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Chapter 0

Background Definitions

and Theorems

The following definitions and theorems have been compiled from my first graduate

topology course with Dr. Gruenhage [5], the notes Dr. Michel Smith uses in his topology

course [4], as well as the master’s thesis of Scott Varagona [6]. Theorems are stated without

proof, however, a reader unfamiliar with these theorems should be able to find proofs of

equivalent theorems in [1], [2], and [3]

Definition 0.1. Suppose X is a set and T is a collection of subsets of X such that

1. X ∈ T ;

2. ∅ ∈ T ;

3. If U ⊂ T , then ∪U ∈ T ;

4. If U ⊂ T and U is finite, then ∩U ∈ T ;

then the pair (X, T ) is called a topological space with topology T . Such a topologi-

cal space will often be referred to simply as X when the associated topology T is understood.

The members of T are called open sets. If K ⊂ X and X \K is open, then K is called a

closed subset of X.

Unless otherwise stated, in this chapter (X, T ) is presumed to be a topological space.

Definition 0.2. Suppose M ⊂ X. The closure of M (denoted M) is the intersection of

all closed subsets of X that contain M .

Definition 0.3. Suppose M is a subset of a topological space X. A point p ∈ X is a limit

point of M if every open set containing p contains a point in M different from p.
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Theorem 0.4. If M ⊂ X, then M = M ∪ {p : p is a limit point of M}.

Definition 0.5. Suppose D ⊂ X. D is dense in X, means that each nonempty open

subset of X contains a point of D. To say that D is somewhere dense in X means that

there is U , a nonempty open subset of X such that D ∩ U is dense in the subspace U .

Lastly, to say that D is nowhere dense in X, means that D is not somewhere dense in

X.

Theorem 0.6. If D ⊂ X and D is dense in X, then D = X.

Theorem 0.7. Suppose that S ⊂ X and S 6= ∅. If TS = {S ∩O : O ∈ T }, then TS forms a

topology on the set S.

Definition 0.8. With regards to the topological space (S, TS) described in the previous

theorem, the topology TS is called the subspace topology on S with respect X and S

is refered to as a subspace of X.

Definition 0.9. Suppose B is a collection of open subsets of X with the property that if

x ∈ X and O is an open subset of X containing x, then there is B ∈ B such that x ∈ B ⊂ O.

B is called a basis for the topology on X and an element of B is called a basic open set

in X.

Theorem 0.10. Suppose B is a collection of subsets of X such that

1. If x ∈ X, there exists some B ∈ B with x ∈ B.

2. If B1 and B2 are in B and x ∈ X such that x ∈ B1 ∩ B2, then there is B3 ∈ B such

that x ∈ B3 ⊂ (B1 ∩B2).

Then T ′ = {
⋃
B′|B′ ⊂ B} is a topology on X and B is a basis for T ′.

In the above theorem, a topology such as T ′ is said to be generated by the basis B.

Definition 0.11. X is Hausdorff means that if p, q ∈ X are distinct points in X, then

there are disjoint open sets Op and Oq containing p and q, respectively.
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X is regular means that if H ⊂ X and p ∈ X such that p /∈ H, then there exist

disjoint open sets OH and Op such that H ⊂ OH and p ∈ Op.

X is normal, means that if H and K are disjoint closed subsets of X, then there are

disjoint open sets OH and OK containing H and K, respectively.

Definition 0.12. Suppose A and B are sets and f is a function from A to B (denoted

f : A → B). If C ⊂ A, we define f(C) = {f(c)| c ∈ C} and call f(C) the image of C

under f .

If b ∈ B, then the preimage of b (written as f−1(b)) is the collection {a ∈ A| f(a) = b}.

Similarly, if D ⊂ B, then f−1(D) = {a ∈ A : f(a) ∈ D} = ∪{f−1(d) : d ∈ D} and f−1(D)

is called the preimage of D.

Definition 0.13. Suppose A and B are sets and f : A→ B.

1. f is onto means that if b ∈ B, then there is a ∈ A such that f(a) = b.

2. f is one-to-one means that if a and a′ are two distinct points in A, then f(a) 6= f(a′).

Often, the inverse of f is denoted as f−1 and explicity stated to be a function to avoid

confusion with the preimage of a point or set.

Theorem 0.14. Suppose A and B are sets and f : A→ B is a function that is one-to-one

and onto. Then g : B → A defined as g(f(a)) = a is well defined. The function g is called

the inverse of f .

Definition 0.15. Suppose each of X and Y is a topological space, f : X → Y is a function,

and x ∈ X). To say that f continuous at x means that if V is an open set in Y containing

f(x), there is U an open subset of X such that x ∈ U and f(U) ⊆ V . If f is continuous at

each point in X, then f is said to be continuous.

Theorem 0.16. Suppose each of X and Y is a topological space and f : X → Y . The

following are equivalent:

1. f is continuous.
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2. If V is an open subset of Y , then the preimage of V , f−1(V ) is open in X.

3. If K is a closed subset of Y , then f−1(K) is a closed subset of X.

Definition 0.17. Suppose each of X and Y is a topological space and f : X → Y . f is an

open function means that if U is open in X, then the image of U , f(U), is open in Y . It

is often simply stated that the function f is open.

Theorem 0.18. Suppose that each of X, Y , and Z is a topological space and each of f, g,

and h is a function such that f : X → Y , g : Y → Z, h : X → Z, and h = g ◦ f . For

each of the properties listed below, if both f and g have the given property, then h has this

property.

1. continuous

2. open

3. one-to-one

4. onto

Definition 0.19. If X and Y are topological spaces and f : X → Y is a function that is

one-to-one, onto, continous, and open, then f is called a homeomorphism and the spaces

X and Y are said to be homeomorphic.

Definition 0.20. Suppose A is a set.

• A is countable, means there is a function f : A→ N that is one-to-one;

• To say that A is finite, means that there is a positive integer n and a function

f : A→ {1, 2, . . . , 3} such that f is one-to-one;

• If A is not finite, then A is said to be infinite;

• If A is not countable, then A is said to be uncountable
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Definition 0.21. Suppose X is a topological space and x ∈ X. If Bx is a collection of open

subsets of X, then Bx is called a local basis at x if

1. for each B ∈ B, x ∈ B;

2. if O is an open set in X and x ∈ O, then there is of B ∈ Bx such that x ∈ B ⊆ O.

Definition 0.22. The space X is called first countable if for each x ∈ X, there exists a

countable local basis at x. A space X is called second countable if X has a basis that is

countable.

Definition 0.23. Suppose M ⊂ X. If U is a collection of subsets of X such that M ⊂ ∪U ,

then U is said to be a cover of M ; if each element of U is an open subset of X, then U is

said to be an open cover of M . Lastly, if U is an open cover of M and F ⊂ U such that

F covers M , then F is called a subcover of M from U ; if F is finite, then F is called a

finite subcover of M from U .

Definition 0.24. The space X is compact means that if U is an open cover of X, then

there is a finite subcover of X from U .

Theorem 0.25. The interval [0,1], as a subspace of R is compact.

Theorem 0.26. Suppose that each of X and Y is a topological space and f : X → Y is

continuous. If X is compact, then f(X) is a compact subspace of Y .

Definition 0.27. Suppose that S is a collection of subsets of X. S has the finite inter-

section propert (f.i.p.) in X means that if F is a finite nonempty subset of S, then

∩F 6= ∅.

Theorem 0.28. Suppose that X is a compact Hausdorff space.

1. X is normal.

2. If K is a closed subset of X, then the subspace K is compact.
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3. If K is a collection of closed subsets of X with the finite intersection property, then

∩K 6= ∅.

Theorem 0.29. Suppose X is compact and Hausdorff. If U is a countable collection of

dense open subsets of X, then ∩U is dense in X.

Corollary 0.30. Suppose X is compact and Hausdorff. If C is a countable collection of

nowhere dense closed subsets of X, then ∪C 6= X

Definition 0.31. If I is a nonempty set and for each i ∈ I, Ai is a nonempty set, then

the product of {Ai : i ∈ I}, denoted
∏

i∈I Ai, is the collection of functions from I into

∪i∈IAi, to which the function γ belongs if and only if γ(i) ∈ Ai for each i ∈ I (Note: If I

is infinite, the existence of
∏

i∈I Ai depends on the Axiom of Choice.)

If I is finite (respectively countable), it is usually assumed that I = {1, 2, . . . , |I|}, where

|I| is the cardinality of I (respectively, I = N). In such a case
∏

i∈I Ai may be denoted

A1 × · · · ×An, with n = |I|,

and the elements of this set are considered as ordered n−tuples. In the case that I is

countable, the elements
∏

i∈I Ai can be thought of as infinite sequences whose ith term is

in Ai.

Theorem 0.32. Suppose n is an integer greater than 1 and for each integer i, 1 ≤ i ≤ n,

suppose Xi is a topological space. Let

X =
n∏

i=1

Xi,

and let B denote the set

{
n∏

i=1

Oi : Oi 6= ∅, and Oi is open in Xi}
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B forms a basis for a topology on X.

Definition 0.33. A space such as X, as described in the previous theorem, together with

the topology formed by the basis B (also described previously) is called a finite product

space and its topology is called the finite product topology

Theorem 0.34. Suppose that I is a nonempty set and for each i ∈ I, Xi is a topological

space. Let X =
∏

i∈I Xi and let B be the set to which
∏

i∈I Oi belongs if and only if

1. for each i ∈ I, Oi 6= ∅ and Oi is an open subset of Xi;

2. there is F a finite subset of I such that Oi = Xi unless i ∈ F ;

B forms the basis for a topology on X.

Definition 0.35. X in the above theorem is called a product space and the topology

formed from the basis B is called the product topology on X. In general, if I is a

nonempty set, a product space with index I refers to a space formed in the manner of

X previously described.

Definition 0.36. Suppose X is a product space with index I. If i ∈ I, then πi : X → Xi

such that if x ∈ X, then πi(x) = x(i) (recall that x is a function with domain I). The

function πi is called the projection of X onto Xi.

Theorem 0.37. If X is a product space with index I and i ∈ I, then the function πi is

continuous and onto.

Definition 0.38. Suppose X is a topological space and d : X ×X → R is a function such

that if each of x, y, and z is in X, then

1. d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x), and

3. d(x, z) ≤ d(x, y) + d(y, z).
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The function d is said to be a metric on X, and the ordered pair X, d is called a metric

space. If p ∈ X and ε > 0, B(p, ε) denotes the set {x ∈ X : d(x, p) < ε} and is called the

open ball of radius ε centered at p.

Theorem 0.39. Suppose (X, d) is a metric space, then the collection B defined as {B(p, ε) :

p ∈ X and ε > 0} forms a basis for a topology on X.

Definition 0.40. If (X, d) is a metric space, then the topology formed from the basis of

open balls centered at points of X is called the metric topology generated by d. If

(X, T ) is a topology and there is a metric d such that the metric topology generated by d

is the same as T , then T is said to be metrizable.

Theorem 0.41. If (X, d) is a metric space then X is a normal space

Definition 0.42. Suppose (X, d) is a metric space, x ∈ X, and A,B ⊂ X. The minimum

distance between x and A is equal to inf({d(x, a) : a ∈ A}), and the minimum

distance between A and B is equal to inf({d(x,B) : x ∈ A}).

Definition 0.43. A topological space is connected if it is not the union of two nonempty

disjoint open sets. If C ⊂ X and C as a subspace of X is connected, then C is also refered

to as a connected subset of X.

Theorem 0.44. The interval [0,1] as a subspace of R, is connected.

Theorem 0.45. Suppose C is a connected subset of X. If A ⊂ X and C ⊂ A ⊂ C, then A

is also a connected subset of X.

Definition 0.46. Suppose each of H and K is a subset of the space X. H and K are called

mutually separated if H ∩K = H ∩K = ∅.

Theorem 0.47. Suppose M ⊂ X. M is not a connected subset of X if and only if M is

the union of two nonempty mutually separated subsets of X.

Theorem 0.48. If M ⊂ X and M is connected in X, then M is also connectd in X.
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Theorem 0.49. Suppose C is a collection of connected subsets of X and K is a connected

subset of X such that if C ∈ C, then K and C are not mutually separated. The set K∪ (∪C)

is a connected subset of X.

Theorem 0.50. Suppose each of X and Y is topological space and f : X → Y is a

continuous function. If X is connected, then f(X), the image of X under f , is a connected

subset of Y .

Definition 0.51. If p ∈ X, then the component of X containing p is the union of all

connected sets in X that contain p. This set is sometimes denoted Cp.

Definition 0.52. A subset of X that is both closed and open in X is called a clopen

subset of X. Notice that the empty set and X are each clopen subsets of X.

Theorem 0.53. The space X contains a proper subset that is clopen if and only if X is

not connected.

Corollary 0.54. Suppose U and V are nonempty disjoint subsets of X such that U∪V = X.

If both U and V are open, or if both U and V are closed, then X is not connected.

Definition 0.55. If p ∈ X, the quasicomponent of X is the intersection of all clopen

subsets of X that contain p. This set is sometimes refered to as Qp.

Definition 0.56. A topological space X is called a continuum if it is non-empty, Haus-

dorff, compact, and connected. If X is a continuum and the topology of X can be generated

by a metric, then X is called a metric continuum.

Corollary 0.57. The interval [0,1], as a subspace of R, is a continuum.

Definition 0.58. If X is a continuum, A ⊂ X, and the subspace A is a continuum, then

A is called a subcontinuum of X. If A is a proper subset of X, then A is a proper

subcontinuum.
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Chapter 1

Indecomposable Continua

In this chapter some characterizations of indecomposable continua will be developed.

This developement will begin with a useful theorem called the Boundary Bouncing Theorem.

Unless otherwise stated, in this chapter (X, T ) is assumed to be a topological space

such that X is a continuum.

Lemma 1.1. If x ∈ X, Cx is the component of X that contains x, and Qx is the quasi-

component of X that contains x, then Cx ⊂ Qx

Proof. If K is a clopen subuset of X and x ∈ K, then Cx ⊂ K, else the subspace Cx is the

union of two nonempty disjoint clopen subsets of Cx, namely Cx ∩ K and Cx ∩ (X \ K).

Thus,

Cx ⊂ ∩{K : K is a clopen subset of X and x ∈ K} = Qx.

Lemma 1.2. Suppose X is a compact Hausdorff space and K is a collection of closed subsets

of X. If C = ∩K and U is an open set containing C, then there is {F1, F2, . . . , Fn}, a finite

subset of K, such that ∩n
i=1Fi ⊂ U .

