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Dissertation Abstract

Theoretical Study of Pressure-Induced Phase Transitions and Thermal

Properties for Main-Group Oxides and Nitrides

Bin Xu

Doctor of Philosophy, August 10, 2009
(B.S., University of Science and Technology of China, 2003)

211 Typed Pages

Directed by Jianjun Dong

Main group nitrides and oxides are important solid compounds with applications in

fields ranging from structural ceramics to catalysts and electronic materials. We have

theoretically investigated the pressure-induced phase transitions and thermal properties for

a series of oxides, nitrides and oxynitrides of IIIB, IVB and IIIB group, including Al2O3,

AlN, Si3N4, Ga2O3, and Ga3O3N.

In this dissertation, thermodynamic potentials at finite temperatures were calculated

within the quasi-harmonic approximation (QHA). Structural optimization and total energy

calculation of unit cell models were carried out based on first-principles density functional

theory (DFT) within the local density approximation (LDA). Vibrational spectra were

calculated using the real-space supercell force-constant (SC-FC) method. For pressure-

induced phase transitions, we have studied the equilibrium transition conditions, as well as

the kinetic process, including the investigation of transition pathways, kinetic barriers and

the softening-phonon induced displacive transitions.

In our studies of equilibrium transition conditions, we calculated the T -P phase dia-

grams for Al2O3, AlN, Si3N4, and Ga2O3. Our predicted transition pressures are 84 and 134

GPa at 300 K for corundum→Rh2O3(II)→postperovskite transitions in Al2O3, 9.9 GPa at

v



0 K for wurtzite→rocksalt transition in AlN, 7.5/7.0 GPa at 300 K for β/α→γ transitions

in Si3N4 and 0.5 and 39 GPa at 300 K for β→α→Rh2O3(II) transitions in Ga2O3.

In our studies of the pressure-induced reconstructive phase transition pathways, we ex-

amined the corundum-to-Rh2O3(II) transition in Al2O3 and the wurtzite-to-rocksalt tran-

sition in AlN. We showed that the rhombohedral corundum phase and the orthorhombic

Rh2O3(II) phase are related by intermediate structures with monoclinic symmetry (P2/c).

Using the proposed transition pathway, we calculated the kinetic barriers for the forward

(C-to-R) and backward (R-to-C) transitions and further predict the meta-stabilities of the

two phases. For AlN, different transition pathways were previously proposed. We reinter-

preted the bond-preserving paths with long-range patterns of the “transition units”, and

our calculated kinetic barriers indicate that the long-range pattern is less important. We

also showed that the bond-breaking paths are not energetically favored. In addition, based

on the pressure dependencies of the barrier heights we explained the discrepancy of tran-

sition pressure between the room temperature observation and the calculated equilibrium

result.

In our studies of displacive transitions in Si3N4, although β phase is dynamically stable

at low pressure, two competing phonon-softening mechanisms are found under high pressure.

If the β→γ transition is bypassed due to kinetic reasons at lower temperatures, the β phase

is predicted to undergo a first-order β→P3 transition at about 38.5 GPa. This predicted

metastable high-pressure P3 phase is structurally related to β-Si3N4.

We have also calculated the thermodynamic and elastic properties of these systems,

and selected results are presented. Our predictions are in good agreement with available

experimental and other theoretical data.

Furthermore, we studied the shifted Raman scattering and its correlation with the

growth direction in Ga2O3 nanowires. And collaborated with an experimental study that

synthesized spinel-structured gallium oxynitride from Ga2O3+GaN mixtures at high pres-

sure and high temperature, we showed that the optimal synthesis pressure is predicted to

be close to the β-to-α transition pressure of Ga2O3.
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Chapter 1

INTRODUCTION

1.1 Pressure-Induced Phase Transitions and Thermodynamic Properties of

Main-Group Oxides and Nitrides

Main group nitrides and oxides are important solid compounds with applications in

fields ranging from structural ceramics to catalysts and electronic materials. In this disser-

tation, I report our studies of five material systems of these groups: Al2O3, AlN, Si3N4,

Ga2O3, and Ga3O3N.

1.1.1 Al2O3

Aluminium oxide (Al2O3) is often referred to as alumina, sapphire or aloxite in the ce-

ramic, mining and materials science communities. It is commonly used as an abrasive due

to its hardness and as a refractory material due to its high melting point. The naturally-

occurring crystalline form of Al2O3 at ambient condition is primarily corundum. Rubies

(Cr+3 doped) and sapphires are gem-quality forms of corundum. In high-pressure experi-

ments, ruby usually serves as a standard pressure gauge (ruby scale) in diamond anvil cell

(DAC)1 and sapphire is used as window material in shock wave experiments2. Al2O3 is

also one of the major constituents of the Earth’s lower mantle. High-pressure behaviors

and thermal properties of alumina are important for both experimental research and better

understanding of the interior of the earth.

At ambient conditions, The crystalline form of Al2O3 is corundum (α-Al2O3, space

group R3̄c). This structure is known to exist over a wide range of pressure and tem-

perature conditions. In the past twenty years theoretical3–7 and experimental8–11 studies

showed that α-Al2O3 transforms into the Rh2O3(II) structure (space group Pbcn) around
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90 GPa, and further transforms into the post-perovskite structure (space group Cmcm)

at ∼130 GPa. Several calculations predicted a transition from Rh2O3(II) structure to the

orthorhombic perovskite (PV) structure (space group Pbnm) at even higher pressures5,12.

However, it has never been observed in experiments. Recent calculations showed that Pbnm

perovskite is not thermodynamically favored with respect to the corundum, Rh2O3(II) and

post-perovskite phases6,7. Here we report our LDA calculated equilibrium T -P phase di-

agram with both ultra-soft pseudopotentials (US-PP) and PAW method. The results are

compared with other reported calculations3–6,6,7,13.

In the corundum→Rh2O3(II) transformation, in situ heating is found necessary. At

room temperature, X-ray diffraction experiments showed that corundum phase is stable up

to 175 GPa14,15, which implies the existence of a large kinetic barrier for the corundum

to transform into the Rh2O3(II) phase. On the other hand, Lin et al. found that the

high-pressure Rh2O3(II) phase can be seen as low as 85 GPa (Pt = 96 GPa) on decompres-

sion after laser heating10, indicating the Rh2O3(II)→corundum transition is also sluggish.

No experiment has quenched the Rh2O3(II) phase to ambient conditions. We proposed a

transformation pathway for the corundum→Rh2O3(II) transition and evaluate the kinetic

barrier based on the proposed pathway. We further predict the meta-stability of two phases.

Thermodynamic properties, such as thermal expansion coefficient (TEC), heat capac-

ity CP , entropy and adiabatic bulk modulus have long been studied experimentally16–25

. Almost a decade ago Hama et al. calculated the thermal properties of corundum phase

by extending the formalism of Thomsen and combining the results with the Vinet model

and the Debye model for lattice vibrtations26. To date, no first-principles studies have

been reported to predict the thermodynamic properties of Al2O3. And, both experimental

and theoretical data of thermal properties of the high-pressure phases are lacking. We thus

present our calculated high-pressure TEC and bulk modulus for Rh2O3 (II) and pPV phases

as a function of temperature up to 3000 K.

Before 2004, experimental elastic constants of α-Al2O3 were reported from as early as

1950s25,27–29. And many efforts of ab initio calculations were made to predict the elastic
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constants independently30,31. However, some calculations showed conflict in the sign of

C14
32. In 2004, Gladden et al.33 reported their reexamination of the elasticity of α-Al2O3

using resonance ultrasound spectroscopy (RUS) and confirmed that C14 is positive rather

than negative. Gladden’s conclusion was later confirmed by both measurement with a

different technique34 and first-principles calculations35. Although measurements of Cij for

the high-pressure phases of Al2O3 are still lacking, Duan et al.31 and Stackhouse36 have

calculated the elastic constants of Rh2O3(II) (from 75 GPa to 300 GPa) and post-perovskite

phases (at 136 GPa), respectively. Here we report our predicted Cij of α-, Rh2O3(II)- and

pPV-Al2O3 with pressure dependencies, which will be compared with other available results.

Elastic properties of both corundum and Rh2O3(II) phases have been studied, but a direct

comparison between the two phases is not accessible due to different crystal classes. Here we

compare the elastic properties of corundum and Rh2O3(II) phase by treating both phases

as the common-subgroup monoclinic lattices.

1.1.2 AlN

AlN is an important semiconductor primarily due to its wide band-gap and thermal

properties. The structural changes and properties at high pressures are of special interests.

Experiments37–40 and calculations41–46 revealed that a pressure-induced first-order phase

transition from wurtzite (B4) structure to rocksalt (B1) structure happens for AlN. On

the experimental side, without heating, the lowest pressure at which the rocksalt structure

started to show up is 14 GPa39 and the B4-to-B1 transition was observed to complete at

20-31.4 GPa39,40. Xia et al. also found that the rocksalt phase is quenchable to ambient

conditions39. However, theoretical calculations consistently predicted a transition pressure

that is lower than the experimental values. Most of the recent first-principles predicted

static Pt is less than 10 GPa. The discrepancy implies the existence of a hysteresis for the

forward and backward transitions which is caused by the activation barrier at the transition.

To calculate the activation barrier, we first examine the previously proposed transition

paths. Using the computer program COMSUBS 47, Stokes et al. proposed five TPs by
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preserving the nearest neighbors along the transition pathway and limiting the size of unit

cell to no more than four different Wyckoff positions48. He also found a common bilayer

sliding mechanism along five paths, which had been pointed out by Zahn et al.49 and

Sowa50. Another work adopted the systematic approach is from Capillas et al.51, which was

performed using the databases and tools provided by the Bilbao Crystallographic Server 52.

They proposed eight possible paths with different orthorhombic and monoclinic symmetries

by setting the maximum k-index equal to 4, strain tolerance Stol < 0.15 and maximum

atomic displacement ∆tol< 2 Å. The intermediate structures along all the eight paths have

eight atoms per unit cell. The difference between these two reports is that the nearest

neighbours are not preserved along all the eight paths proposed by Capillas et al.

DFT calculations from Shimojo et al. showed that the enthalpy barrier of transforma-

tion is independent of the three paths (Cmc21, Pna21 and P21) for CdSe. Cai suggested,

without calculation, that the B4-to-B1 transition is characterized by the transformation of

the four-atom “transition unit”, while the long-range pattern may be less important. On

the other hand, using MD simulations, Zahn et al. pointed out that the favored paths have

a tendency to avoid excess strains during the transformation.

It would be interesting to investigate the proposed TPs with another material via first-

principles method. Previous studies53–55 suggested that the energetically favored TPs are

bond preserving. In this paper, we studied all five bond-preserving TPs proposed by Stokes

et al. and one bond-breaking TP proposed by Capillas et al. from an energetic point of view

for the B4-to-B1 transition in AlN. The correlation of the enthalpy barrier with different

TPs and strains will be discussed. We also relate the bilayer sliding mechanism to the

long-range patterns of “transition units”, and Cai’s hypothesis will be examined.

1.1.3 Si3N4

For Si3N4, it is widely used in cutting tools and anti-friction bearings due to its excel-

lent mechanical properties, low mass density, and thermal stability56. It is also used as an

insulator layer or as an etch mask because of its dielectric properties and a better diffusion
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barrier against impurities in microelectronics57. For its technological importance, the me-

chanical and thermal properties of silicon nitride at ambient pressure has been investigated

extensively by both experiment and theory56,57. In contrast, its properties at high-pressure

is less known.

α (P31c) and β (P63/m) phases are the only two bulk polymorphs of Si3N4 known at

ambient pressure. Both phases can be synthesized by nitriding pure silicon. In 1999, γ-Si3N4

(or c-Si3N4, Fd3̄m) with the cubic spinel structure was synthesized at high pressure and

high temperature58. Despite intensive research efforts in searching the “post-spinel” phases

in Group-IVB nitrides, the spinel structured γ phase remains as the only experimentally

identified high-pressure phase.

Phase transitions in Si3N4 have drawn extensive attention for more than a decade. The

relative phase stability between α and β phases has been a topic of investigation for many

years. Direct measurements of energetics of Si3N4 were reported by Liang et al.59. However,

the difference in formation enthalpies between α- and β-Si3N4 was founded to be less than

the intrinsic experimental uncertainty of ±22 kJ/mol (±32.6 meV/atom). Nevertheless,

the β phase is believed to be the ground state in Si3N4 because no β→α transition is

ever observed. The stability condition for α phase has been experimentally studied at

temperatures of 1300◦−1800◦C and pressures up to 60 GPa60–67. A solution-precipitation

mechanism was proposed for the α→β transformation67. The observed liquid phase on the

α-Si3N4 surfaces was believed to lower the activation energy of atomic transportation. The

stability of pristine α-Si3N4 at high temperatures is ascribed to the extremely high value of

the activation energy with clean surfaces. On the theory side, several studies confirmed that

the static bonding energy of α phase is slightly higher than that of β phase68–71. Wendel

et al.70 and Kuwabara et al.71 carried out statistical QHA calculations, and they both

found that the α phase remains metastable in the temperature range from 0 to 2000 K at

ambient pressure. Yet, pressure effects on the relative thermodynamic stability between α

and β phases was not addressed in previous studies. Our study is to understand the relative

thermodynamic stability at high pressures.
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The spinel structured γ-Si3N4 was first synthesized by Zerr et al. with laser-heated

diamond anvil cell (LH-DAC)58. Later experiments showed that γ-Si3N4 can be obtained

from both α and β-Si3N4 upon compression and simultaneous in-situ heating58,72–75. We

predict the equilibrium phase boundaries for the α→γ and β→γ transitions. The transition

pressures for the α→γ transition is about 0.5 GPa lower than that of β→γ transition. The

γ phase is quenchable to the ambient condition, and it remains stable at temperatures

ranging up to about 1670 K at ambient pressure76,77. When γ-Si3N4 “decomposes” at

ambient pressure upon heating, the samples may consist of both α and β-Si3N4
76.

The in-situ heating to high temperature is found to be necessary to form the γ-Si3N4

at high pressures. At room temperature the β→γ transition is, however, by-passed. Zerr

found that β-Si3N4 exists up to 34 GPa and it then transforms into a new phase (labeled

as δ-phase) under further compression78. This phase transition was identified by Raman

spectroscopy and energy dispersive X-ray powder diffraction (EDXD). But the structure of δ

phase was not fully determined. Zerr proposed three possible unit-cells based on the EDXD

pattern: two tetragonal and one orthorhombic. He further suggested that the δ-Si3N4 should

be considered as a metastable intermediate stage in the β→γ transition. Kroll has proposed

a metastable willemite-II-Si3N4 phase which is an intermediate between β and γ-Si3N4 in

both energetics and density79. However, the wII phase is unlikely to be the experimentally

observed unknown phase at high pressure and room temperature. Because 1) the wII

phase, which is structurally closely related to the spinel γ-Si3N4, has been shown to have

a significantly lower activation barrier for the γ→wII transformation, comparing to that

of γ→β transformation79. Although the activation barrier of the β→wII transformation is

unknown, it is more likely to be high enough to exclude the room temperature transition.

2) The calculated Raman frequencies of wII-Si3N4 could not match many strong peaks

appeared in the measurements, e.g., two observed peaks at about 500 cm−1 and 550 cm−1

are absent in the calculation. A recent experimental work from McMillan et al. reproduced

Zerr’s findings on δ-Si3N4, but excluded the wII cubic structure80.
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Meanwhile, β-Ge3N4 is found to transform into the metastable polymorph δ-Ge3N4

with hexagonal P3 symmetry at room temperature by Soignard et al.81 Ab initio calculation

from Dong et al. showed that a β→P 6̄→P3 transition sequence could occur in Ge3N4 at

the pressure of about 20 GPa and 28 GPa82, which are of second-order that driven by soft

phonons. If β-Ge3N4 directly transforms into the P3 structure, the transition was predicted

to be first-order and Pt = ∼23 GPa. Dong also pointed out that the β→P 6̄ transition is

originated from a soft silent Bu mode. Room temperature experimental study by Soignard et

al. confirmed the direct β→P3 transition associated with a 5-7% volume reduction81. The

Raman data they observed excludes the intermediate P 6̄ structure. Based on the density

consideration, Soignard et al. suggested that the new polymorph is a “post-phenacite”

phase, in stead of “post-spinel”. Comparison of the X-ray diffraction and Raman data

between Ge3N4 and Si3N4 shows similarity which may suggest a P3 structure for δ-Si3N4.

It is still unclear whether there are intrinsic differences between the HP-RT behaviors of

Si3N4 and Ge3N4, or the experimental results may be interpreted differently. Our study is

to theoretically investigate structural instabilities and possible metastable phase transitions

in α- and β-Si3N4 at high pressures and room temperature. We found no sign of dynamical

instability in the α phase at high-pressure. On the other hand, we predicted a phonon-

softening related first-order phase transition at about 38.5 GPa in β phase. At this pressure,

the density of the proposed high-pressure phase is 4.16 g/cm3 which is larger than that of

β-Si3N4 (3.71 g/cm3), yet smaller than that of γ-Si3N4 (4.53 g/cm3, calculated). We further

estimated the kinetic barrier heights for our proposed β→P3 transition, which is only 67.23

meV/atom at 38.5 GPa. Despite being of first-order phase transition, the small barrier

height suggests that the P3 phase is unlikely to be recovered below 38.5 GPa.

We also performed a series of systematical calculations of thermodynamic properties

of Si3N4, such as thermal expansion coefficient (TEC), heat capacity and bulk Grüneisen

parameter, and compared our results with available experimental data83–90 and some pre-

vious calculations70,71,91,92. The overall good agreement with experiment validates the
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adopted statistical quasi-harmonic approximation (QHA) and the Birch-Murnagahn equa-

tion of states (EOS) models. Our results support the prediction from Kuwabara et al.71 on

the negative TEC of α and β phases at temperatures below 100 K. We attributed the origin

of the negative TEC to the low-frequency phonon modes with the negative mode Grüneisen

ratios in the two phases.

1.1.4 Ga2O3

Monoclinic gallium oxide (Ga2O3) is usually known as a wide-band-gap semiconduc-

tor (Eg = 4.9 eV); however, the conductivity can be varied from insulating to conducting

behavior depending upon the preparation conditions93. It is well known that Ga2O3 can

exist in several forms, including α, β, γ, δ, and ǫ polymorphs that all have different struc-

ture types94. Of these, the most stable form at ambient conditions is determined to be

β-Ga2O3. It is of great interest to determine the pressure-induced phase transformations

among Ga2O3 polymorphs in order to establish the stable and metastable phase relations

between different crystalline modifications, and to evaluate their production under different

synthesis conditions. The relative densities of β- and α-Ga2O3 are 5.94 and 6.48 g·cm−3,

respectively95, indicating that a β → α transformation should occur at high pressure.

Nanocrystalline β-Ga2O3 particles embedded in a glassy matrix were also studied at high

pressure using energy-dispersive x-ray diffraction96. In that work, a β-to-α phase transfor-

mation was found to be initiated at 6 GPa, but the process was not completed by 15 GPa,

the highest pressure achieved in the study. However, it is known that the silica glass host

matrix undergoes important structural and density changes within this pressure range97,98,

so that it is not yet known if the structural changes are intrinsic to the β-Ga2O3 material

presumably influenced by the nanocrystalline nature of the sample , or are promoted by

anomalous densification among the SiO2 matrix. These results prompted us to theoretically

investigate the high-pressure behavior of the phase-pure bulk β-Ga2O3.

One-dimensional nanostructured forms of β-phase of gallium oxide (β-Ga2O3) such

as nanotubes, nanobelts, and nanowires, have attracted recent interest due to enhanced
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optical properties99,100. Recently, Choi et al.101 synthesized β-Ga2O3 nanowires (diameter

range of 15–45 nm) with a [001] growth direction using an arc-discharge method. Gao

et al.102 synthesized [401̄] β-Ga2O3 nanowires with diameters ranging from ∼10–100 nm

in a vertical radio-frequency furnace. Interestingly, the Raman mode frequencies of the

[001] β-Ga2O3 nanowires coincide with the corresponding frequencies in bulk β-Ga2O3
101.

On the other hand102, the Raman mode frequencies of the [401̄] β-Ga2O3 nanowires are

redshifted relative to corresponding frequencies in bulk β-Ga2O3 by 4–23 cm−1. Using

plasma-enhanced chemical vapor deposition, Rao et al. have synthesized β-Ga2O3 nanowires

whose growth is along the [110] direction103, and the Raman spectrum is significantly

blueshifted in frequency104. Here we focus on the first-principles calculations of the Raman

mode frequencies under internal strains. Our calculated Raman frequency shifts suggest

that the observed shifts in the nanowires with the [401̄] and [110] growth directions can

be explained in term of different internal strains, in contrast to the previously suggested

quantum confinement effects and defect-induced effects.

1.1.5 Ga3O3N

The group 13 oxynitride materials have many useful properties related to their elec-

tronic structure. α-Ga2O3 with the corundum structure is conveniently alloyed with Al2O3

to provide selective reduction catalysts for gaseous NOx
105, and various other Ga2O3 phases

have been proposed as gas sensors, and in nanoscale structures as electron emitters and mag-

netic memory materials106. Within the Al2O3–AlN system, several important AlxOyNz

ceramic alloys and compounds are known. At high AlN contents, layered forms based

on hexagonal/cubic intergrowths are present. As the Al2O3 content is increased, cubic

spinel-structured materials begin to appear. A large family of defect spinels (γ-Al2O3,

AlxOyNz) contain vacancies on both cation and anion sites107. A stoichiometric oxynitride

spinel-structured compound is obtained at the Al3O3N composition, in which Al3+ ions

are present on the octahedral and tetrahedral sites, and O2− and N3− occupy tetrahedral

anion sites108,109. Among the related nitride compounds Si3N4 and Ge3N4, high-pressure
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synthesis has recently resulted in formation of a new class of spinel structures, that contain

Si4+ and Ge4+ cations on both tetrahedral and octahedral sites110–114. Gallium oxyni-

tride (Ga3O3N) has been predicted to form a new spinel-structured compound within the

Ga2O3–GaN system, with potentially useful electronic properties115,116. It is predicted to

be a direct wide bandgap semiconductor, comparable with GaN115. There has previously

been an experimental report of a cubic gallium oxynitride phase with composition close to

Ga2.8O3.5N0.5, that formed metastably during GaN thin film synthesis from chemical precur-

sors117,118. Here, we report our first-principles theoretical study of the formation energetics,

stability, and electronic properties of the Ga3O3N spinel-structured phase, combined with

experiments using a combination of high pressure-high temperature techniques to establish

the formation and stability of spinel-structured Ga3O3N from Ga2O3+GaN mixtures, and

to determine the chemical composition, structure and properties of the resulting materials.

