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The research, which is discussed in this dissertation, consists of the development and 

testing of a suite of ten Transmission Control Protocol (TCP) and reliable Real Time 

Protocol (RTP) MIDI over IP (MOIP) protocols, and the subsequent implementations of 

musical duet collaboration systems based on the MOIP protocols. These MOIP protocols 

were subjected to a quantitative and statistically significant set of experiments using two 

experimental metrics or performance measurements. The statistical protocol winner of 

these experiments was used in the duet systems. We implemented the musical duet systems 

on two different hardware platforms with different and competing operating systems. The 

general hardware and software architectures of the musical duet collaboration systems were 

essentially platform independent. The procedural programming language C and the object-

oriented programming language Java were utilized. Before a path leading to a modicum of 
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success was found a number of roads to unsuitable protocols were explored and these lanes 

to nowhere are also discussed extensively in this dissertation. 
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CHAPTER 1 INTRODUCTION 

This research was aimed at providing another means for musicians to interact with 

one another using computers and the Internet. Musical collaboration via the Internet in 

itself is not a new or novel concept, and as we shall read in Chapter 2, efforts in this 

direction can be traced to the early 1990s. Within this research we did introduce some 

previously unknown networking protocols, some of which were unsuitable protocols 

while others were moderately successful. Another somewhat radical departure form prior 

research was the idea of playing a duet over a network. 

The basic idea behind this research was to find a good, i.e. reliable, networking 

protocol for transmitting and receiving Musical Instrument Digital Interface (MIDI) data 

over a TCP/IP network, whether it was a local area network (LAN) or a wide area 

network (WAN) like the general Internet. Such protocols are known as MIDI over IP 

protocols, or for short MOIP protocols. In order to realize this dream, we had to explore 

the space of known MOIP protocols then create some new protocols, and compare the 

two protocol sets quantitatively. The desired fundamental goal of the research was to be 

able to conduct a MOIP musical duet on a real network. 

In the course of this research many pieces of software were written primarily in 

two languages, namely, the procedural language C, and the object-oriented language, 

Java, both of which are declarative rather than functional languages like LISP and its 

dialect Scheme. An imperative language tends to have syntax closer to regular English 
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with infix mathematical expressions than a functional language that typically uses the 

more arcane prefix notation. Our experience was to prefer C over Java due to 

programming language latency issues, however, as computers become faster and faster 

and software engineering techniques mature then this negative side effect of Java may 

disappear. Where ever possible the networking protocols were implemented in both C 

and Java. Another good language choice for this type of research is C++, which probably 

has a performance profile much closer to C than to Java on many systems. We developed 

several new networking protocols in C and Java. Also, we designed and implemented a 

number of musical collaboration systems in both of the previously mentioned primary 

languages. 

A few operating systems were used for both the qualitative and quantitative 

aspects of this research. We utilized Windows 98, Windows XP and the UNIX based 

Apple’s OS X. OS X on a Power Mac G4 or G5 system seemed to have the lowest MIDI 

latency of all the systems in the operating system and hardware suite. In many respects, 

the Apple MIDI subsystem of the OS X audio system appears more robust than the 

corresponding Windows multimedia system in the humble opinion of the primary 

researcher. 

This research went down several avenues some of which lead to unsuitable 

protocols. Applied computer science is more an empirical and exploratory science rather 

than a rigorous mathematical science, and hence, we as applied computer scientists are 

more apt than mathematicians to discuss research dead ends. Such discussions are 

necessary, and in theory, sufficient, to discourage other researchers from going down the 

same paths that lead to nowhere. 
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In Chapter 2 we will discuss the foundations of this research which include: 

MIDI; a competing open architecture specification by the Gibson Instrument Company 

known as MAGIC; the aspects of TCP and RTP that are important to MOIP; C, Java, and 

JINI, MIDI systems devised by Apple and Microsoft; other notable MOIP protocols and 

systems; sources of latency in MOIP based systems; and computer supported 

collaborative work (CSCW). This chapter comprises a literature review. 

Chapter 3 is dedicated to all the research we performed in this project, which 

resulted in unsuitable protocols. As was stated a little earlier, it is important in science to 

illustrate research paths that did not pan out or led to dead ends, so that other researchers 

will not duplicate work that was not completely successful. The first notable failure was 

an attempt to devise a UDP based MOIP protocol that used the central concept of data 

redundancy to attempt to correct for the unreliability of the UDP. This minor catastrophe 

leads us in the direction of the development of reliable protocols later in the course of this 

research. Another failure, which was a good idea that was attempted on antiquated 

hardware, was the development of a Java musical collaboration system, which had a 

music studio metaphor. We used JINI within the framework of another Java musical 

collaborative system that could also be deemed a failure on some hardware and operating 

systems. An alternative musical duet system for the Windows platform also was a failure 

in many senses. 

In Chapter 4 we discuss the successful quantitative experiments involving reliable 

versions of RTP and TCP protocols without or with the Nagle algorithm enabled. The 

experimental procedure and results are briefly outlined. A number of graphs and tables 

that represent the data are presented. The two metrics that were used in the experiments 
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and their subsequent analysis are introduced. The most successful duet system for any 

platform that we developed is illustrated in Chapter 5. Our conclusions are enumerated in 

Chapter 6.
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CHAPTER 2 LITERATURE REVIEW 

This chapter is divided into six sections that discuss: MIDI; an alternative open 

protocol stack to MIDI named MAGIC; TCP and RTP; C, Java, and JINI; MIDI systems 

under two operating systems; previous MOIP research; the latency issues involved in 

MOIP; and computer-supported cooperative work (CSCW). It is hoped that this short 

literature review will be all the information required to understand this research at a 

fundamental level. 

A.  MIDI 

“MIDI is an acronym for ‘Musical Instrument Digital Interface [1]”. MIDI is 

analogous to sheet music in that it consists of a set of instructions, which tell an 

electronic musical instrument how to play a piece of music [2]. MIDI is an electronic 

musical device and instrument manufacturer standard and is a set of specifications that 

allows devices and instruments of different makers to communicate with one another 

using a common digital language [1]. 

The hardware component of the MIDI specification consists of the definition of 

MIDI ports, cables, and the electronic signals sent over the cables [1]. There are three 

different types of MIDI ports in the specification, namely, in, out, and thru ports. Each 

MIDI port is a female jack to receive the five-pin DIN (Deutsche Industrie Norm) MIDI 

cable connector [2, 3].  Currently, the specification only uses three of the five pins [2]. 

Pins 1 and 3 are not used, pin 2 is shielding, pin 4 is grounding, and pin 5 is for MIDI 

data [4].  

MIDI cables are usually no longer than fifty feet and are typically much shorter 

than the maximum length. The best quality cables have some sort of shielding to prevent 
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unwanted stray electrical signals from interfering with the MIDI transmission [2]. The 

MIDI specification calls for the serial digital transmission of messages using a start bit, 

an octet of eight message bits, and a stop bit. The start bit is a logical 1 bit and the stop 

bit is a logical 0 bit [1] or vice versa [2]. The send and receive data rates are set at 31,250 

baud, which is 31,250 bits per second [1]. This means that 3,125 10-bit MIDI messages 

can be sent or received each second [1]. This particular baud rate was chosen since it is a 

divisor of 1,000,000, and 1 MHz was a typical clock frequency for early PCs [3]. 

MIDI messages can be broken into five different groups: “channel voice messages, 

channel mode messages, system common messages, system real-time messages, and 

system exclusive messages” [1]. The first four groups of the preceding listed groups can 

be categorized as MIDI short messages. 

MIDI short messages consist of a status byte and zero, one, or two data bytes [1]. An 

octet, which is more commonly known as a byte, can have 256 different values. A status 

byte is in the range 128 to 255 (80H to FFH in hexadecimal) and a data byte is in the 

range 0 to 127 (00H to 7FH) [1]. This means that a status byte has a one high order bit 

and a data byte has a zero high order bit [1]. 

The channel voice group of MIDI short messages consists of: note on, note off, 

polyphonic key pressure, channel pressure, program change, control change, and pitch 

bend change [1]. Program change messages have one data byte so there can be 128 

instruments active at one time. See Appendix G for a list of the standard instruments. The 

instruments are organized into sixteen groups of eight instruments per group. See 

Appendix H for the names of the groups. The channel mode group of MIDI short 

messages is comprised of: local control, all notes off, omni mode off, omni mode on, 
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mono mode on, and poly mode on [1]. A good introduction to control change messages 

can be found online [5]. The system common messages are: song position pointer, song 

select, time request, and EOX (end of exclusive) [1]. The system real-time messages are: 

timing clock, start, stop, continue, active sensing, and system reset [1]. The system 

exclusive messages are sometimes used to transfer parameter settings from one MIDI 

enabled device to another that are both by the same manufacturer such as Yamaha or 

Roland. 

MIDI controllers include drum controllers, guitar controllers, keyboard 

controllers, and wind controllers [2]. A drum controller is vastly different from actual 

drums and consists of one or more pads. A guitar controller is usually retrofitted to a 

standard electric guitar via special pickups [2]. Wind controllers are usually specially 

designed wind instruments that resemble a futuristic clarinet [2]. 

There are three MIDI file formats. Format zero files consist of a single track. Format one 

files consist of a number of tracks to be played simultaneously. Format two files consist 

of a number of tracks to be played independently [5]. 

MIDI files contain chunks. Each chunk has a type that is four octets in length, a 

length that is four octets, and data that has length octets. There are two types of chunks a 

header chunk and a track chunk. A header chunk has the type “MThd” and a track chunk 

has the type “MTrk”. A header chunk has length equal to six. The data in a header chunk 

consists of format, tracks, and division each of which are sixteen bits in length and are in 

big endian (most significant octet first) format. The format can be zero, one, or two. If the 

high order bit of the division is zero then the division is the number of ticks per quarter 

note. If the high order bit of division is one then the bits fourteen to eight are the negative 
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of the number of frames per second and bits seven to zero are the ticks per frame. The 

track chunk consists of length MIDI events. A MIDI event consists of delta-time in ticks 

and either a sysex-message, meta-message or a MIDI short message. The possible meta-

messages are given in Appendix I [5]. A few good online sites for general MIDI 

discussions are [6-8]. There is an excellent source of information on MIDI programming 

using the Java language in [9] by Sun Microsystems.  

B.  MAGIC 

Gibson Guitar Corporation has proposed an alternative musical instrument digital 

interconnection technology known as Media-accelerated Global Information carrier 

(MAGIC) to replace as well as incorporate the aging Musical Instrument Digital Interface 

(MIDI, 1983) standard [10]. According to the specification the motivations behind the 

development of the MAGIC protocol stack were as follows: “enhanced real-time sonic 

fidelity, interoperability, complete digital solution, simple installation, and ease-of-use” 

[10].  A MAGIC link is bi-directional and carries fixed-length data and control 

information as well as power in real-time [10]. 

MAGIC is able to transmit up to 32 channels of up to 32-bit audio at sampling 

rates of up to 192 kHz [10]. This is much better than CD quality audio, which consists of 

two channels of 16-bit audio at a sampling rate of 44.1 kHz. Since MAGIC is based upon 

the IEEE 802.3 Ethernet standard that has a baud rate of 100 Mbps, you are probably 

limited to sampling rates of 100 kHz if you are using all 32 channels and 32-bit data. 

However, this is a definite improvement over CD quality audio. 

Gibson hopes that amplifier, instrument, and guitar effects manufacturers will readily 

embrace the MAGIC technology so that its adoption and usage will become universal. 
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Currently, Gibson is mainly an instrument manufacturer with the Baldwin line of pianos, 

the Gibson line of acoustic and electric guitars, and the Goldtone line of tube guitar 

amplifiers. Perhaps Gibson has the political savvy and clout to push through a standard to 

a diverse and highly competitive set of manufacturers. Gibson seems fairly committed to 

MAGIC since Gibson’s current Chief Executive Officer (CEO), Henry Juszkiewicz, was 

instrumental in the development of MAGIC. 

Many instruments that musicians use today are either analog or require a lot of 

analog to digital (A/D) conversion or digital to analog (D/A) conversion. A/D and D/A 

conversions introduce latencies into a performance. These conversions introduce 

latencies of 3,000 to 10,000 microseconds [10]. Most modern recording equipment is 

digital. Gibson wants to create a totally digital environment. 

It is very easy to connect a computer with an IEEE 802.3 Ethernet standard network 

adapter to a local area network (LAN). It is Gibson’s vision that connection of amplifiers, 

instruments, and effects to a musical network will be as seamless as connecting a 

computer to a LAN.  

There exists a definite cable snarl problem in performance and recording 

environments. This problem can cause performers and stagehands to trip over the mass of 

cables, interference between power carrying and signal carrying cables, and it is hard to 

determine if everything has been correctly connected. Gibson wants to overcome these 

difficulties by having each musical instrument, amplifier, or effect with at most two 

cables, an external power cable for devices that require more than 9 volts direct current 

and a MAGIC Ethernet cable. Most MAGIC compliant devices will only require the 

Ethernet cable. There also exists a wire snarl problem in home entertainment centers and 
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this problem could be in theory eliminated by the adoption of MAGIC technology by that 

industry. 

MAGIC supports both the daisy chain and star network topologies that are 

popular in the MIDI world [10]. It also supports what is known as an uplink topology that 

consists of two switching hubs that are connected by a high-speed link [10]. This high 

speed link between star networks could be Gigabit Ethernet [10]. A switching hub 

multiplexes links from more than one device or daisy chain network [10]. 

The protocol stack consists of a physical layer, data link layer, and MAGIC application 

layer [10]. The physical layer and data link layers are compatible with IEEE 802.3 

Ethernet protocol physical layer and data link layer [10]. The MAGIC application layer 

encapsulates its data and control information in IEEE 802.3 Ethernet data link frames 

[10]. Other well-known protocol stacks are the Open Systems Interconnection (OSI) 

reference model and the hybrid reference model introduced by Tanenbaum [11]. The OSI 

reference model consists of seven layers namely, a physical layer, a data link layer, a 

network layer, a transport layer, a session layer, a presentation layer, and an application 

layer [11]. The hybrid protocol stack has five layers: physical layer, data link layer, 

network layer, transport layer, and application layer [11]. 

MAGIC uses Category 5 cables and RJ-45 connectors [10]. Four of the 

conductors in a Category 5 cable are used for data transport and the other four are used to 

carry power [10]. The cable is capable of carrying at least a 9-volt direct current power 

supply over distances up to 328 feet [10]. 

The IEEE 802.3 Ethernet frame format consists of a preamble of 7 bytes, 1 byte frame 

delimiter, 2 or 6 byte destination address, 2 or 6 byte source address, 2 byte length of data 
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field, 0 to 1500 byte data, 0 to 46 byte pad, and 4 byte checksum [11]. The check sum is a 

cyclic redundancy code (CRC) [10, 11]. 

Each MAGIC application layer packet consists of 32, 32-bit data slots of 16, 24, 

28, or 32 bits of Pulse Code Modulation (PCM) audio [10]. These slots can also carry 

arbitrary 32-bit data [10]. MIDI protocol data can be encapsulated in a packet [10]. 

MAGIC is similar to the Synchronous Optical Network (SONET) [11] in that it requires a 

system-timing master (STM). The STM is chosen using a device enumeration protocol 

and the process is automatic [10]. “The default MAGIC frame timing is 48 kHz with an 

acceptable tolerance of 80 picoseconds. This timing is locally generated by the STM, and 

recovered and regenerated by all other devices. The Ethernet signaling rate is 

asynchronous with the rate at which frames are transmitted [10]”. 

The main competitors to MAGIC are the MIDI standard and IEEE 1394 FireWire 

standard [12-14]. MIDI devices are only able to transmit and receive control information 

rather than raw audio data. MIDI control messages are like sheet music telling a 

synthesizer what note to sound etc. FireWire is a high-speed serial bus for computer data 

and audio/visual data communications. FireWire does carry power for low powered 

devices just like MAGIC.  FireWire has a higher baud rate than the current vision of 

MAGIC over the 100 Mbps Ethernet and the IEEE 1394b has cable lengths that equal the 

maximum MAGIC cable length. There is a MIDI media adaptation layer for IEEE 1394 

[15].  

According to the video on the MAGIC web site [16], MAGIC would be useful as 

a transmitting and receiving medium for telemetry from state-of-the-art medical scanning 

devices such as Computer Aided Tomography (CAT), Magnetic Resonance Imaging 
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(MRI), and Positron Emission Tomography (PET) scanners. Using a MAGIC network, 

medical students could view in real-time scanner data transported from a diagnostic room 

to a classroom. So, Gibson views MAGIC in a larger context than just in the musical 

performance and recording world.  

It appears to this researcher that MAGIC might have some promise in the home 

entertainment sector; however, this area may wind up being dominated by IEEE 1394 

devices since Apple, Intel, and Microsoft support this particular standard. Gibson does 

not have an industrial presence in the home entertainment market so this market may be 

lost to other standards.  

Some criticisms of the MAGIC proposal are that possibly Gibson does not have 

the corporate strength in the instrument market to push a standard onto the rest of the 

industry. Also, musicians tend to be extremely conservative with respect to their 

instruments, so widespread acceptance of the standard might be an opium pipe dream. 

MAGIC does have a lot of promise as a musical recording studio standard. MAGIC 

compliant digital guitars could be very useful in a recording environment. Many guitar 

effects are becoming digital so removing the A/D and D/A conversions currently required 

could be advantageous. Most modern audio recording equipment is digital. A good online 

summary of MAGIC can be found in [17].
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C.  TCP and RTP 

There are essentially two architectural reference models in the networking world, 

namely, the Open Systems Interconnection (OSI) reference model and the TCP/IP 

reference model. The OSI reference model has seven layers: the physical layer, the data 

link layer, the network layer, the transport layer, the session layer, the presentation layer, 

and the application layer. The TCP/IP reference model has four layers: the host-to-

network layer, the Internet layer, the transport layer, and the application layer [11]. 

The TCP/IP reference model has two transport layer protocols, the User Datagram 

Protocol (UDP) [18] and the Transmission Control Protocol (TCP) [19]. UDP is a 

connectionless, best effort, and unreliable transport protocol. TCP is a connection-

oriented and reliable transport protocol. TCP uses sequence numbers and 

acknowledgements to insure that each packet is delivered in the order sent. UDP typically 

involves a lesser amount of overhead than TCP. The primary reason for lost data-grams 

or packets on the Internet is congestion which can be contrasted with the wireless 

universe where the primary culprit for dropped data-grams or packets is the high bit error 

rate (BER) of the medium [11]. 

The prototypical programming-paradigm of TCP/IP is the client/server model. A 

client sends a request and the server answers the request. Servers offer services and these 

services could be as simple as an echo service or time of day service or as complicated as 

a database search service. Servers can be either UDP or TCP servers or both. Servers can 

be either concurrent or iterative. A concurrent server usually uses independent threads of 
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execution for each request and hence can handle more than one simultaneous request. An 

iterative server handles one request at a time [11, 20]. 

Many consider the BSD UNIX sockets library as the quintessential programming 

package for TCP/IP. This package provides an interface known as a socket that connects 

the two ends of the client/server interaction. Sockets can be UDP sockets or TCP sockets. 

Sockets can also support broadcasting or multicasting [20-22]. 

The client side of the interaction consists of creating a socket, connecting the socket, 

writing a request to the server, reading the response from the server, and closing the 

socket. On the other hand, the server side of the interaction for a TCP server involves the 

following steps: creating a socket, binding the socket to a port number, listening for 

connections, accepting the connection, reading a client’s request, and writing the 

response to the request, and closing the accept socket [20]. 

The Real Time Protocol (RTP) is designed to transmit data such as audio or video 

in real-time. Some of the early applications of RTP were audio and video conferencing 

over the Internet. RTP does not guarantee delivery or in order delivery of packets since 

the Internet version is based on UDP, which is an unreliable protocol. RTP does not give 

quality of service (QOS) assurances either [23]. 

RTP has a control protocol associated with it named RTCP. Usually on the 

Internet, RTP uses UDP for sending data-grams and for the control protocol. The RTP 

session has a destination IP address and destination IP port number. Typically, Internet 

implementations use an even port number for UDP transport and an adjacent odd port 

number for the RTPC port, such as 50000 and 50001. This researcher questions the use of 

UDP for the RTCP rather than a reliable transport protocol such as TCP. However, the 
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usage of UDP for both functions does not make sending and receiving data-grams or 

control information seamless by using sentto or recvfrom for both types of data. The RTP 

header has the following format [23]: 

0                   1                   2                   3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|V=2|P|X|  CC   |M|     PT      |       sequence number         | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                           timestamp                           | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|           synchronization source (SSRC) identifier            | 
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
|            contributing source (CSRC) identifiers             | 
|                             ....                              | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

V is the two bit version field, P is the padding bit and if set the payload contains padding 

octets, X is the extension bit and if set the header is followed by one extension, CC is the 

four bit number of CSRC identifiers in the header, M is the marker bit defined by the 

profile, PT is seven bit payload type, the sequence number is initially random and has 

sixteen bits, timestamp is sampling instant of the first octet in the RTP packet, the 

synchronization source is chosen randomly, and the contributing source identifiers are the 

contributors to the RTP payload. The MIDI payload used by Lazarro et al. in their NMP 

system, which is mentioned in the Section F has the following format: 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|R|R|    Len    |       MIDI command Payload…                   | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                       Recovery Journal                        | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 
R are reserved bits, the Len field is six bits and is the length of the MIDI payload in 

octets, and the Recovery Journal is checkpoint information that allows for retransmission 

of lost data. 
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D. C, Java, and JINI 

The computer programming language C was derived from the type-less language 

BCPL through the B language and is most often associated with Dennis M. Ritchie and 

the development of the UNIX operating system and came into existence in the period 

from 1969 to 1973. The C language falls into the class of imperative computer languages 

that includes FORTRAN and ALGOL [24], [25] 

The BCPL computer programming language was a popular systems programming 

in the United Kingdom in the late 1960s and is the grandparent of C. The small footprint 

variation of BCPL, the B programming language was developed to run on Digital 

Equipment Corporation’s (DEC’s) PDP-7 minicomputer and only occupied 8K (8192) 

bytes of memory. B can be thought of C without data types and is considered C’s 

immediate parent. Ken Thompson of Bell Laboratories is the inventor of the B language 

and its name was probably derived from the name of another programming language 

developed by Thompson named Bon [24]. 

C has some features that are very close to assembly language such as register 

variables and easy bit and byte manipulation. The explicit pointer and its accompanying 

arithmetic, which were once such a boon in programming quickly became somewhat of a 

bane and later completely disappeared from a programming language with the invention 

of the language Java. Pointers are an integral part of the C language and the only means 

of passing a reference to a subprogram which in C are called functions. Perhaps a 

drawback of C is the fact that functions can’t be nested. C introduced a means for easy 

modularization or packaging of code and the module or package interface is known as a 
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header file. Decomposing a problem into modules and then functions laid the foundations 

for a later software engineering paradigm shift known as object-oriented programming 

(OOP) [25]. C is known as a weakly typed programming language. 

At the Sun-World Conference on May 23, 1995, John Gage, director of the 

Science Office for Sun Microsystems, and Marc Andreessen, cofounder and executive 

vice president of Netscape announced to the audience and thus the world that the Java 

language existed and was to be utilized by the Netscape Navigator, which was then the 

most popular web browser. Only a small number of people, less than thirty, were 

responsible for the invention and introduction of Java technology [26]. 

Sound and MIDI support became available in Java rather late with Java 1.3. A 

glaring deficiency was the fact that only MIDI output devices were supported on many 

popular platforms such as the Windows platform. This problem has been rectified in 2004 

with the 1.5 version. 

Java is a platform independent and interpreted language [27]. Other interpreted 

languages include the Scheme functional language, which is the language of choice for 

some programming languages courses and many artificial intelligence applications [28], 

and Microsoft’s C# language [29-30]. Java has been scaled down for use on palm tops 

and cellular telephones [31-32]. 

JINI is the name of a technology invented by Sun Microsystems in the 1990s and 

was publicly announced in 1998. It is a set of engineering specifications and Java code 

that allow computers to discover and utilize services on a network. It is similar to a 

distributed object naming and lookup service. The whole notion is in the standard Java 

tradition of potentially computing on small-embedded devices. Sun had a vision that 
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perhaps JINI would be a glue to hold together the embedded systems networks of 

automobiles and other transportation vehicles [33-34]. 

JINI has five key concepts that are: discovery, lookup, leasing, remote events, and 

transactions. Services need to be discovered by JINI-aware devices before they can be 

used. The discovery protocols consist of the multicast request protocol, the multicast 

announcement protocol, and the unicast discovery protocol. Lookup is a type of name 

server, but has a much richer set of semantics due to the underlying object oriented 

language of JINI, namely, Java. Lookup can be used to find certain types of supported 

objects using the inheritance hierarchy of Java. A central feature of JINI is the notion of 

downloadable proxies. A lookup service has an object named a service item that has a 

proxy object and attributes objects. A client downloads the proxy object from the lookup 

service and then communicates via the proxy with the service perhaps using the Remote 

Method Invocation (RMI) mechanism of Java. Leasing allows the detection of crashed 

client and services, since consumers and services are expected to renew their leases 

periodically.  Remote events are remote asynchronous notifications which build on the 

idea of local events inherent in the Java language. Transactions come from the database 

universe. Transactions have four properties, which are sometimes represented by the 

mnemonic ACID, which stands for atomicity, consistency, isolation, and durability. The 

transaction protocol used by JINI is the two-phase commit [33-34]. 

E. MIDI Systems of Interest 

The MIDI subsystem of the Microsoft Windows multimedia system has a 

function for determining the capabilities of a MIDI device, which can be an input or 

output port, a sequencer, or a synthesizer. A MIDI device is either an input device or an 
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output device. There exist functions for opening either a MIDI input device or a MIDI 

output device, which return a handle to the MIDI device. A MIDI input device can be 

started or stopped. Both types of devices should be stopped and closed before the 

program that opens the devices is exited. When you open a MIDI input device a callback 

function or window must be specified. Under Windows MIDI short messages are 

represented by double words, which are 32-bit entities. There is a lot more information on 

the features of the Microsoft’s MIDI system in the online help of Microsoft’s Visual 

C/C++ and Visual Studio .Net. 

The architecture of the MIDI system under OS X is quite elegant and consists of a 

MIDI server which is built upon the MIDI driver layer which, in turn is over the I/O 

subsystem of the OS X kernel. Each application that desires to receive or transmit MIDI 

data must create a MIDI client, a MIDI destination or source, and an input or output port. 

MIDI messages are called MIDI packets and are encapsulated in a structure that has the 

unsigned integer field length, MIDI timestamp, and length data bytes. MIDI running 

status is not supported in the current MIDI packet structure. Another structure called a 

MIDI packet list allows more than one MIDI event (MIDI packet) to be transferred at one 

time in the system. There are functions for initializing a MIDI packet list, adding packets 

to the list, and iterating through the list elements. Complete descriptions of the functions 

and properties of the OS X MIDI system are given in [35]. 