Proof. Let K and C be as defined in the Lemma. Choose an open set O containing C. X \O

is a closed subset of X and therefore it is compact. For each F ∈ K, X \F is open. Because

∩K = C, ∪{(X \ F : F ∈ K) = X \ ∩K = X \ C. C ⊂ O implies that X \O ⊂ X \ C, and

so it follows that the collection {X \F} : F ∈ K} is an open cover of X \O. Because X \O

is compact, there is a finite subcovering of X \ O, {X \ F1, X \ F2, . . . , X \ Fn}. Because

X \O ⊂ ∪n
1 (X \ Fi) it follows that ∩n

1Fi ⊂ O.
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Lemma 1.3. If X is compact and Hausdorff and x ∈ X, then Qx = Cx.

Proof. By Lemma 1.1, Cx ⊂ Qx. In order to prove the converse relationship it will suffice

to show that Qx is connected.

Suppose that A and B are mutually separated sets such that A ∪ B = Qx; it will

be shown that either A or B must be empty. Without loss of generality, assume x ∈ A.

Because Qx = A ∪ B and Qx is closed, A ⊂ A ∪ B and B ⊂ A ∪ B. Since A and B are

mutually separated it must be that A ⊂ A and B ⊂ B, hence each of A and B is closed.

X is compact and Hausdorff, therefore it is normal. Because A and B are mutually

separated, they are disjoint; thus U and V may be chosen to be disjoint open subsets of X

such that A ⊂ U and B ⊂ V .

Qx is the intersection of clopen sets, and so by Lemma 1.2 the finite collection {F1, F2, . . . , Fn}

may be chosen so that ∩n
i=1Fi ⊂ U ∪V . If we define F as ∩n

i=1Fi, then F is the interesection

of clopen sets and therefore F is clopen. Define U ′ = F∩U . A ⊂ U ∩F and x ∈ A, therefore

x ∈ U ′. U and F are open, so U ′ must be open, and because V is open and F is closed,

F \ V = U is closed as well. It follows that U ′ is clopen and contains x, hence Qx ⊂ U ′.

This means V ∩Qx = ∅. A ⊂ V ∩Qx, hence, A = ∅.

From the preceeding argument it follows that Qx is not the union of two nonempty

mutually separated subsets, hence Qx is connected. Since x ∈ Qx, Qx ⊂ Cx. Combining

this with the result of Lemma 1.1 yields Qx = Cx.

Theorem 1.4 (Boundary Bouncing Theorem). Suppose X is a continuum, a ∈ X, and O

is a nonempty open subset of X such that a /∈ O. There is C, a connected subset of X, such

that a ∈ C, C ∩O = ∅, and C ∩O 6= ∅.

Proof. Suppose a ∈ X and O is a nonempty open subset of X such that a /∈ O. Let

Y = X \O. Because X is connected Y ∩O 6= ∅, else O would be open meaning O = O and

it follows that Y and O are two disjoint clopen sets whose union is X, which would mean

X is not connected and not a continuum. As a subspace Y is a closed subset of X, thus,

as a subspace Y is compact and Hausdorff. Because a /∈ O, a ∈ Y . Now suppose U is a

11



clopen subset of Y . It will be shown that U ∩O 6= ∅.

Case 1: If U = Y , then U ∩O = Y ∩O 6= ∅.

Case 2: Suppose U 6= Y . Let V = Y \ U ; it follows that V is a clopen set such that

U ∩ V 6= ∅ and U ∪ V = Y . Thus, X = O ∪ Y = O ∪ U ∪ V . Since Y is closed in X and

each of U and V is closed in Y , each of U and V is closed in X. Thus U and V ∪ O are

closed subsets of X whose union is X. Because X is a continuum, X is connected, which

means U ∩ (V ∪ O) 6= ∅. Since U ∩ V = ∅ it follows that U ∩ O 6= ∅. Continuing with the

main proof, let Qa = {Q : a ∈ Q and Q is clopen in Y } and let K = {Q∩O : Q ∈ Qa (note

that ∩Qa is the quasicomponent of Y that contains a). It will now be shown that K has

the f.i.p.

If F is a finite subset of K, then there is F ′ a finite subset of Qa such that (∩F ′)∩O =

∩F ; ∩F ′ is clopen and contains a, therefore (∩F ′) ∩ O 6= ∅ and so ∩F 6= ∅. The result of

the above facet is that ∩K 6= ∅, since Y is compact and Hausdorff. Since ∩K = (∩Qa)∩O,

it means that the quasicomponent of Y that contains a intersects O. Again the fact that

Y is compact and Hausdorff means that the quasicomponent containing a is the connected

component of y that contains a, thus this component is a connected subset of Y (and thus

a connected subset of X) that contains a and intersects O.

Definition 1.5. Suppose the space X is a continuum. X is indecomposable means that

if H and K are proper subcontinua of X, then H ∪K 6= X.

Many familiar continua are not indecomposable, which is one reason indecomposable

continua are interesting. For instance, the closed interval [0,1] with the subspace topology

derived from R is not indecomposable because [0, 1
2 ] and [12 , 1] are both proper subcon-

tinua and [0, 1
2 ] ∪ [12 , 1] = [0, 1]. The following theorem is a further characterization of an

indecomposable continuum.

Theorem 1.6. X is an indecomposable continuum if and only if each proper subcontinuum

of X is nowhere dense in X.
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Proof. (⇒) By way of contrapositive it will be shown that if X is a continuum and C is a

proper subcontinuum of X that is somwhere dense in X (ie not nowhere dense), then X is

not indecomposable.

Let U be a nonempty open set in X such that every nonempty open subset of U

intersects C. This means that C is dense in U . Because C is closed, U ⊂ C.

Let S be the subspace X \U . S is a closed subset of C, thus S is compact. Let a ∈ S\C

and let Ca be the component of S containing a. Because S is closed, Ca is closed in X, and

thus Ca is a p.s.c. of X.

If (X \ C) ⊂ Ca, then X = Ca ∪ C and thus X is not indecomposable.

If X \C is not a subset of Ca, let b ∈ X that is not in C ∪Ca. S \ {a} is open in S, so

by the Boundary Bouncing Theorem, we may choose Q to be a subset of S \ {a} such that

Ca ⊂ Q and Q is clopen in S.

Let C1 = Q ∪ C and C2 = (S \ Q) ∪ C. Both C1 and C2 are connected for if x ∈ Q

(respectively S \ Q ), then Cx, the component of x in S, is a subset of Q (resp. S \ Q).

Because Cx∩U 6= ∅, Cx∩C 6= ∅; thus C1 (resp C2 ) is the union of a collection of connected

sets, whose intersection is nonempty. It follows that both C1 and C2 are connected subsets

of X.

Because Q and S \Q are closed subsets of a subspace that is closed in X, Q and S \Q

are closed in X, thus C1 and C2 are closed in X; from this it follows that each of C1 and

C2 is a subcontinua of X.

The point a ∈ C1 is not in (S \Q)∪C = C1, and the point b ∈ C2 is not in Q∪C = C2,

which means C1 and C2 are proper subcontinua of X. Lastly,

C1 ∪ C2 = (Q ∪ C) ∪ ((S \Q) ∪ C) = (S ∪ C) = X

and so we have that X is not indecomposable.

(⇒) To prove the converse, suppose that every proper subcontinuum of X is nowhere dense

and that C1 and C2 are proper subcontinuum of X. C1 is nowhere dense, which means U ,
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a nonempty open subset of U may be chosen so that U ∩ C1 = ∅. C2 is nowhere dense,

which means there is a nonempty open subset of U that does not intersect C2. Call such a

set U ′. U ′ ∩ (C1 ∪ C2) = ∅, thus C1 ∪C2 6= X. Because C1 and C2 are chosen arbitrarily, if

follows that X is indecomposable.

Definition 1.7. If the space X is a continuum and p ∈ X, then the compossant of X

that contains p is the union of all proper subcontinuum of X that contain p.

Theorem 1.8. If X is an indecomposable continuum and each of C and D is a compossant

of X, then C = D or C ∩D = ∅.

Proof. Suppose that X is an indecomposable continuum, p1 and p2 are points in X, K1 is

the compossant of X at p1, and K2 is the compossant of X at p2. Let Q1 be the collection

to which C belongs if and only if C is a proper subcontinuum of X containing p1; define

Q2 similarly with respect to p2.

If C1 ∈ Q1, C2 ∈ Q2, and C1∩C2 6= ∅, then C1∪C2 is a proper subcontinuum containing

p1 and p2; hence, K1 = K2, for if x ∈ Ki, where i is 1 or 2, and B is a proper subcontinuum

containing x and pi, then let C ′ = B ∪ (C1 ∪ C2). C ′ is a proper subcontinuum because it

is connected and is the finite union of proper subcontinua, thus x ∈ K1 ∩K2.

From the above paragraph, if K1 6= K2, then no element of Q1 intersects an element of

Q2. Therefore, ∪Q1
⋂

C = ∅ for every C ∈ Q2; thus, ∪Q1
⋂
∪Q2 = ∅. Because K1 = ∪Q1

and K2 = ∪Q2, K1 ∩K2 = ∅.

Definition 1.9. The continuum X has the Countable Compossant Property (CCP)

if each compossant of X is the union of countably many subcontinua of X

Theorem 1.10. If X is an indecomposable continuum and every compossant of X can be

written as a countable collection of proper subcontinua, then X has an uncountable number

of compossants.
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Proof. It will be shown by way of contrapositive, that if X has at most countable many

compossants and each compossant of X is a union of countably many subcontinua of X,

then X is not indecomposable.

Suppose that X is an indecomposable continuum and K1,K2, . . . are distinct compos-

sants of X. If n ∈ N, define Qn = {Kn,1,Kn,2, . . .}, where Kn,i is a proper subcontinuum,

such that ∪Qn = Kn. Because Qn is countable for each n ∈ N it follows that Q =
⋃∞

i=1 Qn

is countable. Let {C1, C2, . . .} be an enumeration of Q. Because X is indecomposable, if

n ∈ N, then Ci is nowhere dense (this follows from Theorem 1.6).

Define Un = X \ Ci for each n ∈ N. It follows that Un is open and dense in X.

By Baire’s theorem, the intersection of a countable collection of dense open subsets of a

compact Hausdorff space is dense; thus ∩∞i=1Ui 6= ∅ and I can conclude that

∞⋃
i=1

Ci = X \
∞⋂
i=1

Ui 6= X.

Because
⋃∞

i=1 Ki =
⋃∞

i=1 (∪Qi) =
⋃∞

i=1 Ci, there must be a point of X not contained in any

of the listed compossants. Thus the number of compossants cannot be countable.

Theorem 1.11. Suppose X is a metric continuum, with metric d. If X is nondegenerate

and indecomposable, then each compossant of X is the union of a countable collection of

subcontinua of X.

Proof. Let p ∈ X and let A be a dense countable subset of X. If a ∈ A and i ∈ N, let

Pi(a) be the set to which C belongs, if and only C is a subcontinuum of X, p ∈ C, and

C ∩B(a, 1
i ) = ∅. Now define Pi(a) as the set ∪Pi(a).

Pi(a) is a union of connected sets containing p, hence Pi(a) is connected and thus

Pi(a) is connected. Pi(a) ⊂ X \ B(a, 1
i ), thus Pi(a) ⊂ X \ B(a, 1

i ), which means

Pi(a) ∈ Pi(a), thus Pi(a) is a proper subcontinuum of X.

Let Cp = { Pi(a) : i ∈ N, a ∈ A}. It will be shown that ∪Cp is the compossant of

X that contains p. First note that ∪Cp is the union of proper subcontinua of X, each of

which contains p (ie ∪Cp is a subset of the compossant of X containing p). Now suppose
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C is a proper subcontinuum of X and p ∈ C. C is closed and C 6= X, hence X \ C is a

nonempty open set. A is dense in X so a ∈ A may be chosen so that a ∈ X \C (ie a /∈ C).

Because a /∈ C, and C is closed d(a,C) > 0. Choose i ∈ N so that 1
i < d(a,C). It follows

that C ∩ B(a, 1
i ) = ∅, hence C ∈ Pi(a), meaning C ⊂ Pi(a) ⊂ ∪Cp. Thus, ∪Cp is the

compossant of X that contains p.

Corollary 1.12. If X is a metric continua, then X has an uncountable number of com-

possants.

Theorem 1.13. If p ∈ X, then the compossant of X containing p is dense in X

Proof. Let p ∈ X and suppose U is a nonempty open subset of X.

Case 1: If p ∈ U , then {p} ∈ U ∩Kp

Case 2: Suppose p /∈ U , and let q ∈ U . X is regular, so U ′ may be chosen such that q ∈ U ′

and U ′ ⊂ U . By Theorem 1.4, C may be chosen to be a connected subset of X such that

p ∈ C, C ∩ U ′ = ∅ and C ∩ U ′ 6= ∅. It follows that C is connected and q /∈ C; hence, C is a

proper subcontinuum of X that contains p. C ∩ U ′ 6= ∅ and U ′ ⊂ U , so it also follows that

C ∩ U 6= ∅.

Definition 1.14. Suppose X is a continuum and a and b are two points in X. X is

irreducible between a and b means that no proper subcontinuum of X contains both a

and b.

Theorem 1.15. Suppose X has the CCP. X is indecomposable if and only if there are three

points a, b, and c in X such that X is irreducible between each pair in {a, b, c}.

Proof. (⇐) Suppose {a, b, c} ⊂ X and X is irreducible between any pair in {a, b, c}, and

suppose A and B are proper subcontinuums of X and A ∪B = X.

This means a ∈ A ∪ B; let’s assume that a ∈ A. b ∈ A ∪ B and b /∈ A because A is a

p.s.c containing a; let’s assume b ∈ B. Of course this means that c is not contained in A
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or B because each is a p.s.c. one contains a and the other contains b. Thus c /∈ A ∪B and

A ∪B 6= X.

(⇒) Supposing now that X is indecomposable. By the previous theorem, X has an

uncountable number of disjoint compossants and so I may choose three nonempty disjoint

compossants A,B, C and choose a ∈ A, b ∈ B, c ∈ C and X is irreducible between each

pair in {a, b, c}.

Definition 1.16. Suppose X is a continuum and p ∈ X. End(p, X) is defined as the

collection

End(p, X) = {q ∈ X : X is irreducible between p and q}.

Theorem 1.17. Suppose X is a nondegenerate indecomposable continuum and p ∈ X. If

End(p, X) 6= ∅, then End(p, X) is dense in X.

Proof. Let q ∈ End(p, X). Let Kp and Kq denote the compossant of X containing p and

the compossant of X containing q, respectively. Because X is irreducible between p and q,

q /∈ Kp; thus Kp 6= Kq, so by Theorem 1.8 Kp ∩Kq = ∅.