1.2 First-Principles Theoretical Studies

Simulation of macroscopic properties of a physical system typically involves solving an

ordinary or partial differential equation over large numbers of degrees of freedom. Even if a

precise mathematical theory is available, it is only in very few cases that analytical solutions

are possible. Computational physics is the study and implementation of numerical algorithm

to solve problems in physics where a quantitative theory exists. Before the prevalence of

powerful computers, empirical and semi-empirical approaches are often adopted, which rely

on the phenomenological model or parameters fitted from measured data. Nowadays, ab

initio (or first-principles) calculations are routinely performed in the fields of computational

physics and chemistry. Compared with the empirical approach, predictions from first-

principles method can provide unbiased comparison and interpretation to the experimental

data. It is also advantageous in calculating properties of materials at conditions where

no or limited experimental data is available, and designing novel materials with promising

properties. As one of the ab initio approaches, density function theory (DFT) is extremely

successful in the electronic structure calculations for solids, which results from the work
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of Hohenberg, Kohn and Sham119,120. Beside bulk systems, density functional theory has

also become popular for complex materials such as nanostructures. In this dissertation,

within the DFT, the many-electron exchange-correlation is approximated with the local

density approximation (LDA). For part of the study that is associated with small energy

differences, the LDA results are compared with calculations using the generalized gradient

approximation (GGA). To improve numerical efficiency, core electrons were approximated

with ultrasoft pseudopotentials (US-PP)121. In the case of Al2O3, we also conducted a

parallel comparative study using Projector Augmented-Wave (PAW) method.

As mentioned above, the DFT based calculation is only possible and useful with the

rapid development of high performance computer technologies, especially the parallel com-

puting techniques. Considering the current computational efficiency, the DFT calculation

can only deal with atomistic models of no more than a few hundred atoms on a single-

core CPU. Our calculations are performed on the departmental computational resource, a

distributed memory computer system (Beowulf cluster). This cluster is comprised of 96

AMD Athlon MP CPUs running Red Hat Enterprise Linux 5. A photo of our recently con-

structed cluster system is shown in Figure 1.1. We have implemented parallel algorithms

to distribute each job into a set of calculations. Each corresponds to one DFT calcula-

tion. The most computationally expensive part in this study is to calculate the real-space

force-constant matrix using supercell models of ∼100-200 atoms.

I have been focused on adopting and further developing computational methods based

on density functional theory and statistical theory to study the behavior of materials, in

particular the pressure induced solid-solid phase transitions and thermodynamic properties,

over a wide range of temperature-pressure (T -P ) conditions. To predict the equilibrium

transition pressure at a finite temperature and thermodynamic properties (such as thermal

expansion coefficient (TEC), heat capacity, entropy and bulk modulus, etc.), the calculation

of free energy is required. We adopt quasiharmonic approximation (QHA) to model the

lattice dynamics. Our approach of calculating phonon frequencies belongs to a method of

the direct approach: a first-principles real-space supercell force-constant (SC-FC) method

11



Figure 1.1: Photo of recently constructed departmental computer cluster.

which calculates the phonon frequencies from the forces obtained via the Hellmann-Feynman

theorem. This technique is proved to be efficient and successful in predicting the full phonon

spectra of many materials122–129.

For pressure-induced phase transitions, we are interested in investigating both equi-

librium transition conditions and the kinetic process. Regarding reconstructive transitions

with no group-subgroup relation, the equilibrium phase boundary is determined by equat-

ing the Gibbs free energy of the two phases. However, in general, there exists a kinetic

barrier at the transition, which can be overcome by the thermal activation energy from

the environment (small barrier) or heating process (large barrier). Based on the pressure

dependencies of the forward and backward barrier heights, we can predict the metastability

of polymorphs. The kinetic barrier can be estimated from the knowledge of the micro-

scopic mechanism of the transition. For transformations with a group-subgroup relation,

a transition path (TP) can be easily defined by a set of continuous atomic displacements
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and/or lattice strains that the system transforms from one phase into another. For some

simple reconstructive transformations with no group-subgroup relation, although nucleation

processes may occur, diffusionless collective atomic displacements can still characterize the

transformation on a local basis. The concept of transition pathway is then possible to

describe the transformation from the starting phase to the ending phase in a continuous

manner. Among the infinite number of ways to transform one structure into another, the

theoretical studies are restricted only to those most possible paths, e.g., preservation of

bonds, less strains, etc.

The pressure dependence of phonon spectrum can also reveal the information of struc-

tural stability under compression. In the case when soft phonon happens, a vanishing

phonon frequency indicates the disappearance of the restoring forces related to the corre-

sponding normal mode, and the structure consequently undergoes a continuous transition

to a lower-symmetry phase, which can be found according to the vibrational pattern based

on the associated eigenvectors. However, the transition happened at room or higher tem-

peratures is often first-order, where no phonon has become soft yet. But this first-order

phase transition is driven by the phonon mode with softening tendency.

1.3 Outline of Dissertation

The rest of this dissertation is organized as follows. In Chapter Two I first review the

fundamental theory of solid-solid phase transitions, which include the reconstructive phase

transitions and the soft-phonon driven continuous transitions. Then our computational ap-

proaches of investigating the transformation mechanism and phase metastability/instability

are introduced. In Chapter Three I discuss the first-principles methodologies we adopted in

this study, i.e., total energy calculation based on density functional theory and our methods

to calculate the finite-temperature thermodynamic potentials. The influence of equation of

state models on the prediction of thermal properties is also presented. In Chapter Four

we show our first-principles studies on the pressure-induced phase transitions in Al2O3 and

AlN. Our focus is on the microscopic mechanism of the transition from an energetic point
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of view. The thermal and elastic properties of Al2O3 are also studied. In Chapter Five we

predict a metastable high-pressure transition for β-Si3N4. We also predict the thermody-

namic properties of three known polymorphs of Si3N4. In Chapter Six I present our study of

pressure-induced phase transitions in bulk Ga2O3 and the blue-shifted Raman frequencies

in Ga2O3 nanowires, as well as the theoretical optimal synthesis condition, electronic prop-

erties and phonon spectrum of the spinel-structured gallium oxynitride (Ga3O3N). Finally

in Chapter Seven we summarize our key results and discuss the future works.
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Chapter 2

THEORY OF PHASE TRANSITIONS IN SOLIDS

2.1 Phases and Crystal Symmetries

Before we discuss the phase transitions, it is necessary to elucidate the concept of phase.

The word “phase” may have different meanings in different disciplines. In thermodynamics,

a phase of a macroscopic system refers to a type of internal structure of the system when

the composition of the system is specified. Throughout a single phase, all the physical

properties of the system is uniform at the macroscopic level. These properties include

chemical composition, density, heat capacity, index of refraction and so on. For a material

system, the internal structure is simply its atomic configuration if magnetic or electronic

degrees of freedom can be ignored. A macroscopic solid material is composed of numerous

atoms or molecules, usually in the order of ∼ 1023. The atoms or molecules that compose

the solid are closely packed together and the chemical bonds between them are relatively

strong. The short-range structural orders are largely controlled by the chemistry of the

constituent elements, while statistics affects the long-range structural order. According to

their long-range atomic order/disorder, solids are divided into two categories: crystals and

amorphous solids. Real solids contain imperfections, such as surfaces, grain boundaries,

and defects. In this dissertation, my study is limited to only ideal crystals, which are good

approximations to real bulk crystalline materials that contain only small amount of defects

and impurities.

Symmetry is an essential character of crystals. Atoms in a crystal vibrate around their

equilibrium positions, which form a periodical and ordered pattern in the three dimension

space. The pattern is made up of a group of equilibrium positions of atoms, which is called

the atomic basis. The collection of repetition of identical structural units with translational
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symmetry is called Bravais lattice.

crystal structure = Bravais lattice + atomic basis (2.1)

The location of each Bravais lattice point, in another word, the origin of each repeated

unit in a crystal, can be described by

R = n1a1 + n2a2 + n3a3 (2.2)

where the 3-D vectors ai (i = 1, 2, 3) are linearly independent unit-cell vectors. n1, n2 and

n3 are integers. The smallest repeatable unit cell of a lattice is called primitive unit cell,

and the corresponding unit vectors are primitive unit-cell vectors. Note that the choice of

unit-cells in a crystal is not unique.

There are seven distinct crystal systems, i.e., cubic, hexagonal, rhombohedral (also

known as trigonal), tetragonal, orthorhombic, monoclinic, and triclinic. By considering ad-

ditional possible lattice points at body centers, face centers, or base centers, whereas not to

reduplicate, there are precisely 14 distinct Bravais lattices, e.g., the orthorhombic system

includes four different Bravais lattices, i.e., simple orthorhombic, body-centered orthorhom-

bic, face-centered orthorhombic, and base-centered orthorhombic lattices; and for the cubic

system, there are three distinct Bravais lattices, i.e., simple cubic (sc), body-centered cubic

(bcc), and face-centered cubic (fcc) lattices. In the case of body-centered, face-centered, or

base-centered Bravais lattice, the primitive unit cell is different from its conventional unit

cell. And accordingly, the primitive unit vectors are different from those conventional unit

vectors. As an example, for face-centered cubic lattice (fcc), the conventional unit cell is

constructed by having atoms on the corners of a cube and an atom at the center of each
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Table 2.1: Point and space groups of Bravais lattices and crystal structures

Bravais lattice Crystal structure
(Basis of spherical symmetry) (Basis of arbitrary symmetry)

Number of point group 7 crystal systems 32 crystallographic point group
Number of space group 14 Bravais lattices 230 space groups

face. The conventional unit vectors and primitive unit vectors are























a1 = (a, 0, 0)

a2 = (0, a, 0)

a3 = (0, 0, a)

and























a1 =
(

0, a
2 , a

2

)

a2 =
(

a
2 , 0, a

2

)

a3 =
(

a
2 , a

2 , 0
)

(2.3)

respectively. The volume of the fcc primitive unit cell is 1/4 of the conventional cubic cell.

In addition to translational symmetry as described by the Bravais lattice, a crystal is

also invariant under a set of point group symmetry operations, such as rotation, reflection

and inversion. There are totally 32 crystallographic point groups. Each point group can

be classified into one of the 7 crystal systems. Point group is also called crystal class. The

combination of translational symmetry operations and point group operations in a crystal

is referred as the crystal’s space group symmetry. There are a grand total of 230 space

groups130. Table 2.1 shows the relation between point and space groups of Bravais lattices

and crystal structures.

The nomenclature of space group is not unique. One commonly adopted notation is

listed in the International Union of Crystallography, which assigns each space group with

a number (#1 to #230). The Hermann-Mauguin notation and Schönflies notation are also

commonly used in crystallography community. For example, α-Al2O3 belongs to the space

group #167, which can be equivalently noted as R3C or D6
3d.

Experimentally, the crystal structure can be determined by either atomic scale imag-

ing or diffraction techniques, such as X-ray diffraction (XRD). To understand the general

principles involved in solving diffraction data, it is necessary to introduce the concept of

the reciprocal lattice. The reciprocal lattice plays a fundamental role in studies of functions
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with the periodicity of a Bravais lattice. Once a Bravais lattice in real space is given, one

can construct the reciprocal lattice correspondingly. The primitive unit vectors in reciprocal

space are defined as






















b1 = 2π a2×a3
a1·(a2×a3)

b2 = 2π a3×a1
a2·(a3×a1)

b3 = 2π a1×a2
a3·(a1×a2)

(2.4)

where ai (i = 1, 2, 3) are primitive unit vectors of real space Bravais lattice. Under this

definition, ai · bj = 2πδij (i, j = 1, 2, 3). Any reciprocal lattice vector can be written as

G = k1b1 + k2b2 + k3b3 (2.5)

where ki (i = 1, 2, 3) are integers. Then

G · R = 2π (n1k1 + n2k2 + n3k3) (2.6)

and

eiG·R = 1 (2.7)

where R = n1a1 + n2a2 + n3a3 is any real space lattice vector. For any family of lattice

planes separated by a distance d, there are reciprocal lattice vectors normal to the planes.

The shortest one has a length of 2π/d. It is convenient to describe the orientation of lattice

planes based on this relation. The commonly used notation is Miller indices. The Miller

indices for a family of lattice planes are the integral coefficients of the shortest reciprocal

lattice vector perpendicular to the planes in terms of the primitive unit vectors in reciprocal

space, e.g., the reciprocal lattice vector hb1 + kb2 + lb3 determines a family of planes with

Miller indices (h, k, l).

The diffraction pattern of X-rays incident on a crystal provides information on inter-

planar spacing, and ultimately the space group and structure of the crystal. Generally,

there are two equivalent ways to explain the phenomenon of X-ray diffraction by a perfect
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crystal, i.e., the Bragg law and von Laue condition. W. L. Bragg simply treated the crystal

as parallel planes of atoms and the incident waves are specularly (mirror-like) reflected from

these planes. The condition for a constructive interference leads to the famous Bragg law

2d sin θ = nλ (2.8)

where d is the distance between two adjacent parallel planes, θ is the angle measured from

the plane (90◦ minus angle of incidence), integer n is the order of interference and λ is the

wavelength of incident radiation. The total deflected angle measured from the incident light

is 2θ.

The von Laue approach regards the crystal as identical lattice points (a set of atoms)

which can reradiate the incident wave in all directions. Sharp peaks will be observed at

directions where constructive interference happens. The Laue condition can be written as

∆k = G (2.9)

i.e., the change in wave vector equals to a reciprocal lattice vector. Under the assumption

of elastic scattering (the magnitude of the wave vector does not change), the Laue condition

yields Bragg law. The practical and detailed experimental methods to determine the crystal

structure are beyond the scope of this dissertation.

2.2 Equilibrium Thermodynamic Theory of Phase Transitions

2.2.1 Thermodynamic Stability

The occurrence of phase transitions can be interpreted synonymous to changes of atomic

structures of matters. This phenomenon has long been studied and many natural forms of

transitions are well observed in our everyday life, e.g., water freezes into ice below freezing

temperatures. Here we focus our attention to the solid-solid phase transitions, especially the
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pressure-induced structural phase transitions. Within this limitation, some important as-

pects of the complete theory of phase transitions, such as critical phenomena, melting, glass

transition, ferromagnetism, superconductivity, etc., are not considered in this dissertation.

The first set of questions are: (1) why does a phase transition happen? (2) when does

it happen? and (3) how does it happen? The first question is related to the interactions

between a solid and its surrounding media. For simplicity, we ignore magnetic and electric

interactions, and focus only on mechanical and thermal interactions. According to the 1st

and 2nd law of thermodynamics, the most thermodynamically stable state of an isolated

state is the state that minimizes the energy (E). When the system is interacting with the

surrounding media through mechanical work, the system reaches a mechanical equilibrium

with the media when its pressure (P ) equals the pressure of the media, and it becomes

thermodynamically stable against any spontaneous fluctuations when its enthalpy (H), de-

fined as H = E + PV , becomes minimized. Here, V represents the volume of the system.

Similarly, when the system exchanges its energy with the media through heating, the ther-

mal equilibrium is reached when the temperature (T ) of the system equals the temperature

of the media, and it becomes thermodynamically stable when its Helmholtz free energy F,

defined as F = E − TS, becomes minimized. Here, S is the entropy of the system.

In our studies, a solid is considered to be in a thermal equilibrium at temperature T

and a mechanical equilibrium at pressure P with the surrounding media. At a given (T, P )

condition, the thermodynamically stable state is reached when:

∆E + P∆V − T∆S ≥ 0 (2.10)

where ∆E, ∆V , and ∆S are virtual variations of total internal energy, volume, and entropy

respectively. Given a sufficiently long period of time and allowing all possible fluctuations,

a solid at a given (T,P) condition should reach its thermodynamically stable state, which

minimizes its Gibbs free energy G, defined as G = E + PV − TS. Equation 2.10 is the

Gibbs-Duhem stability criterion which is equivalent to ∆G ≥ 0.
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A thermodynamically stable phase of a solid at a given (T, P ) condition corresponds

to a global minimal of Gibbs free energy for all atomic configurations. Correspondingly,

metastable phases are referred to those associated local minimums of G. Altering T or P

will change the Gibbs free energy landscapes and may in turn shuffle the relative orders

among the local G minimums. The emergence of a new global minimal of G will lead to a

phase transition in the solid.

The answer of when and how a phase transition happens requires detailed knowledge of

not only the thermodynamic properties of individual phases but also the kinetic process that

connect the initial and final phases. At equilibrium condition, a phase transition becomes

possible when a new phase has lower Gibbs free energy than the initial phase. The initial

phase then can be considered as a metastable phase at the new (T, P ) condition. However,

the lifetime of a metastable state is controlled by its local kinetic barrier heights. In reality,

metastable states can exist for a long period of time and an equilibrium phase transition

can be hindered when there exist large kinetic barriers that against the fluctuations. A

well-known example is the two crystalline forms of element carbon: diamond and graphite.

Graphite is known to be the ground state at ambient conditions whereas diamond is also

“stable” in a wide range of usual environment unless enough activation energy (such as

heating) is provided.

2.2.2 Phase Diagram and Classification of Phase Transitions

When two phases of a single-component system coexist at equilibrium, three conditions

must be satisfied between two phases:

1. The temperatures of the two phases must be equal.

T1 = T2 (2.11)
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2. The pressures in two phases must be equal.

P1 = P2 (2.12)

3. The chemical potentials of the two phases must be equal.

µ1 = µ2 (2.13)

Since the chemical potential is the molar Gibbs free energy, we can rewrite the phase

equilibrium conditions in the following form if both phases have the same number of atoms.

G1 (T, P ) = G2 (T, P ) (2.14)

The basic concepts of an equilibrium phase diagram is sketched in Figure 2.1. Each

point in the two-dimensional (T, P ) space denotes one equilibrium state of the system. In

most the T -P region of the phase diagram, only a single phase is thermodynamically stable.

At the boundary of two adjacent regions, two phases are equally stable along the T -P phase

boundary lines. Phase transitions happen when the phase boundaries are crossed. At triple

points, such as the (T1, P1)and (T2, P2) points in the plot, three phases coexist. For a single

component system, no more than three phases can reach simultaneous thermodynamic

equilibria. There is a special point C where the phase boundary curve between the liquid

and gas phases come to an end. This point is named as critical point, at and beyond which

the liquid and gas phases become identical. It should be mentioned that the critical point

can exist only for phases which are quantitatively different, e.g., a liquid and a gas. On the

contrary, solid phases have certain internal symmetries. The difference between two solid

phases of a substance, or between the liquid and solid phases, are qualitatively different.

During a quasi-static process of phase transition, the system may absorb or release the

so-called latent heat (L). The latent heat is associated with the change of entropy of the
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Figure 2.1: Phase diagram with two solid phases, one liquid phase and one gas phase. Two
triple points and one critical point are present.

system.

L = T∆S (2.15)

where ∆S is the entropy difference between the final and initial phases. ∆S may be zero

in continuous phase transitions.

If we differentiate both sides of equation 2.14 with respect to temperature, the Clapeyron-

Clausius equation can be derived.

dT

dP
=

V2 − V1

S2 − S1
=

T∆V

L
(2.16)

Clapeyron-Clausius equation gives the slope of the phase boundary in the phase dia-

gram which is directly related to the change of volume and latent heat. We can estimate

the amount of heat being absorbed/released during the transition from equation 2.16, nev-

ertheless both ∆V and L are zero for continuous phase transitions (see below).
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As discussed above, while Gibbs free energy is always continuous during equilibrium

phase transitions, other thermodynamic variables might be discontinuous. I now introduce

the concept of order of a phase transition based on the Gibbs free energy.

1. First-order transitions are accompanied with a discontinuous change in the first-order

derivatives of the thermodynamic potentials, such as volume and entropy. Thus a

density jump and a latent heat are presented during a first-order phase transition.

Transitions of this type is referred as the first kind or discontinuous phase transitions.

V =

(

∂G

∂P

)

T

S = −
(

∂G

∂T

)

P

(2.17)

2. In second-order transitions, the first-order derivatives of Gibbs free energies are con-

tinuous. Yet, the transitions are accompanied with discontinuity in second-order

derivatives of thermodynamic potentials, such as isobaric specific heat capacity CP

and isothermal compressibility κT .

CP = T

(

∂S

∂T

)

P

= −T

(

∂2G

∂2T

)

P

(2.18)

κT = − 1

V

(

∂V

∂P

)

T

= −1/V

(

∂2G

∂2P

)

T

(2.19)

Higher order transitions can be specified in a similar fashion. Within the framework of

Landau theory, second and higher order transitions belong to the second-kind (continuous).

For these transitions, system continuously passes from one phase to another without any

abrupt changes in volume, entropy and consequently no latent heat.

In the case of solid-solid phase transitions in crystals, reconstructive transitions reform

the crystal lattices from one type to a distinctly different one without any direct structural

relations, e.g., no group-subgroup relations. This type of transitions are always first-order.

On the other hand, during displacive phase transitions, atoms gradually deviate from their

original equilibrium positions to their corresponding new positions in the final phase in
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a collective fashion. Although the displacements might be small, crystal symmetry is al-

tered. Since the displacements happen in a continuous manner, one structure must has a

higher symmetry and the other structure has a lower symmetry which is a subgroup of the

spacegroup of the high-symmetry phase. The displacive transitions can be any order

2.3 Landau Theory for Phase Transitions of Second Kind

2.3.1 The Order Parameter and Landau Free Energy

Landau theory is a general phenomenological theory for phase transitions of second

kind. Landau introduced a quantity order parameter to describe the changes in structure

during the phase transition. The order parameter is zero in the high symmetry phase and

takes non-zero value in the low-symmetry phase. For displacive phase transitions, the order

parameter can be easily chosen as the atomic displacement from the equilibrium sites of

the initial high-symmetry phase. Usually the free energy is independent of the sign of the

order parameter that it only contains even-power terms.

G (T, P, η) = G0 + Aη2 + Bη4 + · · · (2.20)

where G0 is the free energy of the high symmetry phase. Apparently this expansion is

valid only for small values of the order parameter, i.e., close to the transition point. For

simplicity, we consider equation 2.20 up to the fourth-order term, the sign of coefficient A

will determine whether it leads to a single minimum at η = 0 or a local maximum at η = 0.

Plot of the free energy as a function of order parameter is shown in Figure 2.2 for these two

cases. If A > 0, the global minimum is at η = 0 which corresponds to the high symmetry

phase, while if A < 0, the high symmetry phase become energetically unstable and the

system is stable at non-zero values of the order parameter (±η0).

In this dissertation, we have studied the pressure induced displacive phase transition

from phenacite to post-phenacite phase in Si3N4. Because the transition is largely pressure

driven, we neglect the temperature dependence of the landau free energy. Therefore at the
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Figure 2.2: Variation of the Landau free energy with positive and negative A coefficients.

transition pressure the coefficient A changes sign, so that it is positive for the high symmetry

phenacite phase below the transition pressure and is negative for the post-phenacite phase

above the transition pressure. The simplest form of this condition is

G (P, η) = G0 + a (Pt − P ) η2 + bη4 (2.21)

where a and b both have positive values. We assume A = a (Pt − P ) where Pt is the

transition pressure, and B = b. When P > Pt, the equilibrium condition ∂G
∂η = 0 leads to

the non-zero value of the order parameter.