F. Prior MOIP Research 

In this section we discuss four previous studies of remote collaboration between 

musicians, namely, the Remote Music Control Protocol (RMCP) [36], the Young and 

Fujinaga version of MIDI over IP [37], the Aura system [38], and the Network Musical 
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Performance (NMP) system [39]. The first two systems are based on UDP, the third TCP, 

and the fourth on UDP and RTP. 

As has been previously stated RMCP is connection-less and based on UDP/IP. Since it 

uses UDP, broadcasting is available without the overhead of multiple transmissions [36]. 

RCMP was originally intended for a lossless network such as some Ethernets since it 

does not have a mechanism for loss or out-of-order data-grams. Between 1992 and 1997, 

five systems using RMCP have been developed which are described in this paragraph. (1) 

A virtual dancer that is choreographed by musicians in real-time. (2) A virtual jazz 

session between a pianist, a bassist, and a drummer with accompanying computer 

graphics for gestures. (3) Multiple musicians interacting via the Ethernet. (4) 

Improvision, a system in which two untrained people can create improvisational music 

and interact with each other. (5) RemoteGIG, a remote session over the Internet between 

musicians [36]. 

RMCP is based on the client/server architectural model of the Internet. There are 

four servers, specifically, the sound server which transmits “MIDI messages of received 

packets to a MIDI instrument”, the display server which “visualize MIDI messages of 

received packets in the form of a piano keyboard”, the animation server which “generate 

music-driven real-time computer graphics corresponding to received packets”, and the 

recorder server which “record all received packets with the received timestamps, in a 

RMCP Packet Record File”. There are four types of RMCP clients, in particular, the 

MIDI receiver which “receive MIDI from MIDI instruments”, the MIDI station client 

which “substitute a computer keyboard and mouse for a MIDI keyboard instrument”, the 
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Standard MIDI File (SMF) player client which plays “a standard MIDI file”, and the 

player client which plays “a RMCP packet record file” [36]. 

RMCP requires distributed clock synchronization. The system has one RMCP 

time synchronization server. RMCP packets either have a timestamp or no timestamp. If 

the timestamp is not present the message in the packet is executed as soon as the packet 

arrives [36]. 

RMCP was originally designed for use on a reliable LAN. The extension to a 

WAN involves using RMCP gateways that connect two LANs using TCP/IP, the reliable 

and connection-oriented Internet transport protocol [36]. See Figure 4.1 on the next page 

for a visualization of the RCMP system and its networking connections and protocols. 

 
 

Figure 2-F-1 RMCP Gateway Model and Its Protocols 
 



 22 

The duet system developed by this researcher is reminiscent of RMCP. The 

similarities include a piano keyboard for visualizing MIDI data that comes over the 

network and both systems can play sequences over the network. The differences between 

the two systems are that RMCP has more MIDI musical visualization aids and the 

networking protocols are not the same. RMCP uses a combination of UDP and TCP for 

MIDI data transport whereas the duet system uses TCP and a homegrown protocol based 

on TCP. Both systems are capable of sending and receiving standard MIDI type 0 or type 

1 file and of recording a session. RMCP uses the predominant Internet client/server 

architecture whereas the duet system uses the new peer-to-peer (P2P) Internet paradigm. 

There are essentially two methods of transmitting music over the Internet. The 

first method is to transfer audio data via the Internet. The second method is to transmit 

musical gesture information such as the data encapsulated in the MIDI specification. 

Apple, Microsoft, Sun, et al. commercial software vendors have been working on systems 

for streaming audio for music and for teleconferencing. Streaming audio requires 

relatively large bandwidth, in order to sound reasonably good uses an initial buffering 

mechanism, and there can be pauses in the audio stream. Typically streaming audio 

requires two different protocols: one for a low bandwidth connection and one for a high 

bandwidth connection. 

MIDI and standard written notation are universal representations of musical 

gesture. MIDI can be good and faithful for a piano performance. Sending MIDI messages 

to remotely perform on an instrument can create a unique remote performance 

environment. MIDI requires less bandwidth than streaming audio [37]. 
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Young and Fujinaga chose UDP as their basic transport protocol. To overcome 

the unreliability of UDP, they transmitted multiple copies of each MIDI message. A 

unique index was used with each message to ensure that duplicates were discarded and 

messages were played in the right sequence. They also used a buffer of a few seconds, 

which makes real-time musician-to-musician interaction virtually impossible [37]. 

Young and Fujinaga cite three reasons for not utilizing the reliable Internet transport 

layer protocol TCP. These reasons were retransmissions and their associated latencies, in 

order delivery of packets and the required latency to enforce this policy, and the extra 

bandwidth for reliability. They were particularly concerned with the stopping and starting 

of the music due to retransmissions. This researcher encountered the starting and 

stopping TCP problem with most sequences, but the fault is not so prevalent in the duet 

system where there is a somewhat limited amount of data being transported on the 

network. Although Young and Fujinaga did not give the exact number of bits used in 

their datagram format, this researcher interpreted their description as follows in Figure 2-

F-2. A datagram consisted of one or more MIDI messages. 

 0                   1                   2                   3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                               Index                           | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                     Delta Time (Milliseconds)                 | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                         MIDI Short Message                    | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 2-F-2 Young and Fujinaga MIDI Message Format 
  

Richard O. Chapman and this researcher developed a protocol that uses some 

redundancy and does not require buffering of data-grams before playback. We call this 

protocol the CW protocol. The idea is to send multiple copies of MIDI messages spread 
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over several data-grams to ensure delivery of most of the MIDI messages. We describe 

this protocol in detail in Chapter 7.  

Local area networks (LANs) provide an economical and high-speed means of 

connecting personal computers (PCs). MIDI networks use one specialized transmission 

protocol whereas LANs may use many different digital protocols. Dannenberg and van 

de Legeweg built a system named Aura at Carnegie Mellon that takes advantage of low 

cost LANs for implementing real-time music programs [38]. 

At first Dannenberg and van de Legeweg used UDP as their transport level 

protocol since it seemed good for real-time applications and seemed relatively reliable on 

LANs. Previous research by Goto et al. into RMCP was done using UDP. However, 

Dannenberg and van de Legeweg were getting dropped data-grams on their LANs so they 

switched to TCP. The key ideas for this researcher to come from the Aura work are the 

usage of TCP_NODELAY to disable the Nagle algorithm and the utilization of multiple 

threads of execution [38]. By disabling the Nagle algorithm TCP does not delay until it 

has certain minimum size packet to transmit, instead the protocol sends smaller packets at 

more frequent intervals [11]. 

Aura is a distributed system for communicating musical data in real-time. It uses 

the object oriented programming paradigm. The Aura system consists of spaces, zones, 

objects, and names. A machine is a space or address space. A space consists of one or 

more threads of execution. A zone is a collection of objects that are shared by a single 

thread of execution within an address space. There can be as many zones in an address 

space as there are threads. Objects are entities that can transmit and receive musical data 

in the form of asynchronous messages. Objects are differentiated by their real-time 
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requirements with low latency objects going into a particular zone with other such 

objects. Names are unique 64-bit integers with the format given in Figure 5-3. And this 

figure represents the end of the paragraphs on the third previous research system. 

     0                   1                   2                   3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|     Address Space     |Z o n e| Creator’s Address Space |Z o n e| 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                         Object Identifier                       | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Figure 2-F-3 Aura Name Format 
 

Aura appears to be a much more general and versatile system for asynchronous 

communication of musical data than this researcher’s vision of MOIP. However, with this 

generality and versatility there are prices to be paid such as code and system complexity 

and clock synchronization issues. This researcher used the object-oriented programming 

paradigm utilizing Java for the code to compare the different MOIP transport level 

protocols introduced in this dissertation, however, straight C was used the final duet 

system since it is closest to the Microsoft Windows native Application Programming 

Interface (API). 

A network musical performance (NMP) occurs between musicians that are 

playing musical instruments at different locations that are connected by a computer 

network. Ideally, we would like to use real-time audio to send the actual music that a 

given musician is playing, however, bandwidth considerations and latencies may make 

this impossible. The next best thing is to use musical gestures such as MIDI. Lazzaro and 

Wawrzynek used RTP to send MIDI commands over the Internet [39]. 

There are two classes of delay in NMP, namely, network delay and local delays. 

Network delay on the Internet is usually associated with congestion. The local delays 
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include “computational delay, audio and control I/O delay, and perhaps local acoustic 

delay.” Via minimization of each of the preceding type of latency perhaps a viable NMP 

system can be achieved [39]. 

The NMP system uses the standard client-server architecture that is so prevalent 

in many Internet applications. The NMP client used the IETF Real Time Protocol (RTP) 

under the Audio/Video Profile (AVP) [28] to transfer MIDI data between network end-

points. A mirror server was also developed to reflect the gesture information back to the 

client [39]. 

The NMP researchers used a recovery journal mechanism that is similar to 

forward error correction (FEC) and reliable multicast transport (RMT). The researchers 

noted three qualitative artifacts associated with their attempts to build error resilience and 

reliable into the system: 

1. Occasionally a depressed key does not create a corresponding note 

2. Noticeable jitter in the sounding of notes 

3. A released key sometimes continues generating sound for a fairly short time.   

The NMP research team measured late and lost packets on a relatively high speed 

California instate network. Their late and lost packet data had a bi-modal distribution 

[39]. The time 12:30 PM was very good and the time 7:30 PM was very bad. It is 

common knowledge that Internet Service Providers (ISPs) peak times are 7:00 PM to 

10:00 PM local time. 

G. Sources of Latency in MOIP 

There are five sources of latency in distributed audio systems: the finite speed of 

sound in air, the network, the operating system, the sound card, and the implementation 
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language. In the following paragraphs we will give a little discussion of the preceding 

forms of latency. 

The speed of sound in air is given approximately by the following formula: 

v = 331.4 + 0.6T (m / s) 

The temperature, T, is in Celsius [40]. For T = 21.11 degrees Celsius = 70 degrees 

Fahrenheit v = 344.28 m / s = 1129.52 ft / s = 1.13 ft / ms. So a percussionist who is fifty 

feet from the violin section in an orchestra would experience a delay of about forty-four 

milliseconds in the sound of the violins using the previous data.  Musicians are 

accustomed to latencies of the order of ten milliseconds or about the delay that occurs 

between pressing a key on a MIDI keyboard and getting an audio response. Supposedly 

some very gifted individuals are able to detect delays of the order of one millisecond 

[41]. 

Network latency is hard to quantify. There have been some papers such as [42] 

that attempt to model TCP latency; however, it is hard to deduce ballpark estimates of the 

TCP latency in a distributed audio system from these models. Due to retransmissions and 

the enforcement of the receive in-order policy TCP has a greater latency on the general 

Internet than UDP. In the absence of retransmissions and out-of-order data-grams in this 

researcher’s experience TCP and UDP have similar latencies. 

In a comparison of the latencies in off-the-shelf operating systems for audio 

systems comparing Windows 95, NT 4, Windows 98, and NT 5, it was found that 

Windows 98 had the lowest worst-case latency of about twelve milliseconds. Windows 

95, NT4, and NT5 had worst-case delays of around fifty milliseconds [43].  
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Sound card latency is most pronounced when recording audio from one of the 

input-sources on the sound card into software being executed on the computer. Some 

recording software such as SONAR 3 by Cakewalk allows this latency to be reduced with 

degradation of the quality of the recorded sound [44]. Another way of reducing sound 

card latency is to purchase a high-end sound card. 

All implementation languages have associated latencies. An interpreted language 

such as Java is expected to have a greater inherent latency than a compiled language such 

as C since interpretation involves conversion from an intermediate language to native 

code, whereas the C compiler outputs native code. 

H. Computer-Supported Cooperative Work (CSCW) 

Human-computer interaction (HCI) involves psychology and the computer, 

whereas CSCW is more related to sociology and the computer. However, CSCW 

generally comes under the auspices of HCI in the scientific literature [45]. Groupware is 

the common name given to software, which allows the interaction of two or more 

individuals via computers [45]. 

Groupware can be differentiated according to the standard time/space matrix 

whose axes consist of time that is divided into same time or different time and space that 

is divided into same place or different place [45]. An alternative formulation uses the 

time axis labels synchronous (same time) and asynchronous (different time) and space 

axis labels co-located (same place) and remote (different place) [45]. Examples of 

groupware include extreme two programmer programming teams (synchronous and co-

located), chat also known as instant messaging (synchronous and remote), electronic or 

classical bulletin boards (asynchronous and co-located), and email (asynchronous and 
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remote). Figure 2-H-1 shows a classical time/place matrix in which by conversation we 

mean face-to-face conservation [45].  

 

Figure 2-H-1 Classical Time/Space Matrix 
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CHAPTER 3 UNSUITABLE PROTOCOLS 

This chapter is divided into six sections that give synopses of the initial research 

that resulted in failures to achieve the desired goals. The sections are:  a discussion of the 

preliminary set of protocols, an outline of the initial quantitative and statistically 

significant collection of experiments that is divided into two sections, a brief description 

of an initial collaborative system, and finally an adumbration of another Java and JINI 

duet system which did not pan out due to latency problems and an alternative duet 

system. 

A. Preliminary Protocols and Their Implementations 

The protocols used in the preliminary set of experiments were a UDP based 

protocol with a modicum of redundancy developed by Professor Richard O. Chapman 

and this researcher (CW), a RTP based protocol without error recovery (RTP), a simple 

and naive TCP protocol (SN-TCP), and Young and Fujinaga’s UDP based protocol (YF). 

In this chapter we will present brief outlines of the protocol, talk about their 

implementation, and finally, discuss a set of experiments performed on a Wide Area 

Network (WAN). 

As far as MIDI data was concerned, only MIDI short messages such as channel 

pressure, control change, key pressure, note off, note on, pitch-bend, and program change 

were transmitted and received. MIDI meta-messages were not included in the 

transmission stream. MIDI meta-messages such as tempo changes can be incorporated 
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into the protocols. The MIDI short message data was placed in a structure consisting of a 

unique index, a delta time in MIDI ticks, and the MIDI short message. This structure was 

based on the structure that Young and Fujinaga utilized and is shown in Figures 3-A-1 

and 3-A-2. 

 0                   1                   2                   3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                               Index                           | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                     Delta Time (Milliseconds)                 | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                         MIDI Short Message                    | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 
Figure 3-A-1 CW and YF MIDI Message Format 

  
 0                   1                   2                   3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|    Command    |                      Pad                      | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                          Sequence Number                      | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                             Echo Time                         | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                          Maximum Echo Time                    | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                       Up to 16 MIDI Messages                  | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                                 …                             | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
+                         Last MIDI Message                     | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 
Figure 3-A-2 CW and YF Datagram Format 
 

The command is either OPEN (0) or CLOSE (1), which either opens or closes the 

TCP connection between the client and server. The sequence number is unique to each 

UDP client/server connection and limited by the precision of a 32-bit integer. The echo 

time and maximum echo times are calculated by the client and communicated to the 

server in the datagram.  

With respect to the delta times there are two policies, which this researcher calls 

lying and honesty. In the lying policy a client reports a zero delta time to the server in 

hopes that the network latency is so low that the client and server will be essentially 
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synchronized, and no buffering is done by the server. In the honesty policy case the client 

reports the delta time that it used to play the MIDI short message. The lying policy case 

was used in most of the preliminary protocols.  

One parameter was common to all the protocols, namely, the number of MIDI 

short message structures per datagram or packet, m. Another parameter that was shared 

by the CW, SN-TCP, and YF protocols was the number of data-grams between datagram 

echoes, n. Datagram echoes were used to get a rough estimate of the data-grams or 

packets that were being lost during transmission. Of course, for SN-TCP no packets are 

lost, but we still monitored the round-trip-times (RTTs) found via packet echoes. As will 

be seen the RTTs were used by CW and one variant of YF to get an estimate of the 

dynamic buffer size. A third parameter was the number of datagram copies sent by the YF 

protocol, k. In the CW protocol and the dynamic buffer size YF protocol (dYF), the 

server’s dynamic buffer size if calculated via the formula: 

BufferSize = m * MaximumEchoTime / EchoTime 

The dynamic buffer holds structures of the type shown in Figure 8-1. The dynamic buffer 

size is computed after each received datagram. 

The CW protocol uses the following transmission scheme for m = 3. It first sends 

MIDI messages 1, 2, and 3 then it sends 2, 3, and 4, and then 3, 4, and 5, et cetera. Thus, 

the number of data-grams transmitted by the CW algorithm is the total number of MIDI 

messages minus m plus one. 

The dynamic buffer variation of the dYF algorithm differs from the CW algorithm 

in the number of copies of the datagram transmitted. CW only sends one copy. dYF sends 

k copies. The large buffer version of YF uses a static buffering scheme. Both the CW and 
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dYF used a variable named the currentIndex. If the incoming datagram has MIDI short 

messages with indices less than the currentIndex then it must be a copy of the datagram 

and is ignored. If the incoming datagram’s MIDI short messages have indices equal to the 

currentIndex then the datagram’s MIDI short messages are played immediately. Lastly, if 

the incoming datagram’s indices are greater than the currentIndex then the datagram’s 

MIDI data is buffered. Each time a datagram is received, the buffer is checked to see if it 

is full, and if it is full then the buffer’s MIDI short message data is played. The buffer is 

maintained in sorted order on the index of each MIDI short message structure in 

ascending order. After the buffer is played the index variable is set to last buffered MIDI 

short message structure’s index value plus one. 

The static buffer YF (sYF) protocol abandons the idea of unique indices and uses a 

saner unique datagram sequenceNumber. The protocol uses a variable named the 

expectedSequenceNumber. If an incoming datagram’s sequenceNumber is less than the 

expectedSequenecNumber then it is ignored since it must be a datagram copy. If the 

incoming datagram’s sequenceNumber is equal to expectedSequenceNumber then its 

MIDI short message structures are played immediately and the expectedSequenceNumber 

is incremented by one and then the buffer is searched for more data to play if it is 

nonempty. In the last case of the incoming datagram’s sequenceNumber being greater 

than the expectedSequenceNumber then the whole datagram is buffered in ascending 

order in buffer with the sequenceNumber as a key. In the last case after addition of a 

datagram, the buffer is checked to see if it is full, and if it is full then the data-grams’ 

MIDI short message data is played immediately. sYF uses the honesty policy case with 

respect to delta times. 
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There are two types of RTP protocols available either with or without error 

recovery. By error recovery we mean building reliability into RTP by retransmission of 

lost data-grams. An error is the loss of a datagram. We used RTP without error recovery 

in the preliminary experiments. The RTP protocol used the index idea of CW and dYF. 

The SN-TCP protocol used the same data structures as the dynamic buffer 

algorithms CW and dYF and RTP. However, in reality, the idea of an index or packet 

sequence number is not needed by SN-TCP since it is reliable and all packets are received 

in the order transmitted. We used the same index arithmetic with the TCP server as with 

the other algorithms that used indices so as not to give SN-TCP an unfair advantage. 

The echoing process used CW, SN-TCP, and YF was to echo each nth datagram or 

packet. The client generates a timestamp for the datagram or packet with its current real 

time clock value. Upon receipt of an echo the client checks to make sure the echoed 

datagram or packet’s data is the same as the datagram or packet transmitted for echo and 

if it was the same then it computes the RTT otherwise the client would cause an 

exceptional condition. The client would maintain the minimum, average, and maximum 

RTTs, and in the dynamic buffer cases would send the average and maximum echo time 

to the server. 

The four protocols and one protocol variation were implemented in the C 

language using the Microsoft Visual C/C++ 6.0 compiler. As alluded to earlier in the 

description of the algorithms client/server architecture was used. The client is a MIDI file 

format 0 or 1 sequencer. The sequencer transmits data as soon as a datagram or packet 

becomes full with m MIDI short message structures. 
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The CW and YF server implementation has three sockets: a TCP socket for 

receiving control information, a UDP socket for receiving data-grams, and a UDP socket 

for sending and receiving echoed data-grams. The TCP socket and UDP receiving socket 

are handled by the select system call. The server blocks until one of the sockets receives 

data. There are two types of TCP messages either an OPEN message or a CLOSE 

message. An OPEN message sends the client’s parameters such as m, k, and n. The 

CLOSE message tells the server to shutdown the TCP socket and go back to the accept 

socket system call to wait on another connection by a client. The server has two threads 

of execution an echo thread and a main MIDI message processing thread. Table 3-A-1 

summarizes the protocols. 

Name Buffer Data Transport Control Transport 

CW Dynamic UDP TCP 

dYF Dynamic UDP TCP 

sYF Static UDP TCP 

SN-TCP Not Applicable TCP Not Applicable 

RTP Not Applicable UDP UDP 

Table 3-A-1 Preliminary Protocols 
 

The server machine was a Windows 98 personal computer (PC) with a Pentium 2 

450 MHz central processing unit (CPU), 128 MB SDRAM, a Turtle Beach Montego 

A3D 64 voice PCI sound card, and Altec Lansing ACS 295 speakers with subwoofer. 

The client machine was a Windows XP Home Edition PC with a Pentium 4 2.26 GHz 

CPU, 512 MB RDRAM, a Turtle Beach Santa Cruz DSP sound card, and 

Harman/Kardon HK-695 speakers with subwoofer. The server machine had a 31.2 Kbps 
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dial-up link to the Internet and the client machine had an Asymmetric Digital Subscriber 

Line (ADSL) link to the Internet. Although the computers were only a few rooms apart in 

a residence, the network formed was a Wide Area Network (WAN). The dialup-link went 

along the analog part of the telephone line to West Point, GA, a trip of about 18 miles 

then on the Earthlink network to Atlanta, GA, then back to the house in LaGrange, GA, 

via the Earthlink/Bell South ADSL network. As was mentioned earlier, the client sends 

MIDI short messages to the server to be played. The primary metric was the runtime at 

the server as measured to the nearest second. Trace route information is given below. 

Tracing route to user-2inid4o.dialup.mindspring.com [165.121.52.152] 
over a maximum of 30 hops: 
 
  1   <1 ms    <1 ms    <1 ms  172.16.0.254  
  2   15 ms    18 ms    14 ms  user-1120k01.dsl.mindspring.com [66.32.80.1]  
  3   14 ms    14 ms    15 ms  acr01-vl-3.ga-atlanta0.ne.earthlink.net [207.69.143.1]  
  4   16 ms    15 ms    15 ms  cor02-vl-11.ga-atlanta0.ne.earthlink.net [207.69.223.190]  
  5   14 ms    14 ms    14 ms  dir10-g12-0-0.ga-atlanta0.ne.earthlink.net [209.165.96.18]  
  6   23 ms    21 ms    21 ms  cisco-h0.wp-lag.mindspring.net [207.69.230.226]  
  7   23 ms    22 ms    21 ms  acn02a.ga-westpoin1.ne.earthlink.net [207.69.144.222]  
  8  236 ms   190 ms   195 ms  user-2inid4o.dialup.mindspring.com [165.121.52.152]  
 
Trace complete. 
 

Figure 3-A-3 Trace Route from WAN Client to WAN Server 
 

The experiments are scored using a system that awards four points for first place, 

three points for second place, two points for third place, and one point for fourth place. 

When calculating the total points one point was awarded for each experiment instance in 

which the protocol was reliable. Two standard MIDI files were utilized, namely, one 

MIDI type 0 files: Trippygaia1.mid and one MIDI type 1 file: Flourish.mid. 
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File M CW RTP SN-TCP dYF 

Trippygaia1.mid 1 2 1 3 4 

 2 1 4 2 3 

 3 1 4 2 3 

 4 1 4 2 3 

Flourish.mid 1 2 1 3 4 

 2 2 1 4 3 

 3 2 1 4 3 

 4 1 4 2 3 

Points - 12 20 22 26 

Zero Loss Points - 0 4 8 5 

Total Points - 12 24 30 31 

Overall Rank - 4th 3rd 2nd 1st 

Table 3-A-2 Points Awarded to Algorithms and Overall Ranks 
 

As can be seen from Table 3-A-2 SN-TCP is clearly the only reliable protocol 

which is very important for MIDI over IP since as can’t be overemphasized MIDI is 

intolerant with respect to lost or out-of-order data. The CW protocol performed so poorly 

that it was dropped from further consideration. 

B. RTP and TCP Protocols 

In this section and the next section we make a transition away from protocols 

implemented in the programming language, C, and we utilize the interpreted platform 

independent language, Java. The reason we change languages is to take advantage of a 

unique design feature of Java Media Framework’s (JMF) implementation of RTP, which 

is further explained the next paragraph.  Java has more inherent latency in most cases 

than C on the machines chosen for the subsequent experiments however Java is utilized 
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because of the elegance of the RTP implementation in this researcher’s opinion. The 

experimental work associated with these protocols was done in a statistically significant 

number of trials. All of the subsequent protocols used the honesty delta-time policy. 

The Real-Time Protocol (RTP) implementation in the JMF allows the user to 

abstract away the underlying transport protocol from the RTPManager object via the 

implementation of the interface RTPConnector. This means that the user can utilize either 

the Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP) as the 

transport layer protocol. Since RTP has two channels, namely, a control channel and a 

data channel, and there are two Internet transport layer protocols, four possibilities exist 

for the channels and transport protocols of RTP as illustrated by the following table. 

Control Data 

TCP TCP 

UDP TCP 

TCP UDP 

UDP UDP 

Table 3-B-1 Control and Data Channels and Transport Layer Protocols for RTP 
 

Our usage of an alternative transport protocol to UDP with JMF’s implementation 

of RTP does not appear to be novel since previous researchers used the Stream Control 

Transport Protocol (SCTP) in a similar manner to our usage of TCP, but without the four 

cases of Table 3-B-1 [34]. 

These four RTP variations have been nicknamed TT-TCP, UT-RTP, TU-RTP and 

UU-RTP where the first letter is an abbreviation of the control channel transport protocol 

and the second letter is an abbreviation for the data channel transport protocol. 
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Practical MIDI streams such as those generated by real musicians or sequencers 

differ from real-time audio in that the MIDI streams consist of discrete or quantized 

events instead of continuous bit streams. The MIDI specification calls for a stream with a 

baud rate of 31250 bps, however, it is generally fairly rare to generate MIDI short 

messages at the maximum MIDI short message rate of less than or equal 3125 MIDI 

short messages per second.  Suppose Eve is playing a MIDI instrument at a metronome 

setting of 120 beats per minute (BPM) without using control messages or pitch-bend 

messages. Then at most Eve is generating two MIDI short messages every half-second, a 

previous note off message and a next note on message. This is an ideal situation for 

reliable protocols that send a single packet at a time, since there is probably enough time 

between the send for the return acknowledgment before the next send. 

Application 

RTP 

UDP/TCP 

IP 

Table 3-B-2 Partial Protocol Stack for UT-RTP 
 

The various RTP protocols were implemented using JMF 2.0 and Java 1.4.0_01 

on Windows operating systems machines. We translated the simple and naive TCP 

protocol, SN-TCP, from the C version of the previous chapter without the echoing 

feature. All the protocols were implemented using the same version of Java. The Nagle 

algorithm was disabled in some variations of TT-RTP, UT-RTP-ND, TU-RTP-ND, and 

SN-TCP-ND by setting the TCP_NODELAY socket option to true. The Nagle algorithm 

was enabled in some variations of TT-RTP, UT-RTP-NE, TU-RTP-NE, and SN-TCP-NE 
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by setting the TCP_NODELAY socket option to false. Table 3-5 illustrates the various 

Nagle disabled/enabled relationships for TT-RTP. 

