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Dissertation Abstract

Intersection problem for the class of quaternary reed-muller codes
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Doctor of Philosophy, August 10, 2009
(M.S., University of Puerto Rico, February 16, 2003)

(B.S., Universidad Nacional San Antonio Abad, December 17, 1996)

58 Typed Pages

Directed by Kevin T. Phelps

Given two codes C1 and C2 over an alphabet F , we denote the size of their intersection

by η(C1, C2), and call this the intersection number of C1 and C2.

In general the intersection problem can be stated as follows: given a family or class of

families of codes, find the spectrum of intersection numbers. The general strategy to attack

this kind of problem begins by finding necessary conditions for the intersection. This leads

to lower and upper bounds or a set of possible intersection numbers. Secondly, finding the

sufficient conditions implies giving specific constructions of codes in such a way that the

cardinality of their intersection fits those values between these bounds.

In this dissertation is presented a complete solution of the intersection problem for

QRM(r,m). This includes the well-known quaternary Kerdock code, the Kerdock-like

code and Preparata-like code.
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Chapter 1

Introduction

Let Zn2 denote the vector space of dimension n over Z2. A linear subspace of dimension

k will be called a binary-[n, k]-linear code over Z2, [n, k]-code for short. An element of a

code C is called a codeword. A k × n matrix G, whose rows form a basis for an [n, k]-code

is called a generator matrix of the code. An information set for C is any set of k linearly

independent columns of G. The remaining r = n−k columns are called a redundant set and

r is the redundancy of C. G is called systematic if it has the form [I|A], where I is a k × k

identity matrix and A is a k× (n− k) matrix. A code C has a systematic generator matrix

if and only if the first k columns of any generator matrix of C are linearly independent. In

this case the information set is taken to be the set of the first k columns of the matrix.

The inner product of two vectors x = (x1, . . . , xn), and y = (y1, . . . , yn) in Zn2 is

x · y =
n∑
i=1

xiyi (mod 2). (1.1)

Given a [n, k]-code C, the dual code or orthogonal code of C is defined by

C⊥ = {x ∈ Zn2 |x · c = 0, ∀c ∈ C}. (1.2)

C⊥ is a [n, n−k]-code. A code C is self-orthogonal provided that C ⊆ C⊥ and self-dual

provided that C = C⊥.

An (n − k) × n matrix H is called a parity-check matrix for the [n, k]-code C if the

columns of H form a basis for the dual code C. If G = [Ik|A] is a generator matrix for the

[n, k]-code C, then H = [−AT |In−k] is a parity-check matrix for C.
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The Hamming distance d(x,y) between two vectors x, y ∈ Zn2 is the number of positions

in which x and y differ. The minimum (Hamming) distance d of a code C is the smallest

distance between distinct codewords. The (Hamming) weight wt(x) of a vector x ∈ Zn2 is

the number of nonzero coordinates in x. If C is a linear code, the minimum distance d

coincides with the minimum weight of the nonzero codewords of C. If the minimum weight

d of an [n, k]-code is known, then we refer to the code as an [n, k, d]-code.

Let Ci be an [n, ki, di]-code for i ∈ {1, 2}, both over Z2. The (u|u + v) construction

produces the [2n, k1 + k2,min{2d1, d2}] code

C = {(u,u + v)|u ∈ C1,v ∈ C2}. (1.3)

If Ci has a generator matrix Gi and parity-check matrix Hi, then generator and parity-check

matrices for C are  G1 G2

0 G2

 and

 H1 0

−H2 H2

 . (1.4)

Let [n] be the set {1, 2, . . . , n}. Sn denotes the symmetric group of [n]. Two [n, k]

codes C1, C2, are permutation equivalent if there exists a permutation π ∈ Sn such that

C1 = π(C2).

Let Zn4 be the set of all n-tuples over Z4. If C is an additive subgroup of Zn4 then it is

called a quaternary linear code of length n. C can be expressed as a direct sum of δ cyclic

subgroups of order 4 of Zn4 and γ cyclic subgroups of order 2 of Zn4 , and we say that the

type of C is 4δ2γ . Notice that C has 2m elements, where 2 · δ + γ = m. Alternatively, we

can say that C is code of type (n, δ, γ) or that C is an (n, δ, γ)-code.

We call G a generator matrix of C if its rows generate C.

Every quaternary linear code C of type 4δ2γ is permutation equivalent to a quaternary

linear code with generator matrix of the form
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 Iδ A B

0 2Iγ 2C

 , (1.5)

where Iδ and Iγ denote the identity matrices, of order δ and γ, respectively, A, C, are Z2-

matrices, B is a Z4- matrix and 0 is the γ × δ zero matrix.

The inner product of two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) in Zn4 is

x · y =
n∑
i=1

xiyi (mod 4). (1.6)

Let C be a quaternary linear code of length n. Define the dual code of C as

C⊥ = {x ∈ Zn4 |x · c = 0, ∀c ∈ C}. (1.7)

Notice that C⊥ is a quaternary linear code. If the generator matrix of C is given by

(1.5), then the generator matrix of C⊥ is given by

 −BT − CTAT CT In−δ−γ

2AT 2Iγ 0

 (1.8)

The Lee weights of 0, 1, 2, 3 ∈ Z4 are 0, 1, 2, 1, respectively. For i ∈ Z4, the Lee weight

of i is denoted by wL(i). The Lee weight wL(x) of x = (x1 . . . xn) ∈ Zn4 is defined to be the

integral sum of the Lee weights of its components,

wL(x) =
n∑
i=1

wL(xi). (1.9)

This weight function defines a distance function dL(x,y) = wL(x− y) on Zn4 , which is

called the Lee distance.
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The map φ : Z4 → Z2
4, defined by φ(0) = 00, φ(1) = 01, φ(2) = 11, and φ(3) = 10, is

called the Gray map. This map can be extended componentwise to a map, also denoted by

φ, from Zn4 to Z2n
2 . In general, given a quaternary linear code C, its binary image φ(C) will

be nonlinear. A binary code C is called Z4-linear if, after a permutation of coordinates, it

is the binary image of a quaternary linear code.

An important property of the Gray map is that it is a distance preserving map from Zn4

(with the Lee distance) to Z2n
2 (with the Hamming distance). Moreover if C i s a quaternary

linear code then φ(C) is distance invariant.

A decomposition of a permutation π ∈ Sn into nonintersecting cycles of length greater

than 1, will be called canonical, and it is denoted as follows:

π =
τ(π)∏
j=2

(
τj∏
i=1

(vji,1 · · · v
j
i,j)), (1.10)

where τj denotes the number of j-cycles in the decomposition of π. The number of cycles

will be denoted by τ(π) =
∑`

j=2 τj . For a cycle θ = (v`p,1v
`
p,1 . . . v

`
p,`) of length ` in π, `

will be denoted by λ(θ). The sum of all lengths of the cycles in π will be denoted by λ(π).

(λ(π) =
∑τ(π)

j=2 j · τj).

Associated with π, there is a matrix Pπ of order n, called a permutation matrix in

which Pπ(i, j) = 1, if π(i) = j and 0 otherwise.

The diagonal matrix diag(a1, a2, ...an) of order n is the matrix D defined by D(i, j) := 0

if i 6= j and D(i, i) := ai where ai are real entries.

Any matrix that can be written as the product of a permutation matrix and a diagonal

matrix is called a monomial matrix.

Since we are interested in quaternary linear codes, we are going to use monomial

matrices that have the matrix diag(a1, a2, ...an) with entries ai equal -1 or 1. Define the

diagonal matrix Di as diag(a1, a2, ...an), where aj = −1 if i = j, and aj = 1, otherwise.

Associated with Di there is a map ρi : Zn4 → Zn4 that multiplies the ith-coordinate of

each vector of Zn4 by −1. For i = 0, . . . , n, ρi is called the inversion of the ith-coordinate,
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where Id = ρ0. In general, we will write ρ to denote an inversion of coordinates and ρs,

when we want to emphasize the set S of coordinates. Let π ∈ Sn and ρ an inversion of

coordinates, the map ρ(π) is called a monomial map. If P is the matrix associated to π, and

D, the matrix associated to ρ, then the matrix PD is the matrix associated to the monomial

map ρ(π). Here D is the diagonal matrix that has -1 in those positions determined by ρ.

From now on by monomial map or monomial matrix, we mean just what we say in this

paragraph.

We say that C1 and C2 are monomially equivalent, provided there is a monomial map

ρ(π) such that ρ(π(C1)) = C2. Two quaternary linear codes that are equivalent are of the

same type.

Given a vector x = (x1 . . . xn) and a subset I = {i1, . . . , ik} ⊂ [n], k < n, the projection

of x onto I is the vector x|I = (xi1 , . . . , xik) where ij < ij+1, 1 ≤ j ≤ k − 1. For a given

permutation π =
(

1 2 . . . n
i1 i2 . . . in

)
, x|π = x|I .

In chapter 2 and 3 of this dissertation we set up the reference frame for chapter 4.

Specifically, chapter 2 contains the definitions and background information required to

understand the main result and chapter 3 reviews the intersection problem from an historical

point of view.

Chapter 4 presents the two main results: Theorem 4.7 which gives the intersection num-

ber for quaternary t− IR codes and Theorem 4.9 which determines the algebraic structure

of those intersections, moreover shows explicit constructions of their generator matrices.

We end this chapter by applying these results to the class of quaternary Reed-Muller codes.

Chapter 5 refers to the conclusions of this dissertation, as well as open problems and

future directions for research.
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Chapter 2

Binary Reed-Muller codes and

Quaternary Reed-Muller codes

Since the codes that are the focus of this dissertation are characterized in terms of

binary Reed Muller codes, in this chapter we are going to review their principal properties.

In the literature, there are several constructions of these codes, but they were first treated

by D.E Muller (1954) and I.S Reed (1954). The mathematical interest of Reed-Muller codes

is that they are related to affine and projective geometries.

Kumar etal. [1], presented a construction of the quaternary Kerdock code K(m) as well

as a construction of the quaternary Preparata code P(m), which is the Z4-dual of K(m).

The Gray map image of the quaternary Kerdock code K(m) is a nonlinear binary code K(m)

that is permutation equivalent to the original definition given by Kerdock. The quaternary

Preparata code is defined as P(m) = K(m)⊥. The binary Gray map image of P(m) gives a

nonlinear code, P , that has the same parameters of the original code defined by Preparata,

but there is an essential difference between P(m) and P . The first one is contained in a

nonlinear code with the same weight distribution as the extended binary Hamming code of

the same length (see Theorem 9.10 of [2]). The second one, is a subcode of the extended

binary Hamming code of the same length (Proposition 9.14 of [2]). It is known that there are

several codes with the same parameters as the quaternary Preparata code. They are named

quaternary Preparata-like codes and their Z4 dual are codes with the same parameters as the

Kerdock codes . In [1], they also established the quaternary Reed Muller code QRM(r,m),

as a Z4-version of the binary Reed Muller code, which includes quaternary Kerdock codes

and Preparata codes as special cases and have the property that their images through α

(mod 2) map are the binary Reed-Muller codes. Considering arbitrary Preparata-like codes

it was observed in [3] that it is possible to construct a family of quaternary codes similar to
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that constructed in [1], whose binary image through the α (mod 2) map is a Reed Muller

code that contains the Kerdock-like codes and the Preparata-like codes as a special cases.

In [6], [5] a superclass that contains the QRM(r,m) was defined. Also various prop-

erties including the kernel and rank of the Gray map of codes in this superclass were

established in [3].

2.1 Binary Reed-Muller Codes

Let r,m ∈ Z such that 0 ≤ r ≤ m. Consider, the set of all binary vectors of length m

ordered lexicographically. Any function f : Zm2 −→ Z2 is called a Boolean function, defined

on m variables. If we evaluate f on its domain, the corresponding 2m entries define a unique

binary vector f of length n = 2m. Conversely, given any binary vector of length n, we can

associate a unique Boolean function defined on m variables whose domain is Zm2 . Thus,

there is a bijection between Boolean functions f and the corresponding vectors f. Since f

has 2m entries and each one can be 0 or 1, we have 22m vectors and therefore the same

number of Boolean functions.

