
A QUANTITATIVE STUDY OF MUSICAL INSTRUMENT DIGITAL INTERFACE

(MIDI) OVER INTERNET PROTOCOL (IP) PROTOCOLS

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee. This

dissertation does not include proprietary or classified information.

__
James Pate Williams, Jr.

 Certificate of Approval:

____________________________ ___________________________
Homer Carlisle Richard Chapman, Chair
Associate Professor Associate Professor
Computer Science and Software Computer Science and Software
Engineering Engineering

____________________________ ___________________________
Saad Biaz Chung-wei Lee
Assistant Professor Assistant Professor
Computer Science and Software Computer Science and Software
Engineering Engineering

 Stephen L. McFarland
 Dean
 Graduate School

A QUANTITATIVE STUDY OF MUSICAL INSTRUMENT DIGITAL INTERFACE

(MIDI) OVER INTERNET PROTOCOL (IP) PROTOCOLS

James Pate Williams, Jr.

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama

December 16, 2005

 iii

A QUANTITATIVE STUDY OF MUSICAL INSTRUMENT DIGITAL INTERFACE

(MIDI) OVER INTERNET PROTOCOL (IP) PROTOCOLS

James Pate Williams, Jr.

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon request of individuals or institutions and at their expense. The author

reserves all publication rights.

 Signature of Author

Date of Graduation

 iv

VITA

James Pate Williams, Jr., son of James Pate Williams, Sr. and Avon Jordan Williams

was born on December 8, 1953, in LaGrange, Georgia. He graduated from LaGrange

High School in 1971. He graduated from LaGrange College with a Bachelor of Arts

degree in chemistry in 1979. He attended graduate school at the Georgia Institute of

Technology from 1980 to 1983 without attaining a degree. He received a Bachelor of

Science degree in computer science from La Grange College in 1994. He was awarded a

Masters of Software Engineering from Auburn University in 2000. He has been

programming computers virtually continuously since 1977.

 v

DISSERTATION ABSTRACT

A QUANTITATIVE STUDY OF MUSICAL INSTRUMENT DIGITAL INTERFACE

(MIDI) OVER INTERNET PROTOCOL (IP) PROTOCOLS

James Pate Williams, Jr.

Doctor of Philosophy, December 16, 2005
(M.SW.E., Auburn University, 2000)

(B.S., LaGrange College, 1994)
(B.A., LaGrange College, 1979)

410 Typed Pages

Directed by Richard O. Chapman

The research, which is discussed in this dissertation, consists of the development and

testing of a suite of ten Transmission Control Protocol (TCP) and reliable Real Time

Protocol (RTP) MIDI over IP (MOIP) protocols, and the subsequent implementations of

musical duet collaboration systems based on the MOIP protocols. These MOIP protocols

were subjected to a quantitative and statistically significant set of experiments using two

experimental metrics or performance measurements. The statistical protocol winner of

these experiments was used in the duet systems. We implemented the musical duet systems

on two different hardware platforms with different and competing operating systems. The

general hardware and software architectures of the musical duet collaboration systems were

essentially platform independent. The procedural programming language C and the object-

oriented programming language Java were utilized. Before a path leading to a modicum of

 vi

success was found a number of roads to unsuitable protocols were explored and these lanes

to nowhere are also discussed extensively in this dissertation.

 vii

Style manual or journal used: Transactions of the Institute of Electrical and Electronics

Engineers Inc (IEEE)

Computer software used: Microsoft Word

 viii

 TABLE OF CONTENTS

LIST OF FIGURES..ix
LIST OF TABLES ...xi
CHAPTER 1 INTRODUCTION ...1
CHAPTER 2 LITERATURE REVIEW...5
CHAPTER 3 UNSUITABLE PROTOCOLS...30
CHAPTER 4 RTP AND TCP PROTOCOLS...70
CHAPTER 5 MUSICAL DUET SYSTEM..88
CHAPTER 6 CONCLUSIONS ...93
REFERENCES..98
INDEX..100
APPENDIX A LAN EQUATION (1) CHAPTER 4 GRAPHS101
APPENDIX B LAN PAIRED MEANS COMPARISON GRAPHS.............................122
APPENDIX C WAN EQUATION (1) CHAPTER 4 GRAPHS213
APPENDIX D WAN PAIRED MEANS COMPARISON GRAPHS234
APPENDIX E LAN PAIRED MEANS COMPARISON STATISTICS.......................325
APPENDIX F WAN PAIRED MEANS COMPARISON STATISTICS......................330
APPENDIX G MIDI INSTRUMENTS ...335
APPENDIX H MIDI INSTRUMENT GROUPINGS...336
APPENDIX I MIDI META-MESSAGES AND MIDI CONTROLLERS....................337
APPENDIX J UT-RTP-ND & UT-RTP-NE VERSUS SN-TCP-ND & SN-TCP-NE...338
APPENDIX K ATCP-32 VERSUS SN-TCP-ND AND SN-TCP-NE354
APPENDIX L ATCP-40 VERSUS SN-TCP-ND, SN-TCP-NE, AND ATCP-32.........364
APPENDIX M ATCP-TCP-ND VS SN-TCP-NX AND ATCP-X374
APPENDIX N ATCP-TCP-NE VS SN-TCP-NX, ATCP-X, AND ATCP-TCP-ND.....385

 ix

LIST OF FIGURES

Figure 2-F-1 RMCP Gateway Model and Its Protocols ..21
Figure 2-F-2 Young and Fujinaga MIDI Message Format..23
Figure 2-F-3 Aura Name Format ...25
Figure 2-H-1 Classical Time/Space Matrix ..29
Figure 3-A-1 CW and YF MIDI Message Format..31
Figure 3-A-2 CW and YF Datagram Format..31
Figure 3-A-3 Trace Route from WAN Client to WAN Server..36
Figure 3-C-1 ATCP-x MIDI Short Message Format ...48
Figure 3-C-2 ATCP-x Datagram Format ..49
Figure 3-D-1 Musician Registration Dialog ...60
Figure 3-D-2 Music Studio (House) Metaphor Client ..60
Figure 3-D-3 Music Studio after a Musician Has Entered a Room61
Figure 3-D-4 Music Room with a Piano Keyboard for MIDI Input61
Figure 3-D-5 Standard Java Open File Dialog ...62
Figure 3-F-1 MIDI Hardware Configuration..68
Figure 3-F-2 MIDI Software Configurations..69
Figure 4-A-1 MIDI Short Message Format and Delta-Time...72
Figure 4-B-1 Inter-Departure Time and Inter-Arrival Time Temporal Relationships......74
Figure 4-C-1 PC-TCP-ND VS SN-TCP-ND m = 1 ..75
Figure 4-C-2 PC-TCP-ND VS SN-TCP-ND m = 2 ..76
Figure 4-C-4 PC-TCP-ND VS SN-TCP-ND m = 4 ..77
Figure 4-C-5 PC-TCP-ND m = 1...81
Figure 4-C-7 PC-TCP-ND m = 3...82
Figure 4-C-8 PC-TCP-ND m = 4...83
Figure 4-C-9 Equation (1) Plot for LAN PC-TCP-ND m = 1 ...83
Figure 4-C-11 Duet System Main Window..85
Figure 4-C-12 Duet System Hardware Configurations ...86
Figure 4-C-13 Duet System Software Configurations ..87
Figure 5-1 Main Windows...90

 x

Figure 5-2 Virtual Keyboard..91
Figure 5-3 Channel Map Windows ..91
Figure 5-4 Peer-to-Peer Duet Architecture...92

 xi

LIST OF TABLES

Table 3-A-1 Preliminary Protocols ..35
Table 3-A-2 Points Awarded to Algorithms and Overall Ranks37
Table 3-B-1 Control and Data Channels and Transport Layer Protocols for RTP38
Table 3-B-2 Partial Protocol Stack for UT-RTP...39
Table 3-B-3 TT-RTP ND/NE Relationships ND = Nagle Disabled and NE = Nagle

Enabled ...40
Table 3-B-4 XY-RTP SN-TCP Source Code Files and Lines of Code where X = {T, U}

and Y = {T, U}..41
Table 3-B-5 RTP and TCP Number of MIDI Short Messages and Packet Lengths in

Bytes ...41
Table 3-B-6 Trippygaia1.mid UT-RTP-ND Actual Runtime Hours42
Table 3-B-7 Trippygaia1.mid UT-RTP-NE Actual Runtime Hours................................42
Table 3-B-8 Trippygaia1.mid SN-TCP-ND Actual Runtime Hours................................42
Table 3-B-10 Trippygaia1.mid TNDTND-RTP Actual Runtime Hours..........................43
Table 3-B-11 Trippygaia1.mid TNETND-RTP Actual Runtime Hours43
Table 3-B-12 Trippygaia1.mid TNDTNE-RTP Actual Runtime Hours44
Table 3-B-13 Trippygaia1.mid TNETNE-RTP Actual Runtime Hours44
Table 3-B-14 M=1 Sign of t-Statistic * Statistical Significance......................................46
Table 3-B-15 M=2 Sign of t-Statistic * Statistical Significance......................................46
Table 3-B-16 M=3 Sign of t-Statistic * Statistical Significance......................................47
Table 3-B-17 M=4 Sign of t-Statistic * Statistical Significance......................................47
Table 3-C-1 ATCP-x Source Code Files and Lines of Code...52
Table 3-C-2 ATCP-32 Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File..52
Table 3-C-3 SN-TCP-ND Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File

..53
Table 3-C-4 SN-TCP-NE Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File

..53
Table 3-C-5 ATCP-40 Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File..54
Table 3-C-6 ATCP-TCP Source Code Files and Lines of Code......................................55

 xii

Table 3-C-7 ATCP-TCP-ND Ending Date/Time for Trippygaia1.mid Standard MIDI
Type 0 File ..55

Table 3-C-8 ATCP-TCP-NE Ending Date/Time for Trippygaia1.mid Standard MIDI
Type 0 File ..55

Table 3-C-9 Sign of t-Statistic * Statistical Significance m = 456
Table 3-C-10 Sign of t-Statistic * Statistical Significance m = 557
Table 3-C-11 Sign of t-Statistic * Statistical Significance m = 657
Table 3-C-12 Sign of t-Statistic * Statistical Significance m = 757
Table 3-C-13 Sign of t-Statistic * Statistical Significance m = 858
Table 3-F-1 MIDI Sequence Playing Time Locally..68
Table 3-F-2 MIDI Sequence Playing Time on a LAN..68
Table 4-A-1 Channel and Transport Layer Protocols for RTP..71
Table 4-C-1 Combined Sign of t-Statistic and Statistical Significance Table m = 1........78
Table 4-C-2 Combined Sign of t-Statistic and Statistical Significance Table m = 2........78
Table 4-C-3 Combined Sign of t-Statistic and Statistical Significance Table m = 3........79
Table 4-C-5 Combined Sign of t-Statistic and Statistical Significance Table m = 1........80
Table 4-C-6 Combined Sign of t-Statistic and Statistical Significance Table m = 2........80
Table 4-C-7 Combined Sign of t-Statistic and Statistical Significance Table m = 3........80
Table 4-C-8 Combined Sign of t-Statistic and Statistical Significance Table m = 4........81
Table 5-1. Source Code Files and Lines of Code..89

 1

CHAPTER 1 INTRODUCTION

This research was aimed at providing another means for musicians to interact with

one another using computers and the Internet. Musical collaboration via the Internet in

itself is not a new or novel concept, and as we shall read in Chapter 2, efforts in this

direction can be traced to the early 1990s. Within this research we did introduce some

previously unknown networking protocols, some of which were unsuitable protocols

while others were moderately successful. Another somewhat radical departure form prior

research was the idea of playing a duet over a network.

The basic idea behind this research was to find a good, i.e. reliable, networking

protocol for transmitting and receiving Musical Instrument Digital Interface (MIDI) data

over a TCP/IP network, whether it was a local area network (LAN) or a wide area

network (WAN) like the general Internet. Such protocols are known as MIDI over IP

protocols, or for short MOIP protocols. In order to realize this dream, we had to explore

the space of known MOIP protocols then create some new protocols, and compare the

two protocol sets quantitatively. The desired fundamental goal of the research was to be

able to conduct a MOIP musical duet on a real network.

In the course of this research many pieces of software were written primarily in

two languages, namely, the procedural language C, and the object-oriented language,

Java, both of which are declarative rather than functional languages like LISP and its

dialect Scheme. An imperative language tends to have syntax closer to regular English

 2

with infix mathematical expressions than a functional language that typically uses the

more arcane prefix notation. Our experience was to prefer C over Java due to

programming language latency issues, however, as computers become faster and faster

and software engineering techniques mature then this negative side effect of Java may

disappear. Where ever possible the networking protocols were implemented in both C

and Java. Another good language choice for this type of research is C++, which probably

has a performance profile much closer to C than to Java on many systems. We developed

several new networking protocols in C and Java. Also, we designed and implemented a

number of musical collaboration systems in both of the previously mentioned primary

languages.

A few operating systems were used for both the qualitative and quantitative

aspects of this research. We utilized Windows 98, Windows XP and the UNIX based

Apple’s OS X. OS X on a Power Mac G4 or G5 system seemed to have the lowest MIDI

latency of all the systems in the operating system and hardware suite. In many respects,

the Apple MIDI subsystem of the OS X audio system appears more robust than the

corresponding Windows multimedia system in the humble opinion of the primary

researcher.

This research went down several avenues some of which lead to unsuitable

protocols. Applied computer science is more an empirical and exploratory science rather

than a rigorous mathematical science, and hence, we as applied computer scientists are

more apt than mathematicians to discuss research dead ends. Such discussions are

necessary, and in theory, sufficient, to discourage other researchers from going down the

same paths that lead to nowhere.

 3

In Chapter 2 we will discuss the foundations of this research which include:

MIDI; a competing open architecture specification by the Gibson Instrument Company

known as MAGIC; the aspects of TCP and RTP that are important to MOIP; C, Java, and

JINI, MIDI systems devised by Apple and Microsoft; other notable MOIP protocols and

systems; sources of latency in MOIP based systems; and computer supported

collaborative work (CSCW). This chapter comprises a literature review.

Chapter 3 is dedicated to all the research we performed in this project, which

resulted in unsuitable protocols. As was stated a little earlier, it is important in science to

illustrate research paths that did not pan out or led to dead ends, so that other researchers

will not duplicate work that was not completely successful. The first notable failure was

an attempt to devise a UDP based MOIP protocol that used the central concept of data

redundancy to attempt to correct for the unreliability of the UDP. This minor catastrophe

leads us in the direction of the development of reliable protocols later in the course of this

research. Another failure, which was a good idea that was attempted on antiquated

hardware, was the development of a Java musical collaboration system, which had a

music studio metaphor. We used JINI within the framework of another Java musical

collaborative system that could also be deemed a failure on some hardware and operating

systems. An alternative musical duet system for the Windows platform also was a failure

in many senses.

In Chapter 4 we discuss the successful quantitative experiments involving reliable

versions of RTP and TCP protocols without or with the Nagle algorithm enabled. The

experimental procedure and results are briefly outlined. A number of graphs and tables

that represent the data are presented. The two metrics that were used in the experiments

 4

and their subsequent analysis are introduced. The most successful duet system for any

platform that we developed is illustrated in Chapter 5. Our conclusions are enumerated in

Chapter 6.

 5

CHAPTER 2 LITERATURE REVIEW

This chapter is divided into six sections that discuss: MIDI; an alternative open

protocol stack to MIDI named MAGIC; TCP and RTP; C, Java, and JINI; MIDI systems

under two operating systems; previous MOIP research; the latency issues involved in

MOIP; and computer-supported cooperative work (CSCW). It is hoped that this short

literature review will be all the information required to understand this research at a

fundamental level.

A. MIDI

“MIDI is an acronym for ‘Musical Instrument Digital Interface [1]”. MIDI is

analogous to sheet music in that it consists of a set of instructions, which tell an

electronic musical instrument how to play a piece of music [2]. MIDI is an electronic

musical device and instrument manufacturer standard and is a set of specifications that

allows devices and instruments of different makers to communicate with one another

using a common digital language [1].

The hardware component of the MIDI specification consists of the definition of

MIDI ports, cables, and the electronic signals sent over the cables [1]. There are three

different types of MIDI ports in the specification, namely, in, out, and thru ports. Each

MIDI port is a female jack to receive the five-pin DIN (Deutsche Industrie Norm) MIDI

cable connector [2, 3]. Currently, the specification only uses three of the five pins [2].

Pins 1 and 3 are not used, pin 2 is shielding, pin 4 is grounding, and pin 5 is for MIDI

data [4].

MIDI cables are usually no longer than fifty feet and are typically much shorter

than the maximum length. The best quality cables have some sort of shielding to prevent

 6

unwanted stray electrical signals from interfering with the MIDI transmission [2]. The

MIDI specification calls for the serial digital transmission of messages using a start bit,

an octet of eight message bits, and a stop bit. The start bit is a logical 1 bit and the stop

bit is a logical 0 bit [1] or vice versa [2]. The send and receive data rates are set at 31,250

baud, which is 31,250 bits per second [1]. This means that 3,125 10-bit MIDI messages

can be sent or received each second [1]. This particular baud rate was chosen since it is a

divisor of 1,000,000, and 1 MHz was a typical clock frequency for early PCs [3].

MIDI messages can be broken into five different groups: “channel voice messages,

channel mode messages, system common messages, system real-time messages, and

system exclusive messages” [1]. The first four groups of the preceding listed groups can

be categorized as MIDI short messages.

MIDI short messages consist of a status byte and zero, one, or two data bytes [1]. An

octet, which is more commonly known as a byte, can have 256 different values. A status

byte is in the range 128 to 255 (80H to FFH in hexadecimal) and a data byte is in the

range 0 to 127 (00H to 7FH) [1]. This means that a status byte has a one high order bit

and a data byte has a zero high order bit [1].

The channel voice group of MIDI short messages consists of: note on, note off,

polyphonic key pressure, channel pressure, program change, control change, and pitch

bend change [1]. Program change messages have one data byte so there can be 128

instruments active at one time. See Appendix G for a list of the standard instruments. The

instruments are organized into sixteen groups of eight instruments per group. See

Appendix H for the names of the groups. The channel mode group of MIDI short

messages is comprised of: local control, all notes off, omni mode off, omni mode on,

 7

mono mode on, and poly mode on [1]. A good introduction to control change messages

can be found online [5]. The system common messages are: song position pointer, song

select, time request, and EOX (end of exclusive) [1]. The system real-time messages are:

timing clock, start, stop, continue, active sensing, and system reset [1]. The system

exclusive messages are sometimes used to transfer parameter settings from one MIDI

enabled device to another that are both by the same manufacturer such as Yamaha or

Roland.

MIDI controllers include drum controllers, guitar controllers, keyboard

controllers, and wind controllers [2]. A drum controller is vastly different from actual

drums and consists of one or more pads. A guitar controller is usually retrofitted to a

standard electric guitar via special pickups [2]. Wind controllers are usually specially

designed wind instruments that resemble a futuristic clarinet [2].

There are three MIDI file formats. Format zero files consist of a single track. Format one

files consist of a number of tracks to be played simultaneously. Format two files consist

of a number of tracks to be played independently [5].

MIDI files contain chunks. Each chunk has a type that is four octets in length, a

length that is four octets, and data that has length octets. There are two types of chunks a

header chunk and a track chunk. A header chunk has the type “MThd” and a track chunk

has the type “MTrk”. A header chunk has length equal to six. The data in a header chunk

consists of format, tracks, and division each of which are sixteen bits in length and are in

big endian (most significant octet first) format. The format can be zero, one, or two. If the

high order bit of the division is zero then the division is the number of ticks per quarter

note. If the high order bit of division is one then the bits fourteen to eight are the negative

 8

of the number of frames per second and bits seven to zero are the ticks per frame. The

track chunk consists of length MIDI events. A MIDI event consists of delta-time in ticks

and either a sysex-message, meta-message or a MIDI short message. The possible meta-

messages are given in Appendix I [5]. A few good online sites for general MIDI

discussions are [6-8]. There is an excellent source of information on MIDI programming

using the Java language in [9] by Sun Microsystems.

B. MAGIC

Gibson Guitar Corporation has proposed an alternative musical instrument digital

interconnection technology known as Media-accelerated Global Information carrier

(MAGIC) to replace as well as incorporate the aging Musical Instrument Digital Interface

(MIDI, 1983) standard [10]. According to the specification the motivations behind the

development of the MAGIC protocol stack were as follows: “enhanced real-time sonic

fidelity, interoperability, complete digital solution, simple installation, and ease-of-use”

[10]. A MAGIC link is bi-directional and carries fixed-length data and control

information as well as power in real-time [10].

MAGIC is able to transmit up to 32 channels of up to 32-bit audio at sampling

rates of up to 192 kHz [10]. This is much better than CD quality audio, which consists of

two channels of 16-bit audio at a sampling rate of 44.1 kHz. Since MAGIC is based upon

the IEEE 802.3 Ethernet standard that has a baud rate of 100 Mbps, you are probably

limited to sampling rates of 100 kHz if you are using all 32 channels and 32-bit data.

However, this is a definite improvement over CD quality audio.

Gibson hopes that amplifier, instrument, and guitar effects manufacturers will readily

embrace the MAGIC technology so that its adoption and usage will become universal.

 9

Currently, Gibson is mainly an instrument manufacturer with the Baldwin line of pianos,

the Gibson line of acoustic and electric guitars, and the Goldtone line of tube guitar

amplifiers. Perhaps Gibson has the political savvy and clout to push through a standard to

a diverse and highly competitive set of manufacturers. Gibson seems fairly committed to

MAGIC since Gibson’s current Chief Executive Officer (CEO), Henry Juszkiewicz, was

instrumental in the development of MAGIC.

Many instruments that musicians use today are either analog or require a lot of

analog to digital (A/D) conversion or digital to analog (D/A) conversion. A/D and D/A

conversions introduce latencies into a performance. These conversions introduce

latencies of 3,000 to 10,000 microseconds [10]. Most modern recording equipment is

digital. Gibson wants to create a totally digital environment.

It is very easy to connect a computer with an IEEE 802.3 Ethernet standard network

adapter to a local area network (LAN). It is Gibson’s vision that connection of amplifiers,

instruments, and effects to a musical network will be as seamless as connecting a

computer to a LAN.

There exists a definite cable snarl problem in performance and recording

environments. This problem can cause performers and stagehands to trip over the mass of

cables, interference between power carrying and signal carrying cables, and it is hard to

determine if everything has been correctly connected. Gibson wants to overcome these

difficulties by having each musical instrument, amplifier, or effect with at most two

cables, an external power cable for devices that require more than 9 volts direct current

and a MAGIC Ethernet cable. Most MAGIC compliant devices will only require the

Ethernet cable. There also exists a wire snarl problem in home entertainment centers and

 10

this problem could be in theory eliminated by the adoption of MAGIC technology by that

industry.

MAGIC supports both the daisy chain and star network topologies that are

popular in the MIDI world [10]. It also supports what is known as an uplink topology that

consists of two switching hubs that are connected by a high-speed link [10]. This high

speed link between star networks could be Gigabit Ethernet [10]. A switching hub

multiplexes links from more than one device or daisy chain network [10].

The protocol stack consists of a physical layer, data link layer, and MAGIC application

layer [10]. The physical layer and data link layers are compatible with IEEE 802.3

Ethernet protocol physical layer and data link layer [10]. The MAGIC application layer

encapsulates its data and control information in IEEE 802.3 Ethernet data link frames

[10]. Other well-known protocol stacks are the Open Systems Interconnection (OSI)

reference model and the hybrid reference model introduced by Tanenbaum [11]. The OSI

reference model consists of seven layers namely, a physical layer, a data link layer, a

network layer, a transport layer, a session layer, a presentation layer, and an application

layer [11]. The hybrid protocol stack has five layers: physical layer, data link layer,

network layer, transport layer, and application layer [11].

MAGIC uses Category 5 cables and RJ-45 connectors [10]. Four of the

conductors in a Category 5 cable are used for data transport and the other four are used to

carry power [10]. The cable is capable of carrying at least a 9-volt direct current power

supply over distances up to 328 feet [10].

The IEEE 802.3 Ethernet frame format consists of a preamble of 7 bytes, 1 byte frame

delimiter, 2 or 6 byte destination address, 2 or 6 byte source address, 2 byte length of data

 11

field, 0 to 1500 byte data, 0 to 46 byte pad, and 4 byte checksum [11]. The check sum is a

cyclic redundancy code (CRC) [10, 11].

Each MAGIC application layer packet consists of 32, 32-bit data slots of 16, 24,

28, or 32 bits of Pulse Code Modulation (PCM) audio [10]. These slots can also carry

arbitrary 32-bit data [10]. MIDI protocol data can be encapsulated in a packet [10].

MAGIC is similar to the Synchronous Optical Network (SONET) [11] in that it requires a

system-timing master (STM). The STM is chosen using a device enumeration protocol

and the process is automatic [10]. “The default MAGIC frame timing is 48 kHz with an

acceptable tolerance of 80 picoseconds. This timing is locally generated by the STM, and

recovered and regenerated by all other devices. The Ethernet signaling rate is

asynchronous with the rate at which frames are transmitted [10]”.

The main competitors to MAGIC are the MIDI standard and IEEE 1394 FireWire

standard [12-14]. MIDI devices are only able to transmit and receive control information

rather than raw audio data. MIDI control messages are like sheet music telling a

synthesizer what note to sound etc. FireWire is a high-speed serial bus for computer data

and audio/visual data communications. FireWire does carry power for low powered

devices just like MAGIC. FireWire has a higher baud rate than the current vision of

MAGIC over the 100 Mbps Ethernet and the IEEE 1394b has cable lengths that equal the

maximum MAGIC cable length. There is a MIDI media adaptation layer for IEEE 1394

[15].

According to the video on the MAGIC web site [16], MAGIC would be useful as

a transmitting and receiving medium for telemetry from state-of-the-art medical scanning

devices such as Computer Aided Tomography (CAT), Magnetic Resonance Imaging

 12

(MRI), and Positron Emission Tomography (PET) scanners. Using a MAGIC network,

medical students could view in real-time scanner data transported from a diagnostic room

to a classroom. So, Gibson views MAGIC in a larger context than just in the musical

performance and recording world.

It appears to this researcher that MAGIC might have some promise in the home

entertainment sector; however, this area may wind up being dominated by IEEE 1394

devices since Apple, Intel, and Microsoft support this particular standard. Gibson does

not have an industrial presence in the home entertainment market so this market may be

lost to other standards.

Some criticisms of the MAGIC proposal are that possibly Gibson does not have

the corporate strength in the instrument market to push a standard onto the rest of the

industry. Also, musicians tend to be extremely conservative with respect to their

instruments, so widespread acceptance of the standard might be an opium pipe dream.

MAGIC does have a lot of promise as a musical recording studio standard. MAGIC

compliant digital guitars could be very useful in a recording environment. Many guitar

effects are becoming digital so removing the A/D and D/A conversions currently required

could be advantageous. Most modern audio recording equipment is digital. A good online

summary of MAGIC can be found in [17].

 13

C. TCP and RTP

There are essentially two architectural reference models in the networking world,

namely, the Open Systems Interconnection (OSI) reference model and the TCP/IP

reference model. The OSI reference model has seven layers: the physical layer, the data

link layer, the network layer, the transport layer, the session layer, the presentation layer,

and the application layer. The TCP/IP reference model has four layers: the host-to-

network layer, the Internet layer, the transport layer, and the application layer [11].

The TCP/IP reference model has two transport layer protocols, the User Datagram

Protocol (UDP) [18] and the Transmission Control Protocol (TCP) [19]. UDP is a

connectionless, best effort, and unreliable transport protocol. TCP is a connection-

oriented and reliable transport protocol. TCP uses sequence numbers and

acknowledgements to insure that each packet is delivered in the order sent. UDP typically

involves a lesser amount of overhead than TCP. The primary reason for lost data-grams

or packets on the Internet is congestion which can be contrasted with the wireless

universe where the primary culprit for dropped data-grams or packets is the high bit error

rate (BER) of the medium [11].

The prototypical programming-paradigm of TCP/IP is the client/server model. A

client sends a request and the server answers the request. Servers offer services and these

services could be as simple as an echo service or time of day service or as complicated as

a database search service. Servers can be either UDP or TCP servers or both. Servers can

be either concurrent or iterative. A concurrent server usually uses independent threads of

 14

execution for each request and hence can handle more than one simultaneous request. An

iterative server handles one request at a time [11, 20].