TT-RTP Protocol Control Data 

TNDTND-RTP ND ND 

TNETND-RTP NE ND 

TNDTNE-RTP ND NE 

TNETNE-RTP NE NE 

Table 3-B-3 TT-RTP ND/NE Relationships ND = Nagle Disabled and NE = Nagle 
Enabled 

 
Client/server architecture was used. The clients were both Musical Instrument 

Digital Interface (MIDI) sequencers that play and send a stream of MIDI short message 

to the server to be played. Since we are disabling the Nagle algorithm a relatively short 

byte stream was sent from client to server. Each RTP and TCP MIDI short message 

consisted of twelve bytes: a MIDI channel byte, MIDI command byte, two MIDI data 

bytes, and eight bytes of information that represented the delta time in milliseconds. A 

RTP or TCP packet consisted of 20 + 12 * m bytes where 20 is the number of bytes in the 

TCP header and m is the number of MIDI short messages per packet. Next are a table of 

source code files and lines of code (LOC), and also a table of packet lengths. 
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Source Code File Lines of Code 

RTPMIDIClient.java (TT-RTP) 599 

RTPMIDIServer.java (TT-RTP) 344 

RTPMIDIClient.java (UT-RTP) 643 

RTPMIDIServer.java (UT-RTP) 372 

RTPMIDIClient.java (TU-RTP) 643 

RTPMIDIServer.java (TU-RTP) 372 

RTPMIDIClient.java (UU-RTP) 336 

RTPMIDIServer.java (UU-RTP) 401 

TCPMIDIClient.java 400 

TCPMIDIServer.java 247 

Total 4357 

Table 3-B-4 XY-RTP SN-TCP Source Code Files and Lines of Code where X = {T, U} 
and Y = {T, U} 

 
M 20 + 12 * M 

1 32 

2 44 

3 56 

4 68 

Table 3-B-5 RTP and TCP Number of MIDI Short Messages and Packet Lengths in 
Bytes 

 
Some of the experiments were carried out over a period of days between March 

14, 2004 and March 28, 2004 and the other experiments were carried out over a period of 

days between October 10, 20003 and October 13, 2003. It is to be hoped that the Internet 

was relatively stable during the time frame of the experiments. The following tables show 

the value of m, the starting time and date, ending time and date of the sixty trials per 
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experiment, and the actual number of hours. One standard MIDI files was used: 

Trippygaia1.mid a MIDI type 0 file. 

M Starting Time/Date Ending Time/Date Actual Hours 

1 10/10/2003 05:09 PM EDT 10/10/2003 07:16 PM EDT 2.1157 

2 10/11/2003 08:05 AM EDT 10/11/2003 10:12 AM EDT 2.1160 

3 10/12/2003 10:14 PM EDT 10/12/2003 12:21 PM EDT 2.1205 

4 10/13/2003 07:12 AM EDT 10/13/2003 09:19 AM EDT 2.1216 

Totals   8.4738 

Table 3-B-6 Trippygaia1.mid UT-RTP-ND Actual Runtime Hours 
 

M Starting Time/Date Ending Time/Date Actual Hours 

1 10/10/2003 02:42 PM EDT 10/10/2003 04:49 PM EDT 2.1245 

2 10/11/2003 01:04 PM EDT 10/11/2003 03:11 PM EDT 2.1259 

3 10/12/2003 02:51 PM EDT 10/12/2003 04:58 PM EDT 2.1214 

4 10/13/2003 11:42 AM EDT 10/13/2003 01:49 PM EDT 2.1204 

Totals   8.4922 

Table 3-B-7 Trippygaia1.mid UT-RTP-NE Actual Runtime Hours 
 

M Starting Time/Date Ending Time/Date Actual Hours 

1 10/10/2003 08:52 PM EDT 10/10/2003 10:59 PM EDT 2.1197 

2 10/11/2003 10:16 AM EDT 10/11/2003 12:23 PM EDT 2.1158 

3 10/12/2003 12:39 PM EDT 10/12/2003 02:46 PM EDT 2.1170 

4 10/13/2003 09:22 AM EDT 10/13/2003 11:29 AM EDT 2.1178 

Totals   8.4703 

Table 3-B-8 Trippygaia1.mid SN-TCP-ND Actual Runtime Hours 
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M Starting Time/Date Ending Time/Date Actual Hours 

1 10/10/2003 12:18 PM EDT 10/10/2003 02:25 PM EDT 2.1249 

2 10/11/2003 03:20 PM EDT 10/11/2003 05:27 PM EDT 2.1214 

3 10/12/2003 05:01 PM EDT 10/12/2003 07:08 PM EDT 2.1270 

4 10/13/2003 02:03 PM EDT 10/13/2003 04:10 PM EDT 2.1237 

Totals   8.4970 

 
Table 3-B-9 Trippygaia1.mid SN-TCP-NE Actual Runtime Hours 

 
M Starting Time/Date Ending Time/Date Actual Hours 

1 03/14/2004 04:49 PM EST 03/14/2004 06:30 PM EST 1.6789 

2 03/15/2004 01:01 AM EST 03/15/2004 02:45 AM EST 1.6797 

3 03/15/2004 12:21 PM EST 03/15/2004 02:02 PM EST 1.6761 

4 03/16/2004 10:14 AM EST 03/16/2004 11:55 AM EST 1.6747 

Totals   6.7094 

Table 3-B-10 Trippygaia1.mid TNDTND-RTP Actual Runtime Hours 
 

M Starting Time/Date Ending Time/Date Actual Hours 

1 03/25/2004 01:49 PM EST 03/25/2004 01:49 PM EST 1.6738 

2 03/28/2004 02:28 PM EST 03/28/2004 02:28 PM EST 1.6790 

3 03/28/2004 04:14 PM EST 03/28/2004 04:14 PM EST 1.6748 

4 03/28/2004 06:37 PM EST 03/28/2004 06:37 PM EST 1.6788 

Totals   6.7064 

Table 3-B-11 Trippygaia1.mid TNETND-RTP Actual Runtime Hours 
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M Starting Time/Date Ending Time/Date Actual Hours 

1 03/24/2004 01:44 PM EST 03/24/2004 03:25 PM EST 1.6759 

2 03/24/2004 03:46 PM EST 03/24/2004 05:27 PM EST 1.6762 

3 03/24/2004 05:30 PM EST 03/24/2004 07:11 PM EST 1.6762 

4 03/25/2004 09:03 AM EST 03/25/2004 10:44 AM EST 1.6756 

Totals   6.7039 

Table 3-B-12 Trippygaia1.mid TNDTNE-RTP Actual Runtime Hours 
 

M Starting Time/Date Ending Time/Date Actual Hours 

1 03/21/2004 04:55 PM EST 03/21/2004 06:36 PM EST 1.6790 

2 03/22/2004 01:29 PM EST 03/22/2004 03:10 PM EST 1.6759 

3 03/22/2004 03:36 PM EST 03/22/2004 05:17 PM EST 1.6761 

4 03/22/2004 05:25 PM EST 03/22/2004 07:06 PM EST 1.6767 

Totals   6.7077 

Table 3-B-13 Trippygaia1.mid TNETNE-RTP Actual Runtime Hours 
 

The same client and server setup mentioned previously was utilized in the 

experiments covered in this section. There are two hundred and twenty four tables 

appended to this dissertation, namely, one hundred and twelve pairs of tables based on 

the hundred and twelve separate experiments can be found in Appendix J. The first table 

in a pair has the protocol, one of TNDTND-RTP, TNETND-RTP, TNDTNE-RTP, 

TNETNE-RTP, UT-RTP-ND, UT-RTP-NE, SN-TCP-ND or SN-TCP-NE, the number of 

trials, N, which is always sixty, the standard deviations, and the standard error means. 

The second table in a pair has the means difference, the standard deviation of the means 

difference, the standard error mean of the means difference, the Student’s t-statistic, 

(Protocol 1mean  – Protocol 2 mean) / standard error mean of the means difference, the 
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degrees of freedom, DF, which are always N – 1 that equals 59, and the two-tailed 

significance of the t-statistic. A two-tailed significance of ≤ 0.05 means that one of the 

protocols outperformed the other statistically speaking. The better of the two protocols is 

determined by the sign of the t-statistic: - indicates that first protocol wins and + means 

that the second protocol wins.  

We do not report any experimental results with TU-RTP and UU-RTP since these 

protocols were so unreliable that they failed in every attempted experiment. We also 

created a hybrid protocol between UU-RTP and the Young and Fujinaga (YF) protocol of 

chapter 6 and this protocol (YF/UU-RTP) also failed for choices of the number of copies 

of each datagram transmitted equal one, two, and four. By failure, we mean at least one 

datagram was lost. 

The following tables distill the information from the two hundred twenty four 

tables mentioned above. The numbers in the row and column headings stand for a 

protocol such as 1=TNDTND-RTP. The other letters have the following meanings: 

N=Not applicable, D=Does not count, 0=row and column protocols are statistically 

equivalent, row protocol is statistically better than column protocol if <= -0.05, and 

column protocol is statistically superior to row protocol <= +0.05. 
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P P# 1 2 3 4 5 6 7 8 9 10 11 
TNDTND-RTP 1 N 0.08 0.42 -0.91 0.22 -0.49 D D D 0.84 -0.30 
TNETND-RTP 2  N -0.03 -0.01 -0.83 -0.04 D D D -0.03 -0.00 
TNDTNE-RTP 3   N -0.29 0.06 -0.10 D D D -0.19 -0.00 
TNETNE-RTP 4    N 0.12 -0.46 D D D 0.79 -0.22 
UT-RTP-ND 5     N -0.04 D D D -0.04 -0.00 
UT-RTP-NE 6      N D D D 0.29 -0.92 
TU-RTP-ND 7       N D D D D 
TU-RTP-NE 8        N D D D 

UU-RTP 9         N D D 
SN-TCP-ND 10          N -0.04 
SN-TCP-NE 11           N 

Table 3-B-14 M=1 Sign of t-Statistic * Statistical Significance 
 

P P# 1 2 3 4 5 6 7 8 9 10 11 
TNDTND-RTP 1 N 0.32 0.68 0.46 0.32 -0.51 D D D 0.29 -0.98 
TNETND-RTP 2  N 0.53 0.49 0.32 -0.42 D D D 0.28 -0.86 
TNDTNE-RTP 3   N 0.04 0.11 -0.09 D D D 0.00 -0.00 
TNETNE-RTP 4    N 0.18 -0.08 D D D 0.00 -0.00 
UT-RTP-ND 5     N -0.04 D D D 0.90 -0.00 
UT-RTP-NE 6      N D D D 0.03 0.34 
TU-RTP-ND 7       N D D D D 
TU-RTP-NE 8        N D D D 

UU-RTP 9         N D D 
SN-TCP-ND 10          N -0.00 
SN-TCP-NE 11           N 

Table 3-B-15 M=2 Sign of t-Statistic * Statistical Significance 
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P P# 1 2 3 4 5 6 7 8 9 10 11 

TNDTND-RTP 1 N 0.47 -0.96 0.99 -0.45 -0.06 D D D 0.69 -0.08 
TNETND-RTP 2  N -0.00 -0.00 -0.20 -0.00 D D D -0.00 -0.04 
TNDTNE-RTP 3   N 0.66 -0.40 -0.00 D D D 0.00 -0.07 
TNETNE-RTP 4    N -0.38 -0.00 D D D 0.01 -0.07 
UT-RTP-ND 5     N -0.79 D D D 0.27 -0.01 
UT-RTP-NE 6      N D D D 0.00 -0.27 
TU-RTP-ND 7       N D D D D 
TU-RTP-NE 8        N D D D 

UU-RTP 9         N D D 
SN-TCP-ND 10          N -0.04 
SN-TCP-NE 11           N 

Table 3-B-16 M=3 Sign of t-Statistic * Statistical Significance 
 

P P# 1 2 3 4 5 6 7 8 9 10 11 
TNDTND-RTP 1 N -0.31 -0.70 -0.02 -0.14 -0.00 D D D -0.08 -0.02 
TNETND-RTP 2  N 0.05 0.53 -0.83 -0.99 D D D 0.52 -0.52 
TNDTNE-RTP 3   N -0.50 -0.33 -0.20 D D D 0.84 -0.11 
TNETNE-RTP 4    N -0.40 -0.03 D D D 0.62 -0.10 
UT-RTP-ND 5     N 0.76 D D D 0.32 -0.67 
UT-RTP-NE 6      N D D D 0.00 -0.30 
TU-RTP-ND 7       N D D D D 
TU-RTP-NE 8        N D D D 

UU-RTP 9         N D D 
SN-TCP-ND 10          N -0.07 
SN-TCP-NE 11           N 

Table 3-B-17 M=4 Sign of t-Statistic * Statistical Significance 
 

C. ATCP and ATCP-TCP Protocols 

The motivation for developing more protocols is to attempt to find reliable 

protocols, which with certain choices of the parameters can beat SN-TCP as far as the 

critical variable runtime at server, is concerned. This author developed a new protocol 

called the Almost TCP (ATCP) protocol, which can be characterized as a stop and wait 

and selective repeat quasi-transport level protocol. It uses the User Datagram Protocol 
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(UDP) as its official transport level protocol. ATCP gets its name from being very close 

in performance to TCP for the MIDI over IP application. ATCP does share some other 

similarities with TCP such as they both use acknowledgments, sliding windows with 

advertisements, are both reliable and deliver data in the order transmitted, and both use 

Jacobson’s algorithm for computing the acknowledgment timeout (see Computer 

Networks Third Edition by Andrew S. Tanenbaum page 541 for a good description of 

Jacobson’s algorithm and TCP in general). ATCP sends a stream of UDP data-grams that 

ultimately consists of a byte stream. TCP transmits a stream of IP-packets that in the final 

analysis is a byte stream. An ATCP sequence number refers to a given UDP datagram, 

whereas a TCP acknowledgment and sequence number refer to a single byte in the 

transmission byte stream. ATCP uses a datagram buffer size (window) advertisement that 

is equivalent to the number of data-grams between acknowledgments. The current 

version uses a fixed number of data-grams between acknowledgments which we will 

designate by x and call the protocol ATCP-x where currently 1 ≤ x ≤ 40.  The MIDI short 

message and datagram format are given in Figure 3-C-1 and Figure 3-C-2. 

 0                   1                   2                   3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|     Channel   |     Command   |     Data1     |    Data2      | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                     Delta Time (MIDI Ticks)                   ) 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                         MIDI Short Message                    | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 
Figure 3-C-1 ATCP-x MIDI Short Message Format 
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 0                   1                   2                   3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|       DBS     |       DC      |      EOS      |     Status    | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                           Sequence Number                     | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                     Sequence Number Mask High                 | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                      Sequence Number Mask Low                 | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                           Time Stamp High                     | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                            Time Stamp Low                     | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                         MIDI Short Message 1                  | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                                                               | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                                                               | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                         MIDI Short Message 2                  | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                                                               | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                                                               | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                                 …                             | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                       Final MIDI Short Message                | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                                                               | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                                                               | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 
Figure 3-C-2 ATCP-x Datagram Format 
 
Figure 10-2 requires further elaboration. DBS is the Data Buffer Size, which is an integer 

in the range 1 to 64. DC is the Datagram Count, which tells the server how many data-

grams the client is currently buffering, e. g. the total number of data-grams the server 

should receive. EOS is the End of Stream flag that is 0 if not end of file and 1 to indicate 

the end of the file. Status is an enumeration that represents a data datagram or 

acknowledgement datagram or a negative acknowledgement datagram. The MIDI short 

message is the same as Figure 3-C-1. 

In some preliminary experiments we used a variation of the protocol that utilized 

a variable number of data-grams between acknowledgments with a slow start algorithm 
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and exponential back-off mechanism, somewhat similar to TCP and TCP’s congestion 

window mechanism. However, this variant was later abandoned in favor of a simpler and 

error free version. The protocol sends x data-grams then waits for an acknowledgment or 

a timeout period to expire. If the timeout period expires up to n negative 

acknowledgments are sent before the protocol signals failure and terminates. For now the 

value of n is sixteen. The timeout period is variable (dynamic) and is calculated by 

Jacobson’s algorithm that is based on the round-trip times. ATCP-x also uses a bit vector 

or bit mask that is named by us the sequence number mask which tells which data-grams 

have been received by the receiver. Suppose the current datagram buffer size is 32 and 

the receiver did not receive data-grams 2 and 4 then the sequence number mask would be 

as follows in binary and then hex: 11010111111111111111111111111111 (base 2) = 

D7FFFFFF (base 16). The datagram count returned to the receiver along the sequence 

number mask would be equal to 30. A significant way that ATCP-x differs from TCP is 

that ATCP-x is asymmetric and has a strict sender and receiver relationship. TCP can 

piggyback data to the original sender on each acknowledgment, so that the receiver can 

also function as a sender. Another way that ATCP-x and TCP can be differentiated is that 

ATCP-x is essentially a connectionless protocol like the underlying UDP protocol. 

However, TCP is a connection-oriented protocol. 

ATCP-x was implemented in Java using Java version 1.4.0_01. The fundamental 

data objects in the program were MyATCPShortMessage and ATCPPacket. The former 

data object encapsulated the data structure in Figure 3-C-1 and the latter data object was 

an implementation of the data structure in Figure 3-C-2. MyATCPShortMessage has two 

constructors a default constructor and a constructor that allows initialization of all the 
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data fields, getters for all the data fields, a getBytes method, and a fromBytes method. The 

getBytes was used to convert a MyATCPShortMessage object into a byte stream and the 

fromBytes was utilized to convert a byte stream to a MyATCPShortMessage object. 

ATCPPacket has two constructors one that has an integer parameter that is m, the number 

of MIDI short messages per ATCPPacket, and another for fully populating the packet 

with all its data members. ATCPPacket has getters and setters for all its data fields. It also 

has the getBytes and fromBytes methods. 

We used two threads in both the client and the server. One thread was a producer 

of MIDI short messages and the other was a consumer of MIDI short messages. A MIDI 

short message vector was shared by both threads so synchronized code blocks had to be 

used to read or write to the vector, which was, in reality, a first-in first-out (FIFO) queue. 

In the server the networking thread was the producer of the MIDI short messages and the 

player thread was the consumer. Contrary to the server case, the sequencer was the 

producer in the client and the networking thread was the client’s consumer. One or more 

active sensing MIDI short messages were used as the end of file indicator or sentinel flag 

message. An active sensing message in the MIDI world is somewhat analogous to a no 

operation op-code in the universe of computer assembly languages. We used busy – sleep 

loops in the networking threads and the player thread. The more elegant Java object 

notification was later implemented. Each datagram or packet contained m MIDI short 

messages where 1 ≤ m ≤ 16. Below is a table of the ATCP-x source code files and the 

lines of code. 
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Source Code File Lines of Code 

ATCPMIDIClient.java 519 

ATCPMIDIServer.java 543 

Total 1062 

Table 3-C-1 ATCP-x Source Code Files and Lines of Code 
 

Fifteen experiments of sixty trials per experiment were carried over the period 

from November 2 to November 10, 2003. The next three tables contain the value of m 

used in the experiment and the ending time of the experiment for each of the three 

protocols ATCP-32, SN-TCP-ND, and SN-TCP-NE. One standard MIDI type 0 file named 

Trippygaia1.mid was used through out the experiments. Remember that a standard MIDI 

type 0 file consists of a single track. The same experimental setup of clients and servers 

were used in this report as those reported in the pervious chapters. We again give the 

starting and ending times of the experiments, and the actual runtimes in hours remind the 

reader that the Internet is typically thought of as being diurnal with peak times between 

9:00 AM and 12:00 PM and 7:00 PM and 10:00 PM. 

M Starting Date/Time Ending Date/Time Actual Runtime 

4 11/09/2003 10:35 AM 11/09/2003 12:42 PM 2.1167 

5 11/09/2003 12:52 PM 11/09/2003 02:59 PM 2.1167 

6 11/09/2003 05:25 PM 11/09/2003 07:31 PM 2.1000 

7 11/10/2003 10:34 AM 11/10/2003 12:40 PM 2.1000 

8 11/10/2003 12:49 PM 11/10/2003 02:55 PM 2.1000 

Totals   10.5334 

Table 3-C-2 ATCP-32 Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File 
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M Starting Date/Time Ending Date/Time Actual Runtime 

4 11/02/2003 05:59 PM 11/02/2003 08:06 PM 2.1167 

5 11/03/2003 11:28 AM 11/03/2003 01:35 PM 2.1167 

6 11/04/2003 10:46 AM 11/04/2003 12:53 PM 2.1167 

7 11/06/2003 10:59 AM 11/06/2003 01:06 PM 2.1167 

8 11/08/2003 02:39 PM 11/08/2003 04:46 PM 2.1167 

Totals   10.5835 

Table 3-C-3 SN-TCP-ND Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File 
 

M Starting Date/Time Ending Date/Time Actual Runtime 

4 11/02/2003 08:18 PM 11/02/2003 10:25 PM 2.1167 

5 11/03/2003 01:44 PM 11/03/2003 03:51 PM 2.1167 

6 11/04/2003 01:08 PM 11/04/2003 03:15 PM 2.1167 

7 11/06/2003 02:56 PM 11/06/2003 05:03 PM 2.1167 

8 11/08/2003 05:05 PM 11/08/2003 07:12 PM 2.1167 

Totals   10.5835 

Table 3-C-4 SN-TCP-NE Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File 
 

Appended to this dissertation are thirty tables and fifteen graphs in Appendix K 

that cover the ATCP-32 experiments. We compared ATCP-32 to SN-TCP-ND and SN-

TCP-NE, and SN-TCP-ND to SN-TCP-NE. We found that in the m = 6 and 8 cases that 

ATCP statistically outperformed SN-TCP-ND and that in the m = 6, 7, and 8 cases was 

the statistical winner versus SN-TCP-NE. In all the other cases the protocols were 

statistically equivalent. ATCP-x does not perform that well against SN-TCP for values of 

m less the three or equal 3. 



 54 

 

M Starting Date/Time Ending Date/Time Actual Runtime 

4 11/15/2003 12:13 PM 11/15/2003 02:20 PM 2.1167 

5 11/15/2003 02:26 PM 11/15/2003 04:32 PM 2.1000 

6 11/16/2003 03:22 PM 11/16/2003 05:28 PM 2.1000 

7 11/19/2003 01:24 PM 11/19/2003 03:30 PM 2.1000 

8 11/19/2003 03:34 PM 11/19/2003 05:40 PM 2.1000 

Totals   10.5167 

Table 3-C-5 ATCP-40 Runtime Data for Trippygaia1.mid Standard MIDI Type 0 File 
 

Table 3-C-5 displays the facts that the ATCP-40 experiments were conducted 

from November 15, 2003 to November 19, 2003. There are thirty tables and fifteen 

graphs for the ATCP-40 results in Appendix L. We compare ATCP-40 to SN-TCP-ND, 

SN-TCP-NE, and ATCP-32. ATCP-40 statistically beat SN-TCP-ND in the m = 5 and m = 

8 cases, and SN-TCP-NE in the m = 5, 6, 7, and 8 cases. ATCP-40 and ATCP-32 

statistically tied in all cases. 

Figure 3-C-4 shows a statistical significance versus m graph for ATCP-40 versus 

SN-TCP-ND and ATCP-40 versus SN-TCP-NE. The results for ATCP-40 versus ATCP-32 

are not shown due to the fact that they tied and there is a sign reversal in one of the means 

differences and the graph would not be consistent. 

The ATCP-TCP protocol is a multiply threaded version of SN-TCP using the 

ATCP notion of MIDI producer and consumer threads. There are two variations of ATCP-

TCP, namely, ATCP-TCP-ND and ATCP-TCP-NE with the now usual ND standing for 

Nagle algorithm disabled and NE standing for the Nagle algorithm enabled. Again we 

used busy – sleep loops rather than the more elegant object notification or event-handling 
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scheme of Java for the same reasons as in the ATCP-x case. Table 3-C-6 shows the 

source code files for ATCP-TCP. 

Source Code File Lines of Code 

TCPMIDIClient.java 458 

TCPMIDIServer.java 457 

Total 915 

Table 3-C-6 ATCP-TCP Source Code Files and Lines of Code 
 

M Starting Date/Time Ending Date/Time Actual Runtime 

5 11/22/2003 01:45 PM EST 11/22/2003 03:51 PM EST 2.1000 

6 11/24/2003 07:17 AM EST 11/24/2003 09:23 AM EST 2.1000 

7 12/01/2003 10:53 AM EST 12/01/2003 12:59 PM EST 2.1000 

8 12/02/2003 11:57 AM EST 12/02/2003 02:03 PM EST 2.1000 

Totals   8.4000 

Table 3-C-7 ATCP-TCP-ND Ending Date/Time for Trippygaia1.mid Standard MIDI 
Type 0 File 

 
M Starting Date/Time Ending Date/Time Actual Runtime 

5 12/07/2003 12:38 PM EST 12/07/2003 03:44 PM EST 2.1000 

6 12/08/2003 10:41 AM EST 12/08/2003 01:47 PM EST 2.1000 

7 12/13/2003 03:59 PM EST 12/13/2003 06:05 PM EST 2.1000 

8 12/21/2003 11:57 AM EST 12/21/2003 02:03 PM EST 2.1000 

Totals   8.4000 

Table 3-C-8 ATCP-TCP-NE Ending Date/Time for Trippygaia1.mid Standard MIDI 
Type 0 File 

 
Table 3-C-7 and Table 3-C-8 show the ATCP-TCP experiments as being over 

time period beginning on November 22, 2003 and ending on December 21, 2003. In 

Appendix M are thirty-two tables and sixteen graphs of the ATCP-TCP-ND experiments. 
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ATCP-TCP-ND statistically outperformed SN-TCP-ND and SN-TCP-NE in all of the 

experimental cases m = 5, 6, 7, and 8. ATCP-TCP-ND was the statistical winner over 

ATCP-32 and ATCP-40 in the m = 7 and 8 instances. From these results we can conclude 

that a multiply threaded TCP protocol is to be preferred to any of the previously 

discussed protocols. These results seem to vindicate the notion of MIDI short message 

consumer and producer threads. 

There are forty tables and twenty graphs related to the ATCP-TCP-NE 

experiments in Appendix N. ATCP-TCP-NE was victorious over SN-TCP-ND in the m = 

7 case and SN-TCP-NE in all four cases, namely, m = 5, 6, 7, and 8. ATCP-TCP-NE 

outperformed ATCP-40 in the m = 6 case. ATCP-TCP-ND was the statistical winner over 

ATCP-TCP-NE in the last case m = 8. The preceding results are displayed in Tables 3-C-

9 to 3-C-13. 