For example, the binary vector f = 11010010 of length 8, corresponds to the Boolean

function on three variables f , defined by its truth table:

x1 x2 x3 f

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0
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For 1 ≤ j ≤ m, denote by xj the Boolean function defined by the correspondence rule

f(x1, . . . , xm) = xj . The corresponding vector xj of length 2m has a 1 in the coordinate i

if and only if 2m−j occurs in the binary expansion of i− 1.

For example, let m = 3, j = 2. 23−2 occurs in the binary expansion of 2,3,6,7, therefore,

x2 has 1 in the coordinates 3,4,7,8, thus x2 = (0, 0, 1, 1, 0, 0, 1, 1).

Also, the constant Boolean functions, denoted by 0 and 1 are associated with the all

zeros vector 0 and the all ones vector 1. Given two Boolean functions f and g, the sum f+g,

and the product fg correspond to the logical operators ∧ and ∨. The function f = 1− f ,

correspond to the operator NOT.

The set B of all Boolean functions defined on m-variables, which is equal to the set of

all binary functions defined on Z2, is a linear space over Z2. Thus, B with the standard

addition and scalar multiplication of functions, is a linear space over Z2. Moreover, due to

the standard product of functions, B is a commutative linear algebra. Notice, that we have

the following relations:

xi · xi = xi, and xi · xj = xj · xi . (2.1)

We relate the Boolean functions to their corresponding binary vectors by defining the

componentwise product of the vectors a = (a1, . . . , an) and b = (b1, . . . , bn) over Z2 as

ab = (a1b1, . . . , anbn) (2.2)

Thus, binary vectors related to (2.1) are given by

xixi = xi, and xixj = xjxi . (2.3)

Using, the product and the functions xj , we get 2m − 1 terms with different forms

xi1 · · ·xik , with k ≤ m and i1 < i2 < · · · < ik (2.4)
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The linear combination of the function 1 with the terms in (2.4) are linearly independent

[7] and therefore the corresponding binary vectors

1,x1,x2, ...,xm,x1x2,x1x3, . . . ,x1x2x3 · · ·xm, (2.5)

are also linearly independent and generate Zn2 . The next table is an example of the 16

Boolean functions that generate the space of all the Boolean functions from Z4
2 to Z2, and

the corresponding binary vectors of length 16 that generate Z16
2 .

Boolean function V ector

1 1 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x1 x1 = 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

x2 x2 = 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

x3 x3 = 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

x4 x4 = 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

x1x2 x1x2 = 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

x1x3 x1x3 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

x1x4 x1x4 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

x2x3 x2x3 = 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

x2x4 x2x4 = 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

x1x2x3 x1x2x3 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

x1x2x4 x1x2x4 = 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

x1x3x4 x1x3x4 = 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

x2x3x4 x1x2x4 = 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

x1x2x3x4 x1x2x3x4 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

9



Let 0 ≤ r ≤ m. The rth order Reed-Muller code R(r,m) of length n = 2m is the set of

codewords generated by the matrix G(r,m):

G(r,m) =



G0

G1

G2

...

Gr


.

where G0 is the 1× 2m matrix equals to the all-one vector of length 2n, G1 is the
(
m
1

)
× 2m

matrix whose rows are the binary vectors x1, . . . ,xn given in (2.4), and for 1 < r ≤ m, Gr,

is the
(
m
r

)
× 2m matrix whose rows are the binary vectors obtained by the componentwise

multiplication of a choice of r rows of G1.

There are two trivial codes: R(0,m), called the repetition code with generator matrix

G(0,m) and R(m,m) which is the all space Zn2 . As an example of a nontrivial code, we have

the second order Reed-Muller code of length 16, RM(2, 4), given by the following generator

matrix :

G =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0



.

Alternatively, these codes can be constructed using the (u|u+ v) construction(1.3)
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Theorem 2.1. Let r,m be integers such that 0 ≤ r ≤ m. The rth order Reed-Muller code

RM(r,m) is constructed in the following way:

1. The 0th order Reed-Muller code RM(0,m) is the repetition code {0,1}, and the mth-

order Reed-Muller code RM(m,m) is Z2m
2

2. RM(r,m) = {(u,u + v)|u ∈ RM(r,m− 1),v ∈ RM(r − 1,m− 1)}, 0 < r < m

For 0 < r < m, let G(r,m) be a generator matrix of the Reed-Muller code, then

according to (1.4)

G(r,m) =

 G(r,m− 1) G(r,m− 1)

0 G(r − 1,m− 1)
.


For r = 0, G(r,m) = (1) and for r = m,

G(m,m) =

 G(m− 1,m)

ei

 .

where ei = (0, .., 1, .., n). The number 1 appears at the ith-position.

The following theorem shows the principal properties of Reed-Muller codes.

Theorem 2.2. Let r,m be integers such that 0 ≤ r ≤ m. Then the following hold:

1. R(i,m) ⊆ R(j,m), if 0 ≤ i ≤ j ≤ m.

2. The dimension of R(r,m) equals k = 1 +
(
m
1

)
+
(
m
2

)
+ ...+

(
m
r

)
.

3. The minimum weight of R(r,m) equals 2m−r.

4. R(m,m)⊥ = {0} and if 0 ≤ r < m, then R(r,m)⊥ = RM(m− r − 1,m).

2.2 The Quaternary Reed-Muller Codes

The purpose of this section is to introduce QRM(r,m) codes, which were defined in [1]

to be quaternary Reed-Muller codes of length 22m . In order to proceed, some terminology

and notation is needed. We follow closely the book Quaternary codes (see [2])
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In chapter 1 we saw that the Gray map relates codes of length n over Z4 with binary

codes of length 2n. But also, we can relate codes of length n over Z4 with binary codes of the

same length. A natural way is to extend componentwise the additive group homomorphism

α : Z4 → Z2, defined by α(0) = α(2) = 0, α(1) = α(3) = 1 to a map α : Zn4 → Zn2 . Thus, if

x = (x1, . . . , xn), then α(x) = (α(x1), . . . , α(xn)).

Let Z4[X] be the polynomial ring with coefficients in Z4. The map α can be naturally

extended to a map from Z4[X] to Z2[X] as follows

Z4[X]→ Z2[X]

a0 + a1X + · · ·+ anX
n → α(a0) + α(a1)X + · · ·+ α(an)Xn

Let h(X) be a monic polynomial of degree m ≥ 1 in Z4[X]. If α(h(X)) is irreducible

over Z2, then h(X) is called a basic irreducible polynomial of degree m in Z4[X]. If h(X) is

primitive of degree m over Z2 then h(X) is called a basic primitive polynomial of degree m

in Z4[X].

Let 2 ≤ m ∈ Z and n = 2m − 1. Let ζ be a root of a basic primitive polynomial h(x)

of degree m dividing Xn − 1. Since ζ is a basic primitive root of unity, ζ, ζ2, ..., ζn = 1, are

n distinct root of h(x). Consider the (m+ 1)× 2m matrix

 1 1 1 1 . . . 1

0 1 ζ ζ2 . . . ζn−1

 , (2.6)

whose rows are are numbered by 0, 1, ...,m and columns by∞, 0, 1..., n−1, where ζj should

be replaced by t(b1j , ..., bmj) if ζj = b1j + · · · + bmjζ
m−1 (j = ∞, 0, 1 . . . , n − 1) and we

agree that ζ∞ = 0. Denote the ith row of the matrix by ui, then the quaternary rth order

Reed-Muller code QRM(r,m) of length 2m is the code generated by the 2m tuples of the

form

ui1ui2 , . . . , uis , 1 ≤ i1 < i2, . . . , < is ≤ m, 0 ≤ s ≤ r,where ui1ui2 , . . . , uis = 12m (2.7)

when s=0.
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It can be proved that these vectors, form a basis over the free Z4 module Z2m
4 . Basic

properties of QRM(r,m) codes are enlisted in the following Theorem

Theorem 2.3. [1]Let r,m integers such that 0 ≤ r ≤ m. Let QRM(r,m) be a quaternary

Reed-Muller code of length 2m

1. QRM(r,m) is of type 4k where k = 1 +
(
m
1

)
+
(
m
2

)
+ · · ·+

(
m
r

)
.

2. QRM(r,m) ⊂ QRM(r + 1,m), ∀r < m.

3. α(QRM(r,m)) = RM(r,m).

When r = 1, QRM(1,m), is known as the quaternary linear Kerdock code and will be

denoted by K(m). If m ≥ 2 and 0 ≤ r ≤ m−1, then QRM(r,m)⊥ = QRM(m− r−1,m).

Another well-known code is obtained when r = m−2, named the quaternary linear Preparata

code, denoted by P(m). The quaternary Kerdock code and the quaternary Preparata code

were first defined in [1].

Since QRM(m− 2,m) = QRM(1,m)⊥ = K(m)⊥ = P(m), the quaternary Preparata

codes are duals of Kerdock codes and therefore, P(m) is of type 4k1 , where, k1 = 2m − k,

with k =k = 1 +
(
m
1

)
.

The Gray map image ofQRM(r,m) is a Z4-linear code which is denoted byQRM(r,m).

Notice that this code is a nonlinear binary code.

We illustrate the previous discussion with an example. Let h(x) = x4 +3x3 +2x2 +1 be

a basic irreducible polynomial over Z4. Let ζ be a root of h(x) in the Galois ring GR(44).

Then, ζ = (0, 1, 0, 0), ζ2 = (0, 0, 1, 0), ζ3 = (0, 0, 0, 1), and ζj for j ≥ 4 is getting using

ζ4 = ζ3 + 2ζ2 + 3. Using (3.2.1) we get the generator matrix of K(4):



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 0 3 3 1 3 2 1 0 3 1 2 0

0 1 1 0 0 0 3 3 1 3 2 1 0 3 1 2

0 1 0 1 0 2 2 1 1 1 1 2 3 2 3 1

0 1 0 0 1 1 3 1 2 3 0 1 3 2 0 3


=



u0

u1

u2

u3

u4


.
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The quaternary Preparata code, P(4) = QRM(2, 4), is generated by

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 0 3 3 1 3 2 1 0 3 1 2 0

0 1 1 0 0 0 3 3 1 3 2 1 0 3 1 2

0 1 0 1 0 2 2 1 1 1 1 2 3 2 3 1

0 1 0 0 1 1 3 1 2 3 0 1 3 2 0 3

0 1 0 0 1 0 1 3 3 2 2 0 0 3 2 0

0 1 0 0 0 2 2 1 3 2 1 0 1 2 2 0

0 1 0 0 0 3 1 1 2 2 0 0 1 2 0 0

0 1 0 0 0 0 2 3 1 3 2 2 0 2 3 1

0 1 0 0 0 0 1 3 2 1 0 1 0 2 0 2

0 1 0 0 0 2 2 1 2 3 0 2 1 0 0 3



=



u0

u1

u2

u3

u4

uiu2

u1u3

u1u4

u2u3

u2u4

u3u4



.

2.3 The Class of Quaternary Reed-Muller Codes

The class QRM(r,m) of quaternary Reed-Muller codes is a generalization of QRM

codes. We describe briefly those aspects that are relevant to the purpose of this dissertation.

The material used in this section can be found in the paper [6] and chapter six of [5].

Definition 2.3.1. Let r,m ∈ Z and 0 ≤ r ≤ m. C ∈ QRM(r,m) if and only if :

1. The quaternary length of the code C is 2m.

2. C is of type 4k, where k = 1 +
(
m
1

)
+
(
m
2

)
+ · · ·+

(
m
r

)
3. α(C) = RM(r,m).

The related binary class is defined as QRM(r,m) = {C|C = φ(C) ∈ QRM(r,m)}

By Theorem 2.3QRM(r,m) codes satisfies definition 2.3.1 above. Thus,QRM(r,m) ∈

QRM(r,m). In order to give another example, let χ be the map from Z2 to Z4, which

is the usual inclusion from the additive structure in Z2 to Z4 : χ(0) = 0, χ(1) = 2. This

map can be extended to the map (χ, Id) : Zn2 7→ Zn4 , which will also be denoted by χ,

14



(see [8]). That way, using this inclusion map, the binary vectors defined in (1.4) can be

considered as a quaternary vectors. This is the case in the next example, which is denoted

by SRM(r,m) and defined as the quaternary code which is generated by the generators of

the binary Reed-Muller code RM(r,m)[6].