Theorem 1.18. If a space X has a connected dense subset, then X is connected.

Proof. Let X be a space and let K be a connected dense subset of X. K is connected

therefore K is connected, by 0.45. K is dense, therefore K = X (by 0.6); hence, X is

connected.

Theorem 1.19. Suppose X is a nondegenerate indecomposable continuum and X has the

CCP. If K is the union of countably many proper subcontinua of X, then X\K is connected.

Proof. From Theorem 1.10, X has an uncountable number of compossants, hence, a com-

possant C may be chosen such that C ∩K = ∅, where K is as described in the theorem.

A compossant such as C is connected and dense, hence it follows that any subspace of X

that contains C is connected. Thus, X \K is connected.
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Theorem 1.20. Suppose C a collection of subcontinua of X such that if F is a finite

nonempty subset of C, then there is C ∈ F , such that C ⊂ ∩F . ∩C is a nonempty subcon-

tinuum of X

Proof. Notice that C is a collection of closed subsets of a compact space such that the

intersection of a finite (and nonempty) subset of C is nonempty; thus, ∩C 6= ∅. Let V = ∩C.

To show V is connected, suppose V is not connected. If V is a closed set that is not

connected, then V is the union of two disjoint closed sets (proved previously). Call two such

sets A and B. Because A and B are each disjoint closed subsets of the compact Hausdorff

space X, there are disjoint open sets O1 and O2 such that A ⊂ O1 and B ⊂ O2. If C ∈ C,

define C ′ = C \ (O1 ∪ O2); C ′ 6= ∅, because C is a nonempty connected set that intersects

A and B. Let C ′ = {C ′ : C ∈ C}; C′ will also have the finite intersection property, for if

F ′ ⊂ C′ is finite and F ⊂ C corresponds to F ′, then there is C ∈ C such that C ⊂ ∩F , thus

C ′ ⊂ F ′. Let V ′ = ∩C′. V ′ is nonempty and V ′ ⊂ V , thus V = A ∪ B is not a subset of

O1 ∪ O2, which contradicts an implication of the assumption.

Theorem 1.21. Suppose that X is a continuum, p, q ∈ X, X is irreducible between p and

q, and each nondegenerate subcontinuum containing q is not indecomposable. End(p, X) is

a continuum.

If K is a proper subcontinuum of X containing p, define OK to be X \K.

(i) OK is connected.

Proof. By way of contrapositive, suppose that OK is not connected. Let U and V be

nonempty disjoint sets open in OK such that U ∪ V = OK ; notice that U and V are

open in X as well because OK is open in X. WLOG, assume q ∈ U and let C be the

component of X \ V containing q. By the boundary bouncing theorem, C intersects

Bd(V ). Because Bd(V ) ⊂ K, C ∩K 6= ∅ ⇒ C ∪K is a subcontinuum of X. Because
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V is nonempty, it must be that C ∪ K is a proper subcontinuum of X containing p

and q, which is against the original hypothesis.

From the above argument, it follows that if K is a proper subcontinuum of X containing

p, then OK is subcontinuum of X that intersects K at its boundary. Define C as

C = {OK : K is a proper subcontinuum of X containing p}.

(ii) If F is a nonempty finite subset of C, then there is C ∈ C such that C ⊂ ∩F 6= ∅.

Proof. Let F ′ be a finite nonempty subset of C; call the elements of F ′ 1′, 2′, 3′, ..., n′

(ie F ′ = {1′, 2′, 3′, . . . , n′}). If i′ ∈ F ′ let i be a proper subcontinuum of X containing

p such that Oi = i′; define F = {i : i′ ∈ F ′}. If i ∈ F , then i is a proper subcontinuum

containing p and not q; thus ∪F is a proper subcontinuum of X. Let K = ∪F .

If i ∈ F , then i ⊂ K ⇒ OK ⊂ Oi; thus

OK ⊂ ∩{Oi : i ∈ F} ⊂ ∩{Oi : i ∈ F} = ∩F ′.

With (ii), it follows from Theorem 1.20 that ∩C is a subcontinuum of X. Let V = ∩C.

Notice that if K is a proper subcontinuum containing p, then End(p, X) ⊂ OK ; thus

End(p, X) ⊂ V .

If we are fortunate enough that End(p, X) = V then the theorem is proved. But

suppose End(p, X) 6= V . To begin, we know that V is not indecomposable because it

contains q. Let A and B be proper subcontinuum of V such that A ∪B = V ; assume that

q ∈ A.

(iii) A ⊂ End(p, X)
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Proof. By way of contradiction, suppose A is not a subset of End(p, X) and that t

is an element of A such that t /∈ End(p, X). Let K be a proper subcontinuum of X

containing p and t.

If there is b ∈ OK such that b /∈ A, then it follows that A∪K is a proper subcontinuum

of X that contains p and q and so X is not irreducible between the two points; thus,

we may assume OK ⊂ A. A is closed ⇒ OK ⊂ A, and because V ⊂ OK it must be

that V ⊂ A; however, this means V = A, which conflicts with our assumption that A

is a proper subcontinuum of V .

(iv) End(p, X) ⊂ A

Proof. By way of contradiction, suppose b ∈ V and b /∈ A. This necessitates that

b ∈ B.

Because we are under the assumption that End(p, X) 6= V we will let t ∈ V such

that t /∈ End(p, X), and we will let K be a proper subcontinuum of X that contains t

and p. The set K ∪B is the union to two intersecting subcontinua of X, thus K ∪B

is subcontinuum of X. Recall that B is a proper subcontinuum of V , so we may let

a ∈ A such that a /∈ B. From (iii) above, a is necessarly in End(p, X) and so a /∈ K;

hence, K ∪B is a proper subcontinuum of X containg p and b ⇒ b /∈ End(p, X).

From (iii) and (iv) above we have that End(p, X) = A. Because A is a subcontinuum

of a subcontinuum of X, End(p, X) is a subcontinuum of X.
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Chapter 2

Forming Chains

Unless otherwise stated, in the chapter it is assumed that (X, T ) is a topological space.

Definition 2.1. Suppose n ∈ N, and C is a collection formed from n subsets of X. To say

that C forms a chain, means that C can be enumerated by the integers 1, 2, . . . , n (that is

C = {C1, C2, . . . Cn} ) so that if i, j ≤ n, then Ci ∩ Cj 6= ∅ if and only if |i− j| ≤ 1. If the

enumeration of C is defined (or understood), then it is said that C is a chain in X. The

length of C is the number of elements in C and is denoted by |C|. The elements of the chain

C are called links of C, where the first and last links of C are C1 and C2, respectively. An

interior link of C is a link that is not a first or last link of C. If each of C and D is a link

in C and C ∩D 6= ∅, then C and D are called adjacent links in C.

Note: Although the definition of a chain is general enough to allow for links of a chain

to be any nonempty subset of X, it will be more convenient for the purposes of this paper

to assume (unless stated otherwise) that links of a chain in X are open subsets of X.

The following is a list a of conventions used when speaking of chains:

1. Chains are denoted with capital script letters.

2. Links of a chain are denoted with plain capital letters (usually the same letter used

to denote the chain).

3. Unless stated specifically, if it is said that C is a chain of length n, then it is assumed

that {C1, C2, . . . Cn} is the enumeration of C.

4. A sequence of chains is indexed with superscripts (ie {Ci}∞i=1).

The next theorem will be given with out proof.
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Theorem 2.2. If C is a chain in X of length n, and D is the enumerated collection

{D1, D2, . . . , Dn}, where Di = Cn−i+1, then D is a chain in X.

Definition 2.3. Suppose the chains C and D are as described in the previous theorem. D

is calledthe reverse of C, and will be denoted as −C = {−C1,−C2, . . . ,−Cn}.

Theorem 2.4. If C is a chain in X and C1 and C2 are disjoint nonempty subsets of C such

that C1 ∪ C2 = C, then (∪C1) ∩ (∪C2) 6= ∅.

Proof. Suppose C = {C1, . . . , Cn} is a chain and each of C1 and C2 are nonempty disjoint

subsets of C such that C1∪C2 = C. Without loss of generality, assume that C1, the first link

of C, is in C1. Let l be the least index from C such that Cl ∈ C2. l > 1, which means l− 1 is

an index of a link in C; furthermore Cl−1 ∈ C1 since l is the least index such that Cl ∈ C2.

Cl−1 and Cl are adjacent which means Cl−1 ∩ Cl 6= ∅, hence (∪C1) ∩ (∪C2) 6= ∅.

Definition 2.5. If X is a topological space and each of V and U is a collection of open

sets, then to say that V refines (respectively properly refines) U , means that if V ∈ V

then there is U ∈ U such that V ⊂ U (respectively V ⊂ U).

Lemma 2.6. Suppose that B is a base for X, M ⊂ X, and U is an open cover of M . There

is V an open cover of X that refines U such that V ⊂ B.

Proof. For each x ∈M , let Ux ∈ U such that x ∈ Ux, and let Bx ∈ B such that x ∈ Bx ⊂ Ux.

Let V = {Bx : x ∈M}.

For each x ∈ X, Bx is defined; thus ∪V = X, so V covers X.

If V ∈ V, there is x ∈ X such that V = Bx. Thus there is Ux ∈ U such that

Bx ⊂ Ux ∈ U . Hence, V refines U .

Definition 2.7. Suppose that n ∈ N and C is a chain of length n in X. If l, m ∈ N (with

l, m ≤ n), then the segment of C from l to m is the collection {Ci : i ∈ N, min(l,m) ≤

i ≤ max(l,m)}, and is denoted C(l,m).

The following lemma is also intuitive and will be given without proof.
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Lemma 2.8. If C is a chain in the space X, then each segment of C forms a chain in X.

Definition 2.9. Suppose now that C(h, j) is a segment from the chain C and D(k, m) is a

segment from the chain D. To say that D(k, m) is anchored in C(h, j) means that Dk ⊂ Ch

and Dm ⊂ Cj .

To say that D is anchored in C means that the first link of D is a subset of the first

link of C and the last link of D is a subset of the last link of C.

Theorem 2.10. Suppose that C is a chain in X and D is a chain that refines C. Suppose

also that C(h, j) is a segment from C and D(k, m) is a segment from D such that D(k, m)

is anchored in C(h, j). If Ci is an interior link in C(h, j), then there is Dl ∈ D(k, m) such

that Ci is the only link in C such that Dl ⊂ Ci.

Proof. Let D1 = {D ∈ D(k, m) : D ⊂ ∪C(1, i − 1) and D2 = {D ∈ D(k, m) : D ⊂

∪C(i + 1, |C|)}. D1 and D2 are nonempty Dk ⊂ Ch and Dm ⊂ Cj and i is between h and

j. D1 and D2 are disjoint, for if D ∈ D1 and Ca ∈ C(1, i− 1) such that D ⊂ Ca, if Cb ∈ C

such that D ⊂ Cb then |a − b| ≤ 1, which means b ≤ a + 1 ≤ i, and so Cb /∈ C(i + 1, |C|),

and therefore D /∈ D2.

It follows that D1 and D2 are nonempty disjoint subsets of D(k, m), which means

D1 ∪ D2 6= D(k, m), since D(k, m) forms a chain. Thus, there is Dl ∈ D(k, m) such that

Dl /∈ D1∪D2. Because D refines C, there is a link in C that contains Dl, thus Ci is the only

link in C such that Dl ⊂ Ci.

Theorem 2.11. Suppose C is a chain in the the space X and D is a chain that refines

C. Suppose also that D(k, m) is a segment from D. The collection C′ = {C ∈ C : C ∩

(∪D(k, m))} is a segment in C.

Proof. Let Ch, Cj ∈ C′ such that h < j and if Ci ∈ C′, then h < i < j; thus C′ ⊂ C(h, j).

It will now be shown that if Ci ∈ C(h, j), then Ci ∈ C′. Let Da, Db ∈ D(k, m) such that

Da ∩ Ch 6= ∅ and Db ∩ Cj 6= ∅. Let Ch′ ∈ C′ such that Da ⊂ Ch′ , similarly, choose Cj′ so

that Db ⊂ Cj′ . Because Ch′ contains Da and Da ∩ Ch 6= ∅, Ch′ ∩ Ch 6= ∅, thus |h− h′| ≤ 1,
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which means h′ = h or h′ = h + 1. In a similar manner, it may be concluded that j′ = j or

j′ = j − 1.

Thus, D(a, b) is a segment in D anchored in C(h′, j′). Because Ch, C ′
h, Cj , and C ′

j

each intersect Da or Db, these links are necessarily in C′. Suppose that Ci ∈ C(h, j) and

h′ < i < j′. Ci is therefore an interior link of C(h′, j′), so by 2.10 there is Dl ∈ D(a, b) such

that Dl ⊂ Ci. Because Da, Db ∈ D(k, m), D(a, b) ⊂ D(k, m), thus Dl ∈ D(k, m) such that

Dl ∩ Ci 6= ∅; hence, Ci ∈ C′.

It follows that C(h, j) ⊂ C′, thus C′ is the segment C(h, j).

Theorem 2.12. Suppose n ∈ N and C is a chain of length n in X. Also suppose that U is

an open subset of X. If i ∈ N (with i ≤ n) and for each C ∈ C, U ∩ C 6= ∅ if and only if

Ci ∩ C 6= ∅, then D = {D1, D2, . . . , Dn}, where Di = U and Dj = Cj (if j 6= i), is a chain

in X.

Proof. Suppose j ∈ N (with j ≤ n and j 6= i). Dj ∩ Di = Cj ∩ U and Cj ∩ U 6= ∅ if and

only if Cj ∩ Ci 6= ∅ if and only if |j − i| ≤ 1; thus, Dj ∩Di 6= ∅ if and only if if and only if

|j − i| ≤ 1. If k ∈ N (with k ≤ n and k 6= i), then Dj ∩Dk = Cj ∩ Ck; thus Cj ∩Dk 6= ∅ if

and only if |j − k| ≤ 1.

Definition 2.13. In the previous theorem, the chain D is called the chain formed from

C by replacing link Ci with U , and is denoted C(Ci, U).

Definition 2.14. Suppose C is a chain in X. To say that C is a spaced chain means that if

C,D ∈ C, then C ∩D = ∅ if and only if C ∩D = ∅. In other words, the closure of two links

in C intersect if and only if the two links are adjacent. If X is a metric space with metric

d, then spacing of C is defined as

S(C) = min({d(C, D) : C,D ∈ C and C ∩D = ∅}.

