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Directed by Stuart D. Loch and Robert F. Boivin

Accurate knowledge of atomic processes plays a key role idetimg the emission in labo-
ratory as well as in astrophysical plasmas. These processaacluded in a collisional-radiative
model and the results are compared with experimental measunts for Ar and Ne ions from the
ASTRAL (Auburn Steady sTate Research fAciLity) experimemhe accuracy of our model de-
pends upon the quality of the atomic data we use. Atomic datadar neutral systems present
a challenge due to the low accuracy of perturbative methodshese systems. In order to im-
prove our model we rely on non-perturbative methods suclk-&datrix and RMPS R-Matrix
with Pseudo-States) to include correlation in the collistvoss-sections. These methods are com-
putationally demanding, requiring supercomputing resesirand producing very accurate atomic
collision data. For At and Ne,R-Matrix data was already available, however foAmwe had
to set up newR-Matrix calculations. To set up a new calculation we reqgoed quality atomic
structure. A new code (LAMDA) was developed to optimize ttenac structure for different ions
in AUTOSTRUCTURE. The AUTOSTRUCTURE code was used and agtohby systematically

adjusting the orbital scale factors with the help of a SiagMalue Decompaosition algorithm.



We then tested the quality of our newly optimized atomicctice by comparing the level or term

energies, and line strengths from our optimized structutie those given by NIST.

In the case of Ar we compared?-Matrix electron-impact excitation data against the ressul
from a new RMPS calculation. The aim was to assess the efiéctsmtinuum-coupling effects on
the atomic data and the resulting spectrum. We do our spactideling using the ADAS suite of
codes. Our collisional-radiative formalism assumes thateixcited levels are in quasi-static equi-
librium with the ground and metastable populations. In oodei we allow forN, andT, variation
along the line of sight by fitting our densities and tempearfprofiles with those measured within
the experiment. The best results so far have been obtaintie hiyting of the experimental temper-
ature and density profiles witiaussian and polynomial distribution functions. The line of sight

effects were found to have a significant effect on the emissiodeling.

The relative emission rates were measured in the ASTRAIctelplasma source. A spec-
trometer which features a 0.33 m Criss-Cross Scanning niwooator and a CCD camera is used
for this study. ASTRAL produces bright intense Ar and Ne plas withn, = 10'! to 10" cm™3
andT, = 2 to 10 eV. A series of 7 large coils produce an axial magrfigid up to 1.3 kGauss. A
fractional helix antenna is used to introduce RF power upk@att. Two RF compensated Lang-
muir probes are used to measiiteandN,.. In a series of experiment Ar II, Ar lll, and Ne transitions
are monitored as a function @§, while N, is kept nearly constant. Observations revealed That
is by far the most significant parameter affecting the emissate coefficients, thus confirming our
predictions. The spectroscopy measurements are compdtethase from our spectral modeling
which in turn help us to compare the effectiveness of the newia data calculations with those
from other calculations. It also shows some differences/éen theR-Matrix and the RMPS data
due to continuum coupling effects for Ar I, and Ne. We bedidhat this is the first experimental

observation of continuum-coupling effects.
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We performed a neviR-Matrix calculation for AF*. Emission from Af+ is seen in planetary
nebulae, in H Il regions, and from laboratory plasmas. Olgutation improved upon existing
electron-impact excitation data for the*3ponfiguration of Aft and calculated new data for the
excited levels. Electron-impact excitation collisionestgths were calculated using tieMatrix
intermediate-coupling (IC) frame-transformation method theR-Matrix Breit-Pauli method. Ex-
citation cross-sections are calculated between all lesfelise configurations 3s3p*, 3s 39, 3¢,
3p° 3d, and 3% 3p® nl (3d < nl < 5s). Mazwellian effective collision strengths are generated from
the collision strength data. Good agreement is found in tiesion strengths calculated using the
two R-Matrix methods. The effects of the new data on line ratigdastics were studied. The col-
lision strengths are compared with literature values famgitions within the 3s3p* configuration.
The new data has a small effect ©nvalues obtained from thE(A7135A + A7751A4)/1(A\5192A)
line ratio, and a larger effect on thé, values obtained from th&(A7135A4)/1(A9um) line ratio.

The final effective collision strength data is archived oali

Neon as well as Argon is a species of current interest in fFUSOKAMAK studies. It is used
for radiative cooling of the divertor region and for disngpt mitigation. It could also be useful
as a spectral diagnostic if better atomic data were availabVe present results from modeling
emission line intensity for neutral neon by using Plane Wawen, R-Matrix, and RMPS electron-
impact excitation calculations. We benchmark our thecaétcalculations against cross-section

measurements, then against spectral measurements froRAST
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CHAPTER 1

INTRODUCTION

Spectral emission modeling has been key for many diagrsastiastrophysical and laboratory
plasmas. This modeling has particular interest in the figlastrophysics when studying emission
from planetary nebulae, solar corona, or the interstelladiom, which cannot be accessed with
probes. In laboratory plasmas the conditions are often ¢stile for probe measurements. There-
fore we require accurate models for the atomic processeb/gw in plasma emission in order to get
a reliable interpretation of spectral observations. Seharallenges arise when trying to model the
spectral emission coming from a hot plasma, and in develppiasma spectral diagnostics. These
difficulties include the need for accurate atomic data, Hedge of the temperature and density

distributions within the plasma, and an understanding eflasma and atomic timescales.

Emission from Ar I, Ar lll, and Ne | will be the main focus of ¢hwork described here. The
emission from these species in the ASTRAL Auburn helicorsmla source will be modeled with
two main purposes in mind. Firstly we seek to use the expetirteetest the atomic data for Ar
and Ne. Secondly we intend to develop spectral diagnostaiscan be used for other Ar and Ne
plasmas. Ar and Ne are of interest in fusion TOKAMAK plasmasadiatively cool the divertor
and to mitigate plasma disruptions. Ar is of special intenreplanetary nebulae spectroscopy, with
forbidden lines for Ar 1l being used &B. and NV, diagnostics. In the remainder of this chapter a

brief overview of the rest of the dissertation will be given.



Chapter2 deals with the general concepts of modeling spectral eomsasnd introduces dif-
ferent atomic processes that contribute to the populati@pecific atomic levels. We introduce the
collisional-radiative modell]] used in modeling the emission from plasmas. We also desail
application of collisional-radiative theory to the calatibn of excited populations and ionization
balance using the Atomic Data Analysis Structure (ADAS}esoif codes. This method encom-
passes both the low density coronal, and high density Lohalfodynamic Equilibrium (LTE)
description of the emission from the ion we intend to modedldo includes ionization and recom-

bination processes to and from metastable levels of theioeiziation stage.

Chapter3 describes calculations of atomic structure that are ne@atecbmputing electron-
impact ionization as well as electron-impact excitationssrsections. The accuracy of the atomic
structure of the atom and/or ion is essential in the calmnaif atomic collision quantities. In order
to calculate our atomic structure we make use of the AUTOSTRURE [2] code. We also make
use of the graphical interface version of the AUTOSTRUCTUWiREe, GASP J], to simplify our
calculation procedures. We also explore the capability e funing our atomic structure by the
introduction of variational adjustment of scale factoxs)( We propose and use a new optimization
procedure base on Singular Value Decomposition (SVD}d calculate the optimal scale factors

that we need in order to optimize and improve our the qualityun atomic structure.

Chapter4 gives a general description of some of the most widely useithods to calculate
electron-impact ionization data and electron-impactteticn data. We start in sectigh2 with an
explanation of the Plane Waveorn approximation, where the incoming electron is described by

plane wave, and the target as a static isotropic potential.



In section4.3we give a short introduction to Distorted Wave theory, wheeeallow the incoming
wave to be affected by the target potential and thereforeidiertkd. We also give a short intro-
duction to R-Matrix theory in sectiort.5, and explain the use of pseudo-statesRe¥atrix with
Pseudo-States (RMPS), in order to model the interactiotis té continuum which also help us
improve our atomic structure. These methods will be usesutitout the dissertation for the col-
lisional atomic data that will be used in the spectral eroissnodeling. In sectiod.5we give an
overview of the Burgess-Tully plot&]. These plots allow us to display electron-impact exaitati
data in a dimensionless way by using suitable scaling proesd These scaling procedures remove
the main asymptotic energy (or temperature) dependendbdaiven data. The energy (tempera-
ture) is also scaled so as to become a dimensionless vawdidé ranges from 0 at the threshold
energy (zero temperature) to 1 at infinite energy (tempezathis way we can display the whole
variation of a collision strength in a single graph, and hedfjo compare the whole data with previ-

ous calculations.

Chapter5 gives a description of thAuburnSteady § ate ResearchAciLity ASTRAL. This

is a helicon device where we generate intense Ar and Ne plasfains in order to study and
measure spectral-line emission of plasmas and test theiffextdt plasma conditions. Although
in our work we focus mainly in Ar and Ne emission, ASTRAL hasacabeen used to study He and
CO, plasma emission. We discuss the efficiency of the heliconcecas a mean to generate dense
plasmas heated by radio waves. Helicon sources are vemyl Gieebasic plasma studies. Helicon
devices also have the advantage that the antenna is outgig#aisma, which helps reducing the
introduction of contaminants into the plasma. In this chapte also describe measurements of the

plasma densities and temperatures by using two RF comgeinsat gmuir probes.



These measurements form the benchmark in which we compar®Misional-radiative model for
Ar and Ne, with the aim of developing reliable non-invasivethods for plasma diagnostic based
on spectral line ratio measurements. In our spectral aisalys compensate for wavelength due to
the response of the spectrometer to different spectradmegiVe have used an absolutely calibrated
Oriel Halogen Lamp in order to measure the response of thergpeeter as a function of wave-

length. In appendiB we present a short discussion of the wavelength calibratiooedures.

Chaptei6 deals with the modeling of the Ar Il emission, as well as eipental measurements
of line intensities and ratios in order to develop tempegatliagnostics for argon plasmas. The
accuracy of the modeling depends on the quality of the atdati&. Therefore one of the aims of this
work is to use this experimental data to determine if the Aregknental emission from ASTRAL
can be used to test newly calculated atomic data sets in disiaoal-radiative model. We use
the spectral measurements to test recent dielectroniecnt@oation (DR) data for the low charge
states of argon. We also identify Ar Il line ratios that aresséive to continuum coupling effects in
the excitation cross-sections. These ratios could be wskdnchmark new RMPS electron-impact
excitation data], and show where previous non-pseudo-states dajariay be insufficient for the

modeling. This could provide the first experimental obsgoveof continuum coupling effects.



Chapter7 presents a newk-Matrix calculation for the At ion with an optimized atomic
structure calculation. We compare our new calculation pitvious R-Matrix calculations per-
formed by Johnson & Kingstor¥], and Galavis et al.g]. Johnson & Kingston calculated excita-
tions within the configuration 38p* and 3s3p of Ar?*. Their calculation was generated in (LS)
coupling and transformed to level-resolution using the@MJ(Saraph 9]) method. Galavis also
used theR-Matrix method to calculate level-resolved excitationshivi the 383p* configuration.
They used a large configuration-interaction calculatiogebtheir atomic structure. We compare
these calculations and we then discuss the applications tf forbidden line spectra as electron
temperature and density diagnostics of planetary nelifa We also identify some temperature

sensitive line ratios that could be observed in laborattagmas.

Chapter8 employs different sets of electron-impact excitation datdoe collisional-radiative
model, in order to predict intensity line emission from maliheon plasmas. We first use Plane
Wave Born (see sectiord.2) electron-impact excitation data calculated by Martin @lMne, and
available in the ADAS 11] database. This represents the modeling currently useleiriusion
community. We also usé&-Matrix excitation data calculated by Zatsarinny and Bzrét [72)].
We then compare the atomic structures, excitation cros®ess, and emission modeling with new
RMPS (LS) andR-Matrix (IC) electron-impact excitation data calculated ®riffin and Ballance
[71]. The line emission modeling predictions from each of théadsets is then compared with
different sets of experimental measurements from ASTRA&.fWwd that none of the data sets are
in complete agreement with the experimental measuremigwly, due to physical effects missing
in each of the data sets. The comparison suggests that aésedledR-Matrix with Pseudo-States

calculation is required to model Ne spectral emission intemperature, high density plasmas.



CHAPTER 2

COLLISIONAL-RADIATIVE MODEL

2.1 Introduction

To produce a modeled spectrum one needs to account for gliajalating mechanisms in
a collisional-radiative model. Our application of coltisal-radiative theory to the calculation of
excited populations is based on the Atomic Data AnalysiacBire (ADAS) suite of codes to our
population and emission modelingl]. These codes are based on the collisional-radiative yheor
first developed by Bates, Kingston, and McWhirtgyih 1962, and later generalized by Summers
and Hooper 12, 13]. Supplementary details related to the collisional-radéaformalism can be
found in Burgess and Summers4]. The method aims to encompass both the low density coronal
and the high density Local Thermodynamic Equilibrium (LTd€scription of an ion, and to track
the shifting balance between radiative and collisionatpsses. The ion consists of a set of levels
with radiative and collisional couplings. lonization aretombination to and from metastables of

the next ionization stage (i.e. the plus ion stage) are dwezlu



2.2 Atomic Processes

There are many kinds of processes that play a role in popglatievel. In order to accurately
build the collisional-radiative model we must account facle atomic process that contributes to

the population in an individual level. These include (bw aot limited to)

e Spontaneous decayl{_.;)

Auger rate @¢ )

1—0

Electronic collisional excitation/de-excitation;(,;/ ¢5_,;)

lonization (S; )

Recombination: radiativen{), dielectronic @gl), and three-body(})

(6}
\} S e_
i->G

Aj->i qj->.i q£->j .

i
i b 3

A.r'->j qi->j qj->.i

j 3 3

Figure 2.1: Populating processes for iHeatomic level.

Figure2.1lillustrates some of the processes that contribute to thaelatpn for thei’* atomic
level. Wherei represents the specific level we descripegpresents any higher or lower energy level
thani, ando denotes the ground and metastable indices of:thel ion stage. Notice that other
processes such as charge exchange or proton collisionsedanlbded in the collisional-radiative

formalism. For this work we will ignore both of these proass



2.3 Equationsand Matrix Representation

The ion consists of a set of levels with radiative and calhsil couplings. The time dependence
of the populationN; of an arbitrary level;, in ion stage+z is given by the next set of coupled

differential equations

dN
Z neNZH (o] + of +nead) + Y Njned§ i+ ) Ni(neg§ s + Aj—i)
J<t 7>t
- N { Zneqz—q + Z n6q2—>y + AZ—>] + Z ne i—o T A?—m’)} (21)

J>1 7<i

wheren, is the free electron density. It can be showd][that we can reduce this equation to

a more compact form

dN; .
; = Z n6N0+17’w + Z Ciij (22)
g J
with a populating term fof # j,

Cij = Aj—i tnegj_; + neQ§_,i (2.3)

a loss term foii = 7,

(Z Aij+ned af;+ Z neSiy + Z Al ) (2.4)

i>j J#i



and a composite recombination coefficient = a! + o + N.o. This way we can rewrite

equation 2.2 s

dN; z+1
Zj:Ciij = W — ZU:TL@NU Tio (25)

or in the matrix form

T R
Cn Ci ... Cin N o
sz_ z+1
Cy1 Coy ... (Coyyn Ny dt ZTLENO 720
. = o (2.6)
dN. 1
Cn1 Cno2 ... CynN Ny dtN_ZneN§+ "No
g

where we defing’ as the collisional-radiative matrix. In order to solve tlystem we can

simplify it considerably by taking into account the timessaof the system.

2.4 Timescales

For typical plasma conditions for TOKAMAK or Helicon devigethe excited levels have
extremely fast radiative decay rates while the ground antsteble levels have much longer life-
times. The excited levels can be assumed to be in instantaresuilibrium with the ground and
metastable populations. This is called the quasi-stapicaimation and results in all but the ground
and metastable rate of change of populations being set toizexquation 2.6). This allows the
calculation of the excited populations to be split into tvestp; an ionization balance calculation to
work out the ground and metastable populations of each amestand an excited level population

calculation for the levels within a given ion stage.



2.4.1 Plasma T Timescales

It can be shown]5] that the particle self-collision time is given by

1/2 3/2
ST (U (.1 R 2.7)
acaZ \'me Iy Nz4Iln A

whereA = 127m8/\?b and \p is the Debye length. From equation2(7) we get the relative

collision times

1 /s 1/2 T 3/2 1 /7n 1/2 M
e 1 Tii 1 Tie=1: —( — = == — 2.8
wenets(G) @) =6 (R e

Table2.1shows some approximate collision time values for cororsaell as fusion divertor

plasmas
Time (sec) Solar Corona Fusion Plasma
ne=5x10cm=3 | n,=1x 103 cm™3
T, ~ 10° K T, ~ 1L keV
Tee 0.18 3x 104
Tii 8 1.3 x 10_2
Tie 200 0.5

In all of our modeling we will assume that the free electroasehaM azwellian distribu-

tion, thus all of our electron-impact excitation effectigellision strengths will be generated for

Table 2.1: Typical collision time values.

Maxwellian free electrons.
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2.4.2 Atomic Timescales

The relaxation timescales of an excited leyatan be estimated from

1
To ~ (2.9)
Z Nedi—j + Z Aij
J J
Taking 4;—.; ~ 108(z + 1)* we can approximate equatio®.9) by
10-8
SR 2.10
K (z+1)* ( )

Since the ground state cannot radiatively decay, theréfeotane scale is determined by ion-

ization

107 ) Iy 1/2
Ty~ o (z+1) <ﬁ> exp(x/kT) (2.11)

wherey is the ionization potential. If an excited state’s radiatioutes to lower levels all

have low radiative transition probability (e.g. spin chiggtransitions) then it is classified as a
metastable and,, ~ 7,. Bound states with energy above the ionization limit mayiumize via

interaction with the continuum. These states have extiestert lifetimesr, ~ 107! sec. Thus,

we have the following timescale relations

Ta L To K T ~ Ty (2.12)
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2.5 Solution of the CR Matrix

Taking into consideration the relaxation time of the groand metastables in comparison with
the relaxation time from any other excited levels, we male afsthe quasi-static approximation.
Therefore, the excited levels reach equilibrium much fasi@n the ground/metastable due to all the
excitations, de-excitations, and all the other procedsaistéke place to contribute to their popula-
tion. Taking into account am number of metastables (including the ground state), we earite

some of the time derivatives in equatidh ) subject to the conditiongfiVT” #0forl < p < m,

and dﬁ' = 0 for i > m, therefore we get
DS N
C C ... C N i
11 12 IN 1 N Zn jumy
dt et Vo 20
Ca1 Cyp ... Oy Ny B
dNm 241
Cm1 Cn2 e CimN ’ Nm = - Z neNg" Timo (2.13)
ag
Cm+11 Cmy12 - Chgan N1 _ Z ne Ny 10
g
Cn1 Chno CnN Ny 211
— Z neN; T TNo
g

Setting the time dependence of the excited levels to zdmwysithe population of an 'ordinary’
level to be determined as a function of the ground and métastmpulations of theZ ion stage
(N,), and of theZ = 1 ion stage NZ+Y). In order to achieve this goal we want to eliminate
any time dependence on our system of equations. We can dim fjoist few steps by eliminating

unnecessary time dependent differential equations. Westaearranging equatior2(13).

12



We subtract every term that is multiplied by the first metalstastate/N; from the LHS, and
add it to the RHS of equatior2(13. From here we get

le Z neNZ+ —Ci1Vy
Cio R Cin
N, A ZneNz+ — Oy NV
022 e CQN .
N N, +1,,
Coz . Cov | = ZneNz mr = Cou | (2.14)
Nm+1
Cmyiz - Cppn : — Zne 1o — Corp11 N1
Ny
CNZ . CNN
— Z neNZMryg — CniNy

Since we are only solving for the excited levels, we extremnfequation2.14) the differential

equation for the first metastable stafe

N dN
> CiaNy = —+ § neNZr, — OV (2.15)
=2
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therefore we obtain our equation in the reduced form

v Z neNZ ro, — Co1 Ny
Cyy - Con Ny
de z+1 o
€ Cnn Mol Z et (2.16)
Cmt12 oo Crqn N1 - Z neN; 110 — Crpn Ny
Cno2 CnN N _ Z neNZHrny — CyiN

By repeating the same procedure— 1 number of times for the rest of metastables we end up

reducing the equation to the form

- Z ne 7am—i—la Z Cm—l—le

Crmyi2 - Chppn N1 Pt

Cn2 ... OCnn Ny —Z:neNZJr1 ZCNP

(2.17)

Finally, we can easily solve equatioR.17) and get the solution for the population of t}jf&

‘ordinary’ level in the form

—ZZCM)C Ny - ZZ Chit rin NG e (2.18)
p
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Notice that the inverse matrix in equatio.18 Cj‘i(lr) is not the inverse of the collisional-
radiative matrix defined by equatio8.6), but rather the inverse of the reduced collisional-ragkat
matrix from equation4.17). As equation 2.18 shows, the solution for the equilibrium population
for any 'ordinary’ level depends upon the "known” populatiof the ground and metastable levels.
In order to get the ground and metastable population we legécthe ionization balance (see section
2.6) for the specified ion stage. We notice that in general thesengl and metastable population
could be generated from a non-equilibrium ionization begaoalculation, with account taken for
plasma transport effects. For the modeling of the ASTRAIsipla presented later in this disserta-
tion, it will be shown that an equilibrium ionization balancalculation will be sufficient. Figurz2
shows the results of the population dependence on metest@%) as a function of electron den-
sity for the Ar™ ion. We can clearly see the three different regimes (Cord@wallisional-Radiative,
and LTE). Our ASTRAL plasma has an electron density.af x 10'2 cm™3, and is clearly in the

collisional-radiative regime.

POPULATION DEPENDENCE ON METASTABLES: Ar 1 ELECTRON TEMP. = 4.31e+00 (eV)

ADAS RELEASE: ADAS98 V2.12 PROGRAM: ADAS208 V1.15 DATE: 07.10.08 TIME: 08:08
GRAPH TITLE: Populotions of Ar+
INPUT FILE - /home/\och/udus/adf04/cH\ke/c\hke cpb07_final_modelling.dat

T T T T T T T T
e Lo L
Coranal (,oII|S|onaI—Rad|at|ve LTE ool assignments ————
INDEX DESERATEN
10 1 3p5(2P) (2)P( 2.5)
2 333&6 252 2)s( 0.5
3 4(3 d(4D 4)D( 9.5
— 2 4(3P)as(4P) (4)P( 5.5
5 4(3P)4s(2P) (2)P( 2.5
6 4(3P)3d(4F A4)F(13.5
7 4(3P)3d(2P 2 F’ 2.5
101 8 4(3P)3d(4P 4P 55
e
<
=
=
£ 10
=
=
L s
107
10722 | | | | | | |
10° 10° 10'° 10" 10%°

ELECTRON DENSITY (ecm™)

Figure 2.2: Normalized level population dependence wiipeet to electron density.
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2.6 lonization Balance Calculations

In order to solve our collisional-radiative model we needkow the ground and metastable
populations of the ions of an element in equilibrium in a thakplasma. Consider an elemégof

nuclear charge,, the populations of the ionization stages are denoted by

N,:2=0,...,2 (2.19)

When considering the ion stage we include in the calculation its own ionizatin. ., 1, and
only the ionization from the lowest ion stage_;_... When talking about recombination we will
only include those from the adjacent ion stages;.. 1, a,11.,. The time dependence of the

ionization stage populations is given by

dN,
dt

=neSs—1—2N.—1 — <nesz—>z+1 + neaz—>z—1>Nz

+ neaz+1_,ZNZ+1 (220)

Rewriting equationZ.20) into matrix form we obtain

—neS()_)l Ne1—0 0 0O ... 0 NO %

neSo—1  —Me (51—>2 + Oé1—»0) neai—g 0 ... 0 Ny %
0 NeS19 . e ’ Ny = % (221)
" 0 Nz, T

16



subject to the normalization condition

Nrot = ZNz (222)
z=0

where Nr,; is the number density of ions of elemeRtin any ionization stage. Including
equation 2.22) into equation 2.21) and adding an extra column of zeros into the matrix to keep it

square we get

—NeSo—1 NeQ10 0 ... 00 No d%
neSO—>1 —Te (Sl—>2 + 041_>0) Nel1—0 .- 0 0 Nl %
0 neS1— . . .0 Ny dNy
eP1—2 . _ d.t (223)
dN.,
0 0 0 N.. v
1 1 1 10 0 Nrot

In equilibrium ionization balance, the time derivativeg aet to zero in equatio223. We

write the solution of our ionization balance in the form

Ny —NeSo—1 Ne1—o +nC1—0 0 ... 00 0
Ny neSo—1  —Ne (51—>2 + Oé1—>0) N1 00 0
Ny B 0 NeS1-9 . oo . 0 0
N., 0 0 0 0
0 1 1 1 1 0 Nrot
(2.24)

17



Finally, since we don't know the exact value &.;, we solve for the equilibrium fractional

abundance$V, /Nr,; at a set of temperatures and densities.

% _neSO—>1 NeOl1 0 0 ... 00 0
N]\Tflot neSo—1  —Ne <S1_>2 + O¢1—>0> Ne(1—0 0 0 0
N:
Nz:20t _ 0 ’I’Lesl—>2 ' e o 0 . 0 (225)
N,
Nrot 0 0 0 0

We notice that the above equations can be easily extendadltmle contributions from charge
exchange and proton collisions. These will be negligiblecpsses in our plasmas and will not be
considered. Also the above equation are for the 'stagéatgesionization balance and do not re-
solve metastables within an ion stage. The equation caly éasjeneralized to include metastables

with the introduction of 'cross coupling’ coefficient$d].