The (u|u + v)-construction defined in (1.3) allows one to construct other codes in

QRM(r,m) apart from QRM(r,m) and SRM(r,m).

Theorem 2.4. Let C ∈ QRM(r,m) and D ∈ QRM(r,m). Then, the code C∗ defined as

{(u,u + v)|u ∈ C,v ∈ D belongs to the class QRM(r + 1,m+ 1).

Theorem 2.5. Let C ∈ QRM(r,m), with 1 ≤ r ≤ m then

C⊥ ∈ QRM(m− r − 1,m)

It is useful to characterize codes in theQRM(r,m) class in terms of generator matrices.

If G is a quaternary matrix with row vectors x1,x2 . . . ,xk, then α(G) is defined as



α(x1)

α(x2)
...

α(xk)


.

Lemma 2.3.1. [5] Let C ∈ QRM(r,m) and let G be its generator matrix. Then α(C) is a

generator matrix of RM(r,m).

Theorem 2.6. [5] Let C be a quaternary code of length 2m. C belongs to the class QRM(r,m)

if and only if there exist a binary (
∑r

i=0

(
m
i

)
)× 2m matrix N , such that the generator ma-

trix of C is G(r,m) + 2N , where G(r,m) is the generator matrix of RM(r,m) defined in

Theorem 2.1 above.

Corollary 2.3.1. If C ∈ QRM, then (C/2RM(r,m),+) ≈ (RM,+).
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Any quaternary code with the same parameters as the quaternary Preparata code is

named Preparata-like and its Z4-dual is called Kerdock-like. The following theorem shows

that these codes are members of QRM(r,m).

Theorem 2.7. Let P (2m) be a Z4-linear Preparata-like code, and K(2m) a Z4-linear

Kerdock-like code of length n+ 1 = 22m. P (2m) ∈ QRM and K(2m) ∈ QRM.
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Chapter 3

Intersection

3.1 Introduction

In this chapter we consider the intersection problem for coding theory first introduced

by Etzion and Vardy [13] in the setting of binary perfect codes. Since then, this problem

has been considered for other families of codes such as Hadamard codes and q-ary cyclic

codes whose alphabets are finite fields [14], [10], [11] or for families of codes whose alphabet

is the ring of integer modulo 4 [15], [23].

Given two codes C1 and C2 over an alphabet F , we denote the size of their intersection

by η(C1, C2), and call this the intersection number of C1 and C2.

In general the intersection problem can be stated as follows: given a family or class of

families of codes, find the spectrum of intersection numbers.

The general strategy to attack this kind of problem begins by finding necessary con-

ditions for the intersection. This leads to lower and upper bounds or a set of possible

intersection numbers. Secondly, finding the sufficient conditions implies giving specific con-

structions of codes in such a way that the cardinality of their intersection fits those values

between these bounds. In this chapter, the alphabet F is the finite field GF (q) of q elements.

3.2 Intersection problem for q-ary linear codes

Let C1 be an [n, k1]-code. Since it is a linear subspace of Fn, it is the kernel of

some linear transformation. Let H1 be the parity-check-matrix of order (n − k1) × n.

Similarly, let C2 be an [n, k2]-code, with parity-check-matrix H2 of order (n− k2)× n. The

intersection C = C1 ∩ C2 is also linear, therefore, there is a matrix H =

 H1

H2

 such
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that C1 ∩ C2 = {x ∈ Fnq |HxT = 0}. Notice that, rank(H) ≤ 2n − (k1 + k2). Now, since

n = dim(C)+rank(H), (k1+k2)−n ≤ dim(C) and the intersection C1∩C2 = qdim(C1∩C2) ≥

q(k1+k2)−n. Thus the intersection problem can be stated as follows: Determine the values

v between max{0, (k1 + k2)− n} and min{k1, k2}, such that qv are intersection numbers of

C1 and C2.

A particular case of this problem arises when C2 = π(C1), where π ∈ Sn. In this case

their dimensions are the same, k1 = k2 = k. Therefore both are of the same size and we

look at the values v between 2k − n and k.

The intersection problem for this particular case (when the codes are permutation

equivalent) was solved by Bar-Yahalom and Etzion [10] for q-ary cyclic codes. The approach

they used was based on a partition of the columns of the generator matrix of the code into

two sets I(C) and R(C), called the information set and the redundant set, respectively.

R(C) consists of (n− k) columns, among which at most t are linearly independent. A code

whose generator matrix presents a partition in which t gets its maximum value is called a

t-redundancy or t-IR, and an independent redundancy or (IR) if t = r. Now if C is an

[n, k] t-IR code for which t ≤ k, then the set of t linearly independent columns in R(C) can

be extended by k− t columns from I(C) to obtain a set of k linearly independent columns.

This set of k linearly independent columns is called a free set.

The following theorems give an enumeration method for the intersection of linear codes

with the partition of the generated matrix, explained above.

Theorem 3.1. [10] If C is an [n, k] t-IR code, then for each ρ, 0 ≤ ρ ≤ t− 1, there exists

a permutation πρ, for which |C ∩ πρ(C)| = qk−ρ.

Theorem 3.2. [10] Let C be an [n, k] code over F . If 1 ∈ C then η(C, π(C)) ≥ 2.

Theorem 3.3. [10] Let C be an [n, k] code over F . There exists π ∈ Sn, such that

η(C, π(C)) = qk1 if and only if there exists π1 ∈ Sn, such that η(C⊥, π1(C⊥)) = qn−2k+k1 .
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Theorem 3.4. [10] Let C be an (n, k) code over F , k ≥ n − k. If all the codewords have

generalized parity 0, (that is, if the sum of the entries of the codeword is 0) then q2k−n is

not an intersection number of C.

Example 3.2.1. Let’s see this enumeration method for the case of the binary Reed-Muller

RM(r,m) code. For 0 ≤ r < m, let k =
∑m

i=0

(
m
i

)
be dimension of this code. Denote by

r∗ = n − k the redundancy number associated to the generator matrix of RM(r,m) which

has k linearly independent rows and then k linearly independent columns. Here we have two

cases. The first one corresponds to r ≤ d(m+ 1)/2e and then k ≤ r∗. Since k of the other

n− k columns are linearly independent, then we have a partition where t gets its maximum

value with t = k. The second case corresponds to r > d(m+ 1)/2e, we have that k > n− k.

So the maximum partition is obtained with t = r∗.

If RM(r,m) is an k-IR code, by Theorem 3.1, for each ρ, in 0 ≤ ρ ≤ k − 1, 2k−ρ is

an intersection number and since 1 ∈ RM(r,m) by Theorem 3.2, 1 is not an intersection

number (ρ = k). But if RM(r,m) is an (n − k)-IR code, for each ρ in 0 ≤ ρ ≤ n − k − 1,

2k−ρ is an intersection number, and since the codewords of any binary Reed-Muller code are

of even weight, the generalized parity is 0 and, by Theorem 3.4, 22k−n is not an intersection

number, (ρ = n−k). The permutation that we choose for each ρ, can be the cycle (1, .., ρ+

1)of length ρ+ 1.

Table 3.1 shows the variation of the interval for ρ and Table 3.2, is an example that

shows the cycles that act over RM(1, 5) in order to get its corresponding isomorphic codes

and then the cardinalities of their intersections.

One interesting family of q-ary linear codes are the so called q-ary Hamming codes.

Given a finite field F , the q-ary Hamming code Hq,r of length n = (qr − 1)/(q − 1), where

r ≥ 2, is defined by the parity-check matrix whose columns are the points (in some order)

of the projective geometry PG(q − 1, r). (A projective geometry PG(q − 1, r) is the set

whose elements are the 1-dimensional subspaces of F r). Define a q-ary Hamming code by a

parity-check matrix constructed in the following way: From each element in PG(q − 1, r),

choose the representatives whose leading nonzero entry is 1. There are 2r−1 points in which
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R(r,m) k n− k t 0 ≤ ρ ≤ t− 1
0, 5 1 31 1 a
1, 5 6 26 6 0 ≤ ρ ≤ 5
2, 5 16 16 16 0 ≤ ρ ≤ 15
3, 5 26 6 6 0 ≤ ρ ≤ 5
4, 5 31 1 1 a
5, 5 32 0 0 a

Table 3.1: RM(r, 5)

(1, ..ρ+ 1) (1) (1, 2) (1, 2, 3) (1, 2, 3, 4) (1, 2, 3, 4, 5) (1, 2, 3, 4, 5, 6)
26−ρ 64 32 16 8 4 2

Table 3.2: |RM(1, 5) ∩ ρ(RM(1, 5))|

all its components are 0 and 1. They are the numbers 1, 2, 3, . . . , 2r − 1 written in binary,

then, place these columns in increasing order from 1 to 2r − 1. The rest of the columns can

be placed in any order.

The intersection problem for binary Hamming codes was solved in [22] and for q-ary

Hamming codes, in [11].

Theorem 3.5. [11] For each m ≥ 3, there exist two linear q-ary Hamming codes H1, H2

of length N = qm−1
q−1 , such that η(H1,H2) = qN−l, for l = m+ 1,m+ 2, . . . , 2m.

3.3 Intersection problem for perfect codes

Let x ∈ F , the sphere of radius r centered at x is defined by Sr(x) = {y ∈ Fn | d(x,y) ≤

r}. Given a set S ∈ Fn, the hull of S, denoted by K(S), is defined by
⋃

x∈S Sr(x). If in

addition the spheres are disjoint, we say that S perfectly covers K(S) or that S is an r-

error-correcting code. Given a set S which is an r-error correcting code, we say that it is an

r-perfect code provided K(S) = F . In [7] it is shown that the only parameters for nontrivial

perfect codes are the two Golay codes and the q-ary 1-perfect codes where q is a prime or

prime power. So, from now on, q-ary 1-perfect codes will be refereed as q-ary perfect codes.
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Let C be a Hamming code of length n and x ∈ Fn, then the coset C + x is a perfect

code, but not linear. In 1962, [18] Vasil’ev constructed nonlinear binary perfect codes that

are not cosets of Hamming codes.

For x ∈ Fn2 , let p(x) = wt(x) (mod 2). Let Cn be a perfect binary code of length

n = 2m − 1. Let f : Cn → {0, 1} be an arbitrary mapping.

Theorem 3.6. [18] The code C(2n+1,f) = {(x|x+c|p(v)+f(c) : x ∈ Fn2 , c ∈ Cn} is perfect.

If f ≡ 0, then C(2n+1,f) is the Hamming code, but if f(0) = 0 and f(c1)+f(c2) 6= f(c1+c2)

for some c1, c2, c1 + c2, then C(2n+1,f) is not linear.

As in the case of cosets of Hamming codes, any binary perfect code C of length n

generates a partition of Fn2 into translates Ci = C + xi, where xi is a vector of weight 1,

and |C| = |Ci| for all i = 1, 2, . . . , n. This partition is known as the trivial partition. There

are non-trivial partitions into perfect codes of Fn2 , see for example ([19], [21]).

The following construction of perfect codes of length 2n+1 from perfect codes of length

n is due to Phelps [19] and Solov’eva [20]. Etzion and Vardy [22] refer to their finding as

construction A and describes it in the next theorem.

Theorem 3.7. CONSTRUCTION A Let En2 denote the set of all the even-weight vectors

in Fn2 . Let C0, C1 . . . , Cn and C∗0 , C∗1 . . . , C
∗
n be partitions of Fn2 and En+1

2 , into a perfect

code and its translates, respectively, into an extended perfect code and its translates. Let π

be a permutation on the set {0, 1, . . . , n}. Then the code

CA = {(x|y) : x ∈ Ci, y ∈ C∗π(i), for some i = 0, . . . , n}, where (·|·), denotes concate-

nation, is a perfect code of length 2m+1 − 1.

Let us discuss the intersection problem for two binary perfect codes C1 and C2 of the

same length n = 2m − 1. If c ∈ C1 ∩ C2, then its complement is also in the intersection.