For the following chapter it will be useful to note that when the metric space X is

compact or each link in the chain C is bounded, that S(C) > 0.
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Theorem 2.15. Suppose X is normal, A is a closed subset of X, and C = {C1 · · ·C|C′|} is

a chain in X that covers A. There is D, a spaced chain of length n, such that D properly

refines C and if Di ∈ D, then Di ⊂ Ci.

Proof. Begin by choosing b2, b3, . . . , b|C| such that, if i ∈ N (with 2 ≤ i ≤ |C|), then bi ∈

Ci−1 ∩ Ci (this is possible since |(i− 1)− i| ≤ 1).

If j ∈ N, and j ≤ |C|, let Uj = C \ {Cj}, and define Bj as Bj = {bi : Ci ∩Cj 6= ∅. Thus

Bj intersects each link in C that is adjacent to Cj ; finally, define Aj as Aj = Bj ∪ (A \ ∪U).

Thus, for each j ∈ N (with j ≤ |C|) ∪Uj is open and Bj is finite and is threfore closed,

which means Aj is the union of two closed subsets of Cj ; hence, Aj is a nonempty closed

subset of Cj . Because X is normal, Dj may be chosen to be an open set such that Aj ⊂ Dj

and Dj ⊂ Cj .

Let D = {D1, D2, . . . , D|C|}. By the selection of each element of D, it is hopefully clear

that if Di ∈ D, then Di ⊂ Ci, which will also yield that D is a proper refinement of C. To

show that D is a chain, suppose that Dk, Dl ∈ D. Without loss of generality, assume that

k ≤ l.

If |k − l| ≤ 1, then l = k or l − 1 = k. If k = l, then Dk ∩ Dl 6= ∅, since Dk 6= ∅. If

k = l − 1, then bl ∈ Ck ∩ Cl. Ck and Cl are each adjacent to Cl, thus

bl ∈ Bk ∩Bl ⊂ Ak ∩Al ⊂ Dk ∩Dl.

If |k − l| > 1, then Ck ∩ Cl = ∅. Because Dk ⊂ Ck and Dl ⊂ Cl, Dk ∩Dl = ∅ as well.

Thus, D is a chain.
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Chapter 3

Chainable Continua

With the notions developed in the previous chapter regarding chains, the relationship

between chains and continuum will follow in this chapter. First, it must be stated what is

meant for a subset of a topological space to be chainable.

Definition 3.1. Suppose that X is a topological space and that M ⊂ X. To say that M

is chainable, means that if U is an open cover of M, then there is a chain C that refines U

and covers M .

Before showing that the interval [0,1] is chianable a useful lemma will be proven.

Lemma 3.2. Suppose that (X, d) is a metric space. If C is a compact subset of X and U

is a open cover of C, then there is ε > 0 such that if p ∈ C, then there is U ∈ U such that

B(p, ε) ⊂ U .

Proof. Suppose C is a compact subset of X and U is an open cover of C. If δ > 0 let Cδ

denote the subset of C to which p belongs if and only if no element of U contains B(p, δ).

Notice that if 0 < a < b then Cb ⊂ Ca

Thus, {C 1
n

: n ∈ N} is a nested collection of closed subsets of C. ∩{Cc : c > 0} = ∅

because for each p ∈ C there is c > 0 such that B(p, c) is contained in some U ∈ U ; thus,

there is n ∈ N, such that C 1
n

= ∅ since C is compact. It follows that if p ∈ C, then B(p, 1
n)

is contained in some element of U .

Theorem 3.3. The interval [0,1], with the subspace topology from R is chainable.

Proof. It is assumed that the metric on [0, 1] is the conventional abosolute difference metric

(ie d(x, y) = max(x− y, y − x)).
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Suppose U is an open cover of [0, 1]. [0, 1] is compact, so by Theorem 3.2, ε > 0 may be

chose so that if x ∈ [0, 1], then then B(x, ε) is contained in an element of U . Let n ∈ N such

that 1
n < ε. If i ∈ N, and 1 ≤ i ≤ n + 1, let Fi = B( i−1

n , 1
n). Thus, F = {F1, F2, . . . , Fn+1}

is a refinement of U .

As intervals, F1, F2, . . . , Fn+1 may be writtens as follows:

F1 = [0, 1
n), Fn+1 = (n−1

n , 1], and if i ∈ N and 1 < i < n,

Fi = (
i− 1

n
− 1

n
,
i− 1

n
+

1
n

) = (
i− 2

n
,

i

n
).

Note that if i ∈ N and i ≤ n, then the right endpoint of Fi is i
n and the left endpoint of

Fi+1 is i−1
n .

To show F is a chain, choose j, k ∈ N such that j ≤ k ≤ n + 1.

If |j − k| ≤ 1, then it follows that j = k or j + 1 = k. If j = k, then Fj ∩ Fk = Fj 6= ∅

and if j + 1 = k, then

Fj ∩ Fk ⊃
[
i− 1

n
,

i

n

)
∩

(
i− 1

n
,

i

n

]
=

(
i− 1

n
,

i

n

)
6= ∅.

If |j − k| > 1, then j + 2 ≤ k, which means

Fj ∩ Fk ⊂
[
0,

j

n

)
∩

(
(j + 2)− 2

n
, 1

]
=

[
0,

j

n

)
∩

(
j

n
, 1

]
= ∅.

Thus, Fj ∩ Fk 6= ∅ if and only if |j − k| ≤ 1.

Corollary 3.4. If X is a nonempty subcontinuum of [0, 1], then X is chainable.

Proof. Suppose X is a subcontinuum of [0, 1]. X is either a singleton or X is homeomorphic

to [0, 1]. If X is a singleton, then X is chainable, for if U is an open cover of X, you can

pick U ∈ U such that X ⊂ U , and {U} will form a chain of length one that covers X and

refines U .
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If X is homeomorphic to [0,1], pick h : [0, 1] → X such that h is a homeomorphism.

Suppose U is an open cover of X. Let U ′ = {h−1(U) : U ∈ U}. h is continuous, hence each

element of U ′ is open in [0, 1]; X is range of X and ∪U = X, hence, [0, 1] = ∪U ′. It follows

that U ′ is an open cover of [0, 1].

[0, 1] is chainable, so C′, a chain covering [0, 1] and refining U ′ may be chosen. Let

C = {h(C ′
i) : C ′

i ∈ C′}. Since h is open, C is an open collection. Since h is onto and

∪U ′ = [0, 1], X = ∪U . Lastly, to show C to show that C is a chain, if C ′
i ∈ C′, let

Ci = h(C ′
i). This provides an enumeration of C. If Ci, Cj ∈ C, then because h is one-to-one

and onto, Ci ∩Cj 6= ∅ if and only if h−1(Ci)∩ h−1(CJ) 6= ∅ if and only if |i− j| ≤ 1; thus C

is a chain covering X.

C will refine U , for if Ci ∈ C, then h−1(Ci) ∈ C′. There is U ′ ∈ U ′ such that h−1(Ci) ⊂

U ′, thus h(U ′) ∈ U such that Ci ⊂ h(U ′).

Definition 3.5. If (X, d) is a metric space and C is a chain in X, then the mesh of C is

defined as mesh(C) = min({diam(C) : C ∈ C}), where diam(C) = sup({d(x, y) : x, y ∈ C})

for each C ⊂ X. If each link in C is bounded and s > 0 such that s ≥ mesh(C), then C is

called an s− chain.

Theorem 3.6. Suppose that X is a compact metric space with metric d, and {Ci}∞i=1 is a

sequence of chains of open sets such that

1. For each i the chain Ci+1 is a proper refinement of Ci, and

2. For each i, Ci is an 1
i − chain.

The set ∩∞i=1(∪Ci) is chainable and a subcontinuum of X.

Proof. For ease, let M = ∩∞i=1 ∪ Ci. We may assume without of generality, that if n ∈ N

and C is a first or last link in the chain Cn, then C ∩M 6= ∅, and C ∩M is not a subset of

another link in Cn (else, Cn \ {C} can be enumerated to form a chain that covers M).
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Note that for each positive integer i, if C ∈ Ci+1, then C ⊂ ∪Ci, since Ci+1 properly

refines Ci ; thus

∪Ci+1 =
⋃

C∈Ci+1

C ⊂ ∪Ci,

and therefore M = ∩∞i=1∪Ci is a nonempty closed set. Hence M is compact.

Secondly, M is connected. If M were not connected, then because M is compact, there

would be disjoint, nonempty, closed sets H and K, such that M = H ∪K. X is normal,

thus we can choose disjoint open sets U and V , such that H ⊂ U and K ⊂ V . Without

losing generality, we may assume U ∩ V = ∅. Let ε = min(D(H,U), d(K, V ), (U, V )).

Notice that if n ∈ N such that 1
n < ε, then a link in Cn cannot intersect U and V , for

if x ∈ U and y ∈ V , then d(x, y) > e(U, V ) ≥ ε > 1
n . This means there is a link in Cn that

is not a subset of U ∪ V ; thus ∪Cn \ (U ∪ V ) is a nonempty closed set. Because

∪Cn+1 ⊂ ∪Cn,

it follows that (
∩n> 1

ε
∪Cn

)
\ (U ∪ V ) 6= ∅.

Of course the above set is also a subset of M and is therefore a subset of U and V (contra-

diction).

Before showing chainability notice that each link in each chain must intersect M , for

if Cn = {C1, . . . , CN} and j ∈ N (with j ≤ N) such that Cj ∩M = ∅, then 1 < j < n (by

one of the initial assumptions) and U = ∪j−1
i=1Ci and V = ∪N

i=j+1Ci are disjoint open sets,

each intersecting M , whose union contains M , hence M is not connected.

To show chainability, suppose U is an open cover of C. Since X is a compact metric

space and M is a closed subset of X, Theorem 3.7 states that ε > 0 may be chosen such

that if p ∈ M , then {B(p, ε)} ⊂ U for some U ∈ U . Let n ∈ N such that 1
n < ε

2 . If C

is a link in Cn, then by the previous argument, C ∩M 6= ∅. Let p′ ∈ C ∩M . Because

mesh(Cn) < 1
n < ε

2 , diam(C) < ε
2 ; thus d(p′, c) < 2 ε

2 = ε for each c ∈ C, which means
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C ⊂ B(p′, ε). By our choice of ε there is U ∈ U such that B(p, ε) ⊂ U ; hence, there is U ∈ U

such that C ⊂ U . Therefore Cn refines U and M is chainable.

Lemma 3.7. Suppose (X, d) is a metric space, M ⊂ X, U is an open cover of M , and

ε > 0. Let B(ε) = {B(x, δ) : x ∈ M and δ ≤ ε}. There is V, an open cover of M that

refines U such that V ⊂ B.

Proof. The proof is similar to that of 2.6. It will be shown that each element of x is

contained in an element of B(ε), which is contained in an element of U . Choose x ∈M and

U ∈ U , such that x ∈ U . There is δ > 0 such that B(x, δ) ⊂ U , since U is open. Thus

B(x,min(δ, ε)) ∈ B(ε) and B(x,min(δ, ε)) ⊂ B(x, δ) ⊂ U .

Theorem 3.8. Suppose M is a chainable continuum lying in the metric space (X, d) and

{ai}∞i=1 is a decreasing sequence converging to zero. There exists a sequence of spaced chains

{Cn}∞n=1, each of which covers M , such that if i ∈ N, then

1. Ci+1 properly refines Ci,

2. mesh(Ci) ≤ ai ,

3. M = ∩∞n=1(∪Cn).

Proof. To begin, let U1 = {B(x, 1) : x ∈ M}. U1 is an open cover of M , so D1 may be

chosen to be a chain that refines U1 and covers M . Since metric spaces are normal and M

is chainable and thus closed, by 2.15, C1 may be a spaced chain that properly refines D1.

The remaining chains will be defined inductively. Suppose Ci is defined as spaced chain

covering M . By 3.7, Ui+1 may be chosen to be a refinement of Ci, such that Ui+1 ⊂ B(ai+1),

where B(ai+1 = {B(x, ai+1) : x ∈ M}. Let Di+1 be a chain refining Ui+1 and covering M .

By 2.15, Ci+1 may be chosen to be a spaced chain that properly refines Di+1.

The sequence of spaced chains {Ci}∞i=1 is now defined and each chain in the sequence

does cover M . It remains to show that properties 1, 2, and 3 are satisfied by this sequence.

Suppose i ∈ N. Di+1 refines Ci and Ci+1 properly refines Di+1, thus Ci+1 properly

refines Ci; hence, 1 is satisfied.
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Because Ui ⊂ B(ai), if D ∈ Di, diam(D) ≤ ai; thus mesh(Di) ≤ ai, meaning Di is an

ai-chain (satisfying 2).

Lastly, each chain covers M , so M ⊂ ∩∞i=1(∪Ci). To prove the converse, suppose

x ∈ ∩∞i=1. It will be shown that x is a limit point of M .

Suppose O is open and x ∈ O. ε > 0 may be chosen so that B(x, ε) ⊂ O ( since

{B(p, δ) : p ∈ X, and δ > 0} is a base for X). Because {ai}∞i=1 converges to zero, n ∈ N

may be chosen such that an < ε. Let Cn
k ∈ Cn such that x ∈ Cn

k . Cn
k is contain is contained

in some element in Dn, which is contained in some element in Un; so B(p, ε′) ∈ Un may

be chosen such that Cn
k ⊂ B(p, ε′). By construction of Un, p ∈ M and ε′ < an < ε. Thus

p ∈ B(x, ε). We have that x is a limit point of M . M is a continuum and thus closed in X.

This means it contains all of its limit points, yeilding that ∩∞i=1(∪Ci) ⊂M .
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Chapter 4

Inverse Limit Spaces and Chainable Continua

This chapter will offer a further characterization of chainable subsets of metric spaces.

It is shown in the previous chapter that a chainable subset of a metric space is a continuum.

In this chapter it will be shown that a subset of a metric space is chainable if and only if it

is homemorphic a specific type of inverse limit space. The notion of an inverse limit space

will now be developed.

Suppose that if i ∈ N, then Xi is a topological space. Suppose also that fi is a contin-

uous function from Xi+1 to Xi. Let lim←−{Xi, fi}∞i=1 denote the subset of
∏∞

i=1 Xi, to which

the sequence {xi}∞i=1 belongs if and only if xi = fi(xi+1), for each i ∈ N.

If i ∈ N and Oi ⊂ Xi, let
←−
Oi denote the collection {x ∈ X| xi ∈ Oi}; thus,

←−
Oi ⊂

lim←−{Xi, fi}∞i=1.

Theorem 4.1. The collection B, defined as

B = {
←−
Oi : i ∈ N and Oi is an open subset of Xi},

is a basis for a topology on lim←−{Xi, fi}∞i=1.

