercase letter for all subjects ? sorted by ? = 3 . . 67
6.8 Recognition error per uppercase letter for a subject with good general accu-
racy (?c00?) ? sorted by ? = 3 . 68
6.9 Recognition error per lowercase letter for a subject with good general accu-
racy (?c00?) ? sorted by ? = 3 . 68
6.10 Recognition error per uppercase letter for a subject with poor general accu-
racy (?c02?) ? sorted by ? = 3 . 69
6.11 Recognition error per lowercase letter for a subject with poor general accu-
racy (?c02?) ? sorted by ? = 3 . 69
6.12 Stock parameter set for activity-based systems 70
6.13 Pseudocode for a basic genetic algorithm 74
6.14 Breeding example for (A) binary string and (B) real-coded alleles 76
6.15 The crossover range of the BLX-c operator for real-coded alleles 76
xiii
6.16 Mutation operator for activity regions . 81
6.17 Optimized average and standard recognition errors over 900 runs for all sub-
jects in the (A) upper and (B) lower cases. 86
6.18 Optimized recognition error per uppercase letter for all subjects ? sorted by
? = 3 . 88
6.19 Optimized recognition error per lowercase letter for all subjects ? sorted by
? = 3 . 88
6.20 Optimized recognition error per uppercase letter for a subject with good
general accuracy (?c00?) ? sorted by ? = 3 89
6.21 Optimized recognition error per lowercase letter for a subject with good gen-
eral accuracy (?c00?) ? sorted by ? = 3 . 89
6.22 Optimized recognition error per uppercase letter for a subject with poor
general accuracy (?c02?) ? sorted by ? = 3 90
6.23 Optimized recognition error per lowercase letter for a subject with poor gen-
eral accuracy (?c02?) ? sorted by ? = 3 . 90
6.24 Optimized lower case parameters for subject ?c21? 91
6.25 Optimized directional code mappings for (A) subject ?c10? (lower case), (B)
subject ?c17? (upper case), and (C) subject ?c37? (lower case) 92
6.26 Optimized activity regions for (A) subject ?c29? (upper case) and (B) subject
?t12? (upper case) . 93
6.27 Optimized activity regions for (A) subject ?c05? (lower case) and (B) subject
?c00? (lower case) . 94
C.1 (A) Directory structure on the CDROM and (B) example file names for each
directory . 179
xiv
Chapter 1
Introduction
Since the mid 1990?s on-line character recognition has become widely employed in
Personal Digital Assistants (PDAs), beginningwith the Palm Pilot devices which defined the
product category. However, a numberof factors have limited the use of character recognition
to this category of device, and has even, for some PDA users, proved too frustrating. These
include lower real-world accuracy rates than advertised, fairly significant requirements for
memory and processor speed, and dependence on a stylized alphabet that users are forced
to learn.
This work presents an algorithm that, by means of a novel feature extraction technique,
activity, significantly reduces the computational overhead required to support robust, on-
line character recognition and permits the use of arbitrary alphabets. There are quite a few
applications for such an algorithm. First, devices with very little computational capability
can now incorporate character recognition. Four implementations of the algorithm will be
described ? one on a 20MHz, 8-bit microcontroller using 40K bytes of memory. Thus,
toys, pagers, mobile phones, and many other small, cheap devices can take advantage of
character recognition for command and data entry. Second, the alphabet independence of
the algorithm makes it attractive for use by those who require application specific alphabets
or gestures. Any set of marks can be assigned arbitrary meanings since the algorithm
doesn?t use particular features of the Roman alphabet or any other. The parameters of the
algorithm are suitable for modification (post-deployment) so that the idiosyncrasies of the
writing of any particular user can be incorporated and thus improve recognition accuracy.
1
Finally, this algorithm, in practice, appears to exhibit an immunity to noise that makes
it forgiving of the writing style of someone writing in a noisy environment (such as on a
subway or bus, for example), or suffering from a tremor, nervous or motor condition.
Three studies will investigate the real world performance of simple, activity-based rec-
ognizers. The first allowed users to interact with the recognizer using the stylized Graffiti
alphabet shipped on devices running the Palm OS, pen-based operating system. Since this
alphabet is supported by a large number of existing mobile platforms (including non-Palm
OS systems), the results of the study afford insight into the immediate usefullness of the
activity metric for contemporary market devices. The results of this study measured aver-
age recognition accuracy from 97.12% (for experts) to 95.01% (for novices). A second study
allowed subjects to perform their non-stylized version of characters in the English alphabet
in a non-interactive setting ? i.e., the recognizer was applied to the captured drawings in
an off-line fashion, once the user has completed their writing. This affords data that is
void of character adaptions a human might traditionally make to comprise for deficiencies
in a recognizer (eg, exaggerating the bumps of a ?B?). Additionally, both the upper and
lower case alphabets are examined whereas there is only one case in Graffiti. The results
of this second study for alphabets with three samples of each letter measured an average
upper case accuracy of 92.2% where 83% of subjects? accuracy exceeded 90% and an average
lower case accuracy of 91.6% where 71% of subjects? accuracy exceeded 90%. The third
study examines the effects of altering the parameters of the activity metric for each user?s
data from the previous study. The focus of this final study is on improving the recognition
accuracy for each user. This final experiment resulted in an average upper case accuracy of
94.3% where 92% of subjects? accuracy exceeded 90% and an average lower case accuracy of
2
93.1% where 86% of subjects? accuracy exceeded 90%. Further, the error rate was reduced
by an average of 30.3% for upper case and 20.9% for lower case characters.
3
Chapter 2
Related Work
Character recognition is a mature field. Interfaces using handwritten/gestural input
were being researched as early as the late 1950s [7, 13, 16] including the use of photo-
sensors for the recognition of hand gestures such as waving goodbye. Early methods are
surveyed in [14, 27, 45, 47]. The development of high resolution optical scanners and
digitizing tablets during the 1960?s and early 1970?s, fueled both character and handwriting
recognition. Most methods were off-line processing methods which used bitmap and string
contextual information to increase recognition accuracy. The algorithm presented in this
work is an on-line method.
2.1 On-Line vs. Off-Line Recognition
Character (or more generally, pattern) recognition systems are classified as either on-
line or off-line systems, dependant on the way drawings of characters are analyzed.On-line
systems often (although not always) interact with users during the drawing process. They
take advantage of temporal data gathered from the pen events of a stylus and pad, for
example, in order to analyze how the drawing was put down by the user. This data can be as
simple as sequenced X and Y coordinates, but may also include additional information such
as pressure, timing, and stylus angles [20, 47]. Generally, on-line methods sacrifice accuracy
for real time performance speeds, which is counter to off-line recognition [20, 27, 47]. There
is some debate as to whether temporal data merely adds noise to the static images produced
4
(C)
Figure 2.1: (A) Vertical histogram of the letter ?a?. (B) Horizontal histogram of the letter
?a?. (C) Compound histogram of the letter ?a?.
by the stylus; however, Kassel [27] has demonstrated the additional information can be used
effectively to increase recognition accuracy in a variety of systems.
Off-line methods evaluate the pixel information obtained by optically scanning an ex-
isting document, for example. Optical Character Recognition (OCR) is a commonly used
form of off-line recognition. One simple approach used in off-line systems is to normalize
the size of character drawings and evaluate the one-dimensional projection of the resulting
bitmaps. Figure 2.1 shows example vertical, horizontal, and compound ((A), (B), and (C)
respectively) histograms of the letter ?a?.
Further coverage of off-line methods is beyond the scope of this research; however,
there are several thorough surveys on the subject [28, 39, 44]. Koerich et al survey large
scale recognition systems that combine core character classifiers (?what letter is this??)
with vocabulary contexting (?given the last few letters and some dictionary, what letter is
this??) [28]. That survey focuses particularly on systems with very large dictionaries ? some
tens of thousands of words ? such as the recognition system used by Microsoft Tablet PCs.
Like Koerich, Steinherz et al discuss the methods of systems that include word recognition;
however, the systems evaluated are all cursive script readers [44]. Plamondon et al cover the
5
fundamental techniques of both on-line and off-line recognition specifically as they apply to
the fields of signature verification, writer authentication, and handwriting learning [39].
Presently, much research in on-line character recognition has centered around single
character entry systems [5, 3, 4, 10, 11, 12, 19, 20, 22, 23, 27, 31, 25, 24, 33, 34, 48, 49].
Characters are entered one at a time and the recognizer classifies the character before the
next is written. This provides the user immediate feedback so that errors can be corrected
as they occur. Typically, there is a simple method for the user to depict the beginning and
end of each character - commonly accomplished by pen down and up events.
2.2 Unistrokes
Unistrokes [19], developed at Xerox Corporation in 1993 is a well known example of
a single character, pen-event system. Unistrokes characters were designed to be written
one on top another so as to minimize the real estate required for recognition and to allow
for ?eyes free operation? [19]. The Unistrokes alphabet is based on five basic strokes and
their rotational deformations. While several characters (?i?, ?j?, ?L?, ?O?, ?S?, ?V? and ?Z?
for example) are represented by strokes similar to their Roman drawings (see Figure 2.2),
most characters? strokes require unnatural memorization [33]. Additionally, a model has
been developed for predicting the time required to enter arbitrary text with Unistrokes by
an expert user [22]. This is particularly useful since several variations of the Unistrokes
alphabet have been introduced in recent years [22].
A popular variant of Unistrokes is the Graffiti system originally used in the Palm OS
family of PDAs [1]. Graffiti improved upon Unistrokes by representing characters with
symbols that are, for the most part, quite like their Roman counterparts (see Figure 2.3).
6
Figure 2.2: (A) Five strokes of the Unistroke alphabet. (B) Unistroke letters that map
directly to their Roman letters.
Figure 2.3: The Graffiti alphabet
A disadvantage of both Graffiti and Unistrokes is that their alphabets are static. Graf-
fiti also has several characters that are composed of multiple strokes in order to allow a
more natural writing style. As users change applications, more or fewer characters may be
required [12, 11]. For example, there is little need for a simple, arithmetic calculator to
recognize characters other than say digits, some punctuation and operators. Reducing the
size of the alphabet in these situations might also increase recognition accuracy.
2.3 Self-Disclosing Systems
T-Cube [48], developed at Apple Computers in 1994, is a self-disclosing method for
character input. Nine pie-shaped templates designate the alphabet map as in Figure 2.4(A),
each pie cutinto eight wedges. Each wedge contains characters or character commands...Figure 2.4(A)
7
Figure 2.4: (A) The alpha character layout of T-Cube. (B) T-Cube flick sequence for the
word ?writing?.
only demonstrates the location of the alpha characters for simplicity. Characters could be
input essentially by touching a stylus to the desired wedges in sequence. To reduce the
use of precious screen real estate, however, the T-Cube user only draws on a single pie
target like those shown in Figure 2.4(B). This target has an enlarged center, giving the pie
nine wedges. The user is able to perform any of the characters from the expanded map by
?flicking? a stylus from the center of a wedge in any of the eight cardinal directions. The
wedge pen down event represents which of the nine pies in the map the character is to be
recognized from. The direction of the flick determines which wedge of this pie to recognize.
This approach significantly decreases the amount of stylus-to-pad time required to draw an
arbitrary character since each drawing is a unidirectional flick [48].
There are two basic problems that prevent T-Cube from being an acceptable form of
character input in mobile or wearable devices. First, because of the visual aspect of the
pies, eyes-free operation is impossible [33]. Second, circular shaped menus have been known
8
(A) (B)
Figure 2.5: (A) Cirrin stroke for the word ?soap?. (B) Quikwriting stroke for the word
?the?.
to be difficult to scan with the eye for many users [9], reducing the speed at which they can
be correctly accessed.
Two other notable self-disclosing systems that incorporate circular forms are Quikwrit-
ing [38] and Cirrin [34]. These two systems are quite similar. Each maps the characters of
the alphabet about the perimeter of a circular or rectangular form. Characters are drawn by
sliding a stylus from the center of the form to a character (see Figure 2.5). By sliding rather
than flicking, users can write entire words with one long stroke, sliding from character to
character. Because of the circular nature of these systems, however, they both suffer the
same problems as T-Cube.
2.4 MDITIM
In 2000, Isokoski and Raisamo developed the Minimal Device Independent Text Input
Method (MDITIM) [23]. MDITIM represented drawings of characters with a chain of
the four cardinal directions ? North, South, East and West (N, S, E, and W) ? (see
Figure 2.6(A)). This coarse grain resolution allows for a wide variety of input devices other
9
"le" "tter"
"le" <pause> "tter"
Figure 2.6: (A) Alpha characters of the MDITIM system. (B) The word ?letter? drawn
with as two separate strokes. (C) The word ?letter? drawn as a single stroke with a pause
(shown as a circle) to distinguish the consecutive south movements between the first ?e? and
?l?.
than a stylus and pad (e.g., touchpads, mice, joysticks and keyboards). As with Quikwriting
and Cirrin, MDITIM allows users to draw entire words with a single, long stroke or with
consecutive unistrokes.
No character representations in the MDITIM alphabet include consecutive instances of
the same direction. This eliminates any ambiguity that might exist recognizing sequences
like ENS and ENSS, where it might be impossible to determine whether the user?s intent
was one or two ?S?s. This is a powerful feature of the alphabet?s design; however, this does
not eliminate the potential for a multiple character sequence to introduce the same problem.
For example, the directional sequence for the word ?letter? (SNSWESSNESNEWESWSN)
10
contains an SS pattern on the transition from the first ?e? to the ?t?. Were the SS rec-
ognized as a single S, the system would fail at the sequence SNSWESNE and could not
recover by any mechanical means. This is because there is no way to determine which
of the recognized directions should have been a double. The proper SS would make the
SNSWESNE sequence error free, but the second S could also be doubled without introduc-
ing errors...SNSSWESNE is the valid string ?ldt?. To deal with this circumstance, the
user may lift or pause the stylus briefly between the consecutive ?S?s. MDITIM users with
trackballs are forced to pause since the ball does have a lift analog. When a keypad is used
to enter MDITIM strings directions, sequences of key presses are entered rapidly, without
pause, because consecutive instances of the same direction are instantly detectable. The
use of a keypad with MDITIM additionally makes the system self-disclosing so long as the
directional sequences are memorized.
2.5 EdgeWrite
Individuals with nervous or motor impairments are beginning to use mobile devices
such as PDAs as controllers or input devices for computers and other equipment [36, 43, 49].
Using a stylus with a PDA has been found to provide a more fluid control experience than
a keyboard or mouse for individuals with Muscular Dystrophy, for example [43]. This is
because many motor and nervous disorders impair an individual?s ability to make large,
rigid movements such as using a mouse [49]. People with Parkinson?s and Cerebral Palsy
introduce intention tremors in large movements, and individuals with Muscular Dystrophy
lose gross motor control earlier and faster than fine motor control [36].
EdgeWrite is a character recognition technology designed to assist individuals with dis-
abilities that use (or desire to use) PDAs as input devices for computers or other equipment.
11
Figure 2.7: (A) The plastic, EdgeWrite template for a Palm PDA. (B) Example corner
recognition boundaries over the drawing of the character ?s?.
EdgeWrite reduces the interference of noise (such as tremor or slipping) by representing
characters as a sequence of corner hits within a recessed square [49]. Figure 2.7(A) shows
a simple, plastic template that be attached to a Palm PDA in order to make it EdgeWrite
compatible. Characters are then drawn as a single stroke by touching the stylus to the first
corner of the representation and then sliding the stylus from corner to corner over the rest of
the drawing. Since the corner sequences are the key to EdgeWrite recognition, impairments
that might cause noise over the lengths of the stroke between corner hits will have minimal
influence on overall recognition[49]. Many users choose not to fully slide the stylus along
the hard edges of the template as the character representations suggest ? Figure 2.8 shows
the alpha character representations of the EdgeWrite system. Instead they target corner
regions (without actually hitting a corner pixel) as part of their stroke resulting in rounded
figures that reflect their roman counterparts to a greater extent [49]. Thus, properly deter-
mining when and which corners are hit over the length of a stroke is a crucial element to
the workings of EdgeWrite. Corners are detected in regions by two separate mechanisms as
shown in Figure 2.7(B). When the initial pen down event occurs, corner regions are treated
as rectangular zones around each corner. As the stylus begins to move, the corner regions
12
Figure 2.8: The alpha character representations of the EdgeWrite System.
are converted to triangular zones around each corner to reduce the number of unintentional
corner hits by users not sliding along the template edges [49].
Wobbrock et al [49] noticed that users targeted corners more liberally on the side of
their dominant hand. This is because the stylus is angled toward the dominant hand so the
tip can not actually reach the full corner unless the users hand changes its angle for these
corners ? Figure 2.7(A) shows this issue for a left handed user. Figure 2.7(B) demonstrates
how corner recognition zones can be enlarged on the dominant side of a left handed user to
further accommodate this problem [49].
2.6 Elastic and Structural Matching
Some of the most robust recognizers in development today are based on elastic and
structural matching techniques [3, 5, 11, 12, 20, 31, 47]. While recognition accuracy for
these algorithms is somewhat high (averaging 83-98%), their recognition speed can be low.
With elastic matching, drawings are treated as raw sequences of (X,Y) coordinate pairs.
Classification of a drawing against an alphabet is done by finding the character instance
in the stored alphabet that has the smallest elastic cost when points in the new drawing
13
are stretched to match points in the stored instance. This cost between drawings, E, is the
average elastic distance to sequences in the stored instance from those in the new drawing,
as in Equation 2.1.
E(?,?) = E(?,?)? (2.1)
Here, the new drawing has ? points and the stored instance it?s being compared to has ?
points. The elastic distance, E, to the new drawing is found and averaged over ?. E(i,j)
(defined in Equation 2.2) calculates this distance over the sequence of points in the new
instance (starting with point i) and the sequence starting at j in the stored instance.
E(i,j) = d(i,j) +
??
???
???
???
???
???
???
??
???
???
???
???
???
???
???
i = 0 : summationtextj?1k=0 d(0,k)
j = 0 : summationtexti?1k=0 d(k,0)
(i > 0),(j = 1) : min
?
???
???
E(i ?1,j)
E(i ?1,j ?1)
(i > 0),(j > 1) : min
??
???
???
???
???
?
E(i ?1,j)
E(i ?1,j ?1)
E(i ?1,j ?2)
(2.2)
E(i,j) is a recursive calculation (hence its tendency to be slow) terminated by the subdis-
tance measure, d, discussed later. On most occasions, the operations of E(i,j) as handled
by the last cases in Equation 2.2 are similar to those operators used in traditional string
matching techniques. Specifically, extraneous points are identified and removed, missing
points are identified and added, and existing points are stretched to match counterparts in
the stored instance. The least expensive of these operators is always chosen. The special
cases when i = 0 or j = 0 indicate that one or the other drawings has run out of points in
14
the recursion. The resulting action is a penalty cost dependant on the k points remaining
in the non-emptied sequence. This is where the real stretching happens. The subdistance
measure, d (Equation 2.3), is the sum of the Euclidian distance and the difference in slope
of the drawings tangent to the points in question. The difference in slope is weighted by ?,
which is chosen by the designer.
d(i,j) = (xi ? xj)2 +(yi ? yj)2 +?|si ? sj| (2.3)
One of the most computationally intense aspects of elastic costing is the fact that
E(i,j) must be evaluated many times over the comparison of a single pair of drawings. An
optimized approach to this issue is described both by Hellkvist and Tappert [20, 46]. The
comparison process is always begun with the E(0,0) calculation which is stored in element
[0,0] of a ??? array. By starting i and j with zero values and working upward, the array
can be populated such that no calculation is ever repeated during the comparison of two
drawings. While storing these values gives an immediate efficiency boost, they must be
accessed quite often so the developer must design the code and data flows responsibly to
ensure a speedy evaluation of E [46].
Merlin [20] was an elastic system developed at Ericsson Radio Systems as the primary
means of text entry on their Configurable Phone project. Hellkvist?s efforts were primarily
on optimizing standard elastic methods for speed as the Configurable Phone?s processor
was a 133MHz, Intel StrongArm. Merlin specifically focused on a character set including
the Graffiti and Jot alphabets. Merlin required just under 150K bytes of runtime and
data memories and was recorded at a top speed of 3.03 recognized characters per second.
15
Experienced Graffiti and Jot users obtained an average accuracy of 97%. Non-experts,
however, had a recognition accuracy averaging from 83% and 87%.
Structural approaches to character recognition attempt to extract descriptive, struc-
tural strings to represent drawings of characters. This is directly in contrast to elastic
techniques which traditionally attack raw coordinate data. Structural representations can
include any number of devices, such as directional chain codes (described later in Sec-
tion 4.1.2), the PrinterDescription Language (PDL), tree grammars, etc. Theactivity-based
system described in this work extracts structural information in the form of directional chain
codes and activity measures (see Section 4.2).
Li and Yeung?s algorithm [31] incorporates both elastic and structural techniques in a
combined recognizer. First a structural analysis takes place, identifying ?dominant? points
in drawings. A point is considered dominant if it is the elbow point of a 45 degree or
greater change in pen direction. The raw point sequence of the drawing is then replaced
by the dominant point sequence. This first structural stage works as a pre-classifier and
is follwed by the fine classification of elastic matching. The elastic portion of the system
works on dominant point sequences rather than raw data. With this system, Li and Yeung
reported recognition accuracy averaging 91% and a recognition rate of up to 2.8 characters
per second on an Intel 486 50MHz processor.
