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(B.Sc., Ranchi University, 2002)

47 Typed Pages

Directed by Amnon J. Meir

A method to approximate functions defined on a sphere using tensor product cu-

bic B-splines is presented here. The method is based on decomposing the sphere into

six identical patches obtained by radially projecting the six faces of a circumscribed

cube onto the spherical surface. The theory of univariate splines has been general-

ized in different forms to functions of several variables. Among these extensions the

tensor product splines are the easiest to handle. Although the tensor product splines

are restricted to rectangular domains rendering their applicability limited they are

extremely efficient compared to other surface approximation techniques which are far

more complicated and hence computationally less attractive.
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Chapter 1

Introduction

1.1 Objective

Cubic splines on a spherical domain may be used for the approximation of func-

tions defined on such domains which serve as a tool for modeling and analyzing of

physical processes. However evaluation of these functions explicitly is sometimes dif-

ficult due to the limitations of the underlying processes. In such cases it becomes

pertinent to form an approximation of the defined function. We also run into cases

where the evaluation of the exact function is computationally expensive forcing us

to use approximation techniques. The problem of functional approximation may be

broadly classified into two categories. The first involving problems where the exact

function is unknown and approximation technique is based on function value at cer-

tain set of discrete points. The second class of problems is related to physical process

modeling. These usually involve operator equations. Our aim is to look into a suitable

set of approximations A and develop means to select an appropriate approximation.

Since we want the function to be approximated by some member of the approxima-

tion set A we need to device a method to select this member. Usually this is done

by choosing an approximation member such that the error is within a certain factor

of the least error that can be achieved. Functions arising from physical processes are

generally smooth implying an obvious need for the approximants to be sufficiently

smooth. Functional approximations on the sphere are of research interest since many

geophysical applications including oceanography, climate modeling and modeling of

earth’s gravitational potential involve large amount of data on the surface of the
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earth (basic model is a sphere) or on the satellite orbit (approximately a spherical

manifold).

1.1.1 Spline approximation and its significance

It appears that an obvious choice for function approximation is the polynomial

pm ∈ Pm because of its relative smoothness and easy manipulation on a digital com-

puter. However it turns out that interpolating polynomials do not always converge

to the function being interpolated [3]. The following theorem justifies this.

Theorem 1.1. Let [a, b] be fixed and suppose that for each k > 1, tk1 , tk2 , . . . , tkk
is a

collection of points in [a, b]. Then there exists a function f ∈ C[a, b] such that

||(f − Lmf)||∞ −→∞ as m→∞ (1.1)

where Lmf is the unique polynomial of order k interpolating f at tk1 , tk2 , . . . , tkk
.

This leads to the approximation using smooth piecewise polynomials i.e splines.

1.2 Spline Theory

We address here the one dimensional case of approximating a given function

using univariate splines. Mathematically we may represent it as

f(xi) = sm(xi),

where xi denote the nodal points. That is to say that the constructed spline agrees

with the function values at a certain set of points termed here as the nodal points. We

would want this spline to possess a certain degree of smoothness. We then represent

the spline on any partition say ∆ as a linear combination of the basis elements of

the linear space to which it belongs. These basis elements are generally called the

B-splines.
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Definition 1.1 (Piecewise Polynomials [3]). Let a = x0 < x1 < x2 < · · · <

xn−1 < xn = b, and write ∆ = {xi}n0 . The set ∆ partitions the interval [a, b] into

n subintervals, Ii = [xi, xi+1), i = 0, 1, . . . , n − 2, and In−1 = [xn−1, xn]. Given a

positive integer m, let

PPm(∆) = {f : there exists polynomials p0, p1, . . . , pn−1 in Pm with f(x) = pi(x)

for x ∈ Ii, i = 0, 1, . . . , n− 1},

where

Pm = {p(x) : p(x) =
m∑
i=1

cix
i−1, c1, c2, . . . , cm, x real}.

We call PPm(∆) the space of piecewise polynomials of order m with knots x1, x2, . . . ,

xn−1.

Switching from the approximation of a given function by a polynomial to approx-

imation using piecewise polynomials provides us with a degree of flexibility. However

piecewise polynomials are not necessarily smooth. To maintain flexibility and at

the same time allow a certain degree of global smoothness we now define a class of

functions known as polynomial splines.

Definition 1.2. Let ∆ be a partition of the interval [a, b] as in Definition 1.1, and

let m be a positive integer. Let

Sm(∆) = PPm(∆) ∩ Cm−2[a, b],

where PPm(∆) is the space of piecewise polynomials defined in (1.1). We call Sm(∆)

the space of polynomial splines of order m (degree m− 1) with respect to ∆.

Polynomial splines spaces are finite dimensional linear spaces. The dimension of

this space of splines is dim(Sm(∆)) = n+m− 1. The above definition clearly implies

that any polynomial on ∆ of degree 6 m− 1 is a spline function of degree m− 1 on
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∆. In general a spline of degree m− 1 is represented by different polynomials in each

interval Ii, i = 0, 1, . . . , n− 1. This may give rise to dicontinuities in its (m− 1)− th

derivatives at the internal nodes x1, x2, . . . , xn−1. The nodes for which this actually

happens are called active nodes.

Let sm ∈ Sm(∆) be a spline of degree m− 1 defined on the partition ∆. Let us

denote the restriction of this spline function as sm|[xi,xi+1] where

sm|[xi,xi+1] =
m−1∑
j=0

sji(x− xi)j , if x ∈ [xi, xi+1]

so we have mn coefficients to determine. Again we have the continuity conditions at

the internal nodes. Each internal node has m−1 continuity conditions which amounts

to (n − 1)(m − 1) conditions. We therefore have mn − (n − 1)(m − 1) = m + n − 1

coefficients to determine. Since we are talking about an interpolatory spline we have

sm|[xi,xi+1](xi) = f(xi) ≡ fi for i = 0, . . . , n

where the n+1 function values are known. We now have (m+n−1)−(n+1) = m−2

coefficients still unaccounted for. To be more precise we still need m − 2 conditions

to determine the spline completely. This leads to imposing further constraints i.e

conditions for periodicity or conditions for the spline to be natural.