18



Figures2.3and?2.4 show the results for the ionization balance calculationarp@and Ne for

the neutrals and the first four ion stages.
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Figure 2.3: lonization balance of An{ = 10'' cm—3).
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Figure 2.4: lonization balance of Ne = 10" cm™3).
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CHAPTER 3

ATOMIC STRUCTURE DATA

3.1 Introduction

Spectroscopy studies of the light emitted (or absorbed)tbyns and ions depend upon an
accurate description of the collisional processes invhlviem order to compute accurate collision
cross-sections for the different atomic processes, theracg of the atomic structure of the atom
(or ion) is essential. As we saw in chap&®, these processes depend upon plasma temperature,
density, and plasma conditions. In order to compute highitgueollision data we make use of the
AUTOSTRUCTURE P], GASP [3], and the LAMDA (see sectioB.4) set of codes to compute and
optimize our atomic structure that we later use to calculagecollisional atomic data we need. In
this chapter we do not intend to cover the whole complexityhef atomic structure computation
process, there are many text books that cover this subjéenhsxely fl6, 17]. We will focus on

giving a general overview of it, and the process of optiniarabf the atomic structure.
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3.2 Atomic Structure

For an atom with atomic numbef, and containingV electrons wherd < N < Z, and

ignoring the spin-orbit interaction, the genefdhmiltonian operator is given by

H = Z{ v ZTNHZE} (3.1)

i . Tij

wherer; = |7;| is the distance to thé" electron from the nucleus;; = |r; —77| is the distance
between the'” andj*" electrons, and the summation over j is over all pairs of electrons. The
distances are given iBohr units (u,), and energies iRydbergs. Plugging thisH amiltonian into
the time-independerfichrodinger equation {;p; = E;p;) for each individual electron we get
L+
{——2+7Z(22 )+V(ri)}90i:Ei(Pi (3.2)

dr; T

where we define the effective potentia(r;) as

V) = W=N) 52 (3.3)

i — Tij

and p; is the solution for each individual electron. As we see inatigm 3.3), if we set
to zero the interaction potential between electrons weaedie problem to a simple hydrogenic
model which we can solve analytically for each electron. €hsetron-electron interaction term
means that an analytic solution is no longer possible andkact @mumerical solution is still very

difficult. Therefore we simplify the problem by the use of empmations.
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Using the expansion of moments for the electrostatic regpusmong the electrons, we rewrite
the interaction potential as

> l

1 1 T
L w1 (3.4)
rig 1T =7l ; rtH

with u being the cosine of the angle betwegnandr;, andr~, r- are the greater or the
lesser ofr; andr;. Let us now consider the monopole moment, and also assutmn@lt the other
electrons are represented as a uniform and spherical@iectiioud of density(r), and radius-,,
the effective potential is given by

Z —N)

Vi) = —4 + /O © 2 At (3.5)

r; >
This is theThomas — Fermi potential for a test charge electron at a distanc&dom the
nucleus. Let us now consider the dipole and quadrupole mtenenwhich case the effective
potential is given by
—2(Z—-N o 2 r
V(Ti) = 7( ) +/ p(?“j) — + Clr—; + Cg—§ 47T7“J2»d7“j (36)
0 T> T 7‘>

T S

whereC and(Cs contain the dipole and quadrupole angular terms that deperide angular
positions7; andr; of every pair of electrons of the atom. Under the assumptfamoorrelated
single-electron wave functions the§g andC, terms are zero. However, if one allows for corre-
lation, electrons classically tend to be at opposite sidélseonucleus due to their repulsive nature,

and theC, andC, terms are finite1§].
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They are referred adectron correlation terms. Terms beyond the monopole are small and can be

treated as perturbations, thus

Cy [m "
VE(r;) =V (ri) + r_21/0 p(T’j)T‘?dT‘j + C’ﬂ”i/ p(r;)dr;

i

C T To .
+—32/ p(T'j)T?de‘i‘CQT?/ —p(rj)drj (3.7)

iy Jo i Ty

This is theThomas — Fermi — Dirac potential, and by taking into account the contribution

of electron exchange, the charge density includes additienms

1 [1 1 1/2)°
p(T) = ﬁ E + [P + Vo — V(T):| (38)
where
b 2AZ-N)
1672 To

On the other hand, th€homas — Fermi — Dirac — Amaldi (TFDA) potential introduces

variational scaling parameterss) to the potential of the form

Vrrpa(rii A) = Vrep(ri/N) (3.9)
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In this way, the corrected potenti&l® can be computed numerically by writingr) in terms
of V(r) by means of equatior8(8) while the electron correlation coefficients are determivari-

ationally on the eigenenergies of the system, i.e.

p(rg)rg’drg—k/ p(?"g)d?”g:|

+/\§ —/ p(rg)rgdrg—l—rz/ o—p(:z)drg] (3.10)
0 r 2

This potential is included in the code AUTOSTRUCTURE v.28 pn extension of the pro-
gram SUPERSTRUCTURHESP]. In section3.4we employ the TFDA with scaling parametexs,
being determined variationally by a Singular Value Decosiijan (SVD) method for each orbital.
Having defined our effective potenti&“ by equation 8.10), we now proceed to solve equation

(3.2 for each individual electron by giving solutions in therfor

Pnili (TZ)

@i(r7) = . Y (05, ¢i)om,, (Si.) (3.11)

whereP,,, is the radial function to be computel,™ are the spherical harmonics, ang, .
is the term arising from the spin coordinates. Since thect¥&e potentiall’¢ varies due to the
screening of the nuclear charge, we need to calculate a nwmtf@ for each different electron
when calculating its wave function. We also apply theuli exclusion principle by including the

exchange of two electrons with antisymmetrized producttions.
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For a givenk configuration, with anV number of electrons, we get

Yy = (@1(7‘3),@2(7’5),...,(pN(’I"Tv)) (3.12)
where
e1(ri)  p1(r3) . (i)
(p1(71), 02(13), . .., on (TR)) = \/LN_' w(fl) 902(57"2) @2(:N) (3.13)
en(ri) en(r2) ... on(rN)

With the properties that ip,, = ¢, thenyy, = 0, and ifr,;, = r;, theny, = 0. For a certain

configurationk we get

Z 901 le (p2(rj2) .- ,@N(T’ﬁv) (3.14)
' P

with p being the number of permutations that the electrons carindke specific configuration
k. We now take the problem of determining the quantitativenfaf the radial factors’,,;, (r;)

appearing in equatior8(11). By plugging equation3.11) into equation 8.2) we get

dr? +

2

2
{ _ 4 M + Vc(n)}Pmli (ri) = EyPp,(ri) (3.15)
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These equations may be solved by numerical or analytic rdsthim the numerical case the
radial equations are treated as a set of coupled integiergliftial equations in which the radial-
wave functionsP, ;, (r;) are variables. Because the radial wave functions must dteepdundary
conditionsP,,;,(0) = 0, andrli_)nolO P,.1,(r) = 0. A solution can thus be obtained numerically by
integrating to self-consistency and the boundary conastieatisfied. In the analytic case the radial
functions are expressed in an analytic form. The standgpdbaph is to express each radial-wave
function in terms of normalized radial basis functions ed$later-type orbitals 17]

Pnz-lz- (7‘) = Z bl] ( 53()2; _)' Tlije_&jr (316)
i7)-

J

Also in order to fine tune our structure as in the case of the Apbtential, we could also

include scale factoras in order to shift the radial position of the orbitals

C\lij+1/2
Pt (r) = 3 by Bl (e 317)

r (2035)!

The AUTOSTRUCTURE code also includes the optionSé#ter-type orbitals with scaling

parameters.
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3.3 Atomic Structure Codes

331 AUTOSTRUCTURE

AUTOSTRUCTURE P] is a general program for the calculation of atomic and i@nergy
levels, radiative and autoionization rates, and photagtion cross-sections in (LS), or interme-
diate coupling using non-relativistic (IC, LS) or semiatlistic (ICM, MVD) wavefunctions. It
is in effect a superset of the code SUPERSTRUCTURE pn which it was initially based. The
nuclear charge and the level of accuracy desired determihether (IC), (LS), (ICM), or (MVD)
coupling should be used. The configurations to be chosendadhose for which data is wanted,
plus (optionally) additional configurations to improve thecuracy of the structure by including
the Configuration Interaction (Cl). This defines a uniqueudangalgebra problem. The CI ex-
pansion is related closely to the choice of radial functioiibe better the choice of radial func-
tions, the smaller the CI expansion required to obtain arglesel of accuracy, which in turn
leads to a smaller computational problem. Ea¢madial function is calculated in a model poten-
tial Thomas — Fermi — Dirac — Amaldi (TFDA) or Slater-Type-Orbital (STO). Both include
optional scaling parameters to fine tune the atomic stractlihese scaling parameters can be op-
timized automatically by minimizing a weighted sum of termemies chosen by the user. The
(IC), (LS), (ICM), or (MVD) Hamiltonian is diagonalized to obtain eigenenergies and eigenvec-
tors with which to construct the transition rates. AUTOSTRIWRE has also the capability to

calculate collision strength;;s by using the Plane Wavgorn approximation (see chaptér?).
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332 GASP

GASP (Graphical AutoStructure Packag8)ip a java front end to the atomic structure pack-
age AUTOSTRUCTUREZ], developed under the Rollins College Student-Facultyldbaolrative
Scholarship Research program (Loria, Blossey, BallandeGaiffin). The purpose of this program
is to offer a graphical user interface to run the AUTOSTRU®EJXode. As an example, we have
chosen the input file for the computation of the structureneftase of the A ion. The typical
input file (das file) for the AUTOSTRUCTURE code requires tise of the orbitals as well as each
configuration, the advantage of GASP is that it generatesdahégurations automatically by pro-
moting the electrons in the different specified sub-shéllse typical AUTOSTRUCTURE input

file for a case of the Ar" ion is shown in figure.1

File Edit Search Preferences Shell Macro  Windows Help

'ICM' MEWORE=11 MXCONF=10 NAST=0 EORE1=0 |-

ESALGEE BORN='NO ' RAD='ALL' C
24 041 4 2 4 3 50

g

[ o Y w  w I e B e e e e
[l e b Y e I e R e e Y e e e e
Oy Oy Oy Oy Oy O Oy O O Oy D
o R Il e e B e e Y e ) e Y e e
[y ey S S IR S IS S Y S
|l e I s o e e e e
o s e o e ) e e o
o e s e o e o
e e e o e e e e e e
e o o o e e e e e ) e e}
o e o e e e e e e S [

—
—
—
—
—
-
—
—
—
—
—
L

Figure 3.1: AUTOSTRUCTURE input file for a case of the’Arion.
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As we can see from figurg.1, we need to have knowledge of the different input parameters
that we specify for the calculation. We show in fig@®.€ the graphical interface of GASP to com-

pute the same case shown in figGr&

File Options Radiative Configurations Advanced Help

Z |18 | N: |16 | LS CLSM (O IC ®ICM (U ICR | (U EL @ NO | [|Pseudo?

1s 2s 2p 3s Ip 3d 4s 4p 4d 4t 55 5p 5d 5t 5g
Lv | v [ M [ v [v [ v [v [v [v [v [v ][Ee]©e]e]e€e]
Lambda: 1% 25 2p Is Ip 3d 45 4p 4d 4f as

Lo J1o  Jro Jro Jro fie Jro o Jro 1o Jro |
# of Configurations: |6 |

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f  5s
Cont. |2 2 6 2 4 0 0 0 o 0 0 Pro. |1 |
Min |2 2 6 1 3 0 0 0 0 0 0 Gen.
Max |2 2 6 2 5 1 1 1 1 1 1
Conf. |2 z 6 1 5 0 0 0 0 0 0 Pro. [0 |
Min |2 2 6 1 5 0 0 0 o 0 0 | Gen. |
Max |2 2 6 1 5 0 0 0 o 0 0
Conf. |2 2 6 0 6 0 0 0 o 0 0 Pro. [0 |
Min |2 2 6 0 6 0 0 0 0 0 0 | Gen, |
Max |2 z 6 0 6 0 0 0 0 0 0
Conf. |2 2 6 0 5 1 0 0 o 0 0 Pro. [0 |
Min |2 2 6 0 5 1 0 0 o 0 0 Gen.
Max |2 z 6 0 5 1 0 0 o 0 0
Conf. |2 z 6 2 2 2 0 0 0 0 0 Pro. [0 |
Min |2 2 6 2 2 2 0 0 o 0 0 Gen.
Max |2 2 6 2 2 2 0 0 o 0 0
Conf. |2 2 6 1 4 1 0 0 o 0 0 Pro. [0 |
Min |2 2 6 1 4 1 0 0 0 0 0 | Gen, |
Max |2 2 6 1 4 1 0 0 o 0 )

| Run Autostructure

Figure 3.2: GASP interface showing a computation for a casieecAr** ion.
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3.4 Atomic Structure Optimization

3.4.1 Introduction

Cross-section computations as well as radiative and augaition rates, oscillator strengths,
energy levels, photoionization cross-sections, and méamgr amportant atomic quantities depend
on the basic foundation of a good atomic structure. Accuwallesional-radiative modeling depends
on such atomic quantities and plays a key role in the devedoprof diagnostics used in fusion as
well as astrophysical plasmas. There are many challenggagawhen trying to calculate good
atomic structure, especially when it comes to near neugsiems. The collision calculations can
grow very large as we include more and more configurationsiirsgstem, this is particularly true
for R-Matrix calculations. Several codes for atomic structuagehbeen developed over the years
[20]. We are working with the AUTOSTRUCTURR[ 3] code to generate radial files that will be
used for collision cross-section calculations using/h®latrix codes 21]. A lot of time and effort
is spend in the optimization task of the orbitals in AUTOSTRILJRE by varying the scale factors
(see sectiorB.2). This process is quite challenging since it requires agpee in atomic structure
calculation to know which orbitals are to be varied. It cobkla lengthy and tedious process. To
get an idea whether our structure is good or not we computeetevels and line strengths, and
then we compare them to those available in accurate dataesosuch as the ones found in the
NIST tables R2]. Our aim is to provide an automatic way to compute the opgtistacture by
linearizing the dependence of the energy levéisand line strengths'i; to the scale factors\g),
and from there to solve the inverse of the normalizedobian matrix by using Singular Value

Decomposition (SVD)4] to get the optimal scale factors that we need.

30



3.4.2 Linearization of the Model

Linearization methods are widely used in many fields of pty/i23]. We are using the same
concepts to optimize our atomic structure. In order to nownétnd compare the quality of our
atomic structure we make use of the NIST atomic databasesdleeted quantities we use are the
NIST energies (levels or termg)i,;s;, and either the line strengtli&j,,;:, the oscillator strengths
fijnist, OF Einstein’s Ajk,;s: coefficients. In our modeling we will use line strengths éast
of oscillator strengths due to their independence to theggnef the transitions. Since both the
energies and line strengths depend upon the scale fac®yswe linearize both and approximate
the relation between the NIST quantities and our modelagegeh st~ Enoder (A) + %—’fd)\, and

Snist=Smodel(A) + g—fé/\. We rearrange these equations as

AFE = Epist — Emodel()\)%a_E(S)\ (318)
1))
AS = Spist — Smodel(k)%gé/\ (319)

In order to be able to include both of these different quigtiin our optimization, we normal-

ize both of them by their respective NIST values, therefore

AE 1 OF
Enist - Em'st aé)\ (320)
It (3.21)

Snist -~ Snist oA
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This way we rewrite our complete model for amynumber of energies, any. number of line

strengths, and anynumber of scale factors as

AF; 1 0E; 1 0F; 1 0E;
Enist1 Enist1 O\ Enist1 OX2 """ Epist1 O\
AF> 1 OF> 1 OF> 1 OF>
Enist2 Enist2 O\ Enist2 02 """ Epist2 O\
: : o\
AFE, 1 OF, 1 OF, 1 OF, S\
Enistn ~ Enistn a>\1 Enistn a)\Q T Enistn a>\l . 2 (3 22)
AS, 1 951 1 05 1 951
Shist1 Shist1 OA1 Snist1 OA2 "7 Spist1 ON
_ASy 195 1 05 195 SA
Shist2 Shist2 OA1 Snist2 02 "7 Spistz ON !
ASH, 1 OSm 1 0Sm 1 0Sm
Snistm Snistm a>\1 Snistm 8)\2 T Snistm 8)\l

We rewrite the model in vector notation 26aP~M.d\. Where we have defineAP as the
normalized vector for the difference of quantitidd, as the normalized acobian matrix, andj\
as the correction scale factors vector. We write the salutibthe vector of the correction of the

scale factors as

—1
1 [eJ 51 1 OFy 1 OFy AFEq
Enpist1 2281 Enist1 22} o Enist1 8Al Enist1
1 OE 1 OF;> 1 OF AE>
Enist2 2281 Eyist2 Oz Eyist2 8>\l E,ist2
6A1 . . .
S\ 1 OFE, 1 OFE, 1 OFE, AE,
2 ~ Epistn 2281 Enistn Oz Enistn 8>\l Epistn (3 23)
1 aS1 1 8S1 1 8S1 ASy
Snistl O Snistl Oz Snistl 8>\l Snistl
5/\ 1 OS2 1 OS2 1 OS2 AS>
! Snist2 2281 Snist2 A2 Snist2 8Al Snist2
1 OSm 1 OSm 1 OSm ASm
Snistm O Snistm Oz Snistm 8>\l Snistm
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Or also rewritten asA~M ! . AP. Having the correction for the scale factors, we use them
to obtain the new scale factorg,e.y = Aoid + 0. With these new scale factors we recompute our
model and compare it again with the NIST quantities, andréne process over again. To compare
the success of our optimization process, we compare thaliaitd final values for the least square

x?, whichis given byx® = AP + AP7 + ...+ AP} ),

3.4.3 Inverse Matrix Computation

One of the problems we face in trying to compute the inverge®hormalizedn + m) x 1
Jacobian matrix M, is that may not be squafe: + m) # [, and we also run the risk that it may
be singular. To overcome these problems we get the clodesibsoof the inverse by decomposing

the matrix using Singular Value Decompositiatj, therefore we can express the mafthik as

M=U-S.VT (3.24)

whereU is a(n + m) X (n + m) unitary matrix,S is a(n + m) x I diagonal matrix with
non-negative real numbers on the diagonal, ¥ddenotes the conjugate transposévoivhich is

al x 1 unitary matrix. These matrices have the following proferti

e The columns ofV form a set of orthonormal "input” or "analyzing” basis vectiirections

for M.
e The columns olU form a set orthonormal "output” basis vector directionsXdr

e The matrixS contains the singular values, which can be thought of asustgéin controls”

by which each corresponding input is multiplied to give aresponding output.
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Since our aim is to minimize the least squar® we can do this successfully by computing

the "inverse” or the pseudo-inverse of the matrix which ifirdl as

M lxv.s1.U"T (3.25)

The matrixS is a diagonal matrix which contain&” singular values. The number of singular
values determines the rank of the matrix, and the singuliesaare ordered in descendent form

S1>8>...> 8Kk

S 0 0 ... 0 O ... 0
0 S 0 ... 0 0 ...0
S=| 0o 0 0 ... Sk 0 ... 0 (3.26)
0 0 0 ... 0 O 0
0 0 0 ... 0 O 0

The K rank of the matrix represents the number of "dimensions’e diffficulty is to select the
P number of singular values that we need to compute this psenvdose whereP < K. Since
we need to compute the vector of the scale factor correcidnsve choose to apply some physical
restrictions. In order not to affect the different atomibitals by too much while we optimize

others, we choose a range of values for the total scale fadtoour case this range is

0.8 < Anew = Aotg + X < 1.2 (3.27)
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With this restriction in place we select tlif&number of singular values to compute the singular

values inverse matri$—1

1
L 0 0 0 0 0
1
0 & 0 0 0 0
S'=]10 00..&o0..0 (3.28)
P

0 0 0 0 0
0 0 0... 00 0

There is not a specific method to know how mdgingular values we need to use to compute
the inverse of the singular values matrix. Therefore we takand error until we meet condition
(3.27). In case condition3.27) is not met, then we have to use a different strategy, namal§ipty
the Jacobian matrix by a certain factor greater than one and then competedrrections again.

If condition (3.27) still goes unmet, then again we multiply tbexcobian matrix by a greater
factor and compute the optimization again. The reason whgnuléply the Jacobian matrix by

a factor is to increase the value of its derivatives, by iasheg these values we reduce the size of
the corrections for the scale factayg, in order to meet the conditior827). We demonstrate this

process better in figur@.3.
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Figure 3.3: Representation of the variation of the orbitéth respect to the scale factoks.

As we see in figur8.3, the functionf (A) may represent any of the atomic orbitals that depend
on the scale factohA, and the Jacobian” value or derivative is represented by the value of the
slope of the purple line. If we compute the correctiirh; by using the value of the "real” deriva-
tive, we would violate condition3;27), and as shown in the figure we would end up out of the set
boundaries. Therefore, if we multiply the value of the datiixe by a factor greater than one, we get
the new increased value for the slope in this example repteddy the green line. By using this
new value of the derivative to compute the new correci,, we now satisfy condition3.27),

and our new value fol is now within the set boundaries.
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3.4.4 Reaults

As an example of the optimization process, we have choseArthie ion, in which we have

used eleven orbitals and ten configurations. These confignsaare

o 122522p%323p* (Ground)
o 122820°323p%3d

o 122822p5323p34s

o 1522822p5323p34p

o 12220°323p%4d

o 12222053233 4f

o 1522822p5323p35s

o 122205353

o 1572822p53p°

o 122522p53p° 3!

Therefore, we have eleven scaling factdis one for each of the eleven orbitals 1s, 2s, 2p,
3s, 3p, 3d, 4s, 4p, 4d, 4f, and 5s. The initial values for alXh is set to one, and the boundaries
are set to satisfy the condition given by equati@®Rf). The program will read two input files
corresponding to the ASCII tables from the NIST energy v@laad the NISTEinstein’'s Ay
coefficients. The LAMDA code has the option of transformihgge coefficients into line strengths

S;1. and then run the optimization.
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Results of the optimization process for the first iteratiom @esented in figurg.4.

Tamdaout
start of program

niter = 8§ ne =116 nLT =17 nlevtrm = 185 nlamda = 11 coupling = IC

** Tteration # 1 #¥*
Lamda#  Cchi Sqr % diff

0 1.665210e+01  100.000000
1 1.6644356401 99.953436
2 1.635237€+01 98.200024
3 1.639650E+01 98.465032
4 1.603977€+01 96.322770
5 1.534574E401 92.154968
6 1.771968e+01  106.411047
7 1.667738e401  100.151772
8 1.503951E+01 90.315952
9 9.878634£+00 59.323640
10 1.665229e+01  100.001137
11 1.647207e401 98.918845
ATl 7.531238E+00 45.226947

ATl 7.531238E+00 45.226947

Desired Energy Initial Energy %Diff Final Energy %Diff Configuration Term ]

0.010134880  0.009702380  4.2674  0.010460940 3.2172 3s2.3p4 3P
0.014308980  0.013764940  3.8021 0.014782500  3.3093 3s2.3p4 3p
0.127668550  0.143280550  12.2285  0.150642800 17.9952 3s2.3p4 1D
0.303139580  0.289737970  4.4209  0.287903880  5.0260 3s2.3p4 1S
1.037026090  1.281568470  23.5811  1.044756870 0.7455 3s.3p5 3p*
1.046110450  1.289585060 23.2743  1.053922940 0.7468 3s.3p5 3p*
1.050946080  1.293739270  23.1023  1.058699810 0.7378 3s.3p5 3p*
1.312427970  1.592261850  21.3218  1.353075850  3.0972 3s.3p5 1p*

1.320293530  1.645442700 24.6270  1.371171750  3.8536  3s2.3p3.(4s%).3d S5D*
1.320341040  1.645602240 246346  1.371404880  3.8675  3s2.3p3.(4s%).3d Sp*
1.320403350  1.645842570  24.6470  1.371760020 3.8895  3s2.3p3.(4s%).3d S5D*
1.320528670  1.646179180 24.6606 1.372262810 3.9177  3s2.3p3.(4%).3d S5D*
1.429919410  1.770260660 23.8014  1.507884940  5.4524  3s2.3p3.(4s%).3d 3p*
1.430960930  1.771072600 23.7681 1.508837420 5.4423  3s2.3p3.(45%).3d 3p*
1.474885020  1.839525430 24,7233 1583385380 7.3565  3s2.3p3.(20%).3d 1s*
1.483153580  1.818277070 22,5953  1.558261390  5.0641  3s2.3p3.(20%).3d 3F*
1.486059290  1.821072990 22,5438  1.561636190  5.0857  3s2.3p3.(20%).3d 3F*
1.480712130  1.824562290 22.4775  1.565852530  5.1111 3s2.3p3.(20%).3d 3F*

WO WA WN R RORNONO

Type Desired Sjk %Err Sjk Initial Sjk % Diff Final Sjk % Diff Init. Conf. Final Conf. Termi  Termf Ji if

B2 3.4676-10 25.00  4.598E-10 32.6317 4.289E-10 23.7348  3s2.3p4 --> 3s2.3p4 P>k 0->2
ML 3.336e-05 10.00  3.323e-05 0.3778 3.322e-05 0.4033  3s2.3p4 --> 3s2.3p4 P->3p 12
ML 2.665E-05  3.00  2.654E-05 0.4131 2.652E-05 0.4571  3s2.3p4 --> 3s2.3p4 P-->3F 0->1

Lamda Values

1.000719086989 1.010407688264 1.114058671166 1.073524697425 1.072823633702 1.052246571156
1.093407275170  0.953711089497 1.108445718000 0.999957551797 0.998566605423

page 1

Figure 3.4: LAMDA code output file for the Art ion.

The program starts by running the AUTOSTRUCTURE code fothalscale factords set up
to one (or to any set of initial values). AUTOSTRUCTURE gextes output files that give us the
computed energy for each level (or term), and the line sthend-rom there we compare our results

with those values found in the NIST files, and compute thet ls@sarey 2.
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This value for they?2, is the one we use as a reference point for comparison (1088d)its
value is displayed on the first row of the first iteration of gregram as shown in figui24. From
that point on, the program starts computing correctionssiygithe SVD method for each individual
orbital, and recomputing the energies and line strengthmeroyning the AUTOSTRUCTURE code.
Then the code computes corrections for all the orbitals e¢ @md chooses the correction values that
give the minimumy?. In the case of A&, we see that the begt? value was given by including
all the orbitals variations at once. The code then displagsrésults of the energy optimizations
by displaying the "Desired Energy” (NIST Energies), and émergy values before and after the
optimization with their respective % differences from tbaggven by NIST. The code does the same
for the line strengths by displaying the type of transiti&fectric Dipole (E1), Electric Quadrupole
(E2), Magnetic Dipole (M1), and Magnetic Quadrupole (M2)shows also the "Desired Value”
and its respective %error from those given by NIST. Theahénd final computed values before and
after the optimization are then shown in the next rows, whisl give the % differences compared
from those in NIST. Finally the code prints out the valueshaf bptimized scale factorss which

we can use to compute our optimal structure.
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CHAPTER 4

ATOMIC COLLISION DATA
4.1 Introduction

The accuracy of collision cross-section calculations @akey role in collisional-radiative
modeling. Our collisional-radiative model can only be asdjas the underlying atomic data we
use. Many methods and approximations have been developsuvi® the problem of scattering
of an electron by an atom or ion. In this chapter we give a gdrmmerview of some of the most
widely use methods. We begin in sectiéi2 with an explanation of the Plane Waiorn approx-
imation, where we model the incoming electron by a plane veaxkthe target as a potential. Plane
Wave Born atomic data will be used for some of our neon modeling in aret In sectiond.3
we will outline Distorted Wave theory in which we allow thecoming wave to be affected by the
potential and therefore distorted. Distorted Wave datafectron-impact ionization cross-sections
is used for argon in chapté&:. Finally we introduceR-Matrix theory in sectior.5, and also an
extension of this method calleR-Matrix with Pseudo-States (RMPS), which is used to describ
electron scattering in the intermediate energy range ath@v@nization limit. Sectiort.5 gives a

quick overview onM axwellian effective collision strengths calculations.