η0 =

√

a (P − Pt)

2b
(2.22)

Note that the first order derivative of Gibbs free energy with respect to pressure is

continuous at P = Pt.
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2.3.2 Dynamic Lattice Stability and Soft Phonon Modes

As a phenomenological approach, Landau theory is mathematically simple and flexible

as the theoretical background of many studies of phase transitions. However, from the ab

initio simulation point of view, the new low-symmetry phase is determined from a different

approach. For instance, the low-symmetry structure can be derived by relaxing the high-

symmetry structure to equilibrium at the conditions where it is unstable. Usually a slight

distortion is needed to break the symmetry. For phonon instability (elastic instability is

less common), the distortion is a set of collective atomic displacements, which is associated

with the soft phonon theory.

At finite temperature, atoms inside a solid never “freeze” at their equilibrium posi-

tions. Instead, they oscillate around their respective equilibrium positions. The atomic

displacements of atoms can be analyzed in term of the vibrational normal modes. The

quasi-particle representation of quantization in harmonic lattice vibration is phonon. The

squares of phonon (vibrational) frequencies are normally positive. A vanishing ω2 indicates

that the restoring forces related to that normal mode disappear. The corresponding vibra-

tion is called soft mode or soft phonon. A crystal structure containing soft phonon modes

are considered as dynamically unstable because atomic displacements along the eigenmode

pattern will lead to a new structure with lower energy. Note that the new structure belongs

to a lower symmetry whose space group is a subgroup of the original space group, and the

eigenmodes of soft phonons are often adopted as the order parameters in Landau theory

discussed above.

The simplest case of soft phonon modes is that only one phonon mode becomes softened.

If the soft mode drops to zero at Γ-point (center of Brillouin zone), the periodicity of the

low symmetry structure will be of the same size of unit cell as the high symmetry phase. If

phonon softening happens at the zone boundary, the periodicity of the new phase will be

different from the high symmetry phase. The unit cell of the low symmetry phase, in general,

is a super cell of the previous primitive unit cell. The size of the super cell is determined by

the symmetry of the system and the k-point that has soft phonon, e.g., if the soft phonon
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happens at X-point (1, 0, 0), the new structure will have a double-sized primitive unit cell

vector along a1 compared to the previous phase. Real space displacements of atoms from

high symmetry equilibrium sites can be obtained based on the eigenvector of the soft mode.

By breaking the symmetry with atomic displacements (usually small), the low-symmetry

structure can be found by relaxing the distorted high-symmetry configuration energetically

at the condition that it is unstable.

In the case that more than one mode (at different k-points) involve soft phonons, in

principle, the real space atomic displacements that lead to the low-symmetry stable phase

can be derived from a linear combination of the eigenvectors of the soft modes. In practice,

we usually treat the soft phonon modes in serial. For each soft phonon, a new low-symmetry

structure can be derived from total energy calculation by imposing its symmetry. In the

next step, we calculate the phonon dispersion for the new phase. We repeat the process

until all soft phonon modes disappear. The energetically favored structure among these

stable or metastable phases is the one with the lowest energy, which can be determined

from the E-V curves.

2.4 Transition Paths of Reconstructive Phase Transitions

Many structural phase transitions in solids belong to the first-order reconstructive

category, i.e., the symmetries of the two structures have no group-subgroup relation and

typically bonds breaking/forming process occurs during the transition. The dynamics of

reconstructive phase transitions is not yet well understood for most known solid-solid phase

transitions. It is known that for some transitions of this kind, an interface forms between

the initial and final phases, and atoms go through a long range diffusion process during the

transformation. In our study, we examine the transformation mechanism from a different

angle, assuming the initial and final structures are related by a diffusionless transition path

(TP). Intermediate structures along the path can be given with a crystalline character ap-

proximately. Transition pathway studies are helpful for understanding the mechanism of

transitions at a microscopic level, and predicting the kinetic barrier height of the proposed
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path(s) from the energy landscape. However, there are in principle an infinite number

of pathways for one structure to transform into another. If neglecting defects and sur-

face effects that exist in reality, we assume a certain symmetry is maintained when atoms

are displaced collectively along the TP. For diffusionless reconstructive transitions, it is

known that the nucleation free path is defined by is a common subgroup of both end struc-

tures131–134. Although the number of common subgroups is infinite, it is possible to obtain

a finite set of common subgroups with certain constrains, such as the size of unit cell, bonds

preserving, maximum strains etc. Among these TPs, the energetically favorable path(s)

is/are that/those associated with the lowest kinetic energy barrier(s).

From the theoretical point of view we could investigate the most possible paths and

find the one(s) with the least barrier height. Stokes and Hatch have implemented a com-

puter program called COMSUBS which systematically finds maximal common subgroups

of two structures. The major constraint for COMSUBS is the bond condition, since many

studies suggested that the most energetically favored TPs are those preserve the number of

bonds53–55. Other constrains that affect the number of common subgroups are the minimum

and maximum size of unit-cell, strain tolerance, maximum atomic displacement, minimum

distance allowed between nearest neighbors, etc. This method has been adopted in the stud-

ies of B1-to-B2 transitions in sodium chloride (NaCl) and lead sulfide (PbS)135, zinc-blende

to rocksalt transitions in silicon carbide (SiC)136, and wurtzite-to-rocksalt transition48.

For each possible transition path, in principle, the energy barrier height is determined

by the calculated n-dimensional potential-energy surface (PES), where n is the degree of

freedom of the intermediate state. For example, in the case of wurtzite-to-rocksalt transition

in AlN, the degree of freedom is 6 for the Pna21 path, i.e., there are 6 free parameters

that can be adjusted independently. The complete information of the wurtzite-to-rocksalt

transformation path can be revealed from a 6-dimensional PES. However, first-principles

calculation of a 6D PES is not an easy task. To calculate the barrier height, two reasonable

approaches have been investigated. The first approach is named as bow-function method,

as adopted in the study of zinc-blende to rocksalt transition in SiC136. The first step within
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this method is to calculate the enthalpy along a linear TP. Here “linear” means that all the

structural parameters, including both external parameters (lattice parameters) and internal

coordinates, vary according to a single transition parameter.

xm = (1 − ξ) xmi + ξxmf (2.23)

where ξ is the transition parameter which varies from 0 to 1, xmi and xmf are the initial and

final mth structural parameter, respectively. In many cases we have studied, the peak of the

barrier height locates at around ξ = 0.5. In this way, although we obviously overestimate

the enthalpy barrier, it is efficient for eliminating some TPs that give much larger barriers.

With the number of TPs being reduced, we further develop a numerical algorithm to possibly

lower the barrier height. On the basis of previous linear TP, we assume the saddle point

(which gives the enthalpy barrier height) of the “true” TP is not far from the maximum

point of the linear one. By adding a quadratic term to equation 2.23 we change the linear

function to a bow function.

xm = (1 − ξ) xmi + ξxmf + wmξ (1 − ξ) (2.24)

where wm is the “weight” of the bow function for the mth structural parameter. Then we

minimize the enthalpy barrier height with respect to wm. This is done by searching for the

lowest height of the peak with different weights (positive or negative) for each structural

parameter. If more than one peak are present, we will track the highest peak across the

entire TP. If the change on wm decreases the barrier height, we keep the change, otherwise

we undo the change. This process is done when no changes on wm will further lower the

height of the peak. At this situation, saddle point of the true TP is found and so for the true

barrier height. We should stress that our aim is to find the barrier height and our proposed

TP only matches the saddle point and two end points of the true TP. The quadratic bow

function that links these three points is generally different from the true TP.
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However, the bow-function algorithm may fail if the landscape of the enthalpy function

is complex, e.g., if the saddle point is surrounded by peaks and the true path is off the linear

path, the barrier height found by bow function can be higher than the saddle point. In all

the concerns our estimated enthalpy barrier height will always be an upper limit compared

to the true barrier.

Besides the bow function method, sometimes a reconstructive phase transition can be

characterized by only a few structural parameters. In this case a proper choice of the struc-

tural parameter is essential. Other “unimportant” parameters will be fully relaxed during

the DFT calculation. In the simplest case, if only one structural parameter is primarily

responsible during the transition, the transition parameter is defined based on the changes

of this parameter. If two equally important structural parameters both cause significant

changes in enthalpy from one structure to the other, we can calculate the enthalpies as

a function of two transition parameters (a 2D PES). Calculations involve more than two

transition parameters can be cumbersome in the sense of both computational load and

analysis.

Let’s take the single parameter case as an example to illustrate the procedure of tran-

sition pathway calculations. The particular structural parameter can be found either by

comparison of two end structures or by a testing calculation as follows. If we choose the

transition parameter at values which are uniform samplings between two end phases (equa-

tion 2.23), the saddle point normally locates at ξ = 0.5 or nearby (this testing is not

applicable to the case where a metastable state exists around ξ = 0.5). A series of to-

tal energy calculation can be done by fixing only one structural parameter at a time and

fully relaxing the others starting with ξ = 0.5. If the parameter we fixed is unimportant,

the resulting energy will be close to the energy of one end phase, whereas the important

structural parameter will yield an energy apparently different from the end phases. Next

we sample the transition parameter in the [0, 1] region and calculate the energies at each

sampling point by fixing the chosen parameter and relaxing the other parameters. To get

the enthalpy under a given pressure, we preform the energy calculations at several volume
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points and obtain the enthalpy based on the equation of states, H = E + PV . Finally a

relative enthalpy as a function of transition parameter can be plotted and the barrier height

is estimated from that. We emphasize that the calculated barrier height is approximate and

should be understood as an upper limit of the true one.

For technical reason, it is easy to fix the internal parameter(s), however, difficult to do

so for the external ones. So the second approach currently only works for transitions that

characterized by changes in the internal structural parameter(s).
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Chapter 3

FIRST-PRINCIPLES CALCULATIONS OF THERMODYNAMIC

PROPERTIES OF CRYSTALS

3.1 First-Principles Total Energy Theory

3.1.1 Density Functional Theory (DFT)

Atomic-scale theory and simulation of solids rely on accurate evaluation of the total

energy of an N-atom system with a specified atomic configuration. Many theories, evolving

from simple empirical models in early years to quantum Monte Carlo method, have been

developed to estimate the total electronic energy of a given system. Benefiting from the

increasing power of computational technology and to our purpose, in this study, we adopt

density functional theory (DFT). DFT is one of the most successful first-principles quan-

tum mechanical theories for atoms, molecules and solids. Nowadays, DFT calculations are

routinely performed in the fields of materials physics and chemistry.

In quantum mechanics, a system is described by the wave function Ψ of its Hamiltonian.

Within Born-Oppenheimer approximation137 (adiabatic approximation), one assumes that

the electrons are in their ground state for the instantaneous ionic configuration at any

moment. Therefore, we are able to treat ionic motion with classical mechanics, and only

the electronic Hamiltonian is treated with quantum mechanics. A stationary electronic

state of a N-electron Hamiltonian is described by a wave function Ψ(r1, . . . , rN ) satisfying

the Schrödinger equation:

ĤΨ =
[

T̂ + V̂ + Û
]

Ψ =





N
∑

i

− ~
2

2m
∇2

i +

N
∑

i

v(ri) +
∑

i<j

U(ri, rj)



Ψ = EΨ (3.1)
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where U(ri, rj) is the electron-electron coulomb interaction. Exact solution to this Schrödinger

equation even for a system with 100 atoms is computationally forbidden. DFT provides an

exact way to map the many-body problem onto an effective single-body problem. This is

done by replacing the many-body electronic wavefunction with the electron density as the

basic quantity.

The predecessor to DFT is the simple Thomas-Fermi model138 which neglects the ex-

change and correlation energy. Hohenberg and Kohn119 proved two celebrated theorems

(HK theorems) stating that (1) the nondegenerate ground-state wave function is a unique

functional of the ground-state electron density and (2) the ground-state electron density

minimizes the total energy of the system. According to HK theorems, the system’s wave-

function only depends on the particle density which is a function of three spatial variables

whereas a many-body wavefunction is dependent on 3N variables (three degrees of freedom

for each of the N electrons). Since the electron density n(r) is given by:

n(r) = N

∫

d3r2

∫

d3r3 · · ·
∫

d3rNΨ∗(r, r2, . . . , rN )Ψ(r, r2, . . . , rN ) (3.2)

The ground-state wavefunction is a unique functional of n0, i.e., Ψ0 = Ψ0 [n0]. Thus

all the observables are also functionals of n0, in particular the ground-state energy.

E0 = E [n0] =
〈

Ψ0 [n0]
∣

∣

∣T̂ + V̂ + Û
∣

∣

∣Ψ0 [n0]
〉

(3.3)

In practice, for a specific system (v(r) is known), all one need to do is to minimize the

sum of kinetic, potential and interaction energies.

Ev [n] = T [n] + U [n] + V [n] = T [n] + U [n] +

∫

d3r n(r)v(r) (3.4)

Exact form of E [n] functional is unknown. Most commonly adopted approach in DFT

is the Kohn-Sham method120. The kinetic energy functional of interacting electrons T [n]
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can be treated as a summation of two parts.

T [n] = TS [n] + TC [n] (3.5)

where S and C represent “single-particle” and “correlation”. TS [n] is the kinetic energy

density functional of noninteracting particles and TC [n] is the remainder. TS [n] is an ex-

plicit function of the single-particle wavefunctions φi (r), where φi (r) is a density functional,

so TS [n] is an implicit functional of the electron density.

TS [n] = TS [{φi [n]}] (3.6a)

TS [n] = − ~
2

2m

N
∑

i

∫

d3r φ∗
i (r)∇2φi (r) (3.6b)

Without any approximation, the energy can be written as:

E [n] = T [n] + U [n] + V [n] = TS [{φi [n]}] + UH [n] + Exc [n] + V [n] (3.7)

where UH = q2

2

∫

d3r
∫

d3r′ n(r)n(r′)
|r−r′| , which is the electrostatic interacting Hartree energy of

the charge distribution n (r). And Exc [n] is the exchange-correlation (xc) energy which has

contributions from T − TS and U − UH . This term can be decomposed as Exc = Ex + Ec,

where Ex is the exchange energy due to Pauli principle and Ec is the correlation energy.

An effective potential energy can be defined as:

VS (r) = V (r) + UH (r) + Exc (r) (3.8)

Consequently, the Schrödinger equation is:

[

− ~
2

2m
∇2 + VS (r)

]

φi (r) = ǫiφi (r) (3.9)

By solving the charge density of this equation of noninteracting single-body system

in potential VS (r), one can obtain the density of the interacting many-body system in
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potential V (r).

n (r) = nS (r) =

N
∑

i

fi |φi (r)|2 (3.10)

where fi is the occupation of the ith orbital.

The above three equations are called Kohn-Sham (KS) equations. The purpose of

KS equations is to solve a noninteracting Schrödinger equation to replace the problem of

minimizing the total energy E [n]. With an initial guess of the density n (r), an iterative

process is performed until convergence is reached (e.g., convergence in energy, density, or

some other observables). In numerical calculations, the KS orbital is typically expanded

using a set of basis functions. There are different ways to construct a suitable basis function.

Our DFT based calculations are implemented in the Vienna ab initio Simulation Package

(VASP)139, which uses a planewave expansion140,141.

Because the core electrons are bounded to the nuclei and their orbitals typically do

not change much, it is a good approximation that the Hartree and xc terms in VS (r) are

evaluated only for the valence electron density nv, and the core electrons are treated with

a pseudopotential (PP) V PP
ext . The pseudopotentials that are adopted in our VASP calcu-

lations are Vanderbilt Ultra-Soft Pseudopotentials (US-PP)121,142 or Projector Augmented

Wave (PAW)143,144 method.

Further approximation is needed to evaluate the exchange-correlation functional Exc [n].

Unless stated otherwise, this study is performed with local density approximation (LDA)145,146

which is a local functional. A semilocal, gradient dependent functional, generalized gradient

approximation (GGA)147–151 is sometimes used as a comparison.

3.2 Statistical Theory of Bulk Crystals

3.2.1 Phonon Theory of Lattice Dynamics

Equilibrium positions of atoms in a crystal are determined by the minimum total

energy. However, the atoms are not fixed at their equilibrium positions. Because the

interatomic chemical bonds are not infinitely strong, nor do the atoms have infinite masses,
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the atoms may oscillate about their equilibrium locations at a finite temperature. According

to statistical mechanics, the equilibrium energy at a given temperature is the ensemble

average over all the possible atomic configurations of the system. If we denote by Ei the

static energy of the ith stationary configuration of the crystal and β = 1/kBT , the total

energy can be written as:

E =

∑

i
Eie

−βEi

∑

i
e−βEi

(3.11)

However, exact evaluation of the total energy is a formidable task. Here we make

two assumptions which are valid for most crystals at equilibrium conditions below melting

temperature:

1. We assume the mean equilibrium position of each atom is a Bravais lattice site and

the atom oscillates about this position.

2. We assume the deviation from the equilibrium position is small compared with the

interatomic distance.

The potential energy of a crystal is a function of the instantaneous atomic positions. If

we let uα,i (ℓ) denote the α cartesian component of the displacement of the ith atom in the

ℓth primitive unit cell (x (ℓ) = ℓ1a1 + ℓ2a2 + ℓ3a3 , where ℓ collectively denotes ℓ1, ℓ2 and

ℓ3) from its equilibrium position, under the two assumptions, we may expand the potential

energy in power series of these components:

V = V0 +
∑

ℓ,i,α

(

∂V

∂uα,i (ℓ)

)

0

uα,i (ℓ)

+
1

2

∑

ℓ,i,α

∑

ℓ′,j,β

(

∂2V

∂uα,i (ℓ) ∂uβ,j (ℓ′)

)

0

uα,i (ℓ) uβ,j

(

ℓ′
)

+
1

6

∑

ℓ,i,α

∑

ℓ′,j,β

∑

ℓ′′,k,γ

(

∂3V

∂uα,i (ℓ) ∂uβ,j (ℓ′) ∂uγ,k (ℓ′′)

)

0

uα,i (ℓ) uβ,j

(

ℓ′
)

uγ,k

(

ℓ′′
)

+ · · · (3.12)
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In this expansion, V0 is the potential energy of the static crystal when all the atoms are

at their equilibrium positions. The subscript “0” indicates that the derivatives are evaluated

with atoms at the equilibrium positions. Since there is no net force on any atom in the

equilibrium configuration, the first order derivative
(

∂V
∂uα,i(ℓ)

)

0
vanishes and the second

term in the expansion is zero. It will be convenient to use different symbols to replace those

derivatives as follows:

Φαi,βj

(

ℓ, ℓ′
)

=

(

∂2V

∂uα,i (ℓ) ∂uβ,j (ℓ′)

)

0

(3.13a)

Aαi,βj,γk

(

ℓ, ℓ′, ℓ′′
)

=

(

∂3V

∂uα,i (ℓ) ∂uβ,j (ℓ′) ∂uγ,k (ℓ′′)

)

0

(3.13b)

Bαi,βj,γk,λl

(

ℓ, ℓ′, ℓ′′, ℓ′′′
)

=

(

∂4V

∂uα,i (ℓ) ∂uβ,j (ℓ′) ∂uγ,k (ℓ′′) ∂uλ,l (ℓ′′′)

)

0

(3.13c)

The first nonvanishing contribution to the constant equilibrium static potential energy

is the quadratic term and this is the only term being kept in the harmonic approximation.

Those higher order terms are known as anharmonic terms which are considerably responsible

for many physical properties. Typically they are treated as perturbations to the dominant

harmonic term. If we denote pα,i (ℓ) the α cartesian component of the momentum of the

ith atom in the ℓth primitive unit cell and mi is the mass of the ith atom in the primitive

unit cell, the total kinetic energy of the system is:

T =
∑

ℓ,i,α

p2
α,i (ℓ)

2mi
(3.14)

Consequently the vibrational Hamiltonian can be written as:

H = H0 + HA (3.15)
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where

H0 =
∑

ℓ,i,α

p2
α,i (ℓ)

2mi
+

1

2

∑

ℓ,i,α

∑

ℓ′,j,β

Φαi,βj

(

ℓ, ℓ′
)

uα,i (ℓ) uβ,j

(

ℓ′
)

(3.16a)

HA =
∞
∑

n=3

1

n!

∑

ℓ1,i1,α1

· · ·
∑

ℓn,in,αn

(

∂nV

∂uα1,i1 (ℓ1) · · · ∂uαn,in (ℓn)

)

0

uα1,i1 (ℓ1) uαn,in (ℓn)

(3.16b)

The Hamiltonian H0 is the harmonic part of the vibrational Hamiltonian. The Hamil-

tonian HA is the anharmonic part of the vibrational Hamiltonian. In the harmonic approx-

imation, the anharmonic contribution has been neglected. In order to solve the vibrational

energy, it is convenient to introduce the normal coordinates.

Qξ (q) =
1√
N

∑

ℓ,i,α

√
mie

∗
α,i (q, ξ) · uα,i (ℓ) e−iq·x(ℓ) (3.17)

Pξ (q) =
1√
N

∑

ℓ,i,α

1√
mi

eα,i (q, ξ) · pα,i (ℓ) eiq·x(ℓ)

where ξ = 1, 2, · · · , 3n that labels the index of branch and n is the number of atoms in a

primitive unit cell. N is the total number of atoms in the crystal. q is the wave vector

in the reciprocal space and it has s discrete values which is the number of primitive unit

cells in the crystal (n · s = N). Usually a bulk crystal consists of a very large number of

primitive unit cells which allows q to change quasi-continuously. And eα,i (q, ξ) is the α

cartesian component of the eigenvector of the ith atom at reciprocal space point q from the

ξth branch. It has the property as follows:

∑

i,α

eα,i (q,ξ) · e∗α,i (q, η) = δξη (3.18)

Derivation shows that with normal coordinates the kinetic energy and the harmonic

potential energy can be expressed as summations of square terms, which transform the
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Hamiltonian H0 into the Hamiltonian of 3n independent harmonic oscillators.

H0 =
1

2

∑

ξ

P 2
ξ (q) +

1

2

∑

ξ

ω2
ξ (q) Q2

ξ (q) (3.19)

where ωξ (q) is determined by solving the following secular equation

∑

j,β

Dαi,βj (q) · eβ,j (q, ξ) = ω2
ξ (q) · eα,i (q, ξ) (3.20)

In equation 3.20 D (q) is often called dynamical matrix which can be obtained from

the real space force constant matrix.

Dαi,βj (q) =
1

√
mimj

∑

h

Φαi,βj (0,h) · e−iq·h (3.21)

where h = x (ℓ′) − x (ℓ). Without losing generality, it is convenient to set x (ℓ) as the

reference lattice point. The vibrational frequency ω is a function of the wave vector q and

this dependence is often called the dispersion relation. For each q, there are 3n normal

modes, and the normal modes are identical for wave vectors differ by reciprocal lattice

vectors. For crystals have one atom in its primitive unit cell (n = 1), only three acoustic

modes exist. Otherwise (n > 2) there are three acoustic modes and 3n − 3 optical modes.