Mathematically they are represented as

1. Periodic splines, if

slm(a) = slm(b), l = 0, . . . ,m− 2. (1.2)

2. Natural splines, if for m = 2p− 1, with l > 2

sp+jm (a) = sp+jm (b) = 0, j = 0, 1 . . . , p− 2 (1.3)

4



We will be dealing with cubic periodic splines throughout our work and unless

otherwise mentioned m = 4.

1.2.1 B-spline Representation

Before we define the B-Spline representation for a spline sm ∈ Sm(∆) and what

the B-splines themselves are we define the concept of divided difference since B-splines

can be defined in terms of the divided difference.

Definition 1.3 (Divided Difference [2]). The n-th divided difference of a function f

at the points x0, x1, . . . , xn (which are assumed to be distinct) is the leading coefficient

(i.e the coefficient of xn) of the unique polynomial pn+1(x) of degree n which satisfies

pn+1(xi) = f(xi), i = 0, 1, . . . , n.

Mathematically the n-th divided difference is denoted as

f [x0, x1, . . . , xn] =
n∑
i=0

f(xi)
ω

′
n+1(xi)

, (1.4)

where

ωn+1(x) =
n∏
i=0

(x− xi).

We now define the B-splines in terms of divided difference

Definition 1.4 (Normalized B-splines). The normalized B-splines of degree m−1

relative to the distinct nodes xi, xi+1, . . . , xi+m is defined as

Bi,m(x) = (xi+m − xi)g[xi, . . . , xi+m]. (1.5)

where

g(t) = (t− x)m−1
+ =


(t− x)m−1 if x 6 t,

0 otherwise.
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To find an explicit expression for the normalized B-splines we state here the the

Uniqueness Theorem for an interpolating polynomial which forms a basis for for this

explicit expression.

Theorem 1.2. Given n + 1 distinct points x0, x1, . . . , xn and n + 1 corresponding

values f(x0), f(x1), . . . , f(xn) there exists a unique polynomial pn+1 ∈ Pn+1 such that

pn+1(xi) = f(xi) for i = 0, 1, . . . , n.

The uniqueness of the interpolating polynomial provides for the comparison be-

tween the Lagrange’s form of the interpolating polynomial and the Newton’s divided

difference formula. This comparison along with the notion that the divided difference

is the coefficient of xn in the interpolating polynomial yields the explicit represen-

tation for the n-th divided difference as defined in equation (1.4). Using equation

(1.5) in the expression for normalized B-splines we arrive at the following explicit

representation for B-splines

Bi,m(x) = (xi+m − xi)
m∑
j=0

(xj+i − x)m−1
+

m∏
l=0
l 6=j

(xj+i − xl+i)
. (1.6)

We note here that the m-th order normalized B-spline have active nodes

xi, xi+1, . . . , xm and vanish outside the interval [xi, xi+m]. The term normalized for

B-splines has been introduced since B-splines can have varied sizes depending on the

location of the nodal points, for example

Qi,1(x) =


1

xi+1−xi
, xi 6 x < xi+1

0, otherwise
(1.7)

is a B-spline which is not normalized and can be extremely large or extremely small

depending on the step size of the nodal points. The direct evaluation of the B-spline,

Bi,m(x) from its Definition 1.5 in terms of divided difference may result in considerable
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loss of accuracy during computation of the various difference quotients. The B-spline

admits a recurrence relation [7] which requires no special treatment in the case of

repeated nodal points and which does not result in loss of accuracy.

Bi,m(x) =
x− xi

xi+m−1 − xi
Bi,m−1(x) +

xi+m − x
xi+m − xi+1

Bi+1,m−1(x) (1.8)

Bi,1(x) =


1 if xi 6 x < xi+1

0 otherwise
(1.9)

We state here an important property of the B-splines which explains why they are

termed as normalized B-splines.

Theorem 1.3. The B-splines form a partition of unity; that is

j∑
i=j+1−m

Bi,m(x) = 1 ∀ xj 6 x < xj+1 (1.10)

Definition 1.5 (Extended partition). Let ∆ be partition of the interval [a, b] as

in Definition 1.1. Suppose we have nodes x−m+1, x−m+2, . . . , x−1 and

xn+1, xn+2, . . . , xn+m−1 such that

x−m+1 6 x−m+2 6 · · · 6 x−1 6 x0 6 x1 · · · 6 xn 6 xn+1 6 xn+2 6 · · ·xn+m−1

(1.11)

then we call ∆̄ = {xi}n+m−1
−m+1 an extended partition associated with Sm(∆).

Theorem 1.4. Let ∆̄ = {xi}n+m−1
−m+1 be an extended partition associated with Sm(∆)

and suppose xn < xn+m−1. For i = −m+ 1,−m+ 2, . . . , 1, 2, . . . , n− 1, let

Bi,m(x) = (xi+m − xi)
m∑
t=0

(xj+i − x)m−1
+

m∏
l=0
l 6=j

(xj+i − xl+i)
, x0 6 x 6 xn. (1.12)
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Then {Bi,m}n−1
−m+1 forms a basis for Sm(∆) with

Bi,m = 0 for x /∈ [xi, xi+m]

and

Bi,m(x) > 0 for x ∈ (xi, xi+m).