Many consider the BSD UNIX sockets library as the quintessential programming

package for TCP/IP. This package provides an interface known as a socket that connects

the two ends of the client/server interaction. Sockets can be UDP sockets or TCP sockets.

Sockets can also support broadcasting or multicasting [20-22].

The client side of the interaction consists of creating a socket, connecting the socket,

writing a request to the server, reading the response from the server, and closing the

socket. On the other hand, the server side of the interaction for a TCP server involves the

following steps: creating a socket, binding the socket to a port number, listening for

connections, accepting the connection, reading a client’s request, and writing the

response to the request, and closing the accept socket [20].

The Real Time Protocol (RTP) is designed to transmit data such as audio or video

in real-time. Some of the early applications of RTP were audio and video conferencing

over the Internet. RTP does not guarantee delivery or in order delivery of packets since

the Internet version is based on UDP, which is an unreliable protocol. RTP does not give

quality of service (QOS) assurances either [23].

RTP has a control protocol associated with it named RTCP. Usually on the

Internet, RTP uses UDP for sending data-grams and for the control protocol. The RTP

session has a destination IP address and destination IP port number. Typically, Internet

implementations use an even port number for UDP transport and an adjacent odd port

number for the RTPC port, such as 50000 and 50001. This researcher questions the use of

UDP for the RTCP rather than a reliable transport protocol such as TCP. However, the

 15

usage of UDP for both functions does not make sending and receiving data-grams or

control information seamless by using sentto or recvfrom for both types of data. The RTP

header has the following format [23]:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|V=2|P|X| CC |M| PT | sequence number |
+-+
| timestamp |
+-+
| synchronization source (SSRC) identifier |
+=+
| contributing source (CSRC) identifiers |
| |
+-+

V is the two bit version field, P is the padding bit and if set the payload contains padding

octets, X is the extension bit and if set the header is followed by one extension, CC is the

four bit number of CSRC identifiers in the header, M is the marker bit defined by the

profile, PT is seven bit payload type, the sequence number is initially random and has

sixteen bits, timestamp is sampling instant of the first octet in the RTP packet, the

synchronization source is chosen randomly, and the contributing source identifiers are the

contributors to the RTP payload. The MIDI payload used by Lazarro et al. in their NMP

system, which is mentioned in the Section F has the following format:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|R|R| Len | MIDI command Payload… |
+-+
| Recovery Journal |
+-+

R are reserved bits, the Len field is six bits and is the length of the MIDI payload in

octets, and the Recovery Journal is checkpoint information that allows for retransmission

of lost data.

 16

D. C, Java, and JINI

The computer programming language C was derived from the type-less language

BCPL through the B language and is most often associated with Dennis M. Ritchie and

the development of the UNIX operating system and came into existence in the period

from 1969 to 1973. The C language falls into the class of imperative computer languages

that includes FORTRAN and ALGOL [24], [25]

The BCPL computer programming language was a popular systems programming

in the United Kingdom in the late 1960s and is the grandparent of C. The small footprint

variation of BCPL, the B programming language was developed to run on Digital

Equipment Corporation’s (DEC’s) PDP-7 minicomputer and only occupied 8K (8192)

bytes of memory. B can be thought of C without data types and is considered C’s

immediate parent. Ken Thompson of Bell Laboratories is the inventor of the B language

and its name was probably derived from the name of another programming language

developed by Thompson named Bon [24].

C has some features that are very close to assembly language such as register

variables and easy bit and byte manipulation. The explicit pointer and its accompanying

arithmetic, which were once such a boon in programming quickly became somewhat of a

bane and later completely disappeared from a programming language with the invention

of the language Java. Pointers are an integral part of the C language and the only means

of passing a reference to a subprogram which in C are called functions. Perhaps a

drawback of C is the fact that functions can’t be nested. C introduced a means for easy

modularization or packaging of code and the module or package interface is known as a

 17

header file. Decomposing a problem into modules and then functions laid the foundations

for a later software engineering paradigm shift known as object-oriented programming

(OOP) [25]. C is known as a weakly typed programming language.

At the Sun-World Conference on May 23, 1995, John Gage, director of the

Science Office for Sun Microsystems, and Marc Andreessen, cofounder and executive

vice president of Netscape announced to the audience and thus the world that the Java

language existed and was to be utilized by the Netscape Navigator, which was then the

most popular web browser. Only a small number of people, less than thirty, were

responsible for the invention and introduction of Java technology [26].

Sound and MIDI support became available in Java rather late with Java 1.3. A

glaring deficiency was the fact that only MIDI output devices were supported on many

popular platforms such as the Windows platform. This problem has been rectified in 2004

with the 1.5 version.

Java is a platform independent and interpreted language [27]. Other interpreted

languages include the Scheme functional language, which is the language of choice for

some programming languages courses and many artificial intelligence applications [28],

and Microsoft’s C# language [29-30]. Java has been scaled down for use on palm tops

and cellular telephones [31-32].

JINI is the name of a technology invented by Sun Microsystems in the 1990s and

was publicly announced in 1998. It is a set of engineering specifications and Java code

that allow computers to discover and utilize services on a network. It is similar to a

distributed object naming and lookup service. The whole notion is in the standard Java

tradition of potentially computing on small-embedded devices. Sun had a vision that

 18

perhaps JINI would be a glue to hold together the embedded systems networks of

automobiles and other transportation vehicles [33-34].

JINI has five key concepts that are: discovery, lookup, leasing, remote events, and

transactions. Services need to be discovered by JINI-aware devices before they can be

used. The discovery protocols consist of the multicast request protocol, the multicast

announcement protocol, and the unicast discovery protocol. Lookup is a type of name

server, but has a much richer set of semantics due to the underlying object oriented

language of JINI, namely, Java. Lookup can be used to find certain types of supported

objects using the inheritance hierarchy of Java. A central feature of JINI is the notion of

downloadable proxies. A lookup service has an object named a service item that has a

proxy object and attributes objects. A client downloads the proxy object from the lookup

service and then communicates via the proxy with the service perhaps using the Remote

Method Invocation (RMI) mechanism of Java. Leasing allows the detection of crashed

client and services, since consumers and services are expected to renew their leases

periodically. Remote events are remote asynchronous notifications which build on the

idea of local events inherent in the Java language. Transactions come from the database

universe. Transactions have four properties, which are sometimes represented by the

mnemonic ACID, which stands for atomicity, consistency, isolation, and durability. The

transaction protocol used by JINI is the two-phase commit [33-34].

E. MIDI Systems of Interest

The MIDI subsystem of the Microsoft Windows multimedia system has a

function for determining the capabilities of a MIDI device, which can be an input or

output port, a sequencer, or a synthesizer. A MIDI device is either an input device or an

 19

output device. There exist functions for opening either a MIDI input device or a MIDI

output device, which return a handle to the MIDI device. A MIDI input device can be

started or stopped. Both types of devices should be stopped and closed before the

program that opens the devices is exited. When you open a MIDI input device a callback

function or window must be specified. Under Windows MIDI short messages are

represented by double words, which are 32-bit entities. There is a lot more information on

the features of the Microsoft’s MIDI system in the online help of Microsoft’s Visual

C/C++ and Visual Studio .Net.

The architecture of the MIDI system under OS X is quite elegant and consists of a

MIDI server which is built upon the MIDI driver layer which, in turn is over the I/O

subsystem of the OS X kernel. Each application that desires to receive or transmit MIDI

data must create a MIDI client, a MIDI destination or source, and an input or output port.

MIDI messages are called MIDI packets and are encapsulated in a structure that has the

unsigned integer field length, MIDI timestamp, and length data bytes. MIDI running

status is not supported in the current MIDI packet structure. Another structure called a

MIDI packet list allows more than one MIDI event (MIDI packet) to be transferred at one

time in the system. There are functions for initializing a MIDI packet list, adding packets

to the list, and iterating through the list elements. Complete descriptions of the functions

and properties of the OS X MIDI system are given in [35].

F. Prior MOIP Research

In this section we discuss four previous studies of remote collaboration between

musicians, namely, the Remote Music Control Protocol (RMCP) [36], the Young and

Fujinaga version of MIDI over IP [37], the Aura system [38], and the Network Musical

 20

Performance (NMP) system [39]. The first two systems are based on UDP, the third TCP,

and the fourth on UDP and RTP.

As has been previously stated RMCP is connection-less and based on UDP/IP. Since it

uses UDP, broadcasting is available without the overhead of multiple transmissions [36].

RCMP was originally intended for a lossless network such as some Ethernets since it

does not have a mechanism for loss or out-of-order data-grams. Between 1992 and 1997,

five systems using RMCP have been developed which are described in this paragraph. (1)

A virtual dancer that is choreographed by musicians in real-time. (2) A virtual jazz

session between a pianist, a bassist, and a drummer with accompanying computer

graphics for gestures. (3) Multiple musicians interacting via the Ethernet. (4)

Improvision, a system in which two untrained people can create improvisational music

and interact with each other. (5) RemoteGIG, a remote session over the Internet between

musicians [36].

RMCP is based on the client/server architectural model of the Internet. There are

four servers, specifically, the sound server which transmits “MIDI messages of received

packets to a MIDI instrument”, the display server which “visualize MIDI messages of

received packets in the form of a piano keyboard”, the animation server which “generate

music-driven real-time computer graphics corresponding to received packets”, and the

recorder server which “record all received packets with the received timestamps, in a

RMCP Packet Record File”. There are four types of RMCP clients, in particular, the

MIDI receiver which “receive MIDI from MIDI instruments”, the MIDI station client

which “substitute a computer keyboard and mouse for a MIDI keyboard instrument”, the

 21

Standard MIDI File (SMF) player client which plays “a standard MIDI file”, and the

player client which plays “a RMCP packet record file” [36].

RMCP requires distributed clock synchronization. The system has one RMCP

time synchronization server. RMCP packets either have a timestamp or no timestamp. If

the timestamp is not present the message in the packet is executed as soon as the packet

arrives [36].

RMCP was originally designed for use on a reliable LAN. The extension to a

WAN involves using RMCP gateways that connect two LANs using TCP/IP, the reliable

and connection-oriented Internet transport protocol [36]. See Figure 4.1 on the next page

for a visualization of the RCMP system and its networking connections and protocols.

Figure 2-F-1 RMCP Gateway Model and Its Protocols

 22

The duet system developed by this researcher is reminiscent of RMCP. The

similarities include a piano keyboard for visualizing MIDI data that comes over the

network and both systems can play sequences over the network. The differences between

the two systems are that RMCP has more MIDI musical visualization aids and the

networking protocols are not the same. RMCP uses a combination of UDP and TCP for

MIDI data transport whereas the duet system uses TCP and a homegrown protocol based

on TCP. Both systems are capable of sending and receiving standard MIDI type 0 or type

1 file and of recording a session. RMCP uses the predominant Internet client/server

architecture whereas the duet system uses the new peer-to-peer (P2P) Internet paradigm.

There are essentially two methods of transmitting music over the Internet. The

first method is to transfer audio data via the Internet. The second method is to transmit

musical gesture information such as the data encapsulated in the MIDI specification.

Apple, Microsoft, Sun, et al. commercial software vendors have been working on systems

for streaming audio for music and for teleconferencing. Streaming audio requires

relatively large bandwidth, in order to sound reasonably good uses an initial buffering

mechanism, and there can be pauses in the audio stream. Typically streaming audio

requires two different protocols: one for a low bandwidth connection and one for a high

bandwidth connection.

MIDI and standard written notation are universal representations of musical

gesture. MIDI can be good and faithful for a piano performance. Sending MIDI messages

to remotely perform on an instrument can create a unique remote performance

environment. MIDI requires less bandwidth than streaming audio [37].

 23

Young and Fujinaga chose UDP as their basic transport protocol. To overcome

the unreliability of UDP, they transmitted multiple copies of each MIDI message. A

unique index was used with each message to ensure that duplicates were discarded and

messages were played in the right sequence. They also used a buffer of a few seconds,

which makes real-time musician-to-musician interaction virtually impossible [37].

Young and Fujinaga cite three reasons for not utilizing the reliable Internet transport

layer protocol TCP. These reasons were retransmissions and their associated latencies, in

order delivery of packets and the required latency to enforce this policy, and the extra

bandwidth for reliability. They were particularly concerned with the stopping and starting

of the music due to retransmissions. This researcher encountered the starting and

stopping TCP problem with most sequences, but the fault is not so prevalent in the duet

system where there is a somewhat limited amount of data being transported on the

network. Although Young and Fujinaga did not give the exact number of bits used in

their datagram format, this researcher interpreted their description as follows in Figure 2-

F-2. A datagram consisted of one or more MIDI messages.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Index |
+-+
| Delta Time (Milliseconds) |
+-+
| MIDI Short Message |
+-+

Figure 2-F-2 Young and Fujinaga MIDI Message Format

Richard O. Chapman and this researcher developed a protocol that uses some

redundancy and does not require buffering of data-grams before playback. We call this

protocol the CW protocol. The idea is to send multiple copies of MIDI messages spread

 24

over several data-grams to ensure delivery of most of the MIDI messages. We describe

this protocol in detail in Chapter 7.

Local area networks (LANs) provide an economical and high-speed means of

connecting personal computers (PCs). MIDI networks use one specialized transmission

protocol whereas LANs may use many different digital protocols. Dannenberg and van

de Legeweg built a system named Aura at Carnegie Mellon that takes advantage of low

cost LANs for implementing real-time music programs [38].

At first Dannenberg and van de Legeweg used UDP as their transport level

protocol since it seemed good for real-time applications and seemed relatively reliable on

LANs. Previous research by Goto et al. into RMCP was done using UDP. However,

Dannenberg and van de Legeweg were getting dropped data-grams on their LANs so they

switched to TCP. The key ideas for this researcher to come from the Aura work are the

usage of TCP_NODELAY to disable the Nagle algorithm and the utilization of multiple

threads of execution [38]. By disabling the Nagle algorithm TCP does not delay until it

has certain minimum size packet to transmit, instead the protocol sends smaller packets at

more frequent intervals [11].

Aura is a distributed system for communicating musical data in real-time. It uses

the object oriented programming paradigm. The Aura system consists of spaces, zones,

objects, and names. A machine is a space or address space. A space consists of one or

more threads of execution. A zone is a collection of objects that are shared by a single

thread of execution within an address space. There can be as many zones in an address

space as there are threads. Objects are entities that can transmit and receive musical data

in the form of asynchronous messages. Objects are differentiated by their real-time

 25

requirements with low latency objects going into a particular zone with other such

objects. Names are unique 64-bit integers with the format given in Figure 5-3. And this

figure represents the end of the paragraphs on the third previous research system.

 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

+-+
| Address Space |Z o n e| Creator’s Address Space |Z o n e|
+-+
| Object Identifier |
+-+

Figure 2-F-3 Aura Name Format

Aura appears to be a much more general and versatile system for asynchronous

communication of musical data than this researcher’s vision of MOIP. However, with this

generality and versatility there are prices to be paid such as code and system complexity

and clock synchronization issues. This researcher used the object-oriented programming

paradigm utilizing Java for the code to compare the different MOIP transport level

protocols introduced in this dissertation, however, straight C was used the final duet

system since it is closest to the Microsoft Windows native Application Programming

Interface (API).

A network musical performance (NMP) occurs between musicians that are

playing musical instruments at different locations that are connected by a computer

network. Ideally, we would like to use real-time audio to send the actual music that a

given musician is playing, however, bandwidth considerations and latencies may make

this impossible. The next best thing is to use musical gestures such as MIDI. Lazzaro and

Wawrzynek used RTP to send MIDI commands over the Internet [39].

There are two classes of delay in NMP, namely, network delay and local delays.

Network delay on the Internet is usually associated with congestion. The local delays

 26

include “computational delay, audio and control I/O delay, and perhaps local acoustic

delay.” Via minimization of each of the preceding type of latency perhaps a viable NMP

system can be achieved [39].

The NMP system uses the standard client-server architecture that is so prevalent

in many Internet applications. The NMP client used the IETF Real Time Protocol (RTP)

under the Audio/Video Profile (AVP) [28] to transfer MIDI data between network end-

points. A mirror server was also developed to reflect the gesture information back to the

client [39].

The NMP researchers used a recovery journal mechanism that is similar to

forward error correction (FEC) and reliable multicast transport (RMT). The researchers

noted three qualitative artifacts associated with their attempts to build error resilience and

reliable into the system:

1. Occasionally a depressed key does not create a corresponding note

2. Noticeable jitter in the sounding of notes

3. A released key sometimes continues generating sound for a fairly short time.

The NMP research team measured late and lost packets on a relatively high speed

California instate network. Their late and lost packet data had a bi-modal distribution

[39]. The time 12:30 PM was very good and the time 7:30 PM was very bad. It is

common knowledge that Internet Service Providers (ISPs) peak times are 7:00 PM to

10:00 PM local time.

G. Sources of Latency in MOIP

There are five sources of latency in distributed audio systems: the finite speed of

sound in air, the network, the operating system, the sound card, and the implementation

 27

language. In the following paragraphs we will give a little discussion of the preceding

forms of latency.

The speed of sound in air is given approximately by the following formula:

v = 331.4 + 0.6T (m / s)

The temperature, T, is in Celsius [40]. For T = 21.11 degrees Celsius = 70 degrees

Fahrenheit v = 344.28 m / s = 1129.52 ft / s = 1.13 ft / ms. So a percussionist who is fifty

feet from the violin section in an orchestra would experience a delay of about forty-four

milliseconds in the sound of the violins using the previous data. Musicians are

accustomed to latencies of the order of ten milliseconds or about the delay that occurs

between pressing a key on a MIDI keyboard and getting an audio response. Supposedly

some very gifted individuals are able to detect delays of the order of one millisecond

[41].

Network latency is hard to quantify. There have been some papers such as [42]

that attempt to model TCP latency; however, it is hard to deduce ballpark estimates of the

TCP latency in a distributed audio system from these models. Due to retransmissions and

the enforcement of the receive in-order policy TCP has a greater latency on the general

Internet than UDP. In the absence of retransmissions and out-of-order data-grams in this

researcher’s experience TCP and UDP have similar latencies.

In a comparison of the latencies in off-the-shelf operating systems for audio

systems comparing Windows 95, NT 4, Windows 98, and NT 5, it was found that

Windows 98 had the lowest worst-case latency of about twelve milliseconds. Windows

95, NT4, and NT5 had worst-case delays of around fifty milliseconds [43].

 28

Sound card latency is most pronounced when recording audio from one of the

input-sources on the sound card into software being executed on the computer. Some

recording software such as SONAR 3 by Cakewalk allows this latency to be reduced with

degradation of the quality of the recorded sound [44]. Another way of reducing sound

card latency is to purchase a high-end sound card.

All implementation languages have associated latencies. An interpreted language

such as Java is expected to have a greater inherent latency than a compiled language such

as C since interpretation involves conversion from an intermediate language to native

code, whereas the C compiler outputs native code.

H. Computer-Supported Cooperative Work (CSCW)

Human-computer interaction (HCI) involves psychology and the computer,

whereas CSCW is more related to sociology and the computer. However, CSCW

generally comes under the auspices of HCI in the scientific literature [45]. Groupware is

the common name given to software, which allows the interaction of two or more

individuals via computers [45].

Groupware can be differentiated according to the standard time/space matrix

whose axes consist of time that is divided into same time or different time and space that

is divided into same place or different place [45]. An alternative formulation uses the

time axis labels synchronous (same time) and asynchronous (different time) and space

axis labels co-located (same place) and remote (different place) [45]. Examples of

groupware include extreme two programmer programming teams (synchronous and co-

located), chat also known as instant messaging (synchronous and remote), electronic or

classical bulletin boards (asynchronous and co-located), and email (asynchronous and

 29

remote). Figure 2-H-1 shows a classical time/place matrix in which by conversation we

mean face-to-face conservation [45].

Figure 2-H-1 Classical Time/Space Matrix

 30

CHAPTER 3 UNSUITABLE PROTOCOLS

This chapter is divided into six sections that give synopses of the initial research

that resulted in failures to achieve the desired goals. The sections are: a discussion of the

preliminary set of protocols, an outline of the initial quantitative and statistically

significant collection of experiments that is divided into two sections, a brief description

of an initial collaborative system, and finally an adumbration of another Java and JINI

duet system which did not pan out due to latency problems and an alternative duet

system.

A. Preliminary Protocols and Their Implementations

The protocols used in the preliminary set of experiments were a UDP based

protocol with a modicum of redundancy developed by Professor Richard O. Chapman

and this researcher (CW), a RTP based protocol without error recovery (RTP), a simple

and naive TCP protocol (SN-TCP), and Young and Fujinaga’s UDP based protocol (YF).

In this chapter we will present brief outlines of the protocol, talk about their

implementation, and finally, discuss a set of experiments performed on a Wide Area

Network (WAN).

As far as MIDI data was concerned, only MIDI short messages such as channel

pressure, control change, key pressure, note off, note on, pitch-bend, and program change

were transmitted and received. MIDI meta-messages were not included in the

transmission stream. MIDI meta-messages such as tempo changes can be incorporated

 31

into the protocols. The MIDI short message data was placed in a structure consisting of a

unique index, a delta time in MIDI ticks, and the MIDI short message. This structure was

based on the structure that Young and Fujinaga utilized and is shown in Figures 3-A-1

and 3-A-2.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Index |
+-+
| Delta Time (Milliseconds) |
+-+
| MIDI Short Message |
+-+

Figure 3-A-1 CW and YF MIDI Message Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Command | Pad |
+-+
| Sequence Number |
+-+
| Echo Time |
+-+
| Maximum Echo Time |
+-+
| Up to 16 MIDI Messages |
+-+
| … |
+-+
+ Last MIDI Message |
+-+

Figure 3-A-2 CW and YF Datagram Format

The command is either OPEN (0) or CLOSE (1), which either opens or closes the

TCP connection between the client and server. The sequence number is unique to each

UDP client/server connection and limited by the precision of a 32-bit integer. The echo

time and maximum echo times are calculated by the client and communicated to the

server in the datagram.

With respect to the delta times there are two policies, which this researcher calls

lying and honesty. In the lying policy a client reports a zero delta time to the server in

hopes that the network latency is so low that the client and server will be essentially

 32

synchronized, and no buffering is done by the server. In the honesty policy case the client

reports the delta time that it used to play the MIDI short message. The lying policy case

was used in most of the preliminary protocols.

One parameter was common to all the protocols, namely, the number of MIDI

short message structures per datagram or packet, m. Another parameter that was shared

by the CW, SN-TCP, and YF protocols was the number of data-grams between datagram

echoes, n. Datagram echoes were used to get a rough estimate of the data-grams or

packets that were being lost during transmission. Of course, for SN-TCP no packets are

lost, but we still monitored the round-trip-times (RTTs) found via packet echoes. As will

be seen the RTTs were used by CW and one variant of YF to get an estimate of the

dynamic buffer size. A third parameter was the number of datagram copies sent by the YF

protocol, k. In the CW protocol and the dynamic buffer size YF protocol (dYF), the

server’s dynamic buffer size if calculated via the formula:

BufferSize = m * MaximumEchoTime / EchoTime

The dynamic buffer holds structures of the type shown in Figure 8-1. The dynamic buffer

size is computed after each received datagram.

The CW protocol uses the following transmission scheme for m = 3. It first sends

MIDI messages 1, 2, and 3 then it sends 2, 3, and 4, and then 3, 4, and 5, et cetera. Thus,

the number of data-grams transmitted by the CW algorithm is the total number of MIDI

messages minus m plus one.

The dynamic buffer variation of the dYF algorithm differs from the CW algorithm

in the number of copies of the datagram transmitted. CW only sends one copy. dYF sends

k copies. The large buffer version of YF uses a static buffering scheme. Both the CW and

 33

dYF used a variable named the currentIndex. If the incoming datagram has MIDI short

messages with indices less than the currentIndex then it must be a copy of the datagram

and is ignored. If the incoming datagram’s MIDI short messages have indices equal to the

currentIndex then the datagram’s MIDI short messages are played immediately. Lastly, if

the incoming datagram’s indices are greater than the currentIndex then the datagram’s

MIDI data is buffered. Each time a datagram is received, the buffer is checked to see if it

is full, and if it is full then the buffer’s MIDI short message data is played. The buffer is

maintained in sorted order on the index of each MIDI short message structure in

ascending order. After the buffer is played the index variable is set to last buffered MIDI

short message structure’s index value plus one.

The static buffer YF (sYF) protocol abandons the idea of unique indices and uses a

saner unique datagram sequenceNumber. The protocol uses a variable named the

expectedSequenceNumber. If an incoming datagram’s sequenceNumber is less than the

expectedSequenecNumber then it is ignored since it must be a datagram copy. If the

incoming datagram’s sequenceNumber is equal to expectedSequenceNumber then its

MIDI short message structures are played immediately and the expectedSequenceNumber

is incremented by one and then the buffer is searched for more data to play if it is

nonempty. In the last case of the incoming datagram’s sequenceNumber being greater

than the expectedSequenceNumber then the whole datagram is buffered in ascending

order in buffer with the sequenceNumber as a key. In the last case after addition of a

datagram, the buffer is checked to see if it is full, and if it is full then the data-grams’

MIDI short message data is played immediately. sYF uses the honesty policy case with

respect to delta times.

 34

There are two types of RTP protocols available either with or without error

recovery. By error recovery we mean building reliability into RTP by retransmission of

lost data-grams. An error is the loss of a datagram. We used RTP without error recovery

in the preliminary experiments. The RTP protocol used the index idea of CW and dYF.

The SN-TCP protocol used the same data structures as the dynamic buffer

algorithms CW and dYF and RTP. However, in reality, the idea of an index or packet

sequence number is not needed by SN-TCP since it is reliable and all packets are received

in the order transmitted. We used the same index arithmetic with the TCP server as with

the other algorithms that used indices so as not to give SN-TCP an unfair advantage.

The echoing process used CW, SN-TCP, and YF was to echo each nth datagram or

packet. The client generates a timestamp for the datagram or packet with its current real

time clock value. Upon receipt of an echo the client checks to make sure the echoed

datagram or packet’s data is the same as the datagram or packet transmitted for echo and

if it was the same then it computes the RTT otherwise the client would cause an

exceptional condition. The client would maintain the minimum, average, and maximum

RTTs, and in the dynamic buffer cases would send the average and maximum echo time

to the server.

The four protocols and one protocol variation were implemented in the C

language using the Microsoft Visual C/C++ 6.0 compiler. As alluded to earlier in the

description of the algorithms client/server architecture was used. The client is a MIDI file

format 0 or 1 sequencer. The sequencer transmits data as soon as a datagram or packet

becomes full with m MIDI short message structures.

 35

The CW and YF server implementation has three sockets: a TCP socket for

receiving control information, a UDP socket for receiving data-grams, and a UDP socket

for sending and receiving echoed data-grams. The TCP socket and UDP receiving socket

are handled by the select system call. The server blocks until one of the sockets receives

data. There are two types of TCP messages either an OPEN message or a CLOSE

message. An OPEN message sends the client’s parameters such as m, k, and n. The

CLOSE message tells the server to shutdown the TCP socket and go back to the accept

socket system call to wait on another connection by a client. The server has two threads

of execution an echo thread and a main MIDI message processing thread. Table 3-A-1

summarizes the protocols.

Name Buffer Data Transport Control Transport

CW Dynamic UDP TCP

dYF Dynamic UDP TCP

sYF Static UDP TCP

SN-TCP Not Applicable TCP Not Applicable

RTP Not Applicable UDP UDP

Table 3-A-1 Preliminary Protocols

The server machine was a Windows 98 personal computer (PC) with a Pentium 2

450 MHz central processing unit (CPU), 128 MB SDRAM, a Turtle Beach Montego

A3D 64 voice PCI sound card, and Altec Lansing ACS 295 speakers with subwoofer.

The client machine was a Windows XP Home Edition PC with a Pentium 4 2.26 GHz

CPU, 512 MB RDRAM, a Turtle Beach Santa Cruz DSP sound card, and

Harman/Kardon HK-695 speakers with subwoofer. The server machine had a 31.2 Kbps

 36

dial-up link to the Internet and the client machine had an Asymmetric Digital Subscriber

Line (ADSL) link to the Internet. Although the computers were only a few rooms apart in

a residence, the network formed was a Wide Area Network (WAN). The dialup-link went

along the analog part of the telephone line to West Point, GA, a trip of about 18 miles

then on the Earthlink network to Atlanta, GA, then back to the house in LaGrange, GA,

via the Earthlink/Bell South ADSL network. As was mentioned earlier, the client sends

MIDI short messages to the server to be played. The primary metric was the runtime at

the server as measured to the nearest second. Trace route information is given below.