Chan and Yeung?s algorithms [11, 12] incorporate elastic and structural methods in a
unique fashion. Drawings are first described in terms of the following structural primitives
seen in Figure 2.9: line(dir), up(dir), down(dir), loop, and dot. The up and down primitives
represent counter-clockwise and clockwise curves, respectively. A loop is a curve (rotational
direction is unimportant) that intersects with itself. The dir represents some notion of the
direction the primitive ends with... East, Northwest, or South for example. Say there
16
Figure 2.9: Structural primitives employed by Chan and Yeung
are eight directional values considered. In this way there are 8 lines, 8 ups, 8 downs, 1
loop, and 1 dot, totaling 26 possible primitives A drawing is then described as a string
of the 26 primitives. Elastic matching is then applied to these sequences where instead
of Euclidian distance and slope, d(i,j) from Equation 2.3 can be calculated based on a
subdistancematrix between primitives designed by the developer to suit the target alphabet.
For example, the distance from line(East) to line(Northeast) may be 2 while the distance
from line(East) to up(East) is 1. The developer determines these values to best match the
alphabet, preexisting intelligence about its characters, and known deformation tendencies.
This provides for extraordinarily high recognition accuracy (98.6% for digits, 98.5% for
uppercase, and 97.4% for lowercase [11]), but requires design time intelligence that cannot
be updated post-deployment to incorporate new or altered symbols. Recognition speed is,
again, moderately slow with an average speed of 7.5 characters per second running on a
Sun SPARC 10 Unix workstation. In comparison, the algorithm presented in this paper was
timed with an average recognition speed of 16.8 characters per second on the most resource
limited implementation ? a 20MHz, 8 bit microcontroller without floating-point.
17
Chapter 3
The Problem of Character Recognition
3.1 e-Studio
The focus of this research originated as part of a 2001, Auburn University project
called ?e-Studio?. The goal of the e-Studio project was to develop a software and network
infrastructure to enhance the typical teacher-presentation student-notes experience. Faculty
would present slides and handwritten notes over a screen projector, and students would get
the same materials delivered to them via any of a variety of networked computers, such as a
laptop, PDA, super-phone, tablet computer, etc. These materials would then be accessible
at later times for review while on a bus or waiting for the laundry, for example. There
was also a desire to promote collaborative environments between the users so that students
could present questions, notes, or drawings to faculty from their terminals and create ?study
groups? to automatically share materials with. This collaborative element is similar to the
efforts presented in [29].
e-Studio would provide each user (including faculty members) the ability to add notes
to any materials delivered to or received by a terminal ? similar to the CrossPad applica-
tion in the Classroom 2000 project [2]. These notes were generally expected to manifest in
two forms ? scribbles and text. Scribbles would consist of quick sketches, bullet augmen-
tations, circles, lines, arrows, etc. A typical scribble might be simply drawing a quick star
next to an important piece of information or drawing a line to associate physically dislo-
cated bits of information. Text would consist of actual characters and digits that required
legibility. There is an emphasis here on legibility because characters and digits could both
18
be represented as scribbles; however, since the resolutions of different terminals may be
quite different, a string drawn reasonably on a tablet may appear illegible on a PDA. Thus
the text component of e-Studio would provide a means of character recognition so that the
content could be stored as strings and rendered appropriately across the various terminal
types. My research in character recognition stems from efforts to develop the text element
of the e-Studio project.
3.2 Recognition Qualities
A character recognition method designed to satisfy the needs of the e-Studio text
element must have numerous qualities. The character recognition algorithm my research
presents fulfills each of these.
3.2.1 Low resource usage and portability
e-Studio terminals were expected to include a variety of computing platforms, including
inexpensive mobile devices such as super-phones and PDAs. The system would be easiest
to expand and maintain if each component (including the character recognition component)
were portableacross thedevice gamut. For the character recognition algorithm, thisincludes
the following requirements:
? Memory usage should be minimal, including data stores and runtime memories.
? Recognition must perform in an on-line fashion to ensure an individual?s notes are
correct. Thisaddsan additional speed requirement to ensurethat usersare not waiting
for the recognizer. A recognition speed of 5 characters per second for a Roman-styled
19
alphabet should suffice considering it would be very difficult for a human to draw
characters any faster than this.
? Regardless of a device?s input capabilities, any character drawings can be represented
or mapped to a two-dimensional picture plane. Thus recognition must be based solely
on (X,Y) coordinate data.
? The recognition must support the unistroke drawing standard where each character
is drawn to completion one on top of the next. This will guarantee input support for
devices such as PDAs and touchpads which are too small to afford characters drawn
side by side (as on paper).
3.2.2 Alphabet Independence and User Dependence
The e-Studio system targeted an audience of diverse faculty and students. Users would
have different natural and cultural histories, distinguishing the requirement to support mul-
tiple, language-alphabets (e.g., English or Cyrillic). However, users of the same nationality
may vary in sex, dominant hand, and age (often by generations) and draw characters from
the same alphabet in very different ways. Further, users may have developed personal,
note-taking shorthand they would like to continue using.
To satisfy these conditions, the recognition system must be tailored to each user (user
dependence) and should not inherently respond to characteristics of a specific language-
alphabet (alphabet independence). It is important to note that an alphabet independent
recognition system need not support every language-alphabet under the sun...not natively
at least. Rather, it must be capable of functioning reasonably well given an arbitrary set of
drawings as an alphabet. How well is well enough is system and application dependant. If
20
the character recognizer represents the complete system (as on most PDAs), the recognition
accuracy must be very high. If instead it is a component of a larger, word-based system (as
with those surveyed by [28]), a character-level accuracy of only 70% may be necessary. The
user dependant aspect of the system should ensure that character-like markings outside of
the user?s chosen language-alphabet can be supported in addition to the alphabet?s charac-
ters... in other words, the user trains the system rather than the user learning the system.
This is reasonable since most mobile and wearable devices are typically used solely by the
owner.
3.2.3 Revisable Post-Deployment
It is unreasonable (or prohibitively expensive) to expect that a recognition system
could be produced to satisfy the issues for alphabet independence and user dependencies
for all users prior to deployment. After all, such a system (out of the box) would have to
account not only for all language-alphabets, but would additionally support all shorthands
and written variants of both. Instead, the e-Studio system should be deployable with some
existing character alphabet (optionally) along with the tools necessary to replace, expand,
and edit alphabets. This would allow users not only to write in a manner comfortable to
them, but it would provide the means to add new shorthand or other characters to the
alphabet. Kassel [27] has shown the editing process to be generally acceptable by most
users.
To take the alphabet editing, post-deployment, a step further, the system must not
require an algorithm update when the alphabet changes, although the particular parameter
values for the deployed algorithm may certainly be revised in some automated fashion.
21
This is a difficult proposition considering recognizers are commonly deployed using some
hard-wired bit of human expertise to classify difficult characters [3, 12, 10, 11, 20, 27].
3.2.4 Resistance to Noise
The e-Studio system was to target a wide range of mobile devices. With this in mind, a
recognition algorithm suitable for the mobile environment must be capable of dealing with
the effects of the environment on the drawing of characters. In particular, regular noise as
introduced by say the fairly constant motor of an elevator and isolated or irregular noise
(from bumps in the road, for example) should have a minimized influence on recognition
accuracy. Performance in a noisy environment should be comparable to that of an otherwise
static environment.
3.3 Finding a Sample Corpus for Evaluation
A convenient resource for research scientists in many fields is a common data corpus
containing vast amounts of field specific data that can be utilized in experiments and for
standardized comparisons of various techniques. For the field field of character recognition,
such a corpus would contain samples of several thousand individuals of varying backgrounds,
including sloppy samples, along with a digital transcript of the drawings produced by human
viewers. While many such repositories exist, none (to my knowledge) are suitable for use
in the extended study of on-line, unistroke-style, user dependant recognizers. As such, the
experiments presented in Chapter 6 rely on character samples I collected for the purpose of
this work.
22
3.3.1 Off-Line Resources
Of the major character repositories available today, the overwhelming majority are
directed specifically at off-line recognition systems. This comes as no surprise since there is
such a vast wealth of paper documents that might have an increased value if converted to
digital texts... journals, typewriter manuscripts, prescriptions, etc.
One such corpus is the NIST Handprinted Forms and Character Database (Special
Database 19) available for purchase over the Internet. It is quite large, containing samples
from over 3200 individuals and has been leveraged to develop the recognition systems used
by the US Census Bureau. It additionally includes a complete human generated transcript
for each sample, as well as database management utilities. Unfortunately there is no tem-
poral information about any of the handwritten documents it contains. Rather, it is based
on high resolution (300 dpi) scanned documents.
Since temporal information is virtually always imperative to on-line recognizers (abso-
lutely crucial to the technique described by my work), such databases are useless to on-line
researchers. This is a shame since the same wealth of handwritten documents mentioned
earlier could be used as the base of new character database for off-line recognizers. In
fact, new data sets could be constructed regularly by scanning any of the thousands of
handwritten documents that surround us in our everyday lives.
3.3.2 On-Line Resources
There are a few existing resources that are designed specifically for on-line recogni-
tion research. To my knowledge, however, non of these are suitable for user-dependant
recognizers.
23
Unipen Database
The first major on-line data corpus was managed by the International Unipen Foun-
dation. This database provides samples from over 2200 writers in the Unipen format. The
Unipen format was designed as a standardized means of recording handwritten character
samples, far predating similar technologies such as InkML or Microsoft?s Journal formats.
Samples include information about the writer (eg, name, hand dominance, tablet model)
as well as sequenced (X,Y) coordinate data, pen events, and timing information. Like the
NIST database, Unipen also includes human generated transcriptions and database tools.
While this database is quite useful and popular, it is not useful for the development of
user-dependant recognizers because the subject samples are not controlled adequately. A
large percentage of the data does not even include one instance of each character per writer.
This is primarily due to the fact that the recording process is not administered and because
no standard phrase set is provided to writers. A complete sample for one writer is the word
?applesauce?. Without adequate frequency of each character per writer it is impossible to
separate the data into suitable training and recognition sets. Additionally, the majority of
samples are not transcribed by a human reader. A final issue is that there is no control
to enforce character segmentation - i.e. a large number of samples include fully connected,
script-style characters and ligatures which are not at all suitable for unistroke-style systems
where each character is drawn to completion, one on top of the next.
Kassel Data Corpus
For his comparison of recognizers, Kassel devised and collected one of the most sub-
stantial databases of handwritten character samples for on-line recognition, which he has
since released to the research community [27]. Kassel recorded 159 subjects? handwriting
24
in the Unipen format to ensure compatibility with the existing Unipen tools. Unlike the
Unipen database, Kassel developed a standardized phrase set for his experiments contain-
ing 599 individual drawings to ensure consistency between subjects. The Kassel phrase
set consists of 25 five digit numbers and 54 capitalized words selected from a 20,000 word
lexicon, the Merriam-Webster Pocket Dictionary [35]. This provides coverage for upper and
lower case English characters as well as digits. Overall, Kassel recorded 95,241 character
samples. In particular, Kassel developed his phrase set to be as compact as possible while
affording close to English letter-frequencies. The downside to this approach is that the
complete sample for any given subject contains too few examples of most characters to be
applied to user dependant systems. As seen in Table 3.3, Kassel?s phrase set contains only
one instance of 13 capital letters, two instances of four capitals, five or less instances of five
lower case letters, and 10 or fewer instances of nine lower case letters. There are so few ?G?s,
once one is used to train the recognizer, only one sample ?G? remains to be tested. This
means either 0% or 100% recognition accuracy for ?G?. Further, Kassel intentionally did not
control character segmentation, thus fully connected, script-style characters and ligatures
exist which are not suitable with Unistroke-style recognizers.
25
Accountability Frightfully Omitted Taxi
Agonizingly Fuzz Projections Transform
Announcing Geography Puff Uncomfortably
Approaching Governing Puzzlement Unexpected
Backing Hugging Quizzically Unworkable
Cafeteria Inconsequential Rejuvenating Vanquish
Commanding Industrialized Revving Volcanic
Comparatively Invulnerable Seeker Wobble
Complex Justifications Shadow Xylophone
Declaring Kidding Skiing Yearbook
Decompress Lump Spoiling Zero
Disqualified Mate Surrounded
Embraces Menu Swab
Fabulously Normalization Sympathetically
Table 3.1: Words used the the Kassel phrase set
02066 16380 35124 54331
05521 23687 45922 60839
07856 27657 47190 61449
10342 29697 48170 72898
13262 30464 50011 74184
79158 86773 88253 94095
99375
Table 3.2: Digit sequences used the the Kassel phrase set
?0? ? 13 ?9? ? 12 ?I? ? 3 ?R? ? 2 ?a? ? 33 ?j? ? 2 ?s? ? 12
?1? ? 13 ?A? ? 4 ?J? ? 1 ?S? ? 7 ?b? ? 10 ?k? ? 5 ?t? ? 20
?2? ? 13 ?B? ? 1 ?K? ? 1 ?T? ? 2 ?c? ? 17 ?l? ? 26 ?u? ? 21
?3? ? 12 ?C? ? 4 ?L? ? 1 ?U? ? 3 ?d? ? 11 ?m? ? 12 ?v? ? 6
?4? ? 13 ?D? ? 3 ?M? ? 2 ?V? ? 2 ?e? ? 37 ?n? ? 40 ?w? ? 3
?5? ? 12 ?E? ? 1 ?N? ? 1 ?W? ? 1 ?f? ? 8 ?o? ? 31 ?x? ? 3
?6? ? 12 ?F? ? 3 ?O? ? 1 ?X? ? 1 ?g? ? 18 ?p? ? 11 ?y? ? 11
?7? ? 13 ?G? ? 2 ?P? ? 3 ?Y? ? 1 ?h? ? 7 ?q? ? 3 ?z? ? 19
?8? ? 12 ?H? ? 1 ?Q? ? 1 ?Z? ? 1 ?i? ? 42 ?r? ? 22
Table 3.3: Character and digit instance counts for the Kassel data corpus
26
Chapter 4
Activity-Based Recognition
The core of this work is based on a novel feature extraction metric, activity. In order
for activity to be a useful tool for character recognition, it must be incorporated into a
recognizer designed both to feed the metric as well as use its measures to classify hand-
written characters. The following sections define the activity metric and introduce a simple
recognizer designed to use it.
4.1 Preprocessing
Typically, before any recognition of characters can be performed, a drawing of a charac-
ter must be preprocessed so that it can be described in the format native to the recognition
algorithm. This affords greater recognition accuracy (and perhaps speed) and allows in-
stances of characters to be stored efficiently [20].
4.1.1 Resampling
When drawing a character, it is quite likely that the speed of the pen will vary over
different portions of the stroke. For example, while drawing the capital letter ?V?, the device
capturing the pen movement will probably capture few, well separated coordinates along
the left and right slopes, and many tightly packed coordinates around the base joint. This
irregular distribution is due to the pen slowing down in anticipation of returning in an
upward direction. Additionally, there is no guarantee that the same number of coordinates
will be captured each time the same character is drawn.
27
To deal with these issues, this recognizer resamples the drawing of a character by
linearly interpolating N +1 Cartesian coordinates into a vector vectorR = ?r1, r2,..., rN+1? over
the length of the drawing as in [3, 27] so that line segments between consecutive elements in
vectorR are of equal length (with respect to the traversal length of the original stroke) and both the
first and last coordinates are the same as those captured in the original drawing. Figure 4.1
demonstrates this interpolation more clearly. As well as guaranteeing each vectorR is of constant
size, spatially resampling a drawing in this manner also aids in dampening regular noise and
tremor and has been shown to benefit recognition [27]. Figure4.2 shows four examples of
the letter ?G? that are each correctly classified by this recognition algorithm. The leftmost
drawing is very close to the character class for ?G? in the test alphabet. The next two
examples in the figure were drawn with exaggerated regular noise. Proper classification of
these types of drawings is in part due to the noise reduction that resampling provides. Some
noise that is introduced into drawings of a character is not regular, say noise that occurs
as the result of writing on a bus. Resampling can not be relied on to eliminate this kind of
noise. The rightmost drawing of the figure has several instances of this type of noise and
is recognizable by the use of the feature extraction method described in Section 4.2, which
dampens the noise that spatial resampling can not eliminate.
4.1.2 Directional Codes
While size and position of a drawing on the writing surface could be relevant in enhanc-
ing recognition [8], this algorithm emphasizes the direction of pen movement over the course
of the stroke. This provides for eyes-free use, where a user is likely to draw the same charac-
ter in many different locations on the writing surface as well as in varied size. Each consec-
utive coordinate pair (ri, ri+1) ? vectorR is used to create a vector from the first element of the
28
Figure 4.1: Resampling of a simple stroke to four coordinates: (A) Original stroke with
three coordinates, (B) Four coordinates placed over the length of the stroke, (C) Final
resampled stroke.
Figure 4.2: Drawings of the letter ?G? correctly classified by the presented recognizer
29
pair to the second. This vector is then mapped to one of a finite number of directional codes
stored in a vector vectorD = ?d1, d2,...,dN? where di = DirectionalCodeMapping(ri, ri+1).
Freeman?s chain code [17] ? which divides vector space into the eight cardinal directions
E, NE, N, NW, W, SW, S, and SE (enumerated 0,...,7 respectively) as in Figure4.3(a) ?
is frequently used for this. Since the presented algorithm was intended to work with cus-
tom alphabets, it might also be beneficial to use a generalized direction mapping (based on
Freeman?s code) so that certain ranges of vector space can be emphasized over others with
respect to a particular alphabet and user. Additionally, these ranges can be optimized over
an alphabet to further separate characters, thereby improving recognition. For example, if
a particular user draws the vertical and horizontal portions of characters in an alphabet in
a close to vertical and horizontal manner (with only rare deformations), reducing the ranges
for directions 0, 2, 4, and 6 in Freeman?s mapping (as in Figure4.3(b)) may improve recog-
nition accuracy for the user. Further, if few characters in an alphabet require W, SW or
S pen movements, the directional mapping could be altered to allow greater discrimination
in the other directions, as in Figure4.3(c). As part of my final experiments, I investigate
methods for automating the creation and optimization of directional code mappings on a
per user basis. While this can improve recognition accuracy overall when used to prepare
directional code vectors, it is beyond the scope of this chapter since it does not alter or
accentuate the mechanics of the activity metric.
4.2 Activity
While a vector of Freeman?s chain codes could be used alone to describe a drawing of
a character, no single vector element can be used to derive information about the overall
drawing since deformations tend to be localized. The simple recognizer used throughout
30
(A) (B) (C)
Figure 4.3: Directional code mappings. (A)?Freeman chain code, (B)?Accurate vertical
and horizontal lines, (C)?Rarely southwestern
this work attempts to address this issue specifically by introducing a feature extraction
metric that further compresses the information gained from directional codes and provides
insight into the entire drawing in a general manner. This metric is called activity and is
defined over a directional code vector vectorD as follows:
Activity(vectorD) = Length(
vectorD)
Dominance(vectorD) (4.1)
where Dominance(vectorD) is the cardinality of the dominant (most common) directional code
over vectorD. The activity metric is intended to approximate (quite loosely) the number of unique
directional codes required to describe a given vector. If the directional code mapping used
enumerates 8 unique values (as in Freeman?s chain code), the value of activity over an
arbitrary vector of these codes can range generally from 1.0 (only one directional code is
present) to 8.0 (all possible codes appear in equal frequency). For example, the directional
code vector ?0,0,0,0,0,0,0,0,1,0,0,7? has an activity of 12/10 = 1.2. While there are
clearly three distinct directional codes in the vector, the non-0 directions are both isolated
and could likely be considered noise. The activity measured suggests that the drawing has
a single dominant direction with few deformations, thereby significantly dampening noise
that remained after spatial resampling. Stating the vector has three different directions, 0,
31
1 and 7, severely undermines the dominance of 0 and over-emphasizes the presence of 1 and
7.
4.2.1 Activity is When Stuff Happens
In order to understand the reasoning behind the activity metric, you must keep in mind
the e-Studio target and desired recognition qualities for which this effort originated (see Sec-
tion 3.2). An algorithm that seemed particularly promisingwas developed by Kam-Fai Chan
and Dit-Yan Yeung [11] based on elastic structural matching. The primary disadvantages
of this algorithm for the e-Studio project was that the runtime complexity of elastic match-
ing was too great for some potential target processors (such as a Zilog Z80). Additionally,
similar characters sometimes required the algorithm designer to develop code specifically to
distinguish them. For example, the character ?D? could be described as a line in direction
N(6) followed by a clockwise curve starting in direction E(0) and ending in direction W(4).
Unfortunately, the same description could be used to describe the character ?P?. To resolve
conflicts between the two characters, code would be added to calculate the ratio of the
height of the curve to the height of the line. Were the ratio below some threshold, the ?P?
is recognized, otherwise ?D? is recognized. This eliminates the possibility of modifying an
alphabet after deployment.
In an early attempt to correct the inadequacies of the algorithm described in [11], I
approached the problem of distinguishing between the characters ?D? and ?P? by drawing
each, one after another quickly, with my eyes closed, and then trying to interpret how I
knew was drawing one or the other. The key point here was to identify the mentality of
drawing each character, rather than emphasize how to distinguish drawings of each. The
notion I considered was that the difference between the two drawings was ?when all the
32
D ? ?2,2,2,2,2,2,2,2,2,2,2,1,1,0,0,0,7,7,7,7,6,6,6,6,5,5,5,5,4,4,4,4?
P ? ?2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,0,0,7,7,7,6,6,5,5,4,4?
W ? ?7,7,7,7,7,7,7,7,7,7,1,1,1,1,1,1,7,7,7,7,7,7,1,1,1,1,1,1,1,1,1,1?
V ? ?7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1?
A ? ?1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7?