In view of Theorem 1.4 we can now define any spline sm(x) ∈ Sm(∆) uniquely

as a linear combination of these basis elements i.e

sm(x) =
n−1∑
−m+1

ciBi,m(x). (1.13)

The real numbers ci are called the B-spline coefficients of sm. The nodes in equation

(1.11) are generally chosen as periodic or coincident. For periodicity we must have

x−i = xn−i − b+ a,

xn+i = xi + b− a. (1.14)

Using equations (1.14) and (1.6) we have the following condition for periodicity

B−i,m(x) = Bn−i,m(x+ b− a), i = 1, . . . ,m− 1 (1.15)

Since the B-splines vanish outside their local support i.e [xi, xi+m] the condition de-

fined in equation (1.15) will be satisfied if and only if

c−i = cn−i, i = 1, . . . ,m− 1. (1.16)
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1.2.2 Tensor Product Splines

In this section we introduce the Tensor Product Splines as an extension of the

univariate B-spline representation. We require here only a few concepts concern-

ing tensor products of vector spaces to define the tensor product polynomial spline.

Mathematically we denote the tensor product of two vector spaces U and V as U ⊗V.

Let us fix a field say C and let U and V be vector spaces defined over this field. Then

we can have

Definition 1.6 (Bilinear Mapping). A function f from U × V to the vector space

P is said to be bilinear if it is linear in each of the two variables when the other is

kept fixed.

The space of all such bilinear functions forms a vector space over the field C

under addition and scalar multiplication.

If U is a linear space of functions defined on some set X and V, a linear space of

functions defined on some set Y into R then for each u ∈ U and v ∈ V the rule

w(x, y) = u(x)v(y), ∀(x, y) ∈ X × Y (1.17)

defines a function on X × Y called the tensor product of u with v [1] and is denoted

as u ⊗ v. Further the set of all finite linear combinations of the functions on X × Y

of the form u⊗ v is called the tensor product of U with V . Hence

U ⊗ V =

{
n∑
i=1

αi(ui ⊗ vi) : αi ∈ R, ui ∈ U, vi ∈ V, (1.18)

i = 1, . . . , n; for some n

}
(1.19)

It can be verified that the tensor product defined above is bilinear, i.e., the map

U × V −→ U ⊗ V : (u, v) 7−→ u⊗ v (1.20)
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is linear in each argument.

(α1u1 + α2u2)⊗ v = α1(u1 ⊗ v) + α2(u2 ⊗ v)

u⊗ (β1v1 + β2v2) = β1(u⊗ v1) + β2(u⊗ v2). (1.21)

Remark 1.1. The tensor product discussed above forms a linear space of functions

defined on X × Y and its dimension is given by the following proposition.

Proposition 1.1 (Tensor Product Splines). If U and V are some vector spaces

defined over a field C, then

dim(U ⊗ V ) = (dimU)(dimV )

As mentioned earlier the tensor product we use here is simply an extension from

the univariate case to the bivariate case and hence we will be considering two sets of

partitions one along the horizontal and one along the vertical.

Definition 1.7 (Tensor product Splines). Consider the strictly increasing se-

quences

a = x0 < x1 < · · · < xn = b (1.22)

and

c = y0 < y1 < · · · < yp = d (1.23)

then the function s(x, y) is called a bivariate(tensor product) spline on R = [a, b] ×

[c, d], of degree m− 1 > 0 in x and l − 1 > 0 in y with respect to the partition along

the horizontal and the vertical as defined in equations (1.22)-(1.23) if the following

conditions are satisfied

10



1. On each subrectangle Ri,j = [xi, xi+1]× [yi, yi+1], s(x, y) is given by a polynomial

of degree m− 1 in x and l − 1 in y.

s|Ri,j
∈ Pm ⊗ Pl, i = 0, 1, . . . , n− 1; j = 0, 1, . . . , p− 1.

2. The function s(x, y) and all its partial derivatives

∂i+js(x, y)
∂xi∂yj

∈ C(R), i = 0, 1, . . . ,m− 2; j = 0, 1, . . . , l − 2.

For our particular casem = l = 4 and the dimension of the vector space S(∆1,∆2)

of all functions satisfying the above two conditions is dim(S(∆1,∆2)) = (m + n −

1) × (l + p − 1) where ∆i, i = 1, 2 are the partitions along the horizontal and the

vertical and are defined as ∆1 = {xi}n0 and ∆2 = {yj}p0 respectively. We can define

an extended partition as in Definition 1.5 and because of the tensor product nature of

the vector space it is possible to work with the one dimensional B-spline basis. This

gives us the unique tensor product representation of a spline s(x, y) in terms of its

basis functions

s(x, y) =
n−1∑

i=−m+1

p−1∑
j=−l+1

ci,jBi,m(x)Bj,l(y) (1.24)

where Bi,m(x) and Bj,l(y) are the normalized B-splines defined on the partitions

∆1 and ∆2 respectively. For the approximating function to be periodic in both

x(horizontal) and y(vertical) direction we have

∂is(a, y)
∂xi

=
∂is(b, y)
∂xi

, i = 0, . . . ,m− 2; c 6 y 6 d

∂js(x, c)
∂yj

=
∂is(x, d)
∂yj

, j = 0, . . . , l − 2; a 6 x 6 b. (1.25)
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1.2.3 Error Estimates

We present here a priori error bounds for the interpolation procedures introduced

in Sections 1.2.1 and 1.2.2. The derivation of the interpolation error, f − Sf and its

derivatives in L2 norm and the L∞ norm are given. Here Sf denotes the approximation

to the function f . It is observed that if the function f is sufficiently smooth, Sf is a

fourth order approximation to f in both L2 and L∞.

Theorem 1.5 (Variational Problem). Let ∆ and f ≡ {f0, f1, . . . , fn, f
′
a, f

′
b} be

given and V ≡ {w ∈ PC2
2(I) | w(xi) = f(i), 0 6 i 6 n and Dw(xi) = f

′
i , i =

0 and n}. The variational problem of finding the functions p ∈ V which minimize

||D2w||22 over all w ∈ V has the unique solution Sf .

The function p ∈ V is a solution of the variational problem if and only if

(
D2p,D2δ

)
2

= 0

for all δ ∈ V0 ≡ {w ∈ PC2
2(I) | w(xi) = 0, 0 6 i 6 n, and Dw(xi) = 0, i = 0 and n}.