Tracing route to user-2inid4o.dialup.mindspring.com [165.121.52.152]
over a maximum of 30 hops:

 1 <1 ms <1 ms <1 ms 172.16.0.254
 2 15 ms 18 ms 14 ms user-1120k01.dsl.mindspring.com [66.32.80.1]
 3 14 ms 14 ms 15 ms acr01-vl-3.ga-atlanta0.ne.earthlink.net [207.69.143.1]
 4 16 ms 15 ms 15 ms cor02-vl-11.ga-atlanta0.ne.earthlink.net [207.69.223.190]
 5 14 ms 14 ms 14 ms dir10-g12-0-0.ga-atlanta0.ne.earthlink.net [209.165.96.18]
 6 23 ms 21 ms 21 ms cisco-h0.wp-lag.mindspring.net [207.69.230.226]
 7 23 ms 22 ms 21 ms acn02a.ga-westpoin1.ne.earthlink.net [207.69.144.222]
 8 236 ms 190 ms 195 ms user-2inid4o.dialup.mindspring.com [165.121.52.152]

Trace complete.

Figure 3-A-3 Trace Route from WAN Client to WAN Server

The experiments are scored using a system that awards four points for first place,

three points for second place, two points for third place, and one point for fourth place.

When calculating the total points one point was awarded for each experiment instance in

which the protocol was reliable. Two standard MIDI files were utilized, namely, one

MIDI type 0 files: Trippygaia1.mid and one MIDI type 1 file: Flourish.mid.

 37

File M CW RTP SN-TCP dYF

Trippygaia1.mid 1 2 1 3 4

 2 1 4 2 3

 3 1 4 2 3

 4 1 4 2 3

Flourish.mid 1 2 1 3 4

 2 2 1 4 3

 3 2 1 4 3

 4 1 4 2 3

Points - 12 20 22 26

Zero Loss Points - 0 4 8 5

Total Points - 12 24 30 31

Overall Rank - 4th 3rd 2nd 1st

Table 3-A-2 Points Awarded to Algorithms and Overall Ranks

As can be seen from Table 3-A-2 SN-TCP is clearly the only reliable protocol

which is very important for MIDI over IP since as can’t be overemphasized MIDI is

intolerant with respect to lost or out-of-order data. The CW protocol performed so poorly

that it was dropped from further consideration.

B. RTP and TCP Protocols

In this section and the next section we make a transition away from protocols

implemented in the programming language, C, and we utilize the interpreted platform

independent language, Java. The reason we change languages is to take advantage of a

unique design feature of Java Media Framework’s (JMF) implementation of RTP, which

is further explained the next paragraph. Java has more inherent latency in most cases

than C on the machines chosen for the subsequent experiments however Java is utilized

 38

because of the elegance of the RTP implementation in this researcher’s opinion. The

experimental work associated with these protocols was done in a statistically significant

number of trials. All of the subsequent protocols used the honesty delta-time policy.

The Real-Time Protocol (RTP) implementation in the JMF allows the user to

abstract away the underlying transport protocol from the RTPManager object via the

implementation of the interface RTPConnector. This means that the user can utilize either

the Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP) as the

transport layer protocol. Since RTP has two channels, namely, a control channel and a

data channel, and there are two Internet transport layer protocols, four possibilities exist

for the channels and transport protocols of RTP as illustrated by the following table.

Control Data

TCP TCP

UDP TCP

TCP UDP

UDP UDP

Table 3-B-1 Control and Data Channels and Transport Layer Protocols for RTP

Our usage of an alternative transport protocol to UDP with JMF’s implementation

of RTP does not appear to be novel since previous researchers used the Stream Control

Transport Protocol (SCTP) in a similar manner to our usage of TCP, but without the four

cases of Table 3-B-1 [34].

These four RTP variations have been nicknamed TT-TCP, UT-RTP, TU-RTP and

UU-RTP where the first letter is an abbreviation of the control channel transport protocol

and the second letter is an abbreviation for the data channel transport protocol.

 39

Practical MIDI streams such as those generated by real musicians or sequencers

differ from real-time audio in that the MIDI streams consist of discrete or quantized

events instead of continuous bit streams. The MIDI specification calls for a stream with a

baud rate of 31250 bps, however, it is generally fairly rare to generate MIDI short

messages at the maximum MIDI short message rate of less than or equal 3125 MIDI

short messages per second. Suppose Eve is playing a MIDI instrument at a metronome

setting of 120 beats per minute (BPM) without using control messages or pitch-bend

messages. Then at most Eve is generating two MIDI short messages every half-second, a

previous note off message and a next note on message. This is an ideal situation for

reliable protocols that send a single packet at a time, since there is probably enough time

between the send for the return acknowledgment before the next send.

Application

RTP

UDP/TCP

IP

Table 3-B-2 Partial Protocol Stack for UT-RTP

The various RTP protocols were implemented using JMF 2.0 and Java 1.4.0_01

on Windows operating systems machines. We translated the simple and naive TCP

protocol, SN-TCP, from the C version of the previous chapter without the echoing

feature. All the protocols were implemented using the same version of Java. The Nagle

algorithm was disabled in some variations of TT-RTP, UT-RTP-ND, TU-RTP-ND, and

SN-TCP-ND by setting the TCP_NODELAY socket option to true. The Nagle algorithm

was enabled in some variations of TT-RTP, UT-RTP-NE, TU-RTP-NE, and SN-TCP-NE

 40

by setting the TCP_NODELAY socket option to false. Table 3-5 illustrates the various

Nagle disabled/enabled relationships for TT-RTP.

TT-RTP Protocol Control Data

TNDTND-RTP ND ND

TNETND-RTP NE ND

TNDTNE-RTP ND NE

TNETNE-RTP NE NE

Table 3-B-3 TT-RTP ND/NE Relationships ND = Nagle Disabled and NE = Nagle
Enabled

Client/server architecture was used. The clients were both Musical Instrument

Digital Interface (MIDI) sequencers that play and send a stream of MIDI short message

to the server to be played. Since we are disabling the Nagle algorithm a relatively short

byte stream was sent from client to server. Each RTP and TCP MIDI short message

consisted of twelve bytes: a MIDI channel byte, MIDI command byte, two MIDI data

bytes, and eight bytes of information that represented the delta time in milliseconds. A

RTP or TCP packet consisted of 20 + 12 * m bytes where 20 is the number of bytes in the

TCP header and m is the number of MIDI short messages per packet. Next are a table of

source code files and lines of code (LOC), and also a table of packet lengths.

 41

Source Code File Lines of Code

RTPMIDIClient.java (TT-RTP) 599

RTPMIDIServer.java (TT-RTP) 344

RTPMIDIClient.java (UT-RTP) 643

RTPMIDIServer.java (UT-RTP) 372

RTPMIDIClient.java (TU-RTP) 643

RTPMIDIServer.java (TU-RTP) 372

RTPMIDIClient.java (UU-RTP) 336

RTPMIDIServer.java (UU-RTP) 401

TCPMIDIClient.java 400

TCPMIDIServer.java 247

Total 4357

Table 3-B-4 XY-RTP SN-TCP Source Code Files and Lines of Code where X = {T, U}
and Y = {T, U}

M 20 + 12 * M

1 32

2 44

3 56

4 68

Table 3-B-5 RTP and TCP Number of MIDI Short Messages and Packet Lengths in
Bytes

Some of the experiments were carried out over a period of days between March

14, 2004 and March 28, 2004 and the other experiments were carried out over a period of

days between October 10, 20003 and October 13, 2003. It is to be hoped that the Internet

was relatively stable during the time frame of the experiments. The following tables show

the value of m, the starting time and date, ending time and date of the sixty trials per

 42

experiment, and the actual number of hours. One standard MIDI files was used:

Trippygaia1.mid a MIDI type 0 file.

M Starting Time/Date Ending Time/Date Actual Hours

1 10/10/2003 05:09 PM EDT 10/10/2003 07:16 PM EDT 2.1157

2 10/11/2003 08:05 AM EDT 10/11/2003 10:12 AM EDT 2.1160

3 10/12/2003 10:14 PM EDT 10/12/2003 12:21 PM EDT 2.1205

4 10/13/2003 07:12 AM EDT 10/13/2003 09:19 AM EDT 2.1216

Totals 8.4738

Table 3-B-6 Trippygaia1.mid UT-RTP-ND Actual Runtime Hours

M Starting Time/Date Ending Time/Date Actual Hours

1 10/10/2003 02:42 PM EDT 10/10/2003 04:49 PM EDT 2.1245

2 10/11/2003 01:04 PM EDT 10/11/2003 03:11 PM EDT 2.1259

3 10/12/2003 02:51 PM EDT 10/12/2003 04:58 PM EDT 2.1214

4 10/13/2003 11:42 AM EDT 10/13/2003 01:49 PM EDT 2.1204

Totals 8.4922

Table 3-B-7 Trippygaia1.mid UT-RTP-NE Actual Runtime Hours

M Starting Time/Date Ending Time/Date Actual Hours

1 10/10/2003 08:52 PM EDT 10/10/2003 10:59 PM EDT 2.1197

2 10/11/2003 10:16 AM EDT 10/11/2003 12:23 PM EDT 2.1158

3 10/12/2003 12:39 PM EDT 10/12/2003 02:46 PM EDT 2.1170

4 10/13/2003 09:22 AM EDT 10/13/2003 11:29 AM EDT 2.1178

Totals 8.4703

Table 3-B-8 Trippygaia1.mid SN-TCP-ND Actual Runtime Hours

 43

M Starting Time/Date Ending Time/Date Actual Hours

1 10/10/2003 12:18 PM EDT 10/10/2003 02:25 PM EDT 2.1249

2 10/11/2003 03:20 PM EDT 10/11/2003 05:27 PM EDT 2.1214

3 10/12/2003 05:01 PM EDT 10/12/2003 07:08 PM EDT 2.1270

4 10/13/2003 02:03 PM EDT 10/13/2003 04:10 PM EDT 2.1237

Totals 8.4970

Table 3-B-9 Trippygaia1.mid SN-TCP-NE Actual Runtime Hours

M Starting Time/Date Ending Time/Date Actual Hours

1 03/14/2004 04:49 PM EST 03/14/2004 06:30 PM EST 1.6789

2 03/15/2004 01:01 AM EST 03/15/2004 02:45 AM EST 1.6797

3 03/15/2004 12:21 PM EST 03/15/2004 02:02 PM EST 1.6761

4 03/16/2004 10:14 AM EST 03/16/2004 11:55 AM EST 1.6747

Totals 6.7094

Table 3-B-10 Trippygaia1.mid TNDTND-RTP Actual Runtime Hours

M Starting Time/Date Ending Time/Date Actual Hours

1 03/25/2004 01:49 PM EST 03/25/2004 01:49 PM EST 1.6738

2 03/28/2004 02:28 PM EST 03/28/2004 02:28 PM EST 1.6790

3 03/28/2004 04:14 PM EST 03/28/2004 04:14 PM EST 1.6748

4 03/28/2004 06:37 PM EST 03/28/2004 06:37 PM EST 1.6788

Totals 6.7064

Table 3-B-11 Trippygaia1.mid TNETND-RTP Actual Runtime Hours

 44

M Starting Time/Date Ending Time/Date Actual Hours

1 03/24/2004 01:44 PM EST 03/24/2004 03:25 PM EST 1.6759

2 03/24/2004 03:46 PM EST 03/24/2004 05:27 PM EST 1.6762

3 03/24/2004 05:30 PM EST 03/24/2004 07:11 PM EST 1.6762

4 03/25/2004 09:03 AM EST 03/25/2004 10:44 AM EST 1.6756

Totals 6.7039

Table 3-B-12 Trippygaia1.mid TNDTNE-RTP Actual Runtime Hours

M Starting Time/Date Ending Time/Date Actual Hours

1 03/21/2004 04:55 PM EST 03/21/2004 06:36 PM EST 1.6790

2 03/22/2004 01:29 PM EST 03/22/2004 03:10 PM EST 1.6759

3 03/22/2004 03:36 PM EST 03/22/2004 05:17 PM EST 1.6761

4 03/22/2004 05:25 PM EST 03/22/2004 07:06 PM EST 1.6767

Totals 6.7077

Table 3-B-13 Trippygaia1.mid TNETNE-RTP Actual Runtime Hours

The same client and server setup mentioned previously was utilized in the

experiments covered in this section. There are two hundred and twenty four tables

appended to this dissertation, namely, one hundred and twelve pairs of tables based on

the hundred and twelve separate experiments can be found in Appendix J. The first table

in a pair has the protocol, one of TNDTND-RTP, TNETND-RTP, TNDTNE-RTP,

TNETNE-RTP, UT-RTP-ND, UT-RTP-NE, SN-TCP-ND or SN-TCP-NE, the number of

trials, N, which is always sixty, the standard deviations, and the standard error means.

The second table in a pair has the means difference, the standard deviation of the means

difference, the standard error mean of the means difference, the Student’s t-statistic,

(Protocol 1mean – Protocol 2 mean) / standard error mean of the means difference, the

 45

degrees of freedom, DF, which are always N – 1 that equals 59, and the two-tailed

significance of the t-statistic. A two-tailed significance of ≤ 0.05 means that one of the

protocols outperformed the other statistically speaking. The better of the two protocols is

determined by the sign of the t-statistic: - indicates that first protocol wins and + means

that the second protocol wins.

We do not report any experimental results with TU-RTP and UU-RTP since these

protocols were so unreliable that they failed in every attempted experiment. We also

created a hybrid protocol between UU-RTP and the Young and Fujinaga (YF) protocol of

chapter 6 and this protocol (YF/UU-RTP) also failed for choices of the number of copies

of each datagram transmitted equal one, two, and four. By failure, we mean at least one

datagram was lost.

The following tables distill the information from the two hundred twenty four

tables mentioned above. The numbers in the row and column headings stand for a

protocol such as 1=TNDTND-RTP. The other letters have the following meanings:

N=Not applicable, D=Does not count, 0=row and column protocols are statistically

equivalent, row protocol is statistically better than column protocol if <= -0.05, and

column protocol is statistically superior to row protocol <= +0.05.

 46

P P# 1 2 3 4 5 6 7 8 9 10 11
TNDTND-RTP 1 N 0.08 0.42 -0.91 0.22 -0.49 D D D 0.84 -0.30
TNETND-RTP 2 N -0.03 -0.01 -0.83 -0.04 D D D -0.03 -0.00
TNDTNE-RTP 3 N -0.29 0.06 -0.10 D D D -0.19 -0.00
TNETNE-RTP 4 N 0.12 -0.46 D D D 0.79 -0.22
UT-RTP-ND 5 N -0.04 D D D -0.04 -0.00
UT-RTP-NE 6 N D D D 0.29 -0.92
TU-RTP-ND 7 N D D D D
TU-RTP-NE 8 N D D D

UU-RTP 9 N D D
SN-TCP-ND 10 N -0.04
SN-TCP-NE 11 N

Table 3-B-14 M=1 Sign of t-Statistic * Statistical Significance

P P# 1 2 3 4 5 6 7 8 9 10 11
TNDTND-RTP 1 N 0.32 0.68 0.46 0.32 -0.51 D D D 0.29 -0.98
TNETND-RTP 2 N 0.53 0.49 0.32 -0.42 D D D 0.28 -0.86
TNDTNE-RTP 3 N 0.04 0.11 -0.09 D D D 0.00 -0.00
TNETNE-RTP 4 N 0.18 -0.08 D D D 0.00 -0.00
UT-RTP-ND 5 N -0.04 D D D 0.90 -0.00
UT-RTP-NE 6 N D D D 0.03 0.34
TU-RTP-ND 7 N D D D D
TU-RTP-NE 8 N D D D

UU-RTP 9 N D D
SN-TCP-ND 10 N -0.00
SN-TCP-NE 11 N

Table 3-B-15 M=2 Sign of t-Statistic * Statistical Significance

 47

P P# 1 2 3 4 5 6 7 8 9 10 11

TNDTND-RTP 1 N 0.47 -0.96 0.99 -0.45 -0.06 D D D 0.69 -0.08
TNETND-RTP 2 N -0.00 -0.00 -0.20 -0.00 D D D -0.00 -0.04
TNDTNE-RTP 3 N 0.66 -0.40 -0.00 D D D 0.00 -0.07
TNETNE-RTP 4 N -0.38 -0.00 D D D 0.01 -0.07
UT-RTP-ND 5 N -0.79 D D D 0.27 -0.01
UT-RTP-NE 6 N D D D 0.00 -0.27
TU-RTP-ND 7 N D D D D
TU-RTP-NE 8 N D D D

UU-RTP 9 N D D
SN-TCP-ND 10 N -0.04
SN-TCP-NE 11 N

Table 3-B-16 M=3 Sign of t-Statistic * Statistical Significance

P P# 1 2 3 4 5 6 7 8 9 10 11
TNDTND-RTP 1 N -0.31 -0.70 -0.02 -0.14 -0.00 D D D -0.08 -0.02
TNETND-RTP 2 N 0.05 0.53 -0.83 -0.99 D D D 0.52 -0.52
TNDTNE-RTP 3 N -0.50 -0.33 -0.20 D D D 0.84 -0.11
TNETNE-RTP 4 N -0.40 -0.03 D D D 0.62 -0.10
UT-RTP-ND 5 N 0.76 D D D 0.32 -0.67
UT-RTP-NE 6 N D D D 0.00 -0.30
TU-RTP-ND 7 N D D D D
TU-RTP-NE 8 N D D D

UU-RTP 9 N D D
SN-TCP-ND 10 N -0.07
SN-TCP-NE 11 N

Table 3-B-17 M=4 Sign of t-Statistic * Statistical Significance

C. ATCP and ATCP-TCP Protocols

The motivation for developing more protocols is to attempt to find reliable

protocols, which with certain choices of the parameters can beat SN-TCP as far as the

critical variable runtime at server, is concerned. This author developed a new protocol

called the Almost TCP (ATCP) protocol, which can be characterized as a stop and wait

and selective repeat quasi-transport level protocol. It uses the User Datagram Protocol

 48

(UDP) as its official transport level protocol. ATCP gets its name from being very close

in performance to TCP for the MIDI over IP application. ATCP does share some other

similarities with TCP such as they both use acknowledgments, sliding windows with

advertisements, are both reliable and deliver data in the order transmitted, and both use

Jacobson’s algorithm for computing the acknowledgment timeout (see Computer

Networks Third Edition by Andrew S. Tanenbaum page 541 for a good description of

Jacobson’s algorithm and TCP in general). ATCP sends a stream of UDP data-grams that

ultimately consists of a byte stream. TCP transmits a stream of IP-packets that in the final

analysis is a byte stream. An ATCP sequence number refers to a given UDP datagram,

whereas a TCP acknowledgment and sequence number refer to a single byte in the

transmission byte stream. ATCP uses a datagram buffer size (window) advertisement that

is equivalent to the number of data-grams between acknowledgments. The current

version uses a fixed number of data-grams between acknowledgments which we will

designate by x and call the protocol ATCP-x where currently 1 ≤ x ≤ 40. The MIDI short

message and datagram format are given in Figure 3-C-1 and Figure 3-C-2.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Channel | Command | Data1 | Data2 |
+-+
| Delta Time (MIDI Ticks))
+-+
| MIDI Short Message |
+-+

Figure 3-C-1 ATCP-x MIDI Short Message Format

 49

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| DBS | DC | EOS | Status |
+-+
| Sequence Number |
+-+
| Sequence Number Mask High |
+-+
| Sequence Number Mask Low |
+-+
| Time Stamp High |
+-+
| Time Stamp Low |
+-+
| MIDI Short Message 1 |
+-+
| |
+-+
| |
+-+
| MIDI Short Message 2 |
+-+
| |
+-+
| |
+-+
| … |
+-+
| Final MIDI Short Message |
+-+
| |
+-+
| |
+-+

Figure 3-C-2 ATCP-x Datagram Format

Figure 10-2 requires further elaboration. DBS is the Data Buffer Size, which is an integer

in the range 1 to 64. DC is the Datagram Count, which tells the server how many data-

grams the client is currently buffering, e. g. the total number of data-grams the server

should receive. EOS is the End of Stream flag that is 0 if not end of file and 1 to indicate

the end of the file. Status is an enumeration that represents a data datagram or

acknowledgement datagram or a negative acknowledgement datagram. The MIDI short

message is the same as Figure 3-C-1.

In some preliminary experiments we used a variation of the protocol that utilized

a variable number of data-grams between acknowledgments with a slow start algorithm

 50

and exponential back-off mechanism, somewhat similar to TCP and TCP’s congestion

window mechanism. However, this variant was later abandoned in favor of a simpler and

error free version. The protocol sends x data-grams then waits for an acknowledgment or

a timeout period to expire. If the timeout period expires up to n negative

acknowledgments are sent before the protocol signals failure and terminates. For now the

value of n is sixteen. The timeout period is variable (dynamic) and is calculated by

Jacobson’s algorithm that is based on the round-trip times. ATCP-x also uses a bit vector

or bit mask that is named by us the sequence number mask which tells which data-grams

have been received by the receiver. Suppose the current datagram buffer size is 32 and

the receiver did not receive data-grams 2 and 4 then the sequence number mask would be

as follows in binary and then hex: 11010111111111111111111111111111 (base 2) =

D7FFFFFF (base 16). The datagram count returned to the receiver along the sequence

number mask would be equal to 30. A significant way that ATCP-x differs from TCP is

that ATCP-x is asymmetric and has a strict sender and receiver relationship. TCP can

piggyback data to the original sender on each acknowledgment, so that the receiver can

also function as a sender. Another way that ATCP-x and TCP can be differentiated is that

ATCP-x is essentially a connectionless protocol like the underlying UDP protocol.

However, TCP is a connection-oriented protocol.

ATCP-x was implemented in Java using Java version 1.4.0_01. The fundamental

data objects in the program were MyATCPShortMessage and ATCPPacket. The former

data object encapsulated the data structure in Figure 3-C-1 and the latter data object was

an implementation of the data structure in Figure 3-C-2. MyATCPShortMessage has two

constructors a default constructor and a constructor that allows initialization of all the

 51

data fields, getters for all the data fields, a getBytes method, and a fromBytes method. The

getBytes was used to convert a MyATCPShortMessage object into a byte stream and the

fromBytes was utilized to convert a byte stream to a MyATCPShortMessage object.

ATCPPacket has two constructors one that has an integer parameter that is m, the number

of MIDI short messages per ATCPPacket, and another for fully populating the packet

with all its data members. ATCPPacket has getters and setters for all its data fields. It also

has the getBytes and fromBytes methods.

We used two threads in both the client and the server. One thread was a producer

of MIDI short messages and the other was a consumer of MIDI short messages. A MIDI

short message vector was shared by both threads so synchronized code blocks had to be

used to read or write to the vector, which was, in reality, a first-in first-out (FIFO) queue.

In the server the networking thread was the producer of the MIDI short messages and the

player thread was the consumer. Contrary to the server case, the sequencer was the

producer in the client and the networking thread was the client’s consumer. One or more

active sensing MIDI short messages were used as the end of file indicator or sentinel flag

message. An active sensing message in the MIDI world is somewhat analogous to a no

operation op-code in the universe of computer assembly languages. We used busy – sleep

loops in the networking threads and the player thread. The more elegant Java object

notification was later implemented. Each datagram or packet contained m MIDI short

messages where 1 ≤ m ≤ 16. Below is a table of the ATCP-x source code files and the

lines of code.

 52

Source Code File Lines of Code

ATCPMIDIClient.java 519

ATCPMIDIServer.java 543

Total 1062

Table 3-C-1 ATCP-x Source Code Files and Lines of Code

Fifteen experiments of sixty trials per experiment were carried over the period

from November 2 to November 10, 2003. The next three tables contain the value of m

used in the experiment and the ending time of the experiment for each of the three

protocols ATCP-32, SN-TCP-ND, and SN-TCP-NE. One standard MIDI type 0 file named

Trippygaia1.mid was used through out the experiments. Remember that a standard MIDI

type 0 file consists of a single track. The same experimental setup of clients and servers

were used in this report as those reported in the pervious chapters. We again give the

starting and ending times of the experiments, and the actual runtimes in hours remind the

reader that the Internet is typically thought of as being diurnal with peak times between

9:00 AM and 12:00 PM and 7:00 PM and 10:00 PM.

M Starting Date/Time Ending Date/Time Actual Runtime

4 11/09/2003 10:35 AM 11/09/2003 12:42 PM 2.1167

5 11/09/2003 12:52 PM 11/09/2003 02:59 PM 2.1167

6 11/09/2003 05:25 PM 11/09/2003 07:31 PM 2.1000

7 11/10/2003 10:34 AM 11/10/2003 12:40 PM 2.1000

8 11/10/2003 12:49 PM 11/10/2003 02:55 PM 2.1000

Totals 10.5334

Table 3-C-2 ATCP-32 Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File

 53

M Starting Date/Time Ending Date/Time Actual Runtime

4 11/02/2003 05:59 PM 11/02/2003 08:06 PM 2.1167

5 11/03/2003 11:28 AM 11/03/2003 01:35 PM 2.1167

6 11/04/2003 10:46 AM 11/04/2003 12:53 PM 2.1167

7 11/06/2003 10:59 AM 11/06/2003 01:06 PM 2.1167

8 11/08/2003 02:39 PM 11/08/2003 04:46 PM 2.1167

Totals 10.5835

Table 3-C-3 SN-TCP-ND Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File

M Starting Date/Time Ending Date/Time Actual Runtime

4 11/02/2003 08:18 PM 11/02/2003 10:25 PM 2.1167

5 11/03/2003 01:44 PM 11/03/2003 03:51 PM 2.1167

6 11/04/2003 01:08 PM 11/04/2003 03:15 PM 2.1167

7 11/06/2003 02:56 PM 11/06/2003 05:03 PM 2.1167

8 11/08/2003 05:05 PM 11/08/2003 07:12 PM 2.1167

Totals 10.5835

Table 3-C-4 SN-TCP-NE Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File

Appended to this dissertation are thirty tables and fifteen graphs in Appendix K

that cover the ATCP-32 experiments. We compared ATCP-32 to SN-TCP-ND and SN-

TCP-NE, and SN-TCP-ND to SN-TCP-NE. We found that in the m = 6 and 8 cases that

ATCP statistically outperformed SN-TCP-ND and that in the m = 6, 7, and 8 cases was

the statistical winner versus SN-TCP-NE. In all the other cases the protocols were

statistically equivalent. ATCP-x does not perform that well against SN-TCP for values of

m less the three or equal 3.

 54

M Starting Date/Time Ending Date/Time Actual Runtime

4 11/15/2003 12:13 PM 11/15/2003 02:20 PM 2.1167

5 11/15/2003 02:26 PM 11/15/2003 04:32 PM 2.1000

6 11/16/2003 03:22 PM 11/16/2003 05:28 PM 2.1000

7 11/19/2003 01:24 PM 11/19/2003 03:30 PM 2.1000

8 11/19/2003 03:34 PM 11/19/2003 05:40 PM 2.1000

Totals 10.5167

Table 3-C-5 ATCP-40 Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File

Table 3-C-5 displays the facts that the ATCP-40 experiments were conducted

from November 15, 2003 to November 19, 2003. There are thirty tables and fifteen

graphs for the ATCP-40 results in Appendix L. We compare ATCP-40 to SN-TCP-ND,

SN-TCP-NE, and ATCP-32. ATCP-40 statistically beat SN-TCP-ND in the m = 5 and m =

8 cases, and SN-TCP-NE in the m = 5, 6, 7, and 8 cases. ATCP-40 and ATCP-32

statistically tied in all cases.

Figure 3-C-4 shows a statistical significance versus m graph for ATCP-40 versus

SN-TCP-ND and ATCP-40 versus SN-TCP-NE. The results for ATCP-40 versus ATCP-32

are not shown due to the fact that they tied and there is a sign reversal in one of the means

differences and the graph would not be consistent.

The ATCP-TCP protocol is a multiply threaded version of SN-TCP using the

ATCP notion of MIDI producer and consumer threads. There are two variations of ATCP-

TCP, namely, ATCP-TCP-ND and ATCP-TCP-NE with the now usual ND standing for

Nagle algorithm disabled and NE standing for the Nagle algorithm enabled. Again we

used busy – sleep loops rather than the more elegant object notification or event-handling

 55

scheme of Java for the same reasons as in the ATCP-x case. Table 3-C-6 shows the

source code files for ATCP-TCP.