Protocol/Protocol 1 2 3 4 5 6 

1-ATCP-32 N 0.34 N N -0.95 -0.26 

2-ATCP-40  N N N -0.53 -0.08 

3-ATCP-TCP-ND   N N N N 

4-ATCP-TCP-NE    N N N 

5-SN-TCP-ND     N -0.07 

6-SN-TCP-NE      N 

Table 3-C-9 Sign of t-Statistic * Statistical Significance m = 4 
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Protocol/Protocol 1 2 3 4 5 6 

1-ATCP-32 N 0.36 0.34 0.29 -0.91 -0.54 

2-ATCP-40  N 0.73 0.32 -0.00 -0.00 

3-ATCP-TCP-ND   N 0.33 -0.00 -0.00 

4-ATCP-TCP-NE    N -0.06 -0.02 

5-SN-TCP-ND     N -0.07 

6-SN-TCP-NE      N 

Table 3-C-10 Sign of t-Statistic * Statistical Significance m = 5 
 

Protocol/Protocol 1 2 3 4 5 6 

1-ATCP-32 N -0.18 -0.36 -0.33 -0.00 -0.00 

2-ATCP-40  N 0.20 0.04 -0.74 -0.00 

3-ATCP-TCP-ND   N 0.55 -0.00 -0.00 

4-ATCP-TCP-NE    N -0.19 -0.00 

5-SN-TCP-ND     N -0.07 

6-SN-TCP-NE      N 

Table 3-C-11 Sign of t-Statistic * Statistical Significance m = 6 
 

Protocol/Protocol 1 2 3 4 5 6 

1-ATCP-32 N -0.30 0.04 0.15 -0.06 -0.00 

2-ATCP-40  N 0.00 0.08 -0.01 -0.00 

3-ATCP-TCP-ND   N -0.55 -0.00 -0.00 

4-ATCP-TCP-NE    N -0.02 -0.00 

5-SN-TCP-ND     N -0.53 

6-SN-TCP-NE      N 

Table 3-C-12 Sign of t-Statistic * Statistical Significance m = 7 
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Protocol/Protocol 1 2 3 4 5 6 

1-ATCP-32 N -0.33 0.00 -0.72 -0.01 -0.00 

2-ATCP-40  N 0.00 0.83 -0.00 -0.00 

3-ATCP-TCP-ND   N -0.00 -0.00 -0.00 

4-ATCP-TCP-NE    N -0.14 -0.03 

5-SN-TCP-ND     N -0.62 

6-SN-TCP-NE      N 

Table 3-C-13 Sign of t-Statistic * Statistical Significance m = 8 
 

For this chapter 1,977 lines of Java code were written and 59 hours and one minute 

of network time was utilized to perform the necessary illustrated experiments. Again this 

does not count the network time used in debugging the implementations. 

D. A First Approximation at a Collaboration System 

A Java client/server for the CW system was built early in the research and 

subsequently discarded. This section describes the system. Figure 3-D-1 shows the 

opening dialog box of the client. The user must first register a username. The server 

checks to see if this username is currently unused and if it is unused a message box 

appears stating the username is valid then the user must specify a password, a UDP port 

number (0 – 65535), and a musical instrument. 

After the registration process is completed, four studio room frames, a chat frame, 

and a musician’s frame appear as in Figure 3-D-2. There are three forms of chat: 

broadcast, multicast, and unicast. Broadcasted chat goes to all musicians regardless of 

their studio room location, multicasted chat goes to a single studio room, and unicasted 

chat goes to a single musician. The studio room frames have a “911” button and an 
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“Enter” button. The “911” button is to turn all MIDI notes off in case of a stuck note. The 

“Enter” button allows a musician to enter the given studio room. 

After a musician enters a studio room the client appears as shown in Figure 3-D-3. 

Only the particular studio room frame, the chat frame, and the musicians-frame are open 

in the figure. The studio room frame has three buttons “Exit”, “Piano”, and “Send”. The 

“Exit” button causes the musician to exit the current studio room and the state of the 

client is returned to the state shown in Figure 3-D-2. The “Piano” button causes a host 

and port dialog to appear and after selecting a host and port a piano keyboard appears. 

This allows the user to send piano notes to another musician in the same studio room. 

Figure 3-D-4 shows a studio room frame after the “Piano” button has been pressed. 

Figure 3-D-5 shows a studio room after the “Send” button has been pressed and after the 

host and port dialog. The figure shows a standard Java file chooser dialog from which the 

user can open, play, and transmit a MIDI file using the built-in MIDI sequencer. 

The client/server system consists of the following Java source code files: 

Central.java 372 LOC, Client.java 1259 LOC, ClientFrameInterface.java 8 LOC, and 

RommFrameInterface.java 3 LOC for a grand total of 1642 LOC. 
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Figure 3-D-1 Musician Registration Dialog 

 

 
 

Figure 3-D-2 Music Studio (House) Metaphor Client 
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Figure 3-D-3 Music Studio after a Musician Has Entered a Room 
 

 
 

Figure 3-D-4 Music Room with a Piano Keyboard for MIDI Input 
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Figure 3-D-5 Standard Java Open File Dialog 
 

E. Java and JINI Client/Server Duet System 

JINI is the Java based service discovery specification that was developed in the late 

1990s by Sun Microsystems which was described briefly in Chapter 2. We used JINI to 

lookup the hostname and port of the duet system central server. This particular duet 

system consisted of two peers that communicate with one another and the central server. 

The central server relays peer IP addresses and server port numbers to interested peers. 

This system is very close to the Windows version of the final duet system, but has some 

latency saving change such as not using a virtual keyboard. 
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F. Another Musical Duet System Failure 

In this section we tried to develop another musical duet collaboration-system. The 

software engineering decisions required in creating a viable MIDI over IP musical duet 

system are as follows: 

1. Choosing a network MIDI over IP protocol 

2. Choosing an implementation programming language 

3. Choosing the operating system(s) to be used 

4. Choosing the MIDI interface hardware 

5. Choosing the computer platform(s). 

We used a series of quantitative experiments to automatically decide between several 

different MIDI over IP protocols. These protocols are described in another paper and 

consisted of TCP based RTP protocols, a simple and naïve TCP protocol, and a 

multithreaded TCP protocol [9]. Our MIDI over IP protocol is a multithreaded variation 

of TCP that utilizes MIDI short message producer and consumer threads. This protocol 

was found to be superior to the single thread TCP protocol and TCP based RTP protocols 

using two metrics performance that we considered useful.  

We basically had two programming languages to choose from, namely, C and 

Java. Java became a logical choice with the advent of Java 1.5.0, which supports MIDI 

input on the PC platform. The programming language choice was more difficult and less 

straightforward than the quantitative protocol experiments. We could have used C++ also 

as a compromise between C and Java. In theory, C code should have the least amount of 

latency of the three previously mentioned programming languages. In order to determine 

the implementation programming language with an acceptable latency, we first 
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approached the problem with stripped down versions of the software that did not involve 

networking. We figured that if the local latency was unacceptable then there was no need 

to add networking to the equation. We found that both C and Java versions satisfied the 

local latency criterion using several different operating systems and hardware platforms. 

The next step was to add networking. 

The operating systems that were available to us were Windows 98, Windows XP, 

and Mac OS X. We also had access to Sun Solaris 9 operating system; however, due to 

the lack of MIDI input hardware for Sun Solaris 9, that operating system was ruled out of 

the game. The MIDI subsystem of the audio system of OS X uses high priority kernel 

threads to execute the MIDI callback functions, which are very desirable low latency 

characteristics of OS X.  

In the world of desktops and workstations there are essentially two predominant 

MIDI architectures: the MIDI subsystem devised by Apple for OS X and the much older 

and perhaps more mature Windows 95 multimedia system which has been enhanced 

several times in its decade long existence. First we start our discussion with the OS X 

MIDI subsystem. This subsystem uses client/server architecture. The first layer is the I/O 

toolkit of the kernel then the MIDI drivers then the MIDI server and clients, and finally 

the application. The subsystem has MIDI clients, MIDI sources, and MIDI destinations; 

MIDI input ports, and MIDI output ports. An application creates a MIDI client then it can 

add a MIDI input and/or output port. The MIDI input port calls back the application 

every time MIDI data is input into the port. MIDI data is encapsulated in a MIDI packet 

that has a length, timestamp, and the actual MIDI data bytes. MIDI packets are placed in 

a list structure that consists of one or more MIDI packets. Now onto the Microsoft MIDI 
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subsystem, which has MIDI input and output devices that have certain well defined 

capabilities. You open a MIDI input and/or output device then start the device, transmit 

or receive data; and then stop and close the device. This very simple architecture allows 

for either window or function call back entities. The fundamental unit of the MIDI 

transfer under Windows 9x+ is a double word, which can encapsulate all MIDI short 

messages and even system exclusive messages. 

On the Windows 98 and Windows XP machines we had a choice of either using a 

MIDI to game port sound card adapter or a MIDI-Audio MIDI-Sport 2x2 MIDI to USB 

interface. On the OS X machines we were forced to use the MIDI-Audio MIDI-Sport 2x2 

MIDI to USB interfaces only. Using qualitative tests, we found that either of the 

interfaces had satisfactory latency on a Windows OS machine. 

The computing platforms available to us were two Dell computers at the primary 

researcher’s house, some laptops, some older Pentium 3 systems, and two G4 dual 

processor PowerMacs. One Dell computer was a 450 MHz Pentium 2 system with 128 

MB of RAM, 12 GB hard-drive, and a Turtle Beach Montego sound card that ran 

Windows 98. The other Dell computer was a 2.26 GHz Pentium 4 with 512 MB of RAM, 

80 GB hard-drive, and Turtle Beach Santa Cruz DSP sound card that ran Windows XP 

Home Edition. 

We have isolated a number of sources of latency in MIDI over IP. Delays 

originate in the MIDI controller, the MIDI to computer interface, scheduling delays in the 

MIDI kernel of the operating system, programming language latency, sound card latency, 

network propagation, and sound propagation latency to the listener’s ear. By carefully 
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choosing hardware, software, and the network most of these sources of latency can be 

kept to acceptable minimums. 

The MIDI hardware configuration on all machines is shown in Figure 3-F-1. The 

MIDI data emanates from a MIDI controller such as a guitar synthesizer, MIDI keyboard, 

or MIDI wind controller. Then the data goes into a MIDI/USB converter via a MIDI 

input port into the computer through the MIDI kernel of the operating system, out a MIDI 

output port on the MIDI/USB converter into a tone generator, and finally via an audio 

connection into a set of amplified speakers or an amplifier. 

The software process or thread architecture for the duet system is shown in Figure 

3-F-2. Each of the six central boxes represents a heavyweight thread (UNIX process) in 

the user address space and the outermost boxes are the MIDI kernel threads of OS X. The 

figure shows two peers communicating by TCP/IP. The MIDI data flow is from the MIDI 

main process which is responsible for creating a MIDI client and MIDI input and output 

ports, and connecting the MIDI input port to a MIDI source into the MIDI kernel and 

vice versa. Also a MIDI destination is selected is by the MIDI main process. The MIDI 

data flows from the MIDI kernel into MIDI send TCP process and over the wire to a 

peer’s MIDI receive TCP process. We used lightweight user space threads under 

Windows and heavyweight threads (processes) under Mac OS X. 

We developed a number of Java and C prototypes of the system on the Windows 

platform. On this platform we included a central server to take care of registration of the 

peers in the peer-to-peer network. This way a musician could utilize another musician’s 

system wide username to find a duet partner. Two of the prototypes, one in Java, and the 

other using a Java native method written in C utilized the JINI 1.0 specification to handle 
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the job the central server discovery. This made it unnecessary for the end-user to type the 

central server’s hostname or IP address and port number into the program. JINI is a 

service discovery protocol that is well suited for use on a communication network for 

finding local services. The central server concept was also used for chatting between the 

duet musician pairs. 

The Windows software had a graphical user interface that consisted of a virtual 

piano keyboard that showed the local and remote notes being played and also had a 

useful feature to show the instruments being played by a MIDI sequence. Each MIDI 

channel had its own color. The virtual keyboard could also be used as a “virtual” MIDI 

controller by selecting a menu item. The current software on the PowerMac platform is 

purely command line driven, however, this situation will be remedied in the near future. 

We performed quantitative experiments using a statistically small sample space of 

ten experimental instances per two MIDI sequences to be transmitted to determine the 

time required for the sequences to be played locally on the destination machine or over a 

LAN on the destination machine. Table 3-F-1 shows the time in seconds required to play 

the MIDI sequences on the destination machine with no networking involved. Table 3-F-

2 shows the playing time at the destination for two MIDI sequences over a LAN that 

involved the Windows 98 machine above as the destination (receiver) and the Windows 

XP from above as the source (sender). A MIDI standard format 0 file is a sequence, 

which consists of one track, whereas a MIDI standard format 1 file consists of one or 

more tracks to be played simultaneously. In each case the sequence required more time to 

play over the LAN than locally which is to be expected due to network latency. 
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Sequence MIN AVG MAX STD 
Format 0 66.7 66.8 67.3 0.2 
Format 1 89.0 89.2 90.0 0.4 

Table 3-F-1 MIDI Sequence Playing Time Locally 
 

Sequence MIN AVG MAX STD 
Format 0 67.2 67.4 67.4 0.1 
Format 1 89.3 89.4 89.5 0.1 

Table 3-F-2 MIDI Sequence Playing Time on a LAN 
 

 
Figure 3-F-1 MIDI Hardware Configuration 
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Figure 3-F-2 MIDI Software Configurations 
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CHAPTER 4 RTP AND TCP PROTOCOLS 

A. Introduction 

In this chapter we discuss the successful quantitative study of RTP and TCP 

protocols. All of our MOIP protocols utilized TCP as the underlying transport layer 

protocol due to the intolerance of MIDI for lost or out-of-order data. This inability to 

handle unreliable data delivery is due to the fact that a lost or out-of-order MIDI short 

message can have a catastrophic effect on a remote performance. Suppose the MIDI short 

message that turns off a certain note is lost then that note will sound indefinitely, and it is 

difficult for a musician to turn off a stuck note. The same situation can occur if the MIDI 

short message to turn a note off arrives before the MIDI short-message to turn the note 

on. We chose to use TCP rather than the newer reliable transport protocol the Stream 

Control Transport Protocol (SCTP) since TCP is ubiquitous and SCTP is just gaining 

acceptance [11]. A unique design feature of the Java Media Framework, which is a set of 

Java interfaces and objects that allow a Java application or applet to read or write 

streaming media such as audio or video using RTP, affords a choice of the underlying 

transport protocol for the JMF RTP implementation. 

As was stated earlier RTP has two information channels available: one for control 

and one for data. Since there are two transport layer protocols that are readily available to 

the JMF version of RTP, namely, TCP and UDP, and there are two communication 
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channels in RTP, then there are four combinations of transport layer protocol and 

channels as shown in Table 4-1. 

# Control Channel Data Channel 

1 UDP UDP 

2 UDP TCP 

3 TCP UDP 

4 TCP TCP 

Table 4-A-1 Channel and Transport Layer Protocols for RTP 
 

From a preliminary set of experiments, we were able to eliminate 1 and 3 due to 

unreliability. Also, we have two states of the Nagle algorithm: either it was enabled or 

disabled. We nicknamed our 6 RTP based protocols UT-RTP-ND, UT-RTP-NE, TT-

RTP-NDND, TT-RTP-NDNE, TT-RTP-NEND, and TT-RTP-NENE, where the prefix 

UT meant UDP control channel and TCP data channel and ND stood for Nagle disabled 

whereas NE denoted that the Nagle algorithm was enabled. The baseline protocol was a 

vanilla variation of TCP, which we chose to call simple and naïve TCP, e.g. SN-TCP-ND 

and SN-TCP-NE. In addition another branch of the TCP tree of protocols was used which 

we refer to as MIDI producer and consumer thread TCP, e.g. PC-TCP-ND and PC-TCP-

NE. PC-TCP is multithreaded and thus is able to play a MIDI command locally 

concurrently with possibly sending the command over the network. This means that our 

experimental protocol basis set consisted of 10 protocols. 

The data structure that was transmitted and received by the protocols consisted of 

a MIDI short message and a delta-time in milliseconds. The MIDI short message was 
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composed of a channel byte, a command byte, and two data bytes. The delta-time was a 

Java long, which is 8 bytes or 64 bits in length. There was m of these data structures per 

packet where m was 1, 2, 3, or 4. The following figure illustrates the preceding data 

structure. 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|     Channel   |     Command   |     Data1     |    Data2      | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                  Delta-Time Hi (Milliseconds)                 | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
|                  Delta-Time Lo (Milliseconds)                 | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 
Figure 4-A-1 MIDI Short Message Format and Delta-Time 

 
There are two different strategies that can be used as far as the delta-times that a 

sender reports are concerned. Either the delta-times can be initialized to zero, in which 

case we call this dishonesty or lying delta-time policy, or the true delta-time between 

MIDI short messages is specified, and this sort of policy is called the honesty delta-time 

policy. 

B. Experimental Procedure 

Using the 10 protocols of the previous section, we utilized two networks and 

conducted 60 experiments per network per protocol per value of m (which you will recall 

was the number of MIDI short messages per packet). We used m = 1, 2, 3, and 4. So this 

meant we performed 2 * 10 * 60 * 4 = 4800 experimental instances. After consulting 

with a statistician, we decided to use a statistically large number of experiments [47]. In 

this set of experiments we utilized the dishonesty delta-time policy of the previous 

section. 
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The networks we used were a LAN and a WAN with a dialup link and an 

asymmetric digital subscriber line (ADSL) leg. The computers that formed the LAN and 

WAN were only a few feet apart in a residence, the WAN formed approximately 150 

miles in wired distance. Both endpoints of the connections were Dell computers. The 

dialup computer was a Windows 98 machine with a 450 MHz Pentium 2 processor, 128 

MB of RAM, and Turtle Beach Montego sound card. The other computer was a Windows 

XP Home Edition box with a 2.26 GHz Pentium 4 processor, 512 MB RAM, and Turtle 

Beach Santa Cruz DSP sound card. The dialup baud rate was a constant 31.2 kbps 

throughout the experiments. 

We were interested in accumulating two metrics to measure the performance of 

each protocol. The first and easiest to understand metric was the time required to play a 

MIDI format 0 file, which had been sequenced and transmitted over the Internet, on the 

destination host. A MIDI (format 0) file consists of a single track, whereas the other 

common MIDI (format 1) file has one or more tracks, which are to be played 

simultaneously. We want these numbers to be close to the time required to play the 

sequence on the destination host without any networking. These measurements gave a 

rough approximation of the overall network latency. The second metric is more difficult 

to interpret and was rough measurement of the jitter on the networks. This metric 

involved gathering the inter-departure and inter-arrival times then calculating a simple 

function based on the absolute difference in the inter-departure time minus the inter-

arrival time divided by the inter-departure time. The temporal relationships between the 

inter-departure and inter-arrival times are illustrated in Figure 4-B-1.  
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            Sender      Receiver 

         Packeti-1           Packeti    Packeti-1 Packeti       

       IDi        Time    IAi 

Figure 4-B-1 Inter-Departure Time and Inter-Arrival Time Temporal Relationships 
 

The function we used for the jitter measurement is as shown in Equation (1): 

(1) 
iiii

IDIAIDd /||100 !"=  

Where the index, i, runs from 2 to the number of packets. The inter-departure times and 

inter-arrival times are defined by Equations (2) and (3): 
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In Equations (2) and (3), Di is the departure time of the ith packet and Ai is the arrival 

time of the ith packet and the indices are the same as in Equation (1). 

C. Experimental Results 

As was previously mentioned the number of experimental instances was 4800. 

We were able to distill this data into 2 * (9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1) * 4 = 2 * 45 * 

4 = 360 graphs of mean runtime at destination paired comparison, and 2 * 10 * 4 = 80 

graphs of the Equation (1). We also generated Student’s paired means t-test data using a 

significance level of 5% which have been reduced to 4 tables per network, one table for 

each value of m. Figures 4-C-1 to 4-C-4 display histograms of the mean run time at the 
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destination for PC-TCP-ND (black) and SN-TCP-ND (red) on the WAN. The x-axis has 

the experiment number which runs from 1 to 60 and y-axis is the runtime at the 

destination in milliseconds. PC-TCP-ND statistically outperformed SN-TCP-ND in each 

of the 4 cases. 

Graphs of all the experiments involving Equation (1) are to be found in Appendix 

A and Appendix C for the LAN and WAN, respectively. The corresponding paired 

comparison graphs are found in Appendix B and Appendix D for the LAN and WAN, 

respectively. The paired comparison statistical data is to found in Appendix E and 

Appendix F for the LAN and WAN, respectively. 

 

Figure 4-C-1 PC-TCP-ND VS SN-TCP-ND m = 1   
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Figure 4-C-2 PC-TCP-ND VS SN-TCP-ND m = 2 
 

 

Figure 4-C-3 PC-TCP-ND VS SN-TCP-ND m = 3  
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Figure 4-C-4 PC-TCP-ND VS SN-TCP-ND m = 4 
 

Table 4-C-1 to 4-C-4 show the paired means Student’s t-test signs of the t-

statistics and significances for the 10 protocols on the LAN. These tables were generated 

from the statistical data in Appendix E. The sign is determined from the sign of the t-

statistic. If the absolute value of the combined sign of the t-statistic and the significance is 

less than or equal 0.05 then one of the protocols in a row and column outperformed the 

other. If the combined sign of the t-statistic and the significance is negative and has an 

absolute value less than or equal 0.05 then the row protocol statistically outperformed the 

column protocol. On the other hand, if the combined sign of the t-statistic and the 

significance is positive and less than or equal 0.05 then the column protocol statistically 

did better than the row protocol. The protocol names have been shortened to create row 

and column labels as follows: NDND = TT-RTP-NDND, NEND = TT-RTP-NEND, 
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NDNE = TT-RTP-NDNE, NENE = TT-RTP-NENE, UTND = UT-RTP-ND, UTNE = 

UT-RTP-NE, PCND = PC-TCP-ND, PCNE = PC-TCP-NE, SNND = SN-TCP-ND and 

SNNE = SN-TCP-NE. 

Looking at UTND row and the PC-TCP-NE column, we find a combined sign of 

the t-statistic and the significance of 0.002, which means that PC-TCP-NE statistically 

won the battle over UT-TCP-ND. Now look at the NENE column in the same row and 

the combined sign of the t-statistic and the significance is -0.164, which means that the 

two protocols were statistically equivalent. From the tables it is apparent that PC-TCP-

ND and PC-TCP-NE were statistically the best protocols. What is surprising is that for m 

= 2 and m = 3 is that PC-TCP-NE beat PC-TCP-ND statistically. 

 
Table 4-C-1 Combined Sign of t-Statistic and Statistical Significance Table m = 1 

 
 P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SNND SNNE 

NDND - -0.222 0.169 0.075 0.466 0.005 0.000 0.000 0.269 0.274 
NEND 0.222 - 0.032 0.020 -0.493 0.000 0.000 0.000 0.300 0.303 
NDNE -0.169 -0.032 - 0.812 0.438 0.107 0.000 0.000 -0.239 -0.244 
NENE -0.075 -0.020 -0.812 - -0.433 0.225 0.000 0.000 -0.233 -0.239 
UTND -0.466 0.493 -0.438 0.433 - 0.407 0.000 0.000 0.950 -0.967 
UTNE -0.005 -0.000 -0.107 -0.225 -0.407 - 0.000 0.000 -0.208 -0.215 
PCND -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 - 0.266 -0.000 -0.000 
PCNE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.266 - -0.000 -0.000 
SNND -0.269 -0.300 0.239 0.233 -0.950 0.208 0.000 0.000 - -0.456 
SNNE -0.274 -0.303 0.244 0.239 0.967 0.215 0.000 0.000 0.456 - 

Table 4-C-2 Combined Sign of t-Statistic and Statistical Significance Table m = 2 
 

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SNND SNNE 
NDND - -0.673 -0.306 -0.288 0.049 -0.367 0.000 0.000 0.491 0.462 
NEND 0.673 - -0.315 -0.307 0.083 -0.376 0.000 0.001 0.514 0.476 
NDNE 0.306 0.315 - 0.325 0.233 -0.986 0.000 0.000 0.187 0.062 
NENE 0.288 0.307 -0.325 - 0.164 -0.432 0.000 0.000 0.000 -0.848 
UTND -0.075 -0.083 -0.233 -0.164 - -0.292 0.000 0.002 -0.303 -0.337 
UTNE -0.049 0.376 0.986 0.432 0.292 - 0.000 0.000 0.294 0.224 
PCND -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 - -0.000 -0.000 -0.000 
PCNE -0.000 -0.001 -0.000 -0.000 -0.002 -0.000 0.000 - -0.000 -0.000 
SNND -0.491 -0.514 -0.187 -0.000 0.303 0.294 0.000 0.000 - -0.421 
SNNE -0.462 -0.476 -0.062 0.848 0.337 -0.224 0.000 0.000 0.421 - 
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P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SNND SNNE 
NDND - -0.673 -0.497 0.395 0.499 0.257 0.004 0.000 0.501 0.472 
NEND 0.673 - -0.324 0.304 0.160 0.176 0.000 0.000 0.132 0.397 
NDNE 0.497 0.324 - 0.312 0.241 0.242 0.000 0.000 0.509 0.362 
NENE -0.395 -0.304 -0.312 - -0.942 0.081 0.003 0.000 -0.247 -0.475 
UTND -0.499 -0.160 -0.241 -0.942 - 0.267 0.000 0.000 -0.149 -0.864 
UTNE -0.257 -0.176 -0.242 -0.081 -0.267 - 0.002 0.000 -0.161 -0.192 
PCND - 0.004 -0.000 -0.000 - 0.003 -0.000 -0.002 - 0.385 -0.000 -0.000 
PCNE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.385 - -0.000 -0.000 
SNND -0.501 -0.132 -0.509 0.247 0.149 0.161 0.000 0.000 - 0.313 
SNNE -0.472 -0.397 -0.362 0.475 0.864 0.192 0.000 0.000 -0.313 - 

Table 4-C-3 Combined Sign of t-Statistic and Statistical Significance Table m = 3 
 

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SNND SNNE 
NDND - -0.096 -0.315 -0.454 -0.517 0.000 0.000 0.000 0.002 0.001 
NEND 0.096 - -0.329 0.240 -0.612 0.000 0.000 0.000 0.052 -0.038 
NDNE 0.315 0.329 - 0.321 0.403 0.247 0.000 0.005 0.346 0.362 
NENE 0.454 -0.240 -0.321 - -0.556 0.000 0.000 0.000 -0.006 -0.004 
UTND -0.517 0.612 -0.403 0.556 - 0.173 0.000 0.000 0.718 0.728 
UTNE -0.000 -0.000 -0.247 -0.000 -0.173 - 0.000 0.000 -0.000 -0.000 
PCND -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 - -0.000 -0.000 -0.000 
PCNE -0.000 -0.000 -0.005 -0.000 -0.000 -0.000 0.000 - -0.000 -0.000 
SNND -0.002 -0.052 -0.346 0.006 -0.718 0.000 0.000 0.000 - -0.813 
SNNE -0.001 0.038 -0.362 0.004 -0.728 0.000 0.000 0.000 0.813 - 

 
Table 4-C-4 Combined Sign of t-Statistic and Statistical Significance m = 4 

 
 The tables Table 4-C-5 to Table 4-C-8 display WAN statistical significances, 

which are analogous as far as interpretation goes with the LAN values in Tables 2 to 5., 

and were compiled from the data in Appendix F.  Please note that in the WAN case that 