By definition we have

||D2p+ D2δ||22 = (D2p,D2p)2 + 2(D2p,D2δ)2 + (D2δ,D2δ)2. (1.26)

By the orthogonality condition we have

||D2p+ D2δ||22 = (D2p,D2p)2 + (D2δ,D2δ)2, (1.27)

and this would gives us the following corollary

Corollary 1.1 (First integral relation). If f ∈ PC2
2(I), then

||D2f ||22 = ||D2Sf ||22 + ||D2Sf − D2f ||22. (1.28)
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Theorem 1.6 (Preliminary Result). If f ∈ PC2
2(I), then

||D2(f − Sf )||2 6 ||D2f ||2 (1.29)

||D(f − Sf )||2 6 2π−1h||D2f ||2 (1.30)

||(f − Sf )||2 6 2π−2h2||D2f ||2 (1.31)

Inequality (1.29) follows directly from Corollary 1.1. We can see from the above

theorem that Sf is a second-order approximation to f . Intuitively we may assume

that a smoother function will result in a higher order of convergence and hence we

have the following theorem.

Theorem 1.7. If f ∈ PC∞4 , then

||f − Sf ||∞ 6
5

584
h4||D4f ||∞. (1.32)

Moreover if f ∈ C5(I) and ∆ is a uniform partition, then

||f − Sf ||∞ 6 h4(
1

384
||D4f ||∞ +

1
240

h||D5f ||∞) (1.33)

Proof. Since f − Sf = f − Sh + Sh − Sf where Sh is the cubic Hermite interpolate of f ,

we have

||f − Sf ||∞ 6 ||f − Sh ||∞ + ||Sh − Sf ||∞. (1.34)

Now

||f − Sh ||∞ 6
1

384
h4||D4f ||∞ (1.35)
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and

Sh − Sf =
n∑
i=1

e
′
ih

′
i(x), hence

||Sh − Sf ||∞ = ||
n∑
i=1

e
′
ih

′
i(x)||∞

6 ||e′ ||∞
{ n∑
i=1

h
′
i(x)

}
, (1.36)

where

||e′ ||∞ ≡ max
16i6n

|e′
i| 6

1
24
h3||D4f ||∞. (1.37)

Now, since

|h′
i|+ |h

′
i+1| 6

h

4
for all x ∈ [xi, xi+1] and 0 6 i 6 n, (1.38)

we have from equation (1.37)

||
n∑
i=1

e
′
ih

′
i(x)||∞ 6

1
96
h4||D4f ||∞, (1.39)

which gives us the required result

||f − Sf ||∞ 6
1

384
h4||D4f ||∞ +

1
96
h4||D4f ||∞ =

5
584

h4||D4f ||∞. (1.40)

We proceed now to the error bounds of the bivariate interpolation procedure and

find that as in case of the the univariate splines the approximation Sf for a sufficiently

smooth function is fourth order accurate in both the L2 and the L∞-norm.

Theorem 1.8. If f ∈ PC2
4(U), then

||f − Sf ||2 6 4π−4
(
h4||D4

xf ||2 + h2k2||D2
xD2

yf ||2 + k4||D4
yf ||2

)
. (1.41)
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The above theorem gives us the error bound in L2-norm. For the error bound in

the L∞-norm we have the following theorem

Theorem 1.9. If f ∈ PC∞4 (U), then

||f − Sf ||∞ 6
5

384
h4||D4

xf ||∞ +
4
9
h2k2||D2

xD2
yf ||∞ +

5
384

k4||D4
yf ||∞, (1.42)

which clearly shows that the approximating spline is fourth order accurate.
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Chapter 2

Radial Projection

The radial projection method which we describe here (see [4], p. 24) is a method

to radially project the points on the surface of the cube onto the sphere. Since the

tensor product B-splines are restricted to rectangular domains all calculations will

essentially be done on the cube.

The terminology used here will run as follows: The surface of the cube will be

termed as the box Bd centered at the origin and of side length 2d. We will denote the

sphere centered at the origin with radius r as Sr. Mathematically we may represent

the box and the sphere as follows

Bd = {x | x(x1, x2, . . . , xn) ∈ Rn, ||x||∞ = d}

Sr = {a | a(a1, a2, . . . , an) ∈ Rn, ||a||2 = r}

The radial projection from the box to the sphere is defined as a mapping

P : Bd −→ Sr

given by

P (x) = r
x

||x||
= a,

where as the inverse mapping from the sphere to the box is given by

P−1(a) = d
a

||a||∞
= x.
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2.1 Characteristics

The radial projection P is a one-one mapping from the box Bd to the sphere

Sr. We mention below some related properties. The following lemma shows that the

mapping P and its inverse P−1 are both Lipschitz continuous.

Lemma 2.1. The radial projection P and its inverse P−1 satisfy the inequalities

||P (x)− P (y)|| 6
2r
||x||

(
||x− y||

)
, (2.1)

||P−1(a)− P−1(b)||∞ 6
2d
||a||∞

(
||a− b||∞

)
. (2.2)

Proof.

||P (x)− P (y)|| = || r
||x||

x− r

||y||
y||

=
r

||x|| ||y||

{
||
(
||y||x− ||x||y

)
||
}

=
r

||x|| ||y||

{
||
(
||y||(x− y)− y(||y|| − ||x||)

)
||
}

6
r

||x|| ||y||

{
||y|| ||x− y||+ ||y||

∣∣∣||y|| − ||x||∣∣∣}
6

2r
||x||

{
||x− y||

}

In a similiar way we can prove inequality (2.2)

Corollary 2.1. The radial projection P and its inverse P−1, are globally Lipscitz

continuous mappings, that is,

||P (x)− P (y)|| 6 2r
d
||x− y||, (2.3)

and

||P−1(a)− P−1(b)||∞ 6
2dn
r
||a− b||∞. (2.4)

17



This follows directly from the lemma 2.1 by observing that for any x ∈ Rn, ||x||∞ 6

x 6
√
n||x||∞ and that for any a ∈ Sr, r√

n
6 ||a||∞ 6 r. For any x ∈ Bd , we have

x ∈ Bd , d 6 x 6 d
√
n.
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Chapter 3

Analysis

In this chapter we discuss the construction of Tensor Product Splines as a natural

extension of the B-spline representation of a spline. We also estimate the difference

(f − sm(x)) where f is the function defined at the nodal points and sm(x) is the

approximating spline. Univariate spline representation is analyzed in Section 3.1.