Figure 4.4: Directional Code representations of ?D?, ?P?, ?W?, ?V? and ?A? of the Graffiti
alphabet
interesting stuff happens, or when I deviate from the interesting stuff?. To clarify, drawing
the ?P? was like drawing a line with a circular tail at the end, whereas drawing the ?D? was
more like drawing a semicircle with a line at the head. There is a subtle difference ? the
first puts the drawing emphasis on the line while the second emphasizes the curve. This
examination is what led me to develop the activity metric.
Consider the directional code vectors representing ?D? and ?P? as shown in Figure 4.4.
The activity measured over the ?D? is approximately 2.91, while the measure of ?P? is
1.6. These numbers reflect my observations about drawing the two characters. The ?P?
is primarily a line in a single direction with deformations (the curve at the end) totaling
half the drawing?s length, whereas the ?D? is mostly curve...a bigger curve mean a higher
cardinality of each directional code, and thereby a higher activity. Additionally, notice the
curve in ?P? adding 0.6 to the straight line activity (1.0) is consistent with the relationship
height of the line and curve ratio measured in [11]. The important thing to recognize here, is
that the activity metric does not compare the heights of lines and curves, rather it provides
a similar separation measure, for most such problematic character combinations (eg, ?u? and
?y?), but without the need for instance-specific code.
33
4.2.2 Activity Regions
In order to further increase the usefulness of activity, it is necessary to measure the
activity of portions of a drawing rather than only measuring over the entire length of the
stroke. Activity regions define these directional subvectors. To this point, only the region
spanning the length of the drawing has been considered. In my initial work with the
metric I found it beneficial to recognition accuracy to additionally measure activity over
regions covering the first and second halves of the drawing, as well as each quarter of the
drawing. This totals seven activity regions and is exemplified in Figure 4.5. While the
number and location of regions used for a given implementation or alphabet may differ -
or perhaps even evolve with usage - I have chosen these seven regions as stock parameters
under the assumption that they would be useful for a variety of alphabets. For example, the
activity measures over the full drawings for ?W? and ?V? in Figure 4.4 are both 2.0, which
does not provide for recognition. Measuring activity on the first halves of each of these
characters, 1.6 and 1.0 respectively, and further on the remaining regions clearly separates
the two. Additionally, since one activity region may cover a greater portion of the drawing
than another or might isolate a particularly revealing portion of the stroke, the activity
measured over each region could be biased by some scalar to emphasize the importance of
a particular region in distinguishing characters of the current user?s alphabet.
4.2.3 When Activity Fails
Regardless of the general success that can be achieved using activity over multiple re-
gions of a drawing, activity fails to aid recognition under certain conditions. Take, for exam-
ple, measuring the seven activity regions on the characters ?A? and ?V? in Figure 4.4...they
are all identical. In fact, no region can be defined such that the activity for both characters
34
A1 = 3.2, A2 = 1.6, A3 = 1.6, A4 = 1.0, A5 = 1.3, A6 = 1.3, A7 = 1.0
Figure 4.5: The seven Activity Regions and measures for ?W?
is not equivalent. This means that activity alone can not distinguish these two character
drawings. The reason for this failure is that activity, while being a measure of direction,
in no way reflects direction. A drawing with a full activity of 1.0 has only one directional
code present after spatial resampling. What can not be determined from activity is what
direction the stroke was in. To resolve this issue, elements of the directional codes must
be maintained along with activity so that recognition between these classes of characters is
possible.
4.3 Recognition
Deployed use of recognition software based on the presented method takes place in
three stages.
1. A character class alphabet is created
2. New drawings are input by the user and converted to the class template used in the
alphabet
3. A character in the alphabet is recognized as being the most equivalent (or sufficiently
equivalent) to the user?s drawings
35
To prepare a new (custom) alphabet, the user draws each character of the desired
alphabet at least once for the recognition system, guaranteeing the character classes in the
alphabet contain the irregularities introduced by a given individual?s writing style. This
affords improved recognition accuracy for the user since the irregularities can be used to
further separate characters rather than ?test? the classifier in spite of them. Additionally,
this method of alphabet generation allows the use of arbitrary, non-Roman characters. The
popularity of the Palm OS demonstrates that users are willing to learn an alphabet to
improve run time accuracy [42]. It is my belief that users might alternately be responsive
to ?showing? a device the way they already write.
Each character drawing to be included in the alphabet is defined by an activity vector,
a directional code vector and the character associated with the drawing. The inclusion of
the directional code vector compensates for activity?s lack of directional information (see
Section 4.2.3). Care should be should taken when determining the length of each vector to
ensure that both direction and activity have appropriate influence in the character classes.
For the implementations described in Chapter 5, drawings were preprocessed to a directional
vector of length 32. The choice of 32 directional codes was made a priori, and the resulting
vector included as the directional code vector in the character. The activity vector used in
complement is length 7 over the regions described in Section 4.2.2.
Once an alphabet is constructed, the recognition process is quite straightforward. A
new drawing is introduced to the system and described as a directional code and activ-
ity vector pair (as above). This character is then compared against each member of the
alphabet as a point in multi-dimensional hyperspace (39 dimensional space in my implemen-
tations). While I chose Euclidean-squared distance to measure the variance of a drawing
and members of the alphabet, other metrics might be equally useful. No studies have been
36
done at this time comparing the quality of recognition gained from alternate distance met-
rics. Classification over the calculated distances is done with a K nearest-neighbor voting
mechanism. The set of K closest character classes is found with respect to a given drawing,
and the character with the most (either instance or weight-based) influence over the set is
recognized.
Calculating the distance between two characters is simple. The distance between two
values on an activity dimension is simply the difference between the two values. The differ-
ence between two directional codes is the toral separation between the two codes? values.
In other words, the distance between directions 7 and 0 is 1 rather than 7. If a irregular
directional code mapping is used, it would be more appropriate to evaluate the distance be-
tween codes torally in terms of degrees or radians rather than integer code values. I use this
separation approach in my final experiment when I optimize the parameters of recognition
for different users.
In an attempt to balance the influence of direction and activity, a scalar bias of 1.222
was applied to each activity measure upon its calculation. This value was determined in the
following manner...the range of variance for two Freeman codes is 4, and for two Freeman
activities is 7.0, thus the balanced Euclidean-squared influence equation is:
7(7.0 ?Bias)2 = 32(4)2 (4.2)
37
Chapter 5
Implementations
This work is characterized primarily as the effort to introduce the activity metric
and its application to the field of on-line character recognition. The implementations and
evaluations of the activity metric resulting from this effort are focused on demonstrating
that it is a viable solution for each of the recognition issues described in Section 3.2.
In order to demonstrate the low resource requirements and portability the activity-
based recognizer discussed in previous sections, the stock recognizer was implemented and
deployed on four platforms: Intel x86, Motorola Dragonball (Palm), Rabbit Semiconductor
2000 (a 20MHz, 8-bit microcontroller with 128K SRAM, 256K flash, and on-board serial
I/O), and the Sharp Zaurus handheld. A U.S. patent has been acquired for activity-based
character recognition based on these implementations.
The Intel implementation was done first, using Borland C++ Builder on Microsoft
Windows. It consisted of an alphabet creation/maintenance application and a notepad-
type application for testing recognition. The primary interface of the editor is shown in
Figure 5.1. Each character was described as a length 32 vector of directional codes and a
length 7 activity vector like that defined in Section 4.2.2. The direction mapping used was
the Freeman mapping. A scalar bias of 1.222 was applied to each activity measure upon its
calculation.
The small size of the Windows code (only 149 lines of C++, excluding the code for the
user interface) and the small data structures required (less than 30K of data) encouraged
me to try to implement the algorithm on much smaller, slower processors. Given that
38
Figure 5.1: Windows alphabet editor
handwriting recognition is now a common feature of PDA?s, a fixed-point implementation
was developed for Palm OS devices. The parameters used for this algorithm were the
same stock parameters used in the Windows implementation other than the modifications
required to scale for fixed point.
The Palm implementation requires 35K bytes for code and data, and 6K of persistent
storage for an alphabet of 26 characters, space and backspace (all data is unpacked). The
recognition screen and alphabet editor screens from the Palm application are depicted in
Figure 5.2. While profiling this implementation, it was found the bulk of time spent in
recognizing a character was spent during character classification when the distance between
members of the alphabet is calculated. As such, this implementation was also optimized
for speed by making two intermediate checks of the distance between characters. Since the
variance range for an activity measure is twice that of a directional code, the activity vector
39
Figure 5.2: Recognition, alphabet, and character editing screens for the Palm OS
is used to form the initial squared sum and a check was made after 12 and 24 dimensions
of the direction vector. This allows for terminating the distance calculation if the partially
calculated distance is already greater than the distance to the closest character found so
far. This resulted in a 22% speed increase at recognition time, based on internal clock
measurements.
An 8-bit microcontroller implementation on a 20MHz processor with very small on-
board SRAM and flash memories proved the viability of the algorithm for adding character
recognition capability to very cheap and very low resource devices. The input device was a
Fellowes Touch Mouse and the output device was a 2x20 line LCD display. Code size was
1349 lines of Dynamic C (332 lines for recognition code). Including an alphabet comparable
to that used in the Palm OS implementation, the binary image for this application is 40K
bytes. No additional memories are required at runtime as no dynamic memory allocation
is used. Thus, a processor with a 64K address space is adequate. Measurements using the
on-board timer of the Rabbit Semiconductor 2000 indicate a maximum character recogni-
tion speed on this very slow device of 16.8 characters per second, significantly faster than
humans are capable of drawing characters. This implementation further demonstrates the
portability of activity-based recognizers since the Touch Mouse used for input does not
40
Figure 5.3: Front and back views of the 8-bit microcontroller implementation
report (X,Y) coordinate data, but rather accelerated (X,Y) deltas. This means that a slow
motion of one physical inch will report a smaller change in X and Y than a quick motion of
one physical inch. The hardware is shown front and back in Figure 5.3. It should be noted
that most of the board pictured is an unused prototyping area ? the only chips used are the
microcontroller, an RS232 driver and an inverter. Due to the limited interface capabilities
of this implementation, the alphabet editor written for the Windows environment was used
to facilitate the creation of an alphabet. A Perl script was written to convert the files
generated by the editor to the binary format required by the Rabbit. These files were then
downloaded into flash memory using the Rabbit field utility.
After the first three implementations were completed, a portable, fixed point, ANSI
C version of the core recognition tasks (alphabet representation, preprocessing, activity
measurement, and character classification) was developed. This core was then used to
develop a final implementation for the Sharp Zaurus handheld computer with an interface
based on the Palm implementation. The core included 1622 lines of ANSI C code and
require 60K bytes of RAM.
41
Chapter 6
Experiments
6.1 Graffiti Experiments
To measure the accuracy of a simple, activity-based recognizer, a study was per-
formed where 15 university students wrote with the Graffiti alphabet. Graffiti was cho-
sen because many subjects would have some familiarity with it. Additionally, it might
be possible to use the results in comparison to the Palm OS, Pocket PC and TealScript
(www.tealpoint.com/softscrp.htm) recognizers, each of which support the Graffiti alphabet
natively.
Thisphrase set was designed based on the approach used by Kassel [27] as described in
Section 3.3.2. A compact phrase set was desirable that reflected English letter frequency
but also included many instances of each character to ensure the data was suitable for user
in user-dependent systems. Satisfying each of these requirements at once is a mammoth
task. First The notion capturing multiple letter-cases or digits with this experiment was
eliminated ? Graffiti strokes for both upper and lower cases are identical and digits are
part of a small (10 characters versus 26) separate alphabet. This reduced the size of Kassel?s
phrase set by 125 characters, but the real tradeoffs are made trying to balance compactness
with letter frequency.
Without regard to case, the letter ?J? appears only three times in Kassel?s phrase set
? the fewest occurrences of any character. To ensure at least X instances of each character
were recorded, Kassel?s phrases could be reused minus case but would require subjects to
write the set out X/3 times. This means to guarantee a minimum of nine instances of each
42
character in the phrase set, subjects would have to draw (599 ?125) ? 3 = 1422 individual
characters (not including any redrawn to account for recognition errors). A few individuals
wrote out parts of the phrase set on paper so the time requirements for this size collection
could be approximated... about 40 minutes if fatigue did not set in. This is far too long
for only nine ?J?s but 43?3 = 129 ?I?s.
Kassel had dealt with compactness and letter frequency, but because many instances
of each character needed to be collected there was little possibility his phrase set could
be reused for this study. Further, it was clear letter frequencies would have to loosen to
keep the size down and record X instances. My final decision was to construct a phrase
set from pangrams, sentences that contain each letter of the alphabet at least once. With
this method, choosing the number of pangrams determines X while keeping the phrase set
compact. A list of pangrams was compiled from a variety of sources on the Internet and the
phrase set was built by selecting the shortest 20. Following are the complete text passages
written by subjects:
1. the five boxing wizards jump quickly
2. a very bad quack might jinx zippy fowls
3. a sphinx of black quartz judged my vow
4. a quick brown fox jumps over the lazy dog
5. wavy jake and his fat zebra had mexican pig liquor
6. brawny gods just flocked up to quiz and vex him
7. an exquisite farm wench gave a body jolt to prize stinker
43
8. five or six big jet planes zoomed quickly by the tower
9. pack my box with five dozen liquor jugs
10. six big devils from japan quickly forgot how to waltz
11. william jex quickly caught five dozen republicans
12. a large fawn jumped quickly over white zinc boxes
13. alfredo just must bring very exciting news to the plaza quickly
14. grumpy wizards make toxic brew for the evil queen and jack
15. back in june we delivered oxygen equipment of the same size
16. jaded zombies acted quaintly but kept driving their oxen forward
17. would you please examine both sizes of the jade figures very quickly
18. six big juicy steaks sizzled in a pan as five workmen left the quarry
19. about sixty codfish eggs will make a quarter pound of very fizzy jelly
20. a mad boxer shot a quick gloved jab to the jaw of his dizzy opponent
This phrase set contains 887 characters (non-space) with instance counts for each char-
acter shown in Table 6.1. This is fewer total characters than if the Kassel phrases were
doubled while guaranteeing many more instances of each character.
Because this experiment was designed to be subject interactive (subjects see the results
of the recognition as they write) and involved English sentences, a simple testing interface
was designed similar to a note taking application one might find on a PDA as seen in
44
?A? ? 63 ?F? ? 25 ?K? ? 22 ?P? ? 22 ?U? ? 40 ?Z? ? 23
?B? ? 23 ?G? ? 23 ?L? ? 32 ?Q? ? 20 ?V? ? 20
?C? ? 25 ?H? ? 24 ?M? ? 39 ?R? ? 39 ?W? ? 23
?D? ? 34 ?I? ? 71 ?N? ? 37 ?S? ? 37 ?X? ? 20
?E? ? 87 ?J? ? 20 ?O? ? 55 ?T? ? 46 ?Y? ? 29
Table 6.1: Character instance counts for the Graffiti experiment
Figure 6.1: The data collection application for the Graffiti experiments
Figure 6.1. The application allowed users to draw characters, one on top of the next in a
box on the screen and have the recognized characters appear one after another in a text
box to the right.
Subjects were classified as novice (no experience with Graffiti), moderate (having basic
comfort with Graffiti) or expert (able to write Graffiti eyes-free). They were each given a
sheet of paper with the Graffiti alphabet seen in Figure 2.3 and the complete phrase set
for the experiment. Subjects then drew each letter of the alphabet (plus ?Backspace? and
?Space?) three times to train the system using the Windows alphabet editor (Figure 5.1).
After this they entered each pangram from the phrase set, pressing the ?Next Sentence?
button between each pangram.
45
Accuracy # of Subjects
Expert 97.12% 4
Moderate 96.5% 2
Novice 95.01% 9
Overall 95.77% 15
Table 6.2: Average results of the Graffiti study
Subjects were allowed to write at their own pace and were instructed to correct recog-
nized characters by backspacing and redrawing the character. Each backspace was recorded
as a character in error. This mechanism allows each subject to determine when a character
is misrecognized rather than relying on an automated, character by character comparison
of the subjects? text versus the experiment text. As a result, subjects who attempted to
memorize phases from the given text but remembered them incorrectly (eg, ?the? instead
of ?this?) would not negatively influence the data. Additionally, if a particular subject?s
drawings of certain characters were difficult to recognize, serial misrecognitions of the same
character instance would have an increasingly negative effect on recognition accuracy. This
is as close to real world behavior as possible while still maintaining some control over the
content.
Recognition accuracy was measured for each subject and averaged across the subject?s
classification. The results (summarized in Table 6.2) show average recognition accuracies
ranging from approximately 95% to 97%. An brief analysis of the data collected from the
Graffiti study revealed that the majority of recognition error was the aggregate effect of only
several characters being misrecognized frequently. This means the recognizer was generally
quite good for all but a few problem characters.
To gain an idea of how activity-based recognition compares to some commercial PDA
recognizers, two expert users from the study agreed to repeat the phrase set with the Palm
46
Pocket PC TealScript Palm OS Activity-based
Expert 1 94.13% 94.54% 96.2% 98.96%
Expert 2 92.12% 95.03% 95.4% 97.01%
Table 6.3: Accuracy rates of the pilot study with commercial recognizers
OS, Pocket PC (in all-caps mode) and TealScript recognizers. Of the four recognizers eval-
uated for these users, the activity-based recognizer performed with the greatest accuracy.
The results of this pilot study are summarized in Table 6.3.
Several variants of the activity-based recognizer were tried in an attempt to deal with
this issue.
One approach that might improve the recognition accuracy of the activity-based algo-
rithm was to divide the recognition comparisons into two phases. First, the activity vector
would be used to find some small subset of characters in the alphabet whose activity vec-
tors were the closest to the drawn character. Second, the directional code vector of the
drawing would be compared against only those alphabet members found in the activity
phase of recognition. This variant is referred to as activity-first recognition. Each of these
comparisons was done using Euclidean-squared distance.
Figure 6.2 shows how characters in the Graffiti alphabet could begin to be classified
based on the number of unique directional codes required to describe the strokes. Only 3
letters are described by a single directional code and 9 are described by two directional codes.
Since the activity metric was designed to approximate the number of directional codes that
describe a given vector, finding those characters whose activity vector is very similar to that
of a given drawing might provide the second phase recognizer with a smaller alphabet of
characters with very different directional code vectors. This new, smaller alphabet might
then be recognized against using only directional codes, benefiting the overall recognition
47
Figure 6.2: Characters of the Graffiti alphabet grouped by total unique directional codes
accuracy, as well as improving recognition speed since only several characters would have
the length 32 directional code vectors compared.
Given activity-first recognition, it was thought it might be worth while to reverse the
two recognition phases for the sake of comparison. Direction-first recognition is imple-
mented by first comparing a drawing with the characters in the alphabet based only on
directional-codes. The closest several characters found in this first phase are put into a new
alphabet and then recognized against using only activity vectors.
In addition to the previous two variants of activity-based recognizers, two additional
recognizers were implemented; activity-only and direction-only respectively. The first uses
activity vectors only to distinguish characters. The second uses only directional codes only
? specifically Freeman?s chain codes.
To measure the quality of the various recognizers described here, each was used to
recognize the 15 subjects? data from the first study. Each recognizer used a directional code
vector of length 32 and an activity vector of length 7 spanning the activity regions described
in Section 4.2. A scalar bias of 1.222 was applied only to the activity vector of the basic,
activity-based recognizer. This is because a bias can not affect the outcome of recognition
for the four variants tested. For both the activity-first and direction first recognizers, the
48
Table 6.4: Average recognition accuracy of five recognizers
Activity Direction Activity Direction Activity
Based Only First First Only
Expert 97.1% 92.3% 85.6% 77.9% 36.2%
Moderate 96.5% 91.2% 85.7% 74.4% 37.5%
Novice 95.0% 90.2% 83.5% 74.1% 35.8%
Overall 95.8% 90.9% 84.3% 75.1% 36.1%
first phase of recognition generate a new, subset alphabet with 8 members. The results of
these experiments are summarized in Table 6.4.
While none of the variant recognizers examined in this paper were able to outperform
the basic activity-based recognizer, the results of the experiment are somewhat revealing.
First, the direction-only recognizer provided the second best recognition accuracies for this
experiment, far exceeding the quality of recognition gained from the activity-only recognizer.
This is not surprising since activity is a more coarse grain descriptor than directional codes.
Additionally, the activity-first recognizer provided greater recognition accuracy than the
direction-first recognizer. This is a reasonable expectation because coarse grain (activity)
classification is followed by fine grain (directional) classification. While the activity-first
algorithm did not exceed the recognition accuracy of the basic activity-based recognizer, its
performance may still be sufficiently improved. Perhaps by applying a unique bias to each
activity region in the activity vector, the first phase of the activity-first approach might
discover more appropriate sub-alphabets that could improve the recognition accuracy of
activity-first recognizers. A similar approach with varying scalar bias could be applied to
the activity vector in the basic, activity-based algorithm.
49
6.2 English Experiment
Having completed the Graffiti study, second experiment was performed focusing on
measuringtheperformanceof astock activity-based recognizer against subjects? non-stylized
version of the English alphabet in a non-interactive fashion. This means subjects wrote the
text without a recognizer interactively displaying the recognized characters. Instead the
same temporal information required by the recognizer (i.e. sequenced (X,Y) coordinate
pairs, pen down and up events, etc) was collected so simulate subjects could be used for
future optimization studies. Basically, subjects didn?t worry about the recognizer?s perfor-
mance so much as they were simply writing text as they might in an eyes-free situation.
As with the Graffiti study, the non-stylized study presented users with text passages for
them to write, this time with their personal variation of the English alphabet. This affords
greater insight into the performance of an activity-based recognizer on character sets other
than the Graffiti alphabet which, after all, was designed to be mechanically recognized.