Within the harmonic approximation, the hamiltonian is expressed as 3N independent

oscillators, whose energy levels are well known in quantum mechanics. The total vibrational

energy is simply the summation of the energies of individual oscillators

Evib =
∑

qξ

(

nξ (q) +
1

2

)

~ωξ (q) (3.22)

where nξ (q) is the occupation number of the normal mode, which takes the values of

0, 1, 2, · · · . 1
2~ωξ (q) is the zero-point vibrational energy of the normal mode. And equiva-

lently, one usually says there are nξ (q) phonons with wave vector q in the ξ branch instead
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of the nξ (q)th excited state of the normal mode. Using equation 3.11, one can show that

nξ (q) =
1

eβ~ωξ(q) − 1
(3.23)

The calculation of phonon dispersion relation is the major part of our computation and

is necessary to further study the thermodynamic properties. Our techniques of calculating

the phonon dispersion and the corresponding vibrational density of state are described in

the next subsection.

3.2.2 Statistical Harmonic Approximation

We have discussed the equilibrium vibrational energy of a harmonic crystal in Section

3.2.1. Based on statistical ensemble theory, the canonical partition function is Z =
∑

i
e−βEi

where i represent any possible state of the system. The total energy within harmonic

approximation is:

E = E0 +
∑

qξ

(

nξ (q) +
1

2

)

~ωξ (q) (3.24)

where E0 is the static equilibrium energy and the second term is the vibrational energy

which has been shown earlier in equation 3.22. Thus the partition function can be written

as:

Z =

∞
∑

nξ(q)=0

e
−β

(

E0+
∑

qξ
(nξ(q)+ 1

2)~ωξ(q)

)

= e−βE0
∏

qξ





∞
∑

nξ(q)=0

eβ(nξ(q)+ 1
2)~ωξ(q)





= e−βE0
∏

qξ

e
1
2
β~ωξ(q)

eβ~ωξ(q) − 1
(3.25)

41



From the partition function, we can further derive all the thermodynamic potentials

and their derivatives which are measurable thermal properties.

E = −∂ ln Z

∂β
= E0 +

∑

qξ

1

2
~ωξ (q) +

∑

qξ

~ωξ (q)

eβ~ωξ(q) − 1
(3.26a)

F = −kBT ln Z = E0 +
∑

qξ

[

1

2
~ωξ (q) + kBT ln

(

1 − e
−~ωξ(q)

kBT

)]

(3.26b)

S = −
(

∂F

∂T

)

V

(3.26c)

In equation 3.26, summation over all the q points and phonon branches is needed to

evaluate each thermal quantity. Although the q points in principle take discrete values, the

typical size of a real crystal consists of a great number of primitive unit cells, which will

make the q points quasi-continues. Using the concept of phonon density of state (DOS),

the Helmholtz free energy can be calculated from the Brillouin zone integration

F (T, V ) = E0 (V ) +

∫ ∞

0

[

1

2
~ωξ (q) + kBT ln

(

1 − e
−~ωξ(q)

kBT

)]

g (ω) dω (3.27)

where g (ω) is the phonon DOS. There is an upper limit of the phonon frequencies, above

which the phonon DOS is zero. As a good approximation, we can also evaluate the vibra-

tional free energy as a summation and being normalized to a primitive unit cell if the q

point sampling is dense enough.

Fvib =
1

Nq

∑

qξ

[

1

2
~ωξ (q) + kBT ln

(

1 − e
−~ωξ(q)

kBT

)]

(3.28)

3.2.3 First-Principles Phonon Calculations

In ab initio calculations, there are basically two approaches to obtain the phonon

spectrum, namely the linear response theory 152–154 (density-functional perturbation theory,

DFPT) and the direct method. The DFPT approach assumes that the interatomic force-

constant matrix is determined by the linear response of electron density to the periodic
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lattice perturbation. The dynamical matrix may be obtained from the inverse dielectric

matrix. The major advantage of DFPT method is one can calculate phonon frequencies

at arbitrary q point without using supercell. It also directly provides the Born effective

charge (BEC) and dielectric constant which are necessary in predicting the LO-TO splitting

for ionic crystals. However, The implementation of DFPT calculation requires complex

coding and the dielectric matrix is obtained from the eigenfunctions and eigenvalues of the

unperturbed system, which demands summations over unoccupied conduction bands. The

computational cost for DFPT calculation is in the order of 3N4 × R3
IFC , where N is the

number of atoms and RIFC is the range of interatomic force constants.

The direct approach falls into two classes. In frozen-phonon method155, the phonon

frequencies can be calculated from energy differences between displaced system and relaxed

system. This method is limited as wave vector q must be the reciprocal lattice vector of

the supercell, but too large supercell is not computationally affordable. Our calculations

belong to another method of the direct approach: a first-principles real-space supercell force-

constant (SC-FC) method which calculates the phonon frequencies from the forces obtained

via the Hellmann-Feynman theorem. This technique is proved to be efficient and successful

in predicting the full phonon spectrum of many materials122–129. The major limitation of

this method comes from the range of the interatomic force constants RIFC . This type of

error can be reduced by using a large supercell. The computational cost of a complete

interatomic force constants calculation is in the order of N × R9
IFC . For systems with a

relatively small RIFC , SC-FC method will be efficient by using a suitable size of supercell

to balance the accuracy and computational workload. To predict the phonon dispersion

for ionic solids, which involves induced Born effective charges Z∗ due to lattice vibration,

a separate calculation proposed by Kunc and Martin156 need to be performed to take care

of the LO-TO splitting as a correction.

Start from here I will describe the detailed procedure of our phonon calculation. Within

this subsection, we are restricted to the harmonic approximation. At a fixed volume, a

relaxed structure model is provided by the previous static total energy calculation, i.e., no
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net force on each atom at this configuration. Then a finite small displacement is made

to a single atom and all the atomic positions are not allowed to change. According to

Hellmann-Feynman theorem, α component of the force on the ith atom in the ℓth unit cell

is:

Fα,i (ℓ) = − ∂E

∂uα,i (ℓ)
= −

〈

Ψ

∣

∣

∣

∣

∂H

∂uα,i (ℓ)

∣

∣

∣

∣

Ψ

〉

(3.29)

where H is the total hamiltonian and Ψ is the electronic ground-state wavefunction. In

the Born-Oppenheimer approximation, ionic displacement is the parameter. Assuming the

amount of single displacement is ∆, using equation 3.16 and keeping up to the 4th order

term in the hamiltonian expansion, the Hellmann-Feynman (H-F) forces is

Fα,i (ℓ) = −Φαi,βj

(

ℓ, ℓ′
)

·∆− 1

2
Aαi,βj,γk

(

ℓ, ℓ′, ℓ′′
)

·∆2− 1

6
Bαi,βj,γk,λl

(

ℓ, ℓ′, ℓ′′, ℓ′′′
)

·∆3 (3.30)

Note that all the other atoms are held in their equilibrium positions. The reason to

keep up to the 4th order term is to better estimate the harmonic force constant Φαi,βj (ℓ, ℓ′)

from the first-principles calculated H-F forces. A simple displacement scheme is applied in

order to eliminate the anharmonic terms. If we calculate the H-F forces for the jth atom

deviates in the β direction by ∆ from its equilibrium position, we also do calculations with

the displacements of −∆, 2∆, and −2∆, where the negative sign implies the displacement

is in the opposite direction. Provided an label to each of the four forces, we have



































F+
α,i (ℓ) = −Φαi,βj (ℓ, ℓ′) · ∆ − 1

2Aαi,βj,γk (ℓ, ℓ′, ℓ′′) · ∆2 − 1
6Bαi,βj,γk,λl (ℓ, ℓ′, ℓ′′, ℓ′′′) · ∆3

F−
α,i (ℓ) = Φαi,βj (ℓ, ℓ′) · ∆ − 1

2Aαi,βj,γk (ℓ, ℓ′, ℓ′′) · ∆2 + 1
6Bαi,βj,γk,λl (ℓ, ℓ′, ℓ′′, ℓ′′′) · ∆3

F 2+
α,i (ℓ) = −2Φαi,βj (ℓ, ℓ′) · ∆ − 2Aαi,βj,γk (ℓ, ℓ′, ℓ′′) · ∆2 − 4

3Bαi,βj,γk,λl (ℓ, ℓ′, ℓ′′, ℓ′′′) · ∆3

F 2−
α,i (ℓ) = 2Φαi,βj (ℓ, ℓ′) · ∆ − 2Aαi,βj,γk (ℓ, ℓ′, ℓ′′) · ∆2 + 4

3Bαi,βj,γk,λl (ℓ, ℓ′, ℓ′′, ℓ′′′) · ∆3

(3.31)

It is straightforward to show that

Φαi,βj

(

ℓ, ℓ′
)

=
−8F+

α,i (ℓ) + 8F−
α,i (ℓ) + F 2+

α,i (ℓ) − F 2−
α,i (ℓ)

12∆
(3.32)
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We currently use a simplified version to calculate the FC matrix that we ignore the

typically small 4th order term and cancel all the odd order anharmonic terms.

Φαi,βj

(

ℓ, ℓ′
)

≈ −1

2

(

F+
α,i (ℓ)

∆
+

F−
α,i (ℓ)

−∆

)

(3.33)

In this way we can further reduce the computational cost by half. If each atom needs

to be displaced in one direction (including positive and negative directions) by 4 times,

i.e., 4 total energy calculations, a supercell with N atoms requires 12N calculations. The

typical size of the supercell in phonon calculation is in the order of ∼100 atoms. However,

the number of direct calculations can be greatly reduced based on the crystal symmetry.

First we go through the full point group operations and possible gliding vectors to

find all the spacegroup symmetry operations for a fully relaxed crystal structure (code

FindSG.x ). Then an one-on-one mapping is established to find the independent and depen-

dent atoms (code Find1on1.x ). The mapping and operations relate them are saved in the

file named as 1on1map.dat. The next code is called FindIR.x which reads in 1on1map.dat

and find the irreducible directions of independent atoms. We call it “moves” to specify

which atom to displace, in which direction to displace, and by what amount. It should

be mentioned that the direction of displacement can be in terms of either the cartesian

coordinates or the primitive unit vectors which is called “direct” format. We also save

the information to obtain the H-F forces of the dependent moves from the results of the

independent ones.

In our calculations an absolute amount of ∆ = 0.015 Å is usually chosen for cartesian

moves and a relative amount of ∆ = 0.002 for direct moves. The amount of displacement

should be applied with care. Too large deviation will include more anharmonic effect while

too small deviation may worsen the results due to numerical errors. For the irreducible

moves, the H-F forces are calculated directly and the corresponding FC matrix elements

are derived from these forces. For other reducible moves, the FC matrix element can be

obtained by applying the one-on-one spacegroup symmetry operation to the irreducible
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ones. Both cartesian and direct transformation matrices are saved so we can handle either

case. With the fully reconstructed FC matrix, we can get the dynamical matrix based on

equation 3.21. Note that in equation 3.21, the subscript of the phase factor is −iq ·h, where

h is the difference of real-space lattice vectors. Another implementation is by using the

phase factor of e−iq·(xj(h)−xi(0)) where xi (0) and xj (h) are the positions of the ith atom

in the reference primitive unit cell and the jth atom in the primitive unit cell with a lattice

vector h relative to the reference unit cell, respectively. These two variants are equivalent

with a difference in the phase factor. The corresponding dynamical matrices are related by

a unitary transformation so that there is no influence on the phonon frequencies.

By solving the secular equation 3.20, phonon frequencies at arbitrary q point can be

calculated. To illustrate the dispersion relation, the q points are generated along some high

symmetry directions. The frequency changes in certain LO modes caused by BEC in the

lattice vibration will be further considered for ionic crystals.

Phonon density of state (DOS) is imperative for Brillouin zone integrations. We

adopted the tetrahedron method157,158 for DOS calculation. Using a uniformly generated

coarse grids in the reciprocal space, we calculate the phonon frequencies at these q points.

In the tetrahedron method, the first Brillouin zone is divided into small tetrahedrons and

density of state is evaluated within each tetrahedron. The integration of DOS over the full

phonon spectrum is normalized to 3n where n is the number of atoms per primitive unit

cell. Figure 3.1 is an example of our calculated phonon dispersion and density of state,

together with experimental data as a comparison.

3.3 Thermodynamic Properties

3.3.1 Quasi-Harmonic Approximation

Many properties of real crystals, such as thermal expansion and transport properties,

can only be explained with lattice anharmonicity. If the real crystal is purely harmonic, the

phonon frequencies will be the same at any volume, which is not the case. To illustrate the
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anharmonic effect, a qualitative plot of the potential energy as a function of the interatomic

distance is shown in Figure 3.2.

The interatomic distance gets smaller with decreasing volume. At a volume less than

the equilibrium volume V0 one can see that the true potential curve is steeper than the

harmonic curve, which provides a higher phonon frequencies. And, at a volume larger than

V0, the true curve is flatter than the harmonic one, which makes the phonon frequencies

relatively lower. For a volume that is in the vicinity of V0, the anharmonic effect is compar-

atively small. In this case the anharmonicity can be approximated with the quasi-harmonic

approximation (QHA). Within this approximation, we treat the crystal harmonically at

a fixed volume, whereas the phonon frequencies are volume dependent. A quantity γq,ξ,

known as the mode Grüneisen parameter, describe this dependence, i.e.,

γξ (q) = − V

ωξ (q)

∂ωξ (q)

∂V
= −∂ (ln ωξ (q))

∂ (ln V )
(3.34)
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and the overall Grüneisen parameter is defined as:

γ =

∑

q,ξ

γξ (q) cv,ξ (q)

∑

q,ξ

cv,ξ (q)
(3.35)

where cv,ξ (q) is the mode specific heat capacity at constant volume. The mode Grüneisen

parameter can be calculated via Hellmann-Feynman theorem.

γξ (q) = − V

2ω2
ξ (q)

〈

e (q, ξ)

∣

∣

∣

∣

∂D (q)

∂V

∣

∣

∣

∣

e (q, ξ)

〉

(3.36)

where D (q) is the dynamical matrix with wave vector q and e (q, ξ) is the eigenvector of

the ξth normal mode at reciprocal lattice point q. The first order derivative of D (q) with

respect to the volume can be approximately evaluated using the finite difference technique.

Typically thermodynamic properties, instead of thermodynamic potentials, are mea-

surable quantities. The thermal properties of a system can be determined from certain

thermodynamic potential according to the given ensemble, e.g., for a system with temper-

ature and pressure as independent variables, the related potential is the Gibbs free energy.
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At temperatures far below melting point, the total energy and free energy can be evaluated

within the harmonic approximation, according to equation 3.26. However, some thermal

properties, such as heat capacity at constant volume and entropy, are derived from the first

order derivatives of the thermodynamic potentials with respect to temperature at constant

volume. Other thermal properties that are not defined at constant volume, such as thermal

expansion and isothermal bulk modulus, can be evaluated via the equation of state (EOS),

which will be discussed in the next section.

Heat capacity is the first order derivative of the total energy with respect to temperature

at constant volume (neglecting the temperature dependence of phonon frequency), and

entropy can be derived in a very similar way as the first order derivative of free energy.

CV =

(

∂E

∂T

)

V

=
kB

Nq

∑

qξ

(

~ωξ(q)
kBT

)2
e

~ωξ(q)

kBT

(

e
~ωξ(q)

kBT − 1

)2 (3.37)

S = −
(

∂F

∂T

)

V

= − kB

Nq

∑

qξ



ln

(

1 − e
−~ωξ(q)

kBT

)

+

~ωξ(q)
kBT

1 − e
~ωξ(q)

kBT



 (3.38)

At a fixed volume, these two quantities can be calculated directly from phonon frequen-

cies and the corresponding phonon density of state. For the reason that it is impractical

to perform first-principles calculations at a large number of volume points in order to nu-

merically evaluate the derivatives, EOS is of special importance for interpolation with the

limited number of volume points. With the adopted EOS, we are able to obtain the rela-

tion among pressure, volume and temperature. Thus we can predict the thermal expansion

coefficient with the finite difference method.

α =
1

V

(

∂V

∂T

)

P

(3.39)

With the adopted equation of states and previously calculated quantities, the Gibbs

free energy, isothermal bulk modulus, isobaric heat capacity, and adiabatic bulk modulus
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can be calculated as follow:

G(T, P ) = F (T, V ) + PV (3.40a)

BT = −V

(

∂P

∂V

)

T

(3.40b)

CP = T

(

∂S

∂T

)

P

(3.40c)

BS =
CP

CV
· BT (3.40d)

The bulk Grüneisen parameter is related to the thermal expansivity, volume, bulk

modulus and heat capacity:

γ =
αV BT

CV
(3.41)

3.3.2 Equation of State (EOS) Models

In previous sections, we have discussed the calculation of Helmholtz free energy at

a given volume. The temperature effect is considered within the framework of QHA and

a further correction from the lowest order anharmonic contribution is introduced in Ap-

pendix C. To predict the thermoelastic and thermodynamic properties such as bulk mod-

ulus, thermal expansion coefficient, Grüneisen parameter etc., equation of state (EOS)

is necessary. From the experimental point of view, the EOS is usually the Pressure-

Volume-Temperature (P − V − T ) relationship, but on the theory side, the Energy-Volume-

Temperature (F − V − T ) relationship is often convenient. The roles that EOS plays are

mainly in the following aspects

1. It extends the direct calculated free energies (high computational cost) from a few

volume points to a continuous range.

2. The interpolation with EOS from directly calculated points may reduce the random

type of numerical error.

3. It provides an analytical form of relationship which is helpful in deriving other quan-

tities.
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4. Some physical quantities, such as equilibrium volume, equilibrium energy, bulk mod-

ulus at zero pressure and its pressure derivative, can be extracted by fitting data to

the EOS.

Although many EOS models have been proposed in the past, we confine our study

to those most commonly adopted ones, namely the 2nd-order, 3rd-order Birch-Murnaghan

EOS (BM-EOS)159,160 and the Vinet EOS161,162.

Birch-Murnaghan EOS is derived from the finite strain theory based upon a Taylor

expansion of the free energy in terms of powers of small volumetric strains. There are

two types of strains that are differentiated from the definition of reference configuration.

Eulerian strain takes the deformed state as the reference configuration, and Lagrangian

strain chooses the undeformed state as the reference state. Both strains can be expressed

as a function of the volume ratio.

ε =
1

2

[

1 −
(

V0

V

)2/3
]

(3.42a)

η =
1

2

[

(

V

V0

)2/3

− 1

]

(3.42b)

where ε and η are Eulerian and Lagrangian strains, respectively. Eulerian strain is employed

in the BM-EOS for the reason of better convergence and the free energy is in the form of

F =

nm
∑

n=1

Anεn (3.43)

where An is the nth power coefficient and nm determines up to which order to terminate.

With nm = 2, equation 3.43 leads to the second order BM-EOS.

F (T, V ) = F0 +
9

8
K0V0

[

(

V0

V

)2/3

− 1

]2

(3.44)

where F0 and K0 are the equilibrium free energy and the bulk modulus at zero pressure

condition. Note that F0, V0, and K0 are temperature dependent implicitly. The hydrostatic
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pressure can be derived as the negative of the first-order partial derivative of free energy

with respect to volume.

P (T, V ) = −
(

∂F

∂V

)

=
3

2
K0

[

(

V0

V

)7/3

−
(

V0

V

)5/3
]

(3.45)

Third order BM-EOS can be obtained from equation 3.43 with nm = 3.

F (T, V ) = F0 +
9

8
K0V0

[

(

V0

V

)2/3

− 1

]2

·
{

1 +
1

2

(

4 − K ′
0

)

[

1 −
(

V0

V

)2/3
]}

(3.46)

P (T, V ) =
3

2
K0

[

(

V0

V

)7/3

−
(

V0

V

)5/3
]

·
{

1 +
3

4

(

4 − K ′
0

)

[

1 −
(

V0

V

)2/3
]}

(3.47)

where K ′
0 is the pressure derivative of K0 at P = 0

(

K ′
0 =

(

dK
dP

)

P=0

)

. With K ′
0 = 4, the

third-order BM-EOS reduces to the second-order BM-EOS.

Vinet EOS is derived from an empirical interatomic potential and resulting in:

F (T, V ) = F0 +
2K0V0

(K ′
0 − 1)2 ·

{

2 −
[

5 + 3K ′
0

(

(

V

V0

)1/3

− 1

)

−3

(

V

V0

)1/3
]

· e
3
2(K ′

0−1)
(

(

V
V0

)1/3
−1

)

}

(3.48)

P (T, V ) = 3K0

(

V

V0

)−2/3
[

1 −
(

V

V0

)1/3
]

e
3
2(K ′

0−1)
(

1−
(

V
V0

)1/3
)

(3.49)

Numerous studies have been done for comparing models of EOSs on all types of solids.

Stacey et al.163 and Anderson164 have pointed out that the convergence of the BM-EOS

from polynomial expansion terms may not be good for large strains if K ′
0 6= 4. This is due

to the fact that the coefficient of the 4th order term is larger than that of the 3rd order

term. In this sense, the second order BM-EOS is capable dealing with rather low pressures
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where K ′
0 is close to 4 and does not vary much. At very high pressures up to several

megabars, the third order BM-EOS will surpass the second order for better accounting the

pressure dependence of K ′. In the extremely high pressure case (of the order terapascals),

the EOS models derived from finite strains will in general fail due to large compression. The

Vinet EOS derived from an empirical potential is comparatively good in the low pressure

conditions and it fits better with large compressions.

Temperature is another factor that introduces strains. It is convenient to separate the

free energy into static and thermal part.

F (T, V ) = E0 (V ) + Fvib (3.50)

where E0 (V ) is the static energy and Fvib is the free energy due to lattice vibrations, which

also includes the zero-point energy. Only the second term has temperature dependence

and therefor we separate the overall fitting (to EOS) into two parts: fitting to static EOS

and isothermal EOS. For the static energy part, considering the nature of studies in this

dissertation, the pressures will not exceed 2 megabars and temperatures are typically well

below the melting points, we adopt the BM-EOS over the Vinet EOS because of its wide

acceptance and simplicity. In practical calculations, a set of our first-principles calculated

E-V data is fitted to the third order BM-EOS (equation 3.46) with least-square-fitting

algorithm. E0, V0, K0 and K ′
0 can be obtained as fitting parameters. For a better result,

the volume points are chosen to be evenly spaced with V0 (the minimum of the E-V curve)

around the middle.