In Section 3.2 we analyze the B-spline representation of a spline and in Section 3.3

extend the construction to Bivariate splines and analyze it.

3.1 Univariate Cubic Spline Interpolation

Let us consider a partition ∆ of an interval [a, b] as defined in Definition 1.1

with a ≡ x0 = xn ≡ b and the corresponding function evaluations at the nodal points

fi, i = 0, 1, . . . , n−1. Our aim here will be to develop an efficient method to construct

a periodic cubic spline interpolating the function values at the distinct nodal points

[5]. Since the degree of the spline is m− 1 = 3 the spline must be twice continuously

differentiable i.e the second order derivative must be continuous. We introduce here

the following notations

fi = s4(xi), m = s
′
4(xi), and M = s

′′
4(xi), i = 0, 1, . . . , n− 1.

Due to the periodic consideration we have fn+j = fj and Mn+j = Mj for j = 0, 1.

Since s4,i−1 ∈ P4, s
′′
4,i−1 is linear and

s
′′
4,i−1(x) = Mi−1

xi − x
hi

+Mi
x− xi−1

hi
for x ∈ [xi−1, xi] (3.1)
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where hi = xi − xi−1, i = 1, . . . , n. Integrating (3.1) twice we get

s4,i−1(x) = Mi−1
(xi − x)3

6hi
+Mi

(x− xi−1)3

6hi
+ Ci−1(x− xi−1) + C̃i−1 (3.2)

and the constants Ci−1 and C̃i−1 are determined by imposing the end point values

s4(xi−1) = fi−1 and s4(xi) = fi.This gives us, for i = 1, . . . , n

C̃i−1 = fi−1 −Mi−1
h2
i

6
, Ci−1 =

fi − fi−1

hi
− hi

6
(Mi −Mi−1). (3.3)

Imposing the continuity of the first derivatives at xi, we get

s
′
4(x−i ) =

hi
6
Mi−1 +

hi
3
Mi +

fi − fi−1

hi

= −hi+1

3
Mi −

hi+1

6
Mi+1 +

fi+1 − fi
hi+1

= s
′
4(x+

i ),

where

s
′
4(x−i ) = lim

t→0
s

′
4(x± t).

This gives us the following linear system also know as the M-continuity system

µiMi−1 + 2Mi + λiMi+1 = di, i = 1, . . . , n (3.4)

where

µi =
hi

hi + hi+1
, λi =

hi+1

hi + hi+1

di =
6

hi + hi+1
(
fi+1 − fi
hi+1

− fi − fi−1

hi
) i = 1, . . . , n.

It is clear from (3.2) that the only unknows are M0,M1, . . . ,Mn−1. So our task of

finding a periodic cubic spline representation interpolating the given function values
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now reduces to solving the linear system (3.4) of n equations and n unknowns. This

construction of the spline produces a system tridiagonal in nature. In matrix notation

it is represented as



2 µn−1 0 . . . λn−1

λn−2 2 µn−2
...

0
. . . . . . . . . 0

... 0 λ1 2 µ1

µn 0 0 λn 2





Mn−1

Mn−2

...

M1

M0


=



dn−1

dn−2

...

d1

d0


(3.5)

and can be easily solved on a computer using existing techniques.

3.1.1 Radial Projection: The One Dimensional Case

In the above discussion we have considered the spline to be periodic in nature as

we want to apply the construction on a circle C with radius r = 1 such that the first

and last nodal point coincide i.e x0 = xn. The radial projection of the nodal points

on the square onto a unit circle involves basic geometry. Let the four corners, of the

square under consideration be P1(1, 1), P2(−1, 1), P3(−1,−1), P4(1,−1) in this order.

Let P (x, y) be any point on the side of the square, say the side joining P1 and P2. Let

P
′
(x

′
, y

′
) be the radial projection of the point P (x, y) on the circle. Then we have

the relation

tan θ =
y

′

x′ =
y

x
(3.6)

where θ is the angle between the X-axis and the vector joining the point P to the

origin.

Since the point P
′

lies on the circle we have

y
′2 + x

′2 = 1. (3.7)
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Solving for x
′

and y
′

we have

x
′

=
x√

x2 + y2

y
′

=
y√

x2 + y2

Taking points systematically anticlockwise on the square starting at P1 and then

projecting them onto the circle we have points on the circle which we now label

as xi, i = 0, 1, . . . , n − 1. This provides us with the setting required to apply the

univariate spline constructed in Section 3.1. However we are still required to find the

interval lengths hi, i = 0, 1, . . . , n− 1 between the nodal points. To do this we make

use of the inner product of two vectors. Let ~xi and ~xi−1 be two vectors then

cosαi =
< ~xi, ~xi−1 >

||~xi|| ||~xi−1||
, (3.8)

where αi as the angle between two vectors labelled here as ~xi and ~xi−1. Hence the arc

length or the interval length hi = rαi.

Table 3.1: The following table shows the error and the observed rate of convergence
for various step sizes for the function f(θ) = sin(θ).