Thus the intersection must have even cardinality, and η(C1, C2) ≥ 2. Etzion and Vardy [13],

determined an upper bound for that intersection, which is η(C1, C2) ≤ 2n−m − 2v, where

v = (n− 1)/2. Moreover, they constructed two perfect codes C1 and C2 whose intersection

number shows that this upper bound is attainable for all n. The idea of the construction of
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these codes is as follows. Let Hn a Hamming code of length n = 2v + 1 = 2m − 1. Assume

that the columns of its generator matrix, H,−h1, h2, . . . , hn, are arranged such that for some

fixed column vector z = hn, h1 + hi+v = z for all i = 1, 2 . . . , v. The code C1 is the coset

of Hn such that the syndrome s(c) = Hct is z for all c ∈ C1. Next, they obtained C2 by

modifying C1 in the following way C2 = (C1 \ B) ∪ A, where A = {x|x|p(x) : x ∈ Fv
2 } and

B = A+ e2v+1. Notice, that according Theorem A is a Hamming code of length n given by

Vasil’ev construction. Now, η(C1, C2) = 2n−m − 2v.

In [22], Etzion and Vardy, using a combination of construction A and the construction

of Vasil’ev, obtained two perfect codes with intersection number equal 2. Thus the spectrum

of intersection numbers, for any two binary perfect codes of the same length, is given by

the following interval

0 ≤ η(C1, C2) ≤ 2n−m − 2v (3.1)

The following two theorems give intersection numbers in the interval (3.1), but the

results do not cover the entire possible spectrum.

Theorem 3.8. [9] For any two integers k1 and k2 satisfying 1 ≤ ki ≤ 2(n+1)/2−log(n+1),

i = 1, 2, there exist perfect codes C1 and C2 both of length n = 2m − 1, m ≥ 4, with

intersection number η(C1, C2) = 2k1k2.

Theorem 3.9. [9] For any even integer q in the interval 0 ≤ q ≤ 2(n+1)/2−log(n+1), there

are two perfect codes C1 and C2 both of length n = 2m− 1, m ≥ 4, such that η(C1, C2) = q.

3.4 Intersection problem for Hadamard Codes

A Hadamard matrix H of order n is an n × n matrix of +1’s and −1’s such that

HH⊥ = nI, where I is the n×n identity matrix. It is known that if a Hadamard matrix of

order n exist, then n is 1,2, or a multiple of 4 [7]. Two Hadamard matrices are equivalent if

one can be obtained from the other by permuting rows and/or columns and multiplying rows
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and columns by −1. The equivalent normalized matrix H ′ is gotten from H by multiplying

each row and column by ±1, to make the entries of the first row and column all +1. The

binary matrix c(H ′) is obtained from H ′ by replacing each entry equal to 1 with 0 and each

entry equal to -1 with 1. We can consider the rows of this matrix as binary vectors of length

n. The binary (n, 2n, n/2)-code consisting of the rows of c(H ′) and their complements is

called a (binary) Hadamard code.

In order to get new Hadamard matrices it is useful to introduce the Kronecker product :

If A is a matrix of order m × n and B is a matrix of order r × s, then A ⊗ B denotes the

nr ×ms matrix



a11B a12B . . . a1nB

a21B a22B . . . a2nB

...
...

. . .
...

an1B an2B . . . anmB


.

If H1 and H2 are Hadamard matrices of orders n1, n2 respectively, it easy to check that

H1⊗H2 is a Hadamard matrix. In particular taking the Hadamard matrix S =

 1 1

1 −1

,

and starting from a Hadamard Matrix S0 = (1), we obtain by successive Kronecker products

St = St−1 ⊗ S, a Hadamard matrix of order 2t for any t ≥ 0. St is called a Sylvester type

Hadamard matrix. It is known that the binary code obtained from St is the dual of the

extended Hamming code.

The next four matrices are examples of Hadamard matrices of order 1, 2, 4 and 8,

respectively. Each one of the matrices with order 1, 2 and 4 leads to an unique binary

Hadamard code. The matrix of order 8 leads to an unique Hadamard code up to equiva-

lence.
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[1],

 1 1

−1 1

,



1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


,



1 1 1 1 1 1 1 1

1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 −1 −1 1 1

1 −1 1 −1 −1 1 −1 1

1 −1 −1 1 −1 1 1 −1



.

The spectrum for the intersection numbers is with respect to the length of a Hadamard

code. Due to the fact that a Hadamard code contains each codeword and its complement,

the numbers in the spectrum are even. Thus, for length 8, the only Hadamard code is the

linear code and the intersection problem is settled for this length. The intersection numbers

are I(8) = {0, 2, 4, 8, 16}. Nonlinear binary Hadamard codes appears beginning at length

n ≥ 16.

Using Hadamard codes from matrices constructed by the product S
⊗

[B′1, B
′
2] = B′1 B′1

B′2 −B′2

 or its transpose, the next theorem settled the problem for the length 2t

Theorem 3.10. [14] For all t ≥ 3 there exist Hadamard codes of length 2t with intersection

number i if and only if i ∈ I(2t) = {0, 2, 4, . . . , 2t+1 − 12, 2t+1 − 8, 2t+1}.

the next theorem gives a partial answer to the general case, that is, when a Hadamard

matrix of lenth 4s, where s is an odd number, exists.

Theorem 3.11. [9] For all t ≥ 4, if there exists a Hadamard matrix of order 4s, there exists

Hadamard codes of length 2t+2s with intersection number 2i for all 2i ∈ {0, 2, 4, . . . , 2t+3s−

12, 2t+3s− 8, 2t+3} = I(2t+2s).
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3.5 Intersection problem for Quaternary linear codes

The intersection problem for quaternary linear codes has been solved for quaternary

extended linear perfect codes [15] and for quaternary linear Hadamard codes [23].

The characterization of the extended 1-perfect Z4-linear codes, up to equivalence, is

given in [16], so we know that for each length, n = 2t, there are exactly bt+ 1/2c nonequiv-

alent extended 1-perfect Z4 linear codes. Each one of these codes can be given by a parity-

check matrix consisting of all column vectors of the form Zγ2 × {1 ∈ Z4} × Zδ−1
4 , where

t + 1 = γ + 2δ and Z2 means {0, 2} ⊂ Z4. This parity-check matrix can be seen as the

generator matrix for the corresponding Z4-linear Hadamard code

Theorem 3.12. [16, 17] For each δ ∈ {1, . . . , b(t + 1)/2c} there exists a unique (up to

isomorphism) extended perfect Z4-linear code C ′ of binary length n+ 1 = 2t ≥ 16, such that

the Z4-dual code of C ′ is of type (0, β; γ, δ), where β = 2t−1 and γ = t+ 1− 2δ.

In view of this Theorem, we can create the following table:

t δ (α, β; γ, δ)

2 1 (0, 2; 1, 1)

3 1,2 (0, 4; 2, 1), (0, 4; 0, 2)

4 1,2 (0, 8; 3, 1), (0, 8; 1, 2)

5 1,2,3 (0, 16; 4, 1), (0, 16; 2, 2), (0, 16; 0, 3)

6 1,2,3 (0, 32; 5, 1), (0, 32; 3, 2), (0, 32; 1, 3)

...
...

...

Example 3.5.1. In the case of length n+ 1 = 32, there are three non-isomorphic extended

perfect Z4-linear codes, since we have three possible parameters: δ = 1, δ = 2 and δ = 3.

The following matrix is the parity-check matrix of the code C′ = Φ−1(C ′) for δ = 2 (also

notice that β = 16 and γ = 2):


0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

 .
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Theorem 3.13. For any t ≥ 3 and any quaternary linear perfect codes C1 and C2 of length

β = 2t−1, not necessary such that their quaternary dual codes contain the all-ones vector,

it is true that

22β−2t−1 ≤ η(C1, C2) ≤ 22β−t−1.

Moreover, there exist such codes for any possible intersection number between these bounds.

Theorem 3.14. For any t ≥ 3 and any two quaternary linear Hadamard codes C1 and C2

of length β = 2t−1, it is true that 2 ≤ η(C1, C2) ≤ 2t+1.

Theorem 3.15. For any t ≥ 3 there are two quaternary linear Hadamard codes C1 and C2

of length β = 2t−1, such that η(C1, C2) = 2l, where l is any value from 1 to t+ 1.

The quaternary linear codes have been generalized to the Z2Z4-additive codes. The

intersection problem for these kind of codes is given in [15] and [23].
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Chapter 4

Intersection Problem for The Class of Quaternary Reed-Muller Codes

This chapter presents results that lead to the solution of the intersection problem for

QRM(r,m). Remember that this class contains the most important families of quaternary

codes such as the quaternary Kerdock-like codes as well the Preparata- like codes. As a

consequence, the solution of the intersection problem for binary codes in QRM(r,m) is

obtained. This class contains the original Kerdock code which is a nonlinear binary code,

but it is the Gray map image of a quaternary linear code (a Kerdock-like code).

Our results generalize those given in [10]. This allows to us to attack the intersection

problem with the same approach used in [10]. As mentioned in Chapter 3, that approach

was based on a partition of the columns of the generator matrix of a [n, k]-code over a finite

field, into two sets, one of them is a set of k linearly independent columns and the other

is a set of n − k columns from which t columns are linearly independent. This partition

is given in such a way that t gets its maximum value. In this case, the code is called a

t-independence redundance (t-IR) code, and independent redundancy (IR) code if t = r.

Remember, α is the (mod 2) map. Now, we introduce another map, β : {0, 2} → Z2,

which is defined by β(0) = 0, and β(2) = 1. β is an isomorphism of groups and the extension

β : {0, 2}n → Zn2 is also an isomorphism of groups.

Theorem 4.1. [1] Let C be a quaternary linear code of type 4δ2γ and length n, with generator

matrix G given by (1.5). Then, the binary residue code, α(C) = {α(c)|c ∈ C} is a binary

linear [n, δ]-code with generator matrix(
Iδ A α(B)

)
,

and the Torsion code, Tor(C) = {β(c)|c ∈ C, α(c) = 0} is a binary linear [n, δ + γ]-code

with generator matrix
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 Iδ A α(B)

0 Iγ C

 .

Any quaternary linear code is equivalent to a code whose generator matrix is of form

(1.5), with the additional condition that a partition of the columns into two sets, leads to

the corresponding generator matrix of the binary residue code and presents a partition of

its columns as specified in [10].

Let C be a quaternary linear code of type 4δ2γ and length n, with generator matrix G

given by (1.5). Let α(C) = C, and denote by I(C) the set of columns of G whose positions

correspond to the columns of α(G) which are in I(C). Similarly, denote by R(C), the set of

columns of G, whose positions correspond to the columns of α(G) which are in R(C). We

say that C is called a t-redundancy t-IR code, or redundancy (IR) code, respectively, if C

is. In the same way, a set of columns of G is a free set if this set leads to a free set in the

columns of α(G).

Theorem 4.2. [10] If C is an [n, k]-code and T is a set of linearly independent columns in

its generator matrix, |T | = t, then in C each t-tuple appears in the columns of T exactly in

|C|/2t codewords.

Theorem 4.2 is defined for linear codes over finite fields. The next theorem shows a

similar result for codes defined over the ring Z4, which is not a field. This result allows us

to adopt the approach from [10].

Theorem 4.3. Let C be a quaternary linear code of type 4δ2γ. Let G be a generator matrix

of C and denote by α(G) the generator matrix of α(C). If T is a set of t linearly independent

columns of α(G), then each t-tuple in the corresponding columns of G appears exactly in |C|4t

codewords of C

Proof. Let C be a quaternary linear code of type 4δ2γ . By Theorem 4.1 α(C) is a binary-

[n, δ]-code with generator matrix α(G), where G is of the form given by (1.5). In addition,

since α : C → α(C) is a surjective homomorphism, then C
Ker(α) ≈ α(C). Notice that
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2C ⊆ Ker(α) ⊂ C and 2C is of type 402δ and Ker(α) of type 402γ+δ. Moreover, given a

codeword c ∈ C, then 2C + c ⊆ Ker(α) + c, each class Ker(α) + c can be divided by 2γ

classes of C2C each having the same cardinality.

Let J = {i1, i2, . . . , it} ⊂ [n] be a set of indices that label a set of t linearly independent

columns of α(G). Let c = (c1, c2, . . . , cn) be a codeword in C, and c|J = (ci1 , ci2 , . . . , cit) be

the projection of the codeword c on the set J . Since α(c) = c̄ = (c̄1, c̄2, . . . , c̄n) ∈ α(C), α(c)

is associated to a unique class Ker(α) + c. By Theorem 4.2 (c̄i1 , c̄i2 , . . . , c̄it) appears in

exactly 2δ

2t codewords of α(C). Denote these codewords by di where i = 1, . . . , 2δ

2t , and they

are such that their projection to J is di|J = (c̄i1 , c̄i2 , . . . , c̄it). For some i, di = α(c).