PC-TCP-ND outperforms all of the other protocols except for PC-TCP-NE in every m 

case. 
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P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SNND SNNE 
NDND - 0.311 -0.016 -0.237 -0.172 0.288 0.000 0.000 -0.136 -0.209 
NEND -0.311 - -0.221 -0.273 -0.223 -0.669 0.000 0.000 -0.263 -0.280 
NDNE 0.016 0.221 - -0.369 -0.280 0.199 0.000 0.000 -0.980 -0.774 
NENE 0.237 0.273 0.369 - -0.736 0.261 0.000 0.000 0.296 0.262 
UTND 0.172 0.223 0.280 0.736 - 0.210 0.000 0.000 0.221 0.202 
UTNE -0.288 0.669 -0.199 -0.261 -0.210 - 0.000 0.000 -0.244 -0.262 
PCND -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 - -0.088 -0.000 -0.000 
PCNE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.088 - -0.000 -0.000 
SNND 0.136 0.263 0.980 -0.296 -0.221 0.244 0.000 0.000 - -0.575 
SNNE 0.209 0.280 0.774 -0.264 -0.202 0.262 0.000 0.000 0.575 - 

Table 4-C-5 Combined Sign of t-Statistic and Statistical Significance Table m = 1 
  

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SNND SNNE 
NDND - -0.936 -0.930 -0.366 0.269 0.524 0.000 0.034 -0.744 -0.488 
NEND 0.936 - 0.975 -0.103 0.319 0.539 0.000 0.000 -0.658 -0.047 
NDNE 0.930 0.975 - -0.355 0.000 0.006 0.000 0.024 -0.753 -0.466 
NENE 0.366 0.103 0.355 - 0.175 0.235 0.000 0.000 0.268 0.179 
UTND -0.269 -0.319 -0.000 -0.175 - -0.000 0.000 0.060 -0.540 -0.175 
UTNE -0.524 -0.539 -0.006 -0.235 0.000 - 0.000 0.042 -0.620 -0.266 
PCND -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 - -0.129 -0.000 -0.000 
PCNE -0.034 -0.000 -0.024 -0.000 -0.060 -0.042 0.129 - -0.000 -0.000 
SNND 0.744 0.658 0.753 -0.268 -0.540 0.620 0.000 0.000 - -0.943 
SNNE 0.488 0.047 0.466 -0.179 0.175 0.266 0.000 0.000 0.943 - 

Table 4-C-6 Combined Sign of t-Statistic and Statistical Significance Table m = 2 
 

P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SNND SNNE 
NDND - -0.651 -0.489 0.593 0.138 0.282 0.000 0.000 0.595 0.388 
NEND 0.651 - -0.004 0.503 0.299 0.376 0.000 0.000 0.490 0.424 
NDNE 0.489 0.004 - 0.354 0.188 0.249 0.000 0.000 0.349 0.288 
NENE -0.593 -0.503 -0.354 - 0.000 0.000 0.000 0.000 0.856 0.000 
UTND -0.138 -0.299 -0.188 -0.000 - -0.000 0.000 0.000 0.209 -0.000 
UTNE -0.282 -0.376 -0.249 -0.000 0.000 - 0.000 0.000 -0.521 -0.005 
PCND -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 - -0.228 -0.000 -0.000 
PCNE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.228 - -0.000 -0.000 
SNND -0.595 -0.490 -0.349 -0.856 -0.209 0.521 0.000 0.000 - 0.749 
SNNE -0.388 -0.424 -0.288 -0.000 0.000 0.005 0.000 0.000 -0.749 - 

Table 4-C-7 Combined Sign of t-Statistic and Statistical Significance Table m = 3 
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P/P NDND NEND NDNE NENE UTND UTNE PCND PCNE SNND SNNE 
NDND - -0.514 -0.002 -0.142 -0.141 -0.203 0.000 0.000 -0.712 -0.092 
NEND 0.514 - -0.012 -0.196 -0.204 -0.000 0.000 0.000 -0.858 -0.175 
NDNE 0.002 0.012 - -0.289 -0.337 0.053 0.000 0.000 0.490 -0.406 
NENE 0.142 0.196 0.289 - 0.365 0.229 0.000 0.000 0.005 0.233 
UTND 0.141 0.204 0.337 -0.365 - 0.247 0.000 0.000 0.001 0.334 
UTNE 0.203 0.000 -0.053 -0.229 -0.247 - 0.000 0.000 -0.983 -0.238 
PCND -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 - -0.166 -0.000 -0.000 
PCNE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.166 - -0.000 -0.000 
SNND 0.712 0.858 -0.490 -0.005 -0.001 0.983 0.000 0.000 - -0.000 
SNNE 0.092 0.175 0.406 -0.233 -0.334 0.238 0.000 0.000 0.000 - 

Table 4-C-8 Combined Sign of t-Statistic and Statistical Significance Table m = 4 
 
 Figures 4-C-5 to 4-C-8 show graphs of Equation (1) on the LAN. We believe that 

the peak at 105% is the most significant feature of the histograms. The smaller this 

indicative bar then the better the protocol is with respect to transmitting a MIDI sequence 

over the network. Figure 4-C-9 has a three dimensional representation of the data that 

was used to create Figure 4-C-5. 

 

Figure 4-C-5 PC-TCP-ND m = 1 
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Figure 4-C-6 PC-TCP-ND m = 2 

 

Figure 4-C-7 PC-TCP-ND m = 3 
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Figure 4-C-8 PC-TCP-ND m = 4 
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Figure 4-C-9 Equation (1) Plot for LAN PC-TCP-ND m = 1 
 
C. Musical Duet System 

 In the initial stages of the development of a musical duet collaboration system, we 

wanted to use Java as the implementation programming language; however, it was 

thought that the language had too much inherent latency. Java 1.5.0 does support both 
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MIDI input and output on all platforms, but the Apple version of Java 1.5.0 won’t be 

released until the OS X Tiger becomes available in spring 2005. Our target platforms for 

the duet system were both Windows and OS X with ANSI C being a common language 

of the operating systems. ANSI C is probably lowest latency higher-level language 

available on both platforms since Windows and OS X extensively use C APIs. 

 We built a duet system on Windows, which had some common elements as the 

RMCP system of Goto et al. mentioned earlier. Both systems had a virtual piano 

keyboard for displaying keys being played or for mouse input of notes. Our display also 

showed the general MIDI instruments being utilized by each MIDI channel. Similarly we 

designed a non-GUI duet system for the OS X system. The Windows system used 

lightweight threads, whereas the OS X system went with heavyweight threads 

(processes). Both the Windows and OS X systems were peer-to-peer in nature instead of 

the classical client/server architecture. 

The Windows system initial dialog is shown in Figure 4-C-10 and in Figure 4-C-11 is the 

main window. 
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Figure 4-C-10 Duet System Initial Dialog 

 

Figure 4-C-11 Duet System Main Window 
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 We isolated a number of sources of latency in our duet systems, namely, MIDI 

input, programming language, operating system, network, sound card, and speakers. By 

carefully choosing the hardware and software the delays could be made acceptable. 

The hardware configuration of the duet system consisted of five major 

components: computer, MIDI controller, MIDI-to-USB converter, tone generator, and 

speakers. We used three different types of MIDI controllers: Yamaha CBX-K2 keyboard 

controller, Roland GR-33 guitar synthesizer and Roland-ready Fender Stratocaster guitar, 

and a Yamaha WX5 wind controller. Of the three controllers utilized the keyboard 

controller seemed to have the most acceptable latency. On the Windows platform we 

tried to types of MIDI input, the direct MIDI-to-soundcard cable and the MIDI-to-USB 

converted. Both of these input methods appeared to be the same to us in terms of delay. 

Only MIDI-to-USB input was available for OS X. The hardware configuration is 

illustrated in Figure 4-C-12. 

 
           Speakers   Tone Generator USB-to-MIDI MIDI Controller 

   
Figure 4-C-12 Duet System Hardware Configurations 

 
 The software configuration is specified in Figure 4-C-13. As has been said the 

networking architecture is peer- to-peer rather than the classical client/server paradigm. 
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Each peer consists of three processes or threads: MIDI receive, MIDI main, and MIDI 

send. The MIDI main entity is responsible for MIDI input and output via the MIDI-to-

USB converter. The MIDI receive process or thread blocks until a packet is received then 

it dispatches the MIDI data in the packet to the MIDI main process or thread to be played. 

The MIDI send process or thread is responsible for transmitting MIDI data that from the 

MIDI main process or thread to the Internet. 

                                             Peer 1         Peer 2 

     MIDI Send   MIDI Receive 

 
                                          MIDI Receive     MIDI Send 
                                        Peer 1           Peer 2 
 

Figure 4-C-13 Duet System Software Configurations
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CHAPTER 5 MUSICAL DUET SYSTEM 

 
Many of you may have heard the old adage that in the real estate industry 

everything is “location, location, location”, well in our case we substitute latency for 

location. We wanted to reduce the sources of latency as much as possible. As we have 

stated previously paper the sources of latency in this particular application area are: MIDI 

input and output stream latency, the hardware and software computer delays, network 

delays, and the latency in going from the computer speakers to listener’s ears. Our 

primary concern was to minimize latency. 

 The application evolved through many different versions from a monolithic 

program to an application that consists of a fair number of implementation modules that 

are discussed in the next section. 

 The Apple Carbon based MIDI duet application consists of the source code files 

shown in Table 5-1. Internally, the modules are pretty sparingly documented, so the 

number of lines of code (LOC) per module is pretty accurately portrayed in the second 

column of Table 5-1. The complete application has a modest total of about three thousand 

LOC. 
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Source File Lines 
Apple.h 22 
Apple.c 318 
Duet.h 117 
Duet.c 628 

Globals.h 108 
Glabals.c 103 
Main.c 527 
MIDI.h 21 
MIDI.c 732 

NavFunctions.h 14 
NavFunctions.c 107 
TCPNetwork.h 16 
TCPNetwork.c 324 

Total 3037 

Table 5-1. Source Code Files and Lines of Code 
 
 The graphical user interface (GUI) elements utilized by the application are: alerts, 

check boxes, combination (combo) boxes, edit boxes, menus, popup buttons, push 

buttons, radio buttons, and windows. The main window is displayed in Figure 7-1. The 

window has a total of seventeen GUI elements with an estimated number of states equal 

to 2^4 * 2^3 * 2^2 * 2^2 * 2^1 * 2^1 * 2^3 * 2^3 * 2^3 * 2^1 * 2^1 = 2^24 = 16,777,216 

not counting the edit box states. Obviously, this far too many states to exhaustively test 

by hand so it would be really nice to have some testing mechanism comparable to the 

Palm Operating System (OS) Gremlins for testing the interface. 

 The main window has check boxes for controlling the delta-time policy, which is 

either the honesty policy or lying policy, enabling the Nagle algorithm, local playing of a 

MIDI sequence, and muting of the audio system. The number of MIDI short messages 

per TCP packet is controlled by a popup button and defaults to one MIDI short message 

per packet. The peer and my ports default to TCP port number 5000. The peer host name 
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or Internet Protocol (IP) address is entered via an edit box. Popup buttons also allow the 

user to choose the MIDI input and output devices. The channel map and virtual keyboard 

window opening functions are implemented using check boxes. Fly over hints and their 

voice narration are controlled utilizing a check box whose default state is no fly over 

hints. The channel map and virtual keyboard windows are shown is Figures 5-2 and 5-3. 

The channel map window allows each local MIDI channel to be mapped to the same or 

different remote channel, which allows a duet to be played without the collision of local 

and remote MIDI short messages. 

 
 

Figure 5-1 Main Windows  
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Figure 5-2 Virtual Keyboard 
 

 
 

Figure 5-3 Channel Map Windows 
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 Returning to the software, the Apple module has code for setting the text of an 

edit box, getting the text of an edit box, beginning and ending an open or save dialog, etc. 

The duet module has the definitions of many of structures used by the application and the 

ancillary window creation and handling functions. The Globals module has definitions 

and external references to all the global variables used by the application. The main 

module creates the main window and handles the main window’s GUI elements events. 

The MIDI unit has the MIDI reading procedures for sequences and non-sequences. It also 

has the basic functions for setting up and initializing the MIDI handling procedures. The 

NavFunctions module has the navigation functions for the open and save navigation 

dialogs. The TCPNetwork program unit has the TCP server thread code and the client 

related TCP packet handing code. 

 The basic architecture of the MIDI duet application is a peer-to-peer design (P2P) 

that utilizes a client and server part in each of the two connected peers. This is illustrated 

in Figure 5-4. 

 
Figure 5-4 Peer-to-Peer Duet Architecture 
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CHAPTER 6 CONCLUSIONS 

 
A. Chapter 2 Conclusions 

The prior MOIP research was mainly an exploration of the existing protocol design 

space to find an effective and suitable candidate protocol. Early attempts were focused on 

UDP then TCP and later RTP. This research essentially followed the same line of 

protocol succession as the prior research. The previous studies made no attempt to 

quantitatively compare existing MOIP protocols. This neglect of an experimentally sound 

basis for choosing one MOIP protocol over another MOIP protocol seemed to be a 

glaring defect, and an area to be covered by this research. 

Not all researchers before the current scientists came to the conclusion that a successful 

MOIP protocol must be, by the very nature of MIDI, a reliable protocol. A number of 

attempts were aimed at utilizing fundamentally unreliable protocols such as UDP and 

RTP. In these researchers’ opinions such efforts using protocols that do not guarantee in 

order delivery of packets are doomed to failure. 

B. Chapter 3 Conclusions 

The first attempt at creating a new and viable MOIP protocol by this research team was 

a miserable failure, however, we did learn a good lesson from this endeavor, namely, that 

UDP is not a suitable base protocol for the MOIP application without making extreme 

modifications to UDP. We also tried to utilize Young and Fujinaga’s notion of adding 
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packet redundancy to UDP, but this fix was also unsuccessful by the experimental criteria 

that we were using. 

A later protocol which went by the nickname ATCP which designated an Almost TCP 

like protocol seemed to fare somewhat better than our first flawed and unreliable 

protocol, but this protocol was later discovered to be fundamentally unusable for the 

musical duet application. In subsequent work this protocol disappeared from the mix of 

protocols being used experimentally. 

The primordial efforts to create a musical duet system in Java were aborted due to the 

apparent language latency and the fact that at the time, the only way to perform MIDI 

input was to write native code. With the advent of Java 1.5 this glaring deficiency in the 

Java MIDI package was corrected. We then renewed our attempts to use Java as a basic 

MOIP language, but this time we were hampered by machines which were just too slow 

for the application. As we will see in the Chapter 5 conclusions this problem of relatively 

slow processors has been somewhat mitigated by currently available hardware. 

The last proposed and implemented duet system introduced in this chapter represents a 

proof concept and is not intended to be a production system. Before an utilizable 

commercial product can be created more research into the issues of hardware, software, 

and network requirements is indicated. Also, work needs to be done on creating better 

user interfaces for the system with accompanying human user experimentation. Our 

research seems to indicate that Java involves a little too much inherent language latency 

to be used presently in this application area. Native or near native languages such as C 

seem to perform better as far as language latency is concerned. The system outlined 

above could be generalized to more performers than a musical duet. The extension to 
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trios, quartets, or ensembles is fairly straightforward. The musical duet performance 

system of this paper offers another way for musicians to collaborate in real-time, and 

unlike streaming audio the bandwidth requirements are not that great 

C. Chapter 4 Conclusions 

The overwhelming conclusion to come from this chapter was the fact that using the 

Java Media Framework (JMF), one could design and implement reliable RTP protocols 

using TCP as the transport protocol. The idea of using a reliable protocol at the RTP 

transport layer was not in itself novel, but in the MOIP area of research this notion had 

not been previously used. These RTP based protocols in many ways performed as well as 

the vanilla TCP protocols. 

We devised two metrics for measuring the performance of the test suite of ten MOIP 

protocols which were: the runtime of a MIDI sequence on the destination host, and a 

metric which tended to correspond to amount of jitter in a protocol. We then used a 

statistically larger number of experiments to determine the best protocol in the test suite 

based on the previously mentioned empirical measurements. It was found that on a pair 

of heterogeneous Windows platforms that the producer and consumer multithreaded TCP 

protocol was the most efficient MOIP protocol. 

D. Chapter 5 Conclusions 

The primary result to be drawn from this chapter is that for consistently transmitting 

MIDI data over a network, a reliable transport layer protocol should be used. As was 

stated multiple times in this paper, MIDI is very sensitive to lost or out-of-order data, 

unlike audio or video transmissions which can afford to lose some data. We found that 

utilizing UDP for transport was, in general cases, a bad idea due to stuck notes. A simple 
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argument shows that the dishonesty delta-time policy is preferable to the honesty delta-

time policy for m = 1 in performing a musical duet. However, in the general m cases and 

for the transmission of MIDI sequences over a network, the honesty delta-time policy 

should probably be used. We will investigate the efficacy of the honesty delta-time policy 

in future research. 

We implemented the musical duet performance system of this chapter on two different 

operating systems, namely, Windows and OS X using the C language. The system 

appeared to have a lower latency on the OS X system; however, this could be due to the 

fact that our Windows machines did not have the fastest x86 processors currently 

available. 

E. Overall Conclusions  

The overall conclusions to be drawn from this research is that the creation of high 

performance MIDI over IP protocols is a very difficult problem, and the design and 

implementation of a viable musical duet system using a MIDI over IP protocol is an 

extremely challenging software engineering task. As machines and the Internet 

infrastructure improve in terms of speed and bandwidth then the latencies mentioned 

earlier that are associated with MIDI over IP may disappear altogether.  In this section we 

will address the overall conclusions that were derived from both of the endeavors cited 

immediately above in this paragraph. 

New networking protocols are by the nature of the problem hard to develop and 

properly implement. Typically, finite state machines for both the sender and receiver are 

designed and implemented in some real computer language or in a simulator-type script. 

An alternative design strategy is the use of a Petri net. The networking protocol must be 
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free of deadlocks, live-locks, and improper terminations [48]. A usable musical duet 

system poses several problems such as having a low overall latency and proper 

synchronization. The latency issues were addressed as best as possible with the available 

software and hardware by careful design choices. Duet synchronization was performed 

using a simple metronome count up subsystem. 
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APPENDIX A LAN EQUATION (1) CHAPTER 4 GRAPHS 

There are forty graphs in this appendix for a local area network (LAN) that were 

generated from Equation (1) in Chapter 4. There are four graphs each for all ten protocols 

in the suite of MIDI over IP protocols. To reiterate the protocols are as follows: TT-RTP-

NDND, TT-RTP-NEND, TT-RTP-NDNE, TT-RTP-NENE, UT-RTP-ND, UT-RTP-NE, 

PC-RTP-ND, PC-TCP-NE, SN-TCP-ND, and SN-TCP-NE, where ND = Nagle algorithm 

disabled and NE = Nagle algorithm enabled (typically the default Internet setting). 
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APPENDIX B LAN PAIRED MEANS COMPARISON GRAPHS 

This appendix consists of 180 graphs of the mean runtime of a MIDI sequence on the 

destination host on a LAN. The number of graphs can be determined by calculating the 

total number of possible pairings of the protocols as (10 * 9) / 2 = 45 and multiplying 45 

by 4 to get 180, where 4 is the number of values of m, the number of MIDI short 

messages per TCP packet.  
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APPENDIX C WAN EQUATION (1) CHAPTER 4 GRAPHS 

There are forty graphs in this appendix for a local area network (WAN) that were generated from 

Equation (1) in Chapter 4. There are four graphs each for all ten protocols in the suite of MIDI over IP 

protocols. To reiterate the protocols are as follows: TT-RTP-NDND, TT-RTP-NEND, TT-RTP-NDNE, 

TT-RTP-NENE, UT-RTP-ND, UT-RTP-NE, PC-RTP-ND, PC-TCP-NE, SN-TCP-ND, and SN-TCP-NE, 

where ND = Nagle algorithm disabled and NE = Nagle algorithm enabled (typically the default Internet 

setting). 
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APPENDIX D WAN PAIRED MEANS COMPARISON GRAPHS 

This appendix consists of 180 graphs of the mean runtime of a MIDI sequence on the destination host on a 

WAN. The number of graphs can be determined by calculating the total number of possible pairings of the 

protocols as (10 * 9) / 2 = 45 and multiplying 45 by 4 to get 180, where 4 is the number of values of m, the 

number of MIDI short messages per TCP packet.  
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APPENDIX E LAN PAIRED MEANS COMPARISON STATISTICS 

This appendix consists of tables of data that summarize the LAN paired means 

Student’s t-tests. The paired means were dependent since they were measuring the same 

experimental metric that is run-time of a MIDI sequence at the ultimate destination. The 

first data in the tables are the values of m, the number of MIDI short messages per TCP 

packet. This value varied from 1 to 4. The next two data items are the protocol 

mnemonics involved in the paired comparison.  Then the measured means are given 

along with their differences. The final three data items are the standard deviation, the 

Student’s t-value, and the Student’s t-value significance. A negative t-value meant that 

the first protocol (protocol #1) was potentially the best protocol in the pair. A positive t-

value meant that the second protocol (protocol #2) was potentially statistically superior to 

the first protocol. If the value of the Student’s t-value significance was less than or equal 