In scattering problems there are perturbative methods asithe Plane WavBorn and Dis-
torted Wave. These methods are good for highly chargedregsteut for near neutral systems the
R-Matrix and RMPS methods in particular, result in more aateicross-sectionsR-Matrix and
RMPS data for At excitation is used in chapté: In chapter7 we will present the results of a
R-Matrix calculation for APt excitation, and in chapte8 we useR-Matrix and RMPS data for

emission of modeling from neutral neon.
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4.2 PlaneWave Born

4.2.1 Classical Scattering Theory

Figure 4.1: Scattering of a light particle by a heavy ion.

In terms of classical scattering theory, having a lightipkatincident on some heavy nucleus
with an incoming energy, and impact parametét the light particle will emerge at some scattered
angle® as shown by figurd.1 By assuming for simplicity that the potential is azimuthaym-
metric (no dependence i) therefore we constrain the problem to a single plane. Tohblepm in
scattering theory is reduced to determining the scattenged, from the knowledge of the impact
parameteb, and the energy of the incident partidi2 In general, having a particle incident within
an infinitesimal cross-sectional arder, will scatter into a corresponding infinitesimal solid angl
dQ}. The largerdo is, the biggerd$2 becomes. The proportionality factor will be call& which

do

represents the differential scattering cross-seclibn= Z3. In terms of the impact parametér

and the azimuthal anglg, do = b db d¢ anddQ = sin(0)d0do,

41



therefore

D(6) = (4.1)

b ‘ db‘
sin(0)|d6

By obtaining the differential cross-sectidn (), as a function of the angk, we can compute
the total cross-section by integrating the differentialss-section with respect to the solid angle

aq.

a:/D@MZ (4.2)
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4.2.2 Plane Wave Scattering

NY

Figure 4.2: Scattering of an incident plane wave.

In this case we model the incident "light” particle as a plaveve(z) = Ae?#=, traveling
in the z direction. When the plane wave interacts with the potewigsicribed by the target, it will
produce an outgoing spherical wave as shown in figu2eTherefore for values af far away from

the target we expect solutions to tiehraodinger equation in the general form

tkr
W(r, 0) ~ A{eikz 1 f(0)< } (4.3)

r
The spherical wave carries a factorigfr becausdsp|? must go likel/r2 to conserve prob-
ability. The wave numbek is defined in the usual way

2mFE
h

k =

(4.4)
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It can be shownZ4, 25] that the differential cross-sectio?(0) is related to the scattering

amplitudef (6) by

D) = 22 = 150 5

Therefore the whole problem of determining the cross-seas related to finding the scatter-
ing amplitudef (#). We can see from equatiod.p) that the differential cross-section (which is the

guantity of interest to the experimentalist) is given bydbsolute square of the scattering amplitude.

4.2.3 The Born Approximation

The time-independer® chrodinger equation for a given potentidl is given by

_i62¢ + Vo = Ey (4.6)
2m

which can be rewritten in the form

(V2+Ek)y =Q (4.7)

wherek andQ (1) are defined by

and Q= -V (4.8)
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As we can see, equatiod.{) has the form of the non-homogeneal&elmholtz equation.

We seek a solution by usinGreen’s functions to find a solution in the integral form

"p(F) = /G(F_ Fo)Q(Fo)d3Fo (4.9)

as shown in appendi&, the final solution of th&reen’s function is given by

ikt

G(r) = (4.10)
47r7°
by inserting this solution back into equatich 9 we get
etk|T—7o|
() = o(P) — 5 / e VR, (4.11)
where),, satisfies the free-particl8chrodinger equation
(V2 + K)o =0 4.12)

Now, for the firstBorn approximation, let us suppose tHa(+,) is localized at", = 0, and
that the potential drops to zero outside some finite regioe. avé interested in calculating(7)
at points far away from the scattering center. Th&n>> |7,| for all points that contribute to the

integral equation4.11) we approximate

7
F— 72 =12+ r2 — 27. Fozr2<1—2 °> (4.13)
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therefore

T —To| =T —T:Tp (414)

Letk = k#, and keeping the lowest order for the denominator we caroappate| ¥ — 7, | ~

r, SO we get

~ T ek (4.15)

For the scattering problem we approximate the incidenigiario a plane wave, therefore for

an incident plane wave traveling on thexis we have

Po(7) = Aetk* (4.16)

So, by inserting in the large approximation and the incident plane wave into equatibhl]

we get

ezk:'r

2wh? r

W(7) =~ Ae®F* — / e_i’z'%V(Fo)qp(Fo)d?’Fo (4.17)

Which is in the same form of equatiod.8). From it we recognize the scattering amplitude

m
2wh2 A

£(6,8) = — / e ET (7)1 (7)) d°F, (4.18)
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We now apply theBorn approximation, we suppose the incoming plane wave is noifradd

by the potential, therefore we approximate

W(7o) = Po() = Aeik®e = AeiF 7o (4.19)

wherek’ = k2, this wave function would be exact if the potentidl= 0 which is theBorn

approximation. Plugging this wavefunction inside the gné& equation4.18 we get

(0.9) ~

/ ' F =R oy (7,)d3F, (4.20)
wherek andk’ have the same magnitude. Notice that the Bst-n approximation is just the

Fourier transform of the potentiaV’ (7,,). Sincek’ = k2 for the incident wave, andl = k#

for the scattered wave therefcm;éE — K ) is the momentum transferred in the process. From this

point we can get the differential cross-sectibhby means of equatior4(5), and our total cross-

section from equatiord(2). In particular for low energy scattering (long Waveler)g(tE — E’) ~0

therefore we get

m
2mh2

f(0,0) =~ — /V(F’)d3f’ (4.21)
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Let us now consider a collision of an electron with a hydrogesm initially at ground state.
Again, the electron is being considered a light particle bsuaning the nucleus to have infinite
mass thus, neglecting the motion of the proton in the cotiisiThe wave equation for the system of

incident electron and hydrogen atom is given by

2 2 2 2

h 2 2 € € € I,
—(Vi+VH+E+ —+ — — — |¥(f,72) =0 (4.22)
2m r1 T2 T12

where the subscrift is used for the incident electron a8dor the atomic electron. The total
classical energy of the system is given by the sum of the ikieeergy of the incident electron plus

the energy of the atomic electron in the ground st#g)(

1
E = §m112 + Ep (4.23)

We might guess a solution for equatichZ2) as

W (7, 72) = PYn(72) Frn(r1) (4.24)

The functionsy,, (72) are the solutions for the hydrogen atom, which satisfy theaggn

h2 e
<—v§ b Bt —)wn(@) —0 (4.25)
2m 9

48



Substituting equation4(24) into equation 4.22) and using the solution given by equation

(4.25 we get
h? e? e? h? e?
(3o Vi B+ S = S ) Fali) + (5 V3 4+ S Jn(a) Fu() = 0
2m r1 Ti2 2m T2
h2 62 2
<—V% +E+4+ — — —>¢n(F2)Fn('F1) - En'l;bn(FZ)Fn('Fl) =0
2m 1 T12
h? e? e?
<—Vi + E — En) "pn(F2)Fn(F1) - <— - _>¢n(F2)Fn(F1)
2m T12 1
(4.26)
The hydrogenic wave functions form an orthonormal set
/w:‘l(Fz)wnl(f’z)d@ = Onn/ (4.27)
By multiplying equation 4.26) by ¢ (72), and integrating with respect > we get
h2 2 . e? e? N w o\ g
—Vl —|— FE — En Fn(’l"l) = / _— = — ‘I’(T‘l, Tz)wn(Tz)dT‘z (428)
2m r12 1
In the case of; — oo the right hand vanishes, aid, satisfies the wave equation
5  2m .
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which is the wave equation for a free particle with enefgy— FE,,. Here we are making
the assumption that the incident electron has enough energxcite thenth state of the atom or

E > E,. Letk2 = W therefore

(V34 K2) Fn(71) =0 (4.30)

and its solution must have the asymptotic form given by éqoa@.3). Since we are only
interested in high energy impact, the perturbation of tleédient particle by the interaction with
the atom is small. Applying the first orddBorn approximation toF'(;) as a plane wave for

W(7,72) We get
(7, 7)) = eF Mg (i) (4.31)

Substituting this solution into equatiod.80) we obtain

2m e? e? o
(V2 + kz)Fn(Tl) — 1o (7‘—12 —_ T—1>€zk'TIT/)(F2)¢:(Fz)dF2 (432)

which is in the same form of equatiod.f) and has an integral solution given by equation

(4.9. TheGreen's function is given by equatiord(6), therefore we get

zk:n|1‘—1‘1| o 2 2
o) = gz [ [ e (S - S Jeuniandn @3

|7° - ?“1| 1 T12
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Approximating by using equatior (15 we obtain

zk'r 2 2
R N ’“">’"1(——:—>w(r2)¢ (F)dFdiy,  (4.34)

T1

By comparing this result with equatiod.@) we recognize that the scattering amplituglg(0)

is given by

fn(0) =

2 2
sz | | 5 k")n<_‘_>w<r2)¢*<r2)dr1drz (4.35)

1

and therefore by the definition given by equatidrbj, we obtain the differential cross-section

D, (0
6) = k: 47r2h4

2
// i(k—Fkn)-71 <_2 _ —>'¢(T‘2)¢ (7"2)d7‘1d7‘2 (436)

1

We notice that the interaction of an electron with a hydrogtem is described by the potential
62

V (71, 72) = o % The differential cross-section may be written in the mampact form

D) = Fr T VRO 4.37
w(0) = 2 T | E v FO)| (@.37)
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In the case of inelastic collisions, we consider @eulomb collision of an electron with an
atom in which, the atom is raised from the statgto staten s by the impact. IfE,,; and E,,, are
the energies of the two atomic states &ndandk ¢ are the initial and final momentum vectors of
the colliding electron, the conservation of energy gives

1

Em('uz2 — 'v?e) = Epn; — Ep, (4.38)

wherev = %E Within the range of validity of the firsBorn approximation, the differential
cross-section describing the collision is given by

2

D(0) = k—im|<kfnf|v|kmi)|2 (4.39)

where theCoulomb potential is given by

e
V() = —= (4.40)
( ™ — R

The expression given by equatich 39, is the differential cross-section under the fiBsbrn
approximation, and is useful in the case of high energy amti@lectrons. For high incident energy,
contributions to the cross-section for a wide range of mdorarbecome important. We will use

Plain WaveBorn electron-impact excitation for neutral neon in cha@er
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4.3 Distorted Wave

It was shown in the previous section that the differentialssrsection for scattering may be

obtained from

2

D(9) = K

f m — —
;WHW"HVWLM) B (4.41)

where the potential” (for a neutral system) is given by

N
VET) =Y o (4.42)

and describes th€oulomb interaction between the incident electron at positiband the
target electrons at position$. IV is the number of electrons at the target atom. We express the
Coulomb potential in terms of thd ourier integral transform
62 N e_"'q"("_{] _'F)

V(7 7)) = — / A (4.43)

where the integration is over all the space and we repré&ergpherical coordinategy, 6, ¢).

By letting R} =7 — 7}, and orientingl_ij along thez axis, theF ourier integral becomes

e [T
272 / q? 1

62 oo ™ 27 .
= / dq / de / dgsin(0)eaficos(®)
0 0 o

T 2n2
2 4 [o SIS R
_ ¢ dm [ sin(aly) o (4.44)
272 R; Jo q
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and by using the identity

/oo Mdm = Isgn(a) (4.45)
0 Zr 2

Therefore we gef;” %dq = 5sgn(R;), sinceR; = #—7; > 0, thensgn(R;) =

1, and equation4.44) becomes

2

e
> 7 (4.46)

Jj=1

which is theCoulomb potential V. Expanding the exponential factor in tl&urier inte-

gral, the differential cross-section in equatidn4l) may be written as

2 2 2

e

272

ky m
k; Aw2ph4

D(9) = (4.47)

N
[ 5 Gl TR (ng] S 57
j=1

This expression divides neatly into two factors

e The first matrix element deals only with incident electronmemtum parameters which are

independent of the state transition involved within thgeéaatom.

e The second matrix element involves the atomic parameters.
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The expansion of the matrix element in equatidi{), into two matrix element factors in
equation 4.47) is due to the fact that the solution of tl¥chrodinger equation describing the
system is a product of a function of only incident electrolordinates and a function of atomic
electrons’ coordinates as described at the end of sedt®® We use the distorte@ oulomb

wavefunction to calculate the first matrix element

(kyle 7 |k;) (4.48)

and the second matrix element is in the form factor which keridbetween the target states

[26]

N
Fip(@ = (ng| Y T |ny) (4.49)
j=1

We call this method Distorted Wave Approximation (DWA). Weke use of Distorted Wave

electron-impact ionization data for argon in chaf@er
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44 R-Matrix Theory

External

Internal

region region

Target nucleus

sphere of radius a

Figure 4.3: Partitioning of configuration spaBeMatrix theory.

R-Matrix theory was first introduced in nuclear physics by Wégand Eisenbud[] in 1947
in a study of resonance reactions. In the case of electam-abllisions, the non-perturbativi-
Matrix theory partitions the configuration space into twgioes named the internal region, and the
external region as shown in figude3. The internal regiom < a, wherer is the coordinate of the
scattered electron relative to the target nucleus,aiglchosen to encompass the charge cloud of
the atom/ion. In this region, the wavefuctions of the scatteelectron and the atom or ion overlap.
Therefore electron exchange and correlation between #itesed electron and thy-electron tar-
get atom or ion are important, and th& + 1)-electron collision complex behaves in a similar

way to a bound state.

In this chapter we do not intend to cover the whole develogroeR-Matrix theory, but simply
to emphasize the advantages that this non-perturbatieothéias when calculating electron-impact
excitation data, and its applications in emission modelinglasmas. For a more comprehensive

description on thedR-Matrix theory refer to Burke et al28], or Burke and BerringtonZ9).
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For the internal regiomr < a, the wave function for the electron-atom collision procisss

defined by

\Ilk(acl, ceey mN+1) :AZ cijki’,-(ml, ceo 9 LNy 72N+10'N+1)uij(’l7]\r+1)
ij

—+ Z djk(ﬁj(a:l, ey $N+1) (450)
J

where the functionsp; are formed by coupling the multi-configurational functiohg. The
u;; are the basis orbitals for the scattered electron. The tpedantisymmetrizes the scattered
electron coordinate with th& atomic electron coordinates. The functiafisare (N +1)-electron
configurations formed from the atomic orbitd®,; (), and are analogous to tié-electron config-
urations. Finallyc; ;i andd;;, are expansion coefficients determined by diagonalizing ¥e-1)-
electronH amilonian. The coefficients:;;;, andd ;i in equation 4.50 are determined by diag-

onalizing

(| Hni1 [ W) = ER T o (4.51)

whereH n1 is the(IN + 1)-electronH amiltonian operator which is projected onto the

space function@,. The R-Matrix is given in the form

1 wik(a)wjk(a)
Rij = o > TENFL_ (4.52)
k k
wherew;, are defined as
wik(r) = Zcijkuij(r) (4.53)
J
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The surface amplitudea;x(a) and the poIesE,]:’Jrl of the R-Matrix are obtained directly

from the eigenvectors and eigenvalues of Hlamiltonian matrix defined by equatior4(51).
The most important source of error in this method is the @tino of the expansion in equation

(4.52) to a finite number of terms.
The R-Matrix acts as an interface between the inner region andutside region.

In the external regiory; > a, electron exchange between the scattered electron andrget t
can be neglected. The scattered electron then moves inrthegdmge multipole coulomb potential
of the target. Outside th&-Matrix box, the total wavefunction for a given (LS) symnyets

expanded in basis states given by

o+ — ¢N+17""(TN+1) (4.54)
k ZL: [ PN41

wherew;(r) are radial continuum functions obtained by solution of ahdsymptotic coupled
differential equations. The inner and outer solutions aatcimed at the edge of thie-Matrix box

to extract collision strengths.
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The R-Matrix method also is able to calculate electron-impaoization data by introducing
pseudo-states in our atomic structure to represent theRigfberg and continuum states as shown

by figure4.4.

Ve

pseudostates

N

[ONISATION
LIMIT

Observed expt. RMPS model

Figure 4.4: Representation of the continuum by the intrtidoof pseudo-states.

As we show in chapte and later in chapteB, these pseudo-states make a significant differ-
ence in the electron-impact excitation cross-sectiéhbgtween standar#-Matrix, and R-Matrix
with Pseudo-States (RMPS). These differences are due tmtiismmuum coupling effects and also
significantly improvement of our atomic structure. The adage of R-Matrix is that it is a non-
perturbative method. Its limitations are mainly computasl. The accuracy of the method depends
on the quality of our atomic structure and the calculation geow significantly with the addition
of configurations. This limitation is overcome by the paltelation of the method. Therefore the
use of small parallel computer clusters and massively lehialpercomputers when running large

calculations is essential.
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We make use oR-Matrix and RMPS data for Af in chapter6. In chaptei7 we present a new
R-Matrix calculation for electron-impact excitation of 4F, and in chapte8 we useR-Matrix and

RMPS excitation data for neutral neon modeling.

45 Effective Collision Strengths

As shown in the previous section, the calculation of aceucallision cross-section calcula-
tions play a very important role in our emission modeling lesmas. The format in which this data
is made available is also important since it has to be preddntthe user in a simple and compact
form. It should also be consistent with no significant erroaccuracy. Electron-impact excitation
cross-sections as well as electron-impact ionizationsesestions have a strong dependence with
respect to the energy of the incident electron. By usingablétscaling procedures it is possible
to remove the main asymptotic energy (or temperature) dbpee for the given data. The energy
(temperature) is also scaled so as to become a dimensiealgsgile which ranges from 0 at thresh-
old energy (zero temperature) to 1 at infinite energy (teatpee). In this way the whole variation
of a collision strength can be exhibited in a single graphesihe energy is mapped onto the interval

(0,1). An introduction of the Burgess-Tully plots is also@n by Burgess et al5].
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45.1 Callison Strength

In the previous sections we have discussed several metbhaddculate electron-impact exci-

tation and ionization cross-sections. For example let usider the reaction

X7 () + e(e:) — XF7(E)) + e(ej) (4.55)

with

e, + FE; = €5 + Ej (4.56)

WhereE; is the energy of the initial level of the iaK *Z, and E; is the energy of the excited
level. The energy of the incident (scattered) electromnvsmgbye; (¢;). The reaction is described as
a cross-section as a function of the incident electron grieyar;_,;(¢;). By energy concepts the
electron-impact excitation can only occur if the incideletéron energy is; > AFE;; = E;—E;.

It is convenient to introduce the threshold parameter= ¢;/AE;;, with X € [1,00]. The
cross-section can therefore be expressed in terms of tigeirtcelectron energy;, the scattered
electron energy ;, or the threshold parametéf. In the literature, in preference to the cross-section
oi—j(e;) itis usual to give the collision strengfl;; since is a dimension-less quantity, and is also
symmetrical between the initial and final stateg. It is also a slowly varying quantity with respect
to the incident electron energy. The excitation crossiseet; . ;(e;), de-excitation cross-section

oj—i(e;), and collision strengtl®;;, are connected by the following relations

Qs = wi(Ei —Ei)oinj(ei — Bi) _ w; (i — Ej) 0j—ilei — Ej) _ Qi (@457)
I wa? I wa?
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The atomic unit of cross-sectionisa? = 8.7972x 10~17 cm?. w; andw; are the statistical

weights of the initial and final levels, agy; = 13.6058 eV.

It is shown by Burgess et al5] that the collision strengths behave like

Type-1 Electric Dipole (ED) Q;; ~ constln(e;)
Type-2 Non-ED, No Spin Change2;; ~ const.

Type-3  Spin Change Q;; ~ conste;?

45.2 Effective Collision Strength

As seen in sectio.2, for our collisional-radiative model we make use of the &t@ac colli-
sional excitation/de-excitatiorqf_)j/q;_)i) rate coefficients, which by assuming\daxzwellian

electron distribution are given by

3/2 oo
m g;
qs_,;(Te) :47r< e ) /0 'u,,;exp(— k_i;(i)aiﬁj(gi)vfdvi (4.58)

The relation between the excitation/de-excitation ratffements is given by

e = q¢ (:—Z> exp < — Akf“j) (4.59)

We now transform fromv; to e, wheree; is the colliding electron kinetic energy after excita-

tion has occurred, and rewrite equati@nsg) as follows

q',;e_,j (Te) - 2\/F

a h (IH >1/2 exp ( _ AE;;

o P )rij (4.60)
e e

MmeWws;
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whereY;; is the effective collision strengths which is defined as

Tz’j = /Ooo Qij exp ( — ks';;e>d<k€;;e> (4.61)

The advantage of using effective collision strengths oat coefficients is that they vary very
slowly with respect to electron temperature. This simifseir need of having a lot of data stored

since we only need a few points and the rest can be intergolate

Type-1 Y;; ~ constIn(T,)
Type-2 Y;; ~ const.
Type-3 Y;; ~ const.T.*!

ADAS [11] computes effective collision strengths from aRrMatrix collision strength data
via convolution with aM axzwellian electron distribution. The data is stored in a default tempe
ature grid in an adf04 file. In order to show the effective is@h strengths from threshold to the
infinite energy point on a single plot, we make use of the BssgRully plots p]. The transforma-

tions introduce an adjustable paramefér Again thex is defined to be zero whef, = 0, and

unity whenT, = oo.
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These transformations are defined as

For Type 1

For Type 2

(2%)
(a%; +©)

y(z) = Yij

For Type 3

_ (%)
(a8; +©)

y(x) = <Ak£; + 1>Tij
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CHAPTERS

EXPERIMENTAL SETUP

5.1 Introduction

The Auburn Steady § ate ResearchAciLity ASTRAL is a helicon device that can generate
intense Ar and Ne plasma columns. It has also been used witnHIE€GQ,. ASTRAL Ar and Ne

typical plasma parameters are

e N.=10"1-108 cm—3

e T,=2-15eV

® Byicq =200 - 1300 Gauss

¢ RFpower S 2 KWatt

The helicon plasma source is a very efficient method for geimgy high density plasmas using

radio waves. Helicon sources can be very useful for basenmastudies because there is no large
electric current running through the plasma that can didgue phenomenon we are trying to study,

and also the antenna is outside the plasma, thus avoiditfgefurontamination to the plasma and

damage to the antenna by sputtering.
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Figure 5.1: The ASTRAL helicon plasma source.

Figure5.1 shows the ASTRAL laboratory. In the ASTRAL experiment at AubUniversity
we carry on experiments with a main focus on measurementseatral-line emission of plasmas
at different conditions. We measure plasma densities anddeatures with the use of two RF com-
pensatedlangmuir probes. These measurements form the benchmark in whichnvease our
collisional-radiative model in order to generate reliatda-invasive methods for plasma diagnostic

based on spectral emission.
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ASTRAL generates intense Ar (see fig&r@), and Ne (see figurg.3) plasmas.

Figure 5.2: Ar plasma in ASTRAL (Blue core with purple edge).

Figure 5.3: Ne plasma in ASTRAL (Yellow core with red/oraregine).
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5.2 Experimental Setup

ASTRAL HELICON
PLASMA SOURCE — |

10 TR

] [sa] e =1 X =

2.3 meters -

Figure 5.4: Schematic upper view of the ASTRAL helicon plasource (not to scale).

Figure5.4 shows the ASTRAL experimental setup, where 1. End viewgriGas Inlet, 3.
Glass section (Vacuum Chamber), 4. Plasma column, 5. Bredthelix antenna, 6. Magnetic
field coils, 7. SS section (Vacuum Chamber), 8. Light coiltetbptics (LIF and spectrometer), 9.
Spectrometer (Monochromator and CCD camera), 10. Dioderlld§ system, 11. Top viewport,
12. Retractable RF compensattdngmuir Probe, 13. Large viewport, 14. Toward the pumping

station.
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ASTRAL is a 2.5 m long helicon plasma source divided by a 0.@nglglass section, which
has the water cooled helix copper antenna wrapped arourabfdecRF radiation into the plasma,
and a metal section with ports distributed along its lengthdiagnostics. The vacuum system
consists of a turbo-molecular drag pump with a pumping sp#et¢D01/s. The base pressure
in the system is 5.0< 108 Torr. We introduce gas into the vacuum chamber by means of two
flow controllers mounted in a flange at one of the ends of thécdevlhese flow controllers also
allow us to experiment with controlled gas mixtures. Therapieg gas pressure ranges from 0.5
to 50.0 mTorr. The steady-state axial magnetic field rangea D to 1300 Gauss, and is generated
by seven magnetic coils. The power amplifier can supply up k&/2of RF power to the plasma
and is coupled to the antenna through a capacitance matchigwit. The RF signal is provided
by a function generator with a 3 to 30 MHz frequency range. \&eehchosen to tune up the
RF frequency to 11.5 MHz since the RF power amplifier obtaige@d performance around that
frequency. The plasma parameters of density and temperadéur be changed by varying the RF
power, gas pressure, magnetic field intensity, and RF freguéASTRAL counts with a number of
diagnostics. These computerized diagnostics includeic@lEmission Spectroscopy, two radially
scanning RF compensatdehngmuir Probes, and a Laser Induced Fluorescence diagnostic. In

this chapter we will focus in the spectrometer system andiiliegmuir probes.
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5.3 Langmuir Probe Settings

RF compensated Langmuir Probe with manual linear motion

3

4 % 6
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=

]
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1) Vacuum chamber, 2) Plasma, 3) Probe tip (W), 4) Compresed
Bellows, 5) Cross, 6) 67 linear motion, 7) BNC electrical
feedthrough, 8) Keithley 2400 Sourcemeter, 9) GPIB card, 10)
Computer, 11) Dummy tip, 12) Capacitor (5 nF), 13) Ceramic
cover, 14) 5 inductors ( 10 yH < L = 270 xH).

Figure 5.5:Langmuir probe settings in ASTRAL.

Figure5.5 shows the schematic diagram of the two RF compenshtedgmuir probes as
setup in ASTRAL. Each of the probes consists on two tips. Ahgd is exposed to the plasma to
perform the measurements, and a dummy tip that is used fooRIBensation inside of the ceramic
cover. Each one of them also includes a manual linear motistes to adjust the position of
the probes. This motion capability enable us to make meamnts of temperatures and densities
at different locations along the inner diameter of the vacwhamber. This help us to map the
temperature and density profiles which, as we will show irptrb, are necessary for a successful

spectral emission modeling.

70



Figure5.6 shows a picture of th&angmuir probe inside the vacuum chamber (small tip at

3:00 o’clock) during an Ar plasma run.