For the thermal part, we usually choose the 2nd order BM-EOS which has been shown

to be effective. Meanwhile we have done a case study in MgO to investigate several EOS

models for fitting to the thermal free energies.
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3.3.3 Case Study: MgO

MgO (periclase) is an important mineral of the Earth’s lower mantle and it has a very

high melting point that allows us to study its thermal properties in a wide temperature

range. The motivation of this study is to verify the influence of EOS model on the thermal

expansion coefficient as a function of temperature, and to find the model that has a better

agreement with published experimental data. Within the framework of QHA, we have

calculated the thermal Helmholtz free energies (Fvib) at 17 volume points. These volume

points are evenly spaced and cover the pressure range at which our study is concerned.

Based on equation 3.28, we evaluate the thermal free energy at a temperature step of 5 K

from 0 K to 3000 K. Figure 3.3 shows our calculated data at temperatures of 0 K and 2000

K. At the first glance, two data sets almost resemble each other. However, the vertical scales

are difference in these two plots, thus the temperature has more effect in lowering the free

energy of larger volumes. Also, the numerical uncertainties in our calculation contributes

to the unsmoothness of the curves.

Besides the 2nd and 3rd order BM-EOS, based on the appearance of the curve in Figure

3.3, we proposed a model which assumes linear volume dependence of Fvib. Furthermore, we

add an additional term to our linear model to address the nonlinear effect for small volumes.

This additional term has been tested with two variants: one with a ln V dependence and

the other with an inverse volume dependence. Next our data at each temperature point

are fitted to these five EOS schemes using the least-square-fitting algorithm. As most of

the discrepancies of thermal expansion happen at the high temperature region, we plot our

fitting results from different models at T = 2000 K and zero pressure in Figure 3.4. In the

region where directly calculated data points are available, all models fit the data similarly

well with minor differences, whereas the differences become apparent immediately outside

data region. This indicates the necessity for providing data sets in a wide volume range.

With each thermal EOS model and the common 3rd order BM-EOS for static en-

ergy, we have calculated the thermal expansion and compared with experimental results,

as shown in Figure 3.5. Most experimental data are measured from 300 K to 3000 K. At
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low temperatures from 300 K to 600 K, calculated thermal expansions of all models have

a good agreement with most measurements except the linear model is slightly lower than

the majority. At temperatures above 600 K, the 3rd BM-EOS and two modified linear

models lead to an overestimation and have the tendency to diverge. Thermal expansion

from the linear model at high temperatures does not diverge as much as those three models

but is still apparently higher than all measured values. Considering its discrepancy at low

temperatures, this model does not meet the satisfaction. Despite the differences among

experimental data, the 2nd order BM-EOS is significantly better than the other models.

Regarding the good fitting results in Figure 3.4, we attribute the discrepancies in thermal

expansion to the its sensitivity to minor volume changes. Fiquet et al. has pointed out

that a volume error of 1% translates into differences of up to 20% in thermal expansion

coefficients21. This could explain why 3rd order BM-EOS is worse than 2nd order since it

picks up more random errors from the data sets.

For the numerical error caused overestimation mentioned above, we also tried the Debye

model to predict the thermal expansion since only one parameter, the Debye temperature,

is needed to handle the temperature effect which may even out the previously magnified
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unsmoothness at high temperatures (Figure 3.3). We first calculate the Debye temperatures

for all volume points from vibrational free energy at zero temperature.

Fvib (T = 0K) =
9

8
kBTD (3.51)

where TD is the Debye temperature. Based on the appearance of (TD, V ) data sets, we fitted

them to a TD = a + b ln V model using least square fitting algorithm. Thermal pressure as

a function of T and V can be expressed in term of Debye temperature.

Pth =

[

27

(

T

TD

)4 ∫ TD/T

0
ln
(

1 − e−x
)

x2dx − 9

8

−9

(

T

TD

)

ln
(

1 − e−TD/T
)

]

· kB
b

V
(3.52)

With equation 3.52 as our thermal EOS, we predict the thermal expansion coefficient

as a function of temperature at zero pressure in Figure 3.6. Unfortunately result from

Debye model diverges even faster at high temperatures. This, on one hand, reconfirms the

sensitivity of thermal expansion to EOSs, and on the other hand implies that an accurate

density of state can improve the result.
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Chapter 4

PRESSURE-INDUCED PHASE TRANSITIONS IN ALUMINIUM OXIDE AND

ALUMINIUM NITRIDE

4.1 Aluminium Oxide: Al2O3

4.1.1 Introduction

Aluminium oxide (Al2O3) is often referred to as alumina, sapphire or aloxite in the ce-

ramic, mining and materials science communities. It is commonly used as an abrasive due

to its hardness and as a refractory material due to its high melting point. The naturally-

occurring crystalline form of Al2O3 at ambient condition is primarily corundum. Rubies

(Cr+3 doped) and sapphires are gem-quality forms of corundum. In high-pressure experi-

ments, ruby usually serves as a standard pressure gauge (ruby scale) in diamond anvil cell

(DAC)1 and sapphire is used as window material in shock wave experiments2. Al2O3 is

also one of the major constituents of the Earth’s lower mantle. High-pressure behaviors

and thermal properties of alumina are important for both experimental research and better

understanding of the interior of the earth.

At ambient conditions, The crystalline form of Al2O3 is corundum (α-Al2O3, space

group R3̄c). This structure is known to exist over a wide range of pressure and tem-

perature conditions. In the past twenty years theoretical3–7 and experimental8–11 studies

showed that α-Al2O3 transforms into the Rh2O3(II) structure (space group Pbcn) around

90 GPa, and further transforms into the post-perovskite structure (space group Cmcm)

at ∼130 GPa. Several calculations predicted a transition from Rh2O3(II) structure to the

orthorhombic perovskite (PV) structure (space group Pbnm) at even higher pressures5,12.

However, it has never been observed in experiments. Recent calculations showed that Pbnm

perovskite is not thermodynamically favored with respect to the corundum, Rh2O3(II) and
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post-perovskite phases6,7. Here we report our LDA calculated equilibrium T -P phase di-

agram with both ultra-soft pseudopotentials (US-PP) and PAW method. The results are

compared with other reported calculations3–6,6,7,13.

In the corundum→Rh2O3(II) transformation, in situ heating is found necessary. At

room temperature, X-ray diffraction experiments showed that corundum phase is stable up

to 175 GPa14,15, which implies the existence of a large kinetic barrier for this transition. On

the other hand, Lin et al. found that the high-pressure Rh2O3(II) phase can be seen as low

as 85 GPa on decompression after laser heating10, indicating the Rh2O3(II)→corundum

transition is also sluggish. No experiment has recovered the Rh2O3(II) phase to ambi-

ent conditions upon decompression. Here We proposed a transformation pathway for the

corundum→Rh2O3(II) transition and evaluate the kinetic barrier based on the proposed

pathway. We further predict the meta-stability of two phases.

In addition to X-ray diffraction studies, Γ-point vibrational excitations are commonly

used to identify the phase transformations. Their pressure dependencies also provide infor-

mation on the structural stability under compression. Raman165–167 and IR168–170 spectra

of the α-Al2O3 were subjected to several experimental studies. The dependence of Raman

frequencies on uniaxial stress has also been measured171. Besides Γ-point phonons, the

phonon dispersion curves along some high symmetry directions were measured using inelas-

tic neutron scattering by Schober et al 172. On the theoretical side, Heid et al. calculated the

dispersion curves and vibrational density of state by adopting LDA and norm-conserving

pseudopotentials within the frame of density functional perturbation theory173. The phonon

dispersion was also calculated from  Lodziana et al. by means of DFT approach with GGA

and ultrasoft pesudopotentials174. Montanari et al. investigated the Γ-point vibrational

modes using all-electron Gaussian-type basis set with three different exchange-correlation

functionals175. Presently no measurements has been reported for the two high-pressure

phases: Rh2O3(II) and pPV. Ono et al. has computed Raman frequencies of the pPV-Al2O3

at 130 GPa using LDA and non-local Troullier-Martins pseudopotentials with partial core

corrections. We have calculated the phonon dispersion and the corresponding VDOS for the
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four polymorphs. Phonon dispersion, vibrational density of state for α-Al2O3 and pressure

dependence of Γ-point phonon frequencies for α, Rh2O3(II) and pPV phases will be shown.

Thermodynamic properties, such as thermal expansion coefficient (TEC), heat capac-

ity CP , entropy and adiabatic bulk modulus have long been studied experimentally16–25

. Almost a decade ago Hama et al. calculated the thermal properties of corundum phase

by extending the formalism of Thomsen and combining the results with the Vinet model

and the Debye model for lattice vibrtations26. To date, no first-principles studies have

been reported to predict the thermodynamic properties of Al2O3. And, both experimental

and theoretical data of thermal properties of the high-pressure phases are lacking. We thus

present our calculated high-pressure TEC and bulk modulus for Rh2O3 (II) and pPV phases

as a function of temperature up to 3000 K.

Before 2004, experimental elastic constants of α-Al2O3 were reported from as early as

1950s25,27–29. And many efforts of ab initio calculations were made to predict the elastic

constants independently30,31. However, some calculations showed conflict in the sign of

C14
32. In 2004, Gladden et al.33 reported their reexamination of the elasticity of α-Al2O3

using resonance ultrasound spectroscopy (RUS) and confirmed that C14 is positive rather

than negative. Gladden’s conclusion was later confirmed by both measurement with a

different technique34 and first-principles calculations35. Although measurements of Cij for

the high-pressure phases of Al2O3 are still lacking, Duan et al.31 and Stackhouse36 have

calculated the elastic constants of Rh2O3(II) (from 75 GPa to 300 GPa) and post-perovskite

phases (at 136 GPa), respectively. Here we report our predicted Cij of α-, Rh2O3(II)- and

pPV-Al2O3 with pressure dependencies, which will be compared with other available results.

Elastic properties of both corundum and Rh2O3(II) phases have been studied, but a direct

comparison between the two phases is not accessible due to different crystal classes. Here we

compare the elastic properties of corundum and Rh2O3(II) phase by treating both phases

as the common-subgroup monoclinic lattices.
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4.1.2 Crystal Structures, Total Energies and Vibrational Properties

The space group, formula units per primitive unit cell Z and Wyckoff sites of the

above four polymorphs are summarized in Table 4.1. Their structures are shown in Figure

4.1. As a denser phase, high-pressure structure usually has a larger average coordination

number than the low-pressure structure. However, for these four polymorphs of Al2O3, all

the Al atoms are six coordinated and all the O atoms are four coordinated. Corundum has

R3̄c rhombohedral symmetry which can also be viewed as a hexagonal lattice with Z = 6

formula units per cell. As illustrated in the ball-stick model of Figure 4.1(a), O atoms form

a lightly distorted hexagonal close-packed (hcp) sublattice with Al atoms occupying 2/3 of

the octahedral interstices. Each AlO6 octahedron has 1 face-sharing, 3 edge-sharing and 9

corner-sharing with other octahedra, as shown in Figure 4.1(a) (three figures on the right).

The centered octahedron is highlighted in yellow color. Viewing from c axis, each figure

shows the neighboring environment of the centered polyhedron with one octahedron layer (in

the a-b plane). For clarity purpose, the centered polyhedron is not shown in the last figure

as it is overlapped with the octahedron underneath. Rh2O3-(II) structure (Figure 4.1(b))

is closely related to the corundum structure which will be shown later. Each octahedron in

Rh2O3-(II) structure has 1 face-sharing, 2 edge-sharing and 11 corner-sharing with other

octahedra. Different from corundum and Rh2O3-(II), two types of polyhedra are presented

in the Pbnm perovskite structure (Figure 4.1(c)). Each Al atom still forms six bonds with

neighboring O atoms, whereas the 4b and 4c Al atoms form AlO6 octahedra and triangular

prism, respectively. Each octahedron is surrounded by 6 corner-sharing octahedra and 4

edge-sharing, 4 corner-sharing prisms. For the triangular prisms, each is neighboring with 2

edge-sharing, 2 corner-sharing prisms and 4 edge-sharing, 6 corner-sharing octahedra. The

Cmcm post-perovskite structure also has both AlO6 octahedra (4a site Al) and triangular

prisms (4c site Al). The octahedron shares edges with 2 octahedra and 2 prisms, also shares

corners with 2 octahedra and 8 prisms. The prisms share their triangular faces with two

neighboring prisms along the a axis, and has 2 edge-sharing, 8 corner-sharing octahedra

neighbors.
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Table 4.1: Space groups, formula units per primitive unit cell Z and Wyckoff sites of four
polymorphs of Al2O3: Corundum, Rh2O3-(II), Pbnm perovskite and post-perovskite.

Phase Space group Z Species Wyckoff site

α R3̄c 2 O 6e
Al 4c

Rh2O3-(II) Pbcn 4 O 4c, 8d
Al 8d

Perovskite Pbnm 4 O 4c, 8d
Al 4b, 4c

Post-perovskite Cmcm 2 O 4c, 8f
Al 4a, 4c

Figure 4.1: Crystal structures of four polymorphs of Al2O3: (a) Corundum, (b) Rh2O3-(II),
(c) Pbnm perovskite and (d) post-perovskite.
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Total energy calculations were performed for α-, Rh2O3(II)-, PV- and pPV-Al2O3 by

imposing their symmetries. We adopted density functional theory (DFT) with a plane wave

basis set and ultrasoft pseudopotentials (US-PP) (or PAW method), which is implemented

in the VASP code139. The exchange and correlation functional is treated with local density

approximation (LDA). The plane wave basis functions with energies up to 395.7 eV (or 400.0

eV) were used for US-PP (or PAW method). Total energy change of 10−9 eV was chosen

as the convergence criterion for the self-consistent iterations. The k-point sampling for

Brillouin zone integration in our total energy calculations was carried out by the Monkhorst-

Pack method with grids of 6 × 6 × 6, 6 × 8 × 8, 6 × 6 × 4 and 6 × 6 × 4 for α-, Rh2O3(II)-,

PV- and pPV-Al2O3, respectively.

The calculated static energy at various volumes are fitted to the 3rd-order Birch-

Murnaghan EOS. Fitting parameters, E0, V0, K and K ′, are listed in Table 4.2, together

with reported experimental and theoretical results. As the measurements are usually made

at room temperature, our predicted parameters at 300K from quasi-harmonic approxima-

tion are also listed. The present work is consistent with other calculations and experiments,

and PAW method provides a slightly better agreement on bulk modulus than US-PP.

To calculate the phonon frequencies, we have constructed 120-atom, 160-atom, 80-

atom and 120-atom supercells for α-, Rh2O3(II)-, PV- and pPV-Al2O3 respectively and

adopted the real-space supercell force constant method. The size of the supercell is large

enough to approximately neglect the interaction between one atom in the cell with its

image outside the cell. Figure 4.2 shows the phonon spectra and VDOS of α-Al2O3 at

zero pressure. Experimental data is also presented for comparison. As an ionic crystal,

lattice vibrations of optic modes will induce dipole-dipole interactions which in turn affect

the phonon frequencies around the Γ point (k = 0). The interaction causes the LO-TO

splitting. However, this effect has not been taken into account in the VASP code. We thus

manually calculate the LO-TO splitting from a correction to the dynamical matrix. The

overall agreements for both US-PP and PAW are good and within the typical accuracy of ab

initio calculations, but dispersion using PAW method fits the measured data slightly better.
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Table 4.2: Third-order BM-EOS parameters for Al2O3 polymorphs

Source V0 (Å3/atom) B (GPa) B′

Corundum
Static calculation
LDA+US-PP (this work) 8.430 249.1 3.540
LDA+PAW (this work) 8.357 259.9 3.967
Calculation5 8.441 258.9 4.01
Calculation7 8.10 248 4.13
Calculation6 8.486 252.6 4.237
300 K
LDA+US-PP (this work) 8.519 241.3 3.540
LDA+PAW (this work) 8.454 250.4 3.999
Calculation13 8.498 251.0 4.04
Experiment176 8.484 254.4 4.275

Rh2O3(II)
Static calculation
LDA+US-PP (this work) 8.275 246.5 3.736
LDA+PAW (this work) 8.173 259.0 3.967
Calculation5 8.254 261.8 3.93
Calculation7 7.93 252 4.07
Calculation6 8.284 258.2 4.140
300 K
LDA+US-PP (this work) 8.353 237.5 3.735
LDA+PAW (this work) 8.272 250.3 3.967

Perovskite
Static calculation
LDA+US-PP (this work) 8.292 217.2 4.030
LDA+PAW (this work) 8.206 236.3 3.963
Calculation5 8.322 235.0 3.98
Calculation7 7.986 223 4.22
Calculation6 8.324 229.2 4.286
300 K
LDA+US-PP (this work) 8.404 207.8 4.031
LDA+PAW (this work) 8.304 229.8 3.963

Post-Perovskite
Static calculation
LDA+US-PP (this work) 8.056 225.3 4.189
LDA+PAW (this work) 7.975 239.6 4.185
Calculation7 7.756 231 4.38
Calculation6 8.058 241.6 4.464
Calculation13 7.985 251.6 4.11
300 K
LDA+US-PP (this work) 8.171 214.6 4.190
LDA+PAW (this work) 8.086 230.6 4.185
Experiment11 7.92 249 4 (fixed)
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Figure 4.2: LDA calculated phonon dispersion curves and vibrational density of state of α-
Al2O3 at zero pressure using (a) US-PP and (b) PAW. Discrete squares denote experimental
data172.

Among the calculated 30 phonon branches, the low-frequency ones have better agreement

and the largest difference is given by the top branch which is 7% smaller for US-PP and 5%

smaller for PAW. Heid et al.173 pointed out two pseudogaps near 43 and 87 meV as well

as a strong peak at about 92 meV in their calculated VDOS. In the VDOS we calculated,

two pseudogaps are found to be 42, 86 meV for US-PP and 43, 87 meV for PAW, while

the strong peak is located at 91 meV and 93 meV for US-PP and PAW, respectively. The

agreement is excellent. Our calculation shows no soft phonon modes in α-Al2O3 at least up

to ∼185 GPa. And for Rh2O3(II), there is no soft phonon up to 212 GPa. However, the PV

phase is dynamically unstable (soft phonon) below ∼135 GPa and the pPV phase shows

the tendency of phonon softening at low pressure. The phonon instability of pPV-Al2O3

can be related to the fact that it is not quenchable to low pressures11.

Γ-point phonon frequencies are of special interests since the measurable Raman and

infrared (IR) spectra are commonly used to identify the phase transformations. And the

pressure dependence can provide information on the structural instability. From group

theory analysis, the irreducible representation for Γ-point phonons of α-Al2O3 yields seven
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Raman-active and six IR-active modes.

ΓRaman = 2A1g + 5Eg

ΓIR = 2A2u + 4Eu

Figure 4.3 shows our calculated Raman frequencies of α-Al2O3 as a function of pressure

up to 40 GPa, for both US-PP and PAW. One can see that the frequency does not increase

linearly with pressure in the range from 0 to 40 GPa. And the pressure dependencies

reported from experiments are up to 1 GPa in Watson et al.166 and Shin et al.’s171 works,

and up to 20 GPa in Xu et al.’s167 work. In order to compare with the measurements, we

perform linear fitting only to data sets which are below 20 GPa and expand the fitting lines

to the full pressure range. It is clear that the high-pressure Raman modes exhibit decreasing

slopes against pressure. However, the PAW result is more “linear” than the US-PP one.

The experimental and our calculated zero-pressure Raman frequencies ((ωi)0) and pressure

dependencies (∂ωi/∂P ) of α-Al2O3 are listed in Table 4.3. For (ωi)0, the PAW result

reproduces the experimental data but the US-PP data has an constant underestimation of

3-4%. For ∂ωi/∂P , PAW result is also in better agreement except two Eg modes.
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Figure 4.3: Calculated Raman-active frequencies of α-Al2O3 as a function of pressure. (a)
US-PP, (b) PAW. Solid and dashed lines represent Eg and A1g modes from linear fitting
with data sets below 20 GPa.
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Table 4.3: The theoretical data of Raman frequencies at zero pressure and their pressure
dependencies, and comparison with other reported experimental results on corundum

Modes (cm−1 for (ωi)0 and cm−1/GPa for ∂ωi/∂P )
Source A1g A1g Eg Eg Eg Eg Eg

(ωi)0
This work (US-PP) 403.4 625.9 366.0 421.1 433.3 555.1 733.2
This work (PAW) 417.8 643.1 373.4 434.4 445.8 575.9 751.5
Experiment165 418 645 378 432 451 578 751
Experiment166 417.4 644.6 378.7 430.2 448.7 576.7 750.0

∂ωi/∂P
This work (US-PP) 1.47 3.44 1.29 1.81 2.18 2.31 4.06
This work (PAW) 1.52 3.64 0.85 1.85 2.24 2.68 4.44
Experiment171 1.7±0.1 5.0±0.4 2.3±0.2 1.8±0.1 1.0±0.2 2.7±0.3 2.5±0.3
Experiment166 2.11±0.06 — 1.37±0.06 2.95±0.08 1.66±0.1 2.77±0.12 4.8±0.2
Experiment167 1.703 3.481 1.335 2.794 — 2.760 4.218

The calculated IR-active modes of α-Al2O3 as a function of pressure are shown in

Figure 4.4. The TO and LO modes are plotted separately since they split at Γ-point. In

general, (ωi)0 and ∂ωi/∂P calculated using US-PP are smaller than the PAW data, which

is consistent with the Raman results. And ∂ωi/∂P also decreases with pressure for all

the IR modes. No measurements have been done to obtain the pressure dependence of IR

frequencies. Table 4.4 shows the IR frequencies at zero pressure from experiments and the

present calculation. Again the PAW data shows better agreement than US-PP.

At present, no experimental data is available for the high-pressure phases of Al2O3.

For Rh2O3(II)-Al2O3 there are thirty Raman-active modes (7Ag + 8B1g + 7B2g + 8B3g) and

twenty IR-active modes (7B1u + 6B2u + 7B3u) out of the sixty Γ-point vibrational modes.

Our predicted Raman frequencies of Rh2O3(II) phase as a function of pressure up to 160

GPa is presented in Figure 4.5. One can see that ∂ωi/∂P continuously decreases with

respect to pressure for every mode. For pPV–Al2O3, the Γ-point irreducible representation

shows that there are twelve Raman modes (4Ag +3B1g +B2g +4B3g) and thirteen IR modes

(5B1u + 5B2u + 3B3u). The calculated Raman frequencies of pPV phase are plotted from

70 GPa to 270 GPa, together with Ono et al.’s11 theoretical data at 130 GPa. For each

mode, Raman frequency increases with increasing pressure but the slope becomes smaller.

Our PAW predicted frequencies are larger than the US-PP result, and agree with Ono et
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Figure 4.4: Calculated IR-active frequencies of α-Al2O3 as a function of pressure. (a) TO
modes with US-PP, (b) TO modes with PAW, (c) LO modes with US-PP, (d) LO modes
with PAW. Solid and dashed curves denote Eu and A2u modes from 2nd order polynomial
fitting.