Further, the differences between writing styles are much stronger with this study since an
alphabet reference sheet could not be provided. Although it would be nice to investigate
wildly unique subject alphabets (including the alphabets of languages other than English),
it was important to stick with English at this stage so that the content of the captured text
could be controlled to a great degree and because many English speaking subjects were
available.
A major facet of this study?s design was based on the fact a third experiment was
planned involving the optimization of the recognizer?s parameters. This optimization pro-
cess would certainly involve many minor and major adjustments to parameter values. After
each set of changes were applied, the parameters would have to be evaluated in terms of
50
recognition accuracy. If this study was conducted in the fashion of the Graffiti study, the
time and resource expenses involved in having subjects perform the experiment over and
over would be unreasonable. Therefore, it was decided to completely reorganize the tech-
nique for the sake of the optimization and future studies. The restructuring for the English
experiment manifested specifically in two areas: the phrase set, and the fact that subjects
would write the phrase set in a non interactive fashion.
6.2.1 Non-interactive collection
The choice to use a non-interactive collection technique ensures that drawings represent
the natural style of each subject without recognizer influence. After the Graffiti study was
finished and its data reused for introductory tests of variant recognizers, several subjects
mentioned that when they encountered consistently misrecognized characters, they altered
the way they drew the characters in an attempt to complement the recognizer. This means
the results of the variant recognizer tests should be taken with a grain of salt because the
data collected was not raw, it was to some degree driven by the original recognizer and
therefore not wholly suitable for reuse. It was realized that recording raw, non-interactive
subject data would be crucial if one wanted to reuse the data to pursue optimization tech-
niques or investigate alternate algorithms in the future. The non-stylized study would
provide such a data store while simultaneously profiling the recognizer with a yet untested
alphabet.
Further, many Graffiti subjects indicated the cognitive effort involved in verifying the
recognition of each character slowed them down and added some mental fatigue. It was
believed, then, that the non-interactive study would go faster and might allow for a greater
amount of data to be collected in equal or less time. With this approach recognition
51
would occur at some point after all the drawings had been collected, fed into the system
automatically to simulate on-line usage.
6.2.2 Phrase set
The phrase set chosen for the Graffiti study consisted of 20 pangram sentences. This
ensured that every letter of the alphabet appeared at least 20 times in the phrase set. The
Graffiti alphabet had only one letter case, so in order to reuse these phrases one would have
to require that each subject wrote the phrase set twice, once for each case. At first this
seems reasonable, but a trial run found it very unnatural to write sentences in upper case.
Further, subjects in the Graffiti study often attempted to memorize parts of the pangrams
in order to expedite their progress. This resulted in pangrams being transcribed incorrectly
? not a big deal when the subject is watching over their own shoulder and can verify the
recognition. For a non-interactive mode, however, we had to minimize the possibility that
subjects would write the wrong thing because we would have to expect each character they
drew was the character requested for the sake of accuracy measurements. Transcription
errors introduced by subjects could also waste the effort in designing a phrase set if they
result in letter frequencies other than what was intended by the researcher, even if they
could be verified by a human reader. A new phrase set was developed that overcame these
new issues while adequately satisfying those established in the Graffiti study. It was also a
priority to think of a way to address English letter frequencies.
6.2.3 Generating the phrase set
Because the Graffiti phrase set was constructed with little regard to English letter
frequencies, we decided to focus on this parameter of the revised collection method first.
52
After isolating several resources on the topic, it was discovered there are no widely accepted
values for letter frequencies or standardized methods for generating new ones. Table 6.5 lists
English letter frequencies as reported by three sources, each determined in a unique fashion.
The first source (Table 6.5[A]) is the Oxford Dictionary of English [37] which determined
its list by counting the letters in words defined in their most recent edition ? letters used in
definitions, front and back matter were not considered. Lewand [30] (Table 6.5[B]) offers a
list suitable for general purpose, English cryptography. Although the sources and collection
method he used are unknown, Lewand suggests the most pertinent frequency tables should
be constructed by investigators using a representative collection of documents specific to
the domain of the material to be evaluated. Linton [32] (Table 6.5[C]) pulls his numbers
from three very different contemporary sources: the license agreement from the Sun Java
Development Kit 1.2.1, the teaching philosophy of a Computer Science professor from a
liberal arts college in Minnesota, and a letter of recommendation for a national competition
for innovative uses of technology in collegiate teaching.
Lewand?s notion of using domain specific frequencies struck a chord because it is be-
lieved the most powerful recognition systems will take application specific information into
account to boost performance. Rather than selecting a domain and frequency set, the phrase
set was organized so that any frequencies could be soundly applied to the collected data
to simulate domain specific frequencies. First, the phrase set must ensure the collection
of a statistically large number of each character (30) in upper and lower cases. Additional
instances of each letter (both cases) must also be captured for alphabet training. In past
efforts we built alphabets with three instances of character. As such we collected three
additional instances of each character totaling 33 instances of 26 characters in two cases...
53
A ? 43 F ? 9 K ? 6 P ? 16 U ? 19 Z ? 1
B ? 11 G ? 13 L ? 28 Q ? 1 V ? 5
C ? 23 H ? 15 M ? 15 R ? 39 W ? 7
D ? 17 I ? 38 N ? 34 S ? 29 X ? 1
E ? 57 J ? 1 O ? 37 T ? 35 Y ? 9
(A)
A ? 110 F ? 30 K ? 10 P ? 26 U ? 37 Z ? 1
B ? 20 G ? 27 L ? 54 Q ? 1 V ? 13
C ? 38 H ? 82 M ? 33 R ? 81 W ? 32
D ? 57 I ? 94 N ? 91 S ? 86 X ? 2
E ? 172 J ? 2 O ? 101 T ? 122 Y ? 27
(B)
A ? 137 F ? 39 K ? 7 P ? 34 U ? 48 Z ? 1
B ? 18 G ? 30 L ? 75 Q ? 2 V ? 21
C ? 57 H ? 58 M ? 47 R ? 112 W ? 23
D ? 61 I ? 128 N ? 128 S ? 118 X ? 4
E ? 207 J ? 3 O ? 119 T ? 162 Y ? 32
(C)
Table 6.5: English letter frequencies (A) reported in The Oxford Dictionary of En-
glish [37], (B) reported in Cryptograhical Mathematics [30], (C) based on three contem-
porary sources [32]
54
1,716 samples in all, per subject. Once recognition accuracies are determined for each
character, the results can be weighted to match any English frequency set.
Given an arbitrary frequency set F = ?f1,f2,...,f26? where fi is the relative frequency
of letter i (1 being ?A? and 26 being ?Z?), compute the frequency total FT = summationtext26i=1 Fi. Next
calculate the recognition accuracies R = ?r1,r2,...,r26? for each character i. Apply the
frequencies to determine the frequency based accuracy A according to Equation 6.1.
A =
summationtext26
i=1 fi ? ri
FT (6.1)
To organize the 858 characters per case into phrases, it would be impossible to use
English words, or at least the resulting phrase set would be intolerable. Instead we decided
to present the characters in 143, pseudo random strings, six characters long. Then multiple
strings would be displayed at one time to subjects, filling out screen after screen of these
strings. Organizing these strings completely at random was out of the question, however,
because there would likely be character sequences repeating too often to ensure represen-
tative variety for each character. It is impossible to ensure no two character sequence is
repeated over an ordering of 858 English characters, so it was determined the phrase set
for the study would at least contain no duplicate sequence of three characters. To build
the final set a primitive algorithm was developed to generate a pseudo random sequence of
858 characters meeting the previously mentioned requirements. First, an 858 length string
was randomly populated with 33 instances of each of the 26 characters. Until no three
character sequences are duplicated in the string the first character in the repeat sequence
was swapped with a random position in the string. Table 6.6 shows the result of this effort,
the final phrase set used in the English study.
55
BASJWD NJLUMT URNGTB MKNUPV HPROBG TEVBLC
UKECPM XPVFKQ OFMIVA DQRYVD XYQAUZ UMUQXS
VRNIHT KUGJVS ZCSJXP NAJOLQ VFDILM GBWCVE
YLGZOX CYFRZM KHDYWL RKYBTP CTKWHB YMLKTI
QFGIFK PTELXD ZNERCM MUZFHI EJNIFD RFJPDA
RBJVNT INQWBH OVXJPY CGSXEW GZACTL HOZNRA
WOMDSQ AOIATG AGDSUW CAQPKD YUKSQM ZUCKPF
CZEPUX MUPHSQ HFIKQT JXVUFL VPWRXO IHVMDL
YAHLBO YNOJRW LBUEIC RZYGNO PGHUOI NGJWTB
WEPJNC DCLFZB GTOYLP BMIWEH SZFYEB YXOQES
URGMSH VXEKGP BJWNRM STJKRS XAMQTN LEXGVN
DIVKXT FQWOCI VFAXZS TLNIWD WVKLJC TAUCJI
YZAFQL AXNSUK DKQHWV HVUCQA DRUETZ PZQRDS
IGQKCT RDZVHB MSOZHJ BGFPXM CJWOGN BKOMWH
PSUEDH MLYJET DEPBCN ZYOEGM BAHKDP YFOBAJ
LVAJFM BTLEHQ IXTFRQ HFBNLT SRQVFX SPTKYV
XNRWYZ WGXSDM KAYULG ZVAWSE YIMLAB EHDZMU
BOYOQC NFAIKU KWMUON XOKJQI DWSHPU LWIGCQ
RINHLA YPVZCR CGJEBX YPRUDC EOGMNJ NXFRCZ
FKBGME OJHBYT HYLZPT LBHXPI QXKYFI FOJLVS
UPTSDV CGPWAE FRSIVD CVTQAG ZRLVTC NDPYIR
ZXJWSC MUSZND AQFEWX EFROYD NZRDOH BEHAUG
GZHEBW RKFOLI OSGLHC UMWKJS AJKPSG KMTQWX
IORADY JVQXQE JBZTIA ZNSJNE FYQIWX
Table 6.6: Generated phrase set for the English character studies
56
Initially it was a concern that the size of this phrase set was too large to be comfortably
performed by subjects in a single sitting. Additionally we were unsure whether the random
sequences would result in slower drawing by subjects. To test these concerns a paper test
was developed, four pages long and given to five people for profiling. Each page contained
four strings from the phrase set. These sheets were laid out identically to the application
developed to collect the character samples for this study as seen in Figure 6.3. It was
surprising to discover the speed at which subjects filled out these sheets in comparison to
the speed of subjects in the Graffiti study. Based on estimates from this profiling it was
determined subjects could complete the entire study in close to 50 minutes... only slightly
longer than the Graffiti study but with many more character instances. It is speculated the
speed increase is based on two things, subjects didn?t have to pause between each character
to verify recognition, and the pseudo random strings removed any unintentional cognitive
overhead occurring if subjects subconsciously interpreted the words in the phrase set.
6.2.4 Collecting Samples
To collect subject samples, two Tablet PCs running the Microsoft XP Tablet Edition
were used; one manufactured by Compaq and the other, Toshiba. Both tablets were of the
convertible style. A Windows application was developed to collect the character samples as
previously outlined. The application (as seen in Figure 6.3) was designed to fill the entire
display. Strings from the phrase set were shown in four rows with each character given
dedicated screen real estate (a 100x100 pixel box) within which the subject could draw.
Each drawing box had a caption (above) that displayed the character in the specific letter-
case that drawing should represent. A ?Clear? button below each box allowed subjects to
erase the data and drawing for a specific character instance if they made a mistake and drew
57
Figure 6.3: Character collection application for the English alphabet studies
58
the wrong character. The ?Next? button on the bottom right of the application replaced
the current screen with the next set of strings from the phrase set. The ?Next? button
was deactivated if any character on the current page had no drawing. A progress bar to
the left of the ?Next? button showed the subject what percentage of the samples they had
completed.
The application presented 72 pages of strings in two halves, each covering the entire
phrase set. The first half were lower case. Upon completion of the lower case phrase set, a
dialog box appeared letting subjects know the remaining screens would require upper case
characters.
66 students and faculty from the Computer Science and Mathematics departments
participated in this study. Subjects were given an identifier to ensure their data was anony-
mous... a letter (?c? or ?t?) representing whether they performed the study on the Compaq
or Toshiba tablet followed by a two digit number ? eg, ?c19?. Although no demographic
or subject specifics were recorded with samples, approximately one third of subjects were
female. Several subjects wrote with a dominant left hand, and some wrote in Italics (a
pseudo-cursive script with disconnected characters). 45 subjects used the Compaq tablet
and 21 used the Toshiba.
Subjects were seated in front of a tablet and shown how to use the stylus with the
screen. They were allowed to place the tablet in whatever way felt comfortable; eg, resting
on the table in front of them or held in their lap. Subjects were given a short demonstration
of using the application including drawing in the character boxes, clearing a drawing, and
continuing to the next screen. Subjects were instructed to fill the screens based on the
way they write with pencil and paper; however, they were additionally asked to maintain a
consistent style throughout their samples. Breaks could be taken at any time. On average,
59
Figure 6.4: From left to right, the letter ?X? as drawn on paper, identified as two strokes,
and as converted to a single stroke
subjects completed the study in just under one hour. The complete collection of subject
samples is located on the packaged CDROM and described in Appendix C.
6.2.5 Alphabet Selection
This experiment is focused on measuring the performance of the stock parameter set
identified in Section 6.1 over the upper and lower case English character samples collected
in Section 6.2.4. Generally this process is straightforward; however, there were three is-
sues to address before the experiment could continue: handling multiple stroke drawings,
determining the size of of the alphabets to be evaluated, and dividing the 33 samples of
each character into training (alphabets) and test sets. The issue of multiple strokes can
be overcome trivially. It was simply decided to treat all drawings as single strokes by only
considering the raw (X,Y) coordinate pairs without regard to whether a visible line would
connect them on paper. An example interpretation of the letter ?X? is shown in Figure 6.4.
The remaining two issues regarding alphabets are not so simple and require further discus-
sion.
In the Graffiti experiment, we had subjects train the recognition system by explicitly
drawing three instances of each letter to define the alphabet. For the sake of brevity, we
60
will herein refer to the number of instances of each letter in an alphabet as the alphabet?s
? value; eg, ? = 2 indicates the alphabet has two unique drawings of each of the 26 letters
of the alphabet, totaling 52 character instances. We had always used an alpha value of 3 in
our previous work because it provided character variance while resulting in a small enough
alphabet to allow fast recognition speed. The samples collected for this experiment allow
for a statistically large set of characters (30 per letter) to be tested with ? = 3. However,
because subjects are not explicitly instructing the system to use particular drawings as
the alphabet, we could also evaluate the performace of the stock activity system with ?
values of 1 and 2, testing 32 and 31 samples of the same character, respectively. Thus, for
this experiment as well as the following optimization experiment, the system was evaluated
using ? values from 1 to 3.
Because subjects provided samples as if they were writing on many sheets of paper
(rather than into a recognition system) no alphabets were consciously specified. In fact, the
collection technique had no concept of of alphabet whatsoever. This raises the question of
which characters instances should be chosen for the alphabet and test sets. Kassel [27] (as
well as others) chose specific character instances from the phrase set to work as alphabet
and test characters. This approach is reasonable considering the small instance counts of
many characters, but it only provides a small glimpse into the performance of a recognizer.
Because of the large character instance counts provided by subjects, we were able to gain
a much more accurate account of the recognizer?s accuracy per subject. Instead of a single
alphabet and test set, we can generate many random alphabets of a particular ? value to
determine not only average recognition accuracy, but we can get some idea of the sensitivity
of an activity-based system to alphabet selection for a particular subject. This is crucial
because this system is intended to be user-dependent.
61
For each subject we evaluated every permutation of letter-case and alpha value (herein
referred to as a trial:
Uppercase, ? = 1 Lowercase, ? = 1
Uppercase, ? = 2 Lowercase, ? = 2
Uppercase, ? = 3 Lowercase, ? = 3
Each trial included the random generation and evaluation of 900 ? valued alphabets. Ini-
tially, the entire sample set for the current case is loaded into a matrix S:
S =
?
??
??
??
?
s1,1 ??? s1,33
...
s26,1 ??? s26,33
?
??
??
??
?
where sl,i is the ith instance of the lth letter in the current letter-case. Prior to each of the
900 runs, a random alphabet is generated by swapping elements sl,1 through sl,? in S with
sl,U() where U() return a uniformly distributed random integer from 1 to 33, inclusive. This
is done for each l (every letter of the English alphabet). The alphabet for this run of the
trial is now the first ? columns in S, and the remaining columns make up the test set.
6.2.6 Results
Overall, the stock activity-based recognizer performed comparably to its? fellow struc-
tural recognition methods (see Section 2.6). With an ? value of 3, subjects averaged only
a 7.76% error for upper case characters and 8.4% for lower case. The worst recorded errors
for ? = 3 were 27.1% (subject ?c11?) and 33.78% (subject ?c18?) for upper and lower case,
respectively. The best were 1.48% (subject ?c09?) and 1.13% (subject ?t16?) for upper and
62
Upper case Lower case
? mean ? mean ?
1 15.42% 6.11% 16.7% 7.95%
2 9.86% 4.75% 10.68% 6.43%
3 7.76% 4.13% 8.4% 5.65%
Table 6.7: Overall recognition error of the English study with a stock recognizer
lower case, respectively. Table 6.7 summarizes the average and standard recognition error
over all subjects for each ? value. The complete results for each subject can be found on
the included CDROM described in Appendix C.
Although the error range is quite large, most subjects had good results. Figure 6.5
shows the average recognition errors for each subject trial, sorted. Here it can bee seen
that for ? = 3, 83% of the subjects? error was less than 10% for upper case and 71% of
subjects had an error lower than 10% for lower case. What is most striking about this
figure, however, is the seemingly minor connection it reveals between average and standard
errors. For any given ? it is clear the standard error is somewhat larger when the average
error is high and somewhat smaller when the average is low. It is also clear that larger
? afford smaller standard errors. This is not unexpected. What is unexpected is that for
a given ? the range of average error may go from 48% to 7% while the standard error
differs by around 2%. This is most clearly seen when ? = 1. This suggests in general that
recognition accuracy is not the result of finely tuned alphabet selection nearly so much as
it is dependent on the number of instances of each character in the alphabet.
Figure 6.5 shows an asymptotic reduction in error as ? increases. The reduction in
error was measured over all ? transitions for each subject. The results of this evaluation are
summarized in Table 6.8. It is clear that increasing the ? value of an alphabet will improve
recognition, but there is certainly a point at which the accuracy gain is overshadowed by
63
(A)
(B)
Figure 6.5: Average and standard recognition errors over 900 runs for all subjects in the
(A) upper and (B) lower cases.
64
Upper case Lower case
(? = i) ? (? = j) mean ? mean ?
1 ? 2 37.79% 5.97% 38.9% 7.08%
2 ? 3 22.67% 4.3% 23.9% 5.7%
1 ? 3 51.67% 7.08% 53.13% 8.66%
Table 6.8: Overall error reduction gained from one ? value to another (English study with
a stock recognizer)
Upper case Lower case
? mean ? mean ?
1 15.79% 6.62% 17.13% 7.94%
2 10.0% 5.05% 11.04% 6.49%
3 7.84% 4.35% 8.67% 5.75%
Table 6.9: Overall recognition error of the English study with a stock recognizer and Oxford
letter frequencies
the loss in recognition speed. Although it is beyond the scope of this effort, it would
be reasonable to develop a formula to predetermine a maximally beneficial alpha value
for specific implementations that increases recognition accuracy as much as possible while
ensuring a minimum recognition speed.
Section 6.2.3 introduces the idea that results from this study could be scaled to an
arbitrary letter frequency distribution. To demonstrate this, the Oxford letter frequencies
enumerated in Figure 6.5 were applied to the results of each subject in this study. Table 6.9
summarizes the performance of the stock recognizer with the updated letter frequencies.
Figures 6.6 and 6.7 show the recognition error per English letter with respect to ?.
Thus, the horizontal axes of the figures shows the relative difficulty a stock activity-based
recognizer has with each letter. Because the range of average error is so great, the results
from two subjects at opposite ends of the accuracy spectrum were visualized in an identical
fashion for comparison. Figures 6.8 and 6.9 are taken from subject ?c00? whose error was
65
particularly low (but not the best). Figures 6.10 and 6.11 are taken from subject ?c02?
whose error was particularly poor (but not the worst). Even though the average error of
these two subjects is wildly different, it is remarkable to note the similarity in the relative
difficulty of characters. For the lower case letters, ?c? and ?o? are the most successfully
recognized letters; ?g?, ?i?, and ?y? are in the worst five for both subjects. In the upper case
characters, both subjects? best and worst letters (?S? and ?V? respectively) are identical.
Figure 6.11 also demonstrates an interesting anomaly. Recognition error is quite high
on most characters when ? = 1, but for ? values 2 and 3 the error is hyper-reduced. Upon
investigation, it was discovered that subject ?c02? drew many lower case letters with more
than one variation ? eg, crossing ?t?s from left to right sometimes and right to left others.
When ? = 1, no instance of these letters could be selected at random for the run?s alphabet
that could ensure recognition across its other instances. When ? > 1, these letters may
now have one of each drawing-style instance in the alphabet. This allows for much broader
coverage of the remaining letter instances, and further supports the notion that increasing
? may be more lucrative than tuning the alphabet without changing ?.
6.3 Optimizing Recognition
To conclude this work, a final study reused the character samples from the English
study (Section 6.2) and focused on reducing recognition error for each subject by using a
genetic algorithm to optimize the parameters used by the activity metric. Specifically, this
optimization study varied directional code mappings, the placement of activity regions, and
the scalar bias applied to individual activity regions.