Source Code File Lines of Code

TCPMIDIClient.java 458

TCPMIDIServer.java 457

Total 915

Table 3-C-6 ATCP-TCP Source Code Files and Lines of Code

M Starting Date/Time Ending Date/Time Actual Runtime

5 11/22/2003 01:45 PM EST 11/22/2003 03:51 PM EST 2.1000

6 11/24/2003 07:17 AM EST 11/24/2003 09:23 AM EST 2.1000

7 12/01/2003 10:53 AM EST 12/01/2003 12:59 PM EST 2.1000

8 12/02/2003 11:57 AM EST 12/02/2003 02:03 PM EST 2.1000

Totals 8.4000

Table 3-C-7 ATCP-TCP-ND Ending Date/Time for Trippygaia1.mid Standard MIDI
Type 0 File

M Starting Date/Time Ending Date/Time Actual Runtime

5 12/07/2003 12:38 PM EST 12/07/2003 03:44 PM EST 2.1000

6 12/08/2003 10:41 AM EST 12/08/2003 01:47 PM EST 2.1000

7 12/13/2003 03:59 PM EST 12/13/2003 06:05 PM EST 2.1000

8 12/21/2003 11:57 AM EST 12/21/2003 02:03 PM EST 2.1000

Totals 8.4000

Table 3-C-8 ATCP-TCP-NE Ending Date/Time for Trippygaia1.mid Standard MIDI
Type 0 File

Table 3-C-7 and Table 3-C-8 show the ATCP-TCP experiments as being over

time period beginning on November 22, 2003 and ending on December 21, 2003. In

Appendix M are thirty-two tables and sixteen graphs of the ATCP-TCP-ND experiments.

 56

ATCP-TCP-ND statistically outperformed SN-TCP-ND and SN-TCP-NE in all of the

experimental cases m = 5, 6, 7, and 8. ATCP-TCP-ND was the statistical winner over

ATCP-32 and ATCP-40 in the m = 7 and 8 instances. From these results we can conclude

that a multiply threaded TCP protocol is to be preferred to any of the previously

discussed protocols. These results seem to vindicate the notion of MIDI short message

consumer and producer threads.

There are forty tables and twenty graphs related to the ATCP-TCP-NE

experiments in Appendix N. ATCP-TCP-NE was victorious over SN-TCP-ND in the m =

7 case and SN-TCP-NE in all four cases, namely, m = 5, 6, 7, and 8. ATCP-TCP-NE

outperformed ATCP-40 in the m = 6 case. ATCP-TCP-ND was the statistical winner over

ATCP-TCP-NE in the last case m = 8. The preceding results are displayed in Tables 3-C-

9 to 3-C-13.

Protocol/Protocol 1 2 3 4 5 6

1-ATCP-32 N 0.34 N N -0.95 -0.26

2-ATCP-40 N N N -0.53 -0.08

3-ATCP-TCP-ND N N N N

4-ATCP-TCP-NE N N N

5-SN-TCP-ND N -0.07

6-SN-TCP-NE N

Table 3-C-9 Sign of t-Statistic * Statistical Significance m = 4

 57

Protocol/Protocol 1 2 3 4 5 6

1-ATCP-32 N 0.36 0.34 0.29 -0.91 -0.54

2-ATCP-40 N 0.73 0.32 -0.00 -0.00

3-ATCP-TCP-ND N 0.33 -0.00 -0.00

4-ATCP-TCP-NE N -0.06 -0.02

5-SN-TCP-ND N -0.07

6-SN-TCP-NE N

Table 3-C-10 Sign of t-Statistic * Statistical Significance m = 5

Protocol/Protocol 1 2 3 4 5 6

1-ATCP-32 N -0.18 -0.36 -0.33 -0.00 -0.00

2-ATCP-40 N 0.20 0.04 -0.74 -0.00

3-ATCP-TCP-ND N 0.55 -0.00 -0.00

4-ATCP-TCP-NE N -0.19 -0.00

5-SN-TCP-ND N -0.07

6-SN-TCP-NE N

Table 3-C-11 Sign of t-Statistic * Statistical Significance m = 6

Protocol/Protocol 1 2 3 4 5 6

1-ATCP-32 N -0.30 0.04 0.15 -0.06 -0.00

2-ATCP-40 N 0.00 0.08 -0.01 -0.00

3-ATCP-TCP-ND N -0.55 -0.00 -0.00

4-ATCP-TCP-NE N -0.02 -0.00

5-SN-TCP-ND N -0.53

6-SN-TCP-NE N

Table 3-C-12 Sign of t-Statistic * Statistical Significance m = 7

 58

Protocol/Protocol 1 2 3 4 5 6

1-ATCP-32 N -0.33 0.00 -0.72 -0.01 -0.00

2-ATCP-40 N 0.00 0.83 -0.00 -0.00

3-ATCP-TCP-ND N -0.00 -0.00 -0.00

4-ATCP-TCP-NE N -0.14 -0.03

5-SN-TCP-ND N -0.62

6-SN-TCP-NE N

Table 3-C-13 Sign of t-Statistic * Statistical Significance m = 8

For this chapter 1,977 lines of Java code were written and 59 hours and one minute

of network time was utilized to perform the necessary illustrated experiments. Again this

does not count the network time used in debugging the implementations.

D. A First Approximation at a Collaboration System

A Java client/server for the CW system was built early in the research and

subsequently discarded. This section describes the system. Figure 3-D-1 shows the

opening dialog box of the client. The user must first register a username. The server

checks to see if this username is currently unused and if it is unused a message box

appears stating the username is valid then the user must specify a password, a UDP port

number (0 – 65535), and a musical instrument.

After the registration process is completed, four studio room frames, a chat frame,

and a musician’s frame appear as in Figure 3-D-2. There are three forms of chat:

broadcast, multicast, and unicast. Broadcasted chat goes to all musicians regardless of

their studio room location, multicasted chat goes to a single studio room, and unicasted

chat goes to a single musician. The studio room frames have a “911” button and an

 59

“Enter” button. The “911” button is to turn all MIDI notes off in case of a stuck note. The

“Enter” button allows a musician to enter the given studio room.

After a musician enters a studio room the client appears as shown in Figure 3-D-3.

Only the particular studio room frame, the chat frame, and the musicians-frame are open

in the figure. The studio room frame has three buttons “Exit”, “Piano”, and “Send”. The

“Exit” button causes the musician to exit the current studio room and the state of the

client is returned to the state shown in Figure 3-D-2. The “Piano” button causes a host

and port dialog to appear and after selecting a host and port a piano keyboard appears.

This allows the user to send piano notes to another musician in the same studio room.

Figure 3-D-4 shows a studio room frame after the “Piano” button has been pressed.

Figure 3-D-5 shows a studio room after the “Send” button has been pressed and after the

host and port dialog. The figure shows a standard Java file chooser dialog from which the

user can open, play, and transmit a MIDI file using the built-in MIDI sequencer.

The client/server system consists of the following Java source code files:

Central.java 372 LOC, Client.java 1259 LOC, ClientFrameInterface.java 8 LOC, and

RommFrameInterface.java 3 LOC for a grand total of 1642 LOC.

 60

Figure 3-D-1 Musician Registration Dialog

Figure 3-D-2 Music Studio (House) Metaphor Client

 61

Figure 3-D-3 Music Studio after a Musician Has Entered a Room

Figure 3-D-4 Music Room with a Piano Keyboard for MIDI Input

 62

Figure 3-D-5 Standard Java Open File Dialog

E. Java and JINI Client/Server Duet System

JINI is the Java based service discovery specification that was developed in the late

1990s by Sun Microsystems which was described briefly in Chapter 2. We used JINI to

lookup the hostname and port of the duet system central server. This particular duet

system consisted of two peers that communicate with one another and the central server.

The central server relays peer IP addresses and server port numbers to interested peers.

This system is very close to the Windows version of the final duet system, but has some

latency saving change such as not using a virtual keyboard.

 63

F. Another Musical Duet System Failure

In this section we tried to develop another musical duet collaboration-system. The

software engineering decisions required in creating a viable MIDI over IP musical duet

system are as follows:

1. Choosing a network MIDI over IP protocol

2. Choosing an implementation programming language

3. Choosing the operating system(s) to be used

4. Choosing the MIDI interface hardware

5. Choosing the computer platform(s).

We used a series of quantitative experiments to automatically decide between several

different MIDI over IP protocols. These protocols are described in another paper and

consisted of TCP based RTP protocols, a simple and naïve TCP protocol, and a

multithreaded TCP protocol [9]. Our MIDI over IP protocol is a multithreaded variation

of TCP that utilizes MIDI short message producer and consumer threads. This protocol

was found to be superior to the single thread TCP protocol and TCP based RTP protocols

using two metrics performance that we considered useful.

We basically had two programming languages to choose from, namely, C and

Java. Java became a logical choice with the advent of Java 1.5.0, which supports MIDI

input on the PC platform. The programming language choice was more difficult and less

straightforward than the quantitative protocol experiments. We could have used C++ also

as a compromise between C and Java. In theory, C code should have the least amount of

latency of the three previously mentioned programming languages. In order to determine

the implementation programming language with an acceptable latency, we first

 64

approached the problem with stripped down versions of the software that did not involve

networking. We figured that if the local latency was unacceptable then there was no need

to add networking to the equation. We found that both C and Java versions satisfied the

local latency criterion using several different operating systems and hardware platforms.

The next step was to add networking.

The operating systems that were available to us were Windows 98, Windows XP,

and Mac OS X. We also had access to Sun Solaris 9 operating system; however, due to

the lack of MIDI input hardware for Sun Solaris 9, that operating system was ruled out of

the game. The MIDI subsystem of the audio system of OS X uses high priority kernel

threads to execute the MIDI callback functions, which are very desirable low latency

characteristics of OS X.

In the world of desktops and workstations there are essentially two predominant

MIDI architectures: the MIDI subsystem devised by Apple for OS X and the much older

and perhaps more mature Windows 95 multimedia system which has been enhanced

several times in its decade long existence. First we start our discussion with the OS X

MIDI subsystem. This subsystem uses client/server architecture. The first layer is the I/O

toolkit of the kernel then the MIDI drivers then the MIDI server and clients, and finally

the application. The subsystem has MIDI clients, MIDI sources, and MIDI destinations;

MIDI input ports, and MIDI output ports. An application creates a MIDI client then it can

add a MIDI input and/or output port. The MIDI input port calls back the application

every time MIDI data is input into the port. MIDI data is encapsulated in a MIDI packet

that has a length, timestamp, and the actual MIDI data bytes. MIDI packets are placed in

a list structure that consists of one or more MIDI packets. Now onto the Microsoft MIDI

 65

subsystem, which has MIDI input and output devices that have certain well defined

capabilities. You open a MIDI input and/or output device then start the device, transmit

or receive data; and then stop and close the device. This very simple architecture allows

for either window or function call back entities. The fundamental unit of the MIDI

transfer under Windows 9x+ is a double word, which can encapsulate all MIDI short

messages and even system exclusive messages.

On the Windows 98 and Windows XP machines we had a choice of either using a

MIDI to game port sound card adapter or a MIDI-Audio MIDI-Sport 2x2 MIDI to USB

interface. On the OS X machines we were forced to use the MIDI-Audio MIDI-Sport 2x2

MIDI to USB interfaces only. Using qualitative tests, we found that either of the

interfaces had satisfactory latency on a Windows OS machine.

The computing platforms available to us were two Dell computers at the primary

researcher’s house, some laptops, some older Pentium 3 systems, and two G4 dual

processor PowerMacs. One Dell computer was a 450 MHz Pentium 2 system with 128

MB of RAM, 12 GB hard-drive, and a Turtle Beach Montego sound card that ran

Windows 98. The other Dell computer was a 2.26 GHz Pentium 4 with 512 MB of RAM,

80 GB hard-drive, and Turtle Beach Santa Cruz DSP sound card that ran Windows XP

Home Edition.

We have isolated a number of sources of latency in MIDI over IP. Delays

originate in the MIDI controller, the MIDI to computer interface, scheduling delays in the

MIDI kernel of the operating system, programming language latency, sound card latency,

network propagation, and sound propagation latency to the listener’s ear. By carefully

 66

choosing hardware, software, and the network most of these sources of latency can be

kept to acceptable minimums.

The MIDI hardware configuration on all machines is shown in Figure 3-F-1. The

MIDI data emanates from a MIDI controller such as a guitar synthesizer, MIDI keyboard,

or MIDI wind controller. Then the data goes into a MIDI/USB converter via a MIDI

input port into the computer through the MIDI kernel of the operating system, out a MIDI

output port on the MIDI/USB converter into a tone generator, and finally via an audio

connection into a set of amplified speakers or an amplifier.

The software process or thread architecture for the duet system is shown in Figure

3-F-2. Each of the six central boxes represents a heavyweight thread (UNIX process) in

the user address space and the outermost boxes are the MIDI kernel threads of OS X. The

figure shows two peers communicating by TCP/IP. The MIDI data flow is from the MIDI

main process which is responsible for creating a MIDI client and MIDI input and output

ports, and connecting the MIDI input port to a MIDI source into the MIDI kernel and

vice versa. Also a MIDI destination is selected is by the MIDI main process. The MIDI

data flows from the MIDI kernel into MIDI send TCP process and over the wire to a

peer’s MIDI receive TCP process. We used lightweight user space threads under

Windows and heavyweight threads (processes) under Mac OS X.

We developed a number of Java and C prototypes of the system on the Windows

platform. On this platform we included a central server to take care of registration of the

peers in the peer-to-peer network. This way a musician could utilize another musician’s

system wide username to find a duet partner. Two of the prototypes, one in Java, and the

other using a Java native method written in C utilized the JINI 1.0 specification to handle

 67

the job the central server discovery. This made it unnecessary for the end-user to type the

central server’s hostname or IP address and port number into the program. JINI is a

service discovery protocol that is well suited for use on a communication network for

finding local services. The central server concept was also used for chatting between the

duet musician pairs.

The Windows software had a graphical user interface that consisted of a virtual

piano keyboard that showed the local and remote notes being played and also had a

useful feature to show the instruments being played by a MIDI sequence. Each MIDI

channel had its own color. The virtual keyboard could also be used as a “virtual” MIDI

controller by selecting a menu item. The current software on the PowerMac platform is

purely command line driven, however, this situation will be remedied in the near future.

We performed quantitative experiments using a statistically small sample space of

ten experimental instances per two MIDI sequences to be transmitted to determine the

time required for the sequences to be played locally on the destination machine or over a

LAN on the destination machine. Table 3-F-1 shows the time in seconds required to play

the MIDI sequences on the destination machine with no networking involved. Table 3-F-

2 shows the playing time at the destination for two MIDI sequences over a LAN that

involved the Windows 98 machine above as the destination (receiver) and the Windows

XP from above as the source (sender). A MIDI standard format 0 file is a sequence,

which consists of one track, whereas a MIDI standard format 1 file consists of one or

more tracks to be played simultaneously. In each case the sequence required more time to

play over the LAN than locally which is to be expected due to network latency.

 68

Sequence MIN AVG MAX STD
Format 0 66.7 66.8 67.3 0.2
Format 1 89.0 89.2 90.0 0.4

Table 3-F-1 MIDI Sequence Playing Time Locally

Sequence MIN AVG MAX STD
Format 0 67.2 67.4 67.4 0.1
Format 1 89.3 89.4 89.5 0.1

Table 3-F-2 MIDI Sequence Playing Time on a LAN

Figure 3-F-1 MIDI Hardware Configuration

 69

Figure 3-F-2 MIDI Software Configurations

 70

CHAPTER 4 RTP AND TCP PROTOCOLS

A. Introduction

In this chapter we discuss the successful quantitative study of RTP and TCP

protocols. All of our MOIP protocols utilized TCP as the underlying transport layer

protocol due to the intolerance of MIDI for lost or out-of-order data. This inability to

handle unreliable data delivery is due to the fact that a lost or out-of-order MIDI short

message can have a catastrophic effect on a remote performance. Suppose the MIDI short

message that turns off a certain note is lost then that note will sound indefinitely, and it is

difficult for a musician to turn off a stuck note. The same situation can occur if the MIDI

short message to turn a note off arrives before the MIDI short-message to turn the note

on. We chose to use TCP rather than the newer reliable transport protocol the Stream

Control Transport Protocol (SCTP) since TCP is ubiquitous and SCTP is just gaining

acceptance [11]. A unique design feature of the Java Media Framework, which is a set of

Java interfaces and objects that allow a Java application or applet to read or write

streaming media such as audio or video using RTP, affords a choice of the underlying

transport protocol for the JMF RTP implementation.

As was stated earlier RTP has two information channels available: one for control

and one for data. Since there are two transport layer protocols that are readily available to

the JMF version of RTP, namely, TCP and UDP, and there are two communication

 71

channels in RTP, then there are four combinations of transport layer protocol and

channels as shown in Table 4-1.

Control Channel Data Channel

1 UDP UDP

2 UDP TCP

3 TCP UDP

4 TCP TCP

Table 4-A-1 Channel and Transport Layer Protocols for RTP

From a preliminary set of experiments, we were able to eliminate 1 and 3 due to

unreliability. Also, we have two states of the Nagle algorithm: either it was enabled or

disabled. We nicknamed our 6 RTP based protocols UT-RTP-ND, UT-RTP-NE, TT-

RTP-NDND, TT-RTP-NDNE, TT-RTP-NEND, and TT-RTP-NENE, where the prefix

UT meant UDP control channel and TCP data channel and ND stood for Nagle disabled

whereas NE denoted that the Nagle algorithm was enabled. The baseline protocol was a

vanilla variation of TCP, which we chose to call simple and naïve TCP, e.g. SN-TCP-ND

and SN-TCP-NE. In addition another branch of the TCP tree of protocols was used which

we refer to as MIDI producer and consumer thread TCP, e.g. PC-TCP-ND and PC-TCP-

NE. PC-TCP is multithreaded and thus is able to play a MIDI command locally

concurrently with possibly sending the command over the network. This means that our

experimental protocol basis set consisted of 10 protocols.

The data structure that was transmitted and received by the protocols consisted of

a MIDI short message and a delta-time in milliseconds. The MIDI short message was

 72

composed of a channel byte, a command byte, and two data bytes. The delta-time was a

Java long, which is 8 bytes or 64 bits in length. There was m of these data structures per

packet where m was 1, 2, 3, or 4. The following figure illustrates the preceding data

structure.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Channel | Command | Data1 | Data2 |
+-+
| Delta-Time Hi (Milliseconds) |
+-+
| Delta-Time Lo (Milliseconds) |
+-+

Figure 4-A-1 MIDI Short Message Format and Delta-Time

There are two different strategies that can be used as far as the delta-times that a

sender reports are concerned. Either the delta-times can be initialized to zero, in which

case we call this dishonesty or lying delta-time policy, or the true delta-time between

MIDI short messages is specified, and this sort of policy is called the honesty delta-time

policy.

B. Experimental Procedure

Using the 10 protocols of the previous section, we utilized two networks and

conducted 60 experiments per network per protocol per value of m (which you will recall

was the number of MIDI short messages per packet). We used m = 1, 2, 3, and 4. So this

meant we performed 2 * 10 * 60 * 4 = 4800 experimental instances. After consulting

with a statistician, we decided to use a statistically large number of experiments [47]. In

this set of experiments we utilized the dishonesty delta-time policy of the previous

section.

 73

The networks we used were a LAN and a WAN with a dialup link and an

asymmetric digital subscriber line (ADSL) leg. The computers that formed the LAN and

WAN were only a few feet apart in a residence, the WAN formed approximately 150

miles in wired distance. Both endpoints of the connections were Dell computers. The

dialup computer was a Windows 98 machine with a 450 MHz Pentium 2 processor, 128

MB of RAM, and Turtle Beach Montego sound card. The other computer was a Windows

XP Home Edition box with a 2.26 GHz Pentium 4 processor, 512 MB RAM, and Turtle

Beach Santa Cruz DSP sound card. The dialup baud rate was a constant 31.2 kbps

throughout the experiments.

We were interested in accumulating two metrics to measure the performance of

each protocol. The first and easiest to understand metric was the time required to play a

MIDI format 0 file, which had been sequenced and transmitted over the Internet, on the

destination host. A MIDI (format 0) file consists of a single track, whereas the other

common MIDI (format 1) file has one or more tracks, which are to be played

simultaneously. We want these numbers to be close to the time required to play the

sequence on the destination host without any networking. These measurements gave a

rough approximation of the overall network latency. The second metric is more difficult

to interpret and was rough measurement of the jitter on the networks. This metric

involved gathering the inter-departure and inter-arrival times then calculating a simple

function based on the absolute difference in the inter-departure time minus the inter-

arrival time divided by the inter-departure time. The temporal relationships between the

inter-departure and inter-arrival times are illustrated in Figure 4-B-1.

 74

 Sender Receiver

 Packeti-1 Packeti Packeti-1 Packeti

 IDi Time IAi

Figure 4-B-1 Inter-Departure Time and Inter-Arrival Time Temporal Relationships

The function we used for the jitter measurement is as shown in Equation (1):

(1)
iiii

IDIAIDd /||100 !"=

Where the index, i, runs from 2 to the number of packets. The inter-departure times and

inter-arrival times are defined by Equations (2) and (3):

1

1

)3(

)2(

!

!

!=

!=

iii

iii

AAIA

DDID

In Equations (2) and (3), Di is the departure time of the ith packet and Ai is the arrival

time of the ith packet and the indices are the same as in Equation (1).

C. Experimental Results

As was previously mentioned the number of experimental instances was 4800.

We were able to distill this data into 2 * (9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1) * 4 = 2 * 45 *

4 = 360 graphs of mean runtime at destination paired comparison, and 2 * 10 * 4 = 80

graphs of the Equation (1). We also generated Student’s paired means t-test data using a

significance level of 5% which have been reduced to 4 tables per network, one table for

each value of m. Figures 4-C-1 to 4-C-4 display histograms of the mean run time at the

 75

destination for PC-TCP-ND (black) and SN-TCP-ND (red) on the WAN. The x-axis has

the experiment number which runs from 1 to 60 and y-axis is the runtime at the

destination in milliseconds. PC-TCP-ND statistically outperformed SN-TCP-ND in each

of the 4 cases.

Graphs of all the experiments involving Equation (1) are to be found in Appendix

A and Appendix C for the LAN and WAN, respectively. The corresponding paired

comparison graphs are found in Appendix B and Appendix D for the LAN and WAN,

respectively. The paired comparison statistical data is to found in Appendix E and

Appendix F for the LAN and WAN, respectively.

Figure 4-C-1 PC-TCP-ND VS SN-TCP-ND m = 1

 76

Figure 4-C-2 PC-TCP-ND VS SN-TCP-ND m = 2

Figure 4-C-3 PC-TCP-ND VS SN-TCP-ND m = 3

 77

Figure 4-C-4 PC-TCP-ND VS SN-TCP-ND m = 4

Table 4-C-1 to 4-C-4 show the paired means Student’s t-test signs of the t-

statistics and significances for the 10 protocols on the LAN. These tables were generated

from the statistical data in Appendix E. The sign is determined from the sign of the t-

statistic. If the absolute value of the combined sign of the t-statistic and the significance is

less than or equal 0.05 then one of the protocols in a row and column outperformed the

other. If the combined sign of the t-statistic and the significance is negative and has an

absolute value less than or equal 0.05 then the row protocol statistically outperformed the

column protocol. On the other hand, if the combined sign of the t-statistic and the

significance is positive and less than or equal 0.05 then the column protocol statistically

did better than the row protocol. The protocol names have been shortened to create row

and column labels as follows: NDND = TT-RTP-NDND, NEND = TT-RTP-NEND,

 78

NDNE = TT-RTP-NDNE, NENE = TT-RTP-NENE, UTND = UT-RTP-ND, UTNE =

UT-RTP-NE, PCND = PC-TCP-ND, PCNE = PC-TCP-NE, SNND = SN-TCP-ND and

SNNE = SN-TCP-NE.

Looking at UTND row and the PC-TCP-NE column, we find a combined sign of

the t-statistic and the significance of 0.002, which means that PC-TCP-NE statistically

won the battle over UT-TCP-ND. Now look at the NENE column in the same row and

the combined sign of the t-statistic and the significance is -0.164, which means that the

two protocols were statistically equivalent. From the tables it is apparent that PC-TCP-

ND and PC-TCP-NE were statistically the best protocols. What is surprising is that for m

= 2 and m = 3 is that PC-TCP-NE beat PC-TCP-ND statistically.

Table 4-C-1 Combined Sign of t-Statistic and Statistical Significance Table m = 1

 P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SNND SNNE

NDND - -0.222 0.169 0.075 0.466 0.005 0.000 0.000 0.269 0.274
NEND 0.222 - 0.032 0.020 -0.493 0.000 0.000 0.000 0.300 0.303
NDNE -0.169 -0.032 - 0.812 0.438 0.107 0.000 0.000 -0.239 -0.244
NENE -0.075 -0.020 -0.812 - -0.433 0.225 0.000 0.000 -0.233 -0.239
UTND -0.466 0.493 -0.438 0.433 - 0.407 0.000 0.000 0.950 -0.967
UTNE -0.005 -0.000 -0.107 -0.225 -0.407 - 0.000 0.000 -0.208 -0.215
PCND -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 - 0.266 -0.000 -0.000
PCNE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.266 - -0.000 -0.000
SNND -0.269 -0.300 0.239 0.233 -0.950 0.208 0.000 0.000 - -0.456
SNNE -0.274 -0.303 0.244 0.239 0.967 0.215 0.000 0.000 0.456 -

Table 4-C-2 Combined Sign of t-Statistic and Statistical Significance Table m = 2

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SNND SNNE
NDND - -0.673 -0.306 -0.288 0.049 -0.367 0.000 0.000 0.491 0.462
NEND 0.673 - -0.315 -0.307 0.083 -0.376 0.000 0.001 0.514 0.476
NDNE 0.306 0.315 - 0.325 0.233 -0.986 0.000 0.000 0.187 0.062
NENE 0.288 0.307 -0.325 - 0.164 -0.432 0.000 0.000 0.000 -0.848
UTND -0.075 -0.083 -0.233 -0.164 - -0.292 0.000 0.002 -0.303 -0.337
UTNE -0.049 0.376 0.986 0.432 0.292 - 0.000 0.000 0.294 0.224
PCND -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 - -0.000 -0.000 -0.000
PCNE -0.000 -0.001 -0.000 -0.000 -0.002 -0.000 0.000 - -0.000 -0.000
SNND -0.491 -0.514 -0.187 -0.000 0.303 0.294 0.000 0.000 - -0.421
SNNE -0.462 -0.476 -0.062 0.848 0.337 -0.224 0.000 0.000 0.421 -

 79

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SNND SNNE
NDND - -0.673 -0.497 0.395 0.499 0.257 0.004 0.000 0.501 0.472
NEND 0.673 - -0.324 0.304 0.160 0.176 0.000 0.000 0.132 0.397
NDNE 0.497 0.324 - 0.312 0.241 0.242 0.000 0.000 0.509 0.362
NENE -0.395 -0.304 -0.312 - -0.942 0.081 0.003 0.000 -0.247 -0.475
UTND -0.499 -0.160 -0.241 -0.942 - 0.267 0.000 0.000 -0.149 -0.864
UTNE -0.257 -0.176 -0.242 -0.081 -0.267 - 0.002 0.000 -0.161 -0.192
PCND - 0.004 -0.000 -0.000 - 0.003 -0.000 -0.002 - 0.385 -0.000 -0.000
PCNE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.385 - -0.000 -0.000
SNND -0.501 -0.132 -0.509 0.247 0.149 0.161 0.000 0.000 - 0.313
SNNE -0.472 -0.397 -0.362 0.475 0.864 0.192 0.000 0.000 -0.313 -

Table 4-C-3 Combined Sign of t-Statistic and Statistical Significance Table m = 3

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SNND SNNE
NDND - -0.096 -0.315 -0.454 -0.517 0.000 0.000 0.000 0.002 0.001
NEND 0.096 - -0.329 0.240 -0.612 0.000 0.000 0.000 0.052 -0.038
NDNE 0.315 0.329 - 0.321 0.403 0.247 0.000 0.005 0.346 0.362
NENE 0.454 -0.240 -0.321 - -0.556 0.000 0.000 0.000 -0.006 -0.004
UTND -0.517 0.612 -0.403 0.556 - 0.173 0.000 0.000 0.718 0.728
UTNE -0.000 -0.000 -0.247 -0.000 -0.173 - 0.000 0.000 -0.000 -0.000
PCND -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 - -0.000 -0.000 -0.000
PCNE -0.000 -0.000 -0.005 -0.000 -0.000 -0.000 0.000 - -0.000 -0.000
SNND -0.002 -0.052 -0.346 0.006 -0.718 0.000 0.000 0.000 - -0.813
SNNE -0.001 0.038 -0.362 0.004 -0.728 0.000 0.000 0.000 0.813 -

Table 4-C-4 Combined Sign of t-Statistic and Statistical Significance m = 4

 The tables Table 4-C-5 to Table 4-C-8 display WAN statistical significances,

which are analogous as far as interpretation goes with the LAN values in Tables 2 to 5.,

and were compiled from the data in Appendix F. Please note that in the WAN case that

PC-TCP-ND outperforms all of the other protocols except for PC-TCP-NE in every m

case.