Figure 5.6:Langmuir probe inside of ASTRAL (Ar plasma run).

Of all the different plasma diagnostics, thangmuir probe is probably the simplest, since it
consists of sticking a wire into the plasma and measuringuhent to it at various applied voltages.
However, it is an intrusive method which could affect ourspfiea conditions to a certain extent. The
probe tip must be carefully designed to not interfere mudh thie plasma, nor to be destroyed by
it. For this reason we use tungsten in order to withstand &a¢ &nd to reduce sputtering created
by the ion collisions against the material. The interpretabf the current-voltage curves could
be difficult. In this section we give a basic overview of theangmuir probe theory applied to

plasma diagnostics.
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The Langmuir probe is inserted into the plasma and biased with a vol¥agand the cur-
rent1 is then measured as a function of the biased voltage. Whendlsured current in the probe
goes to zero at a certain value of the potential, we name fldlaéng potentialVy. Typically the
floating potential has a negative value (see figui® caused by the differences between the mobil-
ity of electrons and ions. Let the plasma potentiaMpge whenV > V,,, an electron currenk, is
collected, and the probe current is negative. Wkens> V,, we then reach the electron saturation
current valuel.;. WhenV' < V;,, and ion currenf; is collected, and the probe current is positive.
WhenV < V,, we then reach the ion saturation currdgy. It is customary to plof vs V' curves

with I.s positive andl;s negative. Figurd.7 shows such plot.

Figure 5.7: Typicall vsV plot in a Langmuir probe.
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As shown in figureb.7, at the far left where all the electrons have been repellethave the
ion-saturation current;, this is the region where the probe is most exposed to ion bodntent.
In order to minimize sputtering damage into the probe we mades of a tungsten tip, this will
increase the lifetime of the probe and also will reduce thewarof contaminants introduced into
the plasma caused by sputtering. The floating poteMfjais where the ions and electron currents
are equal and the net current is zero. When we introduce dyhgisitive voltage all the ions are
repelled and we get the electron saturation curfgpt This region is very dangerous to the probe
since even though we use a tip made of tungsten, these higintziicould melt the already hot
probe exposed to the plasma. In the transition region, theuorent is negligible and the electrons
are partially repelled by the negative potenfial— V,,. WhenV reachesV,, all the random flux
of electrons is collected. From tilevs V' curve, the electron density,., electron temperaturé,,
and plasma potentidl}, can be determinedf]. The exponential part of thé vs V' curve, when

plotted semi-logarithmically it should be a straight lifi¢ghie electrons ardZ axwellian [30]

I, = I exp[e(V - VP)/KTe] (51)
where
v KT, \'/?
I.s =encAp— = eneAp<7> (5.2)
4 2TMe

A, is the exposed area of the probe tip. H€gg is the electron-saturation current, or random
thermal current to a surface ®,. Equation §.1) shows the slope dfn I vs V' curve is exactly

1/KT, and is a good measure of the electron temperature.
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As long as the electrons ald axwellian, the electron energy distribution function (EEDF)

at a potentiaV < 0 is proportional to

f(’U) o e—(1/2mvz+eV)/KTe — e—e|V|/KTee—(m'v2/2KTe) (5.3)

We see thatf (v) is still Maxwellian at the samél,, only the density is decreased by
exp(—e|V|/KT.). Thus, the slope of the semi-log curve is independent of thegyarea or
shape, and independent of collisions, since these meresepre theM axwellian distribution.

By assuming aM axwellian distribution of the plasma3[l], the current in the probe for the

transition region is given by

(V) = A (KT6>1/2 ( i >1/2 <6V> As ( 1) (5.4)
= Necoc€Ap o y— exp KT, A, exp 5 .

whereV is the applied voltagen . is the electron density far away from the probe (which
we want to determinek is the electron chargd., is the electron temperature (which we also want
to determine),A,, is the surface area of the probe, aAd is the area of the sheath formed around
the probe. The sheath is formed by ions thatbye shield the potential applied to the plasma, and
it is usually a fewDebye lengths tick. Since we can measure the slope of the expetainEus V'

curve (see figur®.7), we can linearize equatios.d) by usingexp(x) = 1+ « which is valid for

Vi SV S V. Therefore we get

o (52 ) oo ] e (1)) 0
~ TreocCLlp m; 2TMe KT, A, P 2 '
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by using equation.2) we rewrite equationd.5) in its final linear form

I(V) =1, < © >V—|—I 1 < i >_1/2As ( 1> (5.6)
e KT, 8 27TMe Ay exp 2 ’

With this linearization we can identify the value of the sapf the line, therefore by making it

equal to our experimental value obtained from Ye's I plot (see figuré.7) we get

dI(V) _ eles

(5.7)
av KT,

By solving equationg.7) we can now obtain the electron temperature which is given by

el.s

K(4v)

T, =~ (5.8)

As we can see the temperature is obtained by the experimaetsurements of the slope of
the V' vs I curve in the linear region, and the electron saturationeturf.s. Even though this
method seems to be simple, it presents some practical pnebléAs we pointed out early, the
electron saturation current is typically higher than the saturation currenf;s [32]. Since the
helicon device generates dense plasmas we run the risk wéingdthe lifetime or destroying the
probe by exposing it to higher currents and melting it. Tfereewe use another approacdi] to
obtain the electron temperature by measuring the ion sataoreurrentl;, instead of the electron
saturation currenl.g, since the tip can handle better the ion bombardment thahigfreelectron

current.
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The approach given by Hutchinso81], consists in using the derivative of the current with

respect to the voltage which is given by

I e (-1 )+d11-s (5.9)
dv =~ KT, b dv '
where
KTB 1/2
I;s = 0.6leneooAp< > (5.10)
my;

anddlI;s/dV has arise froml As/dV [31]. By getting the experimental measurements from

the V' vs I plot for the ion saturation curredt in a region wherell,;s/dV = 0 we get

e(I — I,s)

(5.11)
K(g)

T, ~

Having found the value for the electron temperatilizg we now use equatiorb(10 to solve

for the electron density,.. Therefore we get

L (KTe>_1/2 (5.12)
_0.616Ap m; '

Ne
As we can see, the success of the determination of the etetdroperatures and densities
by Langmuir probe measurements rely on the measurement of the slope im#ar region
that we have undertaken. In order for this approximationeovélid we have assumed that the
velocity distribution of the electrons BZ axwellian. Most important of all is the quality of our

measurements for different plasma conditions.
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We have found that for most of our measurements we have haabke gilasma that give
us a well behaved linear measurement of Wess I plots, making this approximation valid for
our purposes. By changing the plasma parameters we caratggertain unstable and undesirable
conditions which we want to avoid. This can be fix by adjussegeral parameters like the magnetic
field, the gas pressure, or the RF power. Thess I plot given by theLangmuir probe gives
a good measurement of the stability of the plasma conditibtise plasma is unstable we will get
a noisy curve as a result. We then disregard the measurear@hiproceed to adjust the plasma

conditions to obtain a smoof¥f vs I plot, giving as a result a reliablE, andn,. measurements.

5.4 Spectrometer

In this section we present a general overview of the spemipyssystem in ASTRAL. A com-

prehensive view of the whole system is given by Boia8][

--_'_‘—-—.__‘____-__ i-l'
e, — ; s ;i_J ‘

Figure 5.8: McPherson Model 218 Spectrometer.
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The spectrometer on ASTRAL consists on a McPher8dihlodel 218 (see figur®.8), 0.3
Meter, Plane Grating Scanning Monochromator, and a CCD ami¢h a wavelength range from

250 nm to 1100 nm. Tablg.1gives the parameters for the McPherson Model 218 Spectesmet

n(grating groove density) 1200 gr/mm given
F(focal length) 300 nm B85 with camera)| given
f-number 5.3 (small grating) given
D(dispersion) 2.6 nm/mm given

G a(grating area) 50 x 50 mn? given
h(slit height) 4.0 mm chosen
Ax(slit width) 0.01 nm chosen
Q(solid angle) 2.77x 1072 str calculated

Table 5.1: Specifications for the McPherson scanning maoocétor model 218.

The wavelength in the monochromator is selected electatipiby means of a McPherson
Model 789A-3 Digital Scan Control and Motor Driver (see figir9), which controls a stepping

motor with a close-loop feedback by means of an optical esicod

—

MOooEy
en TBUA .-y

HTHI:I-LLEH L

Figure 5.9: McPherson Model 789A-3 Digital Scan Control.
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The monochromator system for the Model 218 consists on afeat€'riss — Cross (U.S.

Pat. 3433557) optical design as shown by figbtE

~_ FOCUSSING ENTRANCE SLIT
E = MIRROR s/ A
T e —_—
. ~—~——
™~ B 2
D
GRATING }
NF 22°
C \\‘/
COLLIMATING ENTRANCE BEAM oD
MIRROR —— —EXIT BEAM CAMERA

Figure 5.10: Monochromator optical set-up.

The illumination sourceA), is aimed at an entrance sliB]. The amount of energy available

for use depends on the intensity of the source in the slit. slihés placed at the effective focus

of the parabolic mirror (the collimata®’), so that the light from the slit reflected from the mirror

is collimated. The collimated light is then refracted by trating (D), and then is collected by

another mirror (focusing mirroE) which refocuses the light (now dispersed) on to the the CCD

camera F). The spectroscopy system in ASTRAL measures number oftsowith respect to

wavelength. Therefore we must compensate for wavelengtie she whole system includes the

optics, fiver optics, monochromator, and CCD camera. Thailddtcompensations (wavelength

and intensity) is given by Boivin33].
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A simple procedure that we have used for the wavelength rediliim and compensation is

found in appendiB.

5.5 DataProcessing

The spectroscopy data is acquired by a CCD camera model SRi#5R024 pixels, giving
a 1024 pixel per spectral window resolution. Each window &agidth between 37.4 and 49.5
nm (depending on the spectral region), giving a resolutio.@365 to 0.0483 nm per pixel. The
monochromator and camera are controlled by the KestrelSgfegare B5], and by the McPherson
789A-3 control interface. KestrelSpec has the capabilitgralyzing the acquired spectral data by
integrating the area under the curve for each spectral fhcis, giving us the integrated line inten-
sity. Figure5.11shows an example of the 650 nm spectral region as visualizélaebKestrelSpec

software B5| taken from a Ne plasma run.

730207 -
3. DATAD4E V= R9ERTT
H=447 #3
<B40.65 nm
452742 4
[ia)
l_
=
=
I
I
235278 4
12187

F21.47 F32.E0 B43 BE B54 B0 BES. 42
WAVELENGTH nm

Figure 5.11: Measured spectrum of Ne on the 650 nm region.
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In order to analyze the whole data, it is necessary to cdktites line intensity by integrating
under each spectral pick. Also we get a different specttahgity every time we change the plasma
conditions. The KestrelSpe8%| software manually allow us to perform these integrals dad &
subtract the noise level. We would also have to sort all thta dnanually as a function of density
and temperature. The problem of performing all these tasksuailly, is that first we have to give
the limits of integration for each spectral pick to the Kekpec software, and then perform the
integrals and noise subtraction. We have hundreds or thdasaf picks to be analyzed for dif-
ferent spectral windows, therefore this process could taksiderable amount of time. We would
also have to manually compensate each spectral pick witles{sective wavelength (as shown in
appendixB), thus making the process of analysis even more time comgurim order to make this
process more efficient, we have developed two differentdortodes. The SPECTRUM code per-
forms the process of wavelength compensation, integradiath noise subtraction for each specified
spectral pick. The DENS program sorts the processed datatiie SPECTRUM code as func-
tion of densities and temperatures, and returns outputddetaining the line intensity integrals for
each spectral pick on the same temperature grid. This enalie get experimental intensity line
ratios between different spectral picks. The SPECTRUM jnogperforms the wavelength cali-
bration by using a fit for equatioB(5), and performs the integration process by the use of a simple
Simpson’s rule of integration. The limits of integration for eachespral pick are determined by
the program by finding minimums using the values of the davea at the edge of each picks. The

program uses those same values to perform the noise sidrtract
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In order to run the SPECTRUM program we need to create a nstmatiut file for the code
which contains relevant information about each experialestiot. Figures.12shows an example

of the namelist input file for the SPECTRUM program.

File Edit Search Preferences Shell Macro  Windows Help
Bin A
rwindows = 2
npixels = 1024
npicks = &
nTe = 10
exptime = 10,0
int = 'calibrated’
noize = ‘on'
xpos = BO,0 B
B0.0 E
Bfield = 0,4

0,0 B
0.0 B
0.4 0

40

Me = 1,306478e+13 3,336773e+12 8,631441e+12 53,509226e+12 £,735197e+12
3,7596800e+12 3,970900e+12 4,421082e+12 4,654343e+12 4, 74507 7e+12
Te = 2,846696 2,825153 2,813333 2,903187 3,123361
2.893870 3,133502 3,445295 3,372218 2,387873
picks = 894,96 857,53 853,60 864,05 566.04

filepath = "'

filenamein(1,1) = 'B7%9a,txt’
filenamein(2,1) = '875h,txt’
filenamein(3,1) = '875c,txt’
filenamein(4,1) = '875d.txt’
filenamein(5,1) = '875e.txt’
Filenamein(B,1) = 'B7GF, L=t
filenamein(7.1) = 'B79g,txt’
filenamein(8.1) = 'B7%h,txt’
filenamein(d,1) = '875i,txt’
filenamein{10,1) = '875j,txt"
filenamein(l,2) = '925a,txt’
Filenamein(2,.2) = '92Gh,txt'
Filenamein(3,2) = '920c, txt'
filenamein(4,2) = '920d,txt’
filenamein(5,2) = '925e,txt’
filenamein(f,2) = '925f,txt’
filenamein(¥,2) = '925g.txt’
Filenamein(8,2) = '928h,txt’
Filenamein({9,.2) = '920i,t=t’
filenamein{10,2) = '925j,txt’
Jrend

=~ =

Figure 5.12: Namelist input file (spectrum.in) for the pragrspectrum.x.
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As shown in figurés.12we need a good number of input variables in order to run thgraro,
the good news is that we have to create only one file, and abttiers are pretty much the same
except for a few different namelist input variables like paratures, densities, and so on. Thl2

gives a description of the different namelist input vargshihe program needs.

nwindows | Number of spectral windows.

npixels Number of pixels.

npicks Number of picks to be integrated.

nTe Number of temperatures and densities.
exptime Exposure time of the monochromator (sec).

int Integration wavelength calibration (calibrated/uncatbd).
noise Noise subtraction (on/off).

Xpos Position of theLangmuir probe.

Bfield Magnetic field current (ASTRAL ammeter).

Ne Electron density (cm3).

Te Electron temperature (eV).

picks Wavelengths of the picks to be integrated.
filepath File path location of the spectroscopy data files.
filenamein| Names of the spectroscopy data files.

Table 5.2: Description of the namelist input file for the SHIRTUM program.

We see that the SPECTRUM program also reads the text filesdhgdin all the spectroscopy
data with their respective wavelengths. The program Ki&tex B5] allows us to export the spec-
troscopy data for any spectral window into a text file form@tie data file simply contains the

wavelengths (or pixel number) on the first column, and thebmemof counts in the second column.
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In our example given by figurs.12 we have named our files 875a.txt, 875b.txt, and so on
in order to be more descriptive. The 875a.txt file contaires gdpectroscopy data for the spectral
window centered at 875.00 nm, the letter that follows regmésthe temperature and density mea-
sured for that specific file. 875a.txt corresponds to the fimstperature and density set, 875b.txt
corresponds to the second one, and so on. Figuréshows an example of the spectroscopy data

file 875a.txt that KestrelSpec gives.

File Edit Search Preferences
Shell HMacro  Windows Help

851,46 1157 -
851.50 1134

851,54 1090
251,58 991
251,62 1020
851,66 1150
851,69 1002
851,73 1017
851,77 1113
851,81 1105
851,85 1035
851.89 1142
851.93 1103
851,97 1101
252,01 1139
252,04 1079
852,08 1111
852,12 1293
852,16 1154
852,20 1064
852,24 956
852,28 938
852,32 1065
852.36 993
852.40 1015
852.43 931

~d Ii=

Figure 5.13: Input data file (in this case 875a.txt) for thegpam spectrum.x.

Having all our spectroscopy data and our namelist input, filessare ready to run the program.
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The SPECTRUM program exits the processed data in an outpufifiiensity.out), this file
contains the temperatures, densities, and the line ityeinségrals for the specified spectral picks

given in the namelist input file. Figue14shows an example of the intensity.out file.

File Edit Search Preferences Shell Macro  Windows Help |
BMe Ave = B.801533E+12 (cn™-3) nle = 10 int = calibrated A1
#Helen™-3) Telek) 854,96 857,53 859,60 864,05 866.04
1.206470E+13 2,846696 0,012231 0,022826 0,292397 0,241874 0.584334
9,296779E+12 2,825153 0007570 0,014434 0, 220767 0,174560 0,436161
8,691441E+12 2,819329 0,002595 0,002319 0, 210524 0,162646 0,415755
8,003226E+12 2,903187 0,007304 0,0166E9 0,232589 0,130468 0, 442022
B, 795197E+12 3,129861 0, 000267 0, 006394 0,176303 0,143434 0,200548
3, 796B00E+12 2,893870 0,010367 0,016471 0,261474 0,272786 0,0517247
3,978905E+12 3,133502 0,003113 0, 012580 0228131 0, 224006 0,446519
4,421082E+12 3,445295 0,002799 0, 00B57E 0,155246 0,138762 0, 305106
4,B54343E+12 3,372218 0, 004436 0,015421 0,138527 0,127971 0,271909 i
=l N

Figure 5.14: Output file (intensity.out) from the progranesipum.x.

As shown in figures.14 the intensity.out file contains the different densitiestloa first col-
umn, the temperatures on the second column, and the intdingitintegrals for each spectral pick
wavelength with their respective density and temperatiitee file also gives on the first row the
average density and the number of temperatures in the fileold already use this data and make
a plot of temperature versus integrated line intensity. diig limitation with this data file is that it
only contains the data from the specified experimental riis.desired to obtain a file that contains
the sorted data for all the experimental runs. For this psgpee developed the DENS code that
takes care of sorting all the processed data automatigalling us this way several output files

containing different averaged densities.
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The DENS code also requires a namelist input file (dens.at)gpecifies the number and path
locations for the different intensity.out files (see figd:d¢4) to be read and sort. It also contains
the percent difference limit for sorting the different digies. Figure5.15shows an example of the

dens.in namelist input file.

File Edit GSearch Preferences Shell Hacro  Windows Help
&in A
ndir = 12

dirtame = ', AANe012108° ', ANe012508° ', AANe020108" ', L A1Ne020408 "
L AIHe020B0R ', AANSOZOB08" ', AANe021308" 1, AINe021808"
CLAIHe0Z20080 L AANe0Z2E3080 L L AINe0Z22F08" L AINe022308 !
deng = 0,12

&en

= 1=

Figure 5.15: Namelist input file (dens.in) for the programsig.

Table5.3 gives the description of the namelist input file for the DENSgoam.

ndir Number of directories that contain the intensity.out files.
dirname| Path locations of the intensity.out files.
densp | Density percentage difference for sorting the data.

Table 5.3: Description of the namelist input file for the DEpI8gram.

In the example given in figur6.15 we have a total of twelve directories where the DENS
program will locate and read the intensity.out files giventhiy SPECTRUM program. We have
named the directories by the date the experiment was pesthrand we have also set the value of
the percentage of the densitiesi®%. The DENS program gives several output files named by the

average density of the data contained in each file.
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Figure5.16 shows the output file Ne8.47E12.dat, which means that thsitges centered to

the average value of 8.4% 10'2 cm™—3, and the data that is contained is withif12% of that

density.

File Edit Search Preferences Shell Macro  Windows Help
#Nelon™-3) TeleW) 854,96 857,53 859,60 864,05 566,04 Al
9.396779E+12 2.825153 0,007570 0,014434 0, 220767 0,174560 0,436161
8.691441E+12 2.819333 0,002593 0,002313 0,210524 0,162646 0,415755
8.509226E+12 2.903187 0,007354 0,016663 0,233533 0,130465 0,442022
8.814332E+12 2.844345 0,003510 0,026216 0,302408 0,231451 0.534371
7.830027E+12 2.830377 0,003441 0,025273 0,293370 0,236134 0.562440
7.018341E+12 2.694243 0,000812 0, 002633 0,123434 0,101363 0,226383
7. F7BEOGE+12 2.614343 0,001635 0,006293 0,103332 0,036353 0,218307
9.528066E+12 3.291693 0,010283 0, 006330 0, 257063 0,204034 0,477681
7.892724E+12 2.861424 0.,000000 0016725 0, 203825 0,163333 0,418342
7.460198E+12 2.913383 0,000000 0,003166 0,196332 0,167404 0,391827
8.470932E+12

#
- ]

Figure 5.16: Output file (in this case Ne8.47E12.dat) forttagram dens.x.

As we see in the example given in figusel§ the output file for the DENS code gives simply
a column for the densities, a column for the temperatures,sameral columns for the sorted line
intensity integrals for different spectral picks. Thisrfat allow us to graph and analyze the data in
excell or in any other package of our choice. We have usee fwegyrams in the analysis of some

of the Ar data given in chapté;, and the Ne data given in chapgr
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CHAPTER 6

ART MODELING AND EXPERIMENT
6.1 Introduction

Argon is of current interest in fusion TOKAMAK studies as &sjes useful for radiative cool-
ing of the divertor region and for disruption mitigatioBq. It has also proven useful as a spectral
diagnostic B7, 10]. The aim of this chapter is to model Ar Il emission from ASTRA he accu-
racy of the modeling depends strongly on the quality of theéeulying atomic data. A secondary
aim is to determine if the Ar emission from ASTRAL can be usetest the atomic physics data in
our collisional-radiative model. In particular, it woul@ luseful to test recent DR data for the low
charge states of argon. Loch et &8 found that when new ionization and recombination data was
used for the near neutral argon ion stages there was a shifeitemperature at which Arwas
expected to be seen. It should be possible to see this exgaaity. Griffin et al. f] found signif-
icant differences in At excitation cross-sections when continuum coupling effeatre included.

If this could be verified indirectly through spectral measuents it would be the first experimental

observation of continuum coupling effects.

Helicon sources have been used to study high density plasoraes B9, 40|, as well as
applications in space plasma propulsi@i][ and in many other applications in studies of basic
plasma physics and plasma wall interactiofig [ Argon spectra have been used with some success
as spectral diagnostics. For high temperature plasmasidHike lines have been used as electron
temperature and density diagnosti@§][ Ar Il forbidden line spectra have been used as electron

temperature and density diagnostics of planetary nelidla [
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Much work has been done improving the atomic data availaieifgon. The Dielectronic
Recombination project (DR projecttd]) has calculated DR for all ion stages from Na-like Ar
through to H-like Ar B#3]. Much DR work has also been done by GM] for the same ion stages.
Loch et al. B8] calculated Configuration Average Distorted Wave (CADW) Bé&a for the lower
ion stages of Ar. This data was found to effect the tempegatat which these low charge states
were abundant. Distorted Wave ionization data has beenlagd for Art through to AL+ [3§]
obtaining reasonable agreement with experimental iopizaiross-sections. For the neutral ion
stage RMPS excitation data was calculated by Griffin et4d], and found to be in good agreement
with experiment. For At the non-pseudo-statd®-Matrix excitation data of Griffin et al.47] was
recently updated with RMPS excitation da [Thus, we seek to test the new low charge state DR

data of Loch et al.38], and the new excitation data of GriffiB][

6.2 Atomic Data

The atomic data used in our modeling work came from a variétyoarces. The electron
impact ionization and recombination data is taken from Leical. [38]. lonization of neutral argon
consists of RMPS datd$]. Data for the higher ion stages comes from Distorted Walautztions.
The radiative-recombination data was taken from the worBadnell B6]. For Aré+ through to
Arl7+ the DR data was taken from the work of the DR projet8][ For DR data of neutral Ar
through to AP Configuration Average Distorted Wave (CADW) DR data was useah Loch et
al. [38]. We will compare the results of our new data set with thogeguthe existing data in the

ADAS [11] database. Tablé.1gives a summary of our atomic data for the first three ion stafe

argon.
Process Old Data New Data
Dielectronic Semi-empirical> Aré+ | CADW > Ar6+
Recombination DW > Ar6+ DW > Ar6+
lonization Distorted Wave for all | RMPS for Ar [2]
Excitation of Art R-Matrix [5] RMPS [4]
Excitation of AP+ PWB R-Matrix [6]

Table 6.1: Overview of atomic data.
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The electron-impact excitation data for Arconsists of the recent RMPS data of Griffin et
al. [6]. This replaces the previous non-pseudo-stdellatrix calculations of Griffin et al. 47].
The continuum coupling effects associated with pseude-$RaMatrix calculations was found to
be significant for Af (up to a 30% effect), and should have an effect on the Ar Il spkemission.
To the best of our knowledge these effects on excitationsesestions have never been verified
experimentally. One of the aims of this chapter is to seedafdbntinuum coupling effects can be

tested using the spectral measurements from the ASTRAI@la®urce.

6.3 Collisional-Radiative Modeling and I onization Balance

To produce a modeled spectrum one needs to use the aforemeghtilata in a collisional-
radiative model. Our application of collisional-radiaitheory to the calculation of excited popu-
lations is based on the atomic data and analysis structub& %) package 1], and is described in
chapter2. Using the quasi-stable approximation we split the cataiaof the excited populations
into two points; an ionization balance calculation to wouk the ground and metastable populations
of each ion stage, and an excited level population calandtr the levels within a given ion stage.
To calculate the fractional abundance of the ground andstadikes within each ion stage we solve

equation 2.20.
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Figure6.1 shows the fractional abundances of Ar/Arand AP+ using the data currently in

ADAS [11] and our new atomic data set.
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Figure 6.1: The solid line shows our fractional abundancilte using the new ionization and
recombination data.

The differences in the dielectronic recombination datéhés main cause for the shift in the
expected abundances. The CADW DR rate coefficients of Lodl. e{38] are lower than the
semi-empirical data currently used in ADAS. The new RMPSzation data for neutral Ar also

contributes to the differences.
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Thus, the new atomic data predicts thattAshould have a peak abundance close to 2 eV with the
old data has it peaking at 2.5 eV. This should be observalerelicon plasma experiment via
the temperature onset of the Ar Il spectral emission lindsis Would be a very useful test of the
atomic data as no experimental measurement exist for DRéapen p-shell low charged states of

argon.