Now, notice that (i1, . . . , it) label t linearly independent columns of the generator ma-

trix of Tor(C). So if h ∈ Tor(C), then by Theorem 4.2 h|J = (hi1 , hi2 , . . . , hit) will appear

in 2δ+γ

2t codewords of Tor(C). Since Tor(C) = Ker(α) and β is an isomorphism, the t-tuple

(2hi1 , 2hi2 , . . . , 2hit) will appear in 2δ+γ

2t codewords of Ker(α). But Ker(α) is the union of

2γ classes of C2C that means, given any of such classes it contains 2δ

2t codewords whose pro-

jection is the t-tuple (2hi1 , 2hi2 , . . . , 2hit). In particular this is true for the vector all zeros,

0 = (0, . . . , 0), since 0 ∈ 2C ⊆ Ker(α). That way, Ker(α) + c will have 2γ classes each one

having 2δ

2t codewords with the same vector projection c|J . Now repeat the same argument

for the remaining 2δ

2t − 1 di codeword of C. They give the same number of codewords with

projection c|J that was obtained by di. That way, the total number is 2δ

2t 2
γ 2δ

2t and this

proves the theorem.

Let x = (x1, . . . , xn) ∈ Zn4 and J = {i1, . . . , ij} ⊂ [n]. Let π be a permutation defined

on J and ρs be an inversion of coordinates with associated subset S ⊆ J , and ρsπ a monomial

map. Define the function ϕρsπ : Zn4 → Zn4 as ϕρsπ(h) = h − ρs(π(h)). Notice that ϕ is an

homomorphism of groups. When C ⊆ Zn4 is a quaternary linear code, ϕρπ will be helpful

in determining those codewords that are in the intersection of C and ρs(π(C)). So, in the

following definition we give a special name to the set ϕρsπ(Zn4 ), which reflects this fact.
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Definition 4.0.1. Let ρsπ be a monomial map. The index of ρsπ is the set Xρsπ = {x ∈

Zn4 : ∃h ∈ Zn4 : ϕρsπ(h) = x}. If x ∈ Xρπ, then x is called the index of h, with respect ρπ,

and we will write x = hρπ, and we say that h is attached to the index x.

Remark 4.0.1. Let h = (h1, h2, ..., hn) ∈ Zn4 . Let’s examine the index of h projected on the

coordinates determinated by a cycle θ of the permutation π, and the inversion of coordinates

ρ. Without loss of generality, we can assume that θ = (1, 2 . . . , `).

The projection of h to the coordinates labeled by θ is given by h|θ = (h1, . . . , h`), and

ρ(h|θ) = (±h1, . . . ,±h`), where we choose (−) if ρ multiplies the corresponding coordinate

by −1. In other words, by doing a selection of signs in the components of h|θ, we are deter-

mining implicitly the set S associated to ρs. Thus, we have θ(ρ(h|θ)) = (±h2, . . . ,±h`,±h1)

and x|θ = h|θ − θ(ρ(h|θ)) = (x1, . . . , x`) where:

x2 = h1 ± h2

x3 = h2 ± h3

... =
...

...
... (4.1)

x` = h`−1 ± h`

x1 = h` ± h1.

Theorem 4.4. Let ρsπ a monomial map as in the remark, then x ∈ Xρsπ if and only if

1. For every cycle (1, . . . , `) in π, the vector x|θ = (x1, . . . , x`), satisfies
∑`

i=1 xi = 0

(mod 2)

2. For every s ∈ [n] which is not a label of a coordinate of x|θ, xs = 0.

Proof. 1. If x ∈ Xπρ, then there exists h ∈ Zn4 such that h − πρ(h) = x. Let θ =

(v`p,1, v
`
p,2 ... v

`
p,`) be a cycle of π. Then, all possible cases for ρ with respect to h|θ =

(h1, h2, ..., hj , ..., h`), are given, by (4.1) and the projection x|θ satisfies the following
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relation

∑̀
i=1

xi =
`−1∑
i=1

(hi ± hi+1) + h` ± h1 =
∑̀
i=1

hi ±
∑̀
i=1

hi = 0 (mod 2)

2. This follows directly by definition 4.0.1.

Conversely, assume that there exist a vector x ∈ Zn4 that satisfies 1) and 2). We are

going to show that there is a vector h ∈ Zn4 such that x = hρ(π). Following [10], the values

of hs for s satisfying condition 2) may be chosen arbitrarily. For a cycle θ = (1, 2, . . . , `),

in π, select an arbitrary value for h1. Notice that if ρ multiply by −1 the first coordinate,

then we had chosen −h1. As we did before, we are going to use the notation ±h1 to express

this fact. Now, proceed by the formula

∀j, 2 ≤ j ≤ `, ±hj = ±hj−1 − xj .

Since,
∑`

i=1 xi = 0 (mod 2), it follows that ±h1 = ±h` − x`.

From these formulae we have that for all i, 1 ≤ i ≤ n, xi = hi − hρπ(i), or by definition

of index set, x = hρπ(i).

Lemma 4.0.1. 1. Let h ∈ Zn4 . If ρ is an inversion of an odd number of coordinates in

a cycle θ of π, then the initial choice of h1 in h|θ is restricted to two elements in the

set {0, 1, 2, 3}.

2. If ρ is an inversion of an even number of coordinates in a cycle θ of π, then initial

choice of h1 in h|θ can be made in four ways from the set {0, 1, 2, 3}.

Proof. Let h = (h1, h2, . . . , hn) be a word in Zn4 , π ∈ Sn and θ = (1, . . . , `), a cycle of length

` in the decomposition of π, and take a subset S = {i1, . . . , ik} of [`] where k ≤ `. Consider

x|θ = h|θ − ρ(θ(h|θ)), where ρ = ρs. By Theorem 4.4,
∑̀
i=1

xi = 0 (mod 2). Assume that

x = hρ(θ) = 0, then
∑`

i=1 xi = 0 (mod 4). From the system (4.1), we get:
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∑̀
i=1

xi =
∑
i∈[`]\S

xi +
∑
i∈S

xi = 2hi1 + · · · + 2hik = ±2h1 + · · · ± 2h1 = 0 . Now it is easy to

see that if k is odd, h1 ∈ {0, 2} and if k is even, h1 ∈ {0, 1, 2, 3}. Moreover, if k is odd and

h1 = 0 then, h|θ = ( 0, . . . , 0︸ ︷︷ ︸
` times

), but if h1 = 2, then h|θ = ( 2, . . . , 2︸ ︷︷ ︸
` times

). If k is even and either

h1 = 0 or 2, h|θ is exactly as in the previous case. Now if h1 = 1, then h|θ = ( 1, 3, . . . , 3, 1︸ ︷︷ ︸
` times

)

but if h1 = 3, then h|θ = ( 3, 1, . . . , 1, 3︸ ︷︷ ︸
` times

)

Since ϕρsθ is a surjective homomorphism from Zn4 to ϕρsθ(Zn4 ), it is true that Zn4
Ker(ϕρsθ)

≈

ϕρsθ(Zn4 ). Thus, to each index we can associate a unique equivalence class in Zn4
Ker(ϕρsθ)

.

Notice that Ker(ϕρsθ) is the set of vectors attached to the index zero. Now, assume that

x = hρθ 6= 0, then its associated class is Ker(ϕρsθ) + h. For all u ∈ Ker(ϕρsθ) + h,

consider the following two cases, if ρs inverts an odd number of coordinates, then u|θ =

(h1, h2, . . . , h`) or u|θ = (h1 + 2, h2 + 2, . . . , h` + 2). For the set of vectors attached to the

index x = hρ(θ), the initial choice of h1 can be done only in two ways. Now, assume that

ρs performs an even number of coordinates. In this case, if h1 = 0 or h1 = 2, u|θ is like the

previous case. If h1 = 1, then u|θ = (h1 + 1, h2 + 3, . . . , h`−1 + 1, h` + 3), but if h1 = 3 then

u|θ = (h1 + 3, h2 + 1, . . . , h`−1 + 3, h` + 1). Thus, in this case, also we can choose h1 in four

ways.

Lemma 4.0.2. If C is quaternary linear code of type 4δ2γ, and ρπ is a monomial map,

then ρ(π(h)) ∈ C ∩ ρ(π(C)) if and only if hρπ ∈ C.

Proof. h− ρ(π(h)) ∈ C if and only if ρ(π(h)) ∈ C if and only if ρ(π(h)) ∈ C ∩ ρ(π(C))

Lemma 4.0.3. Let C be a quaternary linear code of type 4δ2γ, and D be an equivalent code

to C. If ρπ is a monomial map, then η(C, ρ(π(C))) = η(D, ρ(π(D))) and both intersections

are of the same type.

Proof. Since C and D are equivalent, they are isomorphic as abelian groups. Then, they

are of the same type. Since, C ∩ ρ(π(C)) and D ∩ ρ(π(D)) are subgroups of C, and D,

32



respectively, the image of restriction of the isomorphism to C ∩ ρ(π(C)) is D ∩ ρ(π(D)).

Thus, the conclusion of the lemma follows.

Lemma 4.0.4. Let C be a quaternary linear code of type 4δ2γ,

1. Let ρπ be a monomial map, δ > 0, 1 ∈ C, then η(C, ρ(π(C))) ≥ 2

2. Let π be a permutation, δ = 0, γ > 0, 2 ∈ C, η(C, ρ(π(C))) ≥ 2.

Proof. 1. If 1 ∈ C, then 1 ∈ π(C) and the intersection has at least 4 elements. Now,

ρ(π(C)) leave invariant codewords of order 2. So the intersection at least is 2.

2. If 2 ∈ C, then 2 ∈ π(C) and the intersection has at least 2 elements.

Theorem 4.5. Let C a quaternary linear code of type 4δ2γ. Assume that C = C1
⊕
C2,

where C1 is of type 4δ20, C2 is of type 402γ and
⊕

represents the direct sum. Assume

that C ∩ ρ(π(C)) is of type 4δ12γ1, where 1 ≤ δ1 < δ, 1 ≤ γ1 < γ, and ρπ is a monomial

map. Then, C1 ∩ ρ(π(C1)) is of type 4δ120, C2 ∩ ρ(π(C2)) is of type 402γ1 and C ∩ ρ(π(C)) =

C1 ∩ ρ(π(C1))
⊕
C2 ∩ ρ(π(C2)).

For a vector x = (x1, . . . , xn) ∈ Zn4 , the generalized parity of x, gp(x), is defined as

gp(x) =
∑n

i=1 xi (mod 2). Let C be a a quaternary linear code of type 4δ2γ . Let G be a

generator matrix given by 1.5. Let π a permutation of columns of a free set of G, and let S

be a set of labels of columns of a free set of G, then, ρ(π) is called a free monomial map.

Theorem 4.6. Let C be a t-IR quaternary linear code of type 4δ2γ.

1. Let π be a free permutation with respect to C. Then, every word is attached to one

index only, and every index x ∈ C ∩Xπ has exactly 2γ4δ−λ(π)+τ(π) codewords attached

to it and η(C, π(C)) = |C ∩Xπ|2γ4δ−λ(π)+τ(π).

2. Let ρπ a free monomial map with respect to C. Then, every word is attached to one

index only, and each index in C ∩ Xρπ has exactly 2τ(π)o · 4τ(π)e · 4δ−λ(π) codewords

attached to it and η(C, ρ(π(C))) = |C ∩Xπρ|2τ(π)o · 4τ(π)e · 4δ−λ(π)
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Proof. 1. Let x ∈ Xπ ∩ C. Then there exists h ∈ C such that h − π(h) = x. Let θ be

a cyclic in π. For any choice of h1, the vector projection h|θ is uniquely determined.