 80

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SNND SNNE
NDND - 0.311 -0.016 -0.237 -0.172 0.288 0.000 0.000 -0.136 -0.209
NEND -0.311 - -0.221 -0.273 -0.223 -0.669 0.000 0.000 -0.263 -0.280
NDNE 0.016 0.221 - -0.369 -0.280 0.199 0.000 0.000 -0.980 -0.774
NENE 0.237 0.273 0.369 - -0.736 0.261 0.000 0.000 0.296 0.262
UTND 0.172 0.223 0.280 0.736 - 0.210 0.000 0.000 0.221 0.202
UTNE -0.288 0.669 -0.199 -0.261 -0.210 - 0.000 0.000 -0.244 -0.262
PCND -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 - -0.088 -0.000 -0.000
PCNE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.088 - -0.000 -0.000
SNND 0.136 0.263 0.980 -0.296 -0.221 0.244 0.000 0.000 - -0.575
SNNE 0.209 0.280 0.774 -0.264 -0.202 0.262 0.000 0.000 0.575 -

Table 4-C-5 Combined Sign of t-Statistic and Statistical Significance Table m = 1

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SNND SNNE
NDND - -0.936 -0.930 -0.366 0.269 0.524 0.000 0.034 -0.744 -0.488
NEND 0.936 - 0.975 -0.103 0.319 0.539 0.000 0.000 -0.658 -0.047
NDNE 0.930 0.975 - -0.355 0.000 0.006 0.000 0.024 -0.753 -0.466
NENE 0.366 0.103 0.355 - 0.175 0.235 0.000 0.000 0.268 0.179
UTND -0.269 -0.319 -0.000 -0.175 - -0.000 0.000 0.060 -0.540 -0.175
UTNE -0.524 -0.539 -0.006 -0.235 0.000 - 0.000 0.042 -0.620 -0.266
PCND -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 - -0.129 -0.000 -0.000
PCNE -0.034 -0.000 -0.024 -0.000 -0.060 -0.042 0.129 - -0.000 -0.000
SNND 0.744 0.658 0.753 -0.268 -0.540 0.620 0.000 0.000 - -0.943
SNNE 0.488 0.047 0.466 -0.179 0.175 0.266 0.000 0.000 0.943 -

Table 4-C-6 Combined Sign of t-Statistic and Statistical Significance Table m = 2

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SNND SNNE
NDND - -0.651 -0.489 0.593 0.138 0.282 0.000 0.000 0.595 0.388
NEND 0.651 - -0.004 0.503 0.299 0.376 0.000 0.000 0.490 0.424
NDNE 0.489 0.004 - 0.354 0.188 0.249 0.000 0.000 0.349 0.288
NENE -0.593 -0.503 -0.354 - 0.000 0.000 0.000 0.000 0.856 0.000
UTND -0.138 -0.299 -0.188 -0.000 - -0.000 0.000 0.000 0.209 -0.000
UTNE -0.282 -0.376 -0.249 -0.000 0.000 - 0.000 0.000 -0.521 -0.005
PCND -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 - -0.228 -0.000 -0.000
PCNE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.228 - -0.000 -0.000
SNND -0.595 -0.490 -0.349 -0.856 -0.209 0.521 0.000 0.000 - 0.749
SNNE -0.388 -0.424 -0.288 -0.000 0.000 0.005 0.000 0.000 -0.749 -

Table 4-C-7 Combined Sign of t-Statistic and Statistical Significance Table m = 3

 81

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SNND SNNE
NDND - -0.514 -0.002 -0.142 -0.141 -0.203 0.000 0.000 -0.712 -0.092
NEND 0.514 - -0.012 -0.196 -0.204 -0.000 0.000 0.000 -0.858 -0.175
NDNE 0.002 0.012 - -0.289 -0.337 0.053 0.000 0.000 0.490 -0.406
NENE 0.142 0.196 0.289 - 0.365 0.229 0.000 0.000 0.005 0.233
UTND 0.141 0.204 0.337 -0.365 - 0.247 0.000 0.000 0.001 0.334
UTNE 0.203 0.000 -0.053 -0.229 -0.247 - 0.000 0.000 -0.983 -0.238
PCND -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 - -0.166 -0.000 -0.000
PCNE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.166 - -0.000 -0.000
SNND 0.712 0.858 -0.490 -0.005 -0.001 0.983 0.000 0.000 - -0.000
SNNE 0.092 0.175 0.406 -0.233 -0.334 0.238 0.000 0.000 0.000 -

Table 4-C-8 Combined Sign of t-Statistic and Statistical Significance Table m = 4

 Figures 4-C-5 to 4-C-8 show graphs of Equation (1) on the LAN. We believe that

the peak at 105% is the most significant feature of the histograms. The smaller this

indicative bar then the better the protocol is with respect to transmitting a MIDI sequence

over the network. Figure 4-C-9 has a three dimensional representation of the data that

was used to create Figure 4-C-5.

Figure 4-C-5 PC-TCP-ND m = 1

 82

Figure 4-C-6 PC-TCP-ND m = 2

Figure 4-C-7 PC-TCP-ND m = 3

 83

Figure 4-C-8 PC-TCP-ND m = 4

1

1
2

2
3

3
4

4
5

5
6

S1

S31
0

10

20

30

40

50

60

Percent

Experiment

Bucket

LAN PC-TCP-ND m = 1

50-60

40-50

30-40

20-30

10-20

0-10

Figure 4-C-9 Equation (1) Plot for LAN PC-TCP-ND m = 1

C. Musical Duet System

 In the initial stages of the development of a musical duet collaboration system, we

wanted to use Java as the implementation programming language; however, it was

thought that the language had too much inherent latency. Java 1.5.0 does support both

 84

MIDI input and output on all platforms, but the Apple version of Java 1.5.0 won’t be

released until the OS X Tiger becomes available in spring 2005. Our target platforms for

the duet system were both Windows and OS X with ANSI C being a common language

of the operating systems. ANSI C is probably lowest latency higher-level language

available on both platforms since Windows and OS X extensively use C APIs.

 We built a duet system on Windows, which had some common elements as the

RMCP system of Goto et al. mentioned earlier. Both systems had a virtual piano

keyboard for displaying keys being played or for mouse input of notes. Our display also

showed the general MIDI instruments being utilized by each MIDI channel. Similarly we

designed a non-GUI duet system for the OS X system. The Windows system used

lightweight threads, whereas the OS X system went with heavyweight threads

(processes). Both the Windows and OS X systems were peer-to-peer in nature instead of

the classical client/server architecture.

The Windows system initial dialog is shown in Figure 4-C-10 and in Figure 4-C-11 is the

main window.

 85

Figure 4-C-10 Duet System Initial Dialog

Figure 4-C-11 Duet System Main Window

 86

 We isolated a number of sources of latency in our duet systems, namely, MIDI

input, programming language, operating system, network, sound card, and speakers. By

carefully choosing the hardware and software the delays could be made acceptable.

The hardware configuration of the duet system consisted of five major

components: computer, MIDI controller, MIDI-to-USB converter, tone generator, and

speakers. We used three different types of MIDI controllers: Yamaha CBX-K2 keyboard

controller, Roland GR-33 guitar synthesizer and Roland-ready Fender Stratocaster guitar,

and a Yamaha WX5 wind controller. Of the three controllers utilized the keyboard

controller seemed to have the most acceptable latency. On the Windows platform we

tried to types of MIDI input, the direct MIDI-to-soundcard cable and the MIDI-to-USB

converted. Both of these input methods appeared to be the same to us in terms of delay.

Only MIDI-to-USB input was available for OS X. The hardware configuration is

illustrated in Figure 4-C-12.

 Speakers Tone Generator USB-to-MIDI MIDI Controller

Figure 4-C-12 Duet System Hardware Configurations

 The software configuration is specified in Figure 4-C-13. As has been said the

networking architecture is peer- to-peer rather than the classical client/server paradigm.

 87

Each peer consists of three processes or threads: MIDI receive, MIDI main, and MIDI

send. The MIDI main entity is responsible for MIDI input and output via the MIDI-to-

USB converter. The MIDI receive process or thread blocks until a packet is received then

it dispatches the MIDI data in the packet to the MIDI main process or thread to be played.

The MIDI send process or thread is responsible for transmitting MIDI data that from the

MIDI main process or thread to the Internet.

 Peer 1 Peer 2

 MIDI Send MIDI Receive

 MIDI Receive MIDI Send
 Peer 1 Peer 2

Figure 4-C-13 Duet System Software Configurations

 88

CHAPTER 5 MUSICAL DUET SYSTEM

Many of you may have heard the old adage that in the real estate industry

everything is “location, location, location”, well in our case we substitute latency for

location. We wanted to reduce the sources of latency as much as possible. As we have

stated previously paper the sources of latency in this particular application area are: MIDI

input and output stream latency, the hardware and software computer delays, network

delays, and the latency in going from the computer speakers to listener’s ears. Our

primary concern was to minimize latency.

 The application evolved through many different versions from a monolithic

program to an application that consists of a fair number of implementation modules that

are discussed in the next section.

 The Apple Carbon based MIDI duet application consists of the source code files

shown in Table 5-1. Internally, the modules are pretty sparingly documented, so the

number of lines of code (LOC) per module is pretty accurately portrayed in the second

column of Table 5-1. The complete application has a modest total of about three thousand

LOC.

 89

Source File Lines
Apple.h 22
Apple.c 318
Duet.h 117
Duet.c 628

Globals.h 108
Glabals.c 103
Main.c 527
MIDI.h 21
MIDI.c 732

NavFunctions.h 14
NavFunctions.c 107
TCPNetwork.h 16
TCPNetwork.c 324

Total 3037

Table 5-1. Source Code Files and Lines of Code

 The graphical user interface (GUI) elements utilized by the application are: alerts,

check boxes, combination (combo) boxes, edit boxes, menus, popup buttons, push

buttons, radio buttons, and windows. The main window is displayed in Figure 7-1. The

window has a total of seventeen GUI elements with an estimated number of states equal

to 2^4 * 2^3 * 2^2 * 2^2 * 2^1 * 2^1 * 2^3 * 2^3 * 2^3 * 2^1 * 2^1 = 2^24 = 16,777,216

not counting the edit box states. Obviously, this far too many states to exhaustively test

by hand so it would be really nice to have some testing mechanism comparable to the

Palm Operating System (OS) Gremlins for testing the interface.

 The main window has check boxes for controlling the delta-time policy, which is

either the honesty policy or lying policy, enabling the Nagle algorithm, local playing of a

MIDI sequence, and muting of the audio system. The number of MIDI short messages

per TCP packet is controlled by a popup button and defaults to one MIDI short message

per packet. The peer and my ports default to TCP port number 5000. The peer host name

 90

or Internet Protocol (IP) address is entered via an edit box. Popup buttons also allow the

user to choose the MIDI input and output devices. The channel map and virtual keyboard

window opening functions are implemented using check boxes. Fly over hints and their

voice narration are controlled utilizing a check box whose default state is no fly over

hints. The channel map and virtual keyboard windows are shown is Figures 5-2 and 5-3.

The channel map window allows each local MIDI channel to be mapped to the same or

different remote channel, which allows a duet to be played without the collision of local

and remote MIDI short messages.

Figure 5-1 Main Windows

 91

Figure 5-2 Virtual Keyboard

Figure 5-3 Channel Map Windows

 92

 Returning to the software, the Apple module has code for setting the text of an

edit box, getting the text of an edit box, beginning and ending an open or save dialog, etc.

The duet module has the definitions of many of structures used by the application and the

ancillary window creation and handling functions. The Globals module has definitions

and external references to all the global variables used by the application. The main

module creates the main window and handles the main window’s GUI elements events.

The MIDI unit has the MIDI reading procedures for sequences and non-sequences. It also

has the basic functions for setting up and initializing the MIDI handling procedures. The

NavFunctions module has the navigation functions for the open and save navigation

dialogs. The TCPNetwork program unit has the TCP server thread code and the client

related TCP packet handing code.

 The basic architecture of the MIDI duet application is a peer-to-peer design (P2P)

that utilizes a client and server part in each of the two connected peers. This is illustrated

in Figure 5-4.

Figure 5-4 Peer-to-Peer Duet Architecture

 93

CHAPTER 6 CONCLUSIONS

A. Chapter 2 Conclusions

The prior MOIP research was mainly an exploration of the existing protocol design

space to find an effective and suitable candidate protocol. Early attempts were focused on

UDP then TCP and later RTP. This research essentially followed the same line of

protocol succession as the prior research. The previous studies made no attempt to

quantitatively compare existing MOIP protocols. This neglect of an experimentally sound

basis for choosing one MOIP protocol over another MOIP protocol seemed to be a

glaring defect, and an area to be covered by this research.

Not all researchers before the current scientists came to the conclusion that a successful

MOIP protocol must be, by the very nature of MIDI, a reliable protocol. A number of

attempts were aimed at utilizing fundamentally unreliable protocols such as UDP and

RTP. In these researchers’ opinions such efforts using protocols that do not guarantee in

order delivery of packets are doomed to failure.

B. Chapter 3 Conclusions

The first attempt at creating a new and viable MOIP protocol by this research team was

a miserable failure, however, we did learn a good lesson from this endeavor, namely, that

UDP is not a suitable base protocol for the MOIP application without making extreme

modifications to UDP. We also tried to utilize Young and Fujinaga’s notion of adding

 94

packet redundancy to UDP, but this fix was also unsuccessful by the experimental criteria

that we were using.

A later protocol which went by the nickname ATCP which designated an Almost TCP

like protocol seemed to fare somewhat better than our first flawed and unreliable

protocol, but this protocol was later discovered to be fundamentally unusable for the

musical duet application. In subsequent work this protocol disappeared from the mix of

protocols being used experimentally.

The primordial efforts to create a musical duet system in Java were aborted due to the

apparent language latency and the fact that at the time, the only way to perform MIDI

input was to write native code. With the advent of Java 1.5 this glaring deficiency in the

Java MIDI package was corrected. We then renewed our attempts to use Java as a basic

MOIP language, but this time we were hampered by machines which were just too slow

for the application. As we will see in the Chapter 5 conclusions this problem of relatively

slow processors has been somewhat mitigated by currently available hardware.

The last proposed and implemented duet system introduced in this chapter represents a

proof concept and is not intended to be a production system. Before an utilizable

commercial product can be created more research into the issues of hardware, software,

and network requirements is indicated. Also, work needs to be done on creating better

user interfaces for the system with accompanying human user experimentation. Our

research seems to indicate that Java involves a little too much inherent language latency

to be used presently in this application area. Native or near native languages such as C

seem to perform better as far as language latency is concerned. The system outlined

above could be generalized to more performers than a musical duet. The extension to

 95

trios, quartets, or ensembles is fairly straightforward. The musical duet performance

system of this paper offers another way for musicians to collaborate in real-time, and

unlike streaming audio the bandwidth requirements are not that great

C. Chapter 4 Conclusions

The overwhelming conclusion to come from this chapter was the fact that using the

Java Media Framework (JMF), one could design and implement reliable RTP protocols

using TCP as the transport protocol. The idea of using a reliable protocol at the RTP

transport layer was not in itself novel, but in the MOIP area of research this notion had

not been previously used. These RTP based protocols in many ways performed as well as

the vanilla TCP protocols.

We devised two metrics for measuring the performance of the test suite of ten MOIP

protocols which were: the runtime of a MIDI sequence on the destination host, and a

metric which tended to correspond to amount of jitter in a protocol. We then used a

statistically larger number of experiments to determine the best protocol in the test suite

based on the previously mentioned empirical measurements. It was found that on a pair

of heterogeneous Windows platforms that the producer and consumer multithreaded TCP

protocol was the most efficient MOIP protocol.

D. Chapter 5 Conclusions

The primary result to be drawn from this chapter is that for consistently transmitting

MIDI data over a network, a reliable transport layer protocol should be used. As was

stated multiple times in this paper, MIDI is very sensitive to lost or out-of-order data,

unlike audio or video transmissions which can afford to lose some data. We found that

utilizing UDP for transport was, in general cases, a bad idea due to stuck notes. A simple

 96

argument shows that the dishonesty delta-time policy is preferable to the honesty delta-

time policy for m = 1 in performing a musical duet. However, in the general m cases and

for the transmission of MIDI sequences over a network, the honesty delta-time policy

should probably be used. We will investigate the efficacy of the honesty delta-time policy

in future research.

We implemented the musical duet performance system of this chapter on two different

operating systems, namely, Windows and OS X using the C language. The system

appeared to have a lower latency on the OS X system; however, this could be due to the

fact that our Windows machines did not have the fastest x86 processors currently

available.

E. Overall Conclusions

The overall conclusions to be drawn from this research is that the creation of high

performance MIDI over IP protocols is a very difficult problem, and the design and

implementation of a viable musical duet system using a MIDI over IP protocol is an

extremely challenging software engineering task. As machines and the Internet

infrastructure improve in terms of speed and bandwidth then the latencies mentioned

earlier that are associated with MIDI over IP may disappear altogether. In this section we

will address the overall conclusions that were derived from both of the endeavors cited

immediately above in this paragraph.

New networking protocols are by the nature of the problem hard to develop and

properly implement. Typically, finite state machines for both the sender and receiver are

designed and implemented in some real computer language or in a simulator-type script.

An alternative design strategy is the use of a Petri net. The networking protocol must be

 97

free of deadlocks, live-locks, and improper terminations [48]. A usable musical duet

system poses several problems such as having a low overall latency and proper

synchronization. The latency issues were addressed as best as possible with the available

software and hardware by careful design choices. Duet synchronization was performed

using a simple metronome count up subsystem.

 98

REFERENCES

[1] M. Boom, Music Through MIDI, Microsoft Press, Redmond, Washington, 1987.

[2] J. Rothstein, MIDI: A Comprehensive Introduction, second edition, A-R Editions, Madison, Wisconsin, 1995.

[3] P. D. Lehrman and T. Tully, Midi for the Professional, Amsco Publications, New York, New York, 1993..

[4] J. Rona, The MIDI Companion, Hal Leonard Corporation, Milwaukee. Wisconsin, 1994.

[5] G. Hansper, http://crystal.apana.org.au/~ghansper/midi_introduction/midi_control_change.html, 1998.

[6] J. Glatt, http://www.borg.com/~jglatt/, 2003.

[7] B. McQueer, http://www.harmony-central.com/MIDI/Doc/primer.txt, 1995.

[8] MIDI Manufacturers Association. http://www.midi.org/, 2003.

[9] Sun, Java Sound Programming Guide. http://java.sun.com/j2se/1.4/docs/guide/sound/programmer_guide/contents.html, 2002.

[10] Gibson Musical Instruments, MaGIC v 2.8 Engineering Specification, http://www.gibsonmagic.com/magic28.pdf, 2002.

[11] A. S. Tanenbaum, Computer Networks, third edition, Prentice-Hall, Saddle River, New Jersey, 1996.

[12] G. Hoffman and D. Moore, http://www.skipstone.com/compcon.html.

[13] D. Moore and Skipstone, http://www.skipstone.com/ss21st.html.

[14] G. Hoffman, http://www.skipstone.com/newspap.html.

[15] Association of Musical Electronics Industry and the MIDI Manufacturers Association. http://www.midi.org/about-

midi/rp27v10spec(1394).pdf.

[16] Gibson Musical Instruments, http://www.gibsonmagic.com/video.html, 2002.

[17] R. Merritt, EE Times. http://www.eetimes.com/sys/news/OEG20030124S0035.

[18] J. B. Postel, RFC 768, http://www.freesoft.org/CIE/RFC/768/, 1980.

[19] J. B. Postel, RFC 793, http://www.freesoft.org/CIE/RFC/793/, 1981.

[20] D. E. Comer, Internetworking with TCP/IP Volume I Principles, Protocols, and Architecture, third edition, Prentice-Hall,

Englewood Cliffs, New Jersey, 1995.

[21] B. Quinn and D. Shute, Windows Sockets Network Programming, Addison-Wesley, Reading, Massachusetts, 1996.

[22] R. Stevens, Unix Network Programming Volume 1 Networking APIs: Sockets and XTI, second edition, Prentice-Hall, Upper

Saddle River, New Jersey, 1998.

[23] H. Schulzrinne, S. Casner., R. Frederick, and V. Jacobson, http://www.ietf.org/rfc/rfc1889.txt, 1996.

[24] Dennis M. Ritchie, http://cm.bell-labs.com/cm/cs/who/dmr/chist.html.

[25] Leslie B. Wilson, and Robert G. Clark, Comparative Programming Languages, Addison-Wesley, Wokingham, England, 1988.

[26] John Byous, http://java.sun.com/features/1998/05/birthday.html, 1998.

 99

[27] Cay S. Horstmann, and Gary Cornell, Core Java Volume I – Fundamentals, Prentice-Hall, Upper Saddle River, New Jersey,

1999.

[28] Harold, Abelson, Gerald Jay Sussman,, and Julie Sussman, Structure and Interpretation of Computer Languages, Second

Edition, The MIT Press, Cambridge, MA, 1996.

[29] Petzold, Charle, Programming Windows with C#, Microsoft Press, Redmond, Washington, 2002.

[30] Richter, Jeffrey, Applied Microsoft .Net Framework Programming, Microsoft Press, Redmond, Washington, 2002.

[31] John W. Muchow, Core J2ME Technology and MIDP, Prentice-Hall, Upper Saddle River, New Jersey, 2002.

[32] Vartan Piroumian. Wireless J2ME Platform Programming, Prentice-Hall, Upper Saddle River, New Jersey, 2002.

[33] W. Keith. Edwards, Core JINI, Prentice-Hall, Upper Saddle River, New Jersey, 1999.

[34] Scott, Oaks and Henry Wong, JINI in a Nutshell, O’Reilly, Beijing, P.R.O.C., 2000.

[35] Apple Computer, Inc. Audio and MIDI on Mac OS X.

[36] M. Goto, R. Neyama, and Y. Muroka, RCMP: Remote Music Control Protocol, Proceedings of the 1997 International Computer

Music Conference, ICMA, pp. 446 – 449, www.etl.go.jp/~goto/PAPER/ICMC97.300dpi.ps, 1997.

[37] J. P. Young and I. Fujinaga, “Piano Master Classes via the Internet”, Proceedings of the 1999 International Computer Music

Conference, ICMA, pp. 135 – 7, http://www.peabody.jhu.edu/~ich/research/icmc99/icmc99.UDP.pdf, 1999.

[38] R. B. Dannenberg, and P. van de Lageweg, “A System Supporting Flexible Distributed Real-Time Music Processing”,

Proceedings of the 2001 International Computer Music Conference, ICMA, pp. 267 – 270, http://www-

2.cs.cmu.edu/~rbd/papers/icmc01aura.pdf, 2001.

[39] J. Lazzaro and J. Wawrzynek, “A Case for Musical Network Performance”, NOSSDAV’01, ACM, 2001.

[40] H. Schulzrinne , http://www.faqs.org/rfcs/rfc1890.html, 1996.

[41] Souspe http://hyperphysics.phyastr.gsu.edu/hbase/sound/souspe.html.

[42] Sound, Sound on Sound Magazine http://www.sospubs.co.uk/sos/apr99/articles/letency.htm, 1999.

[43] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP Latency”, Infocom, pp. 1742 – 1751,

http://citeseer.nj.nec.com/cardwell00modeling.html, 2000.

[44] E. Brandt, and R. Dannenberg, Low-latency Music Software Using Off-the-shelf Operating Systems, Proceedings of the 1998

International Computer Music Conference, ICMA, http://citeseer.nj.nec.com/309841.html, 1998.

[45] A. Dix, J. Finlay, G. Abowd, and R. Beale, Human-Computer Interaction, second edition, Prentice Hall Europe, London, 1998.

[46] X. Yin, J. Xue, and P. Stuedi, http://www2.inf.ethz.ch/~stuedip/doc/SA_sctp.pdf

[47] S. Maghsoodloo, private communication, 2/13/204 11:03 AM, maghsood@eng.auburn.edu.

[48] Holzmann, G. J., Design and Validation of Computer Protocols, Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

 100

INDEX

Appendix, 6, 8, 44, 53, 54, 55, 56, 75,

77, 79
C, v, 1, 3, 5, 8, 13, 16, 17, 19, 25, 28, 34,

37, 39, 48, 49, 50, 52, 53, 54, 55, 56,
57, 58, 63, 66, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87, 94, 96,
99

C++, 2, 19, 34, 63
collaboration, v, 1, 2, 3, 19, 63, 83
duet, v, 1, 3, 4, 22, 23, 25, 30, 62, 63, 66,

83, 84, 86, 88, 90, 92, 94, 96, 97
INTERNET, 1, 2, iii, v, 1, 13, 14, 20, 21,

22, 23, 25, 26, 27, 36, 38, 41, 52, 73,
87, 90, 96, 99

Java, v, 1, 3, 5, 8, 16, 17, 18, 25, 28, 30,
37, 39, 50, 51, 55, 58, 59, 62, 63, 66,
70, 72, 83, 94, 95, 98, 99

LAN, 1, 9, 21, 67, 68, 73, 77, 79, 81, 83
MIDI, 1, 2, iii, v, 1, 2, 3, 5, 6, 7, 8, 10,

11, 15, 17, 18, 19, 20, 22, 23, 24, 25,

26, 27, 30, 31, 32, 33, 34, 35, 36, 37,
39, 40, 41, 42, 48, 49, 51, 52, 53, 54,
55, 56, 59, 61, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 81, 84, 86, 87, 88,
89, 92, 93, 94, 95, 96, 98, 99

Nagle algorithm, 3, 24, 39, 40, 54, 71,
89

OS X, 2, 19, 64, 65, 66, 84, 86, 96, 99
protocols, v, 1, 2, 3, 13, 18, 21, 22, 24,

25, 30, 31, 32, 34, 35, 37, 38, 39, 45,
47, 51, 52, 53, 56, 63, 70, 71, 72, 77,
78, 79, 93, 94, 95, 96

research, v, 1, 2, 3, 5, 24, 25, 26, 30, 58,
93, 94, 95, 96, 99

TCP/IP, 1, 13, 14, 21, 66, 98
UNIX, 2, 14, 16, 66
WAN, 1, 21, 30, 36, 73, 75, 79
Windows 98, 2, 27, 35, 64, 65, 67, 73
Windows XP, 2, 35, 64, 65, 67, 73

 101

APPENDIX A LAN EQUATION (1) CHAPTER 4 GRAPHS

There are forty graphs in this appendix for a local area network (LAN) that were

generated from Equation (1) in Chapter 4. There are four graphs each for all ten protocols

in the suite of MIDI over IP protocols. To reiterate the protocols are as follows: TT-RTP-

NDND, TT-RTP-NEND, TT-RTP-NDNE, TT-RTP-NENE, UT-RTP-ND, UT-RTP-NE,

PC-RTP-ND, PC-TCP-NE, SN-TCP-ND, and SN-TCP-NE, where ND = Nagle algorithm

disabled and NE = Nagle algorithm enabled (typically the default Internet setting).

 102

 103

 104

 105

 106

 107

 108

 109

 110

 111

 112

 113

 114

 115

 116

 117

 118

 119

 120

 121

 122

APPENDIX B LAN PAIRED MEANS COMPARISON GRAPHS

This appendix consists of 180 graphs of the mean runtime of a MIDI sequence on the

destination host on a LAN. The number of graphs can be determined by calculating the

total number of possible pairings of the protocols as (10 * 9) / 2 = 45 and multiplying 45

by 4 to get 180, where 4 is the number of values of m, the number of MIDI short

messages per TCP packet.