The proof to the above theorem can be found in [6].

Definition 4.2. The space X = lim←−{Xi, fi}∞i=1 with topology generated by B (as defined

in 4.1) is called an inverse limit space. If i ∈ N, Xi is called the ith factor spaces and

fi is called the ith bonding map. Furthermore, if Oi ⊂ Xi and x ∈
←−
Oi, then x is said to

pass through the set Oi in Xi.
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Inverse limit spaces are a valuable commodity in topology and are dealt with thouroughly

in [6]. For the purposes of this chapter, the only inverse limit spaces that will be considered

are those whose factor spaces are [0, 1]. For this reason, necessary theorems, whose proofs

can be found in [6], will be stated (without proof), and afterwards, it will be shown (with

proof) that each chainable continua is in fact homeomorphic to an inverse limit space whose

factor spaces are each [0, 1].

Theorem 4.3. Suppose that if i ∈ N, Xi is a topological space and fi : Xi+1 → Xi is a

continuous function.

1. lim←−{Xi, fi}∞i=1 is Hausdorff if Xi is Hausdorff for each i ∈ N.

2. lim←−{Xi, fi}∞i=1 is compact if Xi is compact for each i ∈ N.

The proof of 1 and 2 may be found respectively in 3.1 and 3.4 in [6].

When considering an inverse limit space lim←−{Xi, fi}∞i=1, it is useful to look at compo-

sitions of the bonding maps. In such cases, the following convention will be used:

If i, j ∈ N and i < j, f j
i : Xj → Xi, such that

f j
i = fi ◦ fi+1 ◦ · · · ◦ fj−2 ◦ fj−1.

Notice that with this notation, f i+1
i = fi. Furthermore, f j

i is a composition of contin-

uous functions, hence f j
i is continuous by an extension of 0.18.

For the following lemmas and theorems, suppose that if i ∈ N, then Xi = [0, 1] and if

fi : Xi+1 → Xi is a continuous function, let X denote the space lim←−{Xi, fi}∞i=1.

Lemma 4.4. Suppose n ∈ N, On is an open subset of Xn. If i ∈ N and On+i =

(fn+i
n )−1(On) (ie On+i is the preimage of On under fn+i

n ), then
←−
On =

←−−−
On+i.

Proof. Because On+i = (fn+i
n )−1(On), it follows that if x ∈ X, then xn ∈ On if and only if

xn+i ∈ On+i. Hence x
←−
On if and only if x ∈

←−−−
On+i, meaning

←−
On =

←−−−
On+i.
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The next lemma could be stated as a corollary to theorems in [6], however, due to the

general nature of [6], it is felt that proving the following theorem for this specific instance

is beneficial.

Lemma 4.5. If n ∈ N, then πn(X) is a subcontinuum of [0, 1].

Proof. Suppose n ∈ N. Let K = ∩∞i=1f
n+i
n ([0, 1]). Because fn+j

n is continuous for each

j ∈ N, and Xn+j = [0, 1] is a continuum, it follows that fn+j
n (Xn+j) is a subcontinuum of

Xn. Since fn+j+1
n+j (Xn+j+1]) ⊂ Xn+j , for each j ∈ N,

[0, 1] ⊃ fn+1
n (Xn+1) ⊃ fn+2

n (Xn+2) ⊃ · · · ,

and since fn+j
n (Xn+j) 6= ∅ for each j ∈ N, it follows that K is in fact the intersection of a

nested collection of nonempty subcontinua of Xn. By 1.20, K must be a subcontinuum of

Xn = [0, 1].

It will now be shown that πn(X) = K. First note that if x ∈ X (ie xn ∈ πn(X)), then

fn+i
n (xn+i) ∈ K for each i ∈ N; thus xn ∈ K. It follows that πn(X) ⊂ K.

To show K ⊂ πn(X), a less straightforward proof is recquired. If i ∈ N, define Ki as

Ki = ∩∞j=1f
n+i+j
n+i (Xn+i+j).

For the same reasons that K is a nonempty subcontinuum of Xn, Ki is a nonempty sub-

continuum of Xn+i. Now suppose that yn ∈ K. Since yn is in the image of fn+i
n for each

i ∈ N, and fn+i
n = fn ◦ fn+i

n+i , it must be that (fn)−1(yn) ∩ fn+i+1
n+1 (Xn+i+1) 6= ∅ for each

i ∈ N. Because

(fn)−1(yn) ∩K1 = ∩∞j=1(fn)−1(yn) ∩ (fn+j+1
n+1 (Xn+j+1)),

(fn)−1(yn)∩K1 is the intersection of a decreasing collection of nonempty compact sets, thus

(fn)−1(yn) ∩K1 6= ∅. Choose yn+1 ∈ (fn)−1(yn) ∩K1.
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For each i ∈ N, if yn+i is chosen, then for reasons similar to those above, (fn+i)−1(yn+i)∩

Ki+1 is also the intersection of a decreasing sequence of nonempty compact subsets of

Xn+i+1, meaning (fn+i)−1(yn+i) ∩Ki+1 6= ∅. Choose yn+i+1 ∈ (fn+i)−1(yn+i) ∩Ki+1.

Consider the sequence {xi}∞i=1, where

(a) xi = fn
i (yn), if i < n,

(b) xi = yi, if i ≥ n (where yi is as chosen previously)

To show the sequence is in X, pick i ∈ N

(a) If i < n, then xi = fn
i (yn) = fi(fn

i+1(yn)) = fi(xi+1).

(b) If i ≥ n, then xi = yi. yi+1 ∈ (fi)−1yi, thus xi = yi = fi(yi+1) = fi(xi+1).

Because xn = yn, it follows that K ⊂ πn(X). Thus πn(X) = K, which means πn(X) is

a continuum.

Theorem 4.6. X is chainable

Proof. Suppose U is an open cover of X; by Lemma 2.6, V, an open cover of X may be

chosen so that V refines U , and V ⊂ B, where B is as defined in 4.1.

By Theorem 4.3 part 2, X is compact, thus F may be chosen as a finite subcover of X

from V. If F ∈ F , then F is a basic open subset of X, therefore a positive integer nF and

Onf
, an open subset of [0, 1], may be chosen so that F =

←−−
OnF .

Let N = max(nF : F ∈ F). If F ∈ F , let OF = (fN
nF

)−1(Onf
)); by Lemma 4.4,

F =
←−−
Onf

=
←−
OF

N . Let XN = πN (X); XN is a subcontinuum of [0, 1] by 4.5. Let FN =

{OF
N ∩ [0, 1] : F ∈ F}. Since F covers X, FN covers XN . Because projection mappings are

open, and the image of πN (restricted to X) is XN , it follows that πN (F ) is an open subset

of XN for each F ∈ F , thus FN is an open cover of XN . The corollary to 3.3 yields that

XN is chainable, and that CN may be chosen to be a chain coverring XN that refines FN .

If CN
i is a link in CN , let Ci =

←−
CN

i . It will first be shown that if CN
i ∈ CN , then Ci

is open in X. Suppose CN
i ∈ CN . CN

i is open in XN and XN is a subspace of [0, 1], thus
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there is ON open in [0, 1] such that ON ∩XN = CN
i . CN

i ⊂ O, hence Ci =
←−
CN

i ⊂
←−
ON . If

x ∈
←−
ON , then xn ∈ On ∩ πNX, which means xn ∈ CN

i , thus
←−
ON ⊂

←−
CN

i = Ci. It follows that

C is a collection of basic open subsets of X.

Let C denote the collection {Ci : CN
i ∈ CN}. It will now be shown that C is a chain, C

covers X, and C refines U .

Suppose Ci, Cj ∈ C and Ci ∩ Cj 6= ∅. x ∈ Ci ∩ Cj if and only if xn ∈ CN
i ∩ CN

j if and

only if |i− j| ≤ 1; thus C is a chain.

If x ∈ X, then xN ∈ πN (X) = XN , which means CN
i ∈ CN may be chosen so that

xN ∈ CN
i . It follows that x ∈

←−
CN

i = Ci. Thus, ∪C = X and therefore C covers X.

Lastly, C refines U . Suppose Ci ∈ C and let CN
i be the corresponding link in CN . CN

refines FN = {OF
N ∩ [0, 1] : F ∈ F}, so F ′ ∈ F may be chosen so that CN

i ⊂ OF ′
N ; this means

that

Ci =
←−
CN

i ⊂
←−−
OF ′

N = F.

F ⊂ V, so V ′ ∈ V may be chosen so that F ′ ⊂ V ′. V refines U , so U ′ ∈ U may be chosen

so that V ′ ⊂ U ′. Thus, F ′ ⊂ U ′ ∈ U . It may be concluded that C refines the open cover U

picked originally.

Hence, if U is an open cover of X, there is a chain C that covers X and refines U .

It has now been shown that that an inverse limit space whose factor spaces are each

[0, 1] is a chainable continuum. The rest of the chapter is devoted to showing that each

chainable subset of a metric space is homeomorphic to an inverse limit whose factor spaces

are each [0, 1].

Definition 4.7. If C is a chain, the indexing set for C is the collection I = {1, 2, . . . , |C|}.

Suppose C is a chain and I is the indexing set for C. If A ⊂ I, and j, k ∈ A (with j < k),

then to say that j and k are consecutive elements in A, means that if l ∈ A, then l ≤ j or

l ≥ k; Cj and Ck may be referred to as consecutive links in terms of A.
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Definition 4.8. If n ∈ N and K = {[ i−1
n , i

n ] : i ∈ N, 1 ≤ i ≤ n}, then K is called the rusted

chain of length n and if j ∈ N and j ≤ n then Kj = [ j−1
n , j

n ] is the jth rusty-link of K.

K is a chain in the general sense, however, it is unlike the chains used previously,

because each link in K is not an open subset of [0, 1]. The term “rusted ” came to mind

defining such chains, because unlike chains in normal spaces whose links are open subsets,

a link in a rusted chain cannot be replaced by a proper subset of the link and still cover

[0, 1]; thus, there is less flexibility.

The following construction will help describe how to “refine” a rusted chain with an-

other rusted chain.

Suppose C is a chain and D is a chain that refines C such that the union of two adjacent

links in D does not intersect more than two links in C. Let I be the indexing set of C, and

let J be the indexing set of D. Define T as

T = {j ∈ J : Dj intersects two links in C},

and define U as

U = {j ∈ J : j + 1 ∈ T}.

Let F = { j
n : j ∈ T ∪ U} ∪ {0, 1}. For each j ∈ J , let i(j) be the least element of I such

that Dj ∩ Ci(j) 6= ∅. Define f : F → [0, 1] defined as follows:

if j ∈ T , then f( j
n) = i(j)

m , where m = |C|;

if j ∈ U \ T , then f( j
n) = f( j+1

n ).

If 0 /∈ T ∪ U , let j0 = min(T ) and let f(0) = f( j0
n ).

If 1 /∈ T ∪ U , let j1 = max(T ∪ U) and let f(1) = f( j1
n ).

Let f be the piecewise linear expansion of f .

Definition 4.9. In the previous construction,f is called the bending function relative to

D in C. The collection F used to define f is called the defining set for f .
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Let K be the rusted chain of length n = |D|. Because F is a subset of the endpoints

of links in K it follows that if j ∈ J , f is linear over Kj .

By the initial condition, that the union of two adjacent links in D intersect at most two

links in C, if j ∈ T ∩U , then Dj and Dj+1 intersect the same two links in C (else Dj ∪Dj+1

intersects more than two links in C); thus f( j
n) = i(j)

m for every j ∈ T . Notice that this also

implies that if j +1 ∈ T , then then f( j
n) = f( j+1

n ) regardless of whether j ∈ T or j ∈ U \T .

Lemma 4.10. Suppose (X, d) is a metric space, C is a spaced chain in X, and D is a chain

that refines C. Suppose also that D(k, l) is a segment in D. If mesh(D) < S(C)
4 , where S(C)

is defined in 2.14, and |k − l| ≤ 2, then ∪D(k, l) intersects at most two links in C.

Proof. If |k − l| ≤ 2, then there are at most three links in D(k, l). If D(k, l) has no more

than two links, then because Dk ∩Dl 6= ∅,

diam(∪D(k, l) ≤ diam(Dk) + diam(Dl) ≤
S(C)

2
) < S(C).

If D(k, l) contains three links, let Dj denote the link that is not Dk or Dl. Thus, Dj

intersects both Dk and Dl, and

diam(∪D(k, l)) ≤ diam(Dk ∪Dj) + diam(Dl) ≤
S(C)

2
+

S(C)
4

< S(C).

If Ci, Cj ∈ C and each intersects ∪D(k, l), then d(Ci, Cj) < S(C). If d(Ci, Cj) < S(C),

then Ci and Cj must be adjacent.

Lemma 4.11. Suppose (X, d) is a metric space, C is a spaced chain, D is a chain that

refines C, and mesh(D) < S(C)
4 . If C(h, j) is a segment of C, D(k, m) is a segment of D

that is anchored in C(h, j), and Ci is an interior link of C(h, j), then there is Dl ∈ D(k, m)

such that Dl only intersects Ci.

Proof. Let D1 = {D ∈ D(k, m) : D ∩ (∪C(1, i − 1)) 6= ∅}, and let D2 = {D ∈ D(k, m) :

D ∩ (∪C(i + 1, |C|)) 6= ∅}. It will be shown that D1 and D2 are disjoint. Suppose D ∈ D1,
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and Ca ∈ C(1, i − 1) such that D ∩ Ca 6= ∅. From 4.10, D cannot intersect a link in C

that is not adjacent to Ca; hence, if Cb ∈ C and D ∩ Cb 6= ∅, then b ≤ a + 1 ≤ i, meaning

Cb /∈ C(i + 1, |C|).

By 2.11, D1 ∪ D2 cannot contain every link in D(k, m). Pick Dl ∈ D(k, m), such that

Dl /∈ D1 ∪D2. It follows that Dl cannot intersect a link in C(1, i− 1)∪C(i + 1, |C|), thus Dl

only intersects Ci.

For Theorem 10 through Theorem 13, the following are assumed:

(1) m ∈ N and C is a spaced chain of length m

(2) n ∈ N and D is a spaced chain of length n that properly refines C such that mesh(D) <

S(C)
4 .

(3) I and J are the respective indexing sets of C and D.

(4) T ⊂ J to which j belongs if and only if Dj intersects two links in C.

(5) U ⊂ J defined as U = {j : j + 1 ∈ T}.

(6) F = T ∪ U ∪ {0, 1}

(7) f is the bending function relative to D laying in C.

(8) KC is the rusted chain of length m and KD is a rusted chain of length n.