0.05 then one of the protocols statistically outperformed the other protocol in the pairing. 
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----------------------------------------------------------------------------- 
M PROTOCOL #1 PROTOCOL #2 MEAN #1   MEAN #2   #1 - #2  STD DEV  T VALUE T SIGN 
----------------------------------------------------------------------------- 
1 TT-RTP-NDND TT-RTP-NDNE 66967.83 67174.67  -206.83  1553.33  -1.0314 0.3066 
2 TT-RTP-NDND TT-RTP-NDNE 66977.50 66970.00    +7.50    41.77  +1.3909 0.1695 
3 TT-RTP-NDND TT-RTP-NDNE 67037.17 67198.00  -160.83  1825.76  -0.6824 0.4977 
4 TT-RTP-NDND TT-RTP-NDNE 66965.00 67333.67  -368.67  2820.63  -1.0124 0.3155 
1 TT-RTP-NDND TT-RTP-NEND 66967.83 66970.83    -3.00    54.81  -0.4240 0.6731 
2 TT-RTP-NDND TT-RTP-NEND 66977.50 66984.33    -6.83    42.96  -1.2320 0.2228 
3 TT-RTP-NDND TT-RTP-NEND 67037.17 67096.67   -59.50  1087.14  -0.4239 0.6731 
4 TT-RTP-NDND TT-RTP-NEND 66965.00 66976.33   -11.33    51.99  -1.6884 0.0966 
1 TT-RTP-NDND TT-RTP-NENE 66967.83 67069.17  -101.33   732.62  -1.0714 0.2884 
2 TT-RTP-NDND TT-RTP-NENE 66977.50 66968.67    +8.83    37.83  +1.8089 0.0756 
3 TT-RTP-NDND TT-RTP-NENE 67037.17 66981.67   +55.50   502.58  +0.8554 0.3958 
4 TT-RTP-NDND TT-RTP-NENE 66965.00 66969.50    -4.50    46.34  -0.7522 0.4549 
1 TT-RTP-NDND UT-RTP-ND   66967.83 66930.17   +37.67   145.23  +2.0089 0.0491 
2 TT-RTP-NDND UT-RTP-ND   66977.50 67093.50  -116.00  1226.80  -0.7324 0.4668 
3 TT-RTP-NDND UT-RTP-ND   67037.17 66984.00   +53.17   605.99  +0.6796 0.4994 
4 TT-RTP-NDND UT-RTP-ND   66965.00 67018.83   -53.83   641.14  -0.6504 0.5180 
1 TT-RTP-NDND UT-RTP-NE   66967.83 67175.17  -207.33  1768.18  -0.9083 0.3674 
2 TT-RTP-NDND UT-RTP-NE   66977.50 66960.83   +16.67    45.05  +2.8658 0.0058 
3 TT-RTP-NDND UT-RTP-NE   67037.17 66959.50   +77.67   525.71  +1.1444 0.2571 
4 TT-RTP-NDND UT-RTP-NE   66965.00 66903.83   +61.17    82.61  +5.7355 0.0000 
1 TT-RTP-NDND PC-TCP-ND   66967.83 66345.33  +622.50  1001.45  +4.8149 0.0000 
2 TT-RTP-NDND PC-TCP-ND   66977.50 66395.33  +582.17   637.34  +7.0754 0.0000 
3 TT-RTP-NDND PC-TCP-ND   67037.17 66472.17  +565.00  1479.38  +2.9583 0.0044 
4 TT-RTP-NDND PC-TCP-ND   66965.00 66069.67  +895.33   387.33 +17.9054 0.0000 
1 TT-RTP-NDND PC-TCP-NE   66967.83 66449.83  +518.00  1158.05  +3.4648 0.0010 
2 TT-RTP-NDND PC-TCP-NE   66977.50 66302.67  +674.83    70.70 +73.9370 0.0000 
3 TT-RTP-NDND PC-TCP-NE   67037.17 66418.17  +619.00  1042.99  +4.5971 0.0000 
4 TT-RTP-NDND PC-TCP-NE   66965.00 66293.83  +671.17    60.51 +85.9185 0.0000 
1 TT-RTP-NDND SN-TCP-ND   66967.83 67034.67   -66.83   747.96  -0.6921 0.4916 
2 TT-RTP-NDND SN-TCP-ND   66977.50 67089.83  -112.33   780.99  -1.1141 0.2697 
3 TT-RTP-NDND SN-TCP-ND   67037.17 67155.67  -118.50  1358.57  -0.6756 0.5019 
4 TT-RTP-NDND SN-TCP-ND   66965.00 66988.67   -23.67    57.99  -3.1614 0.0025 
1 TT-RTP-NDND SN-TCP-NE   66967.83 67080.33  -112.50  1178.54  -0.7394 0.4626 
2 TT-RTP-NDND SN-TCP-NE   66977.50 67095.67  -118.17   829.07  -1.1040 0.2741 
3 TT-RTP-NDND SN-TCP-NE   67037.17 66991.67   +45.50   487.73  +0.7226 0.4728 
4 TT-RTP-NDND SN-TCP-NE   66965.00 66989.83   -24.83    56.49  -3.4050 0.0012 
1 TT-RTP-NEND TT-RTP-NDNE 66970.83 67174.67  -203.83  1561.21  -1.0113 0.3160 
2 TT-RTP-NEND TT-RTP-NDNE 66984.33 66970.00   +14.33    50.57  +2.1955 0.0321 
3 TT-RTP-NEND TT-RTP-NDNE 67096.67 67198.00  -101.33   789.42  -0.9943 0.3241 
4 TT-RTP-NEND TT-RTP-NDNE 66976.33 67333.67  -357.33  2815.87  -0.9830 0.3296 
1 TT-RTP-NEND TT-RTP-NENE 66970.83 67069.17   -98.33   739.44  -1.0301 0.3072 
2 TT-RTP-NEND TT-RTP-NENE 66984.33 66968.67   +15.67    50.90  +2.3840 0.0204 
3 TT-RTP-NEND TT-RTP-NENE 67096.67 66981.67  +115.00   859.34  +1.0366 0.3042 
4 TT-RTP-NEND TT-RTP-NENE 66976.33 66969.50    +6.83    44.63  +1.1861 0.2403 
1 TT-RTP-NEND UT-RTP-ND   66970.83 66930.17   +40.67   179.02  +1.7596 0.0837 
2 TT-RTP-NEND UT-RTP-ND   66984.33 67093.50  -109.17  1228.31  -0.6884 0.4939 
3 TT-RTP-NEND UT-RTP-ND   67096.67 66984.00  +112.67   614.60  +1.4200 0.1609 
4 TT-RTP-NEND UT-RTP-ND   66976.33 67018.83   -42.50   646.88  -0.5089 0.6127 
1 TT-RTP-NEND UT-RTP-NE   66970.83 67175.17  -204.33  1776.28  -0.8911 0.3765 
2 TT-RTP-NEND UT-RTP-NE   66984.33 66960.83   +23.50    50.58  +3.5986 0.0007 
3 TT-RTP-NEND UT-RTP-NE   67096.67 66959.50  +137.17   777.17  +1.3671 0.1768 
4 TT-RTP-NEND UT-RTP-NE   66976.33 66903.83   +72.50    82.06  +6.8433 0.0000 
1 TT-RTP-NEND PC-TCP-ND   66970.83 66345.33  +625.50  1010.40  +4.7952 0.0000 
2 TT-RTP-NEND PC-TCP-ND   66984.33 66395.33  +589.00   640.02  +7.1285 0.0000 
3 TT-RTP-NEND PC-TCP-ND   67096.67 66472.17  +624.50   434.69 +11.1283 0.0000 
4 TT-RTP-NEND PC-TCP-ND   66976.33 66069.67  +906.67   377.59 +18.5997 0.0000 
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----------------------------------------------------------------------------- 
M PROTOCOL #1 PROTOCOL #2 MEAN #1   MEAN #2   #1 - #2  STD DEV  T VALUE T SIGN 
----------------------------------------------------------------------------- 
1 TT-RTP-NEND PC-TCP-NE   66970.83 66449.83  +521.00  1167.22  +3.4575 0.0010 
2 TT-RTP-NEND PC-TCP-NE   66984.33 66302.67  +681.67    83.65 +63.1228 0.0000 
3 TT-RTP-NEND PC-TCP-NE   67096.67 66418.17  +678.50   119.40 +44.0160 0.0000 
4 TT-RTP-NEND PC-TCP-NE   66976.33 66293.83  +682.50    73.61 +71.8151 0.0000 
1 TT-RTP-NEND SN-TCP-ND   66970.83 67034.67   -63.83   754.24  -0.6556 0.5147 
2 TT-RTP-NEND SN-TCP-ND   66984.33 67089.83  -105.50   782.22  -1.0447 0.3004 
3 TT-RTP-NEND SN-TCP-ND   67096.67 67155.67   -59.00   299.39  -1.5265 0.1322 
4 TT-RTP-NEND SN-TCP-ND   66976.33 66988.67   -12.33    48.38  -1.9748 0.0530 
1 TT-RTP-NEND SN-TCP-NE   66970.83 67080.33  -109.50  1185.04  -0.7157 0.4770 
2 TT-RTP-NEND SN-TCP-NE   66984.33 67095.67  -111.33   830.20  -1.0388 0.3032 
3 TT-RTP-NEND SN-TCP-NE   67096.67 66991.67  +105.00   953.98  +0.8526 0.3973 
4 TT-RTP-NEND SN-TCP-NE   66976.33 66989.83   -13.50    49.40  -2.1169 0.0385 
1 TT-RTP-NDNE TT-RTP-NENE 67174.67 67069.17  +105.50   823.50  +0.9924 0.3251 
2 TT-RTP-NDNE TT-RTP-NENE 66970.00 66968.67    +1.33    43.43  +0.2378 0.8129 
3 TT-RTP-NDNE TT-RTP-NENE 67198.00 66981.67  +216.33  1646.41  +1.0178 0.3129 
4 TT-RTP-NDNE TT-RTP-NENE 67333.67 66969.50  +364.17  2821.54  +0.9997 0.3215 
1 TT-RTP-NDNE UT-RTP-ND   67174.67 66930.17  +244.50  1572.81  +1.2041 0.2333 
2 TT-RTP-NDNE UT-RTP-ND   66970.00 67093.50  -123.50  1225.79  -0.7804 0.4383 
3 TT-RTP-NDNE UT-RTP-ND   67198.00 66984.00  +214.00  1401.68  +1.1826 0.2417 
4 TT-RTP-NDNE UT-RTP-ND   67333.67 67018.83  +314.83  2897.36  +0.8417 0.4034 
1 TT-RTP-NDNE UT-RTP-NE   67174.67 67175.17    -0.50   221.61  -0.0175 0.9861 
2 TT-RTP-NDNE UT-RTP-NE   66970.00 66960.83    +9.17    43.46  +1.6336 0.1077 
3 TT-RTP-NDNE UT-RTP-NE   67198.00 66959.50  +238.50  1563.96  +1.1812 0.2422 
4 TT-RTP-NDNE UT-RTP-NE   67333.67 66903.83  +429.83  2850.34  +1.1681 0.2475 
1 TT-RTP-NDNE PC-TCP-ND   67174.67 66345.33  +829.33   566.62 +11.3374 0.0000 
2 TT-RTP-NDNE PC-TCP-ND   66970.00 66395.33  +574.67   636.09  +6.9980 0.0000 
3 TT-RTP-NDNE PC-TCP-ND   67198.00 66472.17  +725.83   385.76 +14.5745 0.0000 
4 TT-RTP-NDNE PC-TCP-ND   67333.67 66069.67 +1264.00  2817.63  +3.4749 0.0010 
1 TT-RTP-NDNE PC-TCP-NE   67174.67 66449.83  +724.83   404.72 +13.8728 0.0000 
2 TT-RTP-NDNE PC-TCP-NE   66970.00 66302.67  +667.33    71.66 +72.1344 0.0000 
3 TT-RTP-NDNE PC-TCP-NE   67198.00 66418.17  +779.83   851.47  +7.0943 0.0000 
4 TT-RTP-NDNE PC-TCP-NE   67333.67 66293.83 +1039.83  2819.46  +2.8568 0.0059 
1 TT-RTP-NDNE SN-TCP-ND   67174.67 67034.67  +140.00   813.53  +1.3330 0.1877 
2 TT-RTP-NDNE SN-TCP-ND   66970.00 67089.83  -119.83   780.61  -1.1891 0.2392 
3 TT-RTP-NDNE SN-TCP-ND   67198.00 67155.67   +42.33   494.38  +0.6633 0.5097 
4 TT-RTP-NDNE SN-TCP-ND   67333.67 66988.67  +345.00  2817.71  +0.9484 0.3468 
1 TT-RTP-NDNE SN-TCP-NE   67174.67 67080.33   +94.33   385.22  +1.8968 0.0627 
2 TT-RTP-NDNE SN-TCP-NE   66970.00 67095.67  -125.67   828.71  -1.1746 0.2449 
3 TT-RTP-NDNE SN-TCP-NE   67198.00 66991.67  +206.33  1741.25  +0.9179 0.3624 
4 TT-RTP-NDNE SN-TCP-NE   67333.67 66989.83  +343.83  2817.80  +0.9452 0.3484 
1 TT-RTP-NENE UT-RTP-ND   67069.17 66930.17  +139.00   764.42  +1.4085 0.1642 
2 TT-RTP-NENE UT-RTP-ND   66968.67 67093.50  -124.83  1225.45  -0.7891 0.4332 
3 TT-RTP-NENE UT-RTP-ND   66981.67 66984.00    -2.33   250.48  -0.0722 0.9427 
4 TT-RTP-NENE UT-RTP-ND   66969.50 67018.83   -49.33   646.20  -0.5914 0.5565 
1 TT-RTP-NENE UT-RTP-NE   67069.17 67175.17  -106.00  1038.96  -0.7903 0.4325 
2 TT-RTP-NENE UT-RTP-NE   66968.67 66960.83    +7.83    49.51  +1.2256 0.2252 
3 TT-RTP-NENE UT-RTP-NE   66981.67 66959.50   +22.17    96.97  +1.7706 0.0818 
4 TT-RTP-NENE UT-RTP-NE   66969.50 66903.83   +65.67    79.56  +6.3932 0.0000 
1 TT-RTP-NENE PC-TCP-ND   67069.17 66345.33  +723.83   289.14 +19.3911 0.0000 
2 TT-RTP-NENE PC-TCP-ND   66968.67 66395.33  +573.33   635.81  +6.9848 0.0000 
3 TT-RTP-NENE PC-TCP-ND   66981.67 66472.17  +509.50  1282.39  +3.0775 0.0032 
4 TT-RTP-NENE PC-TCP-ND   66969.50 66069.67  +899.83   378.01 +18.4388 0.0000 
1 TT-RTP-NENE PC-TCP-NE   67069.17 66449.83  +619.33   434.97 +11.0290 0.0000 
2 TT-RTP-NENE PC-TCP-NE   66968.67 66302.67  +666.00    70.11 +73.5778 0.0000 
3 TT-RTP-NENE PC-TCP-NE   66981.67 66418.17  +563.50   808.19  +5.4008 0.0000 
4 TT-RTP-NENE PC-TCP-NE   66969.50 66293.83  +675.67    77.45 +67.5788 0.0000 
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----------------------------------------------------------------------------- 
M PROTOCOL #1 PROTOCOL #2 MEAN #1   MEAN #2   #1 - #2  STD DEV  T VALUE T SIGN 
----------------------------------------------------------------------------- 
1 TT-RTP-NENE SN-TCP-ND   67069.17 67034.67   +34.50    77.01  +3.4702 0.0010 
2 TT-RTP-NENE SN-TCP-ND   66968.67 67089.83  -121.17   780.28  -1.2028 0.2338 
3 TT-RTP-NENE SN-TCP-ND   66981.67 67155.67  -174.00  1154.34  -1.1676 0.2477 
4 TT-RTP-NENE SN-TCP-ND   66969.50 66988.67   -19.17    52.57  -2.8241 0.0065 
1 TT-RTP-NENE SN-TCP-NE   67069.17 67080.33   -11.17   450.30  -0.1921 0.8483 
2 TT-RTP-NENE SN-TCP-NE   66968.67 67095.67  -127.00   828.29  -1.1877 0.2397 
3 TT-RTP-NENE SN-TCP-NE   66981.67 66991.67   -10.00   107.86  -0.7181 0.4755 
4 TT-RTP-NENE SN-TCP-NE   66969.50 66989.83   -20.33    52.88  -2.9784 0.0042 
1 UT-RTP-ND   UT-RTP-NE   66930.17 67175.17  -245.00  1785.02  -1.0632 0.2920 
2 UT-RTP-ND   UT-RTP-NE   67093.50 66960.83  +132.67  1230.84  +0.8349 0.4071 
3 UT-RTP-ND   UT-RTP-NE   66984.00 66959.50   +24.50   169.59  +1.1190 0.2677 
4 UT-RTP-ND   UT-RTP-NE   67018.83 66903.83  +115.00   646.82  +1.3772 0.1737 
1 UT-RTP-ND   PC-RTP-ND   66930.17 66345.33  +584.83  1019.30  +4.4443 0.0000 
2 UT-RTP-ND   PC-RTP-ND   67093.50 66395.33  +698.17   597.86  +9.0456 0.0000 
3 UT-RTP-ND   PC-RTP-ND   66984.00 66472.17  +511.83  1037.44  +3.8216 0.0003 
4 UT-RTP-ND   PC-RTP-ND   67018.83 66069.67  +949.17   720.09 +10.2101 0.0000 
1 UT-RTP-ND   PC-RTP-NE   66930.17 66449.83  +480.33  1174.08  +3.1690 0.0024 
2 UT-RTP-ND   PC-RTP-NE   67093.50 66302.67  +790.83  1233.12  +4.9677 0.0000 
3 UT-RTP-ND   PC-RTP-NE   66984.00 66418.17  +565.83   564.77  +7.7606 0.0000 
4 UT-RTP-ND   PC-RTP-NE   67018.83 66293.83  +725.00   631.80  +8.8886 0.0000 
1 UT-RTP-ND   SN-RTP-ND   66930.17 67034.67  -104.50   780.09  -1.0376 0.3037 
2 UT-RTP-ND   SN-RTP-ND   67093.50 67089.83    +3.67   452.15  +0.0628 0.9501 
3 UT-RTP-ND   SN-RTP-ND   66984.00 67155.67  -171.67   910.52  -1.4604 0.1495 
4 UT-RTP-ND   SN-RTP-ND   67018.83 66988.67   +30.17   645.33  +0.3621 0.7186 
1 UT-RTP-ND   SN-RTP-NE   66930.17 67080.33  -150.17  1203.75  -0.9663 0.3378 
2 UT-RTP-ND   SN-RTP-NE   67093.50 67095.67    -2.17   405.25  -0.0414 0.9671 
3 UT-RTP-ND   SN-RTP-NE   66984.00 66991.67    -7.67   346.18  -0.1715 0.8644 
4 UT-RTP-ND   SN-RTP-NE   67018.83 66989.83   +29.00   642.98  +0.3494 0.7281 
1 UT-RTP-NE   PC-RTP-ND   67175.17 66345.33  +829.83   777.83  +8.2638 0.0000 
2 UT-RTP-NE   PC-RTP-ND   66960.83 66395.33  +565.50   641.15  +6.8320 0.0000 
3 UT-RTP-NE   PC-RTP-ND   66959.50 66472.17  +487.33  1199.07  +3.1482 0.0026 
4 UT-RTP-NE   PC-RTP-ND   66903.83 66069.67  +834.17   415.40 +15.5547 0.0000 
1 UT-RTP-NE   PC-RTP-NE   67175.17 66449.83  +725.33   615.47  +9.1286 0.0000 
2 UT-RTP-NE   PC-RTP-NE   66960.83 66302.67  +658.17    70.10 +72.7302 0.0000 
3 UT-RTP-NE   PC-RTP-NE   66959.50 66418.17  +541.33   724.61  +5.7868 0.0000 
4 UT-RTP-NE   PC-RTP-NE   66903.83 66293.83  +610.00   105.20 +44.9133 0.0000 
1 UT-RTP-NE   SN-RTP-ND   67175.17 67034.67  +140.50  1028.45  +1.0582 0.2943 
2 UT-RTP-NE   SN-RTP-ND   66960.83 67089.83  -129.00   786.19  -1.2710 0.2087 
3 UT-RTP-NE   SN-RTP-ND   66959.50 67155.67  -196.17  1072.41  -1.4169 0.1618 
4 UT-RTP-NE   SN-RTP-ND   66903.83 66988.67   -84.83    80.24  -8.1891 0.0000 
1 UT-RTP-NE   SN-RTP-NE   67175.17 67080.33   +94.83   598.51  +1.2274 0.2246 
2 UT-RTP-NE   SN-RTP-NE   66960.83 67095.67  -134.83   834.07  -1.2522 0.2154 
3 UT-RTP-NE   SN-RTP-NE   66959.50 66991.67   -32.17   188.94  -1.3187 0.1924 
4 UT-RTP-NE   SN-RTP-NE   66903.83 66989.83   -86.00    72.47  -9.1925 0.0000 
1 PC-TCP-ND   PC-TCP-NE   66345.33 66449.83  -104.50   185.76  -4.3575 0.0000 
2 PC-TCP-ND   PC-TCP-NE   66395.33 66302.67   +92.67   639.22  +1.1229 0.2660 
3 PC-TCP-ND   PC-TCP-NE   66472.17 66418.17   +54.00   478.66  +0.8739 0.3857 
4 PC-TCP-ND   PC-TCP-NE   66069.67 66293.83  -224.17   393.01  -4.4182 0.0000 
1 PC-TCP-ND   SN-RTP-ND   66345.33 67034.67  -689.33   289.01 -18.4755 0.0000 
2 PC-TCP-ND   SN-RTP-ND   66395.33 67089.83  -694.50   178.66 -30.1104 0.0000 
3 PC-TCP-ND   SN-RTP-ND   66472.17 67155.67  -683.50   169.09 -31.3103 0.0000 
4 PC-TCP-ND   SN-RTP-ND   66069.67 66988.67  -919.00   393.89 -18.0723 0.0000 
1 PC-TCP-ND   SN-RTP-NE   66345.33 67034.67  -689.33   289.01 -18.4755 0.0000 
2 PC-TCP-ND   SN-RTP-NE   66395.33 67089.83  -694.50   178.66 -30.1104 0.0000 
3 PC-TCP-ND   SN-RTP-NE   66472.17 67155.67  -683.50   169.09 -31.3103 0.0000 
4 PC-TCP-ND   SN-RTP-NE   66069.67 66988.67  -919.00   393.89 -18.0723 0.0000 
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----------------------------------------------------------------------------- 
M PROTOCOL #1 PROTOCOL #2 MEAN #1   MEAN #2   #1 - #2  STD DEV  T VALUE T SIGN 
----------------------------------------------------------------------------- 
1 PC-TCP-NE   SN-RTP-ND   66449.83 67034.67  -584.83   428.70 -10.5671 0.0000 
2 PC-TCP-NE   SN-RTP-ND   66302.67 67089.83  -787.17   790.34  -7.7149 0.0000 
3 PC-TCP-NE   SN-RTP-ND   66418.17 67155.67  -737.50   368.06 -15.5209 0.0000 
4 PC-TCP-NE   SN-RTP-ND   66293.83 66988.67  -694.83    85.99 -62.5879 0.0000 
1 PC-TCP-NE   SN-RTP-NE   66449.83 67034.67  -584.83   428.70 -10.5671 0.0000 
2 PC-TCP-NE   SN-RTP-NE   66302.67 67089.83  -787.17   790.34  -7.7149 0.0000 
3 PC-TCP-NE   SN-RTP-NE   66418.17 67155.67  -737.50   368.06 -15.5209 0.0000 
4 PC-TCP-NE   SN-RTP-NE   66293.83 66988.67  -694.83    85.99 -62.5879 0.0000 
1 SN-TCP-ND   SN-RTP-NE   67034.67 67080.33   -45.67   437.14  -0.8092 0.4217 
2 SN-TCP-ND   SN-RTP-NE   67089.83 67095.67    -5.83    60.23  -0.7502 0.4561 
3 SN-TCP-ND   SN-RTP-NE   67155.67 66991.67  +164.00  1249.07  +1.0170 0.3133 
4 SN-TCP-ND   SN-RTP-NE   66988.67 66989.83    -1.17    38.09  -0.2372 0.8133 
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APPENDIX F WAN PAIRED MEANS COMPARISON STATISTICS 

This appendix consists of tables of data that summarize the WAN paired means 

Student’s t-tests. The paired means were dependent since they were measuring the same 

experimental metric that is run-time of a MIDI sequence at the ultimate destination. The 

first data in the tables are the values of m, the number of MIDI short messages per TCP 

packet. This value varied from 1 to 4. The next two data items are the protocol 

mnemonics involved in the paired comparison.  Then the measured means are given 

along with their differences. The final three data items are the standard deviation, the 

Student’s t-value, and the Student’s t-value significance. A negative t-value meant that 

the first protocol (protocol #1) was potentially the best protocol in the pair. A positive t-

value meant that the second protocol (protocol #2) was potentially statistically superior to 

the first protocol. If the value of the Student’s t-value significance was less than or equal 