6.4 Emission Modeling

In order to accurately model the emission of Ar Il, we needdlzwate the intensity of each

spectral line which is given by

NAT+ N-AT+
= (x)—= (x)A;—dx (6.1)
Niot 7
O

Ii—’j NAr+

wherex is the position along the line of sight and the fractionalredance and excited popu-
lation fraction are functions of the line of sight througleititemperature and density dependence.
We can also see that we need to have an accurate value féifithetein’'s A coefficients that
we use. We rely on th&instein's Aji coefficients calculated by Griffinet al49] as part of
their RMPS calculation, and supplement these with NISTe&l@2] for a number of transitions.
We are aware that much of the NISTinstein’s A, coefficients of Ar Il have large uncertainties
with relative errors that can vary from 3% up to 75%, 100%, oren We are just including those
values around 10% uncertainty in our calculation to endwe@tcuracy of our model. Another very
important factor that plays a key role in our modeling is thewledge of the plasma density and
temperature profiles along the line of sight. As we see intgué6.1), knowledge of these profiles
is necessary for an accurate computation of the intensityurés6.2 and6.3 show the measured
electron temperature and density distributions in thecbaliplasma for conditions typical of our
Ar experiments as measured byLangmuir probe. The results have been normalized to allow
a generalGaussian distribution functions to be fitted that can then be used fr B, and N

conditions.
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Figure 6.2: Normalized electron density distribution gldhe diameter of the vacuum chamber in
ASTRAL .
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Figure 6.3: Normalized electron temperature distributitiomg the diameter of the vacuum chamber
in ASTRAL.
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It was found that & aussian distribution for the density, and a modifiédaussian distri-
bution for the temperature fitted the experimental data wexly as seen in figure8.2and6.3. The

equations for the fits are given by

_(z=1L/2)2
plx)=e 2 (6.2)
_(z—r/2)?
T(z)=(1—h)e 2T +h (6.3)

Whereh = 0.415,L = 15.24 cm,o, = 2.4 cm,or = 2.45 cm, ande is the position along
the diameter of the vacuum chamber. In our modeling we assu@eussian distribution based
on a temperature measured at a single point bylthegmuir probe. Along the line of sight the
fractional abundances are calculated for eAgly T, grid point. The excited populations are also

calculated for the same grid and the total intensity obthusng equationg.1).
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To get an idea for the likely of emission for different plasteenperatures, figuré.4 shows
the modeled contribution of the line of sight to the totaklintensity (i.e. the integrand of equation

6.1) as function of temperature.
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Figure 6.4: Contribution to the total intensity along threeliof sight as a function of central electron
temperature.

At low temperatures, most of the Ar Il emission originateanirthe center of the plasma column.
From temperatures of about 7 eV or higher one starts to sep i dine Ar Il emission coming
from the core. This is because of the drop intAabundances at these temperatures. By 10 eV core
temperature one would expect to see Ar Il emission mostlyiegrirom the cooler edges of the

plasma as a consequence of the temperature profile (see6i@ure

95



6.5 Metastable Lifetimes and Opacities

As shown in sectior2.4.2 the metastable lifetime can be estimated from equagd).(In our

case we consider Arto have no metastables but the ground, and tRg(3p) term to contain most

of the Art population. We evaluated the expected lifetimes of the aesited term 3s3p(2S) for

different temperatures and an electron density dfifn—3. We have assumed th@ ~ %Te.

We also show the distance that artAion in the 3s3p (2S) state would travel before decaying, to

get an indication of the likelihood of this excited term lzpimetastable and undergoing a collision

with the wall before reaching equilibrium with the groundible6.2 shows these results.

T. (eV) | Rad-Lifetime(Sec.) Collsn-Lifetime(Sec.)| Tot-Lifetime(Sec.)| Trav-Dist.(cm)
0.3447 | 8.4746x 1073 2.2819x 10t2 8.4743x 1073 0.0004
0.6894 | 8.4746x 1073 2.0645x 1012 8.4742x 1073 0.0006
1.7235| 8.4746x 103 5.1544x 10+ 8.4732x 1073 0.0009
3.4471 | 8.4746x 1073 3.0906x 10+t 8.4723x 1073 0.0013
6.8942 | 8.4746x 1073 3.0233x 10+ 8.4722x 1073 0.0019
17.2354| 8.4746x 1073 4.3470x 10+ 8.4729x 1073 0.0030
34.4709| 8.4746x 1073 6.2275x 10t 8.4734x 1073 0.0042
68.9417| 8.4746x 1073 8.7049x 10+ 8.4738x 1073 0.0060

Table 6.2: Lifetimes of the Af ion for the 3s3p (2S) term with electron densitg, = 1012 cm—3.

As we see in tablé.2, the associated mean-free-path of the"Aon varies from 0.0004 to

0.006 cm, much less than the dimensions of our plasma coldimméter = 15.24 cm). Thus we

expect the quasi-static approximation to be good for our Arodeling.
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Figure6.5shows the traveled distance of the'Aions as a function of electron temperature.

Figure 6.5: Traveled distance of theAions as a function of electron temperature.

In order to calculate the opacity of our plasma column we maegeof the ADAS214 code and
assumed a parabolic density profile along the diameter ofdbaum chamber, and a cylindrical

geometry. We use. = 10'2 cm~3 as the typical value for our electron density.
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We computed the opacity for transitions from the followimgnis to the ground state. The

index numbers correspond to those used in our adf04 file.

1. 12222p83s23p° (2P) (Ground)

2. 12222p83s3 (2S)

3. 12222($323p*3d (D)

4. 12s*2p%3s23p*4s (P)

5. 1€2¢*2p%3s?3p*4s @P)

By running the ADAS214 code to compute the opacities fordhesnsitions, we found that
our observed spectral lines are optically thin, and only3p#s ¢P) transition to the ground is

moderately optically thick. Thus did not significantly affeur population modeling.
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6.6 Experimental Results

Measurements were taken across the whole spectral rang@&(®6 1100 nm), and 44 strong
lines were identified. From all of the observed lines we etéd integrated line intensities for a
selection that were unambiguously identified, were strarayugh to be observed, and most of them
had no obvious line blends. For the ones that were blendecdeladied the blending in our theo-
retical modeling in the integration proce$s1). The complete analysis of all the Ar spectral lines
will be published in a future paper. For this work we consideselection of strong lines for the
purpose of testing the ionization/recombination and akicih data in our model. Figu&6 shows

aGrotrian diagram of Ar- transitions and tablé.3shows a summary of the lines we considered.
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Figure 6.6:Grotrian diagram of Art.
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Thus, we will mostly be considering dipole transitions with spin system. In our search for
T, sensitive line ratios we investigated ratios of lines frdma two different spin systems. We also
suspected that ratios of the 347.67, 349.15, 351.44, an®@%n lines to the other lines may be

T. sensitive due to the high energy necessary to excite to th&d3pF), and 3g4d (*D) terms (see

figure6.6).

Wavelength (nm)  Upper level Lower level
347.67nm | 3p*4d (D5 2) | 30%4p (Ps/2)
349.15nm | 3p*4d (D 2) | 3p*4p (*P52)
351.44nm | 3p*4d (*Ds2) | 3p%4p (*Ps/2)
351.99 nm | 3p*4d (*Fs,s) | 3p*4p (*Ds 2)
354.56 nm | 3p*4d (Fs5/2) | 3p*4p (D3 2)
355.95nm | 3p*4d (Fr/2) | 3p*4p (Ds 2)
358.24nm | 3p*4d (*Fs/2) | 3p*4p (*Ds2)
465.79 nm | 3p*4p CPy ) | 3ptds CPys)
472.69 nm | 3p*4p (D3 /s) | 3ptds CPys)
473.59nm | 3p*dp (*P32) | 3pds (Ps2)
476.49 nm | 3p*4p Py ) | 3ptds CPy o)
480.60 nm | 3p*4p (*Ps/2) | 3pds (Ps2)
484.78 nm | 3p*p (*Py/2) | 3ptds (Ps2)
487.99 nm | 3p*4p (D5 5) | 3pds CPs2)
664.37 nm | 3p%4p (*Dy/2) | 3p*3d (*Fy2)
668.43nm | 3p*4p (*Ds/5) | 3p*3d (*Fr/2)

Table 6.3: Table of some of the extracted spectral lines.

Our RMPS excitation data is term resolved (LS), thus we flietked that the level populations
within a term are statistically populated. This is impotthacause we are using the (LS)-resolved

data of Griffin et al. §] and assuming statistically populated levels in our model.
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Figure 6.7 shows line ratios of transitions originating from diffetdevels with the same term. If
the levels are statistically populated, the ratio shoulédpgal to the ratio of statistical weights and
Einstein’s Aj coefficients. This expected value is also shown on the plitappears that
the assumption of statistically populated levels is vepsomable. The majority of the line ratios
that can be used to test the statistical distribution ofltevethin a term share a similar level of
agreement with the spectral ratio, however, we notice thateslines show deviations from the

expected statistical ratio.
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Figure 6.7: Intensity line ratio of 1(664.37)/1(668.43).

We next compared the experimental measurements using WhBRealata of Loch et al. 3§
and older data sets. In both data sets we used the most reldftfs Bxcitation data. Thus the only
difference in the two data sets is the ionization/recontimnadata used. Figure.8, 6.9, 6.10

6.11 and6.12show these results.
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The older data does not correctly predict the onset of Ar lissian, while the newest data
is in reasonable agreement with the measurements. We tloéittheG aussian distribution of
T and N, along the line of sight also has to be included. A homogengtasma model does not
reproduce the slope of the intensity at higher temperatlirean also be seen that there is a strong
scattering in the measured intensities. This is due totiamnigin N, for the different temperatures

measured.
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Figure 6.8: New ionization balance data gives good agreemiémthe experimental measurements
for all the different lines. The solid line shows the resulsing the new ionization balance data, the
dashed line shows the results by using the old ionizatioanua data.
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Figure 6.10: New ionization balance data gives good agraemih the experimental measure-
ments for all the different lines. The solid line shows thsults using the new ionization balance
data, the dashed line shows the results by using the oldatmizbalance data.
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Figure 6.12: New ionization balance data gives good agraemih the experimental measure-
ments for all the different lines. The solid line shows thsults using the new ionization balance
data, the dashed line shows the results by using the oldatmizbalance data.
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There is, in general, good agreement between the thedritieantensities and the experi-
mental measurements when the most recent atomic data is Vigedext looked at line ratios and
whether they could be used to test the RMPS excitation dataphdsent a selection of results us-
ing the RMPS andR-Matrix data while using the most recent ionization/recombon data. The
effects of the different excitation data sets become clte@nen we look at line ratios. Figuré&sl3
6.14 6.15 6.16 6.17, and6.18 show several of these line ratios. The new data producesrclos
agreement with the experimental measurements, thoughcéteeisin the experimental measure-
ments makes a definite conclusions difficult. The experialeneasurements are consistent with
the RMPS atomic data, and are in disagreement wittRHdatrix data. We believe that this is the

first experimental verification of continuum coupling effem electron-impact excitation data.
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Figure 6.13: Intensity line ratio of 1(487.99)/1(460.60yhe solid line shows the results using the
RMPS excitation data.
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Figure 6.14: Intensity line ratio of 1(465.79)/1(484.78)he solid line shows the results using the
RMPS excitation data.
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Figure 6.15: Intensity line ratio of 1(473.59)/1(487.99)he solid line shows the results using the
RMPS excitation data.
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Figure 6.16: Intensity line ratio of 1(472.69)/1(476.49)he solid line shows the results using the
RMPS excitation data.
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Figure 6.17: Intensity line ratio of 1(472.69)/1(480.60)he solid line shows the results using the
RMPS excitation data.
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Figure 6.18: Intensity line ratio of 1(484.78)/1(472.69)he solid line shows the results using the
RMPS excitation data.

As can be seen from figuig.6, the lines at 347.67, 349.15, and 351.44 nm originate from
levels that are higher in energy than the upper levels franrait of the observed transitions. This
has the potential to make line ratios of these lines to othsexved lines very temperature sensitive,
and more sensitive to continuum coupling effects (whickdafthe levels closest to the continuum

the most).
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We show some of these line ratios in figu&49and6.20. Figure6.19shows the ratio between
the 349.15 nm line and the 668.43 nm, and is clearly very teatpee sensitive. The line ratio
between the 354.55 nm and the 668.43 nm lines is shown in fij@@& and results in the most
significant differences between tlig-Matrix and the RMPS calculation, while also being sensitiv
to temperature. By examining ti@rotrian diagram in figureb.6, we notice that more energy
(from the ground 22)) is required to populate the upper levels*ad (*D7 ;) (22.77 eV) for the
349.15 nm line, and the 3gd (2F5/2) (23.26 eV) for the 354.55 nm line. The upper level for the
668.43 nm line is 3p4p (4D5/2) which has an energy from the ground of 19.55 eV. It is expkcte
that as temperature increases, the population of the uppelslof the 349.15 nm and the 354.55
nm lines to increase also. It is also expected that the 354n5%vill be the most sensitive since
is the one with highest energy level value from the two. By &t®king to the ionization balance
calculation shown in figuré.1, we conclude that most of the energetic electrons need itedxc

the 3pt4d (*D7/2), and 334d (3Fs /») levels must be coming from the tail of thel azwellian.

Figure6.19shows the experimental ratio between the 349.15 nm and $id&6m lines. We
can see that the experimental data lies closer to the nevdylated RMPS data by Griffin et al6].
This help us to show the first reliable experimental obs@wmaif continuum coupling effects in the
electron-impact excitation data, and it demonstrates ehahility of the newly calculated RMPS
data to model the emission of Arand its applications for plasma temperature line ratiormiatjcs.
Unfortunately we do not have good experimental data to coenpe 354.55 nm and the 668.43 nm
line ratio (see figur&.20. This ratio is even more sensitive to electron temperatame shows a
bigger difference between tife-Matrix and the RMPS data. Future line intensity experirakbdata

for this line ratio would be very useful.
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Figure 6.19: Intensity line ratio of 1(349.15)/1(668.43)he solid line shows the results using the
RMPS excitation data.
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Figure 6.20: Intensity line ratio of 1(354.55)/1(668.43)he solid line shows the results using the
RMPS excitation data.
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CHAPTER 7

AR?T MODELING [48]
7.1 Introduction

Argon is an important species for TOKAMAK studies, being disess a gas to radiatively
cool the divertor (see chapt&.1), and as a potential means of mitigating plasma disruptions
(Whyte et al. B6]). In particular, Ar Il lines have been shown to provide fudespectral diag-
nostics for astrophysical studies (Keenan and McCaoh Keenan and ConlordR)]). The 3€3p*
(*D2) — 323p* (3P1,2) and 383p* (1Sy) — 3s?3p* (1D2) transitions of Ar Il emit strongly
in planetary nebulae (Aller and KeyeS(]; Perez-Montero et al. §1]). Transitions within the
first 5 levels of AT have been shown to be very useful as spectral diagnostice. raftlo of
I(A7135A + AT751A)/I(A5192A) has been shown to be a good indicator of electron temper-
ature (De Robertis et al5]; Keenan and McCanrip)]), and the ratial (A7135A4) /I(A9um) is

density sensitive in the range2010® cm—3 (Keenan and Conlor4p)).

We see weak Ar lll spectral lines from the helicon source. E\mv, no accurate atomic data
existed for this ion, with previoug-Matrix calculations also being for forbidden transitiomghin
the 3¢ ground configuration7, 8]. This chapter describes nefR-Matrix excitation data that we
calculated as part of this work. The results for the tramsgiwithin the 3p ground configuration
are compared with the previoug-Matrix calculations, and the implications of our new data o

planetary nebula&, and N, diagnostics is discussed.
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There has been much recent interest in improving the atoat& available for the low ion
stages of argon, in particular for the excitation data teakeguired to model collision dominated
plasmas.R-Matrix with Pseudo-States (RMPS) electron-impact eXicitedata was recently calcu-
lated for neutral argon (Ballance and Griff3) and Art (Griffin et al. [54]). Madison et al. $5]
calculated electron-impact excitation from the?3d states of neutral argon using tifeMatrix
method, and two first order Distorted Wave methods. FdrtAdohnson and Kingstor7] calcu-
lated excitations within the configuration?®p* and 3s3p of Ar2* using theR-Matrix method.
Their results were generated in (LS) coupling and transéorto level-resolution using the JAJOM
(Saraph 9]) method. Later Galavis et al.8] also used theR-Matrix method to calculate level-
resolved excitations within the 33p* configuration as part of the IRON project. They used a large
configuration-interaction calculation to get the atomiasture, followed by a smaller collision cal-
culation. Burgess et al 5] pointed out that the 38p* (D) — 3s23p* (1S) quadrupole effective
collision strength of Galavis et alg8] did not appear to go to the expected high eneByyrn limit
point. Galavis et al. 6] then found that including more partial waves in the caltafafor this
transition increased the collision strength at higher gieer making it trend closer to the expected
limit point. Neither the Johnson and Kingstor] pr the Galavis et al.§] calculations include n=4

states in their target configurations.

The aim of this chapter is to use tifi&Matrix method to calculate electron-impact excitation of
Ar?t including excitation up to the 5s sub-shell. This shoulg@iiave upon the previouR-Matrix
calculations for the first nine levels of this ion by inclugimore resonance channels. It will also
provide accurate atomic data for the excited configuratiamsch have not been calculated before
using theR-Matrix method. With increased computational resourd@sgylatrix calculations have
developed from relatively small (LS) coupled calculatictaslarge calculations involving hundreds
of levels. In order to transform from (LS) coupling, the Imteediate Coupling Frame Transforma-
tion method (ICFT) was introduced by Griffin et ab7]. Level-resolved Breit-Pauli calculations
also became feasible because of large scale paralletizatithe codes, and were found to produce

very similar results to the ICFT method (see Griffin et al7]).
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The ICFT method is computationally less demanding as itiregthe diagonalization of (LS)-
resolved Hamsiltonians rather than (LSJ)-resolvefif amiltonians. As a large number of
levels are involved in our calculation resulting in thoudsiof transitions, we use the ICFT calcu-
lation as a consistency check on our Breit-Pauli calcutatid/e also notice that fully relativistic
Dirac R-Matrix calculations are also now possible for systemsliing hundred of levels (see
for example Ballance and GriffirbB]). We do not expect fully relativistic effects to be imparta

for Ar2+,

Coupling to the target continuum was found to be large foitna¢éargon excitation data, de-
creasing the collision strength by up to a factor of two ahbitreeionization threshold (see Ballance
and Griffin [53]). The effect was found to be smaller but still significant far* (see Griffin et
al. [54]), found up to 30% decrease in collision strength above @h&ation threshold. This was
shown in the previous chapter to have an observable effestpected line intensities in our helicon
plasma. We expect the effect to be small foRAr thus a non-pseudo stat&Matrix calculation
should be sufficient. However, we examined our collisiorrggth data above the ionization thresh-
old for evidence of an artificial rise in the collision stréimglue to continuum coupling effects being

omitted.

In this chapter we present results from thig@eMatrix calculations. We first compare an ICFT
and Breit-Pauli calculation as a check on our results. Therskhow results from a Breit-Pauli
calculation with the first 9 level energies shifted to NISP][energy values. This last calculation
will then be compared with literature values, and then discbe effect of the new data on diagnostic
line ratios. In the next section we will describe the theioedtmethods used. Sectiagh3 will then

show the results of the comparison between the differewirdtieal methods.
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7.2 Atomic Structure Calculation and Optimization

We use the AUTOSTRUCTURE (Badnef]) code, a many body Breit-Pauli structure pack-
age to calculate the structure of the target used in oursamilicalculations. The graphical interface
to AUTOSTRUCTURE GASP (Graphical Autostructure Packagjg, jwas used to run the AU-
TOSTRUCTURE code. We have included the following configorat in our calculation: $8p?,
3s3p, 3p°, 3p°3d, and 3%3p3nl (3d < nl < 5s). We found a significant improvement in the first
9 energy levels by including the 38d configuration. The average percentage difference witign
first 9 energy levels and those from NISZZ] was 11.16% by excluding the 38d configuration,
and 4.83% by including it in our structure. The same confitjoma were used in our scattering cal-
culation. Our structure was optimized by using the singuédine decomposition method discussed
in chapter3.4, to give best agreement with selected NIZ2][values for the level energies and line
strengths. The orbitals were determined by usiffeornas — Fermi — Dirac — Amaldi
(TFDA) (see chapteB.2) statistical potential in the AUTOSTRUCTURE calculatioe obtained
good results from the atomic structure optimization preaeish ax? = 4.13 before the optimiza-
tion, and ax? = 0.33 after the optimization, thus representing an improvemé&ad1% in our
x2 value. We found that this optimization method gave us bedults than AUTOSTRUCTURE’s
default optimization of minimization of energies, whiclveg ax? = 2.07. We also found better
average percentage difference within the first 9 energydewsd those from NIST. AUTOSTRUC-

TURE’s default optimization gives a 20.03% difference whulr optimization method gives 4.83%.
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7.2.1 R-Matrix Calculation

The scattering calculation was performed with our set chltelrR-Matrix programs (Mitnik et
al. [59]; Ballance and Griffin§Q]), which are extensively modified versions of the serial RNRAX
| programs of Berrington et al.6[l]. In our calculation we have employed both the Breit-Pauli,
and ICFT (Intermediate Coupling Frame Transformatidt¥Matrix methods for electron-impact
excitation (Griffin et al. $7]). The original impetus for the ICFT approach was to redue t
time consuming diagonalization of each large Breit-Pé&litimiltonian. In the ICFT method,
as each partial wave includes only the mass-velocity Brad-win corrections to the LH N+1
Hamiltonian, and omits the spin-orbit interaction; this greatly redutee size of each sym-
metric matrix to be diagonalized. In the outer region, theuling (LS) coupled scattering S or K-
matrices are transformed to (JK) coupling by means of arbadge transformation to provide level-
to-level excitation cross-sections. This transformatiaolves TCCs (Term Coupling Coefficients)
which are calculated from a Breit-Pauli structure caldatatincluding spin-orbit interaction), to
express the eigenvectors for the resulting levels as lioearbinations of the multi-configuration
mixed terms. The coefficients of this expansion are the T@GH the implementation of a parallel
version of our codes, and for the scale of calculations ds=ttiin this section, both methods would
take a similar amount of time, however the ICFT approach nesnzetter suited for small memory
serial machines and/or small parallel clusters as calonktincrease in size. The consistency of
results between ICFT and Breit-Pauli calculations regbldéer in this paper should provide a lower
bound on the error we would expect in the subsequent colb$icadiative modeling. We gener-
ated effective collision strengths from ol-Matrix collision strength data via convolution with a
M azxwellian electron distribution (equatioA.61). We make use of Burgess-Tully plot§] to
show effective collision strengths from threshold to thignite energy point on a single plot for the
type 2 transition (see chaptérs.2 that we will consider. This involves the transformatiorgeg
by equation 4.63), where we use a C-value of 5.0 to compare with the Burge#ig-fasults shown

in Galavis et al. $6].
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7.2.2 Collisonal-Radiative M ode€

We use the ADAS1]] suite of codes for our population and emission modelingesehcodes
are based on collisional-radiative theory, first developgdBates et al. 1] and later generalized
by Summers and Hoopel?]. The ion consists of a set of levels with radiative and sainal
couplings. ionization and recombination to and from metalss of the next ionization stage (i.e.
the plus ion stage) are included. The time dependence obim@ation (V;) of an arbitrary levet
in ion stagetz is given by equation?.1). A spectral line intensity ratio for a homogeneous plasma

is evaluated via

flux
Tk _ NjAjk

e N;A

11—l

(7.1)

and an energy intensity ratio is given by

7% NjAj wAEjy

IS99 T N, A AE;
_ N;A; ki
 NiAi )k

(7.2)

When comparing with spectral line ratios observed from @lary nebulae we will use this

latter equation, since the observations will be of the gnatgsorbed at a given wavelength.
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7.3 Resaults

Our results can be split into three main areas: structutksional data, and emission model-

ing.

7.3.1 Atomic Structure

Our final optimized atomic structure consisted of configaret 323p*, 3s3p%, 3p°, 3p°3d,
and 323p3nl (3d < nl < 5s), giving a total of 186 levels. Our optimizedparameters, obtained
using our singular value decomposition code are given itetald. Our structure was optimized
using NIST energy levels and line strengths. The level éegfgom our structure calculation are
given in table7.2 We show results for the first 29 levels, the remaining ersrgan be found in
the archived data file6P]. The average percentage error between our calculatediesemd the
NIST energies is 3.46%. The largest error is for th&3pd (1D,) level. Because of the diagnostic
importance of the transitions within the Bponfiguration, we shift to NIST values all the energies

associated with the 3pand 3s3p configurations. This will be described in the next section.

Orbital 1s 2s 2p 3s 3p 3d

A 1.000665| 1.005124| 1.137871| 1.191384| 1.064135| 1.053192
Orbital 4s 4p 4d Af 5s

A 1.093229| 0.916915| 1.199858| 0.999963| 0.999797

Table 7.1: Final\ values for the 1s-5s orbitals.
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Configuration| 25F1L; | NIST Energy (Ryd)| Present Energy (Ryd) %Err
33t | CPy) 0.0000 0.0000 0.0
323pt | (3Py) 0.0101 0.0096 5.2
323pt | (3Py) 0.0143 0.0137 4.4
323pt | (1Dy) 0.1277 0.1488 16.6
323pt | (1Sy) 0.3031 0.2841 6.2
3530 | (3P,) 1.0370 1.0023 3.3
3s3¢ | (3Py) 1.0461 1.0108 3.4
3539 | (3Py) 1.0509 1.0152 3.4
3s3¢ | ('Py) 1.3124 1.3028 0.7

3p%(4°)3d | (°Dy) 1.3203 1.3165 0.3
3p%(45°)3d | (5Ds) 1.3204 1.3172 0.2
3p5(45°)3d | (5Dy) 1.3205 1.3178 0.2
3p%(45°)3d | (3Ds) 1.4299 1.4536 1.7
3p3(4S°)3d | (3Dy) 1.4300 1.4536 1.7
3p%(45°)3d | (3Dy) 1.4310 1.4545 1.6
3p3(2D°)3d | (1Sp) 1.4749 1.5274 3.6
3p3(2D°)3d | (3F2) 1.4832 1.5015 1.2
3p3(2D°)3d | (3Fs) 1.4861 1.5047 1.3
3°(2D°)3d | (3Fy) 1.4897 1.5088 1.3
33(2D°)3d | (3Gs) 1.5683 1.5908 1.4
3p3(2D°)3d | (3Gy) 1.5686 1.5915 1.5
3p3(2D°)3d | (3Gs) 1.5691 1.5925 1.5
3P(U)as | (5S,) 1.5891 1.6067 1.1
3p3(2D°)3d | (1Gy) 1.6008 1.6339 2.1
3p5(2P°)3d | (1Ds) 1.6360 1.6380 0.1
3PA)s | (3S)) 1.6465 1.6833 2.2
3p3(2P°)3d | (3Fy) 1.6986 1.7044 0.3
3p5(2P°)3d | (3F3) 1.7010 1.7064 0.3
33(2P2)3d | (3F,) 1.7032 1.7084 0.3

Table 7.2: Energies in Rydbergs for the lowest 29 levels 3ftAr
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As a further check on our structure, we present a selectionrfalculated radiative rates in ta-
ble 7.3, we show our calculated radiative rates compared with NEZI'\falues and the calculations
of Mendoza and Zeipper®8]. The average percentage difference between the BT stein’s
Ay, coefficients and ours is 65.36%. We notice that for most ofrénesitions the NIST uncertainty
estimates on th#&instein’s A, coefficients are 25% ar 50%, ourEinstein’s A coeffi-
cients are in general within the NIST uncertainty estimalieshe data set we use for our emission
modeling theEinstein’s Aj, coefficients for transitions within the 33p* configuration will
be replaced by the calculated values of Mendoza and Zeig8n This will allow us to make a
direct comparison with previous modeling results from ftkerdture, highlighting the differences
due to the excitation data only. However, our final archivathdset will contain our calculated

Einstein’s A coefficients.