Step Size Error Order of Convergence
2.243994752564133e− 01 1.521985704066554e− 04
1.047197551196593e− 01 7.326907390286181e− 06 3.980413480161499e+ 00
5.067084925144792e− 02 4.029381312631907e− 07 3.995561255766796e+ 00
2.493327502848618e− 02 2.703779530789965e− 08 3.809570269779505e+ 00
1.236847501412775e− 02 1.903539716356657e− 09 3.785053304137925e+ 00

The experimentally observed order of convergence is defined as

p =
ln (Erj+1

Erj
)

ln (hj+1

hj
)
,
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where Erj denotes the error at the jth refinement and is defined as

Erj = ||hx(f − s4(x))||2 ,

and hx represents the step size for the intermediate points taken to test the spline

function developed.

23



0 1 2 3 4 5 6 7
!1

0

1
Plot of the function

0 1 2 3 4 5 6 7
!1

0

1
Plot of the Spline Function

0 1 2 3 4 5 6 7
!1

0

1
x 10!3 Plot of the difference

Figure 3.1: Approximation of the function
f(θ) = sin θ,N = 28
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Figure 3.2: Approximation of the function
f(θ) = sin θ,N = 60
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Figure 3.3: Approximation of the function
f(θ) = sin θ cos θ,N = 28
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Figure 3.4: Approximation of the function
f(θ) = sin θ cos θ,N = 60
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3.1.2 Periodic Splines on a Square

Defining periodic splines on a square is based again on the construction given in

Section 3.1. However in this case the nodal points on the square are not projected on

a circle. Hence with equally spaced nodes on the edges of the square i.e hi = hi+1 we

have from equation (3.4)

µi =
1
2
, λi =

1
2

di =
3
h2
i

(fi+1 − 2fi + fi−1), i = 1, . . . , n.

Table 3.2: The following table shows the error and the observed rate of convergence
for various step sizes for the function f(θ) = sin3(θ).

Step Size Error Order of Convergence
1.000000000000000e+ 00 2.993908237928666e− 02
5.000000000000000e− 01 3.738564612692465e− 03 3.001473631942863e+ 00
2.500000000000000e− 01 1.044464521796866e− 04 5.161649073884993e+ 00
1.250000000000000e− 01 4.952085825195140e− 06 4.398583359488427e+ 00
6.250000000000000e− 02 2.868804616210702e− 07 4.109514698407482e+ 00
3.125000000000000e− 02 1.758372110067624e− 08 4.028137400984083e+ 00
1.562500000000000e− 02 1.093598905987019e− 09 4.007084798744635e+ 00

Table 3.3: The following table shows the error and the observed rate of convergence
for various step sizes for a function f /∈ C1[a, b]

Step Size Error Order of Convergence
1.000000000000000e+ 00 8.728715607973290e− 03
5.000000000000000e− 01 8.728715607973281e− 03 1.441541926716714e− 15
2.500000000000000e− 01 2.822924332662890e− 03 1.628578924802774e+ 00
1.250000000000000e− 01 9.724452119338235e− 04 1.537501583136462e+ 00
6.250000000000000e− 02 3.437050954186293e− 04 1.500445730420506e+ 00
3.125000000000000e− 02 1.215162841762690e− 04 1.500021580057984e+ 00
1.562500000000000e− 02 4.295235806309275e− 05 1.500340417834547e+ 00
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Figure 3.5: Approximation of the function
f(θ) = sin3 θ, h = 2.5× 10−1
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Figure 3.6: Approximation of the function
f(θ) = sin3 θ, h = 6.25× 10−2

It is evident from the Figure 3.8 below that the function f /∈ C1[a, b] and hence

the observed order of convergence. In view of the approximation power of splines

[3] we may expect that the order of approximation attainable will increase with the

smoothness of the class of functions F being approximated. However this is true only

up to a limit. In fact if F ∩ Pm = ∅, then the maximal order of convergence possible

for the class F is ∆m, no matter how smooth F is assumed. In our case m = 4. This

is known as the saturation result.
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Figure 3.7: Approximation of a function
f /∈ C1[a, b], h = 1
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Figure 3.8: Approximation of a function
f /∈ C1[a, b], h = 1.5625× 10−2
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3.2 B-spline representation on a Square

Our aim here is to construct a cubic spline which is represented as a linear

combination of the B − splines Bi,m(x) as in Section 1.4. We consider the extended

partition ∆̄ = {xi}n+m−1
−m+1 of the interval [a, b] as defined in the Definition 1.5. Using

the periodicity condition available to us through the equations (1.14),(1.15) and (1.16)

we have a system of linear equations available to us which we can represent in a matrix

form. We denote the matrix of all basis functions as B. Using the properties of the

B-spline and noting that the spline function must agree with the function values at

the nodal points xi, i = 0, 1, . . . , n−1 we arrive at the following matrix representation

of the linear system,

BC = F,

which implies C = B−1F.

B =



0 . . . . . . . . . . . . . . . 0 B0
−3 B0

−2 B0
−1

B1
0 0

. . . . . . . . . . . . . . . 0 B1
−2 B1

−1

B2
0 B2

1 0
. . . . . . . . . . . . . . . 0 B2

−1

B3
0 B3

1 B3
2 0

. . . . . . . . . . . . . . . 0

0 B4
1 B4

2 B4
3 0

. . . . . . . . . . . . 0

0 0
. . . . . . . . . . . . . . . . . . . . . 0

... 0 0
. . . . . . . . . . . . . . . . . .

...

0 . . . . . . . . . Bn−3
n−6 Bn−3

n−5 Bn−3
n−4 0 0 0

0 . . . . . . . . . . . . ∗ Bn−2
n−4 Bn−2

n−3 0 0

0 . . . . . . . . . . . . . . . ∗ Bn−1
n−3 Bn−1

n−2 0



(3.9)

The matrix B has as its entries B-splines evaluated at the nodal points where Bji

represents Bi,m(xj), i = −m+ 1,−m+ 2, . . . , n− 1 and j = 0, 1, . . . , n− 1. We have
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the zero entries in the above matrix because the B-spline Bi,m(x) vanishes outside its

local support [xi, xi+m].