0.05 then one of the protocols statistically outperformed the other protocol in the pairing. 
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----------------------------------------------------------------------------- 
M PROTOCOL #1 PROTOCOL #2 MEAN #1   MEAN #2   #1 - #2  STD DEV  T VALUE T SIGN 
----------------------------------------------------------------------------- 
1 TT-RTP-NDND TT-RTP-NDNE 67184.33 67246.67   -62.33   195.07  -2.4752 0.0162 
2 TT-RTP-NDND TT-RTP-NDNE 67086.00 67094.67    -8.67   761.38  -0.0882 0.9300 
3 TT-RTP-NDND TT-RTP-NDNE 67123.00 67292.50  -169.50  1890.02  -0.6947 0.4900 
4 TT-RTP-NDND TT-RTP-NDNE 66947.50 67107.50  -160.00   389.35  -3.1831 0.0023 
1 TT-RTP-NDND TT-RTP-NEND 67184.33 67023.33  +161.00  1221.11  +1.0213 0.3113 
2 TT-RTP-NDND TT-RTP-NEND 67086.00 67098.50   -12.50  1211.23  -0.0799 0.9366 
3 TT-RTP-NDND TT-RTP-NEND 67123.00 67240.17  -117.17  1996.88  -0.4545 0.6511 
4 TT-RTP-NDND TT-RTP-NEND 66947.50 66977.50   -30.00   354.70  -0.6551 0.5149 
1 TT-RTP-NDND TT-RTP-NENE 67184.33 67356.67  -172.33  1118.98  -1.1929 0.2377 
2 TT-RTP-NDND TT-RTP-NENE 67086.00 67352.00  -266.00  2264.49  -0.9099 0.3666 
3 TT-RTP-NDND TT-RTP-NENE 67123.00 67069.00   +54.00   779.99  +0.5363 0.5938 
4 TT-RTP-NDND TT-RTP-NENE 66947.50 67399.33  -451.83  2356.68  -1.4851 0.1428 
1 TT-RTP-NDND UT-RTP-ND   67184.33 67380.83  -196.50  1103.35  -1.3795 0.1729 
2 TT-RTP-NDND UT-RTP-ND   67086.00 66977.67  +108.33   752.51  +1.1151 0.2693 
3 TT-RTP-NDND UT-RTP-ND   67123.00 66972.67  +150.33   776.23  +1.5002 0.1389 
4 TT-RTP-NDND UT-RTP-ND   66947.50 67317.33  -369.83  1923.86  -1.4890 0.1418 
1 TT-RTP-NDND UT-RTP-NE   67184.33 67030.17  +154.17  1113.97  +1.0720 0.2881 
2 TT-RTP-NDND UT-RTP-NE   67086.00 67023.83   +62.17   752.78  +0.6397 0.5249 
3 TT-RTP-NDND UT-RTP-NE   67123.00 67013.00  +110.00   785.66  +1.0845 0.2825 
4 TT-RTP-NDND UT-RTP-NE   66947.50 67007.17   -59.67   359.69  -1.2849 0.2038 
1 TT-RTP-NDND PC-TCP-ND   67184.33 66079.83 +1104.50  1264.12  +6.7679 0.0000 
2 TT-RTP-NDND PC-TCP-ND   67086.00 66290.83  +795.17  1561.68  +3.9441 0.0002 
3 TT-RTP-NDND PC-TCP-ND   67123.00 66127.67  +995.33   790.00  +9.7592 0.0000 
4 TT-RTP-NDND PC-TCP-ND   66947.50 66147.67  +799.83   364.08 +17.0168 0.0000 
1 TT-RTP-NDND PC-TCP-NE   67184.33 66162.83 +1021.50  1206.69  +6.5572 0.0000 
2 TT-RTP-NDND PC-TCP-NE   67086.00 66448.67  +637.33  2286.90  +2.1587 0.0350 
3 TT-RTP-NDND PC-TCP-NE   67123.00 66343.17  +779.83  1473.51  +4.0994 0.0001 
4 TT-RTP-NDND PC-TCP-NE   66947.50 66159.50  +788.00   354.08 +17.2386 0.0000 
1 TT-RTP-NDND SN-TCP-ND   67184.33 67247.17   -62.83   322.18  -1.5107 0.1362 
2 TT-RTP-NDND SN-TCP-ND   67086.00 67219.17  -133.17  3146.71  -0.3278 0.7442 
3 TT-RTP-NDND SN-TCP-ND   67123.00 67056.83   +66.17   960.81  +0.5334 0.5957 
4 TT-RTP-NDND SN-TCP-ND   66947.50 67011.17   -63.67  1334.28  -0.3696 0.7130 
1 TT-RTP-NDND SN-TCP-NE   67184.33 67256.67   -72.33   441.27  -1.2697 0.2092 
2 TT-RTP-NDND SN-TCP-NE   67086.00 67233.83  -147.83  1644.50  -0.6963 0.4890 
3 TT-RTP-NDND SN-TCP-NE   67123.00 67035.50   +87.50   780.24  +0.8687 0.3885 
4 TT-RTP-NDND SN-TCP-NE   66947.50 67205.17  -257.67  1168.43  -1.7082 0.0929 
1 TT-RTP-NEND TT-RTP-NDNE 67023.33 67246.67  -223.33  1399.82  -1.2358 0.2214 
2 TT-RTP-NEND TT-RTP-NDNE 67098.50 67094.67    +3.83   962.69  +0.0308 0.9755 
3 TT-RTP-NEND TT-RTP-NDNE 67240.17 67292.50   -52.33   135.80  -2.9850 0.0041 
4 TT-RTP-NEND TT-RTP-NDNE 66977.50 67107.50  -130.00   389.56  -2.5849 0.0122 
1 TT-RTP-NEND TT-RTP-NENE 67023.33 67356.67  -333.33  2337.95  -1.1044 0.2739 
2 TT-RTP-NEND TT-RTP-NENE 67098.50 67352.00  -253.50  1187.11  -1.6541 0.1034 
3 TT-RTP-NEND TT-RTP-NENE 67240.17 67069.00  +171.17  1968.95  +0.6734 0.5033 
4 TT-RTP-NEND TT-RTP-NENE 66977.50 67399.33  -421.83  2498.75  -1.3077 0.1961 
1 TT-RTP-NEND UT-RTP-ND   67023.33 67380.83  -357.50  2251.36  -1.2300 0.2236 
2 TT-RTP-NEND UT-RTP-ND   67098.50 66977.67  +120.83   931.32  +1.0050 0.3190 
3 TT-RTP-NEND UT-RTP-ND   67240.17 66972.67  +267.50  1978.65  +1.0472 0.2993 
4 TT-RTP-NEND UT-RTP-ND   66977.50 67317.33  -339.83  2053.35  -1.2820 0.2049 
1 TT-RTP-NEND UT-RTP-NE   67023.33 67030.17    -6.83   123.47  -0.4287 0.6697 
2 TT-RTP-NEND UT-RTP-NE   67098.50 67023.83   +74.67   936.41  +0.6176 0.5392 
3 TT-RTP-NEND UT-RTP-NE   67240.17 67013.00  +227.17  1975.95  +0.8905 0.3768 
4 TT-RTP-NEND UT-RTP-NE   66977.50 67007.17   -29.67    63.65  -3.6106 0.0006 
1 TT-RTP-NEND PC-TCP-ND   67023.33 66079.83  +943.50   386.56 +18.9062 0.0000 
2 TT-RTP-NEND PC-TCP-ND   67098.50 66290.83  +807.67   437.97 +14.2846 0.0000 
3 TT-RTP-NEND PC-TCP-ND   67240.17 66127.67 +1112.50  1969.10  +4.3763 0.0000 
4 TT-RTP-NEND PC-TCP-ND   66977.50 66147.67  +829.83    85.34 +75.3201 0.0000 
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----------------------------------------------------------------------------- 
M PROTOCOL #1 PROTOCOL #2 MEAN #1   MEAN #2   #1 - #2  STD DEV  T VALUE T SIGN 
----------------------------------------------------------------------------- 
1 TT-RTP-NEND PC-TCP-NE   67023.33 66162.83  +860.50   100.94 +66.0366 0.0000 
2 TT-RTP-NEND PC-TCP-NE   67098.50 66448.67  +649.83  1217.80  +4.1333 0.0001 
3 TT-RTP-NEND PC-TCP-NE   67240.17 66343.17  +897.00   607.96 +11.4286 0.0000 
4 TT-RTP-NEND PC-TCP-NE   66977.50 66159.50  +818.00    80.69 +78.5234 0.0000 
1 TT-RTP-NEND SN-TCP-ND   67023.33 67247.17  -223.83  1537.24  -1.1279 0.2639 
2 TT-RTP-NEND SN-TCP-ND   67098.50 67219.17  -120.67  2105.41  -0.4439 0.6587 
3 TT-RTP-NEND SN-TCP-ND   67240.17 67056.83  +183.33  2046.99  +0.6937 0.4906 
4 TT-RTP-NEND SN-TCP-ND   66977.50 67011.17   -33.67  1461.32  -0.1785 0.8590 
1 TT-RTP-NEND SN-TCP-NE   67023.33 67256.67  -233.33  1658.11  -1.0900 0.2801 
2 TT-RTP-NEND SN-TCP-NE   67098.50 67233.83  -135.33   517.69  -2.0249 0.0474 
3 TT-RTP-NEND SN-TCP-NE   67240.17 67035.50  +204.67  1972.43  +0.8037 0.4248 
4 TT-RTP-NEND SN-TCP-NE   66977.50 67205.17  -227.67  1284.78  -1.3726 0.1751 
1 TT-RTP-NDNE TT-RTP-NENE 67246.67 67356.67  -110.00   942.33  -0.9042 0.3696 
2 TT-RTP-NDNE TT-RTP-NENE 67094.67 67352.00  -257.33  2138.79  -0.9320 0.3551 
3 TT-RTP-NDNE TT-RTP-NENE 67292.50 67069.00  +223.50  1853.32  +0.9341 0.3540 
4 TT-RTP-NDNE TT-RTP-NENE 67107.50 67399.33  -291.83  2113.04  -1.0698 0.2891 
1 TT-RTP-NDNE UT-RTP-ND   67246.67 67380.83  -134.17   954.55  -1.0887 0.2807 
2 TT-RTP-NDNE UT-RTP-ND   67094.67 66977.67  +117.00   183.74  +4.9324 0.0000 
3 TT-RTP-NDNE UT-RTP-ND   67292.50 66972.67  +319.83  1862.79  +1.3299 0.1887 
4 TT-RTP-NDNE UT-RTP-ND   67107.50 67317.33  -209.83  1681.19  -0.9668 0.3376 
1 TT-RTP-NDNE UT-RTP-NE   67246.67 67030.17  +216.50  1292.77  +1.2972 0.1996 
2 TT-RTP-NDNE UT-RTP-NE   67094.67 67023.83   +70.83   195.71  +2.8035 0.0068 
3 TT-RTP-NDNE UT-RTP-NE   67292.50 67013.00  +279.50  1860.21  +1.1638 0.2492 
4 TT-RTP-NDNE UT-RTP-NE   67107.50 67007.17  +100.33   393.76  +1.9737 0.0531 
1 TT-RTP-NDNE PC-TCP-ND   67246.67 66079.83 +1166.83  1436.37  +6.2924 0.0000 
2 TT-RTP-NDNE PC-TCP-ND   67094.67 66290.83  +803.83  1383.05  +4.5020 0.0000 
3 TT-RTP-NDNE PC-TCP-ND   67292.50 66127.67 +1164.83  1854.42  +4.8655 0.0000 
4 TT-RTP-NDNE PC-TCP-ND   67107.50 66147.67  +959.83   386.99 +19.2122 0.0000 
1 TT-RTP-NDNE PC-TCP-NE   67246.67 66162.83 +1083.83  1382.92  +6.0707 0.0000 
2 TT-RTP-NDNE PC-TCP-NE   67094.67 66448.67  +646.00  2166.31  +2.3099 0.0244 
3 TT-RTP-NDNE PC-TCP-NE   67292.50 66343.17  +949.33   499.03 +14.7355 0.0000 
4 TT-RTP-NDNE PC-TCP-NE   67107.50 66159.50  +948.00   396.77 +18.5074 0.0000 
1 TT-RTP-NDNE SN-TCP-ND   67246.67 67247.17    -0.50   159.10  -0.0243 0.9807 
2 TT-RTP-NDNE SN-TCP-ND   67094.67 67219.17  -124.50  3054.55  -0.3157 0.7533 
3 TT-RTP-NDNE SN-TCP-ND   67292.50 67056.83  +235.67  1935.58  +0.9431 0.3495 
4 TT-RTP-NDNE SN-TCP-ND   67107.50 67011.17   +96.33  1074.85  +0.6942 0.4903 
1 TT-RTP-NDNE SN-TCP-NE   67246.67 67256.67   -10.00   268.64  -0.2883 0.7741 
2 TT-RTP-NDNE SN-TCP-NE   67094.67 67233.83  -139.17  1472.01  -0.7323 0.4669 
3 TT-RTP-NDNE SN-TCP-NE   67292.50 67035.50  +257.00  1857.13  +1.0719 0.2881 
4 TT-RTP-NDNE SN-TCP-NE   67107.50 67205.17   -97.67   904.07  -0.8368 0.4061 
1 TT-RTP-NENE UT-RTP-ND   67356.67 67380.83   -24.17   553.65  -0.3381 0.7365 
2 TT-RTP-NENE UT-RTP-ND   67352.00 66977.67  +374.33  2116.88  +1.3697 0.1760 
3 TT-RTP-NENE UT-RTP-ND   67069.00 66972.67   +96.33    69.33 +10.7629 0.0000 
4 TT-RTP-NENE UT-RTP-ND   67399.33 67317.33   +82.00   696.23  +0.9123 0.3653 
1 TT-RTP-NENE UT-RTP-NE   67356.67 67030.17  +326.50  2230.97  +1.1336 0.2615 
2 TT-RTP-NENE UT-RTP-NE   67352.00 67023.83  +328.17  2121.86  +1.1980 0.2357 
3 TT-RTP-NENE UT-RTP-NE   67069.00 67013.00   +56.00    59.69  +7.2666 0.0000 
4 TT-RTP-NENE UT-RTP-NE   67399.33 67007.17  +392.17  2502.74  +1.2138 0.2297 
1 TT-RTP-NENE PC-TCP-ND   67356.67 66079.83 +1276.83  2352.95  +4.2034 0.0000 
2 TT-RTP-NENE PC-TCP-ND   67352.00 66290.83 +1061.17   772.66 +10.6383 0.0000 
3 TT-RTP-NENE PC-TCP-ND   67069.00 66127.67  +941.33   116.87 +62.3888 0.0000 
4 TT-RTP-NENE PC-TCP-ND   67399.33 66147.67 +1251.67  2491.94  +3.8907 0.0003 
1 TT-RTP-NENE PC-TCP-NE   67356.67 66162.83 +1193.83  2320.97  +3.9843 0.0002 
2 TT-RTP-NENE PC-TCP-NE   67352.00 66448.67  +903.33   138.91 +50.3706 0.0000 
3 TT-RTP-NENE PC-TCP-NE   67069.00 66343.17  +725.83  1377.48  +4.0816 0.0001 
4 TT-RTP-NENE PC-TCP-NE   67399.33 66159.50 +1239.83  2501.61  +3.8390 0.0003 
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----------------------------------------------------------------------------- 
M PROTOCOL #1 PROTOCOL #2 MEAN #1   MEAN #2   #1 - #2  STD DEV  T VALUE T SIGN 
----------------------------------------------------------------------------- 
1 TT-RTP-NENE SN-TCP-ND   67356.67 67247.17  +109.50   804.64  +1.0541 0.2961 
2 TT-RTP-NENE SN-TCP-ND   67352.00 67219.17  +132.83   920.86  +1.1173 0.2684 
3 TT-RTP-NENE SN-TCP-ND   67069.00 67056.83   +12.17   518.98  +0.1816 0.8565 
4 TT-RTP-NENE SN-TCP-ND   67399.33 67011.17  +388.17  1040.70  +2.8891 0.0054 
1 TT-RTP-NENE SN-TCP-NE   67356.67 67256.67  +100.00   685.05  +1.1307 0.2628 
2 TT-RTP-NENE SN-TCP-NE   67352.00 67233.83  +118.17   673.86  +1.3583 0.1795 
3 TT-RTP-NENE SN-TCP-NE   67069.00 67035.50   +33.50    68.27  +3.8011 0.0003 
4 TT-RTP-NENE SN-TCP-NE   67399.33 67205.17  +194.17  1248.48  +1.2047 0.2331 
1 UT-RTP-ND   UT-RTP-NE   67380.83 67030.17  +350.67  2147.89  +1.2646 0.2110 
2 UT-RTP-ND   UT-RTP-NE   66977.67 67023.83   -46.17    69.41  -5.1523 0.0000 
3 UT-RTP-ND   UT-RTP-NE   66972.67 67013.00   -40.33    57.49  -5.4345 0.0000 
4 UT-RTP-ND   UT-RTP-NE   67317.33 67007.17  +310.17  2057.85  +1.1675 0.2477 
1 UT-RTP-ND   PC-TCP-ND   67380.83 66079.83 +1301.00  2268.32  +4.4427 0.0000 
2 UT-RTP-ND   PC-TCP-ND   66977.67 66290.83  +686.83  1356.09  +3.9232 0.0002 
3 UT-RTP-ND   PC-TCP-ND   66972.67 66127.67  +845.00   111.03 +58.9524 0.0000 
4 UT-RTP-ND   PC-TCP-ND   67317.33 66147.67 +1169.67  2044.74  +4.4310 0.0000 
1 UT-RTP-ND   PC-TCP-NE   67380.83 66162.83 +1218.00  2235.36  +4.2206 0.0000 
2 UT-RTP-ND   PC-TCP-NE   66977.67 66448.67  +529.00  2143.08  +1.9120 0.0607 
3 UT-RTP-ND   PC-TCP-NE   66972.67 66343.17  +629.50  1386.30  +3.5173 0.0008 
4 UT-RTP-ND   PC-TCP-NE   67317.33 66159.50 +1157.83  2053.38  +4.3677 0.0000 
1 UT-RTP-ND   SN-TCP-ND   67380.83 67247.17  +133.67   838.12  +1.2354 0.2216 
2 UT-RTP-ND   SN-TCP-ND   66977.67 67219.17  -241.50  3034.98  -0.6164 0.5400 
3 UT-RTP-ND   SN-TCP-ND   66972.67 67056.83   -84.17   514.22  -1.2679 0.2098 
4 UT-RTP-ND   SN-TCP-ND   67317.33 67011.17  +306.17   724.88  +3.2716 0.0018 
1 UT-RTP-ND   SN-TCP-NE   67380.83 67256.67  +124.17   747.10  +1.2874 0.2030 
2 UT-RTP-ND   SN-TCP-NE   66977.67 67233.83  -256.17  1446.18  -1.3721 0.1752 
3 UT-RTP-ND   SN-TCP-NE   66972.67 67035.50   -62.83    64.99  -7.4886 0.0000 
4 UT-RTP-ND   SN-TCP-NE   67317.33 67205.17  +112.17   892.17  +0.9739 0.3341 
1 UT-RTP-NE   PC-TCP-ND   67030.17 66079.83  +950.33   406.87 +18.0924 0.0000 
2 UT-RTP-NE   PC-TCP-ND   67023.83 66290.83  +733.00  1362.14  +4.1683 0.0001 
3 UT-RTP-NE   PC-TCP-ND   67013.00 66127.67  +885.33   124.10 +55.2586 0.0000 
4 UT-RTP-NE   PC-TCP-ND   67007.17 66147.67  +859.50    93.47 +71.2262 0.0000 
1 UT-RTP-NE   PC-TCP-NE   67030.17 66162.83  +867.33   138.86 +48.3836 0.0000 
2 UT-RTP-NE   PC-TCP-NE   67023.83 66448.67  +575.17  2149.14  +2.0730 0.0425 
3 UT-RTP-NE   PC-TCP-NE   67013.00 66343.17  +669.83  1384.47  +3.7476 0.0004 
4 UT-RTP-NE   PC-TCP-NE   67007.17 66159.50  +847.67    94.96 +69.1418 0.0000 
1 UT-RTP-NE   SN-TCP-ND   67030.17 67247.17  -217.00  1430.35  -1.1751 0.2447 
2 UT-RTP-NE   SN-TCP-ND   67023.83 67219.17  -195.33  3039.68  -0.4978 0.6205 
3 UT-RTP-NE   SN-TCP-ND   67013.00 67056.83   -43.83   526.52  -0.6449 0.5215 
4 UT-RTP-NE   SN-TCP-ND   67007.17 67011.17    -4.00  1464.42  -0.0212 0.9832 
1 UT-RTP-NE   SN-TCP-NE   67030.17 67256.67  -226.50  1550.92  -1.1312 0.2625 
2 UT-RTP-NE   SN-TCP-NE   67023.83 67233.83  -210.00  1450.99  -1.1211 0.2668 
3 UT-RTP-NE   SN-TCP-NE   67013.00 67035.50   -22.50    60.47  -2.8823 0.0055 
4 UT-RTP-NE   SN-TCP-NE   67007.17 67205.17  -198.00  1288.23  -1.1906 0.2386 
1 PC-TCP-ND   PC-TCP-NE   66079.83 66162.83   -83.00   371.06  -1.7326 0.0884 
2 PC-TCP-ND   PC-TCP-NE   66290.83 66448.67  -157.83   795.53  -1.5368 0.1297 
3 PC-TCP-ND   PC-TCP-NE   66127.67 66343.17  -215.50  1371.18  -1.2174 0.2283 
4 PC-TCP-ND   PC-TCP-NE   66147.67 66159.50   -11.83    65.37  -1.4022 0.1661 
1 PC-TCP-ND   SN-TCP-ND   66079.83 67247.17 -1167.33  1567.51  -5.7685 0.0000 
2 PC-TCP-ND   SN-TCP-ND   66290.83 67219.17  -928.33  1686.06  -4.2649 0.0000 
3 PC-TCP-ND   SN-TCP-ND   66127.67 67056.83  -929.17   507.58 -14.1796 0.0000 
4 PC-TCP-ND   SN-TCP-ND   66147.67 67011.17  -863.50  1454.49  -4.5986 0.0000 
1 PC-TCP-ND   SN-TCP-NE   66079.83 67247.17 -1167.33  1567.51  -5.7685 0.0000 
2 PC-TCP-ND   SN-TCP-NE   66290.83 67219.17  -928.33  1686.06  -4.2649 0.0000 
3 PC-TCP-ND   SN-TCP-NE   66127.67 67056.83  -929.17   507.58 -14.1796 0.0000 
4 PC-TCP-ND   SN-TCP-NE   66147.67 67011.17  -863.50  1454.49  -4.5986 0.0000 
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---------------------------------------------------------------------------- 
M PROTOCOL #1 PROTOCOL #2 MEAN #1   MEAN #2   #1 - #2  STD DEV  T VALUE T SIGN 
----------------------------------------------------------------------------- 
1 PC-TCP-NE   SN-TCP-ND   66162.83 67247.17 -1084.33  1521.33  -5.5210 0.0000 
2 PC-TCP-NE   SN-TCP-ND   66448.67 67219.17  -770.50   906.93  -6.5808 0.0000 
3 PC-TCP-NE   SN-TCP-ND   66343.17 67056.83  -713.67  1478.98  -3.7377 0.0004 
4 PC-TCP-NE   SN-TCP-ND   66159.50 67011.17  -851.67  1464.36  -4.5050 0.0000 
1 PC-TCP-NE   SN-TCP-NE   66162.83 67247.17 -1084.33  1521.33  -5.5210 0.0000 
2 PC-TCP-NE   SN-TCP-NE   66448.67 67219.17  -770.50   906.93  -6.5808 0.0000 
3 PC-TCP-NE   SN-TCP-NE   66343.17 67056.83  -713.67  1478.98  -3.7377 0.0004 
4 PC-TCP-NE   SN-TCP-NE   66159.50 67011.17  -851.67  1464.36  -4.5050 0.0000 
1 SN-TCP-ND   SN-TCP-NE   67247.17 67256.67    -9.50   130.70  -0.5630 0.5756 
2 SN-TCP-ND   SN-TCP-NE   67219.17 67233.83   -14.67  1590.49  -0.0714 0.9433 
3 SN-TCP-ND   SN-TCP-NE   67056.83 67035.50   +21.33   515.17  +0.3208 0.7495 
4 SN-TCP-ND   SN-TCP-NE   67011.17 67205.17  -194.00   278.26  -5.4004 0.0000 
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APPENDIX G MIDI INSTRUMENTS 

1 Acoustic Grand Piano 33 Acoustic Bass 65 Soprano Sax 97 FX 1 (Rain) 
2 Bright Acoustic Piano 34 Electric Bass (Finger) 66 Alto Sax 98 FX 2 (Sound Track) 
3 Electric Grand Piano 35 Electric Bass (Pick) 67 Tenor Sax 99 FX 3 (Crystal) 
4 Honky-tonk Piano 36 Fretless Bass 68 Baritone Sax 100 FX 4 (Atmosphere) 
5 Electric Piano 1 37 Slap Bass 1 69 Oboe 101 FX 5 (Brightness) 
6 Electric Piano 2 38 Slap Bass 2 70 English Horn 102 FX 6 (Goblins) 
7 Harpsichord 39 Synth Bass 1 71 Bassoon 103 FX 7 (Echoes) 
8 Clavichord 40 Synth Bass 2 72 Clarinet 104 FX 8 (Sci-Fi) 
9 Celesta 41 Violin 73 Piccolo 105 Sitar 
10 Glockenspiel 42 Viola 74 Flute 106 Banjo 
11 Music Box 43 Cello 75 Recorder 107 Shamisen 
12 Vibraphone 44 Contrabass 76 Pan Flute 108 Koto 
13 Marimba 45 Tremolo Strings 77 Blown Bottle 109 Kalimba 
14 Xylophone 46 Pizzicato Strings 78 Shakuhachi 110 Bag Pipe 
15 Tubular Bells 47 Orchestral Harp 79 Whistle 111 Fiddle 
16 Dulcimer 48 Timpani 80 Ocarina 112 Shanai 
17 Drawbar Organ 49 String Ensemble 1 81 Lead 1 (Square) 113 Tinkle Bell 
18 Percussive Organ 50 String Ensemble 2 82 Lead 2 (Sawtooth) 114 Agogo 
19 Rock Organ 51 Synth Strings 1 83 Lead 3 (Calliope) 115 Steel Drums 
20 Church Organ 52 Synth Strings 2 84 Lead 4 (Chiff) 116 Woodblock 
21 Reed Organ 53 Choir Aahs 85 Lead 5 (Charang) 117 Tallo Drum 
22 Accordion 54 Choir Oohs 86 Lead 6 (Voice) 118 Melodic Tom 
23 Harmonica 55 Synth Voice 87 Lead 7 (Fifths) 119 Synth Drum 
24 Tango Accordion 56 Orchestral Hit 88 Lead 8 (Bass + Lead) 120 Reverse Cymbal 
25 Acoustic Guitar (Nylon) 57 Trumpet 89 Pad 1 (New Age) 121 Guitar Fret Noise 
26 Acoustic Guitar (Steel) 58 Trombone 90  Pad 2 (Warm) 122 Breathe Noise 
27 Electric Guitar (Jazz) 59 Tuba 91 Pad 3 (Polysynth) 123 Seashore 
28 Electric Guitar (Clean) 60 Muted Trumpet 92 Pad 4 (Choir) 124 Bird Tweet 
29 Electric Guitar (Muted) 61 French Horn 93 Pad 5 (Bowed) 125 Telephone Ring 
30 Overdriven Guitar 62 Brass Section 94 Pad 6 (Metallic) 126 Helicopter 
31 Distortion Guitar 63 Synth Brass 1 95 Pad 7 (Halo) 127 Applause 
32 Guitar Harmonics 64 Synth Brass 2 96 Pad 8 (Sweep) 128 Gunshot 
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APPENDIX H MIDI INSTRUMENT GROUPINGS 

1 – 8  Piano 
9 – 16  Chromatic Percussion 
17 – 24  Organ 
25 – 32  Guitar 
33 – 40   Bass 
41 – 48     Strings 
49 – 56   Ensemble 
57 – 64 Brass 
65 – 72 Reed 
73 – 80  Pipe 
81 – 88  Synth Lead 
89 – 96  Synth Pad 
97 – 104  Synth Effects 
105 – 112  Ethnic 
113 – 120  Percussive 
121 – 128  Sound Effects 
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APPENDIX I MIDI META-MESSAGES AND MIDI CONTROLLERS 

The general format of a MIDI meta-message is the octet 0xFF followed by a type 0x00 to 0x7F then a 

length, which is a variable length quantity one to four octets then length data octets. Not all the one hundred 

and twenty eight types are defined but a MIDI file reader should be able to ignore an undefined type [5]. 

0x00 0x02 #-hi #-lo    Sequence Number 
0x01 Length Text     Text Event 
0x02 Length Text     Copyright Notice 
0x03 Length Text     Sequence/Track Name 
0x04 Length Text     Instrument Name 
0x05 Length Text     Lyric 
0x06 Length Text     Marker 
0x07 Length Text     Cue Point 
0x20 0x01 Ch     MIDI Channel Prefix 
0x2F 0x00      End of Track (Mandatory) 
0x51 0x03 T1 T2 T3   Tempo T1 Highest Order Octet 
0x54 0x05 Hrs Min Sec Fr FF SMTPE Offset 
0x58 0x04 Num Den MC TS  Time Signature 
0x59 0x02 #-s MM    Key Signature 
0x7F Length Id Data    Sequencer-Specific Meta-Event 

 
Length is a variable length quantity. Text is a series of Length octets. Fr is the number 

of frames, FF is the frame fraction, Num is the time signature numerator, Den is the time 

signature denominator exponent, MC is the MIDI clocks per metronome tick, TS is the 

number of 32nd notes per quarter note, #-s is the number of sharps or flats – 7 is 7 flats, + 

7 is 7 sharps, 0 is the key of C, MM is 0 for a major key or 1 for a minor key, Id is 1 to 3 

octets in length representing a manufacturer’s id and is a variable length quantity, and 

Data is Length – length of id in length data octets [5]. The following two routines allow 

one to read and write variable length quantities [6]. 
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APPENDIX J UT-RTP-ND & UT-RTP-NE VERSUS SN-TCP-ND & SN-TCP-NE 

 Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-ND 66944.66 60 423.8622 54.7203 
SN-TCP-ND 67183.00 60 765.3320 98.8039 

Table AE-1 Trippygaia1.mid m = 1  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-ND-SN-TCP-ND -238.3333 901.3420 116.3627 -2.0481 59 0.0449 

Table J-2 Trippygaia1.mid m = 1 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-ND 66944.66 60 423.8622 54.7203 
SN-TCP-NE 67498.00 60 840.9998 108.5726 

Table J-3 Trippygaia1.mid m = 1  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-ND-SN-TCP-NE -553.3333 938.7598 121.1933 -4.5657 59 0.0000 

Table J-4 Trippygaia1.mid m = 1 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-ND 66944.66 60 423.8622 54.7203 
UT-RTP-NE 67471.33 60 423.8622 251.2846 

Table J-5 Trippygaia1.mid m = 1  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-ND-UT-RTP-NE -526.6666 1997.1638 257.8327 -2.0426 59 0.0455 

Table J-6 Trippygaia1.mid m = 1 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-NE 67471.33 60 1946.4426 251.2846 
SN-TCP-ND 67183.00 60 765.3320 98.8039 

Table J-7 Trippygaia1.mid m = 1  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-NE-SN-TCP-ND 288.3333 2107.9133 272.1304 1.0595 59 0.2936 

Table J-8 Trippygaia1.mid m = 1 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-NE 67471.33 60 1946.4426 251.2846 
SN-TCP-NE 67498.00 60 840.9998 108.5726 

Table J-9 Trippygaia1.mid m = 1 
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Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 

UT-RTP-NE-SN-TCP-NE -26.6666 2140.4962 276.3368 -0.0965 59 0.9234 
Table J-10 Trippygaia1.mid m = 1 
 

Protocol Mean N Std. Dev. Std. Error Mean 
SN-TCP-ND 67183.00 60 765.3320 98.8039 
SN-TCP-NE 67498.00 60 840.9998 108.5726 

Table J-11 Trippygaia1.mid m = 1 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -315.0000 1158.5957 149.5740 -2.1059 59 0.0394 

Table J-12 Trippygaia1.mid m = 1 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-ND 66961.16 60 535.5658 69.1412 
SN-TCP-ND 66952.66 60 49.3986 6.3773 

Table J-13 Trippygaia1.mid m = 2 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-ND- SN-TCP-ND 8.5000 545.3775 70.4079 0.1207 59 0.9043 

Table J-14 Trippygaia1.mid m = 2 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-ND 66961.16 60 535.5658 69.1412 
SN-TCP-NE 67285.50 60 253.8211 32.7681 

Table J-15 Trippygaia1.mid m = 2 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-ND -SN-TCP-NE -324.3333 586.3774 75.7010 -4.2843 59 0.0000 

Table J-16 Trippygaia1.mid m = 2 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-ND 66961.16 60 535.5658 69.1412 
UT-RTP-NE 67554.33 60 2134.2599 275.5317 

Table J-17 Trippygaia1.mid m = 2 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-ND-UT-RTP-NE -593.1666 2201.6784 284.2354 -2.0868 59 0.0412 

Table J-18 Trippygaia1.mid m = 2 
 

Protocol Mean N Std. Dev. Std. Error Mean 
SN-TCP-ND 66952.66 60 49.3986 6.3773 
SN-TCP-NE 67285.50 60 253.8211 32.7681 

Table J-19 Trippygaia1.mid m = 2 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -332.8333 260.2807 33.6021 -9.9051 59 0.0000 

Table J-20 Trippygaia1.mid m = 2 
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Protocol Mean N Std. Dev. Std. Error Mean 

UT-RTP-NE 67554.33 60 2134.2599 275.5317 
SN-TCP-ND 66952.66 60 49.3986 6.3773 

Table J-21 Trippygaia1.mid m = 2 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-NE-SN-TCP-ND 601.66 2131.8498 275.2206 2.1861 59 0.0327 

Table J-22 Trippygaia1.mid m = 2 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-NE 67554.33 60 2134.2599 275.5317 
SN-TCP-NE 67285.50 60 253.8211 32.7681 

Table J-23 Trippygaia1.mid m = 2 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-NE-SN-TCP-NE 268.8333 2160.2660 278.8891 0.9639 59 0.3390 

Table J-24 Trippygaia1.mid m = 2 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-ND 67233.33 60 1467.7766 189.4891 
SN-TCP-ND 67022.66 60 52.5894 6.7892 

Table J-25 Trippygaia1.mid m = 3 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-ND- SN-TCP-ND 210.6666 1457.4494 188.1559 1.1196 59 0.2674 

Table J-26 Trippygaia1.mid m = 3 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-ND 67233.33 60 1467.7766 189.4891 
SN-TCP-NE 67624.66 60 2311.7206 298.4418 