Table 4.4: IR-active frequencies of corundum at zero pressure

(ωi)0 (cm−1)
Source A2u A2u Eu Eu Eu Eu

TO modes
This work (US-PP) 384 564 378 425 557 613
This work (PAW) 395 593 389 440 579 633
Experiment168 400 583 385 442 569 635
Experiment169 399.5 584 384.6 439.3 569.5 635
Experiment170 397.5 582.4 385.0 439.1 569.0 633.6

LO modes
This work (US-PP) 511 830 380 475 609 867
This work (PAW) 526 848 393 486 626 884
Experiment168 512 871 388 480 625 900
Experiment169 514 886.5 387.7 482 630.5 908
Experiment170 510.9 881.1 387.6 481.7 629.5 906.6
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al.’s result very well. As better agreements are consistently obtained from calculation using

PAW method by comparing with other calculations and experiments, we conclude that LDA

calculation with PAW method is more suitable than using US-PP for predicting properties

of Al2O3.

4.1.3 T -P Phase Diagram

Static enthalpies of four polymorphs (Figure 4.7) show the sequence of stable phases at

increasing pressure, and the perovskite phase is unfavored at all pressures. The corundum-

to-Rh2O3(II) transition pressure is predicted to be 93.8 GPa from US-PP and 84.0 GPa

from PAW. Both of them are consistent with results from experiments8–10 (79 – 100 GPa)

and other calculations4–6 (78 –105 GPa). Our calculated Rh2O3(II)→pPV transition pres-

sure is 147.8 GPa (136.8 GPa) from US-PP (PAW), which is in accordance with reported

calulations6,7,13 (131 – 156 GPa) and Ono et al.’s observation (130 GPa)11.

Within the quasi-harmonic approximation, the T -P phase diagram is calculated and

shown in Figure 4.8. The corundum→Rh2O3(II) transition pressure by US-PP (PAW) is

94.2 (82.9) GPa at 0 K, 94.5 (83.0) GPa at 300 K, 95.2 (82.2) GPa at 1000 K and 95.5

(79.6) GPa at 2000 K, which means the equilibrium Pt is not affected by the temperature.

And for transformation from Rh2O3(II) to post-perovskite phase, the calculated pressure

by US-PP (PAW) is 146.9 (134.4) GPa at 0 K, 146.5 (133.7) GPa at 300 K, 143.4 (128.5)

GPa at 1000 K and 136.3 (117.5) GPa at 2000 K. The Rh2O3(II)→pPV phase boundary

has negative Clapeyron slope, i.e., Pt decreases with increasing temperature. The phase

diagram calculated by Oganov et al.6 and Umemoto et al.13 (LDA) show Pt of 79, 90

GPa at 0 K and 73, 88 GPa at 2000 K for the first transition, and 128, 133 GPa at 0

K and 114, 120 GPa at 2000 K for the second transition. These are consistent with this

study. The stability zone of perovskite phase (bounded with dashed lines) is calculated

based on the volume sets without soft phonon (above 135 GPa) and extrapolated to the

low pressure region. However the PV phase only has the lowest Gibbs free energy below
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135 GPa. Without taking the high temperature anharmonic effect into account, we think

it is unlikely for the PV phase to be stable at the predicted conditions.

4.1.4 Transition Pathways in the α-to-Rh2O3(II) Transition

In order to investigate the transformation pathway, we found that the rhombohedral

corundum and the orthorhombic Rh2O3(II) structure are related by the common monoclinic

lattice, which has 20 atoms per primitive unit cell. If we reinterpret the corundum structure

(10-atom primitive unit cell) as this monoclinic lattice, it is a slightly distorted orthorhombic

lattice, which is structurally close to the Rh2O3(II) structure. The 20-atom monoclinic cell

can be derived from the rhombohedral setting in the following way. In terms of the 30-

atom hexagonal lattice vectors, the unit vectors of the primitive rhombohedral cell can be

expressed as:












ar

br

cr













=













1
2ah

√
3

6 ah
1
3ch

−1
2ah

√
3

6 ah
1
3ch

0 −
√

3
3 ah

1
3ch













(4.1)
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where ar, br and cr are three unit vectors of the rhombohedral primitive cell, ah and ch

are magnitudes of lattice vectors of the 30-atom hexagonal cell. The monoclinic cell can be

obtained by applying the following transforation matrix












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cm










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


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
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(4.2)

And the monoclinic lattice vectors can be written as












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bm

cm


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
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
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am 0 0

0 bm 0

cm · cos β 0 cm · sin β


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
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

(4.3)
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Figure 4.9: Comparison of structures of (a) corundum and (b) Rh2O3(II)-Al2O3. The
corundum phase is viewed from an angle in which it appears “orthorhombic”-like. The
differences between two polymorphs are highlighted.

here am =
√

4
3a2

h + 1
9c2

h, bm = ah, cm =
√

1
3a2

h + 1
9c2

h and β = cos−1
[

(2
3a2

h − 1
9c2

h)/(am · cm)
]

.

The monoclinic unit cell has 20 atoms which is the same as the Rh2O3(II) phase. After this

transformation, the two structures (Figure 4.9) are closely related and one-to-one correspon-

dence of each atom can be found. The lattice parameters of the “monoclinic” corundum

structure, taking the volume at transition pressure (84.0 GPa) as an example, are am =

6.481 Å, bm = 4.426 Å, cm = 4.732 Å and β = 95.26◦. For the orthorhombic Rh2O3(II)

phase at this pressure, ao = 6.475 Å, bo = 4.438 Å, co = 4.599 Å and β = 90◦. The in-

termediate structures link the two end phases belong to monoclinic symmetry with space

group P2/c, which is a common subgroup of R3̄c (corundum phase) and Pbcn (Rh2O3(II)

phase). The O atoms occupy 2e, 2f, I4g and II4g Wyckoff sites and Al atoms occupy I4g

and II4g sites. During the phase transformation from corundum to Rh2O3(II) structure,

besides the evolution of the external parameters (a, b, c and β), the major changes on the

internal coordinates are the z coordinates of I4g site O and I4g site Al, which are bonded

to each other. Changes on other internal coordinates are relatively much smaller.
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To transform from corundum to Rh2O3(II) structure there are eighteen degrees of

freedom for the intermediate phase, i.e., a, b, c, β and fourteen free parameters from inter-

nal coordinates. The complete information of the corundum-to-Rh2O3(II) transformation

path can be revealed from a 18-dimensional potential-energy surface (PES). However, first-

principles calculation of the 18D PES is not an easy task. Considering the similarity between

corundum and Rh2O3(II) structure, as can be seen from Figure 4.9, the phase transforma-

tion is mainly characterized by the displacements of the z coordinates of the I4g O and Al

atoms. Using the 20-atom unit cells, we constructed intermediate structures whose internal

and external coordinates vary linearly from corundum to Rh2O3(II) phase. Transition pa-

rameter (tp), which varies from 0 (corundum) to 1 (Rh2O3(II)), is defined to describe the

intermediate state, z = zi + (zf − zi) · tp. By fixing the z coordinates of the I4g O atoms

only, LDA total energy calculations were performed for 11 tp points and several volumes

at each tp, with all the other internal and external parameters being fully relaxed. Figure

4.10 shows the variation of Al-O bond lengths at the corundum-to-Rh2O3(II) transition

pressure (84.0 GPa). For both corundum and Rh2O3(II) structures, all the O atoms are

four coordinated and all the Al atoms are six coordinated. Among the 12 distinct bonds,

only one Al (I4g)-O(I4g) bond breaks and reforms during the transformation while the rest

remain almost unchanged. We denote this one bond breaking and reforming mechanism

simply as OB-BAR. The OB-BAR mechanism happens for 1/3 of the O atoms (I4g) and

1/2 of the Al atoms (I4g). The largest Al-O distance of the breaking bond corresponds to

tp = 1/2.

The volume variation during the transformation is investigated (Figure 4.11) at dif-

ferent pressures. At low pressure, if the transition could occur, the volume would expand

slightly up to tp = 0.5 and monotonically decrease to the volume of Rh2O3(II) phase. As

pressure increases, the volume expansion is gradually depressed and the volume variation

takes place mainly between tp = 0.4 and 0.8. Relative to the corundum phase, the volume

variation during the transition is 0.151 Å3/atom (2.3% reduction) at 84.0 GPa and 0.132

Å3/atom (2.2% reduction) at 160 GPa.
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Figure 4.11: Volume per atom for the corundum→Rh2O3(II) transformation at several
pressures. Same volume ranges are used to illustrate the pressure effect.
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For the corundum→Rh2O3(II) transition at room temperature (no heating in experi-

ments), it is a good approximation to use enthalpy instead of Gibbs free energy to investigate

the phase transition. We calculate the enthalpy along the transformation path at several

pressures, as shown in Figure 4.12 (relative to the corundum phase). One can see that

the forward barrier height (corundum→Rh2O3(II)) is not pressure sensitive (Figure 4.13),

whereas the backward barrier height (Rh2O3(II)→corundum) decreases significantly on de-

compression. The forward barrier is about 140 meV/atom at and above Pt. The “constant”

forward barrier height is in agreement with the observation that corundum phase is stable

up to 175 GPa without heating. The backward barrier has a magnitude of 144 meV/atom

at Pt and it drops to 43 meV/atom at 0 GPa. The decreasing backward barrier height is

consistent with Lin’s findings that the high-pressure Rh2O3(II) phase is not quenchable to

low pressures10. And, our estimated barrier height should be considered as an upper limit

of the real barrier. It is very likely that the small backward barrier can be overcome by the

room temperature thermal energy at low pressures.

We also calculated the full phonon spectra to investigate the dynamical stability of

corundum phase at high pressure (Figure 4.14) and Rh2O3(II) phase at low pressure (Figure

4.15). Both are dynamically stable, which means that the meta-stability of each phase is

due to kinetic reasons.
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4.1.5 Thermal Properties

Within the QHA, thermodynamic properties are calculated as described in Section 3.3.

Here, in the case of Al2O3, the static energy is fitted to the 3rd-order Birch-Murnaghan

equation of state (BM-EOS) and the thermal free energy is fitted to the 2nd-order BM-

EOS. F (T, V ) = Estatic (V ) + Fvib (T, V ). Our calculated zero pressure thermal expansion

coefficient (TEC) of α-Al2O3 as a function of temperature using either US-PP or PAW

method are compared with former measurements. First, no negative TEC is found at low

temperatures which is consistent with the positive pressure dependencies of Raman and IR

frequencies (Figure 4.3 and 4.4). Below 300 K, our US-PP and PAW results are coincident

and both agree well with Wachtman et al.16 and Schauer17, while slight underestimation

appears with increasing temperature. Above 300 K, the experimental data are widely spread

over the temperature range from 300 K to 2400 K. Our US-PP data is in good agreement

with Amatuni et al.’s result18 measured from 300 K to 2000 K, and with Aldebert et al.’s

result20 at temperatures above 1000 K. Our PAW calculation predict a slightly larger TEC

than that from using US-PP above room temperature. Our PAW data lies in the middle

of the experimental data and agrees with Schauer’s data below 700 K and Wachtman et

al.’s data above 1200 K. At 2500 K, our predicted TEC from US-PP is 2.8×10−5 K−1, and

3.0×10−5 K−1 from PAW method.

At elevated pressures, the TEC decreases as shown in Figure 4.17. One can see that the

TEC predicted by PAW method is larger than that from US-PP at any pressure. Presently

no measurement is reported for TEC of corundum at high pressures. Hama and Suito26 have

calculated the thermal expansivity of corundum using empirical model for several pressures

(same pressures as ours) as a function of temperature up to 2000 K. Their calculated TEC

at 2000 K are 3.0×10−5 K−1, 2.5×10−5 K−1, 2.1×10−5 K−1, 1.6×10−5 K−1 and 1.1×10−5

K−1 at 0, 10, 20, 50 and 100 GPa. The TEC we predict from US-PP (PAW) at the same

temperature are 2.7 ×10−5 K−1 (2.9×10−5 K−1), 2.3×10−5 K−1 (2.5×10−5 K−1), 2.1×10−5

K−1 (2.2×10−5 K−1), 1.5×10−5 K−1 (1.6×10−5 K−1) and 1.0×10−5 K−1 (1.1×10−5 K−1)
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Figure 4.16: Comparison of the present theoretical calculation with measured thermal ex-
pansion coefficients of α-Al2O3 as a function of temperature at zero pressure. Solid and
dashed lines represent our LDA calculations using US-PP and PAW method, respectively.
Discrete symbols are reported experimental data.16–21

at 0, 10, 20, 50 and 100 GPa, respectively. Our PAW result is in very good agreement with

Hama and Suito’s results.

In Figure 4.18, the calculated temperature dependence of adiabatic bulk modulus at

zero pressure are compared with experimental values. Below 200 K, BS does remains

nearly unchanged with respect to temperature, which is the case for both calculation and

measurements. Our PAW BS at 0 K is in consistence with Chung et al.24 and Teffet’s23

data and our US-PP BS at 0 K has an underestimation of about 4%. The temperature

dependence predicted by US-PP and PAW are about -0.0122 GPa/K, which is larger than

the experimental slope of -0.020 GPa/K. At 1800 K, the US-PP (PAW) calculated BS

overestimates about 1.8% (5.4%) compared with Goto et al.’s data25. As shown in Figure

4.19, our calculated isobaric hear capacity CP and entropy S reproduce the zero pressure

experimental result from Furukawa et al.22 from 0 K to 1200 K. The CP and S calculated

using US-PP and PAW yield very similar values.

For the two high-pressure polymorphs, i.e., Rh2O3(II) and pPV, the TEC are calculated

as a function of temperature at several pressures, as shown in Figure 4.20 and 4.21. US-PP
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Figure 4.17: Theoretical thermal expansion coefficients of α-Al2O3 as a function of temper-
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and PAW provide comparable prediction at both low pressure and high pressure for the

Rh2O3(II) phase, whose calculated TEC are larger than those of corundum phase at any

pressure. The TEC difference between two phases decreases with increasing pressure. Since

the pPV phase is unstable at low pressures, the temperature dependence of TEC of pPV-

Al2O3 is plotted at pressures from 80 GPa to 200 GPa. TEC from US-PP is smaller than

that from PAW. Above 100 GPa, the TEC of corundum, Rh2O3(II) and pPV are predicted

to be comparable. Experimental data of TEC for the high-pressure phases are desired to

make further comparison.

4.1.6 High Pressure Elasticity

In this section, the athermal elastic constants of α-, Rh2O3(II)- and pPV-Al2O3 are de-

termined from the strain-energy density relation, as described in Appendix B. The elasticity

calculation adopted same models and settings as the static energy-volume calculation, i.e.,

primitive unit cells, same Brillouin zone k-point samplings and plane-wave cut-off energies.

Strain parameter ǫ = 2.5 % is used for the trigonal corundum phase while ǫ = 1.5% for the

orthorhombic Rh2O3(II) and pPV phases.
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Figure 4.20: LDA calculated thermal expansion coefficients of Rh2O3(II)-Al2O3 at several
pressures as a function of temperature up to 3000 K. (a) US-PP, (b) PAW
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Figure 4.22: Pressure dependence of the elastic constants of corundum. (a) US-PP, (b)
PAW. Discrete symbols represent directly calculated data. Curves are from the 2nd-order
polynomial fitting.

There are six independent non-zero elastic constants for corundum, i.e., C11, C33, C44,

C12, C13, C14. Cij as a function of pressure using US-PP and PAW are shown in Figure

4.22. Second order polynomial fitting is applied since ∂Cij/∂P decreases with pressure. Our

calculated zero pressure elastic moduli and their pressure derivatives at 0 GPa are listed

in Table 4.5, together with previous calculations and experimental data. In 2004, Gladden

et al.33 corrected a long existing incorrect sign of C14, which should be positive. Excellent

agreement is obtained between our PAW results with the current accepted measured data,

whereas the US-PP results show underestimation of 3-5%. The pressure dependence we

predicted is in reasonable agreement with the measurement. PAW result is still better

than US-PP but ∂C11/∂P , ∂C33/∂P are noticeably smaller than the experimental values.

This could be due to the fact that measurements were taken at room temperature and at

pressures up to 1 GPa. We think ∂C14/∂P should be negative since the previous sign of C14

need to be reversed. C11 and C33 of corundum are comparable up to 160 GPa which indicate

the crystal has similar compressibility along c axis and in the a-b plane. C14 decreases with

increasing pressure and changes sign at about 70 GPa (US-PP) or 84 GPa (PAW).
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Table 4.5: Elastic constants of corundum at zero pressure and their pressure dependencies

Source C11 C33 C44 C12 C13 C14

Cij (GPa)
This work (US-PP) 483 486 139 156 110 21
This work (PAW) 503 503 142 164 117 21
Calculation30 540 455 157 157 130 -48
Calculation31 502 501 157 161 125 -19
Calculation (LDA)35 497 493 154 165 130 19
Experiment28 497 498 147 164 111 -24
Experiment29 498 502 147 163 117 -23
Experiment33 498 503 147 163 116 23

∂Cij/∂P
This work (US-PP) 4.62 3.83 1.64 2.86 3.34 -0.40
This work (PAW) 4.82 3.96 1.90 3.20 3.50 -0.20
Calculation30 5.78 4.36 1.62 3.44 3.56 0.18
Calculation31 5.52 5.10 2.03 3.09 3.57 0.19
Experiment29 6.17 5.00 2.24 3.28 3.65 0.13

Nine independent elastic constants exist for orthorhombic crystals, which are C11, C22,

C33, C12, C13, C23, C44, C55, and C66. For Rh2O3(II) phase, with increasing pressure (Figure

4.23), the relative magnitudes of C11 and C33 (largest) remain stable but C22 becomes

smaller than C11 at high pressures. Consequently the c axis is the least compressible and

the b axis is getting softer compared with a axis. The shear moduli are similar in their

magnitudes at low pressure and diverge under compression. Again, our PAW result shows

slightly better agreement with former LDA calculation from Duan et al.31.

In Section 4.1.4, we showed that corundum structure can be viewed as a monoclinic

lattice which is closely related to the orthorhombic Rh2O3(II) phase. To directly compare

the elasticity between the corundum and Rh2O3(II) phase, we calculated the elastic con-

stants of both phases at 0, 84.0 GPa (Pt) and 160 GPa and the results are listed in Table

4.6. Common 20-atom monoclinic unit cell with unique axis b was used and thirteen inde-

pendent elastic constants C11, C22, C33, C12, C13, C23, C44, C55, C66, C15, C25, C35, C46

were calculated. At zero pressure, Cij of corundum are similar to those of Rh2O3(II) phase

except C33, which can be ascribed to the major difference between two structures (internal
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Figure 4.23: Pressure dependence of the elastic constants of Rh2O3(II)-Al2O3. (a) US-
PP, (b) PAW. Discrete symbols represent directly calculated data. Curves are from the
2nd-order polynomial fitting.

coordinates along c axis). At high pressures, the elastic constants of corundum are still

differ with Rh2O3(II) phase mostly by C33. Larger C33 predicted from Rh2O3(II) phase

implies its less compressibility along the c axis.

Pressure dependence of Cij of pPV phase using US-PP (PAW) are shown in Figure 4.24.

Previous GGA calculated elastic constants by Stackhouse et al.36 at 136 GPa is generally

consistent with our predictions. They agree with our US-PP data except their C23 and C66

are larger, and their predicted C11, C22, C33, and C23 are smaller when compared with our

PAW result. Magnitudes of Cij of pPV phase is not significantly larger than those of α

and Rh2O3(II) phase. One major difference is that a axis is the least compressible in pPV

phase. Currently no elastic properties have been measured for the high-pressure phases.

4.1.7 Conclusions

We have systematically investigated the pressure-induced phase transformations of

Al2O3 using density functional theory within the local density approximation (LDA). The

sequence of transitions under compression, i.e., corundum→Rh2O3(II)→pPV, and T -P
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Table 4.6: Comparison of elastic moduli between corundum and Rh2O3(II) phase. The
corundum phase is treated as a monoclinic crystal with 20 atoms per unit cell.

0 GPa 84.0 GPa 160 GPa
corundum Rh2O3(II) corundum Rh2O3(II) corundum Rh2O3(II)

C11 450 424 956 976 1235 1288
C22 490 501 844 851 1073 1085
C33 455 541 852 1013 1213 1320
C12 180 170 420 369 639 541
C13 161 163 358 374 566 571
C23 125 109 412 418 680 692
C44 126 134 246 261 303 331
C55 185 170 230 218 207 204
C66 184 182 226 260 234 287
C15 -3 0 7 0 -5 0
C25 16 0 19 0 10 0
C35 9 0 21 0 24 0
C46 2 0 -14 0 -25 0
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phase diagram we obtained are consistent with previous theoretical and experimental stud-

ies. Zero pressure Γ-point phonon frequencies and their pressure dependencies are calculated

for three stable polymorphs. Comparison with measured data of corundum and theoretical

Raman frequencies of pPV phase suggest that, within LDA, predictions using PAW method

is better than US-PP. This conclusion is also confirmed by the study of elastic properties.

We show that the rhombohedral corundum phase can also be interpreted as a slightly

distorted orthorhombic structure with monoclinic symmetry, which is closely related to the

Rh2O3(II) phase. A microscopic transformation mechanism is proposed for the corundum-

to-Rh2O3(II) transition, which is characterized by one bond breaking-and-reforming (OB-

BAR) for 1/3 of the four-coordinated O atoms (I4g site) and half of the six-coordinated Al

atoms (I4g site). Our calculated forward (C-to-R) enthalpy barrier height is 144 meV/atom

at the equilibrium transition pressure and it is not pressure sensitive. On the other hand,

the backward (R-to-C) barrier height decreases significantly under decompression, which

indicates that the Rh2O3(II) phase is unlikely to be quenchable to ambient conditions.

The temperature dependencies of thermal expansion coefficient from low to high pres-

sures have been predicted for α-, Rh2O3(II)-, and pPV-Al2O3. For corundum at zero

pressure, our US-PP data is in good agreement with Amatuni et al.’s result measured from

300 K to 2000 K, and with Aldebert et al.’s result at temperatures above 1000 K. Our PAW

data lies in the middle of the experimental data and agrees with Schauer’s data below 700

K and Wachtman et al.’s data above 1200 K. Our calculated heat capacity CP , entropy and

adiabatic bulk modulus of corundum phase also agree well with measured results.

We have calculated the elastic constants and their pressure dependencies for corundum

and two high-pressure phases. PAW calculated Cij yield better agreement with accepted

experimental data of α-Al2O3. We confirmed that the sign of C14 is positive. In addition,

the elastic constants of the corundum and Rh2O3(II) phase are found comparable, except

for C33. The larger C33 of Rh2O3(II) phase means that its c axis is less compressible than

that of corundum.
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4.2 Aluminum Nitride: AlN

4.2.1 Introduction

AlN is an important semiconductor primarily due to its wide band-gap and thermal

properties. The structural changes and properties at high pressures are well studied. Ex-

periments37–40 and calculations41–46 have revealed that a pressure-induced first-order phase

transition from wurtzite (B4) to rocksalt (B1) structure happens for AlN. On the experimen-

tal side, without heating, the lowest pressure at which the rocksalt structure started to show

up is 14 GPa39 and the B4-to-B1 transition was observed to complete at 20-31.4 GPa39,40.