66
Figure 6.6: Recognition error per uppercase letter for all subjects ? sorted by ? = 3
Figure 6.7: Recognition error per lowercase letter for all subjects ? sorted by ? = 3
67
Figure 6.8: Recognition error per uppercase letter for a subject with good general accuracy
(?c00?) ? sorted by ? = 3
Figure 6.9: Recognition error per lowercase letter for a subject with good general accuracy
(?c00?) ? sorted by ? = 3
68
Figure 6.10: Recognition error per uppercase letter for a subject with poor general accuracy
(?c02?) ? sorted by ? = 3
Figure 6.11: Recognition error per lowercase letter for a subject with poor general accuracy
(?c02?) ? sorted by ? = 3
69
Directional Mapping:
Activity Regions:
[0,31]
[0,15]
[16,31]
[0,7]
[8,15]
[16,23]
[24,31]
| |
Scalar Bias:
1.222
1.222
1.222
1.222
1.222
1.222
1.222
Figure 6.12: Stock parameter set for activity-based systems
6.3.1 Parameters
Figure 6.12 visualizes the complete stock parameter set for activity-based recognition
systems as defined throughout Section 4.2. Specifically, a drawing is interpolated into 32
substrokes, each of which is mapped to a Freeman directional code. Seven activity regions
are defined and measured over the 32 substrokes as shown below. The 32 directional codes
and 7 activity measures form a point in 39 dimensional space. When two character drawings
are compared (distance between two points in these 39 dimensions), each of the seven
activity measures is scaled by the bias associated with that particular activity region prior
to distance calculations. This bias is 1.222 for all regions in the stock parameter set.
More than anything, the purpose of this final study was to demonstrate that elements of
the parameters for recognition can be altered to reduce recognition error from the stock set
for every subject?s samples. It was not imperative to actually find the optimum parameter
set at this stage... at least not in the traditional sense of optimization. However, for the
sake of brevity, these final attempts to reduce recognition error beyond the capabilities of
70
the stock parameters will be herein referred to as optimization. With this in mind, only
several recognition parameters were selected to be optimized.
The directional code mapping was the first parameter selected for optimization. While
it seems reasonable to use the Freeman mapping, there is no evidence to suggest this map-
ping maximally separates arbitrary character and symbol drawings. The best thing about
Freeman?s codes is that a drawing converted to those eight cardinal directions looks very
much like the original drawing when replotted using the only the mapped directions. Visual
representation, however, does not equate to automated recognition. To optimize the direc-
tional code mapping, only the angular regions defining the directional codes were altered,
i.e., eight codes were still mapped. No restrictions were set as to where the directional
boundaries could lie other than the complete 360 degree circle must be covered such that
any angle has one an only one mappable code.
As with the directional mapping, it was decided that seven activity regions should still
be measured over 32 interpolated substrokes. The location and size of the regions would
instead be optimized. This would allow the regions to lie on those portions of a drawing
where the activity metric could provide the greatest benefit. Additionally, the single bias
value approach was replaced by a vector of scalars, one unique bias for each of the activity
regions. This would allow different regions to affect the separation of drawings with an
appropriate level of influence. No restrictions were placed on the location or size of the
activity regions. Bias values were restricted only in that they could not be negative.
Selecting this small set of parameters to optimize had the additional benefit of allowing
virtually all of the existing recognition code to be reused, unchanged. One thing that did
require an update (both in theory and code) was the mechanism used to determine the
distance from one directional code to another. Because Freeman?s mapping consisted of
71
eight equally sized angular regions, the distance between any two codes had always been
the toral integer distance:
distance(i,j) = min
?
???
???
max(i,j) ?min(i,j)
8 ?
parenleftBig
max(i,j) ?min(i,j)
parenrightBig
This mechanism would provide less than desirable results if regions were sized arbitrarily.
For example, the distance between any two consecutive directions in Freeman?s mapping
is 1 using the above distance calculation. With an arbitrary mapping, two consecutive
directional centers may be separated by a few degrees while another consecutive pair is
separated by 100 degrees. Were the distance between each pair of these codes equal to 1,
the recognition system would be ignoring compelling information. To satisfy this new issue,
the previous distance measure was augmented as follows where Cx is the angular center (in
degrees) of the xth directional region:
distance(i,j) = min
?
???
???
max(Ci,Cj)?min(Ci,Cj)
360.0 ?
parenleftBig
max(Ci,Cj) ?min(Ci,Cj)
parenrightBig
6.3.2 Genetic Algorithms
Genetic algorithms (GAs) are often used to solve combinatorial and parameter opti-
mization problems and can be implemented into existing systems with ease. They tend to
provide close approximations to optimal problem solutions with few resources and in very
little time... at least with respect to exhaustive search methods. Because they model the
evolutionary process, the solutions they evolve tend to be quite robust. These were the
72
primary motivations behind choosing GAs as the mechanism to optimize the parameters of
the activity-based system.
GAs are a form of evolutionary search loosely based on population genetics in the
natural world. Holland [21] first introduced the concept as a means to model and study
evolutionary processes. Later, Goldberg [18], Eshelman [15], B?ack [6] and others explored
the application of GAs to solving optimization problems from various domains.
Essentially, potential problem solutions are generalized to their most basic collection of
data structures. This collection is called the genome. The elements of a genome are referred
to as alleles and are encoded in whatever manner is most appropriate to the problem. Hol-
land [21] primarily chose binary string encodings, but Eshelman and Schaffer [15] introduced
the use of real-coded (floating point) alleles. Other encodings (such as enumerates) are also
possible. Once each of a genome?s alleles are given values, that genome instance is referred
to as an individual. A population of individuals is maintained upon which the mechanics of
the GA operate. The population undergoes generations of evolution in which members of
the population known as parents breed to create child individuals. These children replace
population members that die and are removed. The guiding principal here is that if parents
are selected to breed based on how well they solve the problem (their fitness), they will pro-
duce children with above average fitness to enter the population. As this process continues
over many generations, the average fitness of individuals in the population will improve,
edging the search toward an optimal (or approximate thereof) solution to the problem. If
children replace population members based on fitness as well, this process may be further
strengthened. Figure 6.13 presents pseudocode for a simple GA.
In Line 1 of the pseudocode, the population of individuals is initialized, and each
individual?s fitness is measured. This process is most often accomplished by setting each
73
genetic_algorithm() {
1) initialize_population();
2) generation = 0;
3) until(stop_condition) {
4) selection();
5) crossover();
6) mutation();
7) evaluate_children();
8) replacement();
9) generation++;
}
}
Figure 6.13: Pseudocode for a basic genetic algorithm
allele to some appropriate random value. Random bits are used for binary string encodings.
There has also been work that suggests seeding some alleles with values that are known to
be good may improve the speed at which the population improves [26, 41].
Once the initial population is established, the GA begins cycling through generations
of the evolutionary process until some predetermined stop condition is reached (Figure 6.13,
Line 3). This condition often includes the case of population convergence where each in-
dividual in the population is identical. It generally focuses on meeting (or beating) some
fitness value or stopping after some predetermined number of generations have past. For
problems where fitness is expensive to measure, the total number of fitness evaluations is
regularly used rather than generations. This way the population size and parent replace-
ment mechanisms can be altered while keeping the total fitness expense constant.
The first step in a generation is to select the individuals as parents for the next genera-
tion (Figure 6.13, Line 4). For each new child desired, two individuals from the population
are selected as parents; both parents may actually be the same individual. The total num-
ber of children bred at each generation is predetermined by the implementer. The most
74
common means of selection is a probabilistic selection operator where P(i) is the probability
individual i (with a fitness of F(i)) is selected as a parent:
P(i) = F(i)summationtext
i F(i)
While this operator is likely the most popular, many other selection operators have been
devised [6].
Two parents produce a child by selectively combining allele values in the process known
as crossover (Figure 6.13, Line 5). The crossover operation is completely dependent on the
encoding of individual alleles. When binary coded strings are used, the allele value from
only one parent survives in the same allele of the child. From which parent this value is
taken must be determined for each allele. If the allele is real-coded, Radcliffe?s crossover [40]
is commonly used to find a real value somewhere in the space between the value of the allele
in each parent. Specifically, if a1 and a2 are the allele values of the first and second parents,
respectively, child?s allele value becomes a1 + ?(a2 ? a1) where ? is a real value between
0 and 1, inclusive. ? can be calculated uniformly at random or based on the relative
fitness of the parents. Figure 6.14 demonstrates each of the operators in a simple example.
Eshelman et al [15] extended Radcliffe?s crossover to include values just outside the interval
between a1 and a2. This ?blending? crossover, written as BLX-c, computes the child value
as a1 ?c(a2 ?a1)+?
parenleftBig
a2 +c(a2 ?a1)
parenrightBig
where c is some real value (see Figure 6.15). BLX-
0.0 is equivalent to Radcliffe?s crossover operator. Unique operators must be developed
for unusually structured alleles. Crossover is often referred to as a global search operator
because it can produce wildly unique individuals.
75
Figure 6.14: Breeding example for (A) binary string and (B) real-coded alleles
Figure 6.15: The crossover range of the BLX-c operator for real-coded alleles
76
Once the new child is created, it goes through a process called mutation (Figure 6.13,
Line 6) where each allele value has the chance to be ?wiggled? a little. This results in a
mutated child that is very much like the original child, only marginally different. Mutation
is therefore considered a local search operator, particularly once the population begun to
converge on a local extrema. For each allele, it must be determined whether it should be
mutated. This is frequently accomplished by setting a mutation rate, ?, as the probability
each allele should be mutated. Alleles in binary strings are simply replaced by a random
bit. Real-coded alleles are offset from their existing value by a normally distributed random
number. Figure 6.14 demonstrates each of these mutations. As with crossover, unique
mutation operators must be developed for unusually structured alleles.
At this stage each of this generation?s finished children has its fitness measured (Fig-
ure 6.13, Line 7) and the replacement scheme is activated (Figure 6.13, Line 8). There are
two dominant replacement strategies, generational and steady-state. Generational replace-
ment guarantees the entire population dies and is replaced by children at each generation.
This method requires that at least as many children are generated as there are individuals
in the population. If more children are created the replacement scheme must also determine
which of the children are most suitable for the new generation (perhaps using relative fit-
ness). This method allows for great diversity over the generations but is costly in terms of
fitness evaluations. With steady-state replacement, only one child is created in a generation
and replaces the least fit of the population. This approach is very efficient with respect to
fitness evaluations and ensures that individuals with above average fitness remain in the
population until they are no longer above average. B?ack [6] introduced an aging metaphor
to steady-state replacement to ensure hyperfit individuals cannot remain in the population
77
indefinitely. This mechanism is often crucial in avoiding premature convergence. As indi-
viduals enter the population, they are given a time-to-live (TTL) value that is decremented
per generation. TTLs are typically large so that the evolutionary process can work natu-
rally. However, if an individual should outlive its TTL, it is immediately removed from the
population and replaced with a new individual.
6.3.3 Optimization Operators
In order to optimize the selected parameter set described in Section 6.3.1 using a GA,
each of the operators from Section 6.3.1 must be defined. Because so much of the mechanics
of GAs are fitness-based, the structural definition and its measurement of fitness should first
be disclosed. Each individual represents the parameters for recognizing one letter case for
a specific subject.
For the purpose of the GA, a directional code mapping for an individual consists of
eight, real-coded alleles, a1,...,a8, each representing one angular boundary of a single
directional code in degrees. When sorted, each consecutive pair (including the last and
first elements) completely define the range of a directional code. Each range is specifically
measured as inclusive of the most counter-clockwise angle in the pair and non-inclusive
of clockwise angle. During population initialization, each of these eight values are set to
uniformly distributed random values from 0.0 to 360.0 (non-inclusive) and then sorted.
Each of the seven activity regions made up an allele described by two integers, si and ei.
si is the interpolated substroke on which the ith region begins; ei ends the region. The
activity regions were seeded to initially reflect the stock regions. This choice was made to
ensure the regions would have some initial influence suitable to driving the search. Under all
circumstances, si <= ei. If after some manipulation this does not hold true, their values are
78
immediately swapped to preserve consistency. Finally, eight real-coded scalars, b1,...,b8,
identify the bias applied to the activity measured over the evolved regions. These values
were initialized to uniformly distributed random numbers between 0 and 200.
Because recognition accuracy was generally expected to be above 70%, it was decided
that the fitness evaluation for this study should register recognition error (generally ex-
pected to be low). This provides for a clearer interpretation of relative fitness as accuracy
improves. For example, the difference between accuracies of 98% and 99% seems tiny,
whereas the equivalent errors (2% and 1% respectively) differ by 100%. Fitness for an in-
dividual is measured by evaluating recognition over a subject?s specific letter case samples.
The evaluation is performed over 300 random ? = 1 alphabets, similar to the method used
to evaluate recognition for a subject in Section 6.2.4. Only 300 alphabets were tested per
fitness evaluation to allow for a faster approximation to the actual error. This does mean
error rates found in these fitness evaluation are subject to greater variance, but this specific
issue is handled by a custom aging operator (described later). Only ? = 1 alphabets are
evaluated under the notion that improving recognition for the known worst ? value (as
shown in Section 6.2.6) will result in largely improved accuracy for higher ?. Since fitness
reports recognition error, the GA for this study will attempt to minimize fitness values in
its search.
The blending crossover BLX-0.5 was used to crossover angular boundary and bias
alleles. A custom operator was required, however, to crossover activity regions. Region
alleles would survive into a new child in a fashion similar to crossover in binary strings...
the child would inherit each region from a single parent. A crossover probability rate,
? = 0.2, was defined. This rate was used to control the amount off crossover performed in
the generation of each new child. Specifically, each allele in the new child was determined
79
as the result of a crossover operation with a probability of ?. Otherwise, the child inherited
the allele directly from the first parent.
Angular boundary and bias alleles were mutated using normally distributed random
numbers. Angular boundaries were mutated with a standard deviation of 2.5 degrees such
that a?i = ai + N(2.5). Bias scalars were each mutated with a standard deviation of 5
such that b?i = bi+N(5). Another custom operator was developed to mutate activity region
alleles. Once it was determined a region allele would be mutated, si and ei were individually
updated as s?i = si +R1() and e?i = ei +R2() where R() returns the values -1, 0, and 1 with
equal probability. The result of this operator is that a region either expands, contracts,
or slides with varying probability. Figure 6.16 show each of the possible effects resulting
from this new operator. To complement the crossover rate, each allele was mutated with a
probability of 1? ?.
Parents were chosen from the population using the probabilistic selection operator men-
tioned above. A modified steady state replacement strategy was chosen for this such that
the worst population member was only replaced if the child was more fit. An additional
aging element was added to the replacement scheme based on B?ack?s work [6]. B?ack was
primarily concerned that super individuals could occasionally take control of a population a
bring about premature convergence. With this effort, however, there was a greater concern
that the sloppy fitness measures (based on 300 rather than 900 alphabets) would allow
individuals to remain in the population for extended periods of time based on a fitness
value that could actually be misleading. An aging system was needed to ensure individuals
would die out of the population once fitness values began to converge. Instead of a deter-
ministic TTL system, aging was managed by increasing the fitness error recorded with each
population member by 0.0001 at each generation. What this did was allow individuals to
80
Figure 6.16: Mutation operator for activity regions
81
remain in the population indefinitely, so long as relative fitness measures were varied within
the population. Once the population fitnesses became similar, this aging mechanism would
decay the value of any false-positive individuals such that they can be easily replaced by
new children.
6.3.4 Genetic Profiling
As the genetic operators for this study were being devised, some concern was raised
as to whether activity regions should be evolved at all. The primary issue is there are
tight dependency relationships between angular boundaries and activity regions, as well
as activity regions and bias scalars. Any evolutionary change in activity regions could
potentially interfere with the recognition value of the evolved boundaries and biases. There
was also a question as to whether aging might actually be a beneficial operator for this
GA. Population size was also undetermined, but some basic numbers were already being
considered... 40, 30, 20, 10, and 3 (the smallest usefull population size [18]).
To determine the appropriate answers to these questions, a pilot study was conducted
to optimize recognition for subjects ?c00? and ?c02?. Every permutation of population
size, aging decay, and whether to use dynamic activity regions was tested. Each of these
permutations is listed in Table 6.10 and given a profile letter for reference. Each profile
was evaluated on the two subjects for each letter case with a stop condition of 2000 fitness
evaluations, chosen arbitrarily.
The performance of each profile was empirically judged on a few factors. In particular, a
desirable profile would afford new best solutions throughout the evolutionary process rather
than only in tight bursts. Further, it would find high quality solutions (low recognition error)
relative to other profiles. Finally, the profile should perform in a consistent manner across
82
Profile Population Size Aging Decay Activity Regions
A 40 0 Static
B 40 0 Dynamic
C 40 0.0001 Static
D 40 0.0001 Dynamic
E 30 0 Static
F 30 0 Dynamic
G 30 0.0001 Static
H 30 0.0001 Dynamic
I 20 0 Static
J 20 0 Dynamic
K 20 0.0001 Static
L 20 0.0001 Dynamic
M 10 0 Static
N 10 0 Dynamic
O 10 0.0001 Static
P 10 0.0001 Dynamic
Q 3 0 Static
R 3 0 Dynamic
S 3 0.0001 Static
T 3 0.0001 Dynamic
Table 6.10: 20 GA profiles examined for the optimization study
83
both subjects and letter cases. Upon investigation, Profile T was determined to best meet
these requirements and was used to perform the optimization trials over all subjects. The
complete results for all the profile runs is included in Appendix A.
Generally, none of the profiles demonstrated any meaningful improvement after approx-
imately 1000 generations. This information was useful in itself as it helped to determine
a more appropriate stop condition for the complete optimization trials. As such the final
trials were based on the evolutionary results after 1000 fitness evaluations. Additionally, the
GA was run on each subject and letter case three times. The best solution from the three
is reported as the final, optimized parameter set. The complete list of optimized parameter
sets can be found in Appendix B.
6.3.5 Results
Overall, the results from the optimization study were quite good. For ? = 3, error
rate was reduced from the stock results an average of 30.3% and 20.9% for upper and
lower cases, respectively. The worst ? = 3 errors recorded were 24.7% (subject ?c11?)
and 32.07% (subject ?c18?) for upper and lower cases, respectively. The best were 0.81%
(subject ?c09?) and 0.81% (subject ?t16?) for upper and lower cases, respectively. Each of
these four extreme values are held by the same subjects as reported with stock parameters
(see Section 6.2.6). Table 6.11 summarizes the average and standard recognition error over
all subjects for each ? value. Further, it shows the reduction in average error for each ?
value per letter case. The complete optimized results for each subject can be found on the
included CDROM described in Appendix C.
Figure 6.17 shows the average and standard recognition errors for each subject trial,
sorted. Here it can be seen that for ? = 3, 92% of the subjects? error was less than 10%
84
Upper case Lower case
? mean ? error reduction mean ? error reduction
1 11.98% 5.94% 24.73% 13.84% 7.84% 20.21%
2 7.3% 4.53% 29.54% 8.7% 6.15% 22.14%
3 5.71% 3.9% 30.32% 6.92% 5.35% 20.92%
Table 6.11: Overall recognition error of the English study with optimized parameter sets
Upper case Lower case
(? = i) ? (? = j) mean ? mean ?
1 ? 2 42.12% 7.13% 40.59% 7.41%
2 ? 3 23.89% 4.84% 22.84% 4.97%
1 ? 3 55.64% 7.98% 53.84% 8.46%
Table 6.12: Overall error reduction gained from one ? value to another (optimization pa-
rameter set recognizer)
for upper case and 86% of subjects had an error less than 10% for lower case. The thin
dotted lines on the figure represent the results for the stock parameter set. It is striking to
see for the upper case that the ? = 2 optimized results were nearly always superior to the
? = 3 results with stock parameters. Also, for both letter cases and nearly every subject,
the stock parameter average is almost always worse than the poor extreme of standard error
for the optimized average on the same ?.
In Section 6.2.6, it was shown there is an asymptotic reduction in error as ? increases,
and Table 6.8 summarized this change. For the sake of reference, Table 6.12 treats these
same values resulting from the optimization study. It is interesting to note that the reduc-
tion in average and standard error is remarkably similar for both the stock and optimized
parameters as ? increases from 2 to 3.
Section 6.2.3 introduced the idea that results from this study could be scaled to an
arbitrary letter frequency distribution. To demonstrate this, the Oxford letter frequencies
85
(A)
(B)
Figure 6.17: Optimized average and standard recognition errorsover 900 runsfor all subjects
in the (A) upper and (B) lower cases.
86
Upper case Lower case
? mean ? mean ?
1 12.65% 6.37% 14.15% 7.94%
2 7.69% 4.88% 8.98% 6.33%
3 6.01% 4.08% 7.15% 5.57%
Table 6.13: Overall recognition error of the optimized parameter set recognizer and Oxford
letter frequencies
enumerated in Figure 6.5 were applied to the results of each subject in the stock parameters
study. To continue this example, Table 6.13 summarizes the performance of the optimized
recognizer with the Oxford letter frequencies.
Figures 6.18 and 6.19 show the optimized recognition error per English letter with
respect to ?. The horizontal axes of the figures shows the relative difficulty an optimized
recognizer has with each letter. Because the range of subjects? average error is so great, the
results from two subjects at opposite ends of the accuracy spectrum were visualized in an
identical fashion for comparison. Figures 6.20 and 6.21 are taken from subject ?c00? whose
error was particularly low (but not the best). Figures 6.22 and 6.23 are taken from subject
?c02? whose error was particularly poor (but not the worst). Overall, recognition of the
letter ?V? improved quite a bit moving it up in the ranking a remarkable 12 positions. For
subject ?c02?, however, recognition of ?V? improved only minimally. On the opposite end
of the spectrum, ?P? dropped to the worst upper case letter overall once the parameter sets
were optimized. The general ranking of the lower case letters did not change significantly
with optimization. For subject ?c02?, the letter ?r? fell 12 positions in rank.