Notice that by assumption (2) and Theorem 4.10, a link in D cannot intersect more

than two links in C, so the function f in assumption (7) is definable.

Theorem 4.12. If j, k ∈ F (with j < k )are consecutive indices of F , then |f( j
n)−f( k

n)| ≤
1
m ; furthermore, if l ∈ J (with j < l < k) and i ∈ I such that Dl ∩ Ci 6= ∅, then

Dl+1 ∩ Ci 6= ∅.

Proof. First note that the hypothesis is true when f( j
n) = f( k

n) and that this occurs if

(a) k ∈ T and j + 1 = k, or
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(b) j = 0 and 0 /∈ T ∪ U , or

(c) k = n and n /∈ T ∪ U .

The final case to consider is when the negation of (a), (b), and (c) occur. Not (a)

implies that k ∈ U \ T (else, j < k − 1 < k and k − 1 ∈ U ⊂ F is between j and k). Not

(b) implies j > 0, and therefore j ∈ T ∪ U . j /∈ U (else, j + 1 ∈ T ⊂ F and j < j + 1 < k),

which means j ∈ T . Let h be the least index in I such that Ch∩Dj 6= ∅. Because k ∈ U \T ,

k 6= n, and therefore k + 1 ∈ T ; let i be the least index of I such that Ci ∩Dk+1 6= ∅.

By induction, it will be shown that Dj+1, Dj+2, . . . Dk are each contained in the same

link in C. Since j + 1 /∈ F , Dj+1 intersects exactly one link in C; let g be the index of

the link in C that intersects Dj+1. Let l = k − j. If p ∈ N, 1 ≤ p < l, and Dj+p ⊂ Cg,

then j < j + p + 1 ≤ k implies that j + p + 1 /∈ T , and so Dj+p+1 intersects only one link

in C; Dj+p+1 intersects Dj+p and Dj+p ⊂ Cg, hence, Dj+p+1 ⊂ Cg. Thus, Dj+1, . . . , Dk

(equivalently Dj+1, . . . , Dj+l = Dk) are each a subset of Cg.

Dk+1∩Dk 6= ∅ and Dk ⊂ Cg, hence Dk+1∩Cg 6= ∅. If h = i, then f( j
n) = h

m = i
m = f( k

n)

and the hypothesis of the theorem is true.

Suppose now that h < i; this means h < h + 1 ≤ i, and by Theorem 2.10 , there is

q ∈ J such that j < q < k + 1 and Dq ⊂ Ch+1. Because Dj+1, . . . Dk are each contained in

Cg, g = h + 1, and therefore h + 1 is the least index in I such that Dk+1 ∩Ch+1 6= ∅; thus,

f( k
n) = f(k+1

n ) = h+1
m and |f( j

n)− f( k
n)| = | hm −

h+1
m | =

1
m .

Lastly, suppose that i < h. Dj ∩ Ch+1 = ∅, or else Dk+1 intersects Ch+1 and Ci,

which is not possible by 4.10 because Ci and Ch+1 are disjoint (nonadjacent). Therefore,

Dj ∩ Ch 6= ∅ (else Dj would intersect three links in C), meaning g = h. It follows that

i = h− 1 and |f( j
n)− f( k

n)| = | hm −
h−1
m | =

1
m .

Corollary 4.13. diam(f(KD
j )) ≤ 1

2m for each j ∈ J .

Proof. Suppose l ∈ J . Let j and k be two elements of F such that j ≤ l ≤ k and

if q ∈ F , q ≤ j or q ≥ k; f is defined to be linear between consecutive points in F ,
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thus diam(f([ j
n , k

n ])) = |f( j
n) − f( k

n)|. If f( j
n) = f( k

n), then the diameter of f(Kn
l ) is 0

because KD
l ⊂ [ j

n , k
n ]. If f( j

n) 6= f( k
n), then let h ∈ I such that Ch is the least link in

C intersecting Dj . As in the proof of the previous theorem we can conclude that j ∈ T

and k ∈ U \ T ; let i ∈ I such that Ci is the least link in C intersecting Dk+1. Because

the mesh of D is less than S(C)
4 , there are at least three links in D between Dj and Dk+1,

thus there is at least two links of D between Dj and Dk. Because f is defined to be

linear between j
n and k

n , if x, y ∈ [ j
n , k

n ], then |f(x) − f(y)| ≤ 1
m

|x−y|
| j
n
− k

n
|
≤ n|x−y|

2m . Thus,

diam(f(KD
l )) = |f( l

n)− f( l−1
n )| ≤ n

2m
1
n = 1

2m .

Theorem 4.14. If j ∈ J , i ∈ I, and Dj ∩ Ci 6= ∅, then f(Kn
j ) ⊂ Km

i .

Proof. First suppose that j ∈ T . Let h be the least index of I such that Ch ∩ Dj 6= ∅.

f( j
n) = h

m and because j − 1 ∈ U , f( j−1
n ) = f( j

n) = h
m . Because f is defined to be

linear between j−1
n and j

n , f must be constant over Kn
j = [ j−1

n , j
n ]; thus f(Kn

j ) ⊂ { h
m}.

j is assumed to be in T , meaning Dj intersects two link in C; furthermore, these two

links must be adjacent. Ch is the least such link, meaning Dj must also intersect Ch+1.

h
m ⊂ Km

h ∩Km
h+1, therefore f(Kn

j ) ⊂ Km
h ∩Km

h+1.

The remainder of the proof will follow by induction. Beginning by showing the hypoth-

esis holds if j = 1.

If 1 ∈ T , then the hypothesis holds by the previous argument. If 1 /∈ T , let l be the

least element of T and let i ∈ I such that Dl intersects Ci and Ci+1. D1 ⊂ Ci or D1 ⊂ Ci+1,

for if not, D1 ⊂ Ci−1 (or D1 ⊂ Ci+2), which means there is an index l′, with 1 ≤ l′ < l, such

that Dl′ intersects Ci−1 and Ci ( or Dl′ intersects Ci+1 and Ci+2). Thus, l′ ∈ T and l′ 6= l

because no link in D intersects more than one link in C, which means l′ < l and therefore l

is not the least element of T .

By definition, f(0) = f( l
n) = f( l−1

n ); thus, f is constant over [0, l−1
n ] (note: l − 1 ∈ U

and is therefore also defined as f( l
n)). It follows that f(Kn

1 ) ⊂ Km
i ∩Km

i+1 ⊂ Km
i .

Suppose now that j ∈ J , and for each k ∈ J (with k < j ), if i ∈ I and Dk ⊂ Ci 6= ∅,

then f(Kn
k ) ⊂ KC

i .
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If j ∈ T , then the hypothesis of the theorem holds by the initial argument of the

theorem. If j /∈ T , let k and l be consecutive links in F such that k ≤ j + 1 ≤ l. If

k ≤ j + 1 ≤ l, then h ∈ I may be chosen so that Dj+1 ∩ Ch 6= ∅, and let l be the least

index in F that is greater than j + 1. Because Dj+1 only intersects the ith link in C, Dl

must intersect a link adjacent to Ch; thus, Dl intersects two links in C and Ch is one, which

means f( l
n) ∈ f(Kn

l ) ⊂ Km
h . Dj ∩ Ch 6= ∅ and thus, f( j

n) ∈ f(Kn
j ) ⊂ Km

h . It follows

that the left most and right most point of Kn
j+1 are each in Km

h , therefor f(Kn
j+1) ⊂ Km

h ,

because f is linearly defined over Kn
j+1.

If j /∈ T , let k and l be two consecutive indices in F such that k ≤ j ≤ l. Let i ∈ I

such that Dj ∩Ci 6= ∅. By Theorem 4.10, Dk ∩Ci 6= ∅ and Dl ⊂ Ci; thus, by the inductive

hypothesis f(Kn
k ) ⊂ Km

i . If l ∈ U , l + 1 ∈ T and Dk+1 intersects Ci, which means that

f( l
n) = f( l+1

n ) ∈ Km
i ; if l /∈ U , then l = n and therefore f( l

n) = f(1) = f( k
n) ∈ Km

i .

Regardless of the case, both f( k
n) and f( l

n) are in Km
i , which means that f(Kn

j ) ⊂ Km
i

because Km
i ⊂ [ k

n , l
n ] and f is linear over this interval.

For Theorem 4.15 through Corollary 4.19, suppose the following

(1) X is a metric space and M is a chainable subset of X;

(2) C1, C2, . . . is a sequence of spaced chains in X, with indexing sets respective I(1), I(2), . . .,

and respective lengths n(1), n(2), . . . such that

(a) Ci+1 properly refines Ci;

(b) mesh(Ci+1) < min( 1
i+1 , S(Ci)

4 ),

(c) ∩∞i=1(∪Ci) = M ;

(3) Ki is a rusted chain of length n(i)

(4) fi : I → I is the bending function relative to Ci+1 inside Ci;

(5) Fi is the defining set of fi;
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(6) If g ∈ M , i(g) is the least index in I(i) such that the i(g)th link in Ci contains g. For

ease, the i(g)th link in Ci will be referred to as C(g, i) (ie C(g, i) is the first link in Ci

that contains g), and the i(g)th link in Ki, (Ki
i(g)), will be referred to as K(g, j).

For each g ∈M , let hi(g) = ∩j>if
j
i (K(g, i)).

Theorem 4.15. If g ∈M , and i ∈ N, hi(g) is a singleton.

Proof. For each i ∈ N, Ci+1 properly refines Ci, so by Theorem 4.10 fi(K(g, i+1)) ⊂ K(g, i)

because C(g, i + 1) ∩ C(g, i) ⊃ {g} 6= ∅. Hence,

K(g, i) ⊃ f i+1
i (K(g, i)) ⊃ f i+2

i (K(g, i + 2)) ⊃ · · · ,

which implies that hi(g) is the intersection of a nested collection of nonempty closed subsets

of [0, 1], meaning hi(g) 6= ∅.

To show that hi(g) is in fact a singleton, for each i ∈ N, the case for h1(g) will be made

and then generalized. First note that f1 = f2
1 is a function that is linear over K(g, 2) and

that diam(f1(K(g, 2))) ≤ 1
2n(1) = (1

2)2−1 · 1
n(1) .

If j ∈ N (with j ≥ 2), and f j
1 is linear over K(g, j) such that

diam(f j
1 (K(g, j))) ≤

(
1
2

)j−1

· 1
n(1)

,

then f j+1
1 = f j

1 ◦ fj is linear over K(g, j + 1) because fj is linear over K(g, j + 1) and

f(K(g, j + 1)) ⊂ K(g, j), and

diam(f j+1
1 (K(g, j + 1))) ≤ diam(fj(K(g,j+1)))

diam(K(g,j)) · diam(f j
1 (K(g, j)))

≤ 1
2 ·

(
1
2

)j−1 · 1
n(1)

≤
(

1
2

)j · 1
n(1)
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because diam(fj(K(g, j + 1))) ≤ 1
2n(j) = 1

2 · diam(K(g, j)). It follows that

lim
j→∞

diam(f j
1 (K(g, j))) = lim

j→∞

(
1
2

)j−1 (
1

n(1)

)
= 0,

meaning h1(g) is a singleton.

In general, note that fi = f i+1
i is a function that is linear over K(g, i + 1) and that

diam(fi(K(g, i + 1))) ≤ 1
2 ·

1
n(i) = (1

2)1 1
n(i) .

If j ∈ N (with j ≥ i + 1), and f j
i is linear over K(g, j) such that

diam(f j
i (K(g, j))) ≤

(
1
2

)j−i

· 1
n(i)

,

then f j+1
i = f j

i ◦ fj is linear over K(g, j + 1) because fj is linear over K(g, j + 1) and

fj(K(g, j + 1)) ⊂ K(g, j), and

diam(f j+1
i (K(g, j + 1))) ≤ diam(fj(K(g,j+1)))

diam(K(g,j)) · diam(f j
i (K(g, j + 1)))

≤ 1
2 ·

(
1
2

)j−i · 1
n(i)

≤
(

1
2

)j · 1
n(i)

because diam(fj(K(g, j + 1))) ≤ 1
2n(j) = 1

2 · diam(K(g, j)). It follows that

lim
j→∞

diam(f j
i (K(g, j))) = lim

j→∞

(
1
2

)j−i ( 1
n(i)

)
= 0,

meaning hi(g) is a singleton.

Theorem 4.16. Suppose g ∈ M . For each i ∈ N, let ai ∈ hi(g). {aj}∞j=1 is in the inverse

limit space lim←−{Xi, fi}∞i=1, where Xi = [0, 1] and fi is the bending function described prior

to 4.15.
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Proof. Let g ∈M and {aj}∞j=1 be as suggested in the theorem. If i ∈ N, then for each k ∈ N

(with k ≥ i + 1),

fi(ai+1) = fi(hi+1(g)) ⊂ fi(f
j
i+1(K(g, j))) ⊂ f j

i (K(g, j)),

thus fi(ai+1) ⊂ ∩∞j=1f
i+j
i (K(g, i + j)) = hi(g), so by definition fi(ai+1) = ai.

By the previous two theorems, it follows that for each i ∈ N, hi can be thought of as

a function from M into I. and h : M → lim←−{Xi, fi}∞i=1, defined as h(g) = {hi}∞i=1, is a

function from M into lim←−{Xi, fi}∞i=1.

Theorem 4.17. The function h as defined above is continuous and one-to-one.

Proof. h is one-to-one, for if p, q ∈ M and p 6= q, then there is i ∈ N such that 1
i < d(p,q)

2 ,

which means if C,D ∈ Ci, p ∈ C and q ∈ D, then there is one link of Ci between C and D,

meaning K(p, i) ∩K(q, i) = ∅ and hi(p) 6= hi(q).

To show continuity, suppose p ∈M , and U is open in lim←−{Xi, fi}∞i=1 such that h(p) ∈ U .

Without losing generality, it may be assumed that U is a basic open set. Let i ∈ N, and let

Ui be an open subset of Xi such that U =
←−
Ui.

By the topological nature of [0, 1], ε > 0 may be chosen so that Xi∩(hi(p)−ε, hi(p)+ε) ⊂

Ui, and j ∈ N may be chosen so that
(

1
2

)j−1
< ε. C(p, i + j) ∩M is an open subset of M

and if x ∈ C(p, i + j), then C(x, i + 1) ∩ C(p, i + j) 6= ∅; thus, K(x, i + j) ∩K(p, i + j) 6= ∅

and f i+j
i (K(x, i + j) ∩ f j+1

i (K(p, i + j)) 6= ∅. The diameter of the f i+j
i - image of a rusty

link in Kn(i+j) is not greater than
(

1
2

)j , meaning

|hi(x)− hi(p)| ≤
(

1
2

)j

+
(

1
2

)j

=
(

1
2

)j−1

< ε.