 123

 124

 125

 126

 127

 128

 129

 130

 131

 132

 133

 134

 135

 136

 137

 138

 139

 140

 141

 142

 143

 144

 145

 146

 147

 148

 149

 150

 151

 152

 153

 154

 155

 156

 157

 158

 159

 160

 161

 162

 163

 164

 165

 166

 167

 168

 169

 170

 171

 172

 173

 174

 175

 176

 177

 178

 179

 180

 181

 182

 183

 184

 185

 186

 187

 188

 189

 190

 191

 192

 193

 194

 195

 196

 197

 198

 199

 200

 201

 202

 203

 204

 205

 206

 207

 208

 209

 210

 211

 212

 213

APPENDIX C WAN EQUATION (1) CHAPTER 4 GRAPHS

There are forty graphs in this appendix for a local area network (WAN) that were generated from

Equation (1) in Chapter 4. There are four graphs each for all ten protocols in the suite of MIDI over IP

protocols. To reiterate the protocols are as follows: TT-RTP-NDND, TT-RTP-NEND, TT-RTP-NDNE,

TT-RTP-NENE, UT-RTP-ND, UT-RTP-NE, PC-RTP-ND, PC-TCP-NE, SN-TCP-ND, and SN-TCP-NE,

where ND = Nagle algorithm disabled and NE = Nagle algorithm enabled (typically the default Internet

setting).

 214

 215

 216

 217

 218

 219

 220

 221

 222

 223

 224

 225

 226

 227

 228

 229

 230

 231

 232

 233

 234

APPENDIX D WAN PAIRED MEANS COMPARISON GRAPHS

This appendix consists of 180 graphs of the mean runtime of a MIDI sequence on the destination host on a

WAN. The number of graphs can be determined by calculating the total number of possible pairings of the

protocols as (10 * 9) / 2 = 45 and multiplying 45 by 4 to get 180, where 4 is the number of values of m, the

number of MIDI short messages per TCP packet.

 235

 236

 237

 238

 239

 240

 241

 242

 243

 244

 245

 246

 247

 248

 249

 250

 251

 252

 253

 254

 255

 256

 257

 258

 259

 260

 261

 262

 263

 264

 265

 266

 267

 268

 269

 270

 271

 272

 273

 274

 275

 276

 277

 278

 279

 280

 281

 282

 283

 284

 285

 286

 287

 288

 289

 290

 291

 292

 293

 294

 295

 296

 297

 298

 299

 300

 301

 302

 303

 304

 305

 306

 307

 308

 309

 310

 311

 312

 313

 314

 315

 316

 317

 318

 319

 320

 321

 322

 323

 324

 325

APPENDIX E LAN PAIRED MEANS COMPARISON STATISTICS

This appendix consists of tables of data that summarize the LAN paired means

Student’s t-tests. The paired means were dependent since they were measuring the same

experimental metric that is run-time of a MIDI sequence at the ultimate destination. The

first data in the tables are the values of m, the number of MIDI short messages per TCP

packet. This value varied from 1 to 4. The next two data items are the protocol

mnemonics involved in the paired comparison. Then the measured means are given

along with their differences. The final three data items are the standard deviation, the

Student’s t-value, and the Student’s t-value significance. A negative t-value meant that

the first protocol (protocol #1) was potentially the best protocol in the pair. A positive t-

value meant that the second protocol (protocol #2) was potentially statistically superior to

the first protocol. If the value of the Student’s t-value significance was less than or equal

0.05 then one of the protocols statistically outperformed the other protocol in the pairing.

 326

M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2 #1 - #2 STD DEV T VALUE T SIGN

1 TT-RTP-NDND TT-RTP-NDNE 66967.83 67174.67 -206.83 1553.33 -1.0314 0.3066
2 TT-RTP-NDND TT-RTP-NDNE 66977.50 66970.00 +7.50 41.77 +1.3909 0.1695
3 TT-RTP-NDND TT-RTP-NDNE 67037.17 67198.00 -160.83 1825.76 -0.6824 0.4977
4 TT-RTP-NDND TT-RTP-NDNE 66965.00 67333.67 -368.67 2820.63 -1.0124 0.3155
1 TT-RTP-NDND TT-RTP-NEND 66967.83 66970.83 -3.00 54.81 -0.4240 0.6731
2 TT-RTP-NDND TT-RTP-NEND 66977.50 66984.33 -6.83 42.96 -1.2320 0.2228
3 TT-RTP-NDND TT-RTP-NEND 67037.17 67096.67 -59.50 1087.14 -0.4239 0.6731
4 TT-RTP-NDND TT-RTP-NEND 66965.00 66976.33 -11.33 51.99 -1.6884 0.0966
1 TT-RTP-NDND TT-RTP-NENE 66967.83 67069.17 -101.33 732.62 -1.0714 0.2884
2 TT-RTP-NDND TT-RTP-NENE 66977.50 66968.67 +8.83 37.83 +1.8089 0.0756
3 TT-RTP-NDND TT-RTP-NENE 67037.17 66981.67 +55.50 502.58 +0.8554 0.3958
4 TT-RTP-NDND TT-RTP-NENE 66965.00 66969.50 -4.50 46.34 -0.7522 0.4549
1 TT-RTP-NDND UT-RTP-ND 66967.83 66930.17 +37.67 145.23 +2.0089 0.0491
2 TT-RTP-NDND UT-RTP-ND 66977.50 67093.50 -116.00 1226.80 -0.7324 0.4668
3 TT-RTP-NDND UT-RTP-ND 67037.17 66984.00 +53.17 605.99 +0.6796 0.4994
4 TT-RTP-NDND UT-RTP-ND 66965.00 67018.83 -53.83 641.14 -0.6504 0.5180
1 TT-RTP-NDND UT-RTP-NE 66967.83 67175.17 -207.33 1768.18 -0.9083 0.3674
2 TT-RTP-NDND UT-RTP-NE 66977.50 66960.83 +16.67 45.05 +2.8658 0.0058
3 TT-RTP-NDND UT-RTP-NE 67037.17 66959.50 +77.67 525.71 +1.1444 0.2571
4 TT-RTP-NDND UT-RTP-NE 66965.00 66903.83 +61.17 82.61 +5.7355 0.0000
1 TT-RTP-NDND PC-TCP-ND 66967.83 66345.33 +622.50 1001.45 +4.8149 0.0000
2 TT-RTP-NDND PC-TCP-ND 66977.50 66395.33 +582.17 637.34 +7.0754 0.0000
3 TT-RTP-NDND PC-TCP-ND 67037.17 66472.17 +565.00 1479.38 +2.9583 0.0044
4 TT-RTP-NDND PC-TCP-ND 66965.00 66069.67 +895.33 387.33 +17.9054 0.0000
1 TT-RTP-NDND PC-TCP-NE 66967.83 66449.83 +518.00 1158.05 +3.4648 0.0010
2 TT-RTP-NDND PC-TCP-NE 66977.50 66302.67 +674.83 70.70 +73.9370 0.0000
3 TT-RTP-NDND PC-TCP-NE 67037.17 66418.17 +619.00 1042.99 +4.5971 0.0000
4 TT-RTP-NDND PC-TCP-NE 66965.00 66293.83 +671.17 60.51 +85.9185 0.0000
1 TT-RTP-NDND SN-TCP-ND 66967.83 67034.67 -66.83 747.96 -0.6921 0.4916
2 TT-RTP-NDND SN-TCP-ND 66977.50 67089.83 -112.33 780.99 -1.1141 0.2697
3 TT-RTP-NDND SN-TCP-ND 67037.17 67155.67 -118.50 1358.57 -0.6756 0.5019
4 TT-RTP-NDND SN-TCP-ND 66965.00 66988.67 -23.67 57.99 -3.1614 0.0025
1 TT-RTP-NDND SN-TCP-NE 66967.83 67080.33 -112.50 1178.54 -0.7394 0.4626
2 TT-RTP-NDND SN-TCP-NE 66977.50 67095.67 -118.17 829.07 -1.1040 0.2741
3 TT-RTP-NDND SN-TCP-NE 67037.17 66991.67 +45.50 487.73 +0.7226 0.4728
4 TT-RTP-NDND SN-TCP-NE 66965.00 66989.83 -24.83 56.49 -3.4050 0.0012
1 TT-RTP-NEND TT-RTP-NDNE 66970.83 67174.67 -203.83 1561.21 -1.0113 0.3160
2 TT-RTP-NEND TT-RTP-NDNE 66984.33 66970.00 +14.33 50.57 +2.1955 0.0321
3 TT-RTP-NEND TT-RTP-NDNE 67096.67 67198.00 -101.33 789.42 -0.9943 0.3241
4 TT-RTP-NEND TT-RTP-NDNE 66976.33 67333.67 -357.33 2815.87 -0.9830 0.3296
1 TT-RTP-NEND TT-RTP-NENE 66970.83 67069.17 -98.33 739.44 -1.0301 0.3072
2 TT-RTP-NEND TT-RTP-NENE 66984.33 66968.67 +15.67 50.90 +2.3840 0.0204
3 TT-RTP-NEND TT-RTP-NENE 67096.67 66981.67 +115.00 859.34 +1.0366 0.3042
4 TT-RTP-NEND TT-RTP-NENE 66976.33 66969.50 +6.83 44.63 +1.1861 0.2403
1 TT-RTP-NEND UT-RTP-ND 66970.83 66930.17 +40.67 179.02 +1.7596 0.0837
2 TT-RTP-NEND UT-RTP-ND 66984.33 67093.50 -109.17 1228.31 -0.6884 0.4939
3 TT-RTP-NEND UT-RTP-ND 67096.67 66984.00 +112.67 614.60 +1.4200 0.1609
4 TT-RTP-NEND UT-RTP-ND 66976.33 67018.83 -42.50 646.88 -0.5089 0.6127
1 TT-RTP-NEND UT-RTP-NE 66970.83 67175.17 -204.33 1776.28 -0.8911 0.3765
2 TT-RTP-NEND UT-RTP-NE 66984.33 66960.83 +23.50 50.58 +3.5986 0.0007
3 TT-RTP-NEND UT-RTP-NE 67096.67 66959.50 +137.17 777.17 +1.3671 0.1768
4 TT-RTP-NEND UT-RTP-NE 66976.33 66903.83 +72.50 82.06 +6.8433 0.0000
1 TT-RTP-NEND PC-TCP-ND 66970.83 66345.33 +625.50 1010.40 +4.7952 0.0000
2 TT-RTP-NEND PC-TCP-ND 66984.33 66395.33 +589.00 640.02 +7.1285 0.0000
3 TT-RTP-NEND PC-TCP-ND 67096.67 66472.17 +624.50 434.69 +11.1283 0.0000
4 TT-RTP-NEND PC-TCP-ND 66976.33 66069.67 +906.67 377.59 +18.5997 0.0000

 327

M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2 #1 - #2 STD DEV T VALUE T SIGN

1 TT-RTP-NEND PC-TCP-NE 66970.83 66449.83 +521.00 1167.22 +3.4575 0.0010
2 TT-RTP-NEND PC-TCP-NE 66984.33 66302.67 +681.67 83.65 +63.1228 0.0000
3 TT-RTP-NEND PC-TCP-NE 67096.67 66418.17 +678.50 119.40 +44.0160 0.0000
4 TT-RTP-NEND PC-TCP-NE 66976.33 66293.83 +682.50 73.61 +71.8151 0.0000
1 TT-RTP-NEND SN-TCP-ND 66970.83 67034.67 -63.83 754.24 -0.6556 0.5147
2 TT-RTP-NEND SN-TCP-ND 66984.33 67089.83 -105.50 782.22 -1.0447 0.3004
3 TT-RTP-NEND SN-TCP-ND 67096.67 67155.67 -59.00 299.39 -1.5265 0.1322
4 TT-RTP-NEND SN-TCP-ND 66976.33 66988.67 -12.33 48.38 -1.9748 0.0530
1 TT-RTP-NEND SN-TCP-NE 66970.83 67080.33 -109.50 1185.04 -0.7157 0.4770
2 TT-RTP-NEND SN-TCP-NE 66984.33 67095.67 -111.33 830.20 -1.0388 0.3032
3 TT-RTP-NEND SN-TCP-NE 67096.67 66991.67 +105.00 953.98 +0.8526 0.3973
4 TT-RTP-NEND SN-TCP-NE 66976.33 66989.83 -13.50 49.40 -2.1169 0.0385
1 TT-RTP-NDNE TT-RTP-NENE 67174.67 67069.17 +105.50 823.50 +0.9924 0.3251
2 TT-RTP-NDNE TT-RTP-NENE 66970.00 66968.67 +1.33 43.43 +0.2378 0.8129
3 TT-RTP-NDNE TT-RTP-NENE 67198.00 66981.67 +216.33 1646.41 +1.0178 0.3129
4 TT-RTP-NDNE TT-RTP-NENE 67333.67 66969.50 +364.17 2821.54 +0.9997 0.3215
1 TT-RTP-NDNE UT-RTP-ND 67174.67 66930.17 +244.50 1572.81 +1.2041 0.2333
2 TT-RTP-NDNE UT-RTP-ND 66970.00 67093.50 -123.50 1225.79 -0.7804 0.4383
3 TT-RTP-NDNE UT-RTP-ND 67198.00 66984.00 +214.00 1401.68 +1.1826 0.2417
4 TT-RTP-NDNE UT-RTP-ND 67333.67 67018.83 +314.83 2897.36 +0.8417 0.4034
1 TT-RTP-NDNE UT-RTP-NE 67174.67 67175.17 -0.50 221.61 -0.0175 0.9861
2 TT-RTP-NDNE UT-RTP-NE 66970.00 66960.83 +9.17 43.46 +1.6336 0.1077
3 TT-RTP-NDNE UT-RTP-NE 67198.00 66959.50 +238.50 1563.96 +1.1812 0.2422
4 TT-RTP-NDNE UT-RTP-NE 67333.67 66903.83 +429.83 2850.34 +1.1681 0.2475
1 TT-RTP-NDNE PC-TCP-ND 67174.67 66345.33 +829.33 566.62 +11.3374 0.0000
2 TT-RTP-NDNE PC-TCP-ND 66970.00 66395.33 +574.67 636.09 +6.9980 0.0000
3 TT-RTP-NDNE PC-TCP-ND 67198.00 66472.17 +725.83 385.76 +14.5745 0.0000
4 TT-RTP-NDNE PC-TCP-ND 67333.67 66069.67 +1264.00 2817.63 +3.4749 0.0010
1 TT-RTP-NDNE PC-TCP-NE 67174.67 66449.83 +724.83 404.72 +13.8728 0.0000
2 TT-RTP-NDNE PC-TCP-NE 66970.00 66302.67 +667.33 71.66 +72.1344 0.0000
3 TT-RTP-NDNE PC-TCP-NE 67198.00 66418.17 +779.83 851.47 +7.0943 0.0000
4 TT-RTP-NDNE PC-TCP-NE 67333.67 66293.83 +1039.83 2819.46 +2.8568 0.0059
1 TT-RTP-NDNE SN-TCP-ND 67174.67 67034.67 +140.00 813.53 +1.3330 0.1877
2 TT-RTP-NDNE SN-TCP-ND 66970.00 67089.83 -119.83 780.61 -1.1891 0.2392
3 TT-RTP-NDNE SN-TCP-ND 67198.00 67155.67 +42.33 494.38 +0.6633 0.5097
4 TT-RTP-NDNE SN-TCP-ND 67333.67 66988.67 +345.00 2817.71 +0.9484 0.3468
1 TT-RTP-NDNE SN-TCP-NE 67174.67 67080.33 +94.33 385.22 +1.8968 0.0627
2 TT-RTP-NDNE SN-TCP-NE 66970.00 67095.67 -125.67 828.71 -1.1746 0.2449
3 TT-RTP-NDNE SN-TCP-NE 67198.00 66991.67 +206.33 1741.25 +0.9179 0.3624
4 TT-RTP-NDNE SN-TCP-NE 67333.67 66989.83 +343.83 2817.80 +0.9452 0.3484
1 TT-RTP-NENE UT-RTP-ND 67069.17 66930.17 +139.00 764.42 +1.4085 0.1642
2 TT-RTP-NENE UT-RTP-ND 66968.67 67093.50 -124.83 1225.45 -0.7891 0.4332
3 TT-RTP-NENE UT-RTP-ND 66981.67 66984.00 -2.33 250.48 -0.0722 0.9427
4 TT-RTP-NENE UT-RTP-ND 66969.50 67018.83 -49.33 646.20 -0.5914 0.5565
1 TT-RTP-NENE UT-RTP-NE 67069.17 67175.17 -106.00 1038.96 -0.7903 0.4325
2 TT-RTP-NENE UT-RTP-NE 66968.67 66960.83 +7.83 49.51 +1.2256 0.2252
3 TT-RTP-NENE UT-RTP-NE 66981.67 66959.50 +22.17 96.97 +1.7706 0.0818
4 TT-RTP-NENE UT-RTP-NE 66969.50 66903.83 +65.67 79.56 +6.3932 0.0000
1 TT-RTP-NENE PC-TCP-ND 67069.17 66345.33 +723.83 289.14 +19.3911 0.0000
2 TT-RTP-NENE PC-TCP-ND 66968.67 66395.33 +573.33 635.81 +6.9848 0.0000
3 TT-RTP-NENE PC-TCP-ND 66981.67 66472.17 +509.50 1282.39 +3.0775 0.0032
4 TT-RTP-NENE PC-TCP-ND 66969.50 66069.67 +899.83 378.01 +18.4388 0.0000
1 TT-RTP-NENE PC-TCP-NE 67069.17 66449.83 +619.33 434.97 +11.0290 0.0000
2 TT-RTP-NENE PC-TCP-NE 66968.67 66302.67 +666.00 70.11 +73.5778 0.0000
3 TT-RTP-NENE PC-TCP-NE 66981.67 66418.17 +563.50 808.19 +5.4008 0.0000
4 TT-RTP-NENE PC-TCP-NE 66969.50 66293.83 +675.67 77.45 +67.5788 0.0000

 328

M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2 #1 - #2 STD DEV T VALUE T SIGN

1 TT-RTP-NENE SN-TCP-ND 67069.17 67034.67 +34.50 77.01 +3.4702 0.0010
2 TT-RTP-NENE SN-TCP-ND 66968.67 67089.83 -121.17 780.28 -1.2028 0.2338
3 TT-RTP-NENE SN-TCP-ND 66981.67 67155.67 -174.00 1154.34 -1.1676 0.2477
4 TT-RTP-NENE SN-TCP-ND 66969.50 66988.67 -19.17 52.57 -2.8241 0.0065
1 TT-RTP-NENE SN-TCP-NE 67069.17 67080.33 -11.17 450.30 -0.1921 0.8483
2 TT-RTP-NENE SN-TCP-NE 66968.67 67095.67 -127.00 828.29 -1.1877 0.2397
3 TT-RTP-NENE SN-TCP-NE 66981.67 66991.67 -10.00 107.86 -0.7181 0.4755
4 TT-RTP-NENE SN-TCP-NE 66969.50 66989.83 -20.33 52.88 -2.9784 0.0042
1 UT-RTP-ND UT-RTP-NE 66930.17 67175.17 -245.00 1785.02 -1.0632 0.2920
2 UT-RTP-ND UT-RTP-NE 67093.50 66960.83 +132.67 1230.84 +0.8349 0.4071
3 UT-RTP-ND UT-RTP-NE 66984.00 66959.50 +24.50 169.59 +1.1190 0.2677
4 UT-RTP-ND UT-RTP-NE 67018.83 66903.83 +115.00 646.82 +1.3772 0.1737
1 UT-RTP-ND PC-RTP-ND 66930.17 66345.33 +584.83 1019.30 +4.4443 0.0000
2 UT-RTP-ND PC-RTP-ND 67093.50 66395.33 +698.17 597.86 +9.0456 0.0000
3 UT-RTP-ND PC-RTP-ND 66984.00 66472.17 +511.83 1037.44 +3.8216 0.0003
4 UT-RTP-ND PC-RTP-ND 67018.83 66069.67 +949.17 720.09 +10.2101 0.0000
1 UT-RTP-ND PC-RTP-NE 66930.17 66449.83 +480.33 1174.08 +3.1690 0.0024
2 UT-RTP-ND PC-RTP-NE 67093.50 66302.67 +790.83 1233.12 +4.9677 0.0000
3 UT-RTP-ND PC-RTP-NE 66984.00 66418.17 +565.83 564.77 +7.7606 0.0000
4 UT-RTP-ND PC-RTP-NE 67018.83 66293.83 +725.00 631.80 +8.8886 0.0000
1 UT-RTP-ND SN-RTP-ND 66930.17 67034.67 -104.50 780.09 -1.0376 0.3037
2 UT-RTP-ND SN-RTP-ND 67093.50 67089.83 +3.67 452.15 +0.0628 0.9501
3 UT-RTP-ND SN-RTP-ND 66984.00 67155.67 -171.67 910.52 -1.4604 0.1495
4 UT-RTP-ND SN-RTP-ND 67018.83 66988.67 +30.17 645.33 +0.3621 0.7186
1 UT-RTP-ND SN-RTP-NE 66930.17 67080.33 -150.17 1203.75 -0.9663 0.3378
2 UT-RTP-ND SN-RTP-NE 67093.50 67095.67 -2.17 405.25 -0.0414 0.9671
3 UT-RTP-ND SN-RTP-NE 66984.00 66991.67 -7.67 346.18 -0.1715 0.8644
4 UT-RTP-ND SN-RTP-NE 67018.83 66989.83 +29.00 642.98 +0.3494 0.7281
1 UT-RTP-NE PC-RTP-ND 67175.17 66345.33 +829.83 777.83 +8.2638 0.0000
2 UT-RTP-NE PC-RTP-ND 66960.83 66395.33 +565.50 641.15 +6.8320 0.0000
3 UT-RTP-NE PC-RTP-ND 66959.50 66472.17 +487.33 1199.07 +3.1482 0.0026
4 UT-RTP-NE PC-RTP-ND 66903.83 66069.67 +834.17 415.40 +15.5547 0.0000
1 UT-RTP-NE PC-RTP-NE 67175.17 66449.83 +725.33 615.47 +9.1286 0.0000
2 UT-RTP-NE PC-RTP-NE 66960.83 66302.67 +658.17 70.10 +72.7302 0.0000
3 UT-RTP-NE PC-RTP-NE 66959.50 66418.17 +541.33 724.61 +5.7868 0.0000
4 UT-RTP-NE PC-RTP-NE 66903.83 66293.83 +610.00 105.20 +44.9133 0.0000
1 UT-RTP-NE SN-RTP-ND 67175.17 67034.67 +140.50 1028.45 +1.0582 0.2943
2 UT-RTP-NE SN-RTP-ND 66960.83 67089.83 -129.00 786.19 -1.2710 0.2087
3 UT-RTP-NE SN-RTP-ND 66959.50 67155.67 -196.17 1072.41 -1.4169 0.1618
4 UT-RTP-NE SN-RTP-ND 66903.83 66988.67 -84.83 80.24 -8.1891 0.0000
1 UT-RTP-NE SN-RTP-NE 67175.17 67080.33 +94.83 598.51 +1.2274 0.2246
2 UT-RTP-NE SN-RTP-NE 66960.83 67095.67 -134.83 834.07 -1.2522 0.2154
3 UT-RTP-NE SN-RTP-NE 66959.50 66991.67 -32.17 188.94 -1.3187 0.1924
4 UT-RTP-NE SN-RTP-NE 66903.83 66989.83 -86.00 72.47 -9.1925 0.0000
1 PC-TCP-ND PC-TCP-NE 66345.33 66449.83 -104.50 185.76 -4.3575 0.0000
2 PC-TCP-ND PC-TCP-NE 66395.33 66302.67 +92.67 639.22 +1.1229 0.2660
3 PC-TCP-ND PC-TCP-NE 66472.17 66418.17 +54.00 478.66 +0.8739 0.3857
4 PC-TCP-ND PC-TCP-NE 66069.67 66293.83 -224.17 393.01 -4.4182 0.0000
1 PC-TCP-ND SN-RTP-ND 66345.33 67034.67 -689.33 289.01 -18.4755 0.0000
2 PC-TCP-ND SN-RTP-ND 66395.33 67089.83 -694.50 178.66 -30.1104 0.0000
3 PC-TCP-ND SN-RTP-ND 66472.17 67155.67 -683.50 169.09 -31.3103 0.0000
4 PC-TCP-ND SN-RTP-ND 66069.67 66988.67 -919.00 393.89 -18.0723 0.0000
1 PC-TCP-ND SN-RTP-NE 66345.33 67034.67 -689.33 289.01 -18.4755 0.0000
2 PC-TCP-ND SN-RTP-NE 66395.33 67089.83 -694.50 178.66 -30.1104 0.0000
3 PC-TCP-ND SN-RTP-NE 66472.17 67155.67 -683.50 169.09 -31.3103 0.0000
4 PC-TCP-ND SN-RTP-NE 66069.67 66988.67 -919.00 393.89 -18.0723 0.0000

 329

M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2 #1 - #2 STD DEV T VALUE T SIGN

1 PC-TCP-NE SN-RTP-ND 66449.83 67034.67 -584.83 428.70 -10.5671 0.0000
2 PC-TCP-NE SN-RTP-ND 66302.67 67089.83 -787.17 790.34 -7.7149 0.0000
3 PC-TCP-NE SN-RTP-ND 66418.17 67155.67 -737.50 368.06 -15.5209 0.0000
4 PC-TCP-NE SN-RTP-ND 66293.83 66988.67 -694.83 85.99 -62.5879 0.0000
1 PC-TCP-NE SN-RTP-NE 66449.83 67034.67 -584.83 428.70 -10.5671 0.0000
2 PC-TCP-NE SN-RTP-NE 66302.67 67089.83 -787.17 790.34 -7.7149 0.0000
3 PC-TCP-NE SN-RTP-NE 66418.17 67155.67 -737.50 368.06 -15.5209 0.0000
4 PC-TCP-NE SN-RTP-NE 66293.83 66988.67 -694.83 85.99 -62.5879 0.0000
1 SN-TCP-ND SN-RTP-NE 67034.67 67080.33 -45.67 437.14 -0.8092 0.4217
2 SN-TCP-ND SN-RTP-NE 67089.83 67095.67 -5.83 60.23 -0.7502 0.4561
3 SN-TCP-ND SN-RTP-NE 67155.67 66991.67 +164.00 1249.07 +1.0170 0.3133
4 SN-TCP-ND SN-RTP-NE 66988.67 66989.83 -1.17 38.09 -0.2372 0.8133

 330

APPENDIX F WAN PAIRED MEANS COMPARISON STATISTICS

This appendix consists of tables of data that summarize the WAN paired means

Student’s t-tests. The paired means were dependent since they were measuring the same

experimental metric that is run-time of a MIDI sequence at the ultimate destination. The

first data in the tables are the values of m, the number of MIDI short messages per TCP

packet. This value varied from 1 to 4. The next two data items are the protocol

mnemonics involved in the paired comparison. Then the measured means are given

along with their differences. The final three data items are the standard deviation, the

Student’s t-value, and the Student’s t-value significance. A negative t-value meant that

the first protocol (protocol #1) was potentially the best protocol in the pair. A positive t-

value meant that the second protocol (protocol #2) was potentially statistically superior to

the first protocol. If the value of the Student’s t-value significance was less than or equal

0.05 then one of the protocols statistically outperformed the other protocol in the pairing.