87
Figure 6.18: Optimized recognition error per uppercase letter for all subjects ? sorted by
? = 3
Figure 6.19: Optimized recognition error per lowercase letter for all subjects ? sorted by
? = 3
88
Figure 6.20: Optimized recognition error peruppercaseletter for a subject with good general
accuracy (?c00?) ? sorted by ? = 3
Figure 6.21: Optimized recognition error per lowercase letter for a subject with good general
accuracy (?c00?) ? sorted by ? = 3
89
Figure 6.22: Optimized recognition error per uppercaseletter for a subject with poor general
accuracy (?c02?) ? sorted by ? = 3
Figure 6.23: Optimized recognition error per lowercase letter for a subject with poor general
accuracy (?c02?) ? sorted by ? = 3
90
Directional Mapping:
Activity Regions:
[1,26]
[1,14]
[3,31]
[7,28]
[7,20]
[10,26]
[6,15]
| |
Scalar Bias:
19.6133
26.2741
117.532
3.51239
98.3833
87.4932
116.404
Figure 6.24: Optimized lower case parameters for subject ?c21?
6.3.6 Optimization Anomalies
While the results of the optimization study show dramatic recognition improvement
over the stock parameters, the most interesting outcome from this study are the evolved
parameters themselves.
Subject ?c21? reduced lower case, ? = 1 error by approximately 12% by primarilly al-
tering the activity regions and associated scalars. Figure 6.24 shows the complete optimized
parameter set for subject ?c21? over the lower case. Notice the directional code mapping is
nearly identical to the mapping of the stock parameters. This is by no measure the common
case. Most often, all parameters have changed dramatically as a result of optimization.
Figure 6.25 shows optimized directional code mappings for subjects ?c10?, ?c17?, and
?c37?. For each of these subjects, the GA shrunk individual directional ranges to be so
small they have essentially been removed from the mapping.
Subjects ?c10? and ?c17? appear to have only six discernable directions. Subject ?c37?
has possibly the most astounding example of this range shrinkage with what is basically a
five code mapping. Notice also that the mapping for subject ?c10? shows clear separation
91
(A) (B) (C)
Figure 6.25: Optimized directional code mappings for (A) subject ?c10? (lower case), (B)
subject ?c17? (upper case), and (C) subject ?c37? (lower case)
of vertical directions with a typical clockwise slant. On the other hand, the mapping of
subject ?c17? has no vertical notion whatsoever.
Figure 6.26 shows optimized activity regions for subjects ?c29? and ?t12?. These two
subjects? regions are exemplary of anomalies seen in many subjects? optimized regions. Like
the previous directional mappings, the GA has evolved the means to remove regions. The
upper case regions evolved for subject ?c29? have three regions that are nearly identical:
each end on substroke 25, two start on substroke 15, and the other starts on 16. Basically,
these regions will each measure the essentially the same activity as one and other, regardless
of the drawing. Given the three associated biases, b1, b2, and b3, two of these regions could
be removed with the remaining region?s bias set to b21 +b22 +b23. Although not shown in the
figure, one lower case region for subject ?t12? has a bias of 0.719. This also has the effect
of removing the region alltogether. The evolved upper regions of subject ?t12? contain tiny
regions covering only two or three substrokes. This may be an ?in progress? evolutionary
strategy to remove the regions that cut short by the terminating condition of the GA. Were
these regions shrunk to where the start and stop substrokes were the same value, the regions
would always afford an activity of 1 (Figure 6.27 has three examples of this). However, the
92
[16,25]
[1,22]
[14,31]
[12,24]
[15,25]
[15,25]
[2,17]
| |
[25,29]
[2,24]
[3,31]
[29,30]
[27,29]
[17,28]
[28,29]
| |
(A) (B)
Figure 6.26: Optimized activity regions for (A) subject ?c29? (upper case) and (B) subject
?t12? (upper case)
non-zero size and relatively close placement of these regions is somewhat peculiar. The two
smallest regions can only provide an activity of 1 or 2. Because the bias associated with one
of these regions is quite high (122.316), it could be argued that this region plays a crucial,
binary roll, identifying whether anything at all is going on in that part of drawing. Even
the slightest curve or change in direction would cause the regions to fire high.
For some subjects, entire portions of drawings are shown to have little benefit to recog-
nition. For subject ?c05?, only the first two thirds of lower case draws appear to have
any discerning value. This is seen quite clearly in the evolved activity regions shown in
Figure 6.27(A). On the opposite side of the spectrum, the evolved regions for subject ?c00?
(Figure 6.27(B)) show that only the final third of drawings benefit recognition.
93
[14,20]
[2,15]
[3,12]
[4,15]
[11,13]
[9,18]
[1,13]
| |
[26,31]
[28,30]
[31,31]
[26,26]
[20,26]
[28,28]
[23,30]
| |
(A) (B)
Figure 6.27: Optimized activity regions for (A) subject ?c05? (lower case) and (B) subject
?c00? (lower case)
94
Chapter 7
Conclusions
As human-centric interfaces continue to become more and more ubiquitous, there is a
greater need to develop methods to provide robust implementations of the most widely used
communication mediums: namely, speech and handwritten symbol recognition. This work
has described a novel metric, activity, to aid in the recognition of handwritten characters.
The intent of this metric is not simply to provide another means to do character recog-
nition; rather, it affords the capability to provide high accuracy recognition on even the
lowest resource devices. Not only will this allow recognition functionality on devices that
have otherwise been without, it can also be leveraged to allow alphabet customization by
users even after it has been deployed. Because the metric is based on a few simple param-
eters (directional code mapping, activity regions and scalar bias) it may be applicable to
a wide variety of alphabets and take advantage of user specific idiosyncrasies. The studies
conducted and reported in this work provide evidence of this using the Graffiti and English
alphabets along with user variants of each. Additionally, a simple, evolutionary method of
activity parameter optimization was demonstrated which could be used post-deployment
to improve recognition experiences for users. Futher, the interpolated directional mapping
has been shown to reduce regular and isolated noise in a fashion beneficial to mobile user
who work in shaky or irregular environments, such as a bus, cab, or plane.
The fact that each of these recognition qualities are addressed by such a simple recogni-
tion system is what makes this work exciting. As a larger majority of the computer systems
95
we interact with regularly become smaller and more mobile, a recognition system such as
the activity-based recognizer detailed in this work will become increasingly valuable.
96
Bibliography
[1] 3Com. Palmpilot handbook, 1997.
[2] Gregory D. Abowd. Classroom 2000: An experiment with the instrumentation of
a living educational environment. IBM Systems Journal; Special issue on Pervasive
Computing, 38(4), 1999.
[3] Fevzi Alimo?glu. Combining multiple classifiers for pen-based handwritten digit recog-
nition. Master?s thesis, Institute of Sciences and Engineering, Bo?gazi?ci University,
1996.
[4] Fevzi Alimo?glu and Ethem Alpaydin. Methods of combining multiple classifiers based
on different representations for pen-based handwriting recognition. In Proceedings
of the Fifth Turkish Artificial Intelligence and Artificial Neural Networks Symposium
(TAINN 96), June 1996.
[5] Fevzi Alimo?glu and Ethem Alpaydin. Combining multiple classifiers for pen-based
handwritten digit recognition. ELEKTRIK: Turkish Journal of Electrical Engineering
and Computer Sciences, 9(1):1?12, 2001.
[6] Thomas B?ack, Ulrich Hammel, and Hans-Paul Scwefel. Evolutionary computation:
Comments on the history and current state. IEEE Transactions on Evolutionary Com-
putation, 1(1), April 1997.
[7] W. Bledsoe and I. Browning. Pattern recognition and reading by machine. In Proceed-
ings of the EJCC, pages 225?232, December 1959.
[8] M. Brown and S. Ganapathy. Preprocessing technique for cursive script word recogni-
tion. Pattern Recognition, 16(5):447?458, 1983.
[9] J. Callahan, D. Hopkins, M. Weiser, and B. Shneiderman. An empirical comparison
of pie vs. linear menus. In Conference proceedings on Human factors in computing
systems, pages 95?100, May 1988.
[10] Kam-Fai Chan and Dit-Yan Yeung. Elastic structural matching for on-line handwritten
alphanumeric character recognition. In Proceedings of the Fourteenth International
Conference on Pattern Recognition, pages 1508?1511, August 1998.
[11] Kam-Fai Chan and Dit-Yan Yeung. A simple yet robust structural approach for rec-
ognizing on-line handwritten alphanumerical characters. In Proceedings of the Sixth
International Workshop on Frontiers in Handwriting Recognition, pages 229?238, Au-
gust 1998.
97
[12] Kam-Fai Chan and Dit-Yan Yeung. Recognizing on-line handwritten alphanumeric
characters through flexible structural matching. Pattern Recognition, 32(1):1099?1114,
July 1999.
[13] C. K. Chow. Optimal character recognition system using decision functions. In IRE
Transactions on Electronic Computers, volume 6, pages 247?254, August 1957.
[14] J. T. Chu. Optimal decision functions for computer character recognition. Journal of
the ACM, 12(2):213?226, April 1965.
[15] L. J. Eshelman and J. D. Schaffer. Real-coded genetic algorithms and interval-
schemata. In Foundations of Genetic Algorithms 2, pages 187?202. Morgan Kaufmann,
1993.
[16] I. Flores. An optimum character recognition system using decision functions. IRE
Transactions on Electronic Computers, 7(2), June 1958.
[17] Herbert Freeman. Computer processing of line-drawing images. ACM Computing
Surveys, 6(1):57?97, March 1974.
[18] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989.
[19] David Goldberg and Cate Richardson. Touch-typing with a stylus. In Proceedings of
the INTERCHI?93 Conference on Human Factors in Computing Systems, pages 80?87.
ACM, April 1993.
[20] Stefan Hellkvist. On-line character recognition on small hand-held terminals using
elastic structural matching. Master?s thesis, Royal Institute of Technology, Stockholm,
Department of Numerical Analysis and Computing Science, 1999.
[21] J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michi-
gan Press, 1975.
[22] Poika Isokoski. Model for unistroke writing time. In Proceedings of the SIG-CHI on
Human factors in computing systems, pages 357?364. ACM, March 2001.
[23] Poika Isokoski and Roope Raisamo. Device independent text input: A rationale and
an example. In Proceedings of the Working Conference on Advanced Visual Interfaces
AVI2000, pages 76?83. ACM, 2000.
[24] Allan Long Jr., James Landay, and Lawrence Rowe. Pda and gesture use in practice:
insights for designers of pen-absed user interfaces. Technical Report UCB//CSD-97-
976, U.C. Berkley, 1997.
[25] Allan Long Jr., James Landay, Lawrence Rowe, and Joseph Michiels. Visual similarity
of pen gestures. In Proceedings of Human Factors in Computer Systems (SIGCHI),
April 2000.
98
[26] A. Kapsalisand, V. J. Rayward-Smith, and G. D. Smith. Solving the graphical steiner
tree problem using genetic algorithms. Journal of the Operational Research Society,
44(4):397?406, April 1993.
[27] Howard Kassel. A comparison of approaches to on-line handwritten character recogni-
tion. Master?s thesis, Massachusetts Institute of Technology, June 1995.
[28] A. L. Koerich, R. Sabourin, and C. Y. Suen. Large vocabulary off-line handwriting
recognition: A survey. Pattern Analysis Application, 6:97?121, 2003.
[29] James Landay. Using note-taking appliances for student to student collaboration.
In Frontiers in Education Conference, FIE ?99, volume 2, pages 12C4/15?12C4/20,
November 1999.
[30] Robert Edward Lewand. Cryptographical Mathematics. Mathematical Association of
America Press, 2000.
[31] Xiaolin Li and Dit-Yan Yeung. On-line handwritten alphanumeric character recognition
using feature sequences. In Proceedings of the ICSC, pages 197?204, 1997.
[32] Tom Linton. English letter frequencies. http://www.central.edu/homepages/
LintonT/classes/spring01/cryptography/letterfreq.html, 2001.
[33] Scott MacKenzie and Larry Chang. A performance comparison of two handwriting
recognizers. Interacting with Computers, 11:283?297, 1999.
[34] Jennifer Mankoff and Gregory D. Abowd. Cirrin: A word-level unistroke keyboard
for pen input. In ACM Symposium on User Interface Software and Technology, pages
213?214. ACM Press, 1998.
[35] Merriam-Webster Inc. Merriam-Webster Pocket Dictionary. Merriam-Webster Inc.,
1964. Computer readable form.
[36] Brad Myers, Jacob Wobbrock, Sunny Yang, Brian Yeung, Jeffrey Nichols, and Robert
Miller. Using handhelds to help people with motor impairments. In Proceedings of
ASSETS 02, pages 89?96. ACM Press, 2002.
[37] Oxford. Oxford Dictionary of English. Oxford University Press, 2004.
[38] Ken Perlin. Quikwriting: Continuous stylus-based text entry. In ACM Symposium on
User Interface Software and Technology, pages 215?216, November 1998.
[39] R?ejean Plamondon and Sargur N. Srihari. On-line and off-line handwriting recognition:
A comprehensive survey. In IEEE Transactions on Pattern Analysis and Machine
Intelligence, volume 22, pages 63?84, January 2000.
[40] Nicholas J. Radcliffe. Genetic neural networks on MIMD computers. PhD thesis,
Edinburgh, Scotland, UK, 1990.
99
[41] Colin R. Reeves. A genetic algorithm for flowshop sequencing. Comput. Oper. Res.,
22(1):5?13, 1995.
[42] Neil Rhodes and Julie McKeehan. Palm OS Programming. O?Reilly and Associates,
2nd edition, October 2001.
[43] Jennie Borodko Stack. Palm Pilot Connects Girl with Classroom,
volume 8(1). Magazine of the Muscular Dystrophy Association,
http://www.mdausa.org/publications/Quest/q81palmpilot.cfm, 2001.
[44] Tal Steinherz, Ehud Rivlin, and Nathon Intrator. O?ine cursive script word
recognition?a survey. International Journal on Document Analysis and Recognition,
2:90?110, 1999.
[45] Ching Suen, Marc Berthod, and Shunji Mori. Automatic recognition of handprinted
characters ? the state of the art. In Proceedings of the IEEE, volume 68, pages 469?487,
April 1980.
[46] Charles Tappert. Speed, accuracy, and flexibility trade-offs in on-line character recog-
nition. Technical Report RC13228, IBM Research, October 1987.
[47] Charles Tappert, Ching Suen, and Toru Wakahara. The state of the art in on-line hand-
writing recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(8):787?808, August 1990.
[48] Dan Venolia and Forrest Neiberg. T-cube: A fast, self-disclosing pen-based alphabet.
In Proceedings of CHI Human Factors in Computing Systems, pages 265?270. ACM
Press, April 1994.
[49] Jacob Wobbrock, Brad Myers, and John Kembel. Edgewrite: A stylus-based text
entry method designed for high accuracy and stability of motion. In Proceedings of the
ACM Symposium on User Interface Software and Technology (UIST ?03), pages 61?70,
November 2003.
100
Appendices
101
Appendix A
Genetic Algorithm Profiles
The following figures show the evolutionary progress of the 20 GA profiles defined in
Section 6.3 for subjects?c00? and ?c02?. For thesake of visualization clarity, runsassociated
with a particular subject and letter case combination have been distributed across four
diagrams containing five profiles each. The top of each figure provides the fitness value
when the stock parameter set for activity-based recognition was used with ? = 1. Further,
a dotted horizontal line indicates this value in the figure. Each point along a particular run
indicates when a new best solution was discovered.
102
Subject ?c00? Profile Runs for Upper Case Characters
103
104
Subject ?c00? Profile Runs for Lower Case Characters
105
106
Subject ?c02? Profile Runs for Upper Case Characters
107
108
Subject ?c02? Profile Runs for Lower Case Characters
109
110
Appendix B
Optimized Parameter Sets
The following figures represent the final parameters found in the optimization study
described in Section 6.3. Each of the 66 subjects? upper and lower case sets are shown.
The figures contain four primary sections: error, directional mapping, activity regions,
and scalar bias. The value labled ?Error? indicates the percentage of characters misrecog-
nized over the 300 randomly selected alphabets with ? = 1. The ?Directional Mapping?
shows the directional regions evolved. The directions are not labled 0?7 as with Free-
man?s chain code because they are inconsequential and their relative locations may have
been extremely displaced during optimization. The ?Activity Regions? portion of the figure
identifies the starting and ending elements of the 32 resampled subtrokes of characters. The
regions? relative size and position are visualized to the right of their respective values. The
?Scalar Bias? portion of the figure identifies the scalar bias applied to the activity region
visualized directly to its left.
111
Subject ?c00?
Optimized parameters for the upper case characters:
Error:
0.0410016
Directional Mapping:
Activity Regions:
[0,30]
[16,30]
[3,30]
[5,18]
[17,21]
[12,25]
[15,31]
| |
Scalar Bias:
185.537
17.7145
11.1813
21.4447
51.8673
136.92
142.06
Optimized parameters for the lower case characters:
Error:
0.0443029
Directional Mapping:
Activity Regions:
[26,31]
[28,30]
[31,31]
[26,26]
[20,26]
[28,28]
[23,30]
| |
Scalar Bias:
55.0411
34.0693
87.5962
166.645
71.4395
117.701
100.562
112
Subject ?c01?
Optimized parameters for the upper case characters:
Error:
0.058101
Directional Mapping:
Activity Regions:
[2,17]
[7,31]
[16,31]
[0,29]
[1,24]
[14,25]
[0,23]
| |
Scalar Bias:
136.426
63.3899
181.077
150.57
2.79018
35.8326
142.199
Optimized parameters for the lower case characters:
Error:
0.0511899
Directional Mapping:
Activity Regions:
[0,31]
[1,29]
[25,31]
[9,30]
[10,30]
[1,16]
[1,8]
| |
Scalar Bias:
157.718
6.90533
119.433
120.092
64.1443
137.248
105.585
113
Subject ?c02?
Optimized parameters for the upper case characters:
Error:
0.230966
Directional Mapping:
Activity Regions:
[0,26]
[4,20]
[9,15]
[13,26]
[4,15]
[11,31]
[21,30]
| |
Scalar Bias:
162.876
87.7076
93.0607
108.461
43.5768
101.085
147.618
Optimized parameters for the lower case characters:
Error:
0.303401
Directional Mapping:
Activity Regions:
[3,14]
[1,9]
[0,9]
[12,31]
[2,12]
[25,31]
[2,15]
| |
Scalar Bias:
11.0249
83.5426
51.254
108.478
138.925
192.959
22.9986
114
Subject ?c03?
Optimized parameters for the upper case characters:
Error:
0.051238
Directional Mapping:
Activity Regions:
[1,28]
[0,19]
[26,30]
[9,27]
[22,31]
[18,29]
[1,31]
| |
Scalar Bias:
112.255
155.743
169.523
74.1164
14.7265
105.092
67.3367
Optimized parameters for the lower case characters:
Error:
0.029992
Directional Mapping:
Activity Regions:
[6,22]
[4,17]
[2,19]
[16,25]
[7,22]
[19,28]
[15,31]
| |
Scalar Bias:
14.6319
156.118
63.18
94.4849
203.149
90.5955
144.082
115
Subject ?c04?
Optimized parameters for the upper case characters:
Error:
0.155116
Directional Mapping:
Activity Regions:
[0,4]
[5,20]
[2,11]
[6,31]
[8,20]
[6,21]
[2,2]
| |
Scalar Bias:
17.3706
8.91946
112.537
128.533
56.0872
121.381
179.17
Optimized parameters for the lower case characters:
Error:
0.100717
Directional Mapping:
Activity Regions:
[5,31]
[8,23]
[20,27]
[25,31]
[12,27]
[12,25]
[6,30]
| |
Scalar Bias:
158.82
109.861
81.8627
134.747
29.0503
45.4129
43.0312
116
Subject ?c05?
Optimized parameters for the upper case characters:
Error:
0.0775521
Directional Mapping:
Activity Regions:
[3,27]
[2,15]
[16,31]
[9,31]
[8,24]
[5,28]
[24,31]
| |
Scalar Bias:
99.3617
122.451
163.135
133.347
109.603
23.6801
87.3497
Optimized parameters for the lower case characters:
Error:
0.0288301
Directional Mapping:
Activity Regions:
[14,20]
[2,15]
[3,12]
[4,15]
[11,13]
[9,18]
[1,13]
| |
Scalar Bias:
55.3274
65.7895
104.774
81.6605
30.7791
155.566
15.0562
117
Subject ?c06?
Optimized parameters for the upper case characters:
Error:
0.0741066
Directional Mapping:
Activity Regions:
[10,20]
[1,26]
[16,31]
[10,18]
[13,23]
[12,22]
[24,30]
| |
Scalar Bias:
82.8961
141.647
179.869
22.3728
71.9964
100.111
147.686
Optimized parameters for the lower case characters:
Error:
0.160084
Directional Mapping:
Activity Regions:
[2,30]
[3,20]
[18,29]
[1,7]
[0,11]
[7,30]
[19,31]
| |
Scalar Bias:
195.456
77.921
101.737
108.11
18.0115
3.52932
61.4518
118
Subject ?c07?