Theorem 4.18. If {aj}∞j=1 ∈ lim←−{Xi, fi}∞i=1, there is g ∈M such that hj(g) = aj for each

j ∈ N.

45



Proof. Let a = {aj}∞j=1 ∈ lim←−{Xi, fi}∞i=1. For each j ∈ N, let K(a, j) be the lowest indexed

rusted link in Kj that contains aj ; let C(a, j), be the link in Cj corresponding to K(a, j).

Let V (j) = {Kj
i : Kj

i is adjacent to K(a, j)}.

It will now be shown that for each i ∈ N, fi(∪V (i + 1)) ⊂ ∪V (i) and each rusty link

in Ki+1 is only contained in a link in V (i). Let K be the union of K(a, i + 1) and another

rusted link in V (i + 1). Thus K is connected and contains ai+1. By Corollary 3.5, the

diameter of the image of a link in Ki+1 under fi does not exceed 1
2(n(i)) ; because K is

connected and fi is continuous, fi(K) is connected, and

diam(fi(K)) ≤ 1
2n(i)

+
1

2n(i)
=

1
n(i)

.

Because f(K) ∩K(a, i) contains fi(ai+1) = ai, and the diameter of fi(K) does not exceed

1
n(i) , each point in fi(K) must be in K(a, i) or a rusted link in Ki that is adjacent to K(a, i);

hence fi(K) ⊂ ∪V (i). Because the choice of the adjacent link used to form K is arbitrary,

it follows that fi(V (i + 1)) ⊂ Vi. Furthermore, because ai ∈ K(a, i), ai is at least 1
n(i) from

the boundary of ∪V (i) we know that if L ∈ Ki+1, fi(L) is not a subset of Bd(∪V (i)) and

therefore fi(L) is not a subset of any link in Ki that is not in V (i).

Analogous to V (j) above, if j ∈ N, let W (j) = {Cj
i : Cj

i is adjacent to C(a, j)}; in

other words, each link in W (j) corresponds to a link in V (j). We now want to show that

∪W (i + 1) ⊂ ∪W (i) for each i ∈ N.

From Theorem 3.6, if D ∈ Ci+1 and C ∈ Ci such that D∩C 6= ∅, then if KD is the link in

Ki+1 corresponding to D and KC is the link in Ki corresponding to C, then fi(KD) ⊂ KC .

By the previous argument, each link of V (i + 1) is only a subset of a link in V (i), thus a

link in Ci+1 can only intersect a link (or links) in W (i); hence, ∪W (i+1) ⊂ ∪W (i) for each

i ∈ N.

From the above argument, {∪W (i) : i ∈ N} is a decreasing collection of nonempty sets

and ∩∞i=1(∪W (i)) 6= ∅ and we can choose g ∈ ∩∞i=1(∪W (i)). Note that W (i) is a segment in
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Ci and diam(∪W (i)) ≤ 3
n(i) ; this means

lim
i→∞

diam(∪W (i)) = 0

and g is the only element in the intersection.

The current claim is that h(g) = {aj}∞j=1. We know that g ∈ ∪W (i), however C(g, i)

may not be a link in W (i); if i ∈ N, let W ′(i) = {C(g, i)}∪W (i), and let V ′(i) = {K(g, i)}∪

V (i). Because each link in W ′(i) corresponds to a link in V ′(i) and W ′(i) is segment in Ci

with length at most four, it follows that V ′(i) is a segment of rusty links in Ki with length

at most four. Furthermore, fi(∪V (i+1)) ⊂ V (i) and fi(V (g, i+1)) ⊂ V (g, i), which means

that fi(∪V ′(i + 1)) ⊂ V ′(i).

We now have that for each i ∈ N, hi(x) ∈ ∪V ′(i). By Corollary 3.5, for each j ∈ N

(with j > i),

diam(f j
i (∪V ′(j))) ≤ 4 · (1

2
)j · 1

n(i)
,

thus, {f j
i (∪V ′(j)) : j ∈ N, j > i} is a decreasing sequence of nonempty closed connected

sets whose diameters converge to 0 and ∩j>if
j
i (∪V ′(j)) contains exactly one point. By our

construction hi(g) must be in this intersection because K(g, j) ⊂ ∪V ′(j) for each j > i, and

ai is in this intersection because K(a, j) ∈ V (j) ⊂ V ′(j) for each j > i; thus hi(g) = ai.

Corollary 4.19. h : M → lim←−{Xi, fi}∞i=1, defined previously is a homeomorphism from M

onto lim←−{Xi, fi}∞i=1.
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Chapter 5

An Hereditarily Indecomposable Continuum

Definition 5.1. A continuum X is said to be hereditarily indecomposable, if each subcon-

tinuum of X is indecomposable.

In this section an hereditarily indecomposable continuum will be constructed using the

notions of chainability.

Lemma 5.2. If C is a chain that covers the continuum K, and C′ ⊂ C containing exactly

those links in C that intersect K, then C′ is a segment in C.

Proof. Let K, C and C′, be as described. Let m denote the minimum index for a link in C′

and let M denote the maximum index for a link in C′. If C′ is not a segment, then there

is j ∈ N, (m < j < M) such that Cj /∈ C \ C′; it would then follow, that if U = ∪j−1
i=mCi

and V = ∪M
i=j+1Ci, then U and V are disjoint open sets, such that each intersect K and

K ⊂ ∪C′ ⊂ U ∪ V . Hence, K could not be connected.

Lemma 5.3. If M is chainable, then each subcontinuum of M is chainable.

The above lemma is given without proof, however, the following reasoning is provided.

Suppose {Cn}∞n=1 is a sequence of chains covering M , as described in 3.8, and K is a

subcontinuum of M . If C̃n is described as the collection of links in Cn that intersect K,

then by 5.2, C̃n is a segment from Cn, and can therefore be thought of as a chain as well.

The sequence {C̃n}∞n=1, will have all the properties necessary in 3.6 to ensure that K is

chainable.

Definition 5.4. Suppose C is a spaced chain with |C| ≥ 6 and D is a chain that refines C.

To say that D is doubly coiled in the interior of C means that if Cg and Ch are links of
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C, 3 ≤ g, h ≤ |Cg| − 2, and |g − h| ≥ 2, then there are links Di, Dj , and Dk in D such that

i < j < k, (Di ∪Dk) ⊂ Cg and Dj ⊂ Ch.

Lemma 5.5. Suppose C is a spaced chain with m = |C| ≥ 6 and D is chain refining C. D

is doubly coiled in the interior of C if and only if there are links Dt, Du, Dv, and Dw in D

such that t < u < v < w and one of the following holds:

(a) Dt ∪Dv ⊂ C3 and Du ∪Dw ⊂ Cm−2, where m = |C|, or

(b) Dt ∪Dv ⊂ Cm−2 and Du ∪Dw ⊂ C3.

Proof. Suppose that C is a spaced chain (with |C| ≥ 6), D is a chain that refines C; let

m = |C|.

(⇒) If D is doubly coiled in the interior of C, then because C3 and Cm−2 (the second and

second to last links of C respectively) are interior links of C, and |(m− 2)− 2| = m− 4 ≥ 2,

there are links Di, Dj , and Dk in D such that i < j < k, Di ∪Dk ⊂ C3, and Dj ⊂ Cm−2.

Similarly there are links Di′ , Dj′ , and Dk′ in D such that i′ < j′ < k′, Di′ ∪ Dk′ ⊂ Cm−2

and Dj′ ⊂ C3. Let t = min(i, i′).

If t = i, then let u = min(i′, j), let v = min(j′, k) and let w = max(k′, j). i < j < k

and i < i′ < j′ < k′, so it follows that t = i < u < v. If v = j′, then v < k′ ≤ w, and

similarly if v = k, then v ≤ j′ < k′ ≤ w; hence, t < u < v < w. Because Di′ ∪Dj ⊂ Cm−1,

Dj′ ∪Dk ⊂ C3 and Dk′ ∪Dj ⊂ Cm−2, it follows that Dt ∪Dv ⊂ C3 and Du ∪Dw ⊂ Cm−2.

If t = i′, a similar argument may be used by letting u = min(i, j′), v = min(j, k′),

and w = max(k, j′), and showing that t < u < v < w and that Dt ∪ Dv ⊂ Cm−2 and

Du ∪Dw ⊂ C3.

(⇐) Suppose that there are links Dt, Du, Dv and Dw in D such that t < u < v < w,

Dt∪Dv ⊂ C3 and Du∪Dw ⊂ Cm−2 (as in part (a) of the theorem). Suppose Cg and Ch are

links in C such that 2 ≥ g, h ≤ m− 2 and |g − h| ≥ 2. Without loss of generality, suppose

that g < h; notice that this means 3 ≤ g < h ≤ m − 2. By Theorem 2.10, because C is

spaced, 3 ≤ g ≤ m− 2, t < u, Dt ⊂ C3, and Du ⊂ Cm−2, there is a link Di in D such that
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Di ⊂ Cg and t ≤ i ≤ u. Because |g − h| ≥ 2, |g − (m− 2)| ≥ 2; thus, Cg and Cm−2 are not

adjacent, meaning i 6= u and therefore i < u.

A similar argument may be used to show that, there is Dj and Dk in D such that

i ≤ j ≤ u, u ≤ k ≤ v, Dj ⊂ Ch, and Dk ⊂ Cg. It is now shown that there is Di, Dj , and

Dk in D such that Di ∪ Dk ⊂ Cg and Dj ⊂ Ch. To conclude the argument for this case,

now pick Dl such that v ≤ l ≤ w and Dl ⊂ Ch; it follows that Dj , Dk, and Dl are links in

D such that j < k < l, Dj ∪Dl ⊂ Ch and Dk ⊂ Cg.

In the case that there are links Dt, Du, Dv, and Dw in D such that t < u < v < w,

Dt ∪Dv ⊂ Cm−1 and Du ∪Dw ⊂ C2 (as in case (b) of the theorem) an argument similar to

the previous one will show that D is doubly coiled in the interior of C.

Theorem 5.6. Suppose {Cn}∞n=1 is a sequence of chains such that if n ∈ N, then

(i) Cn+1 properly refines Cn,

(ii) Cn is a 1
n − chain, and

(iii) Cn+1 is doubly coiled in the interior of Cn.

If M = ∩∞n=1(∪Cn), then M is indecomposable.

Proof. Suppose K is a proper subcontinuum of M . Let C̃i ⊂ Ci containing exactly those

links in Ci that intersect K. It will be shown that no ε − ball centered at a point in K is

contained in K; hence, K has no interior.

Let p ∈ K and ε > 0. If n ∈ N such that 1
n < ε

3 , then if Cn
a , Cn

b , and Cn
c are three

consecutive links in Cn and one contains p, then Cn
a ∪ Cn

b ∪ Cn
c ⊂ B(p, ε) (the open ball of

radius ε centered at p). Let q ∈ M \ K and choose N to be a positive integer such that

1
N < min( ε

3 , d(q,K)
4 ). Because mesh(CN ) < 1

N < d(p,q)
7 , the union of six adjacent links in

CN+1 cannot contain both p and q, and a link in CN containing q will not intersect K. Let

w be the index of a link in CN that contains p and let z be the index of a link in CN that
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contains q. It is possible that w or z is not in {3, . . . , |CN | − 2}, so choose x and y to be

indices of links in CN such that |w − x| ≤ 2, |z − y| ≤ 2, and w, z ∈ {3, . . . , (|CN | − 2)}.

Because no six adjacent links in CN cover both p and q, |w− z| ≥ 6. Since |x−w| ≤ 2

and |y − z| ≤ 2, |x − y| > |w − z| − |x − w| − |y − z| ≥ 6 − 4 = 2 and so by the initial

assumptions r, s, t ∈ N (with r < s < t) may be chosen so that each is an index of a link in

CN+1, CN+1
r ∪ Cn+1

t ⊂ CN
x , and CN+1

s ⊂ CN
y . Recall that the union of four adjacent links

in CN cannot contain q and cover K; because |y − z| ≤ 2 and Cy contains q, CN
y cannot

intersect K, and because CN+1
s ⊂ CN

y , CN+1
s ∩K = ∅ as well. It follows that CN+1

s /∈ C′N+1

(where C′N+1 is the segment from CN+1 containing exactly those links intersecting K); this

means that CN+1
r or CN+1

t is not an element of C′N+1 since C′N+1 is a segment. Because

|w − x| ≤ 2 and the diameters of each link in CN is less than ε
3 , the diameter of CN

w ∪ CN
x

is less than ε. p ∈ CN
w so CN

w ∪ CN
x ⊂ B(p, ε). Both CN+1

r and CN+1
t are disjoint subsets

of CN
x , and therefore each is a subset of B(p, ε). Because CN+1

r or CN+1
t is not in C′N+1, it

follows that B(p, ε) contains an open set that is not a subset of K.

Hence, a proper subcontinuum of M must be nowhere dense in M , meaning M is

indecomposable.

Corollary 5.7. Suppose {Cn}∞n=1 is a sequence of spaced chains such that for each n ∈ N,

(i) Cn is a 1
n−chain,

(ii) Cn+1 properly refines Cn, and

(iii) if m = |Cn|, then there are integers t, u, v, w such that 1 < t < u < v < w < |Cn+1|

such that Cn+1
t ∪Cn+1

v ⊂ Cn
2 and Cn+1

u ∪Cn+1
w ⊂ Cn

m−1, or Cn+1
t ∪Cn+1

v ⊂ Cn
m−1 and

Cn+1
u ∪ Cn+1

w ⊂ Cn
2 ;

then M = ∩∞i=1(∪Cn) is an indecomposable continuum.

Proof. By Lemma 4.6, property (iii) in the Corollary is equivalent to property (3) in The-

orem 4.7, thus M is indecomposable.
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Definition 5.8. Suppose C is a chain with length greater than five, and D is a chain that

refines C. To say that D is very crooked in C means that if Cr, Cs ∈ C (with |r − s| ≥ 5),

and t and w are each indices from D, such that Dt ⊂ Cr and Dw ⊂ Cs, then there are

indices u and v such that t < u < v < w, and

1. if r < s, then Du ⊂ Cs−1 and Dv ⊂ Cr+1;

2. if r > s, then Du ⊂ Cs+1 and Dv ⊂ Cr−1.

Theorem 5.9. Suppose that {Cn}∞n=1, is a sequence of chains with respective lengths {ln}∞n=1,

such that l1 = |C1| ≥ 6 and for each n ∈ N,

(a) Cn is a 1
n−chain,

(b) Cn+1 properly refines Cn,

(c) Cn+1 is very crooked in Cn, and

(d) Cn+1
1 ⊂ Cn

1 and Cn+1
ln+1
⊂ Cn

ln
.