Xia et al. also found that the rocksalt phase is quenchable to ambient conditions39. On

the other hand, theoretical calculations consistently predicted a transition pressure that is

lower than the experimental values. Most of the recent first-principles predicted static Pt is

less than 10 GPa43,46. The discrepancy implies the existence of a hysteresis for the forward

and backward transitions that caused by a large kinetic barrier in this transition.

AlN is a good example material to study the microscopic mechanisms of the first-

order solid-solid phase transformations with no group-subgroup relation. In its wurtzite to

rocksalt transition, the coordination number changes from four to six. The wurtzite and

rocksalt structures belong to the P63mc and Fm3̄m symmetry, respectively. There are four

atoms per primitive unit cell for wurtzite phase and two atoms for rocksalt phase. The

B4-to-B1 transition has been studied intensively for many III-V and II-VI semiconductors,

such as AlN, GaN, InN, ZnO, CdS, and CdSe, which crystallize in wurtzite (or zincblende)

structure at ambient conditions and transform into the rocksalt structure at high pressures.

Because of the interesting properties and applications of these semiconductors, numerous

studies have been conducted from both experiments and calculations that are intended to

understand the transition mechanism at the atomic level. Knowledge from these studies

can help to predict and possibly control transitions and transition related properties.

Although the reconstructive phase transitions may involve nucleation processes, diffu-

sionless collective atomic displacements can still characterize the transformation on a local
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basis. The concept of transition pathway (TP) is then possible to describe the transfor-

mation from the starting phase to the ending phase in a continuous manner. Among the

infinite number of ways for one structure to transform into another, the theoretical studies

are restricted only to those most possible paths, e.g., preservation of bonds, less strains, etc.

For the B4-to-B1 transition there has been, in principle, two different approaches to propose

transition pathways. The first approach adopted a systematic procedure with certain re-

strictions to find the maximum number of pathways which belong to common subgroups of

the two end structures. Using the computer program COMSUBS 47, Stokes et al. proposed

five paths (Figure 4.25 and 4.26) by preserving the nearest neighbors along the transition

pathway and limiting the size of unit cell to no more than four different Wyckoff positions48.

He also found a common bilayer sliding mechanism along five paths, which had been pointed

out by Zahn et al.49 and Sowa50. Another work adopted the systematic approach is from

Capillas et al.51, which was performed using the databases and tools provided by the Bilbao

Crystallographic Server 52. They proposed eight possible paths with different orthorhombic

and monoclinic symmetries by setting the maximum k-index equal to 4, strain tolerance

Stol < 0.15 and maximum atomic displacement ∆tol< 2 Å. The intermediate structures

along all the eight paths have eight atoms per unit cell. The difference between these two

reports is that the nearest neighbors are not preserved along all the eight paths proposed

by Capillas et al.

The second approach is less systematic and most of the proposed models can be sum-

marized as two paths which are characterized by different intermediate structures, i.e., the

“hexagonal” path and the “tetragonal” path. These two paths have been proposed and

investigated intensively by experimental177–180 and theoretical44,46,49,50,53–55,181–183 works,

and they both belong to the Cmc21 path in the systematic approach. Cai et al. has studied

the “hexagonal” and “tetragonal” paths with LDA calculations, and concluded that the

“hexagonal” path is favored for AlN46. The Pna21 and P21 paths have also been described

in previous works49,50,55.
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Figure 4.25: Phase transformation along TP1. (a) Unit cell of B4 structure, (b) Unit cell
of B1 structure, (c), (d) Transformation pattern of “transition units” in B4 and B1 phases.
Dashed lines denote primitive unit cell. (Origin shifted onto the position of an atom for
better illustration of the unit cell.)

DFT calculations from Shimojo et al. showed that the enthalpy barrier of transforma-

tion is independent of the three paths (Cmc21, Pna21 and P21) for CdSe. Cai suggested,

without calculation, that the B4-to-B1 transition is characterized by the transformation

of the four-atom “transition unit” (Figure 4.27), while the long-range pattern may be less

important. On the other hand, using MD simulations, Zahn et al. pointed out that the

favored paths have a tendency to avoid excess strains during the transformation.

It would be interesting to investigate the proposed TPs with another material via first-

principles method. Previous studies53–55 suggested that the energetically favored TPs are

bond preserving. In this paper, we studied all five bond-preserving TPs proposed by Stokes

et al. and one bond-breaking TP proposed by Capillas et al. from an energetic point of view

for the B4-to-B1 transition in AlN. The correlation of the enthalpy barrier with different

TPs and strains will be discussed. We also relate the bilayer sliding mechanism to the

long-range patterns of “transition units”, and Cai’s hypothesis is examined.
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Figure 4.26: Phase transformation along TP2, TP3, TP4 and TP5. (a) Unit cell of B4
structure, (b) Unit cell of B1 structure, (c), (d) Transformation pattern of “transition units”
in B4 and B1 phases. (Origin shifted onto the position of an atom for better illustration of
unit cell.)
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Figure 4.27: Four-atom “transition unit” from B4 to B1 structure.

4.2.2 Total Energy and Equilibrium Phase Transition

We first calculated the total energies of the two end phases, i.e., wurtzite and rocksalt-

AlN. The calculation was within the frame of density functional theory (DFT) and adopted

Vanderbilt’s ultrasoft pseudopotentials (US-PP)121, as implemented in the VASP code139.

The exchange and correlation functional is treated with local density approximation (LDA).

Wave functions of valence electrons were expanded with plane-wave basis set up to the cut-

off kinetic energy of 348 eV. Total energy change of 10−9 eV was chosen as the convergence

criterion for the self-consistent iterations. The k-point sampling for Brillouin zone integra-

tion in our total energy calculations was carried out by the Monkhorst-Pack method with

grids of 12 × 12 × 8 and 16 × 16 × 16 for wurtzite and rocksalt-AlN, respectively.

The calculated static energies at various volumes are fitted to the 3rd-order Birch-

Murnaghan EOS159,160. General agreement of fitting parameters, B0 and B′, and zero

pressure structural parameters is achieved between our calculation with other reported

values (Table 4.7). The zero pressure bulk modulus we predicted is slightly less than those

from other LDA calculations (<3%). This could be caused by the different pseudopotentials

adopted.
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Table 4.7: Third-order BM-EOS parameters, zero pressure structural parameters for B4
and B1-AlN and B4-to-B1 transition pressure Pt. Parameters listed for B1 phase is for the
8-atom conventional cubic unit cell.

Source B0 (GPa) B′ a (Å) c/a u Pt (GPa)

Wurtzite (B4)
This work 202 3.61 3.084 1.601 0.382 9.85
Calculation184 209 5.58 3.057 1.617 0.380
Calculation43 209 3.7 3.061 1.600 0.382 9.2
Calculation185 208 3.87 3.100 1.6 0.382 21
Calculation46 — — 3.06 1.606 0.382 9.8
Experiment38 207.9±6.3 6.3±0.9 1.60 22.9
Experiment39 185.0±5.0 5.7±1.0 3.19 1.626 14-20
Experiment40 20-31.4

Rocksalt (B1)
This work 266 3.76 4.02
Calculation43 272 3.8 3.978
Calculation185 275 4.02 4.031
Calculation46 4.02
Experiment39 221.0±5.0 4.8±1.0 4.043
Experiment40 295±17 3.5±0.4 4.046

The static transition pressure can be determined from the common tangent of the E-V

curves (Figure 4.28) of B4 and B1 phases, or equivalently from the intersection of the H-P

curves, which gives Pt = 9.85 GPa. Our prediction is consistent with most of the recent

LDA calculations43,46, however, apparently less than those observed37–40. Despite of the

uncertainty of DFT calculations, we attribute the discrepancy to the relatively large kinetic

barrier along the phase transformation, which will be discussed in the next Section. The

quenchable high-pressure B1 phase also indicates the existence of the backward (B1-to-B4)

barrier at ambient conditions39.

4.2.3 Microscopic Mechanism for the Wurtzite-to-Rocksalt Transition

Five bond-preserving TPs proposed by Stokes et al. are summarized in Table 4.8.

Stokes et al. found that each TP is characterized by a sequence of bilayer sliding

mechanism, as described in their paper? . Each bilayer moves ±a/2 (hexagonal lattice
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Figure 4.28: Cohesive energy per atom as a function of volume for B4 and B1-AlN. Enthalpy
variation of both phases as a function of pressure is also shown.

Table 4.8: Bond-preserving TPs for the B4-to-B1 phase transition. G denotes the space
group of two end structures and G′ denotes the common subgroup. Z represents the number
of formula units per unit cell along the TP. The transformation matrices are given with
respect to the primitive unit cell lattice vectors and the fractional atomic coordinates are
in terms of the setting of G′. u ≈ 3/8

TP G′ G Z Transformation matrices Coordinates (Al) Coordinates (N)
1 Cmc21 (#36) B4 4 (1, 1, 0), (-1, 1, 0), (0, 0, 1) (0, 2/3, 0) (0, 2/3, u)

B1 4 (1, -1, 1), (1, -1, -1), (1, 1, -1) (0, 3/4, 0) (0, 3/4, 1/2)

2 Pna21 (#33) B4 4 (1, 2, 0), (-1, 0, 0), (0, 0, 1) (1/3, 0, 0) (1/3, 0, u)
B1 4 (-2, 2, 0), (0, 0, 1), (1, 1, -1) (3/8, -1/4, 0) (3/8, -1/4, 1/2)

3 P21 (#4) B4 6 (-1, 0, 0), (0, 0, 1), (0, 3, 0) (2/3, 0, 8/9) (2/3, u, 8/9)
(1/3, 1/2, 7/9) (1/3, u+1/2, 7/9)
(2/3, 0, 5/9) (2/3, u, 5/9)

B1 6 (0, 0, 1), (1, 1, -1), (-3, 3, 1) (1/3, 0, 11/12) (1/3, 1/2, 11/12)
(0, 1/2, 3/4) (0, 1, 3/4)
(2/3, 0, 7/12) (2/3, 1/2, 7/12)

4 Pna21 (#33) B4 8 (2, 4, 0), (-1, 0, 0), (0, 0, 1) (19/24, 3/4, 0) (19/24, 3/4, u)
(1/24, 1/4, 0) (1/24, 1/4, u)

B1 8 (-4, 4, 0), (0, 0, 1), (1, 1, -1) (13/16, 1/4, 0) (13/16, 1/4, 1/2)
(1/16, 1/4, 0) (1/16, 1/4, 1/2)

5 P21 (#4) B4 8 (-1, 0, 0), (0, 0, 1), (0, 4, 0) (2/3, 0, 11/12) (2/3, u, 11/12)
(1/3, 1/2, 5/6) (1/3, u+1/2, 5/6)
(2/3, 0, 5/12) (2/3, u, 5/12)
(1/3, 1/2, 1/3) (1/3, u+1/2, 1/3)

B1 8 (0, 0, 1), (1, 1, -1), (-4, 4, 1) (5/16, 0, 15/16) (5/16, 1/2, 15/16)
(-1/16, 1/2, 13/16) (-1/16, 1, 13/16)
(13/16, 0, 7/16) (13/16, 1/2, 7/16)
(7/16, 1/2, 5/16) (7/16, 1, 5/16)
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parameter) in the ±[100] direction (in term of the B4 structure) relative to the adjacent

bilayers. Besides the relative sliding of atomic bilayers , two other independent atomic

displacements occur during the transformation, i.e., (1) N atoms with z = u ≈3/8 (and

u − 1/2) in the B4 phase displace in the [001] direction into the z = 1/2 (and 0). (2)

Spacings of bilayers increase until layers along [120] direction (in term of the B4 structure)

are equally spaced apart. Illustration of five TPs listed in Table 4.8 are shown in Figure

4.25 and Figure 4.26. The small dark spheres represent N atoms and the large light spheres

represent Al atoms. Referring to Stokes et al.’s description, the repeatable bilayer sliding

patterns for the listed TPs are +, +−, + +−, + +−−, and + + +− for TP1 through TP5,

respectively. Where + means the bilayer slides +a/2 relative to the previous bilayer and −

means the bilayer slides −a/2 relative to the previous bilayer.

We first examined the five bond-preserving TPs proposed by Stokes et al 48. The B4-

to-B1 transformation along TP1 can be described by five independent parameters, i.e.,

(a, b, c, u, v). The parameters a, b, and c are the orthorhombic cell edges, u is the relative

position of two sublattices in [001] direction, and v is the relative displacements of atoms

of alternating (1̄10) planes in the direction of [1̄10]. For TP2 and TP4, there are six degree

of freedom, i.e., (a, b, c, δ, u, s). Here δ represents the relative displacements of atoms of

alternating B4 (010) planes in the [100] (unique-b axis) direction (in the setting of G′), and

s represents the atomic displacements in the sliding direction of bilayers. For TP3 and TP5,

due to monoclinic symmetry, there is one more free parameter, angle γ between a and c. In

Figure 4.25 and Figure 4.26, for clarity, we illustrate the unit cells with origins happen at

the positions of atoms.

The complete information of the transition pathway requires computation of the po-

tential energy as functions of all the degrees of freedom, i.e., a multi-dimension potential

energy surface (PES). However, DFT calculation of 5-7 dimension PES is computationally

expensive. In this dissertation, our main purpose is to obtain the activation barrier height

for different TPs. And considering the hexagonal path suggested by Cai et al. for AlN46,

we think the one dimensional PES can yield the correct kinetic barrier height. The only
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parameter being controlled is v for TP1 or s for other TPs, which we believe is the param-

eter that characterizes for the structural transformation. Our calculated barrier height of

TP1 will be compared with the 2D PES result of Cai et al. to ensure the validity of our

simplified approach.

For the five TPs discussed above, we calculated the total energy as a function of the

transition parameter. The transition parameter is defined to vary from 0 (B4 phase) to 1

(B1 phase) for the controlled free parameter, which is the y coordinates for TP1, TP2, TP4

and x coordinates for TP3, TP5. DFT calculation was performed by fixing the transition

parameter and relaxing all the other external and internal coordinates. The initial structural

parameters of the intermediate phases are generated from linear interpolation of the two

end structures. x = xi + (xf − xi) · tp where x denotes any internal or external parameter,

xi and xf denote x values of the starting (B4) and ending (B1) structures, respectively.

The k-point sampling for Brillouin zone integration was carried out by the Monkhorst-Pack

method with grids of 6× 4× 4, 4× 6× 4, 6× 4× 4, 4× 6× 6 and 6× 4× 4 for TP1 through

TP5, respectively. At each transition parameter, the calculation is made for several volumes

which were later fitted to the 2nd-order BM-EOS in order to obtain the enthalpy-pressure

relation.

The information of fractional coordinate u and angle γ (between a and b) at 0 GPa and

the transition pressure are extracted after the calculation of TP1. For γ larger than ∼ 70◦,

u becomes 0.5 after relaxation, which is the value of B1 phase. So the enthalpy barrier we

obtained is consistent with Cai et al.’s 2D PES. The calculated enthalpy as a function of

the transition parameter for five TPs at different pressures from 0 to 30 GPa are shown in

Figure 4.29. All five TPs yield comparable results, while the difference in the shape and

position of the maximum enthalpy between TP1 and other TPs could be ascribed to the

different transition parameters adopted. The discrepancies at tp = 1 should be due to the

different size of unit cells and errors from fitting to equation of states. As can be seen

from Figure 4.30, The forward (B4-to-B1) barrier height decreases with compression and

the backward (B1-to-B4) barrier height decrease with decompression for all TPs. This can
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explain the larger transition pressure observed in room temperature experiments compared

with equilibrium transition pressure predicted by calculations. At 20 GPa, the forward

activation barrier is about 80 meV/atom and continuously drops below 50 meV/atom upon

compression up to 30 GPa. The low activation barrier height greatly increases the possibility

of the occurrence of the B4-to-B1 phase transformation. On the other hand, the backward

barrier height remains about 100 meV/atom even at 0 GPa. This is in agreement with the

fact that the rocksalt phase can be quenchable to ambient conditions39. The activation

barrier plot we obtained is very similar to the Figure 8 (a) of Cai et al.’s paper. Comparing

our TP1 result with their calculation, the forward barrier heights we predicted are 0.199

eV/atom at 0 GPa, 0.128 eV/atom at 9.85 GPa, 0.102 eV/atom at 15 GPa and theirs are

0.219 eV/atom at 1 bar (10−4 GPa), 0.144 eV/atom at 9.8 GPa, 0.109 eV/atom at 15 GPa.

We attribute the small discrepancy to the different symmetry and size of unit cell in both

calculations. The volume sets used for fitting of EOS can also play a role. Considering the

uncertainties involved in our calculation, the magnitudes of the barrier height of different

TPs should be concluded as comparable at pressures from 0 to 30 GPa.

Since no apparent difference is found between TP1 and other TPs, we confirmed Cai

et al.’s hypothesis, i.e., the four-atom “transition unit” is responsible for the B4-to-B1

transforation and different long-range arrangements of “transition units” are less important.

From another point of view, Zahn et al.49 pointed out that the favored TPs have a tendency

to avoid excess strains during the transformation. TP2 and TP4, which have equal numbers

of bilayer sliding in opposite directions, yield less strains. Our calculation show no clear

preference of these two TPs over the rest. It is likely that the different strains involved in

TPs may not be an important factor for the B4-to-B1 transformation.

We also calculated the #4 path proposed by Capillas et al., which involves bond break-

ing during the phase transformation. The forward barrier heights are 0.956 meV/atom at 0

GPa and 0.976 meV/atom at 15 GPa, which are much larger than those calculated from the

bond-preserving paths. So the bond-breaking path is less likely to be energetically favored

if there are bond-preserving paths available.
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Figure 4.29: Enthalpy as a function of transition parameter relative to B4 phase for five
TPs at six pressures. (a) at 0 GPa, (b) at 5 GPa, (c) at the predicted transition pressure
9.85 GPa, (d) at 15 GPa, (e) at 20 GPa and (f) at 30 GPa.
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Figure 4.30: Forward (B4-to-B1) and backward (B1-to-B4) activation barrier height (en-
thalpy) as a function of pressure for five TPs.

4.2.4 Conclusions

In summary, we show that the five bond-preserving paths can be interpreted as transfor-

mation of different long-range patterns of the “transition units” (two different orientations).

The transformation of “transition unit” is equivalent to the path along TP1 (with Cmc21

symmetry). Our calculated kinetic barriers are comparable for all five paths at pressures

from 0 GPa to 30 GPa, which indicate that the wurtzite-to-rocksalt transition is charac-

terized by the transformation of the “transition unit”, while the long-range pattern is less

important. And the difference in strains of different TPs is not a major factor for at least

the transition from wurtzite to rocksalt phase in AlN. In addition, the bond-breaking path

is not energetically favored compared with the bond-preserving paths.

Besides the similarity from five bond-preserving TPs, our estimated forward and back-

ward barrier heights are consistent with experimental observation and previous calculations.
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Chapter 5

STUDY OF HIGH-PRESSURE PHASE TRANSITIONS IN SILICON NITRIDE

5.1 Introduction

Silicon nitride (Si3N4) is widely used in cutting tools and anti-friction bearings due

to its excellent mechanical properties, low mass density, and thermal stability56. It is

also used as an insulator layer or as an etch mask because of its dielectric properties and

a better diffusion barrier against impurities in microelectronics57. For its technological

importance, the mechanical and thermal properties of silicon nitride at ambient pressure

has been investigated extensively by both experiment and theory56,57. In contrast, its

properties at high-pressure is less known.

α (P31c) and β (P63/m) phases are the only two bulk polymorphs of Si3N4 known at

ambient pressure. Both phases can be synthesized by nitriding pure silicon. In 1999, γ-Si3N4

(or c-Si3N4, Fd3̄m) with the cubic spinel structure was synthesized at high pressure and

high temperature58. Despite intensive research efforts in searching the “post-spinel” phases

in Group-IV(B) nitrides, the spinel structured γ phase remains as the only experimentally

identified high-pressure phase. The space groups and Wyckoff sites for these three phases

are summarized in Table 5.1.

Table 5.1: Space groups, formula units per primitive unit cell and Wyckoff sites of hexagonal
α-, β-Si3N4 and cubic γ-Si3N4.

Phase Space group Formula units per Species Wyckoff site
primitive unit cell

α P31c 4 N 2a, 2b, 6c, 6c
Si 6c, 6c

β P63/m 2 N 2c, 6h
Si 6h

γ Fd3̄m 2 N 32e
Si 8a, 16d
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Phase transitions in Si3N4 have drawn extensive attention for more than a decade.

The temperature-pressure (T -P ) conditions for obtaining various observed and hypothe-

sized polymorphs are sketched in Figure 5.1. The relative phase stability between α and β

phases has been a topic of investigation for many years. Direct measurements of energetics

of Si3N4 were reported by Liang et al.59. However, the difference in formation enthalpies

between α- and β-Si3N4 was founded to be less than the intrinsic experimental uncertainty

of ±22 kJ/mol (±32.6 meV/atom). Nevertheless, the β phase is believed to be the ground

state in Si3N4 because no β→α transition is ever observed. The stability condition for α

phase has been experimentally studied at temperatures of 1300◦−1800◦C and pressures up

to 60 GPa60–67. A solution-precipitation mechanism was proposed for the α→β transforma-

tion67. Pure single-crystal α-Si3N4 shows no sign of transformation at temperatures up to

1820◦−2200◦C67,186. Suematsu et al. discovered that the α→β transformation occurs with

annealing in the presence of Y2O3 or other oxides. The catalyst oxides first form a liquid

phase with Si3N4 on the surface at high temperatures. Then, through atomic transportation

in the liquid, small particles of β-Si3N4 emerge. The observed liquid phase on the α-Si3N4

surfaces was believed to lower the activation energy of atomic transportation. The stability

of pristine α-Si3N4 at high temperatures is ascribed to the extremely high value of the ac-

tivation energy with clean surfaces. On the theory side, several studies confirmed that the

static bonding energy of α phase is slightly higher than that of β phase68–71. Wendel et al.70

and Kuwabara et al.71 carried out statistical QHA calculations, and they both found that

the α phase remains metastable in the temperature range from 0 to 2000 K at ambient pres-

sure. Yet, pressure effects on the relative thermodynamic stability between α and β phases

was not addressed in previous studies. The first goal of the this chapter is to understand

the relative thermodynamic stability at high pressures. The relative Gibbs free energies

between two phases suggest that β phase, compared with α phase, is thermodynamically

stable at temperatures up to 2000 K and pressures up to 10 GPa. We further predicted the

equilibrium phase boundaries for the α→γ and β→γ transitions. The transition pressures

for the α→γ transition is about 0.5 GPa lower than that of β→γ transition.
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Figure 5.1: Polymorphs of Si3N4 and synthesis conditions

The spinel structured γ-Si3N4 was first synthesized by Zerr et al. with laser-heated

diamond anvil cell (LH-DAC)58. Later experiments show that γ-Si3N4 can be obtained

from both α- and β-Si3N4 upon compression and simultaneous in-situ heating58,72–75. The γ

phase is quenchable to the ambient condition, and it remains stable at temperatures ranging

up to about 1670 K at ambient pressure76,77. When γ-Si3N4 “decomposes” at ambient

pressure upon heating, the samples may consist of both α- and β-Si3N4
76. Previous ab initio

studies also calculated the β→γ transition pressure (Pt) at adiabatic static condition58,79,

as well as at high temperatures71,187. The Clapeyron slope is found to be positive and Pt

varies only slightly over temperature. Furthermore, a new high-pressure post-spinel phase

was proposed by first-principles method188,189. The new phase is predicted to be CaTi2O4

type and the calculated Pt from γ to post-spinel phase is over 160 GPa. The predicted new

phase has not yet been observed.