Table J-27 Trippygaia1.mid m = 3 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-ND -SN-TCP-NE -391.3333 1191.8742 153.8703 -2.5432 59 0.0136 

Table J-28 Trippygaia1.mid m = 3 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-ND 67233.33 60 1467.7766 189.4891 
UT-RTP-NE 67285.66 60 331.2910 42.7694 

Table J-29 Trippygaia1.mid m = 3 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-ND-UT-RTP-NE -52.3333 1521.6531 196.4445 -0.2664 59 0.7908 

Table J-30 Trippygaia1.mid m = 3 
 

Protocol Mean N Std. Dev. Std. Error Mean 
SN-TCP-ND 67022.66 60 52.5894 6.7892 
SN-TCP-NE 67624.66 60 2311.7206 298.4418 

Table J-31 Trippygaia1.mid m = 3 
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Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -602.0000 2300.3034 296.9678 -2.0271 59 0.04717 

Table J-32 Trippygaia1.mid m = 3 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-NE 67285.66 60 331.2910 42.7694 
SN-TCP-ND 67022.66 60 52.5894 6.7892 

Table J-33 Trippygaia1.mid m = 3 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-NE-SN-TCP-ND 263.0000 337.5851 43.5820 6.0345 59 0.0000 

Table J-34 Trippygaia1.mid m = 3 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-NE 67285.66 60 331.2910 42.7694 
SN-TCP-NE 67624.66 60 2311.7206 298.4418 

Table J-35 Trippygaia1.mid m = 3 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-NE-SN-TCP-NE -339.0000 2354.3920 303.9507 -1.1153 59 0.2692 

Table J-36 Trippygaia1.mid m = 3 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-ND 67299.83 60 1739.1099 224.5181 
SN-TCP-ND 67068.00 60 355.1118 45.8447 

Table J-37 Trippygaia1.mid m = 4 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-ND- SN-TCP-ND 231.8333 1788.3128 230.8701 1.0041 59 0.3193 

Table J-38 Trippygaia1.mid m = 4 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-ND 67299.83 60 1739.1099 224.5181 
SN-TCP-NE 67426.83 60 1448.4772 186.9976 

Table J-39 Trippygaia1.mid m = 4 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-ND -SN-TCP-NE -127.0000 2286.5230 295.1888 -0.4302 59 0.6685 

Table J-40 Trippygaia1.mid m = 4 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-ND 67299.83 60 1739.1099 224.5181 
UT-RTP-NE 67228.83 60 75.5565 9.7543 

Table J-41 Trippygaia1.mid m = 4 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-ND-UT-RTP-NE 71.0000 1760.2471 227.2469 0.3124 59 0.7558 

Table J-42 Trippygaia1.mid m = 4 
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Protocol Mean N Std. Dev. Std. Error Mean 

SN-TCP-ND 67068.00 60 355.1118 45.8447 
SN-TCP-NE 67426.83 60 1448.4772 186.9976 

Table J-43 Trippygaia1.mid m = 4 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -358.8333 1504.7203 194.2585 -1.8471 59 0.0697 

Table J-44 Trippygaia1.mid m = 4 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-NE 67228.83 60 75.5565 9.7543 
SN-TCP-ND 67068.00 60 355.1118 45.8447 

Table J-45 Trippygaia1.mid m = 4 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-NE-SN-TCP-ND 160.8333 355.6387 45.9127 3.5030 59 0.0008 

Table J-46 Trippygaia1.mid m = 4 
 

Protocol Mean N Std. Dev. Std. Error Mean 
UT-RTP-NE 67228.83 60 75.5565 9.7543 
SN-TCP-NE 67426.83 60 1448.4772 186.9976 

Table J-47 Trippygaia1.mid m = 4 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
UT-RTP-NE-SN-TCP-NE -198.0000 1464.4057 189.0539 -1.0473 59 0.2992 

Table J-48 Trippygaia1.mid m = 4 
 
In the figures on the following pages the captions on the left are for the above figure and the captions on the 

left are for the below figure. 
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APPENDIX K ATCP-32 VERSUS SN-TCP-ND AND SN-TCP-NE 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-32 67104.00 60 2151.6688 277.7792 

SN-TCP-ND 67119.83 60 229.6902 29.6528 
Table K-1 Trippygaia1.mid m = 4 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-32-SN-TCP-ND -15.8333 2163.0614 279.2500 -0.0566 59 0.9549 
Table K-2 Trippygaia1.mid m = 4 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-32 67104.00 60 2151.6688 277.7792 

SN-TCP-NE 67490.33 60 1521.7139 196.4524 
Table K-3 Trippygaia1.mid m = 4 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-32-SN-TCP-NE -386.3333 2650.2637 342.1475 -1.1291 59 0.2634 
Table K-4 Trippygaia1.mid m = 4 
 

Protocol Mean N Std. Dev. Std. Error Mean 
SN-TCP-ND 67119.83 60 229.6902 29.6528 
SN-TCP-NE 67490.33 60 1521.7139 196.4524 
Table K-5 Trippygaia1.mid m = 4 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -370.5000 1539.9190 198.8026 -1.8636 59 0.0673 
Table K-6 Trippygaia1.mid m = 4 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-32 67066.00 60 2039.9494 263.3563 

SN-TCP-ND 67100.16 60 532.2019 68.7069 
Table K-7 Trippygaia1.mid m = 5 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-32-SN-TCP-ND -34.1666 2111.7751 272.6289 -0.1253 59 0.9006 
Table K-8 Trippygaia1.mid m = 5 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-32 67066.00 60 2039.9494 263.3563 

SN-TCP-NE 67230.83 60 82.8985 10.7021 
Table K-9 Trippygaia1.mid m = 5 
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Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 

ATCP-32-SN-TCP-NE -164.8333 2048.1744 264.4181 -0.6233 59 0.5354 
Table K-10 Trippygaia1.mid m = 5 
 

Protocol Mean N Std. Dev. Std. Error Mean 
SN-TCP-ND 67100.16 60 532.2019 68.7069 
SN-TCP-NE 67230.83 60 82.8985 10.7021 
Table K-11 Trippygaia1.mid m = 5 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -130.66 551.8746 71.2467 -1.8340 59 0.0716 
Table K-12 Trippygaia1.mid m = 5 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-32 66782.83 60 53.5230 6.9097 

SN-TCP-ND 67044.83 60 54.3838 7.0209 
Table K-13 Trippygaia1.mid m = 6 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-32-SN-TCP-ND -262.0000 72.7382 9.3904 -27.9006 59 0.0000 
Table K-14 Trippygaia1.mid m = 6 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-32 66782.83 60 53.5230 6.9097 

SN-TCP-NE 67432.83 60 1596.0301 206.0466 
Table K-15 Trippygaia1.mid m = 6 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-32-SN-TCP-NE -650.0000 1601.9024 206.8047 -3.1430 59 0.0026 
Table K-16 Trippygaia1.mid m = 6 
 

Protocol Mean N Std. Dev. Std. Error Mean 
SN-TCP-ND 67044.83 60 54.3838 7.0209 
SN-TCP-NE 67432.83 60 1596.0301 206.0466 
Table K-17 Trippygaia1.mid m = 6 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -388.0000 1601.2736 206.7235 -1.8769 59 0.0654 
Table K-18 Trippygaia1.mid m = 6 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-32 66778.66 60 43.4708 5.6120 

SN-TCP-ND 67371.16 60 2434.3969 314.2792 
Table K-19 Trippygaia1.mid m = 7 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-32-SN-TCP-ND -592.5000 2426.6071 313.2736 -1.8913 59 0.06349 
Table K-20 Trippygaia1.mid m = 7 
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Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-32 66778.66 60 43.4708 5.6120 

SN-TCP-NE 67442.50 60 1561.3256 201.5662 
Table K-21 Trippygaia1.mid m = 7 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-32-SN-TCP-NE -663.8333 1553.6889 200.5803 -3.3095 59 0.0015 
Table K-22 Trippygaia1.mid m = 7 
 

Protocol Mean N Std. Dev. Std. Error Mean 
SN-TCP-ND 67371.16 60 2434.3969 314.2792 
SN-TCP-NE 67442.50 60 1561.3256 201.5662 
Table K-23 Trippygaia1.mid m = 7 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -71.3333 879.0932 113.4904 -0.6285 59 0.5320 
Table K-24 Trippygaia1.mid m = 7 
 

ATCP-32 66758.83 60 48.9583 6.3204 
SN-TCP-ND 67220.00 60 1214.1189 156.7420 
Table K-25 Trippygaia1.mid m = 8 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-32-SN-TCP-ND -461.1666 1225.3966 158.1980 -2.9151 59 0.0050 
Table K-26 Trippygaia1.mid m = 8 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-32 66758.83 60 48.9583 6.3204 

SN-TCP-NE 67298.83 60 81.4922 10.5206 
Table K-27 Trippygaia1.mid m = 8 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-32-SN-TCP-NE -540.0000 85.9838 11.1004 -48.6466 59 0.0000 
Table K-28 Trippygaia1.mid m = 8 
 

Protocol Mean N Std. Dev. Std. Error Mean 
SN-TCP-ND 67220.00 60 1214.1189 156.7420 
SN-TCP-NE 67298.83 60 81.4922 10.5206 
Table K-29 Trippygaia1.mid m = 8 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
SN-TCP-ND-SN-TCP-NE -78.8333 1217.7543 157.2114 -0.5014 59 0.6179 
Table K-30 Trippygaia1.mid m = 8 
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APPENDIX L ATCP-40 VERSUS SN-TCP-ND, SN-TCP-NE, AND ATCP-32 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-40 67007.83 60 1378.5513 177.9702 

SN-TCP-ND 67119.83 60 229.6902 29.6528 
Table L-1 Trippygaia1.mid m = 4  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP40-SN-TCP-ND -112.0000 1397.6515 180.4360 -0.6207 59 0.5371 
Table L-2 Trippygaia1.mid m = 4 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-40 67007.83 60 1378.5513 177.9702 

SN-TCP-NE 67490.33 60 1521.7139 196.4524 
Table L-3 Trippygaia1.mid m = 4  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP40-SN-TCP-NE -482.5000 2064.3919 266.5118 -1.8104 59 0.07532 
Table L-4 Trippygaia1.mid m = 4 
 
Protocol Mean N Std. Dev. Std. Error Mean 

ATCP-40 67007.83 60 1378.5513 177.9702 
ATCP-32 67104.00 60 2151.6688 277.7792 
Table L-5 Trippygaia1.mid m = 4  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP40-ATCP-32 -96.1666 776.0265 100.1846 -0.9598 59 0.3410 
Table L-6 Trippygaia1.mid m = 4 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-40 66822.83 60 150.2550 19.3978 

SN-TCP-ND 67100.16 60 532.2019 68.7069 
Table L-7 Trippygaia1.mid m = 5 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP40-SN-TCP-ND -277.3333 558.4963 72.1015 -3.8464 59 0.0002 
Table L-8 Trippygaia1.mid m = 5 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-40 66822.83 60 150.2550 19.3978 

SN-TCP-NE 67230.83 60 82.8985 10.7021 
Table L-9 Trippygaia1.mid m = 5 
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Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 

ATCP40-SN-TCP-NE -408.0000 164.1599 21.1929 -19.2516 59 0.0000 
Table L-10 Trippygaia1.mid m = 5 
 
Protocol Mean N Std. Dev. Std. Error Mean 

ATCP-40 66822.83 60 150.2550 19.3978 
ATCP-32 67066.00 60 2039.9494 263.3563 
Table L-11 Trippygaia1.mid m = 5 

 Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP40-ATCP-32 -243.1666 2049.7535 264.6220 -0.9189 59 0.3618 
Table L-12 Trippygaia1.mid m = 5 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-40 66992.66 60 1201.5143 155.1148 

SN-TCP-ND 67044.83 60 54.3838 7.0209 
Table L-13 Trippygaia1.mid m = 6 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP40-SN-TCP-ND -52.1666 1206.6750 155.7810 -0.3348 59 0.7389 
Table L-14 Trippygaia1.mid m = 6 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-40 66992.66 60 1201.5143 155.1148 

SN-TCP-NE 67432.83 60 1596.0301 206.0466 
Table L-15 Trippygaia1.mid m = 6 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP40-SN-TCP-NE -440.1666 502.6219 64.8882 -6.7834 59 0.0000 
Table L-16 Trippygaia1.mid m = 6 
 
Protocol Mean N Std. Dev. Std. Error Mean 

ATCP-40 66992.66 60 1201.5143 155.1148 
ATCP-32 66782.83 60 53.5230 6.9097 
Table L-17 Trippygaia1.mid m = 6 
 

 Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP40-ATCP-32 209.8333 1207.4647 155.8830 1.3460 59 0.1834 
Table L-18 Trippygaia1.mid m = 6 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-40 66952.33 60 1286.8044 166.1257 

SN-TCP-ND 67371.16 60 2434.3969 314.2792 
Table L-19 Trippygaia1.mid m = 7 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP40-SN-TCP-ND -418.8333 1153.7104 148.9433 -2.8120 59 0.0066 
Table L-20 Trippygaia1.mid m = 7 
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Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-40 66952.33 60 1286.8044 166.1257 

SN-TCP-NE 67442.50 60 1561.3256 201.5662 
Table L-21 Trippygaia1.mid m = 7 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP40-SN-TCP-NE -490.1666 297.0447 38.3483 -12.7819 59 0.0000 
Table L-22 Trippygaia1.mid m = 7 
 
Protocol Mean N Std. Dev. Std. Error Mean 

ATCP-40 66952.33 60 1286.8044 166.1257 
ATCP-32 66778.66 60 43.4708 5.6120 
Table L-23 Trippygaia1.mid m = 7 
 

 Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP40-ATCP-32 173.6666 1279.3191 165.1593 1.0515 59 0.2973 
Table L-24 Trippygaia1.mid m = 7 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-40 66886.16 60 991.5765 128.0119 

SN-TCP-ND 67220.00 60 1214.1189 156.7420 
Table L-25 Trippygaia1.mid m = 8 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP40-SN-TCP-ND -333.8333 232.7222 30.0443 -11.1113 59 0.0000 
Table L-26 Trippygaia1.mid m = 8 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-40 66886.16 60 991.5765 128.0119 

SN-TCP-NE 67298.83 60 81.4922 10.5206 
Table L-27 Trippygaia1.mid m = 8 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP40-SN-TCP-NE -412.6666 997.0173 128.7143 -3.2060 59 0.0021 
Table L-28 Trippygaia1.mid m = 8 
 
Protocol Mean N Std. Dev. Std. Error Mean 

ATCP-40 66886.16 60 991.5765 128.0119 
ATCP-32 66758.83 60 48.9583 6.3204 
Table L-29 Trippygaia1.mid m = 8 
 

 Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP40-ATCP-32 127.3333 1002.7840 129.4588 0.9835 59 0.3293 
Table L-30 Trippygaia1.mid m = 8 
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APPENDIX M ATCP-TCP-ND VS SN-TCP-NX AND ATCP-X 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-ND 66816.00 60 52.5679 6.7864 

SN-TCP-ND 67100.16 60 532.2019 68.7069 
Table M-1 Trippygaia1.mid m = 5  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-TCP-ND-SN-TCP-ND -284.1666 536.3918 69.2478 -4.1036 59 0.0001 
Table M-2 Trippygaia1.mid m = 5 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-ND 66791.50 60 60.4734 7.8070 

SN-TCP-ND 67044.83 60 54.3838 7.0209 
Table M-3 Trippygaia1.mid m = 6 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-TCP-ND-SN-TCP-ND -253.3333 81.1290 10.4737 -24.1875 59 0.0000 
Table M-4 Trippygaia1.mid m = 6 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-ND 66280.33 60 1849.4488 238.7628 

SN-TCP-ND 67371.16 60 2434.3969 314.2792 
Table M-5 Trippygaia1.mid m = 7 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-ND-SN-TCP-ND -1090.8333 590.2980 76.2071 -14.3140 59 0.0000 
Table M-6 Trippygaia1.mid m = 7 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-ND 66062.50 60 55.4068 7.1529 

SN-TCP-ND 67220.00 60 1214.1189 156.7420 
Table M-7 Trippygaia1.mid m = 8 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-TCP-ND-SN-TCP-NE -1157.50 1213.3531 156.6432 -7.3894 59 0.0000 
Table M-8 Trippygaia1.mid m = 8 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-ND 66816.00 60 52.5679 6.7864 

SN-TCP-NE 67230.83 60 82.8985 10.7021 
Table M-9 Trippygaia1.mid m = 5  
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Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 

ATCP-TCP-ND-SN-TCP-NE -414.8333 102.6181 13.2479 -31.3130 59 0.0000 
Table M-10 Trippygaia1.mid m = 5 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-ND 66791.50 60 60.4734 7.8070 

SN-TCP-NE 67432.83 60 1596.0301 206.0466 
Table M-11 Trippygaia1.mid m = 6  

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-TCP-ND-SN-TCP-NE -641.3333 1597.1589 206.1923 -3.1103 59 0.0028 
Table M-12 Trippygaia1.mid m = 6 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-ND 66280.33 60 1849.4488 238.7628 

SN-TCP-NE 67442.50 60 1561.3256 201.5662 
Table M-13 Trippygaia1.mid m = 7 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-ND-SN-TCP-NE -1162.1666 306.8047 39.6083 -29.3414 59 0.0000 
Table M-14 Trippygaia1.mid m = 7 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-ND 66062.50 60 55.4068 7.1529 

SN-TCP-NE 67298.83 60 81.4922 10.5206 
Table M-15 Trippygaia1.mid m = 8 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-TCP-ND-SN-TCP-NE -1236.3333 92.5709 11.9508 -103.4514 59 0.0000 
Table M-16 Trippygaia1.mid m = 8 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-ND 66816.00 60 52.5679 6.7864 

ATCP-32 67066.00 60 2039.9494 263.3563 
Table M-17 Trippygaia1.mid m = 5  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-TCP-ND-ATCP-32 -250.0000 2029.5336 262.0116 -0.9541 59 0.3438 
Table M-18 Trippygaia1.mid m = 5 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-ND 66791.50 60 60.4734 7.8070 

ATCP-32 66782.83 60 53.5230 6.9097 
Table M-19 Trippygaia1.mid m = 6 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-TCP-ND-ATCP-32 8.6666 72.5671 9.3683 0.9250 59 0.3586 
Table M-20 Trippygaia1.mid m = 6 
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Protocol Mean N Std. Dev. Std. Error Mean 

ATCP-TCP-ND 66280.33 60 1849.4488 238.7628 
ATCP-32 66778.66 60 43.4708 5.6120 

Table M-21 Trippygaia1.mid m = 7  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-TCP-ND-ATCP-32 -498.3333 1841.9915 237.8000 -2.0955 59 0.0404 
Table M-22 Trippygaia1.mid m = 7 
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Protocol Mean N Std. Dev. Std. Error Mean 

ATCP-TCP-ND 66062.50 60 55.4068 7.1529 
ATCP-32 66758.83 60 48.9583 6.3204 

Table M-23 Trippygaia1.mid m = 8  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-TCP-ND-ATCP-32 -696.3333 79.1472 10.2178 -68.1485 59 0.0000 
Table M-24 Trippygaia1.mid m = 8 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-ND 66816.00 60 52.5679 6.7864 

ATCP-40 66822.83 60 150.2550 19.3978 
Table M-25 Trippygaia1.mid m = 5  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-ND-ATCP-40 -6.8333 153.9919 19.8802 -0.3437 59 0.7322 
Table M-26 Trippygaia1.mid m = 5 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-ND 66791.50 60 60.4734 7.8070 

ATCP-40 66992.66 60 1201.5143 155.1148 
Table M-27 Trippygaia1.mid m = 6 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-TCP-ND-ATCP-40 -201.1666 1202.3622 155.2242 -1.2959 59 0.2000 
Table M-28 Trippygaia1.mid m = 6 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-ND 66280.33 60 1849.4488 238.7628 

ATCP-40 66952.33 60 1286.8044 166.1257 
Table M-29 Trippygaia1.mid m = 7 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCP-TCP-ND-ATCP-40 -672.00 575.4933 74.2958 -9.0449 59 0.0000 
Table M-30 Trippygaia1.mid m = 7 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-ND 66062.50 60 55.4068 7.1529 

ATCP-40 66886.16 60 128.0119 -823.6666 
Table M-31 Trippygaia1.mid m = 8  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-ND-ATCP-40 -823.6666 991.1865 127.9616 -6.4368 59 0.0000 
Table M-32 Trippygaia1.mid m = 8 
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APPENDIX N ATCP-TCP-NE VS SN-TCP-NX, ATCP-X, AND ATCP-TCP-ND 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66525.83 60 2278.37 294.1370 

SN-TCP-ND 67100.16 60 532.20 68.7069 
Table N-1 Trippygaia1.mid m = 5  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-SN-TCP-ND -574.3333 2348.8759 303.2385 -1.8939 59 0.0631 
Table N-2 Trippygiaa1.mid m = 5 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66581.50 60 2695.9076 348.0401 

SN-TCP-ND 67044.83 60 54.3838 7.0209 
Table N-3 Trippygaia1.mid m = 6 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-SN-TCP-ND -463.3333 2701.0567 348.7049 -1.3287 59 0.1890 
Table N-4 Trippygaia1.mid m = 6 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66471.00 60 1645.5452 212.4389 

SN-TCP-ND 67371.16 60 2434.3969 314.2792 
Table N-5 Trippygaia1.mid m = 7 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-SN-TCP-ND -900.1666 2950.9909 380.9712 -2.3628 59 0.0214 
Table N-6 Trippygaia1.mid m = 7 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66832.83 60 1598.4325 206.3567 

SN-TCP-ND 67220.00 60 1214.1189 156.7420 
Table N-7 Trippygaia1.mid m = 8 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-SN-TCP-NE -387.1666 2014.6456 260.0896 -1.4885 59 0.1419 
Table N-8 Trippygaia1.mid m = 8 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66525.83 60 2278.3760 294.1370 

SN-TCP-NE 67230.83 60 82.8985 10.7021 
Table N-9 Trippygaia1.mid m = 5 
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Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 

ATCPTCP-NE-SN-TCP-NE -705.0000 2280.4448 294.4041 -2.3946 59 0.0198 
Table N-10 Trippygaia1.mid m = 5 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66581.50 60 2695.9076 348.0401 

SN-TCP-NE 67432.83 60 1596.0301 206.0466 
Table N-11 Trippygaia1.mid m = 6 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-SN-TCP-NE -851.3333 1104.1930 142.5507 -5.9721 59 0.0000 
Table N-12 Trippygaia1.mid m = 6 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66471.00 60 1645.5452 212.4389 

SN-TCP-NE 67442.50 60 1561.3256 201.5662 
Table N-13 Trippygaia1.mid m = 7 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-SN-TCP-NE -971.50 2270.3026 293.0948 -3.3146 59 0.0015 
Table N-14 Trippygaia1.mid m = 7 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66832.83 60 1598.4325 206.3567 

SN-TCP-NE 67298.83 60 81.4922 10.5206 
Table N-15 Trippygaia1.mid m = 8 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-SN-TCP-NE -466.0000 1594.7235 205.8779 -2.2634 59 0.0272 
Table N-16 Trippygaia1.mid m = 8 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66525.83 60 2278.3760 294.1370 

ATCP-32 66937.66 60 1871.3897 241.5953 
Table N-17 Trippygaia1.mid m = 5  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-32 -411.8333 2966.7447 383.0051 -1.0752 59 0.2866 
Table N-18 Trippygaia1.mid m = 5 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66581.50 60 2695.9076 348.0401 

ATCP-32 66487.00 60 1958.3314 252.8195 
Table N-19 Trippygaia1.mid m = 6 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-32 94.5 741.6093 95.7413 0.9870 59 0.3276 
Table N-20 Trippygaia1.mid m = 6 
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Protocol Mean N Std. Dev. Std. Error Mean 

ATCP-TCP-NE 66471.00 60 1645.5452 212.4389 
ATCP-32 66778.66 60 43.4708 5.6120 

Table N-21 Trippygaia1.mid m = 7  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-32 -307.6666 1638.6490 211.5486 -1.4543 59 0.1511 
Table N-22 Trippygaia1.mid m = 7 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66832.83 60 1598.4325 206.3567 

ATCP-32 66758.83 60 48.9583 6.3204 
Table N-23 Trippygaia1.mid m = 8  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-32 74.0000 1595.2495 205.9458 0.3593 59 0.7206 
Table N-24 Trippygaia1.mid m = 8 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66525.83 60 2278.3760 294.1370 

ATCP-40 66822.83 60 150.2550 19.3978 
Table N-25 Trippygaia1.mid m = 5  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-40 -297.0000 2295.7730 296.3830 -1.0020 59 0.3203 
Table N-26 Trippygaia1.mid m = 5 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66581.50 60 2695.9076 348.0401 

ATCP-40 66992.66 60 1201.5143 155.1148 
Table N-27 Trippygaia1.mid m = 6 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-40 -411.1666 1549.6933 200.0645 -2.0551 59 0.0442 
Table N-28 Trippygaia1.mid m = 6 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66471.00 60 1645.5452 212.4389 

ATCP-40 66952.33 60 1286.8044 166.1257 
Table N-29 Trippygaia1.mid m = 7 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-40 -481.3333 2098.8305 270.9578 -1.7764 59 0.0808 
Table N-30 Trippygaia1.mid m = 7 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66832.83 60 1598.4325 206.3567 

ATCP-40 66886.16 60 991.5765 128.0119 
Table N-31 Trippygaia1.mid m = 8  
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Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-40 -53.3333 1891.4774 244.1886 -0.2184 59 0.8278 
Table N-32 Trippygaia1.mid m = 8 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66525.83 60 2278.3760 294.1370 
ATCP-TCP-ND 66816.00 60 52.5679 6.7864 
Table N-33 Trippygaia1.mid m = 5 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-TCP-ND -290.1666 2282.7299 294.6991 -0.9846 59 0.3288 
Table N-34 Trippygaia1.mid m = 5 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66581.50 60 2695.9076 348.0401 
ATCP-TCP-ND 66791.50 60 60.4734 7.8070 
Table N-35 Trippygaia1.mid m = 6 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-TCP-ND -210.0000 2697.2214 348.2097 -0.6030 59 0.5487 
Table N-36 Trippygaia1.mid m = 6 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66471.00 60 1645.5452 212.4389 
ATCP-TCP-ND 66952.33 60 1286.8044 166.1257 
Table N-37 Trippygaia1.mid m = 7 
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-TCP-ND 270.9578 2098.8305 270.9578 -1.7764 59 0.0808 
Table N-38 Trippygaia1.mid m = 7 
 

Protocol Mean N Std. Dev. Std. Error Mean 
ATCP-TCP-NE 66832.83 60 1598.4325 206.3567 
ATCP-TCP-ND 66062.50 60 55.4068 7.1529 
Table N-39 Trippygaia1.mid m = 8  
 

Difference Mean Std. Dev. Std. Error Mean T DF Sig. 2 
ATCPTCP-NE-ATCP-TCP-ND 770.3333 1592.3748 205.5747 3.7472 59 0.0000 
Table N-40 Trippygaia1.mid m = 8 
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