If M = ∩∞i=1(∪Ci) and K is a subcontinuum of M , then K is indecomposable.

Proof. Let M = ∩∞i=1(∪Ci) and suppose K is a proper subcontinuum of M . If K is a

singleton, then there do not exist two nonempty proper subcontinuums of K; hence K is

indecomposable. Suppose then, that K is not a singleton.

For each i ∈ N, let C̃i denote the collection of links in Ci that intersect K. It follows

from 5.2 that C̃i is a segment in Ci.

Let Ki denote the chain formed by reenumerating the links in C̃i. It follows that

∩∞i=1(∪Ki) = K, for if x is in the intersection, then d(x,K) < 1
i for each i ∈ N, thus x is a

limit point of K ⇒ x ∈ K. Kn is spaced because Cn is spaced. Lastly, Kn+1 is a refinement

of Kn, for if Kn+1
i is a link in Kn+1 and Cn+1

i′ is the link in Cn+1 corresponding to Kn+1
i ,

then there is a link Cn
j′ ∈ Cn that contains Cn+1

i′ , but this means that Cn
j′ intersects K, and

so there is a link Kn
j ∈ Kn that contains Cn+1

i′ = Kn+1
i , therefore, Kn+1 is a refinement of

Kn.
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Let N ∈ N such that 1
N ≤

diam(K)
6 ; thus, for each integer n ≥ N , mesh(Kn) ≤ diam(K)

6 ,

meaning |Kn| ≥ 6 in order for Kn to cover K.

Now suppose n is an integer and n ≥ N , and let m = |Kn|. Kn
2 and Kn

m−1 correspond

to links in in C̃n (and thus Cn as well), call these corresponding links Cn
g′ and Cn

h′ , respec-

tively. It follows that Kn
1 = Cn

g′−1 and Kn
m = Cn

h′+1, since Kn corresponds to a segment

from Cn; further, it is established that g′ < h′. Because Kn is a spaced chain that covers

the continuum K and because Kn
2 and Kn

m−1 are interior links of Kn, points p and q in

K can be chosen, such that Kn
2 is the only link in Kn that covers p and Kn

m−1 is the only

link in Kn that covers q. p and q are each covered by links in Kn+1, so let Kn+1
s and Kn+1

x

be links in Kn+1 containing p and q respectively. Since p ∈ Kn+1
s , Kn+1

s contains a point

contained in exactly one link in Kn (ie Kn
2 ); for this reason and the fact that Kn+1 refines

Kn, it follows that Kn+1
s ⊂ Kn

2 . By a similar argument, Kn+1
x ⊂ Kn

m−1 because q ∈ Kn+1
x .

Letting Cn+1
s′ and Cn+1

x′ each be the links in Cn+1 corresponding to Kn+1
s and Kn+1

x , it

follows that Cn+1
s′ ⊂ Cn

g and Cn+1
x′ ⊂ Cn

h .

Case 1: Suppose s′ < x′...., then by the initial assumptions, there is Cn+1
u′ and Cn+1

v′ in Cn+1

such that s′ < u′ < v′ < x′, Cn+1
u′ ⊂ Cn

h′−1, and Cn+1
v′ ⊂ Cn

g′+1 (remember that g′ < h′). Let

Kn+1
u and Kn+1

v be links in Kn+1 corresponding to Cn+1
u′ and Cn+1

v′ . Thus, s < u < v < x,

Kn+1
u ⊂ Kn

m−2 and Kn+1
v ⊂ Kn

3 . Since s < u, Kn+1
s ⊂ Kn

2 and Kn+1
u ⊂ Kn

m−2, there is

Kn+1
t such that s < t < u, Kn+1

t ⊂ Kn
3 ; similarly, there is Kn+1

w such that v < w < x and

Kn+1
w ⊂ Kn

m−2. It follows that Kn+1
t ,Kn+1

u ,Kn+1
v and Kn+1

w are links in Kn+1 such that

t < u < v < w, Kn+1
t ∪Kn+1

v ⊂ Kn
3 and Kn+1

u ∪Kn+1
w ⊂ Kn

m−2.

Case 2: If x′ < s′, an argument similar to that of Case 1, will choose links Kn+1
w , Kn+1

v , Kn+1
u

and Kn+1
t in Kn+1 such that w < v < u < t, Kn+1

w ∪Kn+1
u ⊂ Kn

2 and Kn+1
v ∪Kn+1

t ⊂ Kn
m−2.
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Because the above argument holds for each integer n such that n ≥ N , it follows that

{Kn}∞n=N is a collection of spaced chains satisfying conditions (i), (ii), and (iii) in Corollary

4.8; thus, M = ∩∞n=N (∪Kn) is indecomposable.

From the above theorem, if a chainable continuum is formed from a sequence of chains

as described in the theorem, then such a continuum is hereditarily indecomposable. The

final step is to show that such a continuum exists.

Some modifications to previous terms will come in handy.

Definition 5.10. Suppose C is a chain in R2. To say that C is a rectangular chain, means

that if C ∈ C, then there are real numbers a, b, c, and d such that C = (a, b) × (c, d). To

say that the rectangular chain C is a straight rectangular chain means that there are

numbers c, d and if Ci ∈ C and Ci = (ai, bi)× (ci, di), then ci = c and di = d.

Definition 5.11. Suppose C is a chain and D is a chain that refines C. To say that D is a

snug refinement of C means that each link of D is a subset of exactly one link in C.

Definition 5.12. If C is a chain and D is a chain that is anchored in C, then to say that

D is securely anchored in C, means that the first link of D is only contained in the first

link of C, the last link of D is only contained in the last link in C, and an interior link of D,

is only contained in an interior link in C.

Definition 5.13. Suppose C is a spaced rectangular chain. C is straight, means that there

is c, d ∈ R (with c < d) so that if Ci ∈ C and Ci = (ai, bi)× (ci, di), then ci = c and di = d.

Theorem 5.14. If C is a spaced rectangular chain that is straight, then there is a rectangular

chain D, such that D is securely anchored in C, and D is very crooked in C.

Proof. First note, that for a very crooked chain in C to have any novel qualities, that there

must be two links in C whose indices differ by five. If |C| ≤ 5, then the fact that C is very

crooked in C is vacuously true. Thus, if n ≤ 5 and C is a spaced rectangular chain that is

straight, then C is refined by a rectangular chain that is securely anchored in C and very

crooked in C.
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The remainder of the proof will be done inductively. Suppose that n ∈ N (with n > 5)

and for each m ∈ N, m < n, it is known that if C′ is a spaced rectangular chain that is

straight and |C′| = m, then there is a rectangular chain that refines C′ that is securley

anchored in C′ and very crooked in C′.

It will know be shown that if C is a spaced, rectangular chain that is straight and

|C| = n, then there is a rectangular chain that is securely anchored in C and very crooked

in C).

With a brief slight of hand, the author now focuses the audience’s attention to the

specific case of the chain C = {C1, C2, . . . , Cn}, where

Ci = (i− 2
3
, i +

2
3
)× (0, 3).

It is hoped that the reader will accept a validation of this specific case to cary over to all

other spaced rectangular chains that are straight.

Define the collections Ca, Cb, and Cc as follows:

(a) Ca = {Ca
i = Ci ∩ (R× (2, 3)) : 1 ≤ i ≤ n− 1}

(b) Cb = {Cb
i = Ci+1 ∩ (R× (1, 2)) : 1 ≤ i ≤ n− 2}

(c) Cc = {Cc
i = Ci+1 ∩ (R× (0, 1)) : 1 ≤ i ≤ n− 1}.

It will be taken for granted that each of Ca, Cb, and Cc forms a chain that is spaced, rectan-

gular, straight and with length less than n. By the induction hypothesis, Da, Db, and Dc,

may be chosen to be rectangular chains that are very crooked and securely anchored in the

respective chains Ca, Cb, and Cc.

Let x = |Da|, y = |Db|, and z = |Dc|, and construct the chain D as follows:

(a) if 1 ≤ i ≤ x, let Di = Da
i ;

(b) let Dx+1 = (n− 1− 1
3 , n− 1 + 1

3)× (1, 3);

(c) if x + 2 ≤ i ≤ x + y + 1, let Di = −Db
i−(x+1);
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(d) let Dx+y+2 = (2− 1
3 , 2 + 1

3)× (0, 2);

(e) if x + y + 3 ≤ i ≤ x + y + z + 2, let Di = Db
i−(x+y+2).

Notice that Dx+1 ⊂ Cn−2 6= ∅, and that Dx+y+2 ∩ C3 6= ∅; thus Dx+1 and Dx+y+2 cannot

be subsets of C1 or C2. Because Da and Db are securely anchored in Ca and Cb, respectively,

and because Dx+1 only intersects Cn− ∩ (2, 3)×R, Dx+1 only intersects the last links of Da

and Db. Similarly, Dx+y+2 only intersects the first of Db and the first link of Dc.

D is securely anchored in C. To show this, first note that Dx+1 and Dx+y+2 only

intersect Cn−2 and C3, respectively, so neither can be a subset of D1 or Dx+y+z+2. Da is

the only defining chain for D that intersects C1, thus a link of D that is contained in C1

must be from Da. Da is securely anchored in Ca, so Da
1 is the only link contained in Ca

1 .

By the construction of Ca
1 , if a link in Da does not lie inside Ca

1 , then it will not lie inside

C1; hence D1 = Da
1 ⊂ Ca

1 ⊂ C1 and D1 is the only link in D that is a subset of C1.

In a similar fashion it can be shown that Dx+y+z+2 ⊂ Cn and Dx+y+z+2 is the only

link of D that is a subset of Cn.

The final step is to prove that D is very crooked. Suppose Cr.Cs ∈ N such that

|r− s| ≥ 5, and that Dt, Dw ∈ D such that Dt ⊂ Cr and Dw ⊂ Cs. It will be shown that if

r < s), then there is Du, Dv ∈ D, such that t < u < v < w and Du ⊂ Cs−1 and Dv ⊂ Cr+1;

the case when Dt ⊂ Cs and Dw ⊂ Cr can be proven in a similar manner.

For the moment, suppose that t /∈ {x + 1, x + y + 2} and let q ∈ {a, b, c} such that Dt

is chosen from the defining chain Dq.

If Dw is also defined from a link in Dq, then it follows that appropriate links Du and

Dv exist, since Dq is very crooked in Cq, and Cq refines C.

If Cs contains a link in Dq, then Dw′ may be chosen to be a link defined from a link

in Dq such that Dw′ ⊂ Cs; furthermore, because the last link of Dq is contained in a link

in C with index greater than or equal to s, it may be assumed that t < w′. From the

argument in the previous paragraph, links Du and Dv may be chosen, so that Du ⊂ Cs−1

and Dv ⊂ Cr+1.
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Lastly, if Cs does not contain a link in Dq, then it follows that s = n and q 6= c. Only

the last link of D is contained in Cn, thus w = x + y + z + 2. If t = 1, then r = 1, and

Dx+1 and Dx+y+2 are links in D such that t < x + 1 < x + y + 2 < w, Dx+1 ⊂ Cn−1 and

Dx+y+2 ⊂ C2. If t > 1, then r > 1 and Cr contains a link in Dc. Let Dc
z′ be the first link

of Dc that is contained in Cr, and define t′ as t′ = x + y + 2 + z′. Because Dt′ and Dw are

both defined from links in Dc and Dc is very crooked in C, there are links Du and Dv such

that Du ⊂ Cn−1 and Dv ⊂ Dr+1.

Earlier, t was excused from being equal to x + 1 or x + y + 2; these cases shall now

be unexcused. t 6= x + 1, since this would mean r ≥ n − 3 and thus s would have to be

greater than r + 5 = n + 2, meaning s > n. If t = x + y + 2, then let t′ = x + y + 3. Dt′ is

defined by the first link in Dc, which is very crooked in Cc; thus, there is Du and Dv such

that t′ < u < v < w, Du ⊂ Cn−1 and Dv ⊂ C3. Since t < t′, and Dt only intersects C2, it

follows that Du and Dv are appropriate choices for t as well.

It is now concluded that if n ∈ N and C is a spaced rectangular chain of length n that

is straight, then there is a rectangular chain that is very crooked in C.

The following theorem is not so much a corollary, as it is a theorem that would have

been preferable to prove using a technique similar to the previous proof. A sketch of an

argument will be given, but a solid proof requires further development of the properties of

R
2.

Corollary 5.15. If C is a chain of convex open subsets of R2, then there is D, a chain of

convex open subsets of R2, such that D is anchored in C and D is very crooked in C.

Sketch: Because each link in C is convex ∪C is path connected and there is an arc con-

tained in ∪C that begins in the first link in C and ends in the last link in C. This arc is

“thickened” so that it remains inside of C. Let Ai denote the intersection of this thickened

arc with Ci ∈ C, and let A = {Ai : Ci ∈ C}. A is a chain and there is a homeomorphism

h : ∪R|A| → ∪A, where R|A| is a spaced rectangular chain of length |A|. From the prior

theorem, there is n ∈ N such that R|A| can be refined by a rectangular chain of length n
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that is very crooked in R|D|; denote such a chain as Rn. For each Rn
i ∈ Rn, define Bi as

Bi = h−1(Ri) and let B = {Bi : Rn
i ∈ Rn}. B is a chain that refines C and is very crooked

in C. Although the links in B may not be convex, ∪B is path connected and there is a an

arc contained in ∪B that begins in the first link of B and ends in the last link of B. This

arc may be covered by D a chain of convex open subsets of R2 such that D refines B; hence,

D is very crooked in C.

With the above “corollary” in mind, the following sequence of chains may be defined.

Let C1 be a chain of length six, whose links are open balls with radius 1
2 . For each

i ∈ N, if Ci is defined as a chain whose links are open convex subsets of R2, let Di be a chain

properly refines Ci such that each link in Di is convex and open, and mesh(Di) < 1
i+1 . Let

Ci+1 be a chain of convex open subsets of R2, such that Ci+1 is very crooked in Di.

For each i ∈ N,

1. Di properly refines Ci and Ci+1 refines Di, therefore Ci+1 properly refines Ci;

2. mesh(C1) = 1 and mesh(Ci+1) ≤ mesh(Di) < 1
i+1 ;

3. Di refines Ci and Ci+1 is very crooked in Di, therefore Ci+1 is very crooked in Ci.

Thus, by 5.9, ∩∞i=1(∪Ci) is an hereditarily indecomposable continuum.
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