Since h1 ∈ {0, 1, 2, 3}, we have four different h|θ vectors. Since θ was taken arbitrarily

in π, it follows that the number of different vectors h|π each one of length λ(θ) is 4τ(π),

By Theorem 4.3, there are 2γ4δ

4λ(π) codeword in C, for each h|π . So there are attached to

x, 4τ(π) · 2γ4δ

4λ(π) = 4δ+τ(π)−λ(π) codewords. Since any index in Xπ has exactly the same

number of attached codewords, it follows that η(C, π(C)) = |C ∩Xπ|2γ4δ−λ(π)+τ(π).

2. Let θ be a cycle of length ` in the decomposition of the free permutation π. Consider

the vector h and its projection h|θ. Let ρ be a map which produce an inversion on

an odd number of coordinates of h|θ. Assume that h is attached to the index 0. By

lemma 4.0.1, for each initial choice of h1, h|θ is uniquely determined, but we have

only two choices possible: 0 and 2. Thus there exist only two different vectors h|θ.

Let τ(π)o be the number of cycles which corresponding projections present an odd

number of coordinates with inversions. So, we have 2τ(π)o distinct projections of h on

those cycles. Moreover, if π had cycles with an even number of inversions (including

cycles without inversions), by lemma 4.0.1 we will have 4τ(π)e different projections of

h on those cycles, where τ(π)e denotes the number of cycles of π in which is realized

an even number of inversions. In this way we have 2τ(π)o4τ(π)e different codewords

each one with λ(π) coordinates. Since π is a free permutation, it follows that for each

h|π, there are 2γ4δ

4λ(π) codewords. Thus, the index 0 has 2τ(π)o4τ(π)e · 4δ−λ(π)codewords

attached to it. Since any index in Xρπ has exactly the same number of attached words,

it follows that η(C, ρ(π(C))) = |C ∩Xπρ|2τ(π)o · 4τ(π)e · 2γ · 4δ−λ(π).

Theorem 4.7. Let C be a quaternary linear t-IR code of type 4δ20 . There exists a subset

A ⊂ {0, 1, 2, . . . , t− 1} × {0, 1, 2, . . . , t} such that for all (`, j) ∈ A there is a permutation π
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and a set Sj associated to a monomial map ρsj such that

η(C, ρsj (π(C))) =



4δ−`, if 1 ≤ ` ≤ t− 1, j = 0;

214δ−`−1, if 1 ≤ ` ≤ t− 1, j = 1;

2j−`−14δ−(j−1), if ` is odd, `+ 1 < j ≤ t;

2j−`4δ−j , if ` is even, `+ 1 < j ≤ t;

2j4δ−j , if ` = 0, j ∈ {0, 1, ..., t}.

Proof. Let C be a quaternary linear t-IR code of length n, and type 4δ20. Let G be a

generator matrix with the columns of R(C) placed first, followed by the δ columns of the

information set I(C). Let 1 < ` ≤ t− 1. In order to define the permutation π and the set S

associated to ρs, we distinguish two cases a) 0 ≤ j ≤ `+ 1 and b) `+ 1 < j ≤ t− 1. Let’s

us discuss each case separately.

a) 0 ≤ j ≤ `+ 1. Define π = (1, 2 . . . , `+ 1) a permutation consisting of one cycle, and for

j = 0, define S0 = {0} , and ρso = Id. So τ(π) = 1, λ(π) = ` + 1 and by Theorem 4.6,

η(C, π(C)) = 4δ−`.

For j = 1, define S1 = {1}, then τ(π)o = 1, τ(π)e = 0, λ(π) = ` + 1. Thus,

η(C, ρs1(π(C))) = 214δ−`−1. Notice that the first new intersection number appears at j = 1

. For j > 1, the intersection numbers are alternating between 214δ−`−1 and 4δ−`.

b) ` + 1 < j ≤ t. If ` is odd, new intersection numbers appears when j ≥ ` + 3, so we

require `+3 ≤ n−δ. Consider the permutation πj = (1, 2, . . . , `+1)(`+2)Πj
s=`+3(s), where

Sj = {1, . . . , j} is the set associated to the monomial map ρsj . Thus, τ(πj)o = j − ` − 1,

τ(πj)e = 1 , λ(πj) = j. Thus, η(C, ρsj (π(C))) = |C ∩Xρsπj |2j−14δ−j−1.

If ` is even, the new intersection numbers appears when j ≤ `+2, so we require `+2 <

n − δ. Consider the permutation πj = (1, 2, . . . , `+ 1)Πj
s=`+2(s), where Sj = {1, . . . , j} is

the set associated to the monomial map ρsj . Thus, τ(πj)o = j−`−1+1 = j−`, τ(πj)e = 0,

λ(πj) = j. Thus, η(C, ρsj (π(C))) = |C ∩Xρsπj |4δ−j2j−`.

Now, considering each element in the set Sj = {1, . . . , j}, 1 ≤ j ≤ t − 1, as a permu-

tation consisting of a cycle of length 1, one can write π = (1) . . . , (j). Thus, there are, j
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cycles of length 1. This implies τ(π)o = j, τ(π)e = 0, λ(π) = j. Thus, by Theorem 4.6

η(C, ρsj (π(C))) = |C ∩Xρsjπ
|2j4δ−j .

Now we are going to prove that for each one of these cases, C ∩Xρπ = {0}. That is,

the vector of all zeros is the unique codeword that is also an index. Let c ∈ C∩Xρπ which in

terms of its components can be written as c = (b1, . . . , bn−δ−1, a1, . . . , aδ), where bi denotes

the parity-check symbols or the labels of the columns of R(C), and ai are the information

symbols or the labels of the columns of I(C). Also, ai = bn−δ+1, i ∈ {1, . . . , δ} . By definition

of the index set, a1 = . . . = aδ = 0 . Since bi =
δ∑
j=1

cijaj , aj ∈ Z4, it follows that bi = 0 ,

for all i ∈ {1, . . . , n− δ}. Thus c = 0.

Example 4.0.2. Let C a quaternary linear code of type 4620 whose generator matrix is

given by

G =



1 0 0 0 0 0 2 1 3 2 0 0

0 1 0 0 0 0 1 2 3 1 1 1

0 0 1 0 0 0 0 3 0 3 3 0

0 0 0 1 0 0 0 1 0 1 1 3

0 0 0 0 1 0 0 2 3 2 0 0

0 0 0 0 0 1 3 3 1 1 2 0


Since the dimension of α(G) δ = 6, I(C) is the set of columns 1,2,3,4,5,6. R(C) is the set

of columns 7,8,9,10,11,12. Notice that in this set, all the columns are linearly independent.

Thus t = δ = 6. Now A is subset of {0, 1, . . . , 5} × {0, 1, . . . , 6}. In order to get the

monomial maps, we proceed as in the theorem, placing the columns of R(C) first, and second

the columns of I(C).

a 1 ≤ ` ≤ 5, 0 ≤ j ≤ `+ 1. If j = 0, we have the following table:
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(`, j) (1, . . . , `+ 1) Sj 46−`

(1, 0) (1, 2) {0} 45

(2, 0) (1, 2, 3) {0} 44

(3, 0) (1, 2, 3, 4) {0, } 43

(4, 0) (1, 2, 3, 4, 5) {0} 42

(5, 0) (1, 2, 3, 4, 5, 6) {0} 41

If j = 1, we have the following table

(`, j) (1, . . . , `+ 1) S1 2146−`−1

(1, 1) (1, 2) {1} 2144

(2, 1) (1, 2, 3) {1} 2143

(3, 1) (1, 2, 3, 4) {1} 2142

(4, 1) (1, 2, 3, 4, 5) {1} 241

(5, 1) (1, 2, 3, 4, 5, 6) {1} 2140

b 1 ≤ ` ≤ 5, ` odd, ` + 1 ≤ j ≤ 6. New intersection numbers appears when j ≥ ` + 3.

Also, we require that `+3 ≤ 6. Thus ` ∈ {1, 3}. This implies that if ` = 1, then j ∈ {4, 5, 6},

but if ` = 3, then j ∈ {6},

(`, j) πj = (1, 2, . . . , `+ 1)(`+ 2)Πj
s=`+3(s) Sj 2j−`−146−(j−1)

(1, 4) π4 = (1, 2)(3)(4) {1, 2, 3, 4} 2243

(1, 5) π5 = (1, 2)(3)(4)(5) {1, 2, 3, 4, 5} 2342

(1, 6) π6 = (1, 2)(3)(4)(5)(6) {1, 2, 3, 4, 5, 6} 2441

(`, j) (1, . . . , `+ 1) S6 2j−`−1)46−(`−1)

(3, 6) (1, 2, 3, 4)(5)(6) {1, 2, 3, 4, 5, 6} 2241

If ` is even, ` + 1 ≤ j ≤ 6. New intersection numbers appears when j ≥ ` + 2. Also, we

require that `+ 2 ≤ 6. Thus ` ∈ {2, 4}. This implies that if ` = 2, then j ∈ {4, 5, 6}, but if

` = 4, then j ∈ {6},
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(`, j) πj = (1, 2 . . . , `+ 1)Πj
s=`+2(s) Sj 2j−`46−(δ−j)

(1, 4) π4 = (1, 2)(3)(4) {1, 2, 3, 4} 2242

(1, 5) π5 = (1, 2)(3)(4)(5) {1, 2, 3, 4, 5} 2341

(1, 6) π6 = (1, 2)(3)(4)(5)(6) {1, 2, 3, 4, 5, 6} 2440

(`, j) (1, . . . , `+ 1) S6 2j−`)46−(δ−j)

(3, 6) (1, 2, 3, 4)(5)(6) {1, 2, 3, 4, 5, 6} 2240

(c) ` = 0 and j ∈ {0, 1, . . . , t}

(`, j) (1, . . . , `+ 1) Sj 2j4δ−j

(0, 0) (1) {0} 4620

(0, 1) (1) {0, 1} 4521

(0, 2) (1) {0, 1, 2} 4422

(0, 3) (1) {0, 1, 2, 3} 4323

(0, 4) (1) {0, 1, 2, 3, 4} 4224

(0, 5) (1) {0, 1, 2, 3, 4, 5} 4125

(0, 6) (1) {0, 1, 2, 3, 4, 5, 6} 4026

Theorem 4.8. Let C be a t-IR quaternary linear code of type 4δ2γ. Then, 2t−`4δ−t, where

` is odd and 1 ≤ ` < t− 1,is an intersection number.

Proof. By the previous Theorem, it is easy to see that for ` odd, 2t−`4δ−t is a number

which does not come by the conclusion of the theorem. Let (1, 2, . . . , ` + 1) be cycle of

length ` + 1. Let S = {2, . . . , t} and consider ρs. That is, this is an inversion of all

coordinates determined by the cycle, except the first one plus the inversion of the following

t− (`+ 1) coordinates. Since the cycle has now an odd number of inversions, it follows that

τ(π)o = 1 + t− `− 1 = t− `, τ(π)e = 0, γ(π) = t. Since all these coordinates, correspond

to columns of a free set, it follows that the number of codewords attached to any index is

2t−`4δ−t= and η(C, ρ(π(C)) = |C∩Xρsπ|2t−`4δ−t. Since coordinates from t+1 to n belong to

columns of I(C) and are zeros from any vector in Xρsπ, it follows that the unique codeword

in this set is the codeword all zeros. Now the conclusion follows.
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Example 4.0.3. We continue with the code given in the previous example. That code

satisfies the hypothesis of the theorem. ` ∈ {1, 3}, t = 6 = δ. So, 4025 and 4023 are

new intersection numbers. The permutation for the first number is π = (1, 2)(3)(4)(5) and

S = S6 \ {1} is the set of ρs. For the second number, π = (1, 2, 3)(4)(5)(6) and the set S is

like the first intersection number.

Theorem 4.9. Let C be t-IR quaternary linear code of type 4δ. The expression of the

intersection numbers computed in theorem 4.7, gives also the type, of the intersection.

Proof. Case 1: η(C, ρsj (π(C))) = 4δ−`, if, 1 ≤ ` ≤ t− 1, j = 0.

CLAIM. The quaternary linear code C ∩ ρs(π(C)) constructed in the proof of Theorem

4.7 can be expressed as a direct sum of δ − ` cyclic subgroups of order 4.