Optimized parameters for the upper case characters:
Error:
0.1098
Directional Mapping:
Activity Regions:
[4,20]
[13,19]
[13,31]
[1,15]
[12,21]
[4,30]
[1,28]
| |
Scalar Bias:
71.3732
52.3073
123.79
149.695
127.072
181.333
67.194
Optimized parameters for the lower case characters:
Error:
0.125084
Directional Mapping:
Activity Regions:
[0,31]
[6,31]
[5,17]
[4,15]
[11,31]
[3,21]
[14,29]
| |
Scalar Bias:
138.889
42.0388
47.6082
35.8665
85.6894
106
13.2575
119
Subject ?c08?
Optimized parameters for the upper case characters:
Error:
0.225284
Directional Mapping:
Activity Regions:
[3,20]
[8,25]
[21,29]
[20,31]
[14,27]
[16,22]
[25,29]
| |
Scalar Bias:
85.1883
80.1829
100.548
117.299
46.1111
79.6613
104.756
Optimized parameters for the lower case characters:
Error:
0.180737
Directional Mapping:
Activity Regions:
[17,29]
[10,27]
[23,31]
[1,8]
[5,19]
[1,31]
[25,29]
| |
Scalar Bias:
75.6946
92.0391
154.623
79.9464
138.443
145.356
77.5635
120
Subject ?c09?
Optimized parameters for the upper case characters:
Error:
0.0330288
Directional Mapping:
Activity Regions:
[0,29]
[4,30]
[9,31]
[6,31]
[7,19]
[5,31]
[0,14]
| |
Scalar Bias:
110.891
70.2981
115.82
77.2957
178.596
29.4995
88.878
Optimized parameters for the lower case characters:
Error:
0.0615425
Directional Mapping:
Activity Regions:
[0,31]
[0,7]
[6,12]
[2,5]
[5,27]
[1,28]
[5,30]
| |
Scalar Bias:
58.508
76.71
61.0807
90.1035
111.117
41.402
187.038
121
Subject ?c10?
Optimized parameters for the upper case characters:
Error:
0.096226
Directional Mapping:
Activity Regions:
[0,30]
[0,20]
[0,30]
[0,5]
[6,28]
[12,27]
[11,25]
| |
Scalar Bias:
127.517
174.062
3.58045
85.5529
77.2626
175.321
24.0055
Optimized parameters for the lower case characters:
Error:
0.116146
Directional Mapping:
Activity Regions:
[0,9]
[0,31]
[19,31]
[0,9]
[0,25]
[11,25]
[31,31]
| |
Scalar Bias:
71.9252
51.8543
103.3
8.32579
154.298
167.56
163.94
122
Subject ?c11?
Optimized parameters for the upper case characters:
Error:
0.352432
Directional Mapping:
Activity Regions:
[3,31]
[6,20]
[21,31]
[26,30]
[4,15]
[5,15]
[17,31]
| |
Scalar Bias:
120.639
105.957
112.357
98.811
6.2912
67.0133
80.5539
Optimized parameters for the lower case characters:
Error:
0.368221
Directional Mapping:
Activity Regions:
[14,31]
[0,27]
[14,31]
[2,31]
[3,13]
[1,25]
[15,31]
| |
Scalar Bias:
33.8572
85.1457
21.5791
86.8324
95.7103
124.911
121.399
123
Subject ?c12?
Optimized parameters for the upper case characters:
Error:
0.0852764
Directional Mapping:
Activity Regions:
[10,14]
[5,24]
[20,28]
[15,19]
[6,18]
[25,29]
[1,24]
| |
Scalar Bias:
45.2465
51.5572
148.809
39.5054
123.807
81.4921
122.678
Optimized parameters for the lower case characters:
Error:
0.100393
Directional Mapping:
Activity Regions:
[4,28]
[18,30]
[8,17]
[16,29]
[3,6]
[0,10]
[20,30]
| |
Scalar Bias:
194.055
160.358
115.052
36.4885
69.4201
82.8582
92.9649
124
Subject ?c13?
Optimized parameters for the upper case characters:
Error:
0.0584696
Directional Mapping:
Activity Regions:
[0,29]
[4,4]
[5,23]
[7,28]
[6,20]
[4,29]
[18,23]
| |
Scalar Bias:
126.546
163.278
128.427
122.223
71.1779
27.588
70.8643
Optimized parameters for the lower case characters:
Error:
0.0817468
Directional Mapping:
Activity Regions:
[0,28]
[4,21]
[7,20]
[0,9]
[3,18]
[10,30]
[1,1]
| |
Scalar Bias:
91.3544
55.6963
51.4464
136.894
29.5846
126.187
191.123
125
Subject ?c14?
Optimized parameters for the upper case characters:
Error:
0.190232
Directional Mapping:
Activity Regions:
[4,21]
[0,7]
[2,11]
[0,10]
[2,10]
[11,19]
[0,29]
| |
Scalar Bias:
74.574
4.63831
124.618
31.6933
27.5384
91.7298
95.9236
Optimized parameters for the lower case characters:
Error:
0.163045
Directional Mapping:
Activity Regions:
[4,28]
[0,16]
[18,26]
[9,9]
[14,14]
[15,24]
[1,11]
| |
Scalar Bias:
124.307
97.4474
1.41646
105.94
2.49281
124.886
86.9893
126
Subject ?c15?
Optimized parameters for the upper case characters:
Error:
0.173229
Directional Mapping:
Activity Regions:
[1,30]
[1,27]
[5,31]
[4,31]
[4,11]
[9,24]
[20,28]
| |
Scalar Bias:
131.346
117.624
123.601
57.027
198.104
127.319
180.028
Optimized parameters for the lower case characters:
Error:
0.189339
Directional Mapping:
Activity Regions:
[9,31]
[14,28]
[0,17]
[5,10]
[2,15]
[7,27]
[7,23]
| |
Scalar Bias:
132.592
66.293
105.454
43.0787
58.2831
4.68164
139.905
127
Subject ?c16?
Optimized parameters for the upper case characters:
Error:
0.188474
Directional Mapping:
Activity Regions:
[5,31]
[0,24]
[5,31]
[19,29]
[1,21]
[4,29]
[25,30]
| |
Scalar Bias:
133.249
7.40678
21.4927
67.096
145.932
13.6645
128.048
Optimized parameters for the lower case characters:
Error:
0.25246
Directional Mapping:
Activity Regions:
[2,31]
[1,10]
[3,5]
[2,12]
[31,31]
[12,30]
[27,27]
| |
Scalar Bias:
161.8
134.076
31.618
52.5634
144.059
128.453
163.559
128
Subject ?c17?
Optimized parameters for the upper case characters:
Error:
0.178377
Directional Mapping:
Activity Regions:
[1,30]
[6,14]
[12,28]
[12,14]
[12,21]
[24,30]
[1,30]
| |
Scalar Bias:
112.74
177.555
114.96
15.7983
160.963
153.645
47.9266
Optimized parameters for the lower case characters:
Error:
0.131747
Directional Mapping:
Activity Regions:
[0,30]
[3,31]
[14,30]
[5,18]
[10,23]
[4,29]
[18,30]
| |
Scalar Bias:
143.016
123.759
179.759
3.67423
169.625
63.1713
11.7781
129
Subject ?c18?
Optimized parameters for the upper case characters:
Error:
0.242957
Directional Mapping:
Activity Regions:
[3,31]
[1,20]
[11,23]
[1,28]
[2,31]
[17,24]
[19,27]
| |
Scalar Bias:
12.7487
133.61
105.813
54.9401
29.293
112.439
132.182
Optimized parameters for the lower case characters:
Error:
0.451651
Directional Mapping:
Activity Regions:
[1,28]
[6,8]
[18,26]
[21,28]
[5,16]
[1,13]
[22,28]
| |
Scalar Bias:
128.763
52.4643
128.914
72.5034
96.0161
69.5062
117.787
130
Subject ?c19?
Optimized parameters for the upper case characters:
Error:
0.0910457
Directional Mapping:
Activity Regions:
[0,30]
[17,19]
[16,30]
[1,6]
[4,23]
[16,23]
[22,28]
| |
Scalar Bias:
117.977
0.704248
55.2683
147.879
195.228
73.226
123.516
Optimized parameters for the lower case characters:
Error:
0.10869
Directional Mapping:
Activity Regions:
[25,31]
[3,18]
[14,22]
[0,0]
[2,3]
[2,5]
[22,31]
| |
Scalar Bias:
153.385
133.468
154.669
133.217
78.9633
38.4741
99.6347
131
Subject ?c20?
Optimized parameters for the upper case characters:
Error:
0.10401
Directional Mapping:
Activity Regions:
[0,30]
[12,21]
[2,15]
[9,22]
[1,20]
[16,26]
[2,31]
| |
Scalar Bias:
70.0801
71.7994
97.9465
78.51
86.3814
79.0717
141.365
Optimized parameters for the lower case characters:
Error:
0.099976
Directional Mapping:
Activity Regions:
[12,25]
[6,22]
[19,24]
[18,28]
[1,30]
[2,31]
[15,28]
| |
Scalar Bias:
91.9222
62.7307
69.567
42.4467
167.164
50.852
108.156
132
Subject ?c21?
Optimized parameters for the upper case characters:
Error:
0.105938
Directional Mapping:
Activity Regions:
[7,23]
[1,9]
[11,28]
[3,14]
[2,14]
[0,31]
[25,30]
| |
Scalar Bias:
104.64
107.769
104.577
88.2079
129.125
110.042
106.803
Optimized parameters for the lower case characters:
Error:
0.166987
Directional Mapping:
Activity Regions:
[1,26]
[1,14]
[3,31]
[7,28]
[7,20]
[10,26]
[6,15]
| |
Scalar Bias:
19.6133
26.2741
117.532
3.51239
98.3833
87.4932
116.404
133
Subject ?c22?
Optimized parameters for the upper case characters:
Error:
0.0985136
Directional Mapping:
Activity Regions:
[4,29]
[2,9]
[20,30]
[1,12]
[4,22]
[18,23]
[20,27]
| |
Scalar Bias:
100.463
9.69649
107.138
85.2906
40.2513
125.511
100.177
Optimized parameters for the lower case characters:
Error:
0.107973
Directional Mapping:
Activity Regions:
[4,19]
[2,17]
[18,29]
[1,18]
[10,31]
[5,16]
[9,19]
| |
Scalar Bias:
95.805
55.2773
0.767765
22.0513
144.078
8.42714
71.296
134
Subject ?c23?
Optimized parameters for the upper case characters:
Error:
0.0459255
Directional Mapping:
Activity Regions:
[3,28]
[1,27]
[15,30]
[1,10]
[8,17]
[12,25]
[4,14]
| |
Scalar Bias:
166.535
48.1232
54.2834
139.658
157.928
115.305
142.843
Optimized parameters for the lower case characters:
Error:
0.158421
Directional Mapping:
Activity Regions:
[19,27]
[21,27]
[1,5]
[2,8]
[0,25]
[19,28]
[13,30]
| |
Scalar Bias:
26.9372
46.5957
14.3676
169.508
167.415
59.2531
188.806
135
Subject ?c24?
Optimized parameters for the upper case characters:
Error:
0.128337
Directional Mapping:
Activity Regions:
[3,31]
[3,20]
[20,26]
[2,15]
[11,20]
[17,31]
[18,31]
| |
Scalar Bias:
103.784
158.971
7.05251
79.0556
113.236
105.349
120.853
Optimized parameters for the lower case characters:
Error:
0.230697
Directional Mapping:
Activity Regions:
[5,31]
[21,31]
[18,22]
[23,31]
[17,22]
[16,22]
[15,26]
| |
Scalar Bias:
84.5366
35.5753
30.7789
170.502
3.06102
30.2358
85.5438
136
Subject ?c25?
Optimized parameters for the upper case characters:
Error:
0.110441
Directional Mapping:
Activity Regions:
[1,26]
[3,22]
[10,31]
[16,25]
[19,27]
[11,24]
[8,15]
| |
Scalar Bias:
131.113
47.1443
142.653
166.562
88.3611
102.986
86.9191
Optimized parameters for the lower case characters:
Error:
0.0878005
Directional Mapping:
Activity Regions:
[1,31]
[8,19]
[0,31]
[1,1]
[0,0]
[15,24]
[22,29]
| |
Scalar Bias:
174.107
117.828
77.2542
187.011
169.715
94.3359
95.9883
137
Subject ?c26?
Optimized parameters for the upper case characters:
Error:
0.158393
Directional Mapping:
Activity Regions:
[3,29]
[0,16]
[12,28]
[0,12]
[10,22]
[7,30]
[11,21]
| |
Scalar Bias:
77.9367
133.889
26.6941
48.9754
132.367
67.233
20.5276
Optimized parameters for the lower case characters:
Error:
0.125605
Directional Mapping:
Activity Regions:
[2,30]
[7,17]
[9,23]
[0,0]
[6,17]
[2,25]
[21,30]
| |
Scalar Bias:
102.317
58.5418
33.984
141.842
84.8043
44.9699
133.235
138
Subject ?c27?
Optimized parameters for the upper case characters:
Error:
0.138269
Directional Mapping:
Activity Regions:
[2,31]
[16,24]
[21,29]
[3,16]
[3,21]
[4,18]
[4,16]
| |
Scalar Bias:
115.837
110.802
161.646
77.2869
74.1725
30.9143
36.1901
Optimized parameters for the lower case characters:
Error:
0.21899
Directional Mapping:
Activity Regions:
[2,26]
[0,13]
[9,31]
[25,28]
[19,19]
[19,31]
[3,27]
| |
Scalar Bias:
94.7931
81.91
86.9897
35.1895
48.6636
176.465
16.5838
139
Subject ?c28?
Optimized parameters for the upper case characters:
Error:
0.0530449
Directional Mapping:
Activity Regions:
[4,29]
[5,15]
[12,26]
[0,8]
[3,16]
[0,24]
[22,30]
| |
Scalar Bias:
49.6022
154.69
139.311
90.2627
141.394
55.9702
138.516
Optimized parameters for the lower case characters:
Error:
0.0738782
Directional Mapping:
Activity Regions:
[9,18]
[9,18]
[16,30]
[0,11]
[19,25]
[5,25]
[23,30]
| |
Scalar Bias:
37.7973
109.265
95.6369
81.1552
35.3687
142.531
128.703
140
Subject ?c29?
Optimized parameters for the upper case characters:
Error:
0.0439223
Directional Mapping:
Activity Regions:
[16,25]
[1,22]
[14,31]
[12,24]
[15,25]
[15,25]
[2,17]
| |
Scalar Bias:
49.69
159.729
108.55
44.629
106.144
38.9062
41.95
Optimized parameters for the lower case characters:
Error:
0.0557171
Directional Mapping:
Activity Regions:
[11,25]
[7,23]
[16,28]
[0,24]
[21,29]
[11,31]
[8,23]
| |
Scalar Bias:
4.62448
84.0787
36.8133
152.515
102.208
12.5449
26.9113
141
Subject ?c30?
Optimized parameters for the upper case characters:
Error:
0.17387
Directional Mapping:
Activity Regions:
[6,25]
[11,20]
[9,18]
[0,14]
[16,30]
[0,30]
[4,8]
| |
Scalar Bias:
101.921
127.514
22.1682
98.5478
91.3762
101.325
13.7437
Optimized parameters for the lower case characters:
Error:
0.200845
Directional Mapping:
Activity Regions:
[26,30]
[2,18]
[27,30]
[2,29]
[17,31]
[0,8]
[3,27]
| |
Scalar Bias:
35.8078
92.5925
5.0718
88.711
140.547
167.198
6.25048
142
Subject ?c31?
Optimized parameters for the upper case characters:
Error:
0.120757
Directional Mapping:
Activity Regions:
[11,28]
[18,29]
[14,29]
[1,16]
[12,26]
[3,16]
[19,30]
| |
Scalar Bias:
159.779
110.287
82.7398
95.1861
13.2275
36.6346
47.9338
Optimized parameters for the lower case characters:
Error:
0.0832893
Directional Mapping:
Activity Regions:
[15,27]
[3,18]
[13,31]
[3,18]
[0,16]
[14,26]
[15,30]
| |
Scalar Bias:
21.7192
59.2801
186.036
19.6122
85.3168
60.787
170.976
143
Subject ?c32?
Optimized parameters for the upper case characters:
Error:
0.147716
Directional Mapping:
Activity Regions:
[16,25]
[21,28]
[1,22]
[0,19]
[23,31]
[17,27]
[1,23]
| |
Scalar Bias:
22.6267
73.2952
54.8834
58.9387
96.1215
51.0723
13.3136
Optimized parameters for the lower case characters:
Error:
0.180184
Directional Mapping:
Activity Regions:
[5,28]
[0,18]
[20,31]
[1,1]
[22,30]
[3,31]
[11,23]
| |
Scalar Bias:
42.3307
71.1163
73.9211
164.327
64.556
51.2183
9.20665
144
Subject ?c33?
Optimized parameters for the upper case characters:
Error:
0.159471
Directional Mapping:
Activity Regions:
[3,30]
[9,19]
[17,27]
[2,31]
[5,14]
[12,27]
[22,31]
| |
Scalar Bias:
136.797
146.854
68.4648
101.091
175.395
118.705
196.08
Optimized parameters for the lower case characters:
Error:
0.161146
Directional Mapping:
Activity Regions:
[6,22]
[7,19]
[14,26]
[0,30]
[5,19]
[4,19]
[20,31]
| |
Scalar Bias:
37.525
83.033
134.255
175.849
84.8813
0.167313
177.888
145
Subject ?c34?
Optimized parameters for the upper case characters:
Error:
0.152135
Directional Mapping:
Activity Regions:
[0,31]
[2,20]
[12,22]
[2,22]
[13,26]
[19,24]
[21,29]
| |
Scalar Bias:
141.577
70.7026
21.8886
82.3364
124.539
22.2652
144.256
Optimized parameters for the lower case characters:
Error:
0.154563
Directional Mapping:
Activity Regions:
[17,30]
[4,16]
[15,30]
[20,27]
[2,15]
[2,27]
[14,31]
| |
Scalar Bias:
34.7362
116.774
170.166
22.5639
52.48
172.387
79.9799
146
Subject ?c35?
Optimized parameters for the upper case characters:
Error:
0.065028
Directional Mapping:
Activity Regions:
[11,29]
[10,28]
[3,23]
[14,26]
[3,13]
[13,23]
[2,31]
| |
Scalar Bias:
3.53714
93.9488
76.4152
50.4936
65.8857
91.4465
104.08
Optimized parameters for the lower case characters:
Error:
0.105276
Directional Mapping:
Activity Regions:
[4,22]
[15,18]
[22,31]
[0,17]
[0,31]
[17,26]
[1,31]
| |
Scalar Bias:
91.5004
47.8863
93.0178
4.25931
125.151
107.225
68.7355
147
Subject ?c36?
Optimized parameters for the upper case characters:
Error:
0.0795593
Directional Mapping:
Activity Regions:
[3,23]
[2,19]
[14,31]
[20,28]
[2,25]
[16,23]
[3,21]
| |
Scalar Bias:
61.8527
186.245
189.072
76.4317
41.7045
164.246
56.174
Optimized parameters for the lower case characters:
Error:
0.0763221
Directional Mapping:
Activity Regions:
[6,15]
[21,21]
[18,31]
[1,31]
[4,15]
[18,31]
[0,12]
| |
Scalar Bias:
12.2069
159.612
158.056
109.423
87.0328
24.4837
55.4194
148
Subject ?c37?
Optimized parameters for the upper case characters:
Error:
0.0473317
Directional Mapping:
Activity Regions:
[0,31]
[1,16]
[16,24]
[1,12]
[0,8]
[13,21]
[9,30]
| |
Scalar Bias:
177.192
143.307
107.94
104.505
141.477
126.338
139.984
Optimized parameters for the lower case characters:
Error:
0.0491867
Directional Mapping:
Activity Regions:
[1,31]
[15,30]
[8,21]
[13,30]
[5,24]
[2,17]
[21,31]
| |
Scalar Bias:
196.957
63.1508
181.011
153.856
69.2795
123.446
102.907
149
Subject ?c38?
Optimized parameters for the upper case characters:
Error:
0.0775641
Directional Mapping:
Activity Regions:
[1,30]
[7,23]
[24,31]
[17,27]
[1,8]
[15,23]
[8,24]
| |
Scalar Bias:
110.493
102.245
188.424
99.3315
19.3787
78.63
80.6399
Optimized parameters for the lower case characters:
Error:
0.125401
Directional Mapping:
Activity Regions:
[15,31]
[0,28]
[23,30]
[14,20]
[2,7]
[14,29]
[1,27]
| |
Scalar Bias:
70.9789
158.347
101.396
2.62904
130.156
88.5502
2.70559
150
Subject ?c39?
Optimized parameters for the upper case characters:
Error:
0.100505
Directional Mapping:
Activity Regions:
[1,25]
[3,28]
[21,30]
[12,28]
[2,19]
[17,23]
[14,25]
| |
Scalar Bias:
170.992
123.701
195.373
174.717
183.57
80.6935
96.0666
Optimized parameters for the lower case characters:
Error:
0.0586739
Directional Mapping:
Activity Regions:
[9,26]
[3,15]
[10,31]
[6,19]
[0,12]
[2,26]
[8,22]
| |
Scalar Bias:
12.7671
10.0789
71.8657
50.8172
75.6428
53.7131
120.695
151
Subject ?c40?