 331

M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2 #1 - #2 STD DEV T VALUE T SIGN

1 TT-RTP-NDND TT-RTP-NDNE 67184.33 67246.67 -62.33 195.07 -2.4752 0.0162
2 TT-RTP-NDND TT-RTP-NDNE 67086.00 67094.67 -8.67 761.38 -0.0882 0.9300
3 TT-RTP-NDND TT-RTP-NDNE 67123.00 67292.50 -169.50 1890.02 -0.6947 0.4900
4 TT-RTP-NDND TT-RTP-NDNE 66947.50 67107.50 -160.00 389.35 -3.1831 0.0023
1 TT-RTP-NDND TT-RTP-NEND 67184.33 67023.33 +161.00 1221.11 +1.0213 0.3113
2 TT-RTP-NDND TT-RTP-NEND 67086.00 67098.50 -12.50 1211.23 -0.0799 0.9366
3 TT-RTP-NDND TT-RTP-NEND 67123.00 67240.17 -117.17 1996.88 -0.4545 0.6511
4 TT-RTP-NDND TT-RTP-NEND 66947.50 66977.50 -30.00 354.70 -0.6551 0.5149
1 TT-RTP-NDND TT-RTP-NENE 67184.33 67356.67 -172.33 1118.98 -1.1929 0.2377
2 TT-RTP-NDND TT-RTP-NENE 67086.00 67352.00 -266.00 2264.49 -0.9099 0.3666
3 TT-RTP-NDND TT-RTP-NENE 67123.00 67069.00 +54.00 779.99 +0.5363 0.5938
4 TT-RTP-NDND TT-RTP-NENE 66947.50 67399.33 -451.83 2356.68 -1.4851 0.1428
1 TT-RTP-NDND UT-RTP-ND 67184.33 67380.83 -196.50 1103.35 -1.3795 0.1729
2 TT-RTP-NDND UT-RTP-ND 67086.00 66977.67 +108.33 752.51 +1.1151 0.2693
3 TT-RTP-NDND UT-RTP-ND 67123.00 66972.67 +150.33 776.23 +1.5002 0.1389
4 TT-RTP-NDND UT-RTP-ND 66947.50 67317.33 -369.83 1923.86 -1.4890 0.1418
1 TT-RTP-NDND UT-RTP-NE 67184.33 67030.17 +154.17 1113.97 +1.0720 0.2881
2 TT-RTP-NDND UT-RTP-NE 67086.00 67023.83 +62.17 752.78 +0.6397 0.5249
3 TT-RTP-NDND UT-RTP-NE 67123.00 67013.00 +110.00 785.66 +1.0845 0.2825
4 TT-RTP-NDND UT-RTP-NE 66947.50 67007.17 -59.67 359.69 -1.2849 0.2038
1 TT-RTP-NDND PC-TCP-ND 67184.33 66079.83 +1104.50 1264.12 +6.7679 0.0000
2 TT-RTP-NDND PC-TCP-ND 67086.00 66290.83 +795.17 1561.68 +3.9441 0.0002
3 TT-RTP-NDND PC-TCP-ND 67123.00 66127.67 +995.33 790.00 +9.7592 0.0000
4 TT-RTP-NDND PC-TCP-ND 66947.50 66147.67 +799.83 364.08 +17.0168 0.0000
1 TT-RTP-NDND PC-TCP-NE 67184.33 66162.83 +1021.50 1206.69 +6.5572 0.0000
2 TT-RTP-NDND PC-TCP-NE 67086.00 66448.67 +637.33 2286.90 +2.1587 0.0350
3 TT-RTP-NDND PC-TCP-NE 67123.00 66343.17 +779.83 1473.51 +4.0994 0.0001
4 TT-RTP-NDND PC-TCP-NE 66947.50 66159.50 +788.00 354.08 +17.2386 0.0000
1 TT-RTP-NDND SN-TCP-ND 67184.33 67247.17 -62.83 322.18 -1.5107 0.1362
2 TT-RTP-NDND SN-TCP-ND 67086.00 67219.17 -133.17 3146.71 -0.3278 0.7442
3 TT-RTP-NDND SN-TCP-ND 67123.00 67056.83 +66.17 960.81 +0.5334 0.5957
4 TT-RTP-NDND SN-TCP-ND 66947.50 67011.17 -63.67 1334.28 -0.3696 0.7130
1 TT-RTP-NDND SN-TCP-NE 67184.33 67256.67 -72.33 441.27 -1.2697 0.2092
2 TT-RTP-NDND SN-TCP-NE 67086.00 67233.83 -147.83 1644.50 -0.6963 0.4890
3 TT-RTP-NDND SN-TCP-NE 67123.00 67035.50 +87.50 780.24 +0.8687 0.3885
4 TT-RTP-NDND SN-TCP-NE 66947.50 67205.17 -257.67 1168.43 -1.7082 0.0929
1 TT-RTP-NEND TT-RTP-NDNE 67023.33 67246.67 -223.33 1399.82 -1.2358 0.2214
2 TT-RTP-NEND TT-RTP-NDNE 67098.50 67094.67 +3.83 962.69 +0.0308 0.9755
3 TT-RTP-NEND TT-RTP-NDNE 67240.17 67292.50 -52.33 135.80 -2.9850 0.0041
4 TT-RTP-NEND TT-RTP-NDNE 66977.50 67107.50 -130.00 389.56 -2.5849 0.0122
1 TT-RTP-NEND TT-RTP-NENE 67023.33 67356.67 -333.33 2337.95 -1.1044 0.2739
2 TT-RTP-NEND TT-RTP-NENE 67098.50 67352.00 -253.50 1187.11 -1.6541 0.1034
3 TT-RTP-NEND TT-RTP-NENE 67240.17 67069.00 +171.17 1968.95 +0.6734 0.5033
4 TT-RTP-NEND TT-RTP-NENE 66977.50 67399.33 -421.83 2498.75 -1.3077 0.1961
1 TT-RTP-NEND UT-RTP-ND 67023.33 67380.83 -357.50 2251.36 -1.2300 0.2236
2 TT-RTP-NEND UT-RTP-ND 67098.50 66977.67 +120.83 931.32 +1.0050 0.3190
3 TT-RTP-NEND UT-RTP-ND 67240.17 66972.67 +267.50 1978.65 +1.0472 0.2993
4 TT-RTP-NEND UT-RTP-ND 66977.50 67317.33 -339.83 2053.35 -1.2820 0.2049
1 TT-RTP-NEND UT-RTP-NE 67023.33 67030.17 -6.83 123.47 -0.4287 0.6697
2 TT-RTP-NEND UT-RTP-NE 67098.50 67023.83 +74.67 936.41 +0.6176 0.5392
3 TT-RTP-NEND UT-RTP-NE 67240.17 67013.00 +227.17 1975.95 +0.8905 0.3768
4 TT-RTP-NEND UT-RTP-NE 66977.50 67007.17 -29.67 63.65 -3.6106 0.0006
1 TT-RTP-NEND PC-TCP-ND 67023.33 66079.83 +943.50 386.56 +18.9062 0.0000
2 TT-RTP-NEND PC-TCP-ND 67098.50 66290.83 +807.67 437.97 +14.2846 0.0000
3 TT-RTP-NEND PC-TCP-ND 67240.17 66127.67 +1112.50 1969.10 +4.3763 0.0000
4 TT-RTP-NEND PC-TCP-ND 66977.50 66147.67 +829.83 85.34 +75.3201 0.0000

 332

M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2 #1 - #2 STD DEV T VALUE T SIGN

1 TT-RTP-NEND PC-TCP-NE 67023.33 66162.83 +860.50 100.94 +66.0366 0.0000
2 TT-RTP-NEND PC-TCP-NE 67098.50 66448.67 +649.83 1217.80 +4.1333 0.0001
3 TT-RTP-NEND PC-TCP-NE 67240.17 66343.17 +897.00 607.96 +11.4286 0.0000
4 TT-RTP-NEND PC-TCP-NE 66977.50 66159.50 +818.00 80.69 +78.5234 0.0000
1 TT-RTP-NEND SN-TCP-ND 67023.33 67247.17 -223.83 1537.24 -1.1279 0.2639
2 TT-RTP-NEND SN-TCP-ND 67098.50 67219.17 -120.67 2105.41 -0.4439 0.6587
3 TT-RTP-NEND SN-TCP-ND 67240.17 67056.83 +183.33 2046.99 +0.6937 0.4906
4 TT-RTP-NEND SN-TCP-ND 66977.50 67011.17 -33.67 1461.32 -0.1785 0.8590
1 TT-RTP-NEND SN-TCP-NE 67023.33 67256.67 -233.33 1658.11 -1.0900 0.2801
2 TT-RTP-NEND SN-TCP-NE 67098.50 67233.83 -135.33 517.69 -2.0249 0.0474
3 TT-RTP-NEND SN-TCP-NE 67240.17 67035.50 +204.67 1972.43 +0.8037 0.4248
4 TT-RTP-NEND SN-TCP-NE 66977.50 67205.17 -227.67 1284.78 -1.3726 0.1751
1 TT-RTP-NDNE TT-RTP-NENE 67246.67 67356.67 -110.00 942.33 -0.9042 0.3696
2 TT-RTP-NDNE TT-RTP-NENE 67094.67 67352.00 -257.33 2138.79 -0.9320 0.3551
3 TT-RTP-NDNE TT-RTP-NENE 67292.50 67069.00 +223.50 1853.32 +0.9341 0.3540
4 TT-RTP-NDNE TT-RTP-NENE 67107.50 67399.33 -291.83 2113.04 -1.0698 0.2891
1 TT-RTP-NDNE UT-RTP-ND 67246.67 67380.83 -134.17 954.55 -1.0887 0.2807
2 TT-RTP-NDNE UT-RTP-ND 67094.67 66977.67 +117.00 183.74 +4.9324 0.0000
3 TT-RTP-NDNE UT-RTP-ND 67292.50 66972.67 +319.83 1862.79 +1.3299 0.1887
4 TT-RTP-NDNE UT-RTP-ND 67107.50 67317.33 -209.83 1681.19 -0.9668 0.3376
1 TT-RTP-NDNE UT-RTP-NE 67246.67 67030.17 +216.50 1292.77 +1.2972 0.1996
2 TT-RTP-NDNE UT-RTP-NE 67094.67 67023.83 +70.83 195.71 +2.8035 0.0068
3 TT-RTP-NDNE UT-RTP-NE 67292.50 67013.00 +279.50 1860.21 +1.1638 0.2492
4 TT-RTP-NDNE UT-RTP-NE 67107.50 67007.17 +100.33 393.76 +1.9737 0.0531
1 TT-RTP-NDNE PC-TCP-ND 67246.67 66079.83 +1166.83 1436.37 +6.2924 0.0000
2 TT-RTP-NDNE PC-TCP-ND 67094.67 66290.83 +803.83 1383.05 +4.5020 0.0000
3 TT-RTP-NDNE PC-TCP-ND 67292.50 66127.67 +1164.83 1854.42 +4.8655 0.0000
4 TT-RTP-NDNE PC-TCP-ND 67107.50 66147.67 +959.83 386.99 +19.2122 0.0000
1 TT-RTP-NDNE PC-TCP-NE 67246.67 66162.83 +1083.83 1382.92 +6.0707 0.0000
2 TT-RTP-NDNE PC-TCP-NE 67094.67 66448.67 +646.00 2166.31 +2.3099 0.0244
3 TT-RTP-NDNE PC-TCP-NE 67292.50 66343.17 +949.33 499.03 +14.7355 0.0000
4 TT-RTP-NDNE PC-TCP-NE 67107.50 66159.50 +948.00 396.77 +18.5074 0.0000
1 TT-RTP-NDNE SN-TCP-ND 67246.67 67247.17 -0.50 159.10 -0.0243 0.9807
2 TT-RTP-NDNE SN-TCP-ND 67094.67 67219.17 -124.50 3054.55 -0.3157 0.7533
3 TT-RTP-NDNE SN-TCP-ND 67292.50 67056.83 +235.67 1935.58 +0.9431 0.3495
4 TT-RTP-NDNE SN-TCP-ND 67107.50 67011.17 +96.33 1074.85 +0.6942 0.4903
1 TT-RTP-NDNE SN-TCP-NE 67246.67 67256.67 -10.00 268.64 -0.2883 0.7741
2 TT-RTP-NDNE SN-TCP-NE 67094.67 67233.83 -139.17 1472.01 -0.7323 0.4669
3 TT-RTP-NDNE SN-TCP-NE 67292.50 67035.50 +257.00 1857.13 +1.0719 0.2881
4 TT-RTP-NDNE SN-TCP-NE 67107.50 67205.17 -97.67 904.07 -0.8368 0.4061
1 TT-RTP-NENE UT-RTP-ND 67356.67 67380.83 -24.17 553.65 -0.3381 0.7365
2 TT-RTP-NENE UT-RTP-ND 67352.00 66977.67 +374.33 2116.88 +1.3697 0.1760
3 TT-RTP-NENE UT-RTP-ND 67069.00 66972.67 +96.33 69.33 +10.7629 0.0000
4 TT-RTP-NENE UT-RTP-ND 67399.33 67317.33 +82.00 696.23 +0.9123 0.3653
1 TT-RTP-NENE UT-RTP-NE 67356.67 67030.17 +326.50 2230.97 +1.1336 0.2615
2 TT-RTP-NENE UT-RTP-NE 67352.00 67023.83 +328.17 2121.86 +1.1980 0.2357
3 TT-RTP-NENE UT-RTP-NE 67069.00 67013.00 +56.00 59.69 +7.2666 0.0000
4 TT-RTP-NENE UT-RTP-NE 67399.33 67007.17 +392.17 2502.74 +1.2138 0.2297
1 TT-RTP-NENE PC-TCP-ND 67356.67 66079.83 +1276.83 2352.95 +4.2034 0.0000
2 TT-RTP-NENE PC-TCP-ND 67352.00 66290.83 +1061.17 772.66 +10.6383 0.0000
3 TT-RTP-NENE PC-TCP-ND 67069.00 66127.67 +941.33 116.87 +62.3888 0.0000
4 TT-RTP-NENE PC-TCP-ND 67399.33 66147.67 +1251.67 2491.94 +3.8907 0.0003
1 TT-RTP-NENE PC-TCP-NE 67356.67 66162.83 +1193.83 2320.97 +3.9843 0.0002
2 TT-RTP-NENE PC-TCP-NE 67352.00 66448.67 +903.33 138.91 +50.3706 0.0000
3 TT-RTP-NENE PC-TCP-NE 67069.00 66343.17 +725.83 1377.48 +4.0816 0.0001
4 TT-RTP-NENE PC-TCP-NE 67399.33 66159.50 +1239.83 2501.61 +3.8390 0.0003

 333

M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2 #1 - #2 STD DEV T VALUE T SIGN

1 TT-RTP-NENE SN-TCP-ND 67356.67 67247.17 +109.50 804.64 +1.0541 0.2961
2 TT-RTP-NENE SN-TCP-ND 67352.00 67219.17 +132.83 920.86 +1.1173 0.2684
3 TT-RTP-NENE SN-TCP-ND 67069.00 67056.83 +12.17 518.98 +0.1816 0.8565
4 TT-RTP-NENE SN-TCP-ND 67399.33 67011.17 +388.17 1040.70 +2.8891 0.0054
1 TT-RTP-NENE SN-TCP-NE 67356.67 67256.67 +100.00 685.05 +1.1307 0.2628
2 TT-RTP-NENE SN-TCP-NE 67352.00 67233.83 +118.17 673.86 +1.3583 0.1795
3 TT-RTP-NENE SN-TCP-NE 67069.00 67035.50 +33.50 68.27 +3.8011 0.0003
4 TT-RTP-NENE SN-TCP-NE 67399.33 67205.17 +194.17 1248.48 +1.2047 0.2331
1 UT-RTP-ND UT-RTP-NE 67380.83 67030.17 +350.67 2147.89 +1.2646 0.2110
2 UT-RTP-ND UT-RTP-NE 66977.67 67023.83 -46.17 69.41 -5.1523 0.0000
3 UT-RTP-ND UT-RTP-NE 66972.67 67013.00 -40.33 57.49 -5.4345 0.0000
4 UT-RTP-ND UT-RTP-NE 67317.33 67007.17 +310.17 2057.85 +1.1675 0.2477
1 UT-RTP-ND PC-TCP-ND 67380.83 66079.83 +1301.00 2268.32 +4.4427 0.0000
2 UT-RTP-ND PC-TCP-ND 66977.67 66290.83 +686.83 1356.09 +3.9232 0.0002
3 UT-RTP-ND PC-TCP-ND 66972.67 66127.67 +845.00 111.03 +58.9524 0.0000
4 UT-RTP-ND PC-TCP-ND 67317.33 66147.67 +1169.67 2044.74 +4.4310 0.0000
1 UT-RTP-ND PC-TCP-NE 67380.83 66162.83 +1218.00 2235.36 +4.2206 0.0000
2 UT-RTP-ND PC-TCP-NE 66977.67 66448.67 +529.00 2143.08 +1.9120 0.0607
3 UT-RTP-ND PC-TCP-NE 66972.67 66343.17 +629.50 1386.30 +3.5173 0.0008
4 UT-RTP-ND PC-TCP-NE 67317.33 66159.50 +1157.83 2053.38 +4.3677 0.0000
1 UT-RTP-ND SN-TCP-ND 67380.83 67247.17 +133.67 838.12 +1.2354 0.2216
2 UT-RTP-ND SN-TCP-ND 66977.67 67219.17 -241.50 3034.98 -0.6164 0.5400
3 UT-RTP-ND SN-TCP-ND 66972.67 67056.83 -84.17 514.22 -1.2679 0.2098
4 UT-RTP-ND SN-TCP-ND 67317.33 67011.17 +306.17 724.88 +3.2716 0.0018
1 UT-RTP-ND SN-TCP-NE 67380.83 67256.67 +124.17 747.10 +1.2874 0.2030
2 UT-RTP-ND SN-TCP-NE 66977.67 67233.83 -256.17 1446.18 -1.3721 0.1752
3 UT-RTP-ND SN-TCP-NE 66972.67 67035.50 -62.83 64.99 -7.4886 0.0000
4 UT-RTP-ND SN-TCP-NE 67317.33 67205.17 +112.17 892.17 +0.9739 0.3341
1 UT-RTP-NE PC-TCP-ND 67030.17 66079.83 +950.33 406.87 +18.0924 0.0000
2 UT-RTP-NE PC-TCP-ND 67023.83 66290.83 +733.00 1362.14 +4.1683 0.0001
3 UT-RTP-NE PC-TCP-ND 67013.00 66127.67 +885.33 124.10 +55.2586 0.0000
4 UT-RTP-NE PC-TCP-ND 67007.17 66147.67 +859.50 93.47 +71.2262 0.0000
1 UT-RTP-NE PC-TCP-NE 67030.17 66162.83 +867.33 138.86 +48.3836 0.0000
2 UT-RTP-NE PC-TCP-NE 67023.83 66448.67 +575.17 2149.14 +2.0730 0.0425
3 UT-RTP-NE PC-TCP-NE 67013.00 66343.17 +669.83 1384.47 +3.7476 0.0004
4 UT-RTP-NE PC-TCP-NE 67007.17 66159.50 +847.67 94.96 +69.1418 0.0000
1 UT-RTP-NE SN-TCP-ND 67030.17 67247.17 -217.00 1430.35 -1.1751 0.2447
2 UT-RTP-NE SN-TCP-ND 67023.83 67219.17 -195.33 3039.68 -0.4978 0.6205
3 UT-RTP-NE SN-TCP-ND 67013.00 67056.83 -43.83 526.52 -0.6449 0.5215
4 UT-RTP-NE SN-TCP-ND 67007.17 67011.17 -4.00 1464.42 -0.0212 0.9832
1 UT-RTP-NE SN-TCP-NE 67030.17 67256.67 -226.50 1550.92 -1.1312 0.2625
2 UT-RTP-NE SN-TCP-NE 67023.83 67233.83 -210.00 1450.99 -1.1211 0.2668
3 UT-RTP-NE SN-TCP-NE 67013.00 67035.50 -22.50 60.47 -2.8823 0.0055
4 UT-RTP-NE SN-TCP-NE 67007.17 67205.17 -198.00 1288.23 -1.1906 0.2386
1 PC-TCP-ND PC-TCP-NE 66079.83 66162.83 -83.00 371.06 -1.7326 0.0884
2 PC-TCP-ND PC-TCP-NE 66290.83 66448.67 -157.83 795.53 -1.5368 0.1297
3 PC-TCP-ND PC-TCP-NE 66127.67 66343.17 -215.50 1371.18 -1.2174 0.2283
4 PC-TCP-ND PC-TCP-NE 66147.67 66159.50 -11.83 65.37 -1.4022 0.1661
1 PC-TCP-ND SN-TCP-ND 66079.83 67247.17 -1167.33 1567.51 -5.7685 0.0000
2 PC-TCP-ND SN-TCP-ND 66290.83 67219.17 -928.33 1686.06 -4.2649 0.0000
3 PC-TCP-ND SN-TCP-ND 66127.67 67056.83 -929.17 507.58 -14.1796 0.0000
4 PC-TCP-ND SN-TCP-ND 66147.67 67011.17 -863.50 1454.49 -4.5986 0.0000
1 PC-TCP-ND SN-TCP-NE 66079.83 67247.17 -1167.33 1567.51 -5.7685 0.0000
2 PC-TCP-ND SN-TCP-NE 66290.83 67219.17 -928.33 1686.06 -4.2649 0.0000
3 PC-TCP-ND SN-TCP-NE 66127.67 67056.83 -929.17 507.58 -14.1796 0.0000
4 PC-TCP-ND SN-TCP-NE 66147.67 67011.17 -863.50 1454.49 -4.5986 0.0000

 334

--
M PROTOCOL #1 PROTOCOL #2 MEAN #1 MEAN #2 #1 - #2 STD DEV T VALUE T SIGN

1 PC-TCP-NE SN-TCP-ND 66162.83 67247.17 -1084.33 1521.33 -5.5210 0.0000
2 PC-TCP-NE SN-TCP-ND 66448.67 67219.17 -770.50 906.93 -6.5808 0.0000
3 PC-TCP-NE SN-TCP-ND 66343.17 67056.83 -713.67 1478.98 -3.7377 0.0004
4 PC-TCP-NE SN-TCP-ND 66159.50 67011.17 -851.67 1464.36 -4.5050 0.0000
1 PC-TCP-NE SN-TCP-NE 66162.83 67247.17 -1084.33 1521.33 -5.5210 0.0000
2 PC-TCP-NE SN-TCP-NE 66448.67 67219.17 -770.50 906.93 -6.5808 0.0000
3 PC-TCP-NE SN-TCP-NE 66343.17 67056.83 -713.67 1478.98 -3.7377 0.0004
4 PC-TCP-NE SN-TCP-NE 66159.50 67011.17 -851.67 1464.36 -4.5050 0.0000
1 SN-TCP-ND SN-TCP-NE 67247.17 67256.67 -9.50 130.70 -0.5630 0.5756
2 SN-TCP-ND SN-TCP-NE 67219.17 67233.83 -14.67 1590.49 -0.0714 0.9433
3 SN-TCP-ND SN-TCP-NE 67056.83 67035.50 +21.33 515.17 +0.3208 0.7495
4 SN-TCP-ND SN-TCP-NE 67011.17 67205.17 -194.00 278.26 -5.4004 0.0000

 335

APPENDIX G MIDI INSTRUMENTS

1 Acoustic Grand Piano 33 Acoustic Bass 65 Soprano Sax 97 FX 1 (Rain)
2 Bright Acoustic Piano 34 Electric Bass (Finger) 66 Alto Sax 98 FX 2 (Sound Track)
3 Electric Grand Piano 35 Electric Bass (Pick) 67 Tenor Sax 99 FX 3 (Crystal)
4 Honky-tonk Piano 36 Fretless Bass 68 Baritone Sax 100 FX 4 (Atmosphere)
5 Electric Piano 1 37 Slap Bass 1 69 Oboe 101 FX 5 (Brightness)
6 Electric Piano 2 38 Slap Bass 2 70 English Horn 102 FX 6 (Goblins)
7 Harpsichord 39 Synth Bass 1 71 Bassoon 103 FX 7 (Echoes)
8 Clavichord 40 Synth Bass 2 72 Clarinet 104 FX 8 (Sci-Fi)
9 Celesta 41 Violin 73 Piccolo 105 Sitar
10 Glockenspiel 42 Viola 74 Flute 106 Banjo
11 Music Box 43 Cello 75 Recorder 107 Shamisen
12 Vibraphone 44 Contrabass 76 Pan Flute 108 Koto
13 Marimba 45 Tremolo Strings 77 Blown Bottle 109 Kalimba
14 Xylophone 46 Pizzicato Strings 78 Shakuhachi 110 Bag Pipe
15 Tubular Bells 47 Orchestral Harp 79 Whistle 111 Fiddle
16 Dulcimer 48 Timpani 80 Ocarina 112 Shanai
17 Drawbar Organ 49 String Ensemble 1 81 Lead 1 (Square) 113 Tinkle Bell
18 Percussive Organ 50 String Ensemble 2 82 Lead 2 (Sawtooth) 114 Agogo
19 Rock Organ 51 Synth Strings 1 83 Lead 3 (Calliope) 115 Steel Drums
20 Church Organ 52 Synth Strings 2 84 Lead 4 (Chiff) 116 Woodblock
21 Reed Organ 53 Choir Aahs 85 Lead 5 (Charang) 117 Tallo Drum
22 Accordion 54 Choir Oohs 86 Lead 6 (Voice) 118 Melodic Tom
23 Harmonica 55 Synth Voice 87 Lead 7 (Fifths) 119 Synth Drum
24 Tango Accordion 56 Orchestral Hit 88 Lead 8 (Bass + Lead) 120 Reverse Cymbal
25 Acoustic Guitar (Nylon) 57 Trumpet 89 Pad 1 (New Age) 121 Guitar Fret Noise
26 Acoustic Guitar (Steel) 58 Trombone 90 Pad 2 (Warm) 122 Breathe Noise
27 Electric Guitar (Jazz) 59 Tuba 91 Pad 3 (Polysynth) 123 Seashore
28 Electric Guitar (Clean) 60 Muted Trumpet 92 Pad 4 (Choir) 124 Bird Tweet
29 Electric Guitar (Muted) 61 French Horn 93 Pad 5 (Bowed) 125 Telephone Ring
30 Overdriven Guitar 62 Brass Section 94 Pad 6 (Metallic) 126 Helicopter
31 Distortion Guitar 63 Synth Brass 1 95 Pad 7 (Halo) 127 Applause
32 Guitar Harmonics 64 Synth Brass 2 96 Pad 8 (Sweep) 128 Gunshot

 336

APPENDIX H MIDI INSTRUMENT GROUPINGS

1 – 8 Piano
9 – 16 Chromatic Percussion
17 – 24 Organ
25 – 32 Guitar
33 – 40 Bass
41 – 48 Strings
49 – 56 Ensemble
57 – 64 Brass
65 – 72 Reed
73 – 80 Pipe
81 – 88 Synth Lead
89 – 96 Synth Pad
97 – 104 Synth Effects
105 – 112 Ethnic
113 – 120 Percussive
121 – 128 Sound Effects

 337

APPENDIX I MIDI META-MESSAGES AND MIDI CONTROLLERS

The general format of a MIDI meta-message is the octet 0xFF followed by a type 0x00 to 0x7F then a

length, which is a variable length quantity one to four octets then length data octets. Not all the one hundred

and twenty eight types are defined but a MIDI file reader should be able to ignore an undefined type [5].

0x00 0x02 #-hi #-lo Sequence Number
0x01 Length Text Text Event
0x02 Length Text Copyright Notice
0x03 Length Text Sequence/Track Name
0x04 Length Text Instrument Name
0x05 Length Text Lyric
0x06 Length Text Marker
0x07 Length Text Cue Point
0x20 0x01 Ch MIDI Channel Prefix
0x2F 0x00 End of Track (Mandatory)
0x51 0x03 T1 T2 T3 Tempo T1 Highest Order Octet
0x54 0x05 Hrs Min Sec Fr FF SMTPE Offset
0x58 0x04 Num Den MC TS Time Signature
0x59 0x02 #-s MM Key Signature
0x7F Length Id Data Sequencer-Specific Meta-Event

Length is a variable length quantity. Text is a series of Length octets. Fr is the number

of frames, FF is the frame fraction, Num is the time signature numerator, Den is the time

signature denominator exponent, MC is the MIDI clocks per metronome tick, TS is the

number of 32nd notes per quarter note, #-s is the number of sharps or flats – 7 is 7 flats, +

7 is 7 sharps, 0 is the key of C, MM is 0 for a major key or 1 for a minor key, Id is 1 to 3

octets in length representing a manufacturer’s id and is a variable length quantity, and

Data is Length – length of id in length data octets [5]. The following two routines allow

one to read and write variable length quantities [6].