The vector of all coefficients is represented as C and the vector of all function

values at the nodal points is represented as F , then

C =



C0

C1

C2

C3

C4

C5

...

Cn−3

Cn−2

Cn−1



and F =



f0

f1

f2

f3

f4

f5

...

fn−3

fn−2

fn−1



(3.10)

The problem of representing the cubic spline as a linear combination of the basis

functions is numerically equivalent to the problem of finding the B-spline coefficients,

i.e., the vector C. Since the matrix B and the vector F is completely known we can

easily solve for C on a digital computer.

Table 3.4: The following table shows the error and the observed rate of convergence
for various step sizes for the function f(θ) = sin(π4 θ).

Step Size Error Order of Convergence
1.000000000000000e+ 00 3.412826951770349e− 03
5.000000000000000e− 01 9.534612985020590e− 05 5.161649073886882e+ 00
2.500000000000000e− 01 4.520615188600750e− 06 4.398583359486799e+ 00
1.250000000000000e− 01 2.618848335825963e− 07 4.109514698295172e+ 00
6.250000000000000e− 02 1.605166782410018e− 08 4.028137400685653e+ 00
3.125000000000000e− 02 9.983146507216004e− 10 4.007084797322440e+ 00
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As we are approximating a function defined on a square of edge length 2, the

approximating spline will have a periodicity of b−a which in our case is 8. Hence the

factor of π
4 in the function f(θ) = sin π

4 θ.
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Figure 3.9: Approximation of a function
f(θ) = sin π

4 θ, h = 6.25× 10−2
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Figure 3.10: Approximation of a function
f(θ) = sin π

4 θ, h = 1.56×10−2

Table 3.5: The following table shows the error and the observed rate of convergence
for various step sizes for the function f /∈ C1[a, b]

Step Size Error Order of Convergence
1.000000000000000e+ 00 7.968190728250351e− 03
5.000000000000000e− 01 7.968190728250389e− 03 −7.047538308392802e− 15
2.500000000000000e− 01 2.576965563447752e− 03 1.628578922185994e+ 00
1.250000000000000e− 01 8.877169929217066e− 04 1.537501539184818e+ 00
6.250000000000000e− 02 3.137585531721901e− 04 1.500445025990139e+ 00
3.125000000000000e− 02 1.109295998711029e− 04 1.500010409963090e+ 00
1.562500000000000e− 02 3.921497851505102e− 05 1.500167662913683e+ 00

3.3 Tensor Product Splines

In this section we will construct the tensor product spline first on a square patch

and then extend this notion to the cube treating each face of the cube as a square
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patch. This will give us a method to approximate any function posed on the sphere

with the help of the mapping P and P−1 from the surface of the cube to the surface

of the sphere and back respectively.

From equation (1.24) we have the unique tensor product representation of a spline

defined over a rectangle [a, b]× [c, d] with respect to the extended partition ∆̄1 and ∆̄2

given by Definition 1.5 in the horizontal and vertical directions respectively. Keeping

in mind that we do not want periodicity on a single patch but rather across the four

faces of the cube we do not implement the periodic conditions for the single patch

which we create. The cube in question is the box Bd as defined in Chapter 2. It is

centered at the origin with d = 1.

It is clear from the above setup that that the total number of coefficients that

need to be determined are (n+3)×(p+3) since m = l = 4. However we only have the

function values at the nodal points (xi, yj), i = 0, 1, . . . , n; j = 0, 1, . . . , p. Hence we

still need 2n+ 2p+ 8 conditions to have a unique spline representation on the patch.

These extra conditions are given as restrictions on the derivatives of the spline at the

boundary and the corner points of the grid formed by the partitions ∆1 and ∆2.

We give here a brief list of the boundary conditions generally associated with the

tensor product cubic splines.

Boundary conditions of the first type

∂s

∂x
(xi, yj) = fxij , i = 0, n; j = 0, 1, . . . , p

∂s

∂y
(xi, yj) = fyij , i = 0, 1, . . . , n; j = 0, p

∂2s

∂x∂y
(xi, yj) = fxyij , i = 0, n; j = 0, p (3.11)

The total number of first boundary conditions here is 2n+ 2p+ 8.

Boundary conditions of the second type
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∂2s

∂x2
(xi, yj) = fxij , i = 0, n; j = 0, 1, . . . , p

∂2s

∂y2
(xi, yj) = fyij , i = 0, 1, . . . , n; j = 0, p

∂4s

∂x2∂y2
(xi, yj) = fxyij , i = 0, n; j = 0, p (3.12)

The total number of second boundary conditions is again 2n+ 2p+ 8.

Boundary conditions of the third type

Boundary conditions of the third type are called periodic boundary conditions. Peri-

odicity with respect to the horizontal variable must be Px = b − a and with respect

to the vertical variable must be Py = d − c. For our particular case we must have

Px = Py = 8

s(x0, yj) = s(xn, yj), j = 0, 1, . . . , p

s(xi, y0) = s(xi, yp), i = 0, 1, . . . , n

∂ks

∂xk
(x0, yj) =

∂ks

∂xk
(xn, yj), j = 0, 1, . . . , p, k = 1, 2

∂ls

∂yl
(xi, y0) =

∂ls

∂yl
(xi, yp), i = 0, 1, . . . , n, l = 1, 2

∂2ks

∂xk∂yk
(x0, yj) =

∂ks

∂xk∂yk
(xn, yj), j = 0, 1, . . . , p, k = 1, 2

∂2ks

∂xk∂yk
(xi, y0) =

∂2ks

∂xk∂yk
(xi, yp), i = 0, 1, . . . , n, k = 1, 2 (3.13)

Applying the boundary conditions of the first type in order to determine the

coefficients we end up with a system of linear equations which in matrix form may be

represented as

MCN = F

C = M−1FN−1 (3.14)
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where M(p+3)×(p+3) is the matrix of B-splines in the vertical direction, N(n+3)×(n+3)

is the matrix of B-splines in the horizontal direction, C(p+3)×(n+3) is the coefficient

matrix and F(p+3)×(n+3) is the matrix of all function values at the nodal points in the

grid along with its derivatives at the boundary and corner points.