Optimized parameters for the upper case characters:
Error:
0.0850962
Directional Mapping:
Activity Regions:
[0,31]
[1,31]
[17,29]
[10,27]
[2,21]
[5,21]
[11,30]
| |
Scalar Bias:
148.319
159.939
44.3837
142.52
139.881
63.2344
30.3998
Optimized parameters for the lower case characters:
Error:
0.108562
Directional Mapping:
Activity Regions:
[25,28]
[9,31]
[25,28]
[0,2]
[0,0]
[1,30]
[0,31]
| |
Scalar Bias:
68.5755
201.739
6.01585
191.438
129.89
83.319
81.7186
152
Subject ?c41?
Optimized parameters for the upper case characters:
Error:
0.132216
Directional Mapping:
Activity Regions:
[3,31]
[1,16]
[18,31]
[11,21]
[1,6]
[13,23]
[1,7]
| |
Scalar Bias:
98.3765
121.421
123.306
8.77814
16.6685
74.8922
100.982
Optimized parameters for the lower case characters:
Error:
0.246314
Directional Mapping:
Activity Regions:
[9,18]
[26,31]
[23,30]
[26,30]
[10,18]
[14,23]
[23,31]
| |
Scalar Bias:
0.00119558
128.49
99.1444
147.522
21.076
127.078
22.3664
153
Subject ?c42?
Optimized parameters for the upper case characters:
Error:
0.122889
Directional Mapping:
Activity Regions:
[15,26]
[3,16]
[13,29]
[1,26]
[3,28]
[20,31]
[3,19]
| |
Scalar Bias:
78.7633
105.665
65.253
20.165
143.221
62.2536
8.79207
Optimized parameters for the lower case characters:
Error:
0.112196
Directional Mapping:
Activity Regions:
[3,31]
[1,30]
[18,31]
[2,15]
[23,29]
[9,21]
[23,30]
| |
Scalar Bias:
137.532
16.4693
118.58
117.008
14.4251
146.075
51.9192
154
Subject ?c43?
Optimized parameters for the upper case characters:
Error:
0.0983974
Directional Mapping:
Activity Regions:
[0,31]
[5,15]
[16,30]
[11,22]
[19,29]
[11,27]
[14,16]
| |
Scalar Bias:
178.697
94.0704
36.2074
67.4686
90.864
63.8612
11.2912
Optimized parameters for the lower case characters:
Error:
0.187364
Directional Mapping:
Activity Regions:
[1,26]
[2,13]
[3,18]
[8,28]
[0,26]
[0,15]
[25,31]
| |
Scalar Bias:
32.2132
55.3336
37.821
76.658
88.7166
1.2372
71.2463
155
Subject ?c44?
Optimized parameters for the upper case characters:
Error:
0.0816186
Directional Mapping:
Activity Regions:
[10,23]
[3,17]
[15,30]
[2,30]
[14,31]
[3,18]
[9,27]
| |
Scalar Bias:
62.8604
84.6672
10.7031
151.89
84.4914
0.593239
39.1273
Optimized parameters for the lower case characters:
Error:
0.0866747
Directional Mapping:
Activity Regions:
[2,28]
[3,30]
[2,23]
[0,27]
[1,21]
[3,21]
[9,21]
| |
Scalar Bias:
27.1823
110.691
106.205
110.526
106.185
35.7056
101.35
156
Subject ?t00?
Optimized parameters for the upper case characters:
Error:
0.215917
Directional Mapping:
Activity Regions:
[6,30]
[0,14]
[18,27]
[27,28]
[8,15]
[15,31]
[2,19]
| |
Scalar Bias:
149.113
4.44934
136.359
47.3665
89.2072
183.019
202.494
Optimized parameters for the lower case characters:
Error:
0.256639
Directional Mapping:
Activity Regions:
[0,31]
[9,31]
[15,29]
[2,30]
[3,17]
[12,27]
[18,30]
| |
Scalar Bias:
96.9642
41.1581
18.2992
75.2523
153.621
19.3605
185.628
157
Subject ?t01?
Optimized parameters for the upper case characters:
Error:
0.133085
Directional Mapping:
Activity Regions:
[3,25]
[11,28]
[19,31]
[14,27]
[14,31]
[16,25]
[1,18]
| |
Scalar Bias:
71.0806
31.9444
97.0806
23.3147
106.558
163.182
80.5865
Optimized parameters for the lower case characters:
Error:
0.146811
Directional Mapping:
Activity Regions:
[5,19]
[1,13]
[19,24]
[20,29]
[15,31]
[5,14]
[0,13]
| |
Scalar Bias:
49.0315
27.3605
6.19609
116.796
88.2369
68.031
64.4197
158
Subject ?t02?
Optimized parameters for the upper case characters:
Error:
0.0786298
Directional Mapping:
Activity Regions:
[0,31]
[2,31]
[1,21]
[2,29]
[0,18]
[8,22]
[11,26]
| |
Scalar Bias:
76.7353
86.9643
63.8668
27.019
96.3404
121.287
32.2721
Optimized parameters for the lower case characters:
Error:
0.15397
Directional Mapping:
Activity Regions:
[24,29]
[6,24]
[20,29]
[2,14]
[11,19]
[1,10]
[0,20]
| |
Scalar Bias:
29.2716
124.25
133.176
5.96883
104.623
61.9133
64.441
159
Subject ?t03?
Optimized parameters for the upper case characters:
Error:
0.130172
Directional Mapping:
Activity Regions:
[4,30]
[4,17]
[9,25]
[7,26]
[17,28]
[1,9]
[1,29]
| |
Scalar Bias:
112.066
115.404
92.3764
70.3925
39.7668
124.23
175.628
Optimized parameters for the lower case characters:
Error:
0.184784
Directional Mapping:
Activity Regions:
[0,31]
[13,24]
[13,25]
[2,10]
[7,17]
[20,29]
[4,29]
| |
Scalar Bias:
121.01
14.3915
41.6941
98.9317
149.451
168.482
126.465
160
Subject ?t04?
Optimized parameters for the upper case characters:
Error:
0.0763301
Directional Mapping:
Activity Regions:
[0,29]
[1,18]
[10,16]
[15,29]
[1,22]
[1,4]
[11,31]
| |
Scalar Bias:
179.047
153.068
12.8584
157.244
80.7516
15.3259
157.249
Optimized parameters for the lower case characters:
Error:
0.105773
Directional Mapping:
Activity Regions:
[11,28]
[4,19]
[13,31]
[2,30]
[21,30]
[6,31]
[13,25]
| |
Scalar Bias:
110.455
186.579
190.65
136.434
185.344
59.3605
35.3756
161
Subject ?t05?
Optimized parameters for the upper case characters:
Error:
0.0539503
Directional Mapping:
Activity Regions:
[0,0]
[0,21]
[18,30]
[0,0]
[9,23]
[0,23]
[19,30]
| |
Scalar Bias:
168.149
147.414
176.478
161.472
149.933
66.1713
21.7509
Optimized parameters for the lower case characters:
Error:
0.0834455
Directional Mapping:
Activity Regions:
[5,31]
[1,11]
[19,28]
[4,30]
[2,13]
[6,22]
[26,30]
| |
Scalar Bias:
121.864
88.2476
147.191
6.53906
94.6447
152.666
10.3714
162
Subject ?t06?
Optimized parameters for the upper case characters:
Error:
0.0832011
Directional Mapping:
Activity Regions:
[0,30]
[7,14]
[17,26]
[28,29]
[7,16]
[7,30]
[6,29]
| |
Scalar Bias:
186.804
43.1142
117.448
46.9402
158.354
23.6205
119.947
Optimized parameters for the lower case characters:
Error:
0.143854
Directional Mapping:
Activity Regions:
[0,29]
[4,25]
[17,29]
[13,25]
[8,19]
[23,24]
[26,31]
| |
Scalar Bias:
152.859
134.167
172.901
91.0565
101.41
43.8918
83.154
163
Subject ?t07?
Optimized parameters for the upper case characters:
Error:
0.0553325
Directional Mapping:
Activity Regions:
[13,29]
[0,25]
[2,11]
[8,23]
[16,21]
[2,20]
[18,29]
| |
Scalar Bias:
26.7755
101.976
20.3077
129.457
13.589
119.999
186.066
Optimized parameters for the lower case characters:
Error:
0.0509014
Directional Mapping:
Activity Regions:
[1,30]
[1,14]
[14,30]
[1,5]
[7,15]
[17,22]
[11,29]
| |
Scalar Bias:
155.29
101.538
86.5866
98.3551
94.6962
58.3699
102.452
164
Subject ?t08?
Optimized parameters for the upper case characters:
Error:
0.099403
Directional Mapping:
Activity Regions:
[2,25]
[5,30]
[0,24]
[4,31]
[4,28]
[19,28]
[0,18]
| |
Scalar Bias:
99.8
74.2093
122.851
127.454
70.4073
97.1993
151.153
Optimized parameters for the lower case characters:
Error:
0.0911298
Directional Mapping:
Activity Regions:
[2,31]
[23,31]
[13,25]
[1,14]
[10,19]
[14,31]
[22,29]
| |
Scalar Bias:
148.964
10.1868
113.072
77.2711
109.64
3.94666
95.3894
165
Subject ?t09?
Optimized parameters for the upper case characters:
Error:
0.181386
Directional Mapping:
Activity Regions:
[1,31]
[3,23]
[0,22]
[14,31]
[1,25]
[8,31]
[22,26]
| |
Scalar Bias:
134.765
110.666
112.737
194.949
98.2005
138.815
3.13344
Optimized parameters for the lower case characters:
Error:
0.108886
Directional Mapping:
Activity Regions:
[5,27]
[11,25]
[0,30]
[2,6]
[6,15]
[7,20]
[20,31]
| |
Scalar Bias:
24.4772
66.9013
169.179
18.6468
183.064
82.8069
167.304
166
Subject ?t10?
Optimized parameters for the upper case characters:
Error:
0.111687
Directional Mapping:
Activity Regions:
[10,28]
[0,14]
[5,28]
[1,17]
[1,30]
[16,23]
[20,31]
| |
Scalar Bias:
168.515
81.6709
11.2988
96.281
124.975
65.3763
111.276
Optimized parameters for the lower case characters:
Error:
0.167732
Directional Mapping:
Activity Regions:
[1,31]
[2,14]
[2,31]
[13,29]
[6,17]
[13,26]
[17,29]
| |
Scalar Bias:
161.712
183.021
26.0808
30.6264
45.5874
106.871
159.703
167
Subject ?t11?
Optimized parameters for the upper case characters:
Error:
0.177007
Directional Mapping:
Activity Regions:
[0,29]
[12,23]
[19,31]
[13,13]
[11,23]
[19,23]
[1,30]
| |
Scalar Bias:
79.2241
0.39717
159.404
192.048
139.694
32.5767
71.0145
Optimized parameters for the lower case characters:
Error:
0.182107
Directional Mapping:
Activity Regions:
[21,31]
[0,11]
[6,30]
[7,20]
[27,31]
[24,30]
[0,8]
| |
Scalar Bias:
72.1158
31.8859
177.329
73.0161
133.366
185.054
81.933
168
Subject ?t12?
Optimized parameters for the upper case characters:
Error:
0.104159
Directional Mapping:
Activity Regions:
[25,29]
[2,24]
[3,31]
[29,30]
[27,29]
[17,28]
[28,29]
| |
Scalar Bias:
36.4633
137.513
156.017
44.1485
30.7142
146.33
122.316
Optimized parameters for the lower case characters:
Error:
0.100016
Directional Mapping:
Activity Regions:
[1,29]
[10,21]
[20,30]
[4,7]
[4,20]
[0,13]
[7,25]
| |
Scalar Bias:
188.353
0.718574
194.716
12.5296
179.027
114.107
31.1494
169
Subject ?t13?
Optimized parameters for the upper case characters:
Error:
0.0819111
Directional Mapping:
Activity Regions:
[3,29]
[2,30]
[1,31]
[4,5]
[3,14]
[18,26]
[22,28]
| |
Scalar Bias:
98.314
129.353
4.87348
29.4743
191.215
167.264
177.552
Optimized parameters for the lower case characters:
Error:
0.0641627
Directional Mapping:
Activity Regions:
[0,28]
[0,24]
[20,31]
[9,25]
[0,30]
[5,25]
[5,23]
| |
Scalar Bias:
98.3724
26.189
135.425
21.7641
40.5988
38.3009
24.6958
170
Subject ?t14?
Optimized parameters for the upper case characters:
Error:
0.103329
Directional Mapping:
Activity Regions:
[0,27]
[3,18]
[0,20]
[0,4]
[0,31]
[26,31]
[23,30]
| |
Scalar Bias:
96.7879
176.406
78.4025
126.488
18.58
33.7079
189.252
Optimized parameters for the lower case characters:
Error:
0.0946955
Directional Mapping:
Activity Regions:
[18,31]
[0,31]
[11,23]
[18,31]
[19,30]
[9,29]
[8,21]
| |
Scalar Bias:
140.54
165.358
62.3377
107.704
54.6595
88.9864
81.6355
171
Subject ?t15?
Optimized parameters for the upper case characters:
Error:
0.186298
Directional Mapping:
Activity Regions:
[8,21]
[9,28]
[1,26]
[7,31]
[17,31]
[7,30]
[3,31]
| |
Scalar Bias:
145.163
10.8799
102.439
71.11
134.845
20.9933
71.0725
Optimized parameters for the lower case characters:
Error:
0.195068
Directional Mapping:
Activity Regions:
[0,14]
[0,2]
[13,31]
[2,3]
[0,5]
[19,31]
[11,27]
| |
Scalar Bias:
95.9962
183.977
94.298
46.6957
143.999
122.289
87.3799
172
Subject ?t16?
Optimized parameters for the upper case characters:
Error:
0.0477163
Directional Mapping:
Activity Regions:
[0,31]
[2,14]
[15,31]
[0,8]
[14,18]
[14,22]
[22,28]
| |
Scalar Bias:
168.476
129.387
144.956
198.688
36.1123
147.164
67.5201
Optimized parameters for the lower case characters:
Error:
0.0302965
Directional Mapping:
Activity Regions:
[1,30]
[15,26]
[6,29]
[21,31]
[7,21]
[6,22]
[25,28]
| |
Scalar Bias:
85.6707
114.221
48.6986
134.688
160.101
31.2551
103.128
173
Subject ?t17?
Optimized parameters for the upper case characters:
Error:
0.15484
Directional Mapping:
Activity Regions:
[0,31]
[17,30]
[10,26]
[2,18]
[6,19]
[0,24]
[13,25]
| |
Scalar Bias:
64.2141
87.663
50.9263
117.559
7.47494
32.5805
85.4686
Optimized parameters for the lower case characters:
Error:
0.1226
Directional Mapping:
Activity Regions:
[1,31]
[0,20]
[20,30]
[1,4]
[1,31]
[0,7]
[1,9]
| |
Scalar Bias:
90.0627
176.759
123.344
170.476
2.8479
137.33
117.779
174
Subject ?t18?
Optimized parameters for the upper case characters:
Error:
0.107131
Directional Mapping:
Activity Regions:
[0,31]
[20,26]
[13,28]
[2,18]
[0,18]
[0,21]
[20,27]
| |
Scalar Bias:
122.974
61.6228
161.169
155.736
66.6944
61.3375
147.299
Optimized parameters for the lower case characters:
Error:
0.0971034
Directional Mapping:
Activity Regions:
[3,25]
[2,10]
[15,30]
[0,8]
[19,19]
[25,25]
[19,29]
| |
Scalar Bias:
123.881
5.05596
67.8729
157.443
186.331
141.508
134.309
175
Subject ?t19?
Optimized parameters for the upper case characters:
Error:
0.11655
Directional Mapping:
Activity Regions:
[9,29]
[14,24]
[18,21]
[11,25]
[10,24]
[12,26]
[22,30]
| |
Scalar Bias:
36.8398
24.7286
18.7045
60.1853
65.9961
64.4141
136.062
Optimized parameters for the lower case characters:
Error:
0.189291
Directional Mapping:
Activity Regions:
[2,31]
[0,31]
[21,30]
[20,28]
[4,21]
[11,23]
[16,27]
| |
Scalar Bias:
32.0364
150.378
144.672
59.5064
182.121
85.4956
69.2216
176
Subject ?t20?
Optimized parameters for the upper case characters:
Error:
0.0841747
Directional Mapping:
Activity Regions:
[24,31]
[2,26]
[10,29]
[5,15]
[11,18]
[3,27]
[5,17]
| |
Scalar Bias:
192.768
142.46
181.425
33.6511
12.0134
134.11
177.909
Optimized parameters for the lower case characters:
Error:
0.0772877
Directional Mapping:
Activity Regions:
[4,30]
[4,18]
[7,20]
[4,4]
[7,24]
[15,27]
[12,28]
| |
Scalar Bias:
179.04
38.4046
94.4444
183.526
61.632
104.869
94.0085
177
Appendix C
CDROM Contents
Bound with this dissertation is a CDROM containing 739MB of data from the non-
stylized English and optimization studies (Sections 6.2 and 6.3). The top level directories
are each compressed with TAR and GZIP in order to meet the CDROM size limitation.
Once each of these tarballs is decompressed you will find the directory structure shown in
Figure C.1(A). This chapter reviews the contents of each directory, file naming conventions,
and details the format of each file type.
C.1 Character Samples
The ?character samples? directory contains the character drawings collected in the
non-stylized English study (Section 6.2) in their raw form. Each subject has a single data file
named by their subject identifier plus ?.txt?. Thus, the example file name in Figure C.1(B)
is for the samples drawn by subject ?c00?. These file names are the base file names used
throughout the remaining directories on the CDROM.
Each file contains 1716 lines, one for each letter drawing provided by the subject. The
lines have the following format:
C P S x0 y0 ... xP?1 yP?1 d0 u0 ... dS?1 uS?1
C is the ASCII character represented by the line, P is the number of (X,Y) coordinate pairs
in the drawing, and S is the number of strokes. Following this header information, each
coordinate pair (xi,yi) is listed. Next the strokes are defined by pen down and up events.
178
Figure C.1: (A) Directory structure on the CDROM and (B) example file names for each
directory
di indicates which point in the drawing was the ith pen down event... specifically the ith
pen down event occurs at the coordinate pair (xdi,ydi). Similarly, ui indicates which point
in the drawing was the ith pen up event.
C.2 Errors
The ?errors? directory contains files listing the recognition errors resulting from the
evaluation of a parmeter set for a specific letter-case and ? value. These files are dis-
tributed into two directories, ?optimized parameters? and ?stock parameters?, identi-
fying whether the parameter set is the one optimized by the study in Section 6.3 or the stock
set. The file extension begins with ?SP? for stock parameters or ?OPT? for an optimized set.
The ? U ? and ? L ? extension flags indicate the letter-case, upper or lower respectively, and
179
the numeral finishing the extension is the ? value. The base name of each file identifies the
subject. Thus, the example ?optimized parameters? file name in Figure C.1(B) is for the
errors found recognizing the upper case samples drawn by subject ?t05? using an optimized
parameter set where ? = 2. The example ?stock parameters? file name in Figure C.1(B)
is for the errors found recognizing the lower case samples drawn by subject ?c12? using the
stock parameter set where ? = 1.
Each file contains 900 lines, one for each random, ?-sized alphabet tested. The lines
have the following format:
N c0 ... cN?1 t0 r0 t1 r1 ...
N = ? ? 26 is the total number of character samples in the alphabet tested. ci indicates
which sample from the subject?s sample file (Section C.1) the the ith member of the alphabet
is. Specifically, line ci (zero-based) is the ith sample for the current, random alphabet.
Following the alphabet identification are value pairs indicating a single recognition error
each (continuing to the end of the line). ti is the drawing to be recognized and ri is the
drawing that was incorrectly determined to be the closest match. Similar to ci, ti and ri
are zero-based line numbers in the subject?s sample file.
C.3 Final Optimization Parameters
The ?final optimization parameters? directory contains the final, best fitness pa-
rameters found for each subject and letter case in the optimization study (Section 6.3).
The base file name indicates the subject as in Section C.1, and the ?U? and ?L? extensions
indicate whether the parameters apply to the upper or lower case characters respectively.
180
The example file name in Figure C.1(B) is for the the upper case parameters evolved for
subject ?c27?. Additionally, each subject?s parameters are visualized in Appendix B.
Each file contains a single line in the following format:
F a0 ... a7 s0 e0 ... s6 e6 b0 ... b6
F is the fitness (error rate) measured over 300 random alphabets where ? = 1. ai is the
lower, non-inclusive bound of the ith angular region in the evolved directional mapping. si
and ei indicate the zero-based substrokes that start and end the ith activity region. bi is
the scalar bias applied to the ith activity region.
C.4 Results
The ?results? directory contains the recognition results for subjects on each of the 900
random alphabets evaluated for upper and lower case letters. These files are distributed into
two directories, ?optimized parameters? and ?stock parameters?, identifying whether
the parameter set is the one optimized by the study in Section 6.3 or the stock set. The
file extension begins with ?SP? for stock parameters or ?OPT? for an optimized set. The
? U ? and ? L ? extension flags indicate the letter-case, upper or lower respectively, and
the numeral finishing the extension is the ? value. The base name of each file identifies
the subject. The example ?optimized parameters? file name in Figure C.1(B) is for lower
case samples drawn by subject ?t11? using an optimized parameter set where ? = 3. The
example ?stock parameters? file name in Figure C.1(B) is for upper case samples drawn
by subject ?c03? using the stock parameter set where ? = 1.
181
Each file contains 900 lines, one for each random alphabet. Lines are formatted as
follows:
T e1 ... e26
T = summationtext26i=1 ei where ei is the number of ith letter?s drawings that were misrecognized on the
run. In this notation i refers to a letter of the alphabet where ?a?= 1 and ?z?= 26 (in the
lower case, for example).
182