Initial - Final Initial - Final | NIST Ay Mendoza & | Presentd i
Config. Config. Level Level Zeippen B3]
3s3p — 3s23p* 3Py — 3Py | 1.59x 108 1.16x 10t8
3s3P — 3s23p* 3Py — 3Py | 3.74x 1078 2.78x 1018
3s3p — 3s23p* 3P, — 3Py | 2.79x 108 2.08x 1018
3s3p — 3s23pt 3P, — 3Py | 9.20x 1017 6.95x 1017
3s3p — 3s23p* 3Py — 3Py | 1.22x 1018 9.21x 107
3s3p — 3s23pt 3P, — 3P; | 9.00x 107 6.90x 1017
3¢3p* — 3823p? 1Sy — 1Dy | 9.50x 1071 | 2.59x 1010 | 2.59x 101°
3823p* — 323p?t 1D, — 3P, | 3.48x 1071 | 3.14x 107! | 1.13x 1071
323p* — 3¢23pt 1D, —3P; | 9.64x 1072 | 8.23x 1072 | 8.22x 102
3823p* — 323p?t 1Dy — 3Py | 1.25%x 107% | 2.21x 107° | 2.21x 1075
3823p* — 3823p?t 1S5y — 3Py | 4.30%x 1072 | 4.17x 1072 | 4.17x 102
3¢3p* — 3¢23p? 1Sp — 3Py | 4.02x 10™° | 3.91x 10t% | 3.91x 10t°
3823p* — 3823p?t 3Pg — 3Py | 2.72x 1076 | 2.37x 1079 | 2.37x 10°6
323p* — 3¢23pt 3P; — 3Py | 3.10x 1072 | 3.08x 1072 | 3.08 x 1072
3823p* — 323pt 3Pp — 3P; [ 5.19x 1073 | 5.17x 1073 | 5.17x 1073
3p2(4S)4p— 3p?(#S)4s | °P3 — %S, | 2.00x 1078 4.61x 10t8
3p3(4S)4p— 3p3(4S)4s | P, — 5S, | 2.00x 1018 4.60x 1018
3p2(4S)4p— 3p?(#S)4s | °P; — %S, | 2.00x 1078 4.60x 1018
3p3(?D)4p — 3p*(®D)4s | 3F4 — 3D3 | 2.00x 10+8 3.83x 1018
3p*(?D)4p — 3p*(®D)4s | 3F3 — 3Dy | 1.80x 1018 3.75x 10t8
3p3(?D)4p — 3p*(®D)4s | 3F, — 3Dy | 1.60x 10+8 3.56x 1018

Table 7.3: Comparisons of selected radiative rates fostiians in AP+
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7.3.2 Scattering Calculations

The orbitals used in ouR-Matrix calculations were generated from the AUTOSTRUCHEJR
(Badnell R]) code using the optimized parameters from tablé.1 Our exchange calculation
included partial waves fron. = 0to L = 14 (J = 0.5 to J = 11.5 for the Breit-Pauli
calculation). The non-exchange calculation went frém= 10 uptoL = 40 (J = 12.5to0
J = 37.5). The contributions from higher partial waves were thewcwalted for dipole transitions
using the method originally described by Burge®4],[and for the non-dipole transitions assuming
a geometric series i, using energy ratios with special procedures for handlragditions be-
tween nearly degenerate terms. Using AUTOSTRUCTUREWe also calculated infinite energy
BetheBorn limits, allowing us to extend the effective collision stgtins and rate coefficients to
temperature ranges above the highest calculated colksiength. In our outer region calculations,
we used 80,000 energy mesh points over the resonance regido 6 Ryd), and 500 energy mesh

points for the higher energies (6 Ryd to 12 Ryd).

It has been shown by Griffin et abT] that an ICFT calculation would produce the same results
as a Breit-Pauli calculation. As a check on our calculatieperformed an ICFT and a Breit-Pauli
calculation using the same set of radial orbitals for botgufe 7.1 shows the ICFT and Breit-Pauli
collision strength for the 38p* (*P,) — 323p* (1D5) transition. Although small differences can

be seen, the two calculations are clearly very close to etidr.o
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Figure 7.1: Comparison of the ICFT and Breit-Pauli collisigtrengths for the 38p* (*P;) —
3¢23p* (*D,) transition. The dashed line shows the ICFT results anddlig ne shows the Breit-
Pauli results.

This level of agreement was typical for the collision strsgcalculated. The 186 levels in
our Ar?t calculation give rise to 17,205 transitions. We used thétescplot method of Witthoeft
et al. [65] to compare theVl axwellian effective collision strengths for all of the transitions at
one time. This method takes the ratio of effective collisstrengths for all transitions for a given
temperature and plots this ratio against one of the effectillision strengths. Thus, a ratio of one
would indicate the data sets are the same. This method ddsesabne to see the strength of the
transitions that are in disagreement. We chose an ele@roperature of 1.55 eV as one typical of
planetary nebula, and low enough to strongly sample thenees® region of the collision strengths.
Of the 17,205 transitions, 82% of the ICFT effective callisstrengths are within 10% of the Breit-
Pauli values. 94% of the ICFT effective collision strengdins within 20% of the Breit-Pauli values,

and 98% are within 40%.
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Of the transitions that show a difference, they are in gdrieraveaker transitions involving
highly excited levels with effective collision strengtliat are extremely sensitive to the resonance
contributions on top of a weak background. These transitame not likely to make a difference in
population modeling. For example, the transitions witlia 8 configuration are within 4% of
each other. Population modeling using the ICFT and BreitiRiata sets produces essentially the
same excited populations for all cases we investigatedthieédinal data set we used the Breit-Pauli

results.

To provide the most accurate data for modeling, a BreitiRaltulation was then done with
shifts to NIST energies for the first 9 energy levels, due #irtimportance in spectral line diagnos-
tics. To test the convergence of our energy mesh over theaese region we performed a series of
calculations using different meshes, namely 10,000, 20,680,000 and 80,000 mesh points in the
resonance region. We calculatdd axzwellian averaged effective collision strengths for each of
these meshes and compared the files. Figui2shows a scatter plot comparison of our Breit-Pauli
calculation using 40,000 and 80,000 mesh points in the eggmregion. Of the 17,205 transitions,
most are converged with a few outliers. There was a prognessi convergence as the mesh was
increased. For example, comparing calculations with ZDg&@l 40,000 energy mesh points in the
resonance region we found that 93.4% of the transitions wm@meerged to within 2% of each other.
Comparing the 20,000 and 40,000 energy mesh point calonotgtf6.4% of the transitions were
converged to within 2% of each other. Finally, comparing48e€00 and 80,000 energy mesh point
calculations, 98.4% of the transitions were converged thiwR2% of each other, with 95.5% being

within 1%. Thus, we believe that our 80,000 energy mesh p@lulation is converged.
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Figure 7.2: Scatter plot showing the ratio of effective istdin strengths af, = 1.55 eV between
two Breit-PauliR-Matrix calculations. One had 40,000 energy mesh pointerrédsonance region,
the other had 80,000 energy mesh points in the resonanamnregie show the ratio of effective
collision strength vs the effective collision strength lné 40,000 energy mesh calculation.
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Of the previousR-Matrix calculations, we can compare with the collisioreagths from John-
son and Kingston{], see figure7.3for a comparison of a selection of transitions. There ararcle
differences in the resonance positions and heights, wihttkground collision strengths being
in good agreement. The differences in the resonance cotitiits may be due to the well known
problems with the JAJOM method (Griffin et ab7]) that was used by Johnson and Kingst@h [

to transform the (LS) results to (LSJ) resolution.
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Figure 7.3: Comparison of selected Breit-Pauli collisitreisgths (with energy shifts included for
the first 9 energy levels) with Johnson and Kingst@j Plot a) shows the 3p(3P;) — 3p* (3Py)
transition. Plot b) shows the 32P) — 3p* (D) transition, where the level-resolved Breit-Pauli
collision strengths have been summed to give the termyedalollision strength. Plot ¢) shows the
3p* (3P) — 3p* (1S) transition, where the level-resolved Breit-Pauli sidin strengths have been
summed to give the term-resolved collision strength. P)attobws the 3p (*D2) — 3p* (1Sp)
transition. In all plots the solid line shows the Breit-Raakults and the dot-dashed line shows the
Results of Johnson and Kingstory.[
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We can compare our effective collision strength resultihie IRON project data of Galavis
et al. [B], and with the tabulated values of Johnson and KingstnHigure 7.4 shows the compar-
ison for a selection of transitions. Tabie4 shows our calculated effective collision strengths for

transitions between the 33p* levels.

Temperature (K) 3P1 - 3P2 3P0 - 3P2 1D2 - 3P2 180 - 3P2 3P0 - 3P1
1800 3.860 0.808 3.010 0.307 1.410
4500 3.820 0.866 2.970 0.299 1.420
9000 4.030 0.990 2.940 0.354 1.420
18000 4.210 1.100 2.930 0.421 1.380
45000 4.260 1.160 3.090 0.478 1.320
90000 4.310 1.200 3.080 0.467 1.290

180000 3.820 1.080 2.570 0.378 1.100
450000 2.660 0.791 1.570 0.223 0.693
900000 1.930 0.617 0.958 0.133 0.433
1800000 1.480 0.515 0.556 0.074 0.254
4500000 1.180 0.458 0.261 0.033 0.118
9000000 1.080 0.445 0.148 0.018 0.064
18000000 1.030 0.442 0.085 0.009 0.034

Temperature (K) 1Dg -3P; | 1Sp-3P; | 1D -3Pg | 1Sg-3Pg | 1Sy - D>
1800 1.850 0.202 0.622 0.069 0.871
4500 1.820 0.192 0.612 0.065 0.995
9000 1.800 0.217 0.602 0.072 1.160
18000 1.780 0.257 0.595 0.085 1.240
45000 1.870 0.302 0.625 0.105 1.340
90000 1.860 0.301 0.621 0.108 1.440
180000 1.550 0.245 0.516 0.089 1.450

450000 0.945 0.145 0.315 0.053 1.380
900000 0.578 0.086 0.193 0.031 1.370
1800000 0.334 0.048 0.112 0.017 1.410
4500000 0.155 0.021 0.052 0.008 1.510
9000000 0.085 0.011 0.029 0.004 1.570
18000000 0.047 0.005 0.016 0.002 1.630

Table 7.4: Effective collision strengths for transitioretween the F3p? levels.
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At the highest temperatures, our effective collision sjtea are consistently higher than the
previous calculations. Since we have a similar backgrouasgsesection, the differences are due to
the extra resonance channels included in our calculatioth,t@ a lesser extent differences in our
top-up procedures. Most transitions show differenceswattéamperatures where sensitivity to the
low energy resonance contribution is strongest. This isquaarly true for the transitions 3p(3P)

— 3p* (1), and 3¢ (1D3) — 3p* (1Sy), shown in figurer.4e & .
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Figure 7.4. Comparison of selected Breit-Pauli effectigision strengths (with energy shifts in-
cluded for the first 9 energy levels) with Johnson and King$® and with Galavis et al. §, 56].
Plot a) shows the 3p(3P;) — 3p* (3P;) transition. Plot b) shows the 3¢3P;) — 3p* (3Py)
transition. Plot ¢) shows the 3¢3P;) — 3p* (3P) transition. Plot d) shows the 3¢3P;) —

3p* (1D») transition. Plot ) shows the 3§2P,) — 3p* (1Sp) transition. Plot f) shows the 3p
(*D2) — 3p* (1Sp) transition. In all plots the solid line shows the Breit-RaR-Matrix results,
the dashed line shows the results of Galavis et&|.gnd the dot-dashed line shows the results of
Johnson and Kingstor?]. In plot f) the double-dot dashed line shows the results ala@s et al.
[56].
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In both cases our effective collision strengths are smdilem previous calculations at the low-
est temperatures. This is most likely due to the contrilmstitom near threshold resonances. For
example, the 3p(*D2) — 3p* (1Sy) transition has contribution due to a reported 3%8p)3d €P)
resonance that occurs at the excitation threshold in theque R-Matrix calculations of Johnson
and Kingston 7]. Galavis et al. 8] also point out the large contribution from a near threshold
resonance in their calculation of this transition. The rtbagshold resonance in the 8(°P) —
3p* (1S) transition is likely to be due to the same resonance. Weotlsee this near threshold
resonance in our calculations for either of these tramsticAs will be seen later, these two tran-
sitions are key for spectral diagnostics. Thus, we perfdrenemallerR-Matrix calculation, using
the same configurations as Johnson and Kingstprir this calculation we do see a near threshold
resonance in the 3p(*D,) — 3p* (1Sp) transition, as seen in previous work. We identified the
resonances as belonging to the= 3 /2 partial wave. Investigation of the eigenphase sum shows
that this broad resonance belongs to the 388monfiguration, and is shifted to lower energy in our
larger Breit-Pauli calculation. Thus it does not contrét our collision strength. Our resonance
position should be more accurate, due to the larger numbeordifgurations in our structure cal-
culation. However, this resonance is very close to the atoit threshold and is clearly sensitive
to configuration interaction effects. Experimental measwents of this collision strength would be

very useful.
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At higher temperatures for the 8¢'D,) — 3p* (1Sp) transition we verify the findings of
Burgess et al.q] and Galavis et al.§6], that contributions from higher partial waves are reqiiire
for the effective collision strength to tend to the right itirpoint. We plot our results for this
transition in a Burgess-Tully plot in figuré.5to highlight the high energy behaviour. Our results
go to a limit point of 1.72, close to the value of 1.68 expedigdBurgess et al.g]. As pointed out
by Galavis et al. %6], the rise in slope of the Burgess-Tully plot towards theifipoint does not

happen until relatively close to the limit point.
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Figure 7.5: Burgess Tully plot of effective collision stggh vs reduced temperature (X). Results
are shown for transition 3p(*D,) — 3p* (1S). In the reduced temperature scale zero corresponds
to the value at threshold and one corresponds to the valhe atfinite energy point. The solid line
shows the results from our Breit-Pailt-Matrix calculation, the dashed line shows the results from
the R-Matrix calculation of Galavis et al.g], and the double-dot dashed line shows the results of
Galavis et al. $6] where more partial waves were included compared to thelipus calculation.
The solid square shows the limit point of Burgess etg]l. |
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7.3.3 Emission Modeling

Our Breit-Pauli atomic data set was used to model commorsgmied forbidden transitions of

Ar lll. Our modeling data consists of the Breit-Pauli extita data, including shifts to NIST ener-
gies for the first 9 levels. Our dipolBinstein’s A coefficients were evaluated in of&-Matrix
calculation. Our non-dipol#instein’s A coefficients came from an AUTOSTRUCTURE cal-
culation. For the purpose of the modeling work in this paperuge the sam&instein’s Ay
coefficients for transitions within the 3pconfiguration as those of Mendoza and Zeippé8.|
These were thé&instein’s A coefficients used in previous emission models uditsylatrix
data from Keenan and McCanh(], and Keenan and Conlod§]. Using the saméinstein’s
Ay, coefficients will allow us to highlight differences in emims modeling due to the excitation
collision data. The final set of data that is available onlinkinclude our computedEinstein’s
A, coefficients for all the transitions. We first consider th@perature sensitive energy intensity

ratio

Ry = I°™"9Y(\7135A + AT751A)/I°™°"9Y(\5192A)

_ (N5As5-1/A7135) + (N4 As—1/A7751)

(7.3)
N5As_.4/A5192

where the numbers in the subscripts ¥f and A denote the index numbers of the energy
levels involved in the transitions. The ratio is insensitto electron density up t&, ~ 1 x 10°
cm~3. Our results are shown in figui6. We also calculated this ratio using the data of Johnson
and Kingston 7] and the data of Galavis et al8][ where we usedEinstein’s A, coefficients
from Mendoza and Zeippei® ] for the radiative rates. We notice that the ratio we caleufar the

Johnson and Kingstor’] data is equivalent to that shown by Keenan and McCdagh [
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Our R; ratio is close to that obtained from the two previd@sMatrix calculations. The ex-
cited populations are coronal at low densities and are aamgitive to excitation rate coefficients
from the ground to the 3p(1Sy) level, excitation from the ground to 31§ D-) level, and radiative
decay from the 3p (1Sp) and 3¢ (*D) levels. Since we use the santBnstein’s Ay coef-
ficients in all of our calculations, the differences in outioaare primarily because our effective
collision strength for 3p (3Py) — 3p* (1Sp) is smaller than archived data, due to differences in
low energy resonance contributions. Our nBaMatrix data does not make a large difference to
the temperatures diagnosed from measured line ratios. i@gmased temperatures are within 10%

of those diagnosed using the old@rMatrix data sets.

Figure 7.6: R line ratio as a function of electron temperature. The resaré calculated atN= 1

x 10 cm~3, though the results are insensitive to electron densitpuyt= 1 x 10° cm=3. The
solid line shows the results using the né&aMatrix Breit-Pauli collision data. The dot-dashed line
show the results using the data of Johnson and King&tpand the dashed line shows the results
using the data of Galavis et aB][
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Figure7.7shows the results for the density sensitive energy intenaiio

Log, (Ne (cmY)

Figure 7.7: R line ratio as a function of electron density. The resultsaeulated for a range
of electron temperatures, namely 5,000, 8,000, 10,00@005,20,000 and 30,000K. The lowest
line ratio is the 5,000K results, with the higher ratios shagithe progressively higher temperature
results. The solid line shows the results using the d@wWlatrix Breit-Pauli collision data. The
dot-dashed line show the results using the data of JohnsbrKiagston [/] and the dashed line
shows the results using the data of Galavis et8l. |

Ry = I°™e"9Y(\7135A4) /T°™°"9Y (A9um)

_ NgAs1/A7135 (7.4)

N2 A2_,1/A90000
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We again compare with calculations using the data of JohasdrKingston 7] and the data
of Galavis et al. 8]. The modeling using the Johnson and Kingston data is elgunt/¢o the ratio
shown in Keenan and Conlod9]. For each temperature we see that all ther&ios go from the
coronal value at low densities to the local thermodynamigildium value by N, ~ 1 x 10°
cm~3. Our ratios are consistently lower than those from the presR-Matrix calculations. This
is primarily due to our collisional excitation rate from tgeound to the 3p (1Sp) being smaller
than those from the previous calculations. Our new data salsgnificant difference to electron
densities diagnosed using the above line ratio. For exartipgdine ratio for planetary nebula NGC

6572 shown in Keenan and Conlotf] is 0.23 and is for an electron temperature of 10,000K.

The newR-Matrix data gives a value of lgg(N.) = 4.98 (N. = 9.46 x 10* cm—3) com-
pared with the value given by Keenan and Conlon using the afalahnson and Kingstor¥] of
logio(Ne) = 4.7 (No = 5.0 x 10* cm—3). We found that cascades from higher levels do not affect
either the R or Ry line ratios. Measurement of the excitation cross-sectfongshese forbidden
transitions of A+ would be very useful, especially measurements that coukerméne if there is
a near threshold resonance in thé 8iD,) — 3p* (1Sg) and 3¢ (3P) — 3p*(1S) transitions. Our
R-Matrix data also includes excitations up to excited comfigjons. We do not show any modeling
results for transitions involving these configurations. &X¥pect this data to be of high quality and

intend to use the data to model Ar Il spectra in the future.

Our final data set is archived online at the Oak Ridge atonti clenter §2] and in the ADAS

databasell]. Tables7.2 7.3, and7.4are only available in electronic form at the CD&&].
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CHAPTER 8

NE MODELING AND EXPERIMENT

8.1 Introduction

Emission modeling of Ne plasmas have important applicatiarplasma processin@T7], as-
trophysics 68|, and lasers§9]. It is also an important tool for non-invasive plasma diasfics [70],
and in studies of radiative disruption mitigation in TOKAMA. We first model spectral emission
of neon using Plane WavBorn (see chapte4.2) electron-impact excitation data available in the
ADAS [11]] database, and calculated by Martin O’Mullane. This is thdnost commonly used in
current fusion modeling on neon spectral emission. We thesgmt preliminary results of emission
modeling using recent RMPS (LS), ad®Matrix (IC) electron-impact excitation data calculated
by Griffin and Ballace T1]. We compare these calculations with otl@fMatrix calculation by
Zatsarinny and Bartschaf2]. Zatsarinny and Bartschaf 2] calculated electron-impact excitation
cross-sections, but did not calculate collision strengtiits that we could use to generate effective
collision strengths for emission modeling. Thus, we dgvetbthe OMEGA fortran code, which
reads the electron-impact excitation cross-section fitelstlae file containing the energy levels, and
computes collision strengths which are stored in a genBridlatrix OMEGA file. This output
file can be used to calculat® axwellian effective collision strengths that we use to calculate
spectral line emission. This code will also allow us to cohfgture atomic data sets generated by

Zatsarinny and Bartschat into ADA&1] data files that can be used for spectral modeling.
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8.2 Atomic Data Comparison

In order to accurately compare the different sets of eleeimgpact excitation data, we first
focus on comparing the different atomic structures usedhi®icomputation of these collision data
sets. We focus mainly in the first 12 lower levels, since adl #pectral lines we are modeling
originate from these levels. The purpose of comparing thetire first is mainly to eliminate
the possibilities that differences in the collision datss sge caused by differences in atomic struc-
ture. After comparing the atomic structures, we then prddeecompare the available electron-
impact exctation cross-sections from transitions fromdheund and metastables. We compare
some electron-impact excitation cross-sections from toergl level 2f (*Sy) with Chilton’s et
al. [73] experimental data, and some electron-impact excitatimssssections from one of the
metastable levels 28s2[3/2]9 (*P.) with Boffard et al. 4] experimental data. These sets of ex-
perimental data will give us an idea of the quality of theisih data. At this point we can compare

the emission line intensity generated by each of these d&against ASTRAL measurements.
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8.2.1 Atomic Structure Comparison

To give us an indication of the quality of the atomic data, wakenuse of the NISTZ2] atomic
(level/term) energies to compare the atomic structuresfildtecompare O’Mullane’s11] atomic
structure used in his Plane Wa¥orn electron-impact excitation calculation. O’Mullane made
use of the Cowan Atomic Structure Progra2d][to calculate the atomic structure. The structure
calculation included configurations 22s22p% and 12222p°nl, with nl = 3s, 3p, and 3d, thus

calculating atomic collision data for the first 27 levels ebn. Table8.1 shows the comparison of

the energies for the first 12 levels of neon used by O’Mullarib thhose given by NISTZ2].

Lev.

#)

NIST
En.(Ryd)

Present
En.(Ryd)

Diff.
(%)

Configuration

Term Mixing
2Ly (%)

el
PBoo~ous~wNeR

AN
N

0.0000000
1.2214791
1.2252832
1.2285579
1.2383091
1.3510244
1.3637753
1.3652988
1.3680086
1.3697789
1.3739366
1.3747239

0.0000000
1.2214970
1.2253006
1.2285757
1.2383272
1.3510418
1.3637932
1.3653168
1.3680269
1.3697966
1.3739547
1.3747420

0.0000
0.0015
0.0014
0.0015
0.0015
0.0013
0.0013
0.0013
0.0013
0.0013
0.0013
0.0013

2p°
2pP3s2[3/2]3
2pP3s2[3/2]°
2pP3s2[1/2]8
2pP3s2[1/2]°
2p°3p 2[1/2],
2p°3p ?[5/2]3
2p°3p 2[5/2],
2p°3p2[3/2],
2p°3p 2[3/2],
2p°3p 2[3/2]y
2p°3p 2[3/2],

TS, (1.00)

3p, (1.00)

3p, (0.33)1P; (0.67)

3P, (1.00)

1p, (0.33)3P; (0.67)

35, (0.67)3P; (0.22)1P; (0.11)
3D4 (1.00)

3D, (0.40)1D, (0.60)

3D, (0.17)P; (0.56)3P; (0.28)
3p, (0.83)3D5 (0.10)1D, (0.07)
1p, (0.11)3D, (0.83)3P; (0.06)
1D, (0.33)3D5 (0.50)3P, (0.17)

Table 8.1: Energies ilRydbergs for the lowest 12 levels of Ne used by O’Mullane Plane Wave
Born (IC) resolved calculationlf1].

O’Mullane replaced the energy levels from his calculationthose of C. E. Moore7[], thus
making the atomic structure comparison more difficult. Asvah in sectiord.2, the Plane Wave
Born itis not accurate for near neutral systems, and much ledsvioenergy incident electrons,
thus making the modeling for low temperatures not as aceutatorder to improve the quality of
the collision data, O’'Mullane took several effective cgithn strengths from the ground 2! S)
state to the 2}8s and 2p3p levels using theoretical data from Zeman and Bartschélt fnd

experimental data from Tsurubuchi et &7], Machado et al. 78], and Chilton et al. T3].
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The last column in tabl8.1 (and in subsequent tables) shows the term mixing coeffiieomn
the other terms within the given configuration. This is pded purely as a guide for later spectral
modeling, and to allow us to predict which transitions aresttikely to affect the measured spectral
lines. Notice that (LS) coupling notation is not approm@ifdr neutral neon, and that (JK) coupling
notation is more appropriate. O’Mullane also replaced sofitee Einstein’s A, coefficients
with Del Val's et al. [79] experimental values. ThEinstein’s A coefficients for transitions to
the ground (see tabk.5) used to compare the atomic structure with those from theratalcula-

tions were not replaced by experimental values.

Zatsarinny and BartschafZ] calculated semi-relativistic Breit-PauRR-Matrix (IC) resolved
electron-impact excitation data, with a variety of norhogonal valence orbitals, thus getting
good results in their atomic structure calculation. Theysely coupled the lowest 31 physical
fine-structure states of neon. The structure calculatimudted configurations 28s?2p% and

122822p°nl, with nl = 3s, 3p, 3d, and 4s. Tab&2 shows the comparison of the energies for

the first 12 levels of neon used by Zatsarinny and Bartschhttivbse from NIST22].