In this case S0 = {0} and ρ0 = Id, this means that there is no inversion of coordinates

of the code C. Thus, the permutation is the cycle θ = (1, . . . , ` + 1), and we are going to

write θ instead of ρsθ. We prove the claim by showing that does not exist in the intersection

a codeword of order 2 which is not the sum of one codeword in the intersection of order

4 with itself. By Theorem 4.7 we know that C ∩ Xθ = { 0}. Thus the index zero has

attached 4δ−` codewords. By lemma 4.4 these are all the codewords in the intersection.

In other words, h ∈ C ∩ θ(C) if and only if hθ = 0. The projection h|θ satisfies the

system (4.1) and by lemma 4.0.1 for each choice of h1 we have 4 possibilities, 0, 1, 2 and

3. Thus, if h ∈ C ∩ θ(C), either h|θ = ( 0, . . . , 0︸ ︷︷ ︸
`+1

) or h|θ = ( 1, . . . , 1︸ ︷︷ ︸
`+1

) or h|θ = ( 2, . . . , 2︸ ︷︷ ︸
`+1

) or

h|θ = ( 3, . . . , 3︸ ︷︷ ︸
`+1

). In this way, C ∩ θ(C) can be expressed as the union of four disjoint sets

(another way to see that the four sets above are disjoint consists of noticing that the relation

defined in the intersection, h1 ∼ h2 if and only if h1|θ = h2|θ is the equivalence). Denote

these sets by [( 0, . . . , 0︸ ︷︷ ︸
`+1

)], [( 1, . . . , 1︸ ︷︷ ︸
`+1

)], [( 2, . . . , 2︸ ︷︷ ︸
`+1

)] and [( 3, . . . , 3︸ ︷︷ ︸
`+1

)]. It is clear that these sets

are defined by [( a, . . . , a︸ ︷︷ ︸
`+1

)] = {h ∈ C ∩ θ(C) : h|θ = ( a, . . . , a︸ ︷︷ ︸
`+1

)}. Observe that [( 0, . . . , 0︸ ︷︷ ︸
`+1

)] is

a subgroup of C ∩ θ(C) and the other are its cosets. Since the intersection is a finite group,

each coset has the same cardinality. Notice, that the cosets that contain a codeword of
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order two are [( 2, . . . , 2︸ ︷︷ ︸
`+1

)] and [( 0, . . . , 0︸ ︷︷ ︸
`+1

)] whereas the cosets that contain only codewords

of order four are [( 1, . . . , 1︸ ︷︷ ︸
`+1

)] and [( 3, . . . , 3︸ ︷︷ ︸
`+1

)]. Moreover, using the fact that C ∩ θ(C) is

an additive group {h + h : h ∈ [( 1, . . . , 1︸ ︷︷ ︸
`+1

)]} = {h + h : h ∈ [( 3, . . . , 3︸ ︷︷ ︸
`+1

)]} = [( 2, . . . , 2︸ ︷︷ ︸
`+1

)],

{h1 + h2 : h1 ∈ [( 1, . . . , 1︸ ︷︷ ︸
`+1

)],h2 ∈ [( 3, . . . , 3︸ ︷︷ ︸
`+1

)]} = [( 0, . . . , 0︸ ︷︷ ︸
`+1

)].

That means, that any element of order two, is obtained by adding a codeword of order

four by itself or is obtained by adding to different codeword the order 4 in the intersection.

Thus, the type of the intersection is 4δ−`.

Now, let us consider is the generator matrix of this intersection. Take h ∈ [( 1, . . . , 1︸ ︷︷ ︸
`+1

)].

Then 2h ∈ [( 2, . . . , 2︸ ︷︷ ︸
`+1

)] and 3h ∈ [( 3, . . . , 3︸ ︷︷ ︸
`+1

)]. Thus, the intersection can be obtained as a

direct sum of the subgroup generated by h and the coset [( 0, . . . , 0︸ ︷︷ ︸
`+1

)]. Since the the type

of the intersection is 4δ−`, the type of [( 0, . . . , 0︸ ︷︷ ︸
`+1

)] should be 4δ−`−1, otherwise we will have

a contradiction with the Fundamental Theorem of Abelian groups. Now, choose δ − ` − 1

codewords of [( 0, . . . , 0︸ ︷︷ ︸
`+1

)] of the form c`+1+i = ( 0, . . . , 0︸ ︷︷ ︸
`+1

0, . . . , 1, 0 . . . , 0︸ ︷︷ ︸
t−`+1

, ct+1 . . . , cn), where

1 ≤ i ≤ δ − ` − 1, and ` + 1 + i indicates the position in which is placed the number 1.

Now the generator matrix is obtained in the following way, place the codeword h, as the

first row of the matrix and then, place the δ − `− 1 codewords c`+i as the last rows of the

matrix.

Case 2: η(C, ρsj (θ(C))) = 214δ−`−1 if 1 ≤ ` ≤ t− 1, j = 1.

CLAIM: The quaternary linear code C ∩ ρs1θ(C), constructed in the proof of Theorem

4.7 can be expressed as a direct sum of δ − ` − 1 cyclic subgroups of order 4 and 1 cyclic

subgroup of order 2.

If in the generator matrix constructed in case 1, we multiply by -1, the first coordinate

of each row, we see that ρ1, change the first coordinate of the codeword h, which is in the

first row. The last δ − ` − 1 rows are invariant since their first coordinate is 0. < h > is

a cyclic subgroup of order 4 generated by h, and < ρ1(h) > is a cyclic subgroup of order

4 generated by ρ1(h), and < h > ∩ < ρ1(h) >= {0, 2h}. This means that in the cyclic
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subgroup generated by h, the codewords of order two are invariant. Thus, the generator

matrix for C ∩ ρs1θ(C) is obtained by the generator matrix of C ∩ θ(C) by multiplying the

first row by 2.

Case 3: η(C, ρsj (θ(C))) = 2j−`4δ−j if ` is even `+ 1 ≤ j ≤ t, j = 1.

CLAIM: The quaternary linear code C∩ρsj (πj(C)), constructed in the proof of Theorem

4.7 can be expressed as a direct sum of δ − j cyclic subgroups of order 4 and j − ` cyclic

subgroups of order 2.

For S`+1, with ` even, C∩ρs`+1
(θ(C)) is of type 214δ−`−1 and the generator matrix has in

the first row 2h, where h ∈ [( 1, . . . , 1︸ ︷︷ ︸
`+1

)], and the last δ − `− 1 are occupied for codewords

in [( 0, . . . , 0︸ ︷︷ ︸
`+1

)] Now, consider S`+2 and the permutation π`+2 = (1, 2 . . . , ` + 1)(` + 2).

Notice that in the generator matrix of C ∩ ρs`+1
(θ(C)), the second row is given by c`+2 =

( 0, . . . , 0︸ ︷︷ ︸
`+1

1, . . . , 0, 0 . . . , 0︸ ︷︷ ︸
t−`+1

, ct+1 . . . , cn), but the other rows have 0 in that component, as a

result, the new generator matrix is obtained by only multiplying by 2, the codeword c`+2.

Assume j = ` + 1 + i and consider the permutation π`+1+i = (1, 2 . . . , ` + 1)Π`+1+i
s=`+2(s).

The generator matrix of C ∩ ρs`+i−1
(π`+i−1(C)) has the first row is occupied by 2h, the next

`+ i− 1 rows by 2c`+i−1 and the last δ − (`+ i) by codewords of order four that belong to

[( 0, . . . , 0︸ ︷︷ ︸
`+1

)] . In this matrix, the row c`+i = c`+2 = ( 0, . . . , 0︸ ︷︷ ︸
`+i

1, . . . , 0, 0 . . . , 0︸ ︷︷ ︸
t−`+1

, ct+1 . . . , cn)

is the unique codeword that has 1 in the coordinate ` + i. So, after the application of the

monomial map, the new generator matrix is obtained by multiplying this codeword by 2.

Thus, we have i + 1 codewords of order two and δ − (` + i + 1) codewords of order four.

Since j = `+ 1 + i, then j − ` = 1 + i and the conclusion of the claim follows.

Case 4: η(C, ρsj (π(C))) = 2j−`−14δ−(j−1), if ` is odd, `+ 1 < j ≤ t− 1

CLAIM: The quaternary linear code C∩ρsj (θ(C)), constructed in the proof of Theorem

4.7 can be expressed as a direct sum of δ− (j − 1) cyclic subgroups of order 4 and j − `− 1

cyclic subgroups of order 2.

We omit the proof of this case since is similar to the previous case.

Case 5: η(C, ρsj (θ(C))) = 2j4δ−j if ` = 0, j ∈ {0, 1, ..., t}.
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CLAIM: The quaternary linear code C∩ρsj (θ(C)), constructed in the proof of Theorem

4.7 can be expressed as a direct sum of δ − j cyclic subgroups of order 4 and j cyclic

subgroups of order 2.

In this case Sj = {1, . . . , t} and since ` = 0 there is no permutation, so we just write

ρsj (C) instead of a ρsj (θ(C)). Put the generator matrix of C in the form G = (Iδ|A). Denote

by G′ the generator matrix of ρsj (C). G′ differs fromG, in the j first rows, and coincide in

the last δ− j rows. Since each row of G is a codeword of order 4, these δ− j rows of G′ are

of order 4. Notice that, for 1 ≤ i ≤ j, ρsj , multiplies by −1, the i-th coordinate of the i-th

row of G. Seeing the code as a finite direct sum of cyclic subgroups, the rows of G are the

generators of cyclic groups of order 4 in that direct sum ρsj , changes the j-th coordinate in

each of the 4 codewords that correspond to the cyclic subgroup generated by the j-th row.

But in this subgroup we know that only two codewords in the j-th coordinate, have 0 or

2, which mean these codewords remains after the inversion of that coordinate. As a result

we have that C ∩ ρsj (θ(C)) is expressed as a direct sum of 4δ−j subgroups of order 4 and 2j

subgroups of order 2.

Theorem 4.10. [15] Let C1, C2, be two quaternary linear codes. Then,

〈C⊥1 , C⊥2 〉 = (C1 ∩ C2)⊥ (4.2)

Theorem 4.10 allows one to see the parity-check matrix of the intersection of two

quaternary linear codes C1, C2, similar to the case of linear codes defined over finite fields.

That is, if H1 and H2 are the respective parity-check matrices, then,

H =

 H1

H2

 . (4.3)

is the parity matrix of the intersection.
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Suppose that the type of C1 ∩ C2 is 4δ2γ , by Theorem 4.10 and 1.8, H will have n− k1

rows that δ rows that are vectors of order 4 plus γ rows that are vectors of order 2, where

k1 is the number of rows in the generator matrix of C1 ∩ C2.

Theorem 4.11. Let C be a quaternary linear code of type 4δ20 then k1 is the Pseudodimen-

sion of C ∩ ρs(π(C)), if and only if n− 2δ + k1 is the Pseudodimension of C⊥ ∩ ρs(π(C⊥))

Proof. Let G be a generator matrix of C, given by (1.5). Let H and ρs(π(H)) be parity-

check matrices of both, C and ρsπ(C) . Let H1 = (H ‖ ρs(π(H))), the parity-check matrix of

C ∩ρs(π(C)). The Pseudo-dimension of this matrix is n−k1 then n−k1 = k2 +2(n−δ−k2)

and hence k2 = n − 2δ + k1. Similarly, if k2 = n − 2δ + k1 is the Pseudodimension of

C⊥ ∩ ρs(π(C⊥)), then n− 2(n− k) + k2 = k1.

Corollary 4.0.1. Let C be a quaternary linear t-IR code of type 4δ20, δ ≥ n−δ, gp(x) = 0,

for all x ∈ C, then 2δ − n is not pseudo-dimension of the intersection.

Proof. By contradiction, suppose that the pseudo-dimension of the intersection is 2δ − n,

then by Theorem 4.11 the only possible intersection of C⊥ with any of its equivalent codes

is 1. Since the vector 1 ∈ C⊥, Theorem 4.0.4 say that the intersection should be at least

2.

Theorem 4.12. Let C be an (n, k) t-IR code and G its generator matrix, where I(C) =

{n− k+ 1, n− k+ 2, . . . , n}, columns 1, 2, . . . , t, n− k+ 1 are linearly independent, the first

row of G doesn’t have generalized parity 0, and the last k− 1 entries in this row are zeroes.