 338

APPENDIX J UT-RTP-ND & UT-RTP-NE VERSUS SN-TCP-ND & SN-TCP-NE

 Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-ND 66944.66 60 423.8622 54.7203
SN-TCP-ND 67183.00 60 765.3320 98.8039

Table AE-1 Trippygaia1.mid m = 1

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-ND-SN-TCP-ND -238.3333 901.3420 116.3627 -2.0481 59 0.0449

Table J-2 Trippygaia1.mid m = 1

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-ND 66944.66 60 423.8622 54.7203
SN-TCP-NE 67498.00 60 840.9998 108.5726

Table J-3 Trippygaia1.mid m = 1

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-ND-SN-TCP-NE -553.3333 938.7598 121.1933 -4.5657 59 0.0000

Table J-4 Trippygaia1.mid m = 1

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-ND 66944.66 60 423.8622 54.7203
UT-RTP-NE 67471.33 60 423.8622 251.2846

Table J-5 Trippygaia1.mid m = 1

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-ND-UT-RTP-NE -526.6666 1997.1638 257.8327 -2.0426 59 0.0455

Table J-6 Trippygaia1.mid m = 1

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-NE 67471.33 60 1946.4426 251.2846
SN-TCP-ND 67183.00 60 765.3320 98.8039

Table J-7 Trippygaia1.mid m = 1

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-NE-SN-TCP-ND 288.3333 2107.9133 272.1304 1.0595 59 0.2936

Table J-8 Trippygaia1.mid m = 1

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-NE 67471.33 60 1946.4426 251.2846
SN-TCP-NE 67498.00 60 840.9998 108.5726

Table J-9 Trippygaia1.mid m = 1

 339

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2

UT-RTP-NE-SN-TCP-NE -26.6666 2140.4962 276.3368 -0.0965 59 0.9234
Table J-10 Trippygaia1.mid m = 1

Protocol Mean N Std. Dev. Std. Error Mean
SN-TCP-ND 67183.00 60 765.3320 98.8039
SN-TCP-NE 67498.00 60 840.9998 108.5726

Table J-11 Trippygaia1.mid m = 1

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -315.0000 1158.5957 149.5740 -2.1059 59 0.0394

Table J-12 Trippygaia1.mid m = 1

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-ND 66961.16 60 535.5658 69.1412
SN-TCP-ND 66952.66 60 49.3986 6.3773

Table J-13 Trippygaia1.mid m = 2

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-ND- SN-TCP-ND 8.5000 545.3775 70.4079 0.1207 59 0.9043

Table J-14 Trippygaia1.mid m = 2

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-ND 66961.16 60 535.5658 69.1412
SN-TCP-NE 67285.50 60 253.8211 32.7681

Table J-15 Trippygaia1.mid m = 2

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-ND -SN-TCP-NE -324.3333 586.3774 75.7010 -4.2843 59 0.0000

Table J-16 Trippygaia1.mid m = 2

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-ND 66961.16 60 535.5658 69.1412
UT-RTP-NE 67554.33 60 2134.2599 275.5317

Table J-17 Trippygaia1.mid m = 2

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-ND-UT-RTP-NE -593.1666 2201.6784 284.2354 -2.0868 59 0.0412

Table J-18 Trippygaia1.mid m = 2

Protocol Mean N Std. Dev. Std. Error Mean
SN-TCP-ND 66952.66 60 49.3986 6.3773
SN-TCP-NE 67285.50 60 253.8211 32.7681

Table J-19 Trippygaia1.mid m = 2

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -332.8333 260.2807 33.6021 -9.9051 59 0.0000

Table J-20 Trippygaia1.mid m = 2

 340

Protocol Mean N Std. Dev. Std. Error Mean

UT-RTP-NE 67554.33 60 2134.2599 275.5317
SN-TCP-ND 66952.66 60 49.3986 6.3773

Table J-21 Trippygaia1.mid m = 2

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-NE-SN-TCP-ND 601.66 2131.8498 275.2206 2.1861 59 0.0327

Table J-22 Trippygaia1.mid m = 2

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-NE 67554.33 60 2134.2599 275.5317
SN-TCP-NE 67285.50 60 253.8211 32.7681

Table J-23 Trippygaia1.mid m = 2

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-NE-SN-TCP-NE 268.8333 2160.2660 278.8891 0.9639 59 0.3390

Table J-24 Trippygaia1.mid m = 2

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-ND 67233.33 60 1467.7766 189.4891
SN-TCP-ND 67022.66 60 52.5894 6.7892

Table J-25 Trippygaia1.mid m = 3

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-ND- SN-TCP-ND 210.6666 1457.4494 188.1559 1.1196 59 0.2674

Table J-26 Trippygaia1.mid m = 3

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-ND 67233.33 60 1467.7766 189.4891
SN-TCP-NE 67624.66 60 2311.7206 298.4418

Table J-27 Trippygaia1.mid m = 3

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-ND -SN-TCP-NE -391.3333 1191.8742 153.8703 -2.5432 59 0.0136

Table J-28 Trippygaia1.mid m = 3

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-ND 67233.33 60 1467.7766 189.4891
UT-RTP-NE 67285.66 60 331.2910 42.7694

Table J-29 Trippygaia1.mid m = 3

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-ND-UT-RTP-NE -52.3333 1521.6531 196.4445 -0.2664 59 0.7908

Table J-30 Trippygaia1.mid m = 3

Protocol Mean N Std. Dev. Std. Error Mean
SN-TCP-ND 67022.66 60 52.5894 6.7892
SN-TCP-NE 67624.66 60 2311.7206 298.4418

Table J-31 Trippygaia1.mid m = 3

 341

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -602.0000 2300.3034 296.9678 -2.0271 59 0.04717

Table J-32 Trippygaia1.mid m = 3

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-NE 67285.66 60 331.2910 42.7694
SN-TCP-ND 67022.66 60 52.5894 6.7892

Table J-33 Trippygaia1.mid m = 3

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-NE-SN-TCP-ND 263.0000 337.5851 43.5820 6.0345 59 0.0000

Table J-34 Trippygaia1.mid m = 3

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-NE 67285.66 60 331.2910 42.7694
SN-TCP-NE 67624.66 60 2311.7206 298.4418

Table J-35 Trippygaia1.mid m = 3

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-NE-SN-TCP-NE -339.0000 2354.3920 303.9507 -1.1153 59 0.2692

Table J-36 Trippygaia1.mid m = 3

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-ND 67299.83 60 1739.1099 224.5181
SN-TCP-ND 67068.00 60 355.1118 45.8447

Table J-37 Trippygaia1.mid m = 4

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-ND- SN-TCP-ND 231.8333 1788.3128 230.8701 1.0041 59 0.3193

Table J-38 Trippygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-ND 67299.83 60 1739.1099 224.5181
SN-TCP-NE 67426.83 60 1448.4772 186.9976

Table J-39 Trippygaia1.mid m = 4

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-ND -SN-TCP-NE -127.0000 2286.5230 295.1888 -0.4302 59 0.6685

Table J-40 Trippygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-ND 67299.83 60 1739.1099 224.5181
UT-RTP-NE 67228.83 60 75.5565 9.7543

Table J-41 Trippygaia1.mid m = 4

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-ND-UT-RTP-NE 71.0000 1760.2471 227.2469 0.3124 59 0.7558

Table J-42 Trippygaia1.mid m = 4

 342

Protocol Mean N Std. Dev. Std. Error Mean

SN-TCP-ND 67068.00 60 355.1118 45.8447
SN-TCP-NE 67426.83 60 1448.4772 186.9976

Table J-43 Trippygaia1.mid m = 4

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -358.8333 1504.7203 194.2585 -1.8471 59 0.0697

Table J-44 Trippygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-NE 67228.83 60 75.5565 9.7543
SN-TCP-ND 67068.00 60 355.1118 45.8447

Table J-45 Trippygaia1.mid m = 4

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-NE-SN-TCP-ND 160.8333 355.6387 45.9127 3.5030 59 0.0008

Table J-46 Trippygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Error Mean
UT-RTP-NE 67228.83 60 75.5565 9.7543
SN-TCP-NE 67426.83 60 1448.4772 186.9976

Table J-47 Trippygaia1.mid m = 4

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
UT-RTP-NE-SN-TCP-NE -198.0000 1464.4057 189.0539 -1.0473 59 0.2992

Table J-48 Trippygaia1.mid m = 4

In the figures on the following pages the captions on the left are for the above figure and the captions on the

left are for the below figure.

 343

 344

 345

 346

 347

 348

 349

 350

 351

 352

 353

 354

APPENDIX K ATCP-32 VERSUS SN-TCP-ND AND SN-TCP-NE

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-32 67104.00 60 2151.6688 277.7792

SN-TCP-ND 67119.83 60 229.6902 29.6528
Table K-1 Trippygaia1.mid m = 4

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-32-SN-TCP-ND -15.8333 2163.0614 279.2500 -0.0566 59 0.9549
Table K-2 Trippygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-32 67104.00 60 2151.6688 277.7792

SN-TCP-NE 67490.33 60 1521.7139 196.4524
Table K-3 Trippygaia1.mid m = 4

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-32-SN-TCP-NE -386.3333 2650.2637 342.1475 -1.1291 59 0.2634
Table K-4 Trippygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Error Mean
SN-TCP-ND 67119.83 60 229.6902 29.6528
SN-TCP-NE 67490.33 60 1521.7139 196.4524
Table K-5 Trippygaia1.mid m = 4

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -370.5000 1539.9190 198.8026 -1.8636 59 0.0673
Table K-6 Trippygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-32 67066.00 60 2039.9494 263.3563

SN-TCP-ND 67100.16 60 532.2019 68.7069
Table K-7 Trippygaia1.mid m = 5

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-32-SN-TCP-ND -34.1666 2111.7751 272.6289 -0.1253 59 0.9006
Table K-8 Trippygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-32 67066.00 60 2039.9494 263.3563

SN-TCP-NE 67230.83 60 82.8985 10.7021
Table K-9 Trippygaia1.mid m = 5

 355

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2

ATCP-32-SN-TCP-NE -164.8333 2048.1744 264.4181 -0.6233 59 0.5354
Table K-10 Trippygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Error Mean
SN-TCP-ND 67100.16 60 532.2019 68.7069
SN-TCP-NE 67230.83 60 82.8985 10.7021
Table K-11 Trippygaia1.mid m = 5

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -130.66 551.8746 71.2467 -1.8340 59 0.0716
Table K-12 Trippygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-32 66782.83 60 53.5230 6.9097

SN-TCP-ND 67044.83 60 54.3838 7.0209
Table K-13 Trippygaia1.mid m = 6

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-32-SN-TCP-ND -262.0000 72.7382 9.3904 -27.9006 59 0.0000
Table K-14 Trippygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-32 66782.83 60 53.5230 6.9097

SN-TCP-NE 67432.83 60 1596.0301 206.0466
Table K-15 Trippygaia1.mid m = 6

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-32-SN-TCP-NE -650.0000 1601.9024 206.8047 -3.1430 59 0.0026
Table K-16 Trippygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Error Mean
SN-TCP-ND 67044.83 60 54.3838 7.0209
SN-TCP-NE 67432.83 60 1596.0301 206.0466
Table K-17 Trippygaia1.mid m = 6

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -388.0000 1601.2736 206.7235 -1.8769 59 0.0654
Table K-18 Trippygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-32 66778.66 60 43.4708 5.6120

SN-TCP-ND 67371.16 60 2434.3969 314.2792
Table K-19 Trippygaia1.mid m = 7

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-32-SN-TCP-ND -592.5000 2426.6071 313.2736 -1.8913 59 0.06349
Table K-20 Trippygaia1.mid m = 7

 356

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-32 66778.66 60 43.4708 5.6120

SN-TCP-NE 67442.50 60 1561.3256 201.5662
Table K-21 Trippygaia1.mid m = 7

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-32-SN-TCP-NE -663.8333 1553.6889 200.5803 -3.3095 59 0.0015
Table K-22 Trippygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Error Mean
SN-TCP-ND 67371.16 60 2434.3969 314.2792
SN-TCP-NE 67442.50 60 1561.3256 201.5662
Table K-23 Trippygaia1.mid m = 7

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -71.3333 879.0932 113.4904 -0.6285 59 0.5320
Table K-24 Trippygaia1.mid m = 7

ATCP-32 66758.83 60 48.9583 6.3204
SN-TCP-ND 67220.00 60 1214.1189 156.7420
Table K-25 Trippygaia1.mid m = 8

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-32-SN-TCP-ND -461.1666 1225.3966 158.1980 -2.9151 59 0.0050
Table K-26 Trippygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-32 66758.83 60 48.9583 6.3204

SN-TCP-NE 67298.83 60 81.4922 10.5206
Table K-27 Trippygaia1.mid m = 8

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-32-SN-TCP-NE -540.0000 85.9838 11.1004 -48.6466 59 0.0000
Table K-28 Trippygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Error Mean
SN-TCP-ND 67220.00 60 1214.1189 156.7420
SN-TCP-NE 67298.83 60 81.4922 10.5206
Table K-29 Trippygaia1.mid m = 8

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
SN-TCP-ND-SN-TCP-NE -78.8333 1217.7543 157.2114 -0.5014 59 0.6179
Table K-30 Trippygaia1.mid m = 8

 357

 358

 359

 360

 361

 362

 363

 364

APPENDIX L ATCP-40 VERSUS SN-TCP-ND, SN-TCP-NE, AND ATCP-32

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-40 67007.83 60 1378.5513 177.9702

SN-TCP-ND 67119.83 60 229.6902 29.6528
Table L-1 Trippygaia1.mid m = 4

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP40-SN-TCP-ND -112.0000 1397.6515 180.4360 -0.6207 59 0.5371
Table L-2 Trippygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-40 67007.83 60 1378.5513 177.9702

SN-TCP-NE 67490.33 60 1521.7139 196.4524
Table L-3 Trippygaia1.mid m = 4

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP40-SN-TCP-NE -482.5000 2064.3919 266.5118 -1.8104 59 0.07532
Table L-4 Trippygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Error Mean

ATCP-40 67007.83 60 1378.5513 177.9702
ATCP-32 67104.00 60 2151.6688 277.7792
Table L-5 Trippygaia1.mid m = 4

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP40-ATCP-32 -96.1666 776.0265 100.1846 -0.9598 59 0.3410
Table L-6 Trippygaia1.mid m = 4

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-40 66822.83 60 150.2550 19.3978

SN-TCP-ND 67100.16 60 532.2019 68.7069
Table L-7 Trippygaia1.mid m = 5

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP40-SN-TCP-ND -277.3333 558.4963 72.1015 -3.8464 59 0.0002
Table L-8 Trippygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-40 66822.83 60 150.2550 19.3978

SN-TCP-NE 67230.83 60 82.8985 10.7021
Table L-9 Trippygaia1.mid m = 5

 365

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2

ATCP40-SN-TCP-NE -408.0000 164.1599 21.1929 -19.2516 59 0.0000
Table L-10 Trippygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Error Mean

ATCP-40 66822.83 60 150.2550 19.3978
ATCP-32 67066.00 60 2039.9494 263.3563
Table L-11 Trippygaia1.mid m = 5

 Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP40-ATCP-32 -243.1666 2049.7535 264.6220 -0.9189 59 0.3618
Table L-12 Trippygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-40 66992.66 60 1201.5143 155.1148

SN-TCP-ND 67044.83 60 54.3838 7.0209
Table L-13 Trippygaia1.mid m = 6

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP40-SN-TCP-ND -52.1666 1206.6750 155.7810 -0.3348 59 0.7389
Table L-14 Trippygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-40 66992.66 60 1201.5143 155.1148

SN-TCP-NE 67432.83 60 1596.0301 206.0466
Table L-15 Trippygaia1.mid m = 6

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP40-SN-TCP-NE -440.1666 502.6219 64.8882 -6.7834 59 0.0000
Table L-16 Trippygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Error Mean

ATCP-40 66992.66 60 1201.5143 155.1148
ATCP-32 66782.83 60 53.5230 6.9097
Table L-17 Trippygaia1.mid m = 6

 Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP40-ATCP-32 209.8333 1207.4647 155.8830 1.3460 59 0.1834
Table L-18 Trippygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-40 66952.33 60 1286.8044 166.1257

SN-TCP-ND 67371.16 60 2434.3969 314.2792
Table L-19 Trippygaia1.mid m = 7

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP40-SN-TCP-ND -418.8333 1153.7104 148.9433 -2.8120 59 0.0066
Table L-20 Trippygaia1.mid m = 7

 366

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-40 66952.33 60 1286.8044 166.1257

SN-TCP-NE 67442.50 60 1561.3256 201.5662
Table L-21 Trippygaia1.mid m = 7

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP40-SN-TCP-NE -490.1666 297.0447 38.3483 -12.7819 59 0.0000
Table L-22 Trippygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Error Mean

ATCP-40 66952.33 60 1286.8044 166.1257
ATCP-32 66778.66 60 43.4708 5.6120
Table L-23 Trippygaia1.mid m = 7

 Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP40-ATCP-32 173.6666 1279.3191 165.1593 1.0515 59 0.2973
Table L-24 Trippygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-40 66886.16 60 991.5765 128.0119

SN-TCP-ND 67220.00 60 1214.1189 156.7420
Table L-25 Trippygaia1.mid m = 8

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP40-SN-TCP-ND -333.8333 232.7222 30.0443 -11.1113 59 0.0000
Table L-26 Trippygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-40 66886.16 60 991.5765 128.0119

SN-TCP-NE 67298.83 60 81.4922 10.5206
Table L-27 Trippygaia1.mid m = 8

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP40-SN-TCP-NE -412.6666 997.0173 128.7143 -3.2060 59 0.0021
Table L-28 Trippygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Error Mean

ATCP-40 66886.16 60 991.5765 128.0119
ATCP-32 66758.83 60 48.9583 6.3204
Table L-29 Trippygaia1.mid m = 8

 Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP40-ATCP-32 127.3333 1002.7840 129.4588 0.9835 59 0.3293
Table L-30 Trippygaia1.mid m = 8

 367

 368

 369

 370

 371

 372

 373

 374

APPENDIX M ATCP-TCP-ND VS SN-TCP-NX AND ATCP-X

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-ND 66816.00 60 52.5679 6.7864

SN-TCP-ND 67100.16 60 532.2019 68.7069
Table M-1 Trippygaia1.mid m = 5

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-TCP-ND-SN-TCP-ND -284.1666 536.3918 69.2478 -4.1036 59 0.0001
Table M-2 Trippygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-ND 66791.50 60 60.4734 7.8070

SN-TCP-ND 67044.83 60 54.3838 7.0209
Table M-3 Trippygaia1.mid m = 6

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-TCP-ND-SN-TCP-ND -253.3333 81.1290 10.4737 -24.1875 59 0.0000
Table M-4 Trippygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-ND 66280.33 60 1849.4488 238.7628

SN-TCP-ND 67371.16 60 2434.3969 314.2792
Table M-5 Trippygaia1.mid m = 7

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-ND-SN-TCP-ND -1090.8333 590.2980 76.2071 -14.3140 59 0.0000
Table M-6 Trippygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-ND 66062.50 60 55.4068 7.1529

SN-TCP-ND 67220.00 60 1214.1189 156.7420
Table M-7 Trippygaia1.mid m = 8

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-TCP-ND-SN-TCP-NE -1157.50 1213.3531 156.6432 -7.3894 59 0.0000
Table M-8 Trippygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-ND 66816.00 60 52.5679 6.7864

SN-TCP-NE 67230.83 60 82.8985 10.7021
Table M-9 Trippygaia1.mid m = 5

 375

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2

ATCP-TCP-ND-SN-TCP-NE -414.8333 102.6181 13.2479 -31.3130 59 0.0000
Table M-10 Trippygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-ND 66791.50 60 60.4734 7.8070

SN-TCP-NE 67432.83 60 1596.0301 206.0466
Table M-11 Trippygaia1.mid m = 6

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-TCP-ND-SN-TCP-NE -641.3333 1597.1589 206.1923 -3.1103 59 0.0028
Table M-12 Trippygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-ND 66280.33 60 1849.4488 238.7628

SN-TCP-NE 67442.50 60 1561.3256 201.5662
Table M-13 Trippygaia1.mid m = 7

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-ND-SN-TCP-NE -1162.1666 306.8047 39.6083 -29.3414 59 0.0000
Table M-14 Trippygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-ND 66062.50 60 55.4068 7.1529

SN-TCP-NE 67298.83 60 81.4922 10.5206
Table M-15 Trippygaia1.mid m = 8

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-TCP-ND-SN-TCP-NE -1236.3333 92.5709 11.9508 -103.4514 59 0.0000
Table M-16 Trippygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-ND 66816.00 60 52.5679 6.7864

ATCP-32 67066.00 60 2039.9494 263.3563
Table M-17 Trippygaia1.mid m = 5

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-TCP-ND-ATCP-32 -250.0000 2029.5336 262.0116 -0.9541 59 0.3438
Table M-18 Trippygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-ND 66791.50 60 60.4734 7.8070

ATCP-32 66782.83 60 53.5230 6.9097
Table M-19 Trippygaia1.mid m = 6

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-TCP-ND-ATCP-32 8.6666 72.5671 9.3683 0.9250 59 0.3586
Table M-20 Trippygaia1.mid m = 6

 376

Protocol Mean N Std. Dev. Std. Error Mean

ATCP-TCP-ND 66280.33 60 1849.4488 238.7628
ATCP-32 66778.66 60 43.4708 5.6120

Table M-21 Trippygaia1.mid m = 7

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-TCP-ND-ATCP-32 -498.3333 1841.9915 237.8000 -2.0955 59 0.0404
Table M-22 Trippygaia1.mid m = 7

 377

Protocol Mean N Std. Dev. Std. Error Mean

ATCP-TCP-ND 66062.50 60 55.4068 7.1529
ATCP-32 66758.83 60 48.9583 6.3204

Table M-23 Trippygaia1.mid m = 8

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-TCP-ND-ATCP-32 -696.3333 79.1472 10.2178 -68.1485 59 0.0000
Table M-24 Trippygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-ND 66816.00 60 52.5679 6.7864

ATCP-40 66822.83 60 150.2550 19.3978
Table M-25 Trippygaia1.mid m = 5

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-ND-ATCP-40 -6.8333 153.9919 19.8802 -0.3437 59 0.7322
Table M-26 Trippygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-ND 66791.50 60 60.4734 7.8070

ATCP-40 66992.66 60 1201.5143 155.1148
Table M-27 Trippygaia1.mid m = 6

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-TCP-ND-ATCP-40 -201.1666 1202.3622 155.2242 -1.2959 59 0.2000
Table M-28 Trippygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-ND 66280.33 60 1849.4488 238.7628

ATCP-40 66952.33 60 1286.8044 166.1257
Table M-29 Trippygaia1.mid m = 7

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCP-TCP-ND-ATCP-40 -672.00 575.4933 74.2958 -9.0449 59 0.0000
Table M-30 Trippygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-ND 66062.50 60 55.4068 7.1529

ATCP-40 66886.16 60 128.0119 -823.6666
Table M-31 Trippygaia1.mid m = 8

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-ND-ATCP-40 -823.6666 991.1865 127.9616 -6.4368 59 0.0000
Table M-32 Trippygaia1.mid m = 8

 378

 379

 380

 381

 382

 383

 384

 385

APPENDIX N ATCP-TCP-NE VS SN-TCP-NX, ATCP-X, AND ATCP-TCP-ND

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66525.83 60 2278.37 294.1370

SN-TCP-ND 67100.16 60 532.20 68.7069
Table N-1 Trippygaia1.mid m = 5

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-SN-TCP-ND -574.3333 2348.8759 303.2385 -1.8939 59 0.0631
Table N-2 Trippygiaa1.mid m = 5

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66581.50 60 2695.9076 348.0401

SN-TCP-ND 67044.83 60 54.3838 7.0209
Table N-3 Trippygaia1.mid m = 6

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-SN-TCP-ND -463.3333 2701.0567 348.7049 -1.3287 59 0.1890
Table N-4 Trippygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66471.00 60 1645.5452 212.4389

SN-TCP-ND 67371.16 60 2434.3969 314.2792
Table N-5 Trippygaia1.mid m = 7

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-SN-TCP-ND -900.1666 2950.9909 380.9712 -2.3628 59 0.0214
Table N-6 Trippygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66832.83 60 1598.4325 206.3567

SN-TCP-ND 67220.00 60 1214.1189 156.7420
Table N-7 Trippygaia1.mid m = 8

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-SN-TCP-NE -387.1666 2014.6456 260.0896 -1.4885 59 0.1419
Table N-8 Trippygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66525.83 60 2278.3760 294.1370

SN-TCP-NE 67230.83 60 82.8985 10.7021
Table N-9 Trippygaia1.mid m = 5

 386

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2

ATCPTCP-NE-SN-TCP-NE -705.0000 2280.4448 294.4041 -2.3946 59 0.0198
Table N-10 Trippygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66581.50 60 2695.9076 348.0401

SN-TCP-NE 67432.83 60 1596.0301 206.0466
Table N-11 Trippygaia1.mid m = 6

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-SN-TCP-NE -851.3333 1104.1930 142.5507 -5.9721 59 0.0000
Table N-12 Trippygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66471.00 60 1645.5452 212.4389

SN-TCP-NE 67442.50 60 1561.3256 201.5662
Table N-13 Trippygaia1.mid m = 7

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-SN-TCP-NE -971.50 2270.3026 293.0948 -3.3146 59 0.0015
Table N-14 Trippygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66832.83 60 1598.4325 206.3567

SN-TCP-NE 67298.83 60 81.4922 10.5206
Table N-15 Trippygaia1.mid m = 8

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-SN-TCP-NE -466.0000 1594.7235 205.8779 -2.2634 59 0.0272
Table N-16 Trippygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66525.83 60 2278.3760 294.1370

ATCP-32 66937.66 60 1871.3897 241.5953
Table N-17 Trippygaia1.mid m = 5

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-ATCP-32 -411.8333 2966.7447 383.0051 -1.0752 59 0.2866
Table N-18 Trippygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66581.50 60 2695.9076 348.0401

ATCP-32 66487.00 60 1958.3314 252.8195
Table N-19 Trippygaia1.mid m = 6

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-ATCP-32 94.5 741.6093 95.7413 0.9870 59 0.3276
Table N-20 Trippygaia1.mid m = 6

 387

Protocol Mean N Std. Dev. Std. Error Mean

ATCP-TCP-NE 66471.00 60 1645.5452 212.4389
ATCP-32 66778.66 60 43.4708 5.6120

Table N-21 Trippygaia1.mid m = 7

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-ATCP-32 -307.6666 1638.6490 211.5486 -1.4543 59 0.1511
Table N-22 Trippygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66832.83 60 1598.4325 206.3567

ATCP-32 66758.83 60 48.9583 6.3204
Table N-23 Trippygaia1.mid m = 8

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-ATCP-32 74.0000 1595.2495 205.9458 0.3593 59 0.7206
Table N-24 Trippygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66525.83 60 2278.3760 294.1370

ATCP-40 66822.83 60 150.2550 19.3978
Table N-25 Trippygaia1.mid m = 5

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-ATCP-40 -297.0000 2295.7730 296.3830 -1.0020 59 0.3203
Table N-26 Trippygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66581.50 60 2695.9076 348.0401

ATCP-40 66992.66 60 1201.5143 155.1148
Table N-27 Trippygaia1.mid m = 6

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-ATCP-40 -411.1666 1549.6933 200.0645 -2.0551 59 0.0442
Table N-28 Trippygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66471.00 60 1645.5452 212.4389

ATCP-40 66952.33 60 1286.8044 166.1257
Table N-29 Trippygaia1.mid m = 7

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-ATCP-40 -481.3333 2098.8305 270.9578 -1.7764 59 0.0808
Table N-30 Trippygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66832.83 60 1598.4325 206.3567

ATCP-40 66886.16 60 991.5765 128.0119
Table N-31 Trippygaia1.mid m = 8

 388

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-ATCP-40 -53.3333 1891.4774 244.1886 -0.2184 59 0.8278
Table N-32 Trippygaia1.mid m = 8

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66525.83 60 2278.3760 294.1370
ATCP-TCP-ND 66816.00 60 52.5679 6.7864
Table N-33 Trippygaia1.mid m = 5

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-ATCP-TCP-ND -290.1666 2282.7299 294.6991 -0.9846 59 0.3288
Table N-34 Trippygaia1.mid m = 5

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66581.50 60 2695.9076 348.0401
ATCP-TCP-ND 66791.50 60 60.4734 7.8070
Table N-35 Trippygaia1.mid m = 6

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-ATCP-TCP-ND -210.0000 2697.2214 348.2097 -0.6030 59 0.5487
Table N-36 Trippygaia1.mid m = 6

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66471.00 60 1645.5452 212.4389
ATCP-TCP-ND 66952.33 60 1286.8044 166.1257
Table N-37 Trippygaia1.mid m = 7

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-ATCP-TCP-ND 270.9578 2098.8305 270.9578 -1.7764 59 0.0808
Table N-38 Trippygaia1.mid m = 7

Protocol Mean N Std. Dev. Std. Error Mean
ATCP-TCP-NE 66832.83 60 1598.4325 206.3567
ATCP-TCP-ND 66062.50 60 55.4068 7.1529
Table N-39 Trippygaia1.mid m = 8

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2
ATCPTCP-NE-ATCP-TCP-ND 770.3333 1592.3748 205.5747 3.7472 59 0.0000
Table N-40 Trippygaia1.mid m = 8

 389

 390

 391

 392

 393

 394

 395

 396

 397

 398