Lev.

#)

NIST
En.(Ryd)

Present
En.(Ryd)

Diff.
(%)

Configuration

Term Mixing
2Ly (%)

O O ~NOOO D WNPRF

=
o

11
12

0.0000000
1.2214791
1.2252832
1.2285579
1.2383091
1.3510244
1.3637753
1.3652988
1.3680086
1.3697789
1.3739366
1.3747239

0.0000000
1.2289803
1.2329990
1.2363798
1.2472877
1.3598929
1.3715298
1.3730152
1.3759403
1.3775168
1.3821370
1.3828204

0.0000
0.6141
0.6297
0.6367
0.7251
0.6564
0.5686
0.5652
0.5798
0.5649
0.5969
0.5890

2p°
2pP3s2[3/2]3
2pP3s2[3/2]°
2pP3s2[1/2]8
2pP3s2[1/2]°
2p°3p 2[1/2]y
2p°3p 2[5/2]3
2p°3p 2[5/2],
2p°3p 2[3/2],
2p°3p 2[3/2];
2p°3p 2[3/2],
2p°3p ?[3/2],

TS, (1.00)

3p, (1.00)

3p; (0.33)'P; (0.67)

3P, (1.00)

1p, (0.33)3P; (0.67)

35, (0.67)3P; (0.22)1P; (0.11)
3D5 (1.00)

1D, (0.60)3D5 (0.40)

1P, (0.56)3D; (0.17)3P; (0.28)
3P, (0.83)3D5 (0.10)'D (0.07)
3D; (0.83)1P; (0.11)3P; (0.06)
3D, (0.50)1D, (0.33)3P, (0.17)

Table 8.2: Energies iRydbergs for the lowest 12 levels of Ne used by Zatsarinny and Bartscha

R-Matrix (IC) resolved calculation72).
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We clearly see that the atomic structure calculation appedbe very accurate when compar-

ing with the NIST R2] energy values.

We now compare a small atomic structure used by Griffin andaBed R-Matrix electron-
impact excitation calculatior/fl]. Griffin and Connor made use of Badnell's Autostrucure Aimm
Structure Program?] to calculate the atomic structure. The structure cal@naincluded config-
urations 182s22p% and 182s22p°nl, with nl values given from 3s to 5p, thus calculating atomic
collision data for the first 79 spectroscopic levels of nedable 8.3 shows the comparison of the

energies for the first 12 levels of neon used by Griffin andd@wé with those given by NISPP)].

Lev.

#)

NIST
En.(Ryd)

Present
En.(Ryd)

Diff.
(%)

Configuration

Term Mixing
2Ly (%)

O O ~NOOOTSWNPRF

=
o

11
12

0.0000000
1.2214791
1.2252832
1.2285579
1.2383091
1.3510244
1.3752608
1.3637753
1.3652988
1.3680086
1.3697789
1.3739366

0.0000000
1.2209323
1.2258087
1.2296808
1.2445165
1.3503765
1.3750601
1.3614090
1.3633233
1.3663496
1.3685350
1.3733009

0.0000
0.0448
0.0429
0.0914
0.5013
0.0480
0.0146
0.1735
0.1447
0.1213
0.0908
0.0463

2p°
2pP3s2[3/2]3
2pP3s2[3/2]°
2pP3s2[1/2]8
2pP3s2[1/2]°
2p°3p 3[1/2],
2p°3p 2[1/2]o
2p°3p ?[5/2]3
2p°3p 2[5/2],
2p°3p2[3/2],
2p°3p 2[3/2],
2p°3p ?[3/2]y

TS, (1.00)

3p, (1.00)

3p; (0.33)'P; (0.67)

3P, (1.00)

1p, (0.33)3P; (0.67)

35, (0.67)3P; (0.22)'P; (0.11)
3P, (0.33)1S, (0.67)

3D5 (1.00)

3D, (0.40)1D, (0.60)

3D, (0.17)P; (0.56)3P; (0.28)
3p, (0.83)3D5 (0.10)1D (0.07)
1p, (0.11)3D, (0.83)3P; (0.06)

Table 8.3: Energies ilRydbergs for the lowest 12 levels of Ne used by Griffin and Ballance

R-Matrix (IC) resolved calculation7l].

The atomic structure also shows good agreement with thggratues given by NISTZ2].
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We now compare the structure for Griffin and Ballance lard&gitPS (LS) coupling calcu-
lation [71]. The structure calculation was also performed by meansaufnBll's Autostrucure
Atomic Structure Program2]. The structure calculation included configuration€2€2p® and
122822p°nl, with nl values given from 3s to 5p. They also employelpseudo-orbitals to gen-
erate pseudo-states for the configurations’52 2p°5f; 2p®nl, with 7=6 throughn=14 andl=0
to I=4. This leads to a total of 560 levels (247 terms), 79 whiehsprectroscopic. Tabk&4 shows
the comparison of the energies for the first 12 levels (6 teohseon used by Griffin and Ballance
with those given by NISTZ2]. Griffin and Ballance T1] collision calculation was performed in

(LS) coupling, but in order to be able to compare the atonmigctires we computed the energies in

(IC) coupling, as well as in (LS) coupling as shown in talé

Lev.

#)

NIST
En.(Ryd)

Present
En.(Ryd)

Diff.
(%)

Configuration

Term Mixing
2Ly (%)

el
PBoo~ouswNR

AN
N

0.0000000
1.2214791
1.2252832
1.2285579
1.2383091
1.3510244
1.3752608
1.3637753
1.3652988
1.3680086
1.3697789
1.3739366

0.0000000
1.2248912
1.2298209
1.2338094
1.2482131
1.3539154
1.3792162
1.3658580
1.3677551
1.3708331
1.3728800
1.3778515

0.0000
0.2793
0.3703
0.4275
0.7998
0.2140
0.2876
0.1527
0.1799
0.2065
0.2264
0.2849

2p°
2pP3s2[3/2]3
2pP3s2[3/2]°
2pP3s2[1/2]8
2pP3s2[1/2]°
2p°3p 2[1/2],
2p°3p2[1/2]o
2p°3p 2[5/2]3
2p°3p 2[5/2]3
2p°3p 2[3/2],
2p°3p 2[3/2],
2p°3p 2[3/2],

IS, (1.00)

3p, (1.00)

3p, (0.33)'P; (0.67)

3P, (1.00)

1p, (0.33)3P; (0.67)

35, (0.67)3P; (0.22)1P; (0.11)
3P, (0.33)1S, (0.67)

3D5 (1.00)

3D, (0.40)1D, (0.60)

3D; (0.17)1P; (0.56)3P; (0.28)
3P, (0.83)3D5 (0.10) D5 (0.07)
1p; (0.11)3D; (0.83)3P; (0.06)

Term

#)

NIST
En.(Ryd)

Present
En.(Ryd)

Diff.
(%)

Configuration

Term Mixing
2S+1L (%)

abh wNBE

6

0.0000000
1.2229056
1.2358713
1.3570835
1.3644101
1.3691151

0.0000000
1.2278530
1.2471870
1.4003430
1.3687710
1.3739110

0.0000
0.4046
0.9156
3.1877
0.3196
0.3503

2p°
2p°3s2[3/2]°
20°3s2[1/2]°
20°3p2[1/2]
20°3p 2[5/2]
20°3p 2[3/2]

1S (1.00)

3p (0.33)'P (0.67)

1p (0.33)3P (0.67)

15 (0.67)3P (0.33)

3D (0.40)'D (0.60)

1D (0.07)3P (0.83)3D (0.10)

Table 8.4: Energies ilRydbergs for the lowest 12 levels of Ne used by Griffin and Ballance

RMPS (LS) resolved calculatiorr]].

We see that the agreement is still very good for all of theedéfifit calculations.
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Having compared the atomic structures for the differerg e€talculations, we now compare
the Einstein’s Ajj, coefficients for dipole transitions 3§1/2]¢ (*Py) and 3s?[3/2]$ (3Py) to the
ground level 2p (1Sy). These two levels also correspond to transitions betweenst that have a
single level, and thus allow us to compare the (IC) couplegults with the (LS) data from Griffin

and Ballance 71]. Table8.5shows the values of thEinstein’s A, coefficients for these two

transitions
Initial Final Plane Wave | R-Matrix R-Matrix RMPS (LS)
Level Level Born [1]] (1C)[72 (1c)[71 [71]

3s?[1/2]9 — 2p° (*Sp) | 6.11x 10™® | 6.51x 1078 | 7.29x 10"® | 6.95x 1078
3s2[3/2]9 — 2p° (1Sp) | 4.76x 1077 | 4.74x 107 | 3.93x 1077 | 4.04x 10t7

Table 8.5: Dipole transitions to the ground and metastail¢hie lowest 12 levels of Ne.

As we see in tabl8.5, all the dipole values seem to be close for the different sktslcula-
tions. It also seems that the pseudo-states atomic steucalculated by Griffin and Ballance agrees
closer to the other calculations than the one without theher&fore we now can be more confident
that the differences on the collision data are mainly calmsetthe employment of pseudo-states in
the R-Matrix calculation, differences due to (IC) versus (LSupbng, or differences in accuracy

between the Plane WavlBorn method and thé?-Matrix calculations.
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8.2.2 Cross-Sections Comparison

After comparing the atomic structure for the different datadculations, we focus on compar-
ing some of the electron-impact excitation cross-sectitimgortunately O’Mulane’s]1] excitation
cross-sections are not available, so we compare the (ICjLSB)ddata of Griffin and Ballancerfl],
against the data of Zatsarinny and Bartscl@].[ Figures8.1, 8.2, 8.3 and8.1 show excitation
cross-sections for the (1 Sp) — 3s2[1/2] (*Py) and 28 (*Sp) — 3p 2[1/2]; (3S;). As we
can see, below the ionization potential, bd@Matrix (IC) and RMPS (LS) calculations (Griffin
and BallanceT1]) are very close. The data of Zatsarinny and Bartsch2t glso shows a similar
resonant structure, although with fewer resonances dueeterhaller number of states included in
their calculation. The differences between the Zatsarammy Bartschat (IC) data with the (LS) of
Griffin and Ballance at higher energies is due to the inclusibcontinuum coupling effect$(] in
the (LS) data. Notice that the (IC) calculation of Griffin aBdllance 1] does not extend above
about 22 eV, and is then connected linearly to the limit poifihe reason we have chosen the 3s
2[1/2]¢ (*Py) and 3p?[1/2]; (3Sy) levels to show these comparisons, is that each of theses term

correspond to a single level in the (IC) coupling.

0.4

T T
R-Matrix (IC) Zatsarinny Bartschat Negz —_—
R-Matrix (IC) Griffin Ballance Neg, —
RMPS (LS) Griffin Ballance Ne™" -~~~

Cross Section (aoz)

0 1 1 1 1

20 25 30 35 40
Electron Energy (eV)

Figure 8.1: Excitation cross-section for the®2pSy) — 3s2[1/2]¢ (*P;) transition.
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Figure8.2shows the comparison between the tlReéViatrix (IC) and RMPS (LS) data sets cal-
culated by Griffin and Ballancé& L], against theR-Matrix (IC) data set of Zatsarinny and Bartschat
[72] below the ionization potential (21.565 eV). It is shown bgiftBh and Ballance §0] that below
the ionization potential the pseudo-state effects arelsnfan comparing dipole transitions. We

notice the high level of agreement between the calculations

0.2 T T
R-Matrix (IC) Zatsarinny Bartschat Neoz —_—
R-Matrix (IC) Griffin Ballance Neg, —
RMPS (LS) Griffin Ballance Ne™" -~~~
0.15 i
“—
=}
S 0
<
S e
5 01l i g
[ -
(7] =
1]
[%]
o
(@]
0 1 1 1 1

17 18 19 20 21 22
Electron Energy (eV)

Figure 8.2: Excitation cross-section for the®2pSy) — 3s2[1/2]¢ (*P;) transition.
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Figure 8.3 shows the comparison for the 2'Sy) — 3p 2[1/2]; (3S;) transition against

Chilton’s et al. [73] experimental values.

Cross Section (aoz)

0.05 —

0.04

0.03 |-

T T T
R-Matrix (IC) Zatsarinny Bartschat Ne2*

R-Matrix (IC) Griffin Ballance Neg: ””””
RMPS (IC) Griffin Ballance Nej. —
Exp. Chilton et al. Ne™" -+

35 40 45 50
Electron Energy (eV)

Figure 8.3: Excitation cross-section for theP2pSg) — 3p 2[1/2]; (3S;) transition.

We also notice that above the ionization potential the pseutigte effects become significant

as predicted by Ballance and Griffi&()], thus affecting the modeling above the ionization potdnti
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By taking a look below the ionization potential for the®2p Sp) — 3p2[1/2], (3S;) transition
(see figureB.4), we naotice that the level of agreement is very high betwéerthree calculations.
However, it is also clear that the omission of continuum diogpeffects in the Zatsarinny and

Bartschat data is extending below the ionization potenghan for this strong dipole excitation.

005 T K T T T N T N T b+
. R-Matrix (IC) Zatsarinny Bartschat Nej, ——
R-Matrix (IC) Griffin Ballance Ne, =
RMPS (LS) Griffin Ballance Ne™" --—------
0.04 - g
<
8 0.03
c
2
©
Q
(7]
(9]
[%]
©  0.02
(@]
0.01 +
0
18 18.5 19 19.5 20 20.5 21 215 22

Electron Energy (eV)

Figure 8.4: Excitation cross-section for thef2pSg) — 3p 2[1/2]; (3S:) transition.

We also notice from figur®.4 that most of the resonances agree between the calculations,
except the ones caused by the lack of th&2882p°nl (nl = 4p, 4d, 4f, 5s, and 5p) in atomic

structure calculation used by Zatsarinny and Bartschat.
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In order to compare excitation cross-sections from thé[w]g (3P2) metastable level with
Boffard et al. [/4] experimental data, we compare only the data of ZatsarindyBartschat, and the
(IC) calculation of Griffin and Ballancé’l]. The 2p9°3s @P) term has three levels of which, thiey
and3Py may be metastable, thus we cannot compare the metastakiktieromeasurements (from
the 3P, level) with the RMPS (LS) coupling data. Figurgs, 8.6, 8.7, and8.8show the transitions
from the 3s%[3/2]5 (*P.) metastable level to 3§[5/2]3 (3D3), 3p2[5/2]2 (*D2), 3p2[3/2]2 (*P2),
and 3p?[3/2]» (3D3) excited levels.
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Figure 8.5: Excitation cross-section for the?33/2]3 (3P.) — 3p2[5/2]3 (3D3) transition.
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These figures show that for some of the excitations the daZatsarinny and Bartschat is in
better agreement with experiment (see figBes 8.6, and 8.8), while for other excitations, the
data of Griffin and Ballance agrees better with experimeed fggure8.7). Thus, for any excited
populations that are sensitive to collisions from the matae, one would expect to see differences

between the emission results using the two diffe®r¥latrix data sets.
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Figure 8.6: Excitation cross-section for the?33/2]3 (3P2) — 3p2[5/2]> (*D-) transition.

145



40 T T T T T T 0+
R-Matrix (IC) Zatsarinny Bartschat Ne, S
R-Matrix (IC) Griffin Ballance Neg, —
o * : Exp. Boffard et al. Ne™" -+
35 + N N E
30
< 25 B
k) P
c | S
o ! _— T—
5 20 — -
9] | T~
@ | ~—_
S ! T
G 15| | T 1
10 | i
5 i
0 i 1 1 1 1 1 1
5 10 15 20 25 30 35

Electron Energy (eV)

Figure 8.7: Excitation cross-section for the?33/2]3 (3P2) — 3p 2[3/2] (*P,) transition.
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Figure 8.8: Excitation cross-section for the?33/2]3 (3P2) — 3p2[3/2]» (®D-) transition.
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8.3 Emission Modeling

In order to produce a modeled spectrum, we again apply ouatrefeimpact excitation data
into the collisional-radiative model (see cha@grWe again employ the ADASL[L] suite of codes
to the calculation of excited populations within a levelohder to calculate the fractional abundance
within each of the ion stages, ADAS solve equati@®(). Figure8.9 show the results for the

ionization balance calculation for neon.
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Figure 8.9: lonization balance of Ne{ = 10'' cm™3).
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Our ASTRAL Ne plasma temperature ranges mainly between BHa\d We see mostly neu-
tral Ne emission. By comparison with the energy levels shiwfigure 8.10, we see that the free
electrons in our plasma are well below the energy requiredxcitation from the ground. Thus, the
excited populations may be populated from high energy mastin the tail of theVl axwellian,

but also likely to be populated from the metastable levels.
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/
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Figure 8.10: ExcitatiorGrotrian diagram of Ne.

As shown in chapte6.4, in order to accurately model the line emission of Ne, we rnieed
calculate the intensity of each spectral line which is gibbgnequation §.1). We have already
shown (see chaptds.4) the importance of the line of sight integration along thandéter of the
vacuum chamber in order to include the temperature and tgethspendence. We therefore rely
on experimentalLangmuir probe measurements (see chaf@e) to include in our emission

modeling.

148



Figures8.11and8.12show the measured electron temperature and density disbriis in the

helicon plasma for conditions typical of our Ne experiments
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Figure 8.11: Normalized electron temperature distrimgialong the diameter of the vacuum cham-
ber in ASTRAL.
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Figure 8.12: Normalized electron density distributionrglahe diameter of the vacuum chamber in
ASTRAL .
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The results have been normalized to allow a general disimibdunction to be fitted, which
can be used for an¥,., N, values. It was found that a polynomial distribution for teetperature,
and aGawussian distribution function for the density fitted well the expagntal data, as shown

in figures8.11and8.12 The equations for the normalized fits are giverBalyand8.2

T(x) = — 1.117306 x 10~ *x® 4+ 5.172774 x 10 32®
—9.340397 x 10 2z2* + 0.830173x3 — 3.775543 x>

+ 8.26994z — 6.20074 (8.1)

_(z—L/2)?

203 (8.2)

p(r) =e

Where L = 15.24 cm,o, = 2.0 cm, ande is the position along the diameter of the vacuum
chamber. In our modeling we calculate along the line of sightfractional abundances for each
N./T. grid point. The excited populations are also calculatedHersame grid and the total inten-

sity obtained using equatio®.().

In order to compare only the atomic collision data, we relyassurateEinstein’s Ay
coefficients calculated by Tachiev and Fisct&f]] We first consider spectral transitions that can be
excited from the ground by a dipole collisional excitatigince theR-Matrix (IC) of Zatsarinny
and Bartschat72] and the RMPS (LS) of Griffin and Ballanc&1] data sets have similar cross-
sections for excitation from the ground, one might expees¢htwo data sets to produce similar
results. Thus, differences in these predicted line intgngould strongly suggest that the excited
levels are also populated from the metastables. This &ituaeems likely given the large energy
required to excite from the ground. After looking at thesecéal lines we will move on to the lines
that are dipole connected to the metastable (see &bland figure8.10. Since the intensity line
emission is given in arbitrary units, the intensity plote anly helpful in comparing the relative

intensity between different lines and the experiment.
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To compare which set give us the best results, we rely onsitiehine ratios. We are also
making the assumption that the levels are being statiltipapulated when modeling intensity line

emission by using the RMPS (LS) data set of Griffin and Bakg[iid].

Configuration| Term Mixing 25+1L ; (%) | Energy (eV)
Ground Level 2p° 15, (1.00) 0.0eV
Metastable | 2p>3s?[3/2]9 3P, (1.00) 16.619 eV
Levels 2p°3s2[1/2]3 3Pp (1.00) 16.715 eV
Population Line Upper Level | Term Mixing of Upper Level
Likehood (nm) Energy (eV) 25417, ; (%)
621.73 nm
626.65 nm
Ground | 638.30 nm| 2p°3p2[3/2]; | Py (0.56)3P; (0.28)3D; (0.16)
653.29 nm| 18.613 eV
671.70 nm
Pure 640.22 nm| 2p°3p2[5/2]3 | D3 (1.00)
Metastable 18.555 eV
602.99 nm
616.36 nm
Metastable| 659.89 nm| 2p®3p2[1/2]; | 3S; (0.67)3P; (0.22)1P; (0.11)
703.24 nm| 18.382 eV
724.52 nm
743.89 nm
Ground & | 650.65 nm| 2p°3p 2[5/2]; | D5 (0.60)3D, (0.40)
Metastable| 717.39 nm| 18.576 eV
Neither | 540.06 nm
Ground nor| 585.25 nm| 2p°3p2[1/2]p | 1Sp (0.67)3P, (0.33)
Metastable| 607.43 nm| 18.711eV
594.48 nm
Neither | 609.62 nm
Ground nor| 614.31 nm| 2p*3p2[3/2], | 3P, (0.83)3D, (0.10)'D, (0.07)
Metastable| 630.48 nm| 18.637 eV
667.83 nm
692.95 nm

Table 8.6: Ne spectral transitions measured in the ASTRAdesrment. Also shown are the square
of the term mixing coefficients for the upper levels, to allow/to see what levels are likely to be
excited from the ground.

151



8.4 Experimental Results

We present our modeling results and compare them to theiegaal data from ASTRAL
(see chapteb). We first look at spectral lines that can be dipole excitednfthe ground (see table
8.6), showing this way the emission line intensity results fiestd the intensity line ratios second

for each section.

8.4.1 Spectral Dipole Lines Connected to the Ground
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Figure 8.13: Line intensity for the 28p 2[3/2]; upper level. The solid line shows the RMPS data
set of Griffin and Ballance7l], the dashed line shows thR-Matrix data set of Zatsarinny and
Bartschat 72], and the dotted line shows O’Mullane’¢]] Plane WaveBorn (see chapted.?)
data.
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Figure 8.14: Line intensity for the 28p 2[3/2]; upper level.
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Figure 8.15: Intensity line ratio of 1(638.30)/1(626.65)he solid line shows the RMPS data set of
Griffin and Ballance T1], the dashed line shows tHe-Matrix data set of Zatsarinny and Bartschat
[72], and the dotted line shows O’Mullane’$]] Plane WaveBorn (see chapted.2) data.
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Figure 8.16: Intensity line ratio of 1(653.29)/1(621.73)he solid line shows the RMPS data set of
Griffin and Ballance T1], the dashed line shows tife-Matrix data set of Zatsarinny and Bartschat
[72], and the dotted line shows O’Mullane’$]] Plane WaveBorn (see chapte4.2) data.

In this case, the three sets of calculations agree on thedii®e The fact that théR-Matrix
and the RMPS data sets produce different intensities dir@ugigests that the excited levels have
a strong population contribution coming from the metagtaibhis would also explain why none of

the data sets are able to explain all of the measurements.
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8.4.2 Spectral Dipole Lines Connected to the M etastable
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Figure 8.17: Line intensity for the 28p 2[5/2]3 and 2i33p 2[1/2], upper levels.
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Figure 8.18: Line intensity for the 28p 2[1/2]; upper level. The solid line shows the RMPS data
set of Griffin and Ballance7[l], the dashed line shows thR-Matrix data set of Zatsarinny and
Bartschat 72], and the dotted line shows O’Mullane’¢]] Plane WaveBorn (see chapted.?)
data.
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Figure 8.19: Intensity line ratio of 1(602.99)/1(640.22).
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Figure 8.20: Intensity line ratio of 1(659.89)/1(616.36)he solid line shows the RMPS data set of
Griffin and Ballance T1], the dashed line shows tHe-Matrix data set of Zatsarinny and Bartschat
[72], and the dotted line shows O’Mullane’$]] Plane WaveBorn (see chapte4.2) data.
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The fact that the experimental ratio is also flat, means thabssumption of statistically split-
ting the level populations within a term for the (LS) resalVeMPS [/ 1] data set is appropriate for

our plasma conditions.
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Figure 8.21: Intensity line ratio of 1(703.24)/1(743.89he solid line shows the RMPS data set of
Griffin and Ballance T1], the dashed line shows tH@-Matrix data set of Zatsarinny and Bartschat
[72], and the dotted line shows O’Mullane’$]] Plane WaveBorn (see chapte4.2) data.

The fact that some lines agree with the theory and others dmapagain be due to differences

in the excitation cross-sections from the metastable.
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8.4.3 Spectral Dipole Lines Connected to the Ground and Metastable
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Figure 8.22: Line intensity for the 28p 2[5/2]> upper level.
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Figure 8.23: Line intensity for the 2@p 2[1/2]y upper level. The solid line shows the RMPS data
set of Griffin and Ballance7[l], the dashed line shows thR-Matrix data set of Zatsarinny and
Bartschat 72], and the dotted line shows O’Mullane’¢]] Plane WaveBorn (see chapted.?)
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Figure 8.24: Intensity line ratio of 1(607.43)/1(585.25)he solid line shows the RMPS data set of
Griffin and Ballance T1], the dashed line shows tife-Matrix data set of Zatsarinny and Bartschat
[72], and the dotted line shows O’Mullane’$]] Plane WaveBorn (see chapte4.2) data.

159



8.4.4 Spectral Dipole Lines Not Connected to the Ground Nor the M etastable

10,000

— E 59I4,4E| nm I I I I Né D(i'ltCl I I I I :ﬂ.dﬂs Il}utu I 3
<5 F 609.62 am IE Duts — — 7
£ [ G14.31 nm Gron Datn —
= 1.000F =
oa E E
c C ]
L - ]
= 0100k -
. F] F =
£ E 3
] C ]
& ootal |
T
E .
5 i
0,001 AR /) R R R
L] 2 4 5] 8

Electron Temperature (ey)

Figure 8.25: Line intensity for the 28p 2[1/2], upper level.
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Figure 8.26: Line intensity for the 28p 2[1/2]o upper level. The solid line shows the RMPS data
set of Griffin and Ballance™]], the dashed line shows thR-Matrix data set of Zatsarinny and
Bartschat 72], and the dotted line shows O’Mullane’¢]] Plane WaveBorn (see chapted.?)
data.
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Figure 8.27: Intensity line ratio of 1(609.62)/1(630.48).
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Figure 8.28: Intensity line ratio of 1(614.31)/1(594.48)he solid line shows the RMPS data set of
Griffin and Ballance T1], the dashed line shows tHe-Matrix data set of Zatsarinny and Bartschat
[72], and the dotted line shows O’Mullane’$]] Plane WaveBorn (see chapte4.2) data.
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Figure 8.29: Intensity line ratio of 1(667.83)/1(692.95)he solid line shows the RMPS data set of
Griffin and Ballance T1], the dashed line shows tife-Matrix data set of Zatsarinny and Bartschat
[72], and the dotted line shows O’Mullane’$]] Plane WaveBorn (see chapte4.2) data.

Again, the sporadic agreemen of each of the data sets withxgferiment suggests that each of
them still have innacurate data, or that there are more @mpechanisms occuring in the plasma
that have not taken in to account in our emission modelikg (hiteractions with the wall, opacity,

metastable resolved ionization balance calculation, etc)
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8.4.5 Other DipoleLine Ratios

We lastly take a look at a line ratio where the two lines omggnfrom two different terms.