Then there exists a permutation π such that η(C, π(C)) = 2k−t.

Due to the fact that β : {0, 2}n → Zn2 is an isomorphism, any quaternary linear code of

type 2γ can be identified as an binary code of dimension γ. Thus, the theorem 4.12 above,

can be applied if we want to compute intersection numbers of codes of that type.

When the quaternary code is of type 4δ, a slightly modification of the statement in

Theorem 4.12 gives the following result
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Theorem 4.13. Let C be an (n, δ) t-IR code and G its generator matrix, where I(C) =

{n− δ+ 1, n− δ+ 2, . . . , n}, columns in α(G) 1, 2, . . . , t, n− δ+ 1 are linearly independent,

the first row of G doesn’t have generalized parity 0 or 2 and the last δ − 1 entries in this

row are zeroes. Then there exists a permutation π such that η(C, π(C)) = 4δ−t.

4.1 Application to QRM(r,m)

In this section we are going to apply the results of the previous section to the class

QRM(r,m). First of all, we need to establish the possible spectrum of the intersection of

two codes in this class.

Let r ≥ 1, Let C1 ∈ QRM(r,m) of type (0, δ1, n), then C2 = ρ(π(C1)) ∈ QRM(r,m)

and has the same type same type (0, δ1, n) then by proposition 3.6.2 〈C1, C2〉 is a quaternary

linear code of type code of type (γ, δ, n) where

δ ∈ {δ1, ...,min(2δ1, n)} (4.4)

and

max(δ, δ1) ≤ δ + γ ≤ min(2δ1, n) (4.5)

By 3.6.1

η(C1, C2) = |C1 ∩ C2| =
42·δ1

|〈C1, C2〉|
(4.6)

If we choose 2δ1 < n, in (4.0.1) then δ ∈ {δ1, ..., 2δ1}, and δ1 ≤ δ + γ ≤ 2δ1 If we select

γ = 0 and δ = 2δ1, we obtain the maximum lower bound η(C1, C2) ≥ 1 .

If 2δ1 > n, then δ ∈ {δ1, ..., n}, and δ1 ≤ δ + γ ≤ n. Again, if we select γ = 0 and

δ = n,we obtain the maximum lower bound for this intersection, η(C1, C2) ≥ 42·δ1−n . Thus,

we have the following proposition.
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Theorem 4.14. Let r ≥ 1,C1, C2 ∈ QRM(r,m) both of type (0, δ1, n = 2m), Then If

2δ1 < n

1 ≤ η(C1, C2) ≤ 4δ1

If, 2δ1 > n

42·δ1−n ≤ η(C1, C2) ≤ 4δ1 .

Now, we need to see that given a code C ∈ QRM(r,m), it is an t-(IR) code. By

Theorem 2.6, we know that the generator matrix of C can be written as G = G(r,m) + 2N ,

where G(r,m) is the generator matrix of the Reed-Muller code with parameters [n, δ], which

we know, (see example 3.2.1) is a t-(IR) code and therefore C. As in the binary case, when

r ≤ d(m+ 1)/2e,we have that δ ≤ r∗, where r∗ = n− δ and t = δ. According to 4.7, there

exists a subset A ⊂ {0, 1, 2, . . . , δ − 1} × {0, 1, 2, . . . , δ} such that for all (`, j) ∈ A, there

is a permutation π` and a set Sj associated to the map such that η(C, ρsj (π(C))) satisfies

the values given by Theorem 4.7. By construction we know that A can be expressed as

follows: A =
⊔5
i=1Ai, where, A1 = {(`, 0), 1 ≤ ` ≤ δ − 1}, A2 = {(`, 1), 1 ≤ ` ≤ δ − 1},

A3 = {(`, j), ` is odd, 1 ≤ ` ≤ δ − 1, `+ 1 < j ≤ δ − 1},

A4 = {(`, j), ` is even, 1 ≤ ` ≤ δ − 1, `+ 1 < j ≤ δ − 1}, A5 = {(0, j), 0 ≤ j ≤ δ}.

The minimum intersection number obtained by Theorem 4.7 is 2 and is given by the

ordered pair (δ − 1, 1) which belong to the subset A2. Since 1 is a lower bound of the

possible spectrum for these codes we still need to see if it is an intersection number. Notice

that 1 ∈ C, then by Theorem 4.0.4, 1 is not an intersection number.

Similarly, if r ≥ d(m+ 1)/2e,we have that δ ≥ r∗, where r∗ = n− δ and t = n− δ. A

is a subset of {0, 1, 2, . . . , n− δ − 1} × {0, 1, 2, . . . , n− δ}. As in the previous case, this set

is the union of the following five sets:

A1 = {(`, 0), 1 ≤ ` ≤ δ − 1}, A2 = {(`, 1), 1 ≤ ` ≤ n− δ − 1},

A3 = {(`, j), ` is odd, 1 ≤ ` ≤ n− δ − 1, `+ 1 < j ≤ n− δ − 1},

A4 = {(`, j), ` is even, 1 ≤ ` ≤ n− δ − 1, `+ 1 < j ≤ δ − 1}, A5 = {(0, j), 0 ≤ j ≤ n− δ}.
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Again, the minimum intersection number obtained by Theorem 4.7, is 4δ−121. We still

need to see if 42δ−n is and intersection number. Since for all x ∈ C, gp(x) = 0 by corollary

4.0.1 42δ−n is not an intersection number.

Considering both cases, we can say that the minimum intersection number for the class

of quaternary Reed-Muller codes is given by max{42δ−n, 2}.

Additional intersection number are obtained by Theorem 4.8 in the following way. For

t = δ, consider ` odd in the interval 1 ≤ ` < δ − 1, with S = {2, . . . , δ}, and for t = n− δ,

consider ` odd 1 ≤ ` < n− δ − 1, with S = {2, . . . , n− δ}.

Now, we discuss particular cases. If C = QRM(1,m), then it is a quaternary Kerdock

code. Since n−δ ≤ δ, the minimum intersection is 2. If C = QRM(m−2,m) then, it is the

quaternary linear Preparata code, then n− δ ≥ δ, and the minimum intersection number is

4δ−121 if n− δ > δ.
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Chapter 5

Concluding Remarks

In this dissertation we solved the intersection problem for the class of quaternary Reed-

Muller codes, that is, we have found all the intersection numbers by considering intersections

of monomial equivalent codes. In addition, we determined the abelian structure of that

intersections and their respective generator matrices. The class of quaternary Red-Muller

codes contains two important families, the Kerdock-like codes, and Preparata-like codes.

Note that since nonlinear binary Kerdock-like codes and Preparata-like codes are Z4-linear

codes, the spectrum for these codes are also determined. It should be noted that trying

to solve the intersection problem for these codes in the realm of Z2 would be much more

laborious. For example, solving the intersection problem for the quaternary Kerdock code

K is less involved than solving it for nonlinear binary Kerdock-codes.

One problem that is remaining is the intersection problem for binary non-linear codes

that have the same parameters as Kerdock-like codes, and Preparta-like codes, but are not

Z4-linear codes, that is, they are not binary Gray map images of quaternary linear codes.

So, the intersection problem for these codes can not be solved by using the linear structure

provided by Z4.

We have developed enough theory that allows to us to solve the intersection problem for

other families of codes apart of those already examined, that is, Goethals codes, Delsarte-

Goethals codes, ZRM codes and quaternary cyclic codes. Let’s see briefly, how we can apply

the results of chapter 4 to quaternary cyclic codes of length n.

According to their types, quaternary cyclic codes can be classified into three classes of

types 204δ, 2γ4δ and 2γ40. If the cyclic code is of type 204δ, its residue binary cyclic code

is an [n, δ]-code. The first δ columns of its generator matrix are linearly independent and

the last δ columns are also linearly independent. So, this binary cyclic code is a t-IR code
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for t = min{δ, r}. Thus the quaternary cyclic code is also a t-IR code for t = min{δ, r}. So

all the values specified by Theorem 4.7 are intersection numbers.

Cyclic codes of type 2γ40 behave as a binary cyclic codes. That way, they are t-IR

codes for t = min{γ, n − γ}. Also the concepts of monomial equivalence and permutation

equivalence, coincide. By Theorem 4.7 for each `, 0 ≤ ` ≤ t− 1, there is a permutation π`,

for which η(C, π(C)) = 2γ−`. Notice that in this case, max{1, n− 2(n− γ) + 1} ≤ t ≤ n− γ.

The case of cyclic codes of type 2γ4δ is treated using Theorem 4.5. That is, this case

is the union of the two previous cases.

In the first case, it remains to discuss whether max{1, 204n−2(n−δ)} is also an intersec-

tion number and, in the second case, whether max{1, 2n−2(n−γ)40} is also an intersection

number. This question can be solved by considering whether the vector 1 is a codeword or

not, for codes of type 2γ4δ with δ > 0; and whether the vector 2 is a codeword or not, for

codes of type 2γ4δ with δ = 0 and γ > 0. As matter of example, we consider only the case

when 1 is in the code, (respectively when 2 is in the code).

Denote the code by C and by g its generator polynomial. 1 ∈ C implies that α(1) ∈

α(C). Thus, α(g)(1) = 1, where α(g) is the polynomial generator of α(C). Therefore,

either g(1) = 1 or g(1) = 3, which mean that the first row of the generator matrix of

C of the generator matrix doesn’t have generalized parity 0 or 2. If the code is of type

4δ20, then for δ > n − δ, (t = n − δ) the conditions of theorem 4.13 are satisfies and

therefore 4δ−t = 4n−2(n−δ) is an intersection number; for δ ≤ n − δ, (t = δ) we have

1 = max{1, 4n−2(n−δ)} and by Lemma 4.0.4, one is not an intersection number. If 2 is in

the code which is of type 402γ , then for γ > n−γ (t = n−γ) the conditions of theorem 4.12

are satisfies and therefore 2γ−t = 2n−2(n−γ) is an intersection number; for γ ≤ n − γ, we

have 1 = max{1, 2n−2(n−γ)} and by Lemma 4.0.4 one is not an intersection number. Using

Theorem 4.5, the general case, can be obtained by combining the two previous cases.

The intersection problem for perfect codes is still unsolved. In the binary case, part of

the spectrum is known. It is interesting to note that in each admissible length, this spectrum

does not have holes in the interval [0, a(n)], where 0 ≤ a(n) ≤ 2n−m− 2v. Considering that
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those intersections numbers were found using essentially the construction of Vasil’ev, we

can consider the possibility that each integer even number z, such that 0 ≤ z ≤ 2n−m − 2v

is actually an intersection number by trying to construct pairs of perfect binary codes,

using for example, Phelps construction, or Phelps-Soloveva’s construction among others or

combining them in a more or less ingenious way.

Recently, Östergärd, and Pottonin,[24] obtained a complete classification of all non

inequivalent perfect binary codes of length 15. By computer search this number is 5983.

Thus, for the case of length 15, we will know the spectrum of the intersection by computer

search. If the spectrum covers all the interval specified above, then one can try to prove this

result for all admissible length. On the contrary, if the spectrum has holes then probably

this is true for all admissible lengths.

The intersection problem for q-ary perfect codes is considered in [12]. It is interesting

to notice that there are some differences with respect to the binary perfect codes. In the

binary case, the minimum intersection number is 2, instead [12] provides one example of

two ternary perfect codes with intersection number equal to 1, which in turn implies that

the intersection number for q-ary perfect codes, where q > 2, is not necessarily even. Also,

[12] gives the spectrum of intersection numbers of non-linear perfect codes by the switchings

of simple components.

Essentially we can classify the known constructions under two groups, those based on

the approach of switching constructions and those base on the approach of concatenation

constructions. It would be interesting determine the spectrum of intersection numbers of

intersection of non-linear q-ary perfect codes using this last approach.

The intersection problem can be seen from another point of view; for example, in the

case of perfect codes, the kernel is their biggest linear sub-code. An obvious question is how

is the spectrum of the intersection of two kernels of the same dimension. It is known that

there are many constructions of perfect codes and we can find two perfect codes having

kernels with the same dimension but coming from different constructions. It would be

interesting to compare the intersections of kernels of perfect codes obtained by the same
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construction with the intersection of those coming from different constructions. The same

question can be formulated for the rank of a perfect code, which is its smallest linear super-

space.
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