Table 3.6: The following table shows the error and the observed rate of convergence
for various step sizes for the function f(x, y) = x6y6

Step Size Error Order of Convergence
1.000000000000000e+ 00 7.060256060377759e+ 00
5.000000000000000e− 01 9.550664958381095e− 01 2.886047419513821e+ 00
2.500000000000000e− 01 5.683782321068801e− 02 4.070677975228285e+ 00
1.250000000000000e− 01 3.408501271897639e− 03 4.059641876435491e+ 00
6.250000000000000e− 02 2.095067852178469e− 04 4.024068647573170e+ 00
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Figure 3.11: Function f(x, y) = x6y6
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Figure 3.12: Approximation of a function
f(x, y) = x6y6, h = 1

To obtain the the tensor product spline representation on the cube we note that

spline function must be periodic with periodicity along x-direction Px, y-direction Py

and z-direction Pz and Px = Py = Pz = 8. Even though the tensor products are

defined on individual patches, the spline function must be periodic across the four

adjacent faces of the cube. Let us consider here the tensor product defined on a
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Figure 3.13: Approximation of a function f(x, y) = x6y6, h = 1.25× 10−1

single patch. Then to obtain periodicity along the horizontal we need to wrap the

fictitious nodes u−i, i = −m+1, . . . ,−1 and un+i, i = 1, . . . ,m−1 along the horizontal

so that they coincide with the nodal points on the adjacent sides. For periodicity

along the vertical we do the same, i.e., wrap the nodes v−i, i = −m + 1, . . . ,−1 and

vp+i, i = 1, . . . ,m − 1 along the vertical so that they coincide with nodal points on

the adjacent sides. To do this we must have the following

u−i = ui − hw, i = 1, 2, 3

un+i = un + hw, i = 1, 2, 3 (3.15)

and

v−i = vi − hw, i = 1, 2, 3

vp+i = vp + hw, i = 1, 2, 3 (3.16)

where ui denotes the nodal points along the horizontal, vj denotes the nodal points

along the vertical and hw is the step size of the adjacent side.
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Table 3.7: The following table shows the error and the observed rate of convergence
for various step sizes for the function f(x, y, z) = sin(xyz)

Step Size Error Order of Convergence
1.000000000000000e+ 00 1.670920218139921e− 01
5.000000000000000e− 01 7.961222685614932e− 03 4.391509023007923e+ 00
2.500000000000000e− 01 4.648371361131741e− 04 4.098192780859205e+ 00
1.250000000000000e− 01 2.836252157206563e− 05 4.034667624804363e+ 00
6.250000000000000e− 02 1.759114473732576e− 06 4.011064527357291e+ 00
3.125000000000000e− 02 1.097374360545641e− 07 4.002721689943840e+ 00
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Figure 3.15: Mesh on the cube Bd
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Chapter 4

Conclusion

We developed and analyzed a method to approximate functions posed on the

sphere. The method described here is based on tensor product splines and because

of the tensor nature of the resulting space many algebraic properties of univariate

polynomial splines can easily be carried over. Although the tensor product splines

have a restricted use they are computationally advantageous due to their easy imple-

mentation on a digital computer.
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Appendix A

Notations

A.0.1 One dimensional case

I ≡ [a, b] ≡ {x | a 6 x 6 b}.

For each nonnegative integer t and for each p, 1 6 p 6 ∞, PCp
t (I) will denote the

set of all real valued functions f(x) such that

1. f(x) is t− 1 times continuously differentiable,

2. there exists xi, 0 6 i 6 n− 1, with

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

such that on each open subinterval (xi, xi+1), 0 6 i 6 n− 1, Dt−1(f) is contin-
uously differentiable, and

3. the Lp norm of Dt(f) is finite i.e.,

||Dt(f)||p ≡
( n−1∑
i=0

∫ xi+1

xi

|Dt(f(x))|pdx
) 1

p
<∞.

For the special case of p =∞, we must have

||Dt(f)||∞ ≡ max
06i6n−1

sup
x∈(xi,xi+1)

|Dt(f(x))| <∞

A.0.2 Bivariate case

U ≡ [a, b]× [c, d] ≡ {(x, y) | a 6 x 6 b and c 6 y 6 d}.

As in the univariate case, for each nonnegative integer t and for each p, 1 6 p 6
∞, PCp

t (U) will denote the set of all real valued functions f(x, y) such that

1. f(x, y) is t− 1 times continuously differentiable, i.e.,

Dl
xDk

y f(x, y), 0 6 l + k 6 t− 1.

exists and is continuous,
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2. there exists xi, 0 6 i 6 n− 1, and yj , 0 6 j 6 p− 1, with

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

and
c = y0 < y1 < y2 < · · · < yp−1 < yp = d

such that on each open subrectangle,

(xi, xi+1)× (yj , yj+1), 0 6 i 6 n− 1, 0 6 j 6 p− 1

we have
Dl
xDk

y f(x, y), 0 6 l + k 6 t− 1.

continuously differentibale, and

3. for all 0 6 l + k 6 t, the Lp − norm of Dl
xDk

y f(x, y) is finite i.e.,

||Dl
xDk

y f(x, y)||p ≡
( n−1∑
i=0

p−1∑
j=0

∫ xi+1

xi

∫ yi+1

yj

|Dl
xDk

y f(x, y)|pdy dx
)1/p

<∞

For the special case of p =∞ we must have

||Dl
xDk

y f(x, y)||∞ = max
06i6n−1
06j6p−1

sup
(x,y)∈(xi,xi+1)×(yi,yi+1)

|Dl
xDk

y f(x, y)| <∞
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