""""" [ I L I R I I P S S

8 i Ne Intenslty Line Ratia Q‘é"nﬁ:"’l T

ro- GrCn Oata —

o Exp Oaota -

w O ]

T - .

X B ]

o | _

~ 4 e emmmmmmmemTOTTTIITTTY

2 L ]
o

S :

G_ ||||||||| Livviiiaa IFE NN RN Lo aaia Loy a a1 Lo Lo |

1 2 3 4 3 6 7 a)
Electron Temperature {eV)

Figure 8.30: Intensity line ratio of 1(585.25)/1(594.48))he solid line shows the RMPS data set of
Griffin and Ballance T1], the dashed line shows tife-Matrix data set of Zatsarinny and Bartschat
[72], and the dotted line shows O’Mullane’s$]] Plane WaveBorn (see chapte4.2) data.
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CHAPTER9

CONCLUSIONS

This dissertation has focused on modeling Ar Il, Ar lll, and Nemission, and on analyzing
spectral emission from the Auburn ASTRAL helicon plasmaerfghare two main aims to this work.
Firstly we investigated whether spectral measuremenis &8 TRAL could be used to benchmark
the fundamental atomic data. Secondly we investigateasitieline ratios from Ar Il, Ar lll, and
Ne | that could be used as temperature and density diageosticpart of these aims we generated,
when needed, new atomic data that was used in the modelirmgwdik presented here is of general

use for laboratory and astrophysical spectral diagnostics

Some basic atomic structure theory has been described.sElafN scale factors in optimizing
atomic structure calculations was shown. The LAMDA code dasloped to automatically adjust
the X\ scale factors and to optimize atomic structure based on Bitgfgies and line strengths. This
LAMDA code has been used to optimize the atomic structurevitaa used for collisional data cal-

culations.

We have also described various theoretical methods, subtle #&ane Wavd3 orn, Distorted-
Wave, andR-Matrix approaches, that are used to calculate the atontaidsour modeling. We
used collisional-radiative theory to predict spectra¢ndities, allowing for temperature and density

variation along the line of sight of ASTRAL.
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We successfully completed experimental measurements andrNe ions in theAuburn
Steady J ateResearchAciLity ASTRAL. As we have shown in chaptesland8, Langmuir
probe measurements of the density and temperature digtristhave been key for our emission
modeling purposes. We have also shown the importance oflerayth calibration on the experi-

mental spectroscopy data in order to reproduce accuraéniiensity ratios.

We have assembled a new atomic data set fdr.Arincludes RMPS, level-resolved Distorted
Wave, and CADW rate coefficients. When we calculated iommndbalance using the new data we
see a shift in the temperature at which Ar Il emits, in a gooc@gent with our ASTRAL mea-
surements. The differences are mostly due to the new CADWalienic recombination data, with
the new RMPS At ionization also making a difference. This proved to be aulsefperimental
verification of the new atomic data. We have identified sévara ratios in Art to test the RMPS
excitation data, and to identify potentially useful lin¢ioa for N, andT, diagnostics. In our com-
parison with ASTRAL line intensities as a function 0§, we obtained good agreement with our
theoretical predictions using the RMPS data, when the taniaf T, and N, along the line of

sight was accounted for.

The results from an ICFT calculation for Af are shown to be close to those from a Breit-
Pauli calculation. Our finaR-Matrix calculation consists of a Breit-Pauli calculatiatith the first
9 levels shifted to NIST energies. While this data foPArwas generated to model ASTRAL
emission, it was also found to have applications for plaget@bulae diagnostics. We compared
the results of this calculation with literature values faansitions within the 3p configuration,
finding differences at low temperatures due to low energgrrasce contributions. Forbidden lines
within the 3@ configuration are commonly used&s and N, diagnostics of low density planetary

nebulae.
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We calculated one temperature sensitive and one densigjtiserline ratio, finding that our new
data does not make a significant differences to the temperditagnostic, but does have a sizeable
affect on the density diagnostic compared to values cdkdilasing previoudR-Matrix data. Our
final effective collision strengths are now available on @ak Ridge National Laboratory Atomic

Data Web 62], and in the ADAS [1] database.

We have presented mixed results for the modeling for nenéaih for different electron-impact
excitation data sets. Some of the lines have been modeledsafally while some others have not.
We used electron-impact excitation Plane W#ern (IC) data calculated by O’Mullanel]], R-
Matrix (IC) data calculated by Zatsarinny and Bartsci7é],[and newly calculated?-Matrix (IC)
and RMPS (LS) data sets by Griffin and Ballan@d][ We have also assumed statistical popula-
tions on the atomic levels in order to use the RMPS (LS) etiaitadata of Griffin and Ballance
in our emission modeling. Th&-Matrix data sets show good agreement with experimentat mea
surements of excitation cross-sections from the grounal |eut varying levels of disagreement for
excitation from the metastable level. Comparison with ABLRspectral measurements suggest
that the metastable plays a significant role in populatirgekcited states. We concluded that in
order to successfully model emission from neutral neon, aedrto perform a new large RMPS

(IC) resolved calculation in the future.
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APPENDIX A

Green’S FUNCTION SOLUTION FOR THENON-HOMOGENEOUSH elmholtz EQUATION

A.l1 The Helmholtz Equation

The non-homogeneoud elmholtz equation is given by
(V2+E)y =Q (A1)

WhereQ is an arbitrary "driven” function, therefore we seek a solotby usingGreen’s
functions to find a solution in the integral form

P(F) = / G(7 — 7)) Q(7) d57, (A.2)

By the definition, theGreen'’s function G () for a linear differential equation represents the
"response” of the system to a delta-function source. Tloegetlve write theGreen’s function
equation as

(V2 + k)G (F) = 83(7) (A.3)
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A.2 Green’sFunction Solution

By applying the operatofV?2 + k2) into equation A.2), and by the definition given by
equation A.3) we get

(92 + k2)gp(7) = / (92 4 K2)G(F — 7)]Q(7)d°F,

= / 3(7 — 7,)Q(ro)d37, = Q(¥) (A.4)

The Fourier transform forG(7) is given by

applying the operatofV2 + k2) into equation A.5) we get

(V2 + K)G() = [ 192 + 1) g ()5 (A6)

1
(271.)3/2

with

626i.§’-1_" — _SZe’ié'-'F (A?)

For one dimensional delta functi@{x) is given in itsF ourier form as

é(x) = 1 / e e*®dk (A.8)

27 co

and for the threedimensional delta functi&h(+)

63 (7) = (271r)3 / ¥ Td3s (A.9)

therefore we rewrite equatio®\(6) in the form

1

57 > 1 iF 53 =
W/(—s2 + k?)e¥Tg(5)d3F = —— /e d33 (A.10)

(2m)3

169



it follows that the solution fog () is given by

1
= A.11
by plugging this solution into equatio®\(5) we get
1 . 1
GF)= — [ ¥ d*F A.12
= Gy [e Rt (A.12)

In order to simplify the problem let us use spherical cocatks(s, 8, ¢), and fixing# into
the £ axis direction as shown by figufe 1.

P N

Figure A.1: Spherical coordinates representation.
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Therefored®3 = s2sin(0)dsdfd¢, ands - ¥ = srcos(6). By integrating with respect to
the angular dependen¢@, ¢) we get

2w o 2 isrcos(0) | 4 .
/ / ezsrCOS(e)Sin(g)dgdd, — _L — M (A.13)
0 0 (-1 0 ST
thus we rewrite equatiorA(12) in the form
1 2 [1T°° ssin(sr) 1 +o° 5 sin(sr)
G(7) = - —— ‘ds = d A.14
(") (2m)2r /0 k2 — 52 07 amer /_oo K2 _ g2 0 ( )

Which is not a simple form to solve. Usingn(sr) = & (e®" — e~%") we rewrite the
integral in the complex form

i “+oco Seisr +o0 Se—isr
G = 87r2r{ /_C,o oG h™™ /_oo (s — k) (s + k)ds}
i
= 8n2y (I1 — I2) (A.15)

where both integrals can be evaluated by using@la.chy’s integral formula

f(2)

dz = 2mif(2o) (A.16)
(z — 20)

if z, lies within the contour of integration, otherwise the intdds zero.
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§=-K s=+k 1els)

Figure A.2: Complex contour integration.

FigureA.2 describes how for each integral in equatid@nl), we chose to close the contour
in such a way that the semicircle at infinity has a zero coutidi. In case of the integrdl, e*s"
goes to zero wher has a large positive imaginary part. By defining the real agishe x” axis,
and the imaginary axisy”, we then close the contour above (on the positive side ofrttaginary

axis). The contour encloses only the singularitg at +k, therefore we get
Seisr 1 ) Seisr
I, = 7{ ds = 271
s+k|s—k s+ k

For the case of the integrdih, e —*s" goes to zero whes has a large negative imaginary part,
therefore we close the contour below (on the negative sideeoimaginary axis). The contour now
encloses only the singularity at= —k and it goes around the clockwise direction so we pick up
a minus sign, therefore we get

= ime®kr (A.17)
s=k

Se—isr 1 se—isr .
I, = — f{ [ ] ds = —27ri[ } = —imwetkr (A.18)
s—k]|s+k s—k]|ls—_p
therefore the final solution of th&reen’s function is given by
eik'r
G(7) = — (A.19)
47r
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APPENDIX B

SYSTEM RESPONSEFUNCTION FOR THEASTRAL SPECTROMETER

B.1 Introduction

The response of the ASTRAL spectrometg8|[is measured as a function of wavelength. An
absolutely calibrated Oriel Halogen lamp is used to meah@eesponse of the spectrometer as a
function of wavelength.

B.2 Calibration Procedures

B.2.1 Mounting thelamp

The lamp is held in an Oriel Model 63365 Lamp Mount, whichwabldor a vertical orientation
in open air. Calibration data and lamp life standards canobed within the lamp’s instruction
manual B2]. The calibration area is surrounded by 5 non-reflectivelblsurfaces. On top, no
immediate surface is located close to the lamp.

The ceiling located about 3 meters above acts as the ultilghteollecting surface. Reflection
from the ceiling is not a significant source of radiation fog tollection optics. The open top surface
keeps the temperature around the lamp constant, thusngeddinore stable operating environment.
Laboratory lights are turned off during the entire calilmatprocedure.

B.2.2 Power Source

The lamp requires a well-regulated constant current thedsi®o be accurately calibrated to re-
produce the same current value used in factory lamp cabor§82]. A Kepco ATE-75-15 regulated
power supply is used to produce steady current for the lamp.

B.2.3 Measurement of Lamp Current

In order to reproduce the calibration current used in Gri€alibration Facility, a precision
Fluke ammeter with accuracy of 0.5% is used. A gradual irs@da reach the operating current
was employed to improve the lamp’s life and minimize di#8]. A final lamp operation current of
6.50 Amperes was maintained during calibration. Ambiemigerature was 21.9C.
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B.2.4 CCD Camera Conditions

The acquisition time of the camera was 4 seconds to avoicbphagtection saturation on the
CCD, auto-background subtraction was used. Photons cewatsomparable to those obtained

during experiments. The camera temperature is maintaine2D&C by a thermoelectric cooler.
The entrance slit is 50 microns.

B.25 Oriel Model QTH 200W Calibration Curve

The calibration curve of the Oriel Quartz Tungsten Halogeng model QTH 200W is given
by figureB.1. The irradiance data comes from Oriels Calibration Datetshe

Calibration Lamp Irradiance

60

50 +

40 +

30 +

20 +

Irradiance (MW/m”2 nm)

10 A

0 500 1000 1500 2000 2500 3000
Wavelength (nm)

Figure B.1:1,(\) Oriels Quartz Tungsten Halogen lamp calibration curve.

The irradiancels(A) (in mWatt/nm?nm) for different wavelengths can be calculated by using
the fitting equation for non-NIST wavelengt&?]

L(A) =2 (C+ DAY+ EA 24 FA3 4 GA™ 1 + HA7%)eAHBAY)  (BY)
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With the parameters shown in tatiel.

A= 42.9337969819961 E= —17471.4519022005
B= —4482.03454943898 F= 2832760.57547414
C= 0.986818227760581 G= —1063959488.41395
D= 31.3179591896986 H = 0.00000

Table B.1: Oriel Model QTH 200W Calibration Curve Paramgter

Irradiance tables are also available from Oriel Calibrafizatasheets. Irradiance is given 1,
10, and 100 nm. The source was calibrated with a referencé B8rce 82]. The uncertainty is
smallest at about 700 nm (see taBlR).

Wavelength(nhm) 250 350 654.6 900 1300 1600 2000 2400
Uncertainty(%) 2.7 1.85 1.75 1.85 1.88 2.45 3.07 4.87

Table B.2: Irradiance uncertainty at different wavelesdtir the QTH 200W lamp.

B.2.6 Calibration

With the lamp calibrated according to Oriel’s specificasipthe spectrometer is now ready to
be calibrated as a function of wavelength, and to evaluateg$ponse at different wavelengths. We
can now write the expression that relates the measuredanea with the lamp’s irradiance

Im(A) = Tach()‘)Is(A) (B.2)

Wherel,, () is the irradiance as measured by the spectroni&lgy, is the acquisition time
of the camera (in our case 4 sec) in the non-saturation red@A) is the response function of the
system, ands(A) is the calibration lamp irradiance. From this equation we sianply solve for
the response function of the systdR{\) as a function of the wavelength. Knowing the response
function of the system we can now compensate any experiiner@asurement as a function of
wavelength of the spectrometer. We simply write the sotuéie

L)
R(\) = Tl (B.3)
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B.3 Measurements

A range between 275 and 1075 nm was selected for the spamigos®easurements, this range
was selected due to mechanical limitations of the spectiemm@é/e are showing the selected instru-
mental central wavelength for each spectral "window” (sdBeB.3), and the actual or real central
experimental wavelength (see talidef). The wavelength calibration of the spectrometer has been
performed earlier, details can be found in the internal ref@3].

Wavelengths(nm) 275 300 325 350 375 400 425 450 475
500 525 550 575 600 625 650 675 700
725 750 775 800 825 850 875 900 925
950 975 1000 1025 1050 1075

Table B.3: Selected experimental central wavelengths

Wavelengths(nm) 265.62 291.51 316.62  341.62  366.97 392.00 417.08
442.35 467.45 492.66 517.77 542.95 568.12 593.29
618.54 643.66 669.02 694.06 719.15 744.60 769.83
795.00 820.50 845.66 871.10 896.63 922.04 947.50
972.95 998.44 1022.59 1047.83 1073.06

Table B.4: Measured experimental central wavelengths
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In figure B.2 we can see the relation between instrumental and real waytbke

Experimental Selected Wavelength vs Mesured Experimental Wavelength

1200

1000 -

800

600

400

200

Measured Experimental Wavelength (nm)

0 200 400 600 800 1000 1200
Experimental Selected Wavelength (nm)

Figure B.2: Relation between actual wavelength and ingniad wavelength.

Fitting the curve with a linear equation, we find the relati@mtween the two. We now find any
actual wavelengti\ 4 by using the following equation

Aa(Ar) &~ 1.0093A; — 11.939 (B.4)

where)y is the instrumental wavelength read on the monochromatiber £e central wave-
length correction for each specific spectral "window” isegiy we now show in figur®.3 the
experimental averaged results of the irradiance as a imati wavelengthl,,,(\), expressed as
number of counts. We also see the regions where the measeedity drops. Comparing with the
fiber optic’s response we conclude that those drops matafetfiens of absorption in the fiber.
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FigureB.4 shows how the measured intensity drops also affect themsygigponse function as
a function of wavelength. Notice that we are showing theltes all the spectral "windows” with
the same central wavelength values from tdahi

Experimental Averaged Irradiance vs Wavelength

8.0E+05

7.0E+05 -
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1.0E+05 -
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Wavelength (nm)

Figure B.3:1,,,(\) Experimental averaged irradiance as a function of wavéfeng

Finally having the experimental averaged irradiance, #idb@tion lamp irradiance, and the
acquisition time we now use equatidB.8) to compute the system response function as a function
of wavelengthR(\).
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FigureB.4 shows the computed system response funcRgn.).

Response Function vs Wavelength

16000

14000 +

12000 ~

10000 +

8000 -
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Response Function (# of counts / (sec mW/m”2 nm))

250 350 450 550 650 750 850 950 1050
Wavelength (nm)

Figure B.4: R(\) System response function as a function of wavelength.

As we can see in figur8.4, the maximum response of the system is observed at 448 nm.
Minimum response is observed in the IR (far > 1000 nm). The spectral region between 275
and 300 nm is subject to the greatest uncertainty because ¢dw irradiance of the lamp at these
wavelengths. The system response function cannot be ldeddsy a simple expression. However,
we can reproduce the data accurately by combining a set ajdtens for different wavelength
regions. TableB.5 shows the values obtained using the fit for the different \esgths from 266
to 1075 nm. Having the values of the system response functimnacquisition time, and the
experimental measured value we now rearrange equai@ to solve for the "real” experimental
value

Im(X)

) = T R3)

(B.5)
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Table B.5: Numerical values for the system response as &@danaf wavelength X vs R(\)).

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

1867.73
1860.26
1853.96
1848.75
1844.52
1841.19
1838.67
1836.88
1835.76
1835.22
1835.22
1835.68
1836.55
1837.78
1839.33
1841.14
1843.19
1845.43
1847.83
1850.37
1853.01
1855.74
1858.54
1861.38
1864.26
1867.17
1870.09
1873.03
1875.97
1878.91
1881.86
1884.82
1887.79
1890.78
1893.80
1896.86
1899.97
1903.13
1906.38
1909.72
1913.16

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

1916.73
1920.45
1924.33
1928.40
1932.68
1937.19
1941.95
1946.98
1952.32
1957.98
1963.99
1970.38
1977.17
1984.38
1992.05
2000.20
2008.85
2018.03
2027.78
2038.10
2049.04
2060.61
2072.84
2085.76
2099.39
2113.76
2128.89
2144.81
2161.54
2179.10
2197.52
2216.81
2237.01
2258.14
2280.20
2303.24
2327.26
2352.28
2378.33
2405.42
2433.58

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

2462.82
2493.15
2524.60
2557.17
2590.89
2625.78
2661.83
2699.08
2737.53
2777.20
2818.10
2860.24
2903.64
2948.30
2994.24
3041.47
3090.01
3139.85
3191.02
3243.52
3297.36
3352.56
3409.13
3467.07
3526.40
3587.12
3649.25
3712.81
3777.79
3844.22
3912.10
3981.45
4052.28
4124.61
4198.45
4273.82
4350.73
4429.20
4509.25
4590.90
4674.17

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

4759.08
4845.65
4933.92
5023.89
5115.61
5209.11
5304.40
5401.54
5500.54
5601.45
5704.32
5809.17
5916.05
6025.02
6136.12
6249.40
6364.91
6482.72
6602.89
6725.47
6850.55
6978.18
7108.44
7241.41
7377.18
7515.83
7657.44
7802.12
7949.96
8101.07
8255.55
8413.52
8575.10
8740.40
8909.56
9082.71
9260.00
9441.55
9627.54
9818.10
10013.42

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

10213.65
10418.97
10629.57
10845.64
11067.37
11294.98
11528.66
11768.64
12015.15
12268.42
12528.70
12796.24
13071.30
13392.51
13498.20
13552.14
13593.25
13622.09
13639.18
13645.06
13640.25
13625.24
13600.55
13566.66
13524.06
13473.21
13414.57
13348.61
13275.76
13196.46
13111.14
13020.21
12924.07
12823.12
12717.76
12608.36
12495.29
12378.91
12259.57
12137.62
12013.38
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470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

11887.17
11759.32
11630.13
11499.89
11368.88
11237.39
11105.68
10974.01
10842.62
10711.77
10581.67
10452.54
10324.61
10198.07
10073.11
9949.92
9828.68
9709.54
9592.66
9478.19
9366.27
9257.03
9150.57
9047.02
8946.47
8849.01
8754.73
8663.70
8575.97
8491.60
8410.65
8333.13
8259.08
8188.51
8121.44
8057.85
7997.74
7941.09
7887.86
7838.02

510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

7791.51
7748.28
7708.27
7671.39
7637.57
7606.69
7578.67
7553.38
7530.71
7510.52
7492.66
7476.99
7463.35
7451.57
7441.47
7432.86
7425.54
7419.31
7413.95
7409.24
7404.94
7400.81
7396.59
7392.02
7386.83
7380.74
7373.46
7364.69
7354.11
7341.42
7326.29
7308.36
7285.24
7263.05
7241.50
7218.59
7194.43
7169.11
7142.72
7115.35

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

7087.07
7057.98
7028.13
6997.61
6966.47
6934.78
6902.60
6869.99
6837.01
6803.69
6770.10
6736.27
6702.26
6668.09
6633.81
6599.45
6565.04
6530.62
6496.22
6461.86
6427.57
6393.36
6359.27
6325.31
6291.49
6257.84
6224.38
6191.10
6158.04
6125.19
6092.57
6060.19
6028.05
5996.17
5964.55
5933.18
5902.09
5871.27
5840.73
5810.46

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629

5780.47
5750.76
5721.34
5692.19
5663.33
5634.75
5606.45
5578.43
5550.68
5523.21
5496.02
5469.10
5442.44
5416.05
5389.93
5364.07
5338.47
5313.12
5288.03
5263.18
5238.58
5214.23
5190.11
5166.24
5142.59
5119.18
5095.99
5073.03
5050.29
5027.76
5005.45
4983.35
4961.45
4939.75
4918.26
4896.95
4875.84
4854.91
4834.17
4813.60

630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669

4793.19
4772.96
4752.88
4732.96
4713.18
4693.54
4674.03
4654.65
4635.38
4616.22
4597.15
4578.17
4559.26
4540.41
4521.61
4502.84
4484.09
4465.34
4446.58
4427.78
4408.93
4390.01
4370.98
4351.84
4332.55
4313.08
4293.41
4273.50
4253.33
4232.86
4212.05
4190.86
4169.25
4147.18
4124.60
4101.47
4077.73
4053.33
4028.21
4002.32

181




670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709

3975.59
3947.95
3919.34
3889.69
3858.91
3826.94
3793.68
3759.05
3722.96
3685.32
3646.02
3604.96
3562.04
3517.14
3470.14
3420.93
3369.37
3315.34
3258.69
3199.29
3136.98
3071.62
3003.03
2931.07
2850.14
2850.65
2856.66
2862.74
2868.88
2875.04
2881.22
2887.38
2893.53
2899.62
2905.66
2911.62
2917.49
2923.25
2928.89
2934.39

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749

2939.75
2944.93
2949.95
2954.77
2959.40
2963.81
2968.01
2971.97
2975.70
2979.18
2982.39
2985.35
2988.03
2990.43
2992.54
2994.36
2995.88
2997.10
2998.01
2998.60
2998.87
2998.83
2998.45
2997.75
2996.71
2995.34
2993.64
2991.59
2989.21
2986.49
2983.42
2980.02
2976.27
2972.18
2967.74
2962.97
2957.86
2952.41
2946.62
2940.49

750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778
779
780
781
782
783
784
785
786
787
788
789

2934.04
2927.25
2920.13
2912.69
2904.93
2896.84
2888.44
2879.72
2870.70
2861.37
2851.74
2841.81
2831.59
2821.08
2810.29
2799.22
2787.88
2776.28
2764.40
2752.27
2739.90
2727.27
2714.40
2701.30
2687.98
2674.43
2660.66
2646.69
2632.52
2618.15
2603.59
2588.84
2573.92
2558.83
2543.58
2528.17
2512.61
2496.91
2481.08
2465.11

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829

2449.03
2432.83
2416.52
2400.11
2383.61
2367.02
2350.35
2333.60
2316.79
2299.93
2283.01
2266.04
2249.03
2232.00
2214.94
2197.85
2180.76
2163.66
2146.57
2129.47
2112.40
2095.34
2078.31
2061.31
2044.35
2027.44
2010.57
1993.76
1977.01
1960.33
1943.72
1927.18
1910.74
1894.37
1878.11
1861.93
1845.87
1829.91
1814.06
1798.32

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

1782.71
1767.22
1751.86
1736.63
1721.53
1706.58
1691.77
1677.10
1662.58
1648.21
1633.99
1619.93
1606.03
1592.29
1578.72
1565.30
1552.06
1538.98
1526.07
1513.33
1500.76
1488.36
1476.13
1464.07
1452.19
1440.48
1428.94
1417.57
1406.37
1395.34
1384.48
1373.78
1363.26
1352.89
1342.69
1332.64
1322.76
1313.02
1303.44
1294.01
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870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911

1284.72
1275.58
1266.57
1257.70
1248.95
1240.33
1231.84
1223.46
1215.19
1207.02
1198.96
1190.99
1183.10
1175.30
1167.58
1159.92
1152.33
1144.79
1137.30
1129.84
1122.42
1115.03
1107.64
1100.27
1092.89
1085.51
1078.10
1070.66
1063.18
1055.65
1048.07
1040.41
1032.67
1024.84
1016.91
1008.86
1000.69

992.38

983.92

975.30

966.50

957.52

912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953

948.33
938.93
929.31
919.44
909.32
898.93
888.25
877.28
866.00
854.39
842.43
830.12
817.44
804.36
790.88
776.98
762.64
747.84
732.57
716.82
700.55
683.76
666.43
648.55
630.08
611.02
591.34
571.03
550.07
528.44
506.12
483.09
459.33
434.82
409.54
371.22
375.19
390.51
404.97
418.57
431.36
443.35

954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995

454.57
465.05
474.81
483.87
492.26
500.00
507.11
513.62
519.54
524.90
529.72
534.01
537.80
541.10
543.93
546.32
548.27
549.81
550.95
551.70
552.08
552.11
551.81
551.18
550.24
549.01
547.49
545.70
543.65
541.36
538.83
536.07
533.11
529.94
526.58
523.04
519.32
515.44
511.41
507.23
502.91
498.47

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037

493.90
489.21
484.43
479.54
474.56
469.49
464.34
459.12
453.83
448.48
443.07
437.61
432.10
426.55
420.97
415.34
409.70
404.03
398.34
392.64
386.92
381.20
375.47
369.74
364.02
358.30
352.59
346.89
341.21
335.55
329.91
324.29
318.71
313.15
307.63
302.14
296.70
291.29
285.93
280.63
275.35
270.15

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

265.00
259.91
254.88
249.91
245.02
240.20
235.46
230.78
226.20
221.70
217.30
212.98
208.76
204.64
200.63
196.73
192.94
189.28
185.73
182.31
179.04
175.89
172.90
170.05
167.36
164.84
162.48
160.30
158.30
156.49
154.88
153.48
152.28
151.31
150.57
150.07
149.81
149.81
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