The in-situ heating to high temperature is found to be necessary to form the γ-Si3N4

at high pressures. At room temperature the β→γ transition is, however, by-passed. Zerr

found that β-Si3N4 exists up to 34 GPa and it then transforms into a new phase (labeled

as δ-phase) under further compression78. This phase transition was identified by Raman

spectroscopy and energy dispersive X-ray powder diffraction (EDXD). But the structure of δ

phase was not fully determined. Zerr proposed three possible unit-cells based on the EDXD

pattern: two tetragonal and one orthorhombic. The first hypothetical tetragonal unit-cell

would have a density of 4.5 g/cm3 at 42.6 GPa, which is smaller than that of γ-Si3N4 (4.50
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g/cm3). At the same pressure, the second tetragonal and the orthorhombic structures are

proposed to have densities of 4.56 g/cm3 and 5.16 g/cm3, respectively, which are larger

than that of γ phase. The later two structures are considered as “post-spinel” phases. Zerr

further suggested that the δ-Si3N4 should be considered as a metastable intermediate stage

in the β→γ transition. Kroll has proposed a metastable willemite-II-Si3N4 phase which is

an intermediate between β- and γ-Si3N4 in both energetics and density79. However, the

wII phase is unlikely to be the experimentally observed unknown phase at high pressure

and room temperature. Because 1) the wII phase, which is structurally closely related

to the spinel γ-Si3N4, has been shown to have a significantly lower activation barrier for

the γ→wII transformation, comparing to that of γ→β transformation79. Although the

activation barrier of the β→wII transformation is unknown, it is more likely to be high

enough to exclude the room temperature transition. 2) The calculated Raman frequencies

of wII-Si3N4 could not match many strong peaks appeared in the measurements, e.g., two

observed peaks at about 500 cm−1 and 550 cm−1 are absent in the calculation. A recent

experimental work from McMillan et al. reproduced Zerr’s findings on δ-Si3N4, but excluded

the wII cubic structure80.

Meanwhile, β-Ge3N4 is found to transform into the metastable polymorph δ-Ge3N4

with hexagonal P3 symmetry at room temperature by Soignard et al.81. Ab initio calcula-

tion from Dong et al. showed that a β→P 6̄→P3 transition sequence could occur in Ge3N4

at the pressure of about 20 GPa and 28 GPa82, which are of second-order that driven by soft

phonons. If β-Ge3N4 directly transforms into the P3 structure, the transition was predicted

to be first-order and Pt = ∼23 GPa. Dong also pointed out that the β→P 6̄ transition is

originated from a soft silent Bu mode. Room temperature experimental study by Soignard

et al. confirmed the direct β→P3 transition associated with a 5-7% volume reduction81.

The Raman data they observed excludes the intermediate P 6̄ structure. Based on the den-

sity consideration, Soignard et al. suggested that the new polymorph is a “post-phenacite”

phase, in stead of “post-spinel”. Comparison of the X-ray diffraction and Raman data be-

tween Ge3N4 and Si3N4 shows similarity which may suggest a P3 structure for δ-Si3N4. It is
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still unclear whether there are intrinsic differences between the HP -RT behaviors of Si3N4

and Ge3N4, or the experimental results may be interpreted differently. The second goal of

our study is to theoretically investigate structural instabilities and possible metastable phase

transitions in α- and β-Si3N4 at high pressures and room temperature. We found no sign

of dynamical instability in the α phase at high-pressure. On the other hand, we predicted a

phonon-softening related first-order phase transition at about 38.5 GPa in β phase. At this

pressure, the density of the proposed high-pressure phase is 4.16 g/cm3 which is larger than

that of β-Si3N4 (3.71 g/cm3), yet smaller than that of γ-Si3N4 (4.53 g/cm3, calculated). We

further estimated the kinetic barrier heights for our proposed β→P3 transition, which is

only 67.23 meV/atom at 38.5 GPa. Despite being of first-order phase transition, the small

barrier height suggests that the P3 phase is unlikely to be recovered below 38.5 GPa.

Finally, we performed a series of systematical calculations of thermodynamic properties

of Si3N4, such as thermal expansion coefficient (TEC), heat capacity and bulk Grüneisen

parameter, and compared our results with available experimental data83–90 and some pre-

vious calculations70,71,91,92. The overall good agreement with experiment validates the

adopted statistical quasi-harmonic approximation (QHA) and the Birch-Murnagahn equa-

tion of states (EOS) models. Our results support the prediction of Kuwabara et al.71 on

the negative TEC of α and β phases at temperatures below 100 K. We further attributed

the origin of the negative TEC to the low-frequency phonon modes with the negative mode

Grüneisen ratios in the two phases.

5.2 Crystal Structures, Static Binding Energies, and Vibrational Spectra

Atomic structures of α-, β-, and γ-Si3N4 are shown in Figure 5.2. Both α and β-

Si3N4 have hexagonal symmetry, and they contain similar local bonding: each Si atom

is tetrahedrally bonded to four N atoms (Si-N4) and each N atom has a threefold trigonal

coordinates (N-Si3). All the SiN4 tetrahedra are slightly distorted and connected by corner-

sharing. The difference between these two phases can be characterized by the stacking

sequence along c axis. The periodicity of α- and β-Si3N4 in that direction can be described
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as ABCDABCD.... and ABAB.... stacking, respectively. From another point of view,

α-Si3N4 can be interpreted as a complex network formed with nonplanar six-membered (6-

atom) rings, whereas β-Si3N4 is composed of non-planar six-, eight- and twelve-membered

rings. There are two types of trigonal N-Si3 units: those with N atoms at the 2a and 2b sites

of α-Si3N4 or the 2c site of β-Si3N4 locate at the basal plane perpendicular to the c axis,

while the rest N-Si3 units are in the vertical or near-vertical orientations. Most basal N-Si3

units are perfectly planar with three equal-length bonds and three 120◦ Si-N-Si bond angles,

except that the N-Si3 units with N at the 2b sites of α-Si3N4 form triangular pyramids (i.e.

three bonds still have equal length, but the bond angles are less than 120◦). The vertical

N-Si3 units are distorted in bond lengths and bond angles which yield distorted pyramidal

units. The γ phase has a distinctively different structure, in which Si atoms occupy both

tetrahedral (1/3 of Si atoms, 8a sites) and octahedral (2/3 of Si atoms, 16d sites) sites, and

all the N atoms are tetrahedrally bonded. This is consistent with the fact that γ-Si3N4 is the

high pressure phase which has a larger coordination number. The spinel structure is named

after the mineral MgAl2O4 which has a fcc lattice with space group Fd3̄m. For γ-Si3N4,

there are two formula units in the primitive unit cell and eight units in the conventional

cubic cell.

In this study, the equilibrium T -P phase diagram and thermodynamic properties are

predicted using the first-principles calculated thermodynamic potentials. As an insulator,

the Helmholtz free energy of a bulk crystalline silicon nitride system consists of two parts:

F (T, V ) = Estatic (V ) + Fvib (T, V ) (5.1)

where Estatic (V ) is the static binding energy of the system and Fvib (T, V ) is the vibrational

free energy. Free energy associated with the electronic thermal excitation is neglected.

Estatic (V ) for α-, β-, and γ-Si3N4 are calculated with unit-cell models of respective crystal

symmetries. We adopted density functional theory (DFT) with a plane wave basis set and

ultrasoft pseudopotentials (US-PP)121, which is implemented in the VASP code139. The
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Figure 5.2: Crystal structures of (a),(b) α-, (c),(d) β-, and (e),(f),(g) γ-Si3N4. In the panel
of α- and β-Si3N4, the first graph illustrates the unit-cell model and the second graph is
the 2× 2× 1 supercell model viewed in the direction of c axis. In the panel of γ-Si3N4, the
first graph shows the conventional cubic cell of the spinel structure and the following two
graphs show the fourfold and sixfold coordinated Si units(SiN4 and SiN6) with tetrahedra
and octahedra, respectively.
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exchange and correlation functional is treated with local density approximation (LDA). The

plane wave basis functions with energies up to 347.9 eV were used. Total energy change

of 10−9 eV per unit cell was chosen as the convergence criterion for the self-consistent

iterations. The Brillouin zone integration in our total energy calculations was approximated

with the Monkhorst-Pack method, with grids of 4 × 4 × 6, 4 × 4 × 12 and 6 × 6 × 6 for α-,

β- and γ-Si3N4, respectively. The calculated total energies at several chosen volumes were

fitted to the third-order Birch-Murnaghan equation of state (BM-EOS)159,160 by the least

square fitting algorithm.

The calculated E-V data sets of α-, β- and γ-Si3N4 are shown in Figure 5.3, and the

corresponding fitting parameters from the third-order BM-EOS (E0, V0, B and B′) are

listed in Table 5.2, together with reported experimental and other theoretical results. As

the measurements are usually made at room temperature, our predicted parameters at 300

K within QHA are also presented. Our calculation has a good overall agreement with other

theoretical and experimental results. Compared to the experiments, our calculated static

equilibrium volumes are consistently underestimated by about 1 to 3%, and the calculated

bulk moduli are within the range of reported experimental data, which contain about 5 to

15% differences among different reports. The predicted thermal equation of states at 300 K

are slightly closer to the measurement. Our results are within the typical accuracy of LDA

calculation and they are consistent with the fact that LDA tends to slightly underestimate

the equilibrium volume and overestimate the bulk modulus by a few percent.

Our static total energy calculation shows that β phase is only slightly energetically

more stable (i.e., about 3 meV/atom lower) than α phase at their respective static equi-

librium volumes. Such a small energy difference is consistent with the fact that both α

and β phases are found to be co-exist during different synthesis routes. Also, in agree-

ment with experiment, we find that the calculated β phase has larger density and lower

compressibility comparing to the α phase. This suggests that α phase is even less favored

thermodynamically at higher pressure relative to β phase. The relative stability between
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Figure 5.3: Energy-volume curves for α-, β- and γ-Si3N4 in the scale of per atom. β phase
has an equilibrium energy of 3 meV lower than that of α phase. E0 of γ phase is 93 meV
higher than β phase.

these two phases will be further examined in later text with the consideration of tempera-

ture and pressure effects. For the γ phase, our calculation yields a static equilibrium energy

which is 93 meV/atom higher than that of the β phase, and a static equilibrium volume

of 2 Å3/atom smaller than that of the β phase. These results agree with the fact that the

spinel structured γ phase is a high pressure phase in Si3N4.

Figure 5.4 shows the phonon dispersion curves and VDOS plots of the α-, β- and

γ-Si3N4 at their respective static equilibrium volumes. All three phases studied here are

dynamically stable, i.e., no soft phonon modes. The α and β phases have very similar

VDOS which reflects the similarity in their crystal structures and Si-N bonding. On the

other hand, the spinel structured γ-Si3N4 shows some distinctively different characters in

its VDOS, comparing with those of α and β phases. High-pressure phases usually have

higher vibration frequencies. Yet, we find that the top phonon branches in γ phase have

frequencies which are significantly lower than those of α or β phase.

Mode Grüneisen ratios along some high symmetry directions are shown in Figure 5.5.

Although there are many similarities in the mode Grüneisen ratios between the α and β

phases, for example, their low-frequency phonon modes are found to have negative mode
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Table 5.2: Summary of calculated and measured crystal parameters of α-, β- and γ-Si3N4.
V0 is the equilibrium volume per atom, B is the bulk modulus and B′ is the first-order
pressure derivative. Measurements were made at room temperature.

α-Si3N4

Source V0

(

Å3/atom
)

B (GPa) B′

LDA (this work, static) 10.260 232 2.583
LDA (this work, 300K) 10.328 226 2.576
LDA71 10.325 240 4.0 (fixed)
LDA190 10.237 257
OLCAO69 10.542 257
Force fields (300K)70 10.806 246
Experiment191 10.455
Experiment192 10.445
Experiment193 10.465 223.4 (±15) 4.5 (±1.3)

β-Si3N4

Source V0

(

Å3/atom
)

B (GPa) B′

LDA (this work, static) 10.199 241 3.439
LDA (this work, 300K) 10.267 237 3.440
LDA71 10.268 252 4.0 (fixed)
GGA194 237.2-241.5
LDA190 10.183 225
Force fields (300K)70 10.661 266
Experiment195 10.396
Experiment196 10.411 270 (±5) 4.0 (±1.8)
Experiment197 10.452 232.7
Experiment68 10.356

γ-Si3N4

Source V0

(

Å3/atom
)

B (GPa) B′

LDA (this work, static) 8.140 308 3.898
LDA (this work, 300K) 8.220 297 3.898
LDA71 8.137 320 4.0 (fixed)
OLCAO69 8.595 280
Experiment198 8.270 290 (±5) 4.9 (±0.6)
Experiment74 8.286 308 4.0
Experiment76 8.261
Experiment197 300 (±10) 3.0 (±0.1)
Experiment58 8.474 (±0.26)
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Figure 5.4: Phonon dispersion curves and vibrational density of states (VDOS) of (a) α-,
(b) β-, and (c) γ-Si3N4 at zero pressure.

112



Grüneisen parameters while all the high-pressure modes have positive ratios with the upper

limit of about 1.5, there are some noticeable differences for phonons around the M-point

transverse acoustic (TA) mode and the Γ-point optic Bu mode. The phonons close to these

two modes in β phase are found to have large negative Grüneisen ratios, which suggest

possible structural instability of β phase upon compression. On the other hand, the γ-

Si3N4 shows no negative mode Grüneisen ratios at all, and the values of its mode Grüneisen

ratios range from 0.24 to 1.66 at zero pressure..
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Figure 5.5: Calculated dispersion curves (scattered circles) of mode Grüneisen parameter
of (a) α-, (b) β-, and (c) γ-Si3N4 at zero pressure. Red horizontal line is present to separate
the positive and negative values.
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5.3 Equilibrium Thermodynamic Stability and Phase Transitions

To illustrate the relative thermodynamic stability between the α and β phase, we plot

the LDA calculated Gibbs free energy differences between the two phases at 0, 5 and 10

GPa in Figure 5.6. A positive value of ∆Gα−β means that α-Si3N4 is thermodynami-

cally metastable. At isobaric conditions, the calculated ∆Gα−β are almost constant over

the temperature range from 0 K to 2000 K. At zero pressure, our calculated ∆Gα−β is

2.8 meV/atom at 0 K which agrees with Kuwabara’s (DFT+PAW+LDA) ∆Fα−β of 2.6

meV/atom at 0 K. At 2000 K, our ∆Gα−β is 2.6 meV/atom, while Kuwabara’s ∆Fα−β

decreases to 1.3 meV/atom. The results of Wendel et al. were based on empirical force field

models and they gave opposite trend of temperature dependence, 0.1 meV/atom at 300 K

and 0.7 meV/atom at 2000 K. At elevated pressures, we predict an increasing ∆Gα−β. At

5 GPa and 10 GPa, ∆Gα−β is about 4.6 meV/atom and 5.9 meV/atom, respectively. We

do not predict ∆Gα−β at pressures higher than 10 GPa because the β phase starts to show

signs of structural instability (see discussion in later text). We conclude that α phase is

metastable compared to β phase in the temperature range from 0 K to 2000 K and at least

up to 10 GPa.
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Figure 5.6: Gibbs free energy of α-Si3N4 relative to that of β phase as a function of temper-
ature. Solid, dashed and dotted lines represent the pressure of 0, 5 and 10 GPa, respectively.
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Upon compression, both the ground state β phase and meta-stable α phase transform

into the γ phase. Our predicted equilibrium T -P phase boundaries are shown in Figure 5.7.

The Clapeyron slopes for the β→γ (solid line) and α→γ (dashed line) transitions are both

positive, which suggests that the high-pressure γ phase has a lower vibrational entropy.

Consequently, the transition pressure (Pt) increases with temperature. The predicted Pt of

the β→γ transition is 7.5 GPa at 300 K, and it increases to 9.0 GPa at 2000 K. The Pt of

the α→γ transition is about 0.5 GPa lower than that of β→γ transition. Togo et al.187 and

Kuwabara et al.71 also predicted a positive Clapeyron slope for the β→γ transition. The

large calculated Clapeyron slopes (dT/dP ) means that the transitions are primarily volume

driven and the equilibrium Pt is not sensitive to the temperature. For example, Pt changes

by less than 2 GPa when temperature rises from 300 K to 2000 K. On the experimental

side, the transition pressures are scattered from 10 GPa to 36 GPa (Table 5.3). This could

be ascribed to the different compositions/impurities of the starting samples being used.

Nonetheless, in situ heating is required for the synthesis of γ-Si3N4 in all experiments. This

is a clear indication that large kinetic barriers exist. For better comparison between theory

and experiment, we only list here the theoretical results at T = 2000 K.

Table 5.3: Summary of phase transition pressure and temperature for synthesizing γ-Si3N4

Method Starting material Pt (GPa) Temperature (K)

Experiment
diamond cell58 Si, amorphous Si3N4 and poly-

crystalline α + β
15 2100

Shock compression73 β+2 wt% (Nd2O3+Y2O3)β 36 1990
Diamond anvil cell199 α + 1%β 17.5 -
Multi-anvil72 α + β 17 2100
Shock wave75 β 10 2073

Theory
PAW+GGA187 β 13 2000
PAW+LDA71 β 6.3 2000
USPP+LDA (this work) α 8.5 2000
USPP+LDA (this work) β 9.0 2000
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Figure 5.7: T -P phase diagram of Si3N4. Solid curve denotes the phase boundary between
β- and γ-Si3N4. Dashed curve denotes the phase boundary between α- and γ-Si3N4.

5.4 Phonon-Softening Induced Structural Instability in β-Si3N4 at High Pres-

sures

Although β-Si3N4 transforms into the γ phase at high pressures and temperatures,

the β phase is stable at the room temperature up to at least 30 GPa. To investigate

the structural stability of the β phase, we calculated the pressure dependence of lattice

vibration. First, we examined the phonon modes at the zone center Γ-point. There are in

total 42 vibrational modes for β-Si3N4 with space group P63/m. Using group theory, the

irreducible representation for Γ-point phonon modes is

Γacoustic = Au + E1u (5.2)

Γoptic = 4Ag + 2Au + 3Bg + 4Bu + 2E1g + 5E2g + 4E1u + 2E2u (5.3)

For the optic modes, 11 modes (4Ag+2E1g +5E2g) are Raman active, 6 modes (2A2u+4E1u)

are infrared (IR) active, and the rest (3Bg + 4Bu + 2E2u) are silent modes, among which

Raman and IR spectra can be detected in experiments. Figure 5.8 shows our calculated

Raman, IR and silent modes of the β phase as a function of pressure up to 60 GPa. Experi-

mental pressure dependencies up to 30 GPa are presented for comparison. For the measured
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Raman modes from Zerr et al.200, one Ag mode is missing, possibly due to the weak in-

tensity. The rest Raman modes match well with our calculation. Our prediction tends to

underestimate the frequencies by about 2%-4% , which is typical for calculations of this

type. The calculation shows a clear pattern that all low frequency modes ( 400 cm−1 and

below) have zero or negative pressure dependencies. The lowest Bu silent mode decreases

much faster than the others and eventually vanishes at about 60 GPa. The predicted neg-

ative pressure dependence in these modes is consistent with the calculated negative mode

Grüneisen ratios (Figure 5.5b). The calculated phonon softening pattern in β-Si3N4 is in

agreement with our previous results for β-Ge3N4
82.
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Figure 5.8: (a) Raman, (b) IR and (c) silent mode frequencies as a function of pressure up
to 60 GPa for β-Si3N4. Experimental pressure dependence of Raman modes up to 30 GPa is
also presented in discrete symbols as a comparison200. Solid squares denote measurements
upon pressure increase and open squares denote measurements upon pressure decrease.
Several low-frequency modes are found to decrease with increasing pressure. One Bu branch
of silent modes is found dropping to zero at about 60 GPa.

Next, we extended our study to all the phonon modes in the reciprocal space. Our

calculated phonon dispersion curve of β-Si3N4 at 48 GPa (Figure 5.9) shows that two

low-frequency branches decrease dramatically upon compression, i.e., one TA branch along

the Γ-M direction and lowest optic Bu branch. The TA mode goes soft at the Brillouin

zone boundary M point, i.e. k = 2π
a

(

1√
3
, 0, 0

)

and the optic mode goes soft at the zone

center Γ point, i.e. k = (0, 0, 0). A vanishing phonon frequency results from the vanishing
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Figure 5.9: Phonon dispersion of β-Si3N4 at a pressure of 48 GPa. Two competing soft
phonon modes are found: one TA branch at M point and one optic branch at Γ point. No
LOTO splitting correction is added for the interests of low-frequency modes only.

restoring force against the atomic displacement for the corresponding vibrational mode.

Consequently, the crystal structure may undergo a displacive transition to reach a new

minimal-energy configuration with lower symmetry. Our calculated ω2 of the two most

significant soft modes as a function of pressure are shown in Figure 5.10. The two ω2

are found to exhibit linear pressure dependencies. Comparing to the M-point TA mode,

the softening Bu mode has a higher frequency at ambient pressure, yet it decreases much

faster with the increase of pressure. Phonon frequencies of both softening modes reach zero

at ∼60 GPa. Although the frequency of the M-point TA phonon vanishes before the Bu

branch, the predicted difference is, however, small. We thus consider both softening phonon

modes as two competing mechanisms that may be responsible for the structural instability

of β-Si3N4 at high pressures. It is worth to point out that α-Si3N4 does not show any signs

of structural instability in our calculation, which is consistent with the differences we have

pointed out for the calculated mode Grüneisen ratios (Figure 5.5(a)).

The atomic displacements according to the soft M-point TA mode are in the x-y plane

and the symmetry of the unit-cell is reduced from hexagonal P63/m to monoclinic P21/m

after the distortion. One vector of the P21/m primitive unit cell is about twice of the
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Figure 5.10: The square of vibration frequency (ω2) as a function of pressure for two
competing soft phonon branches: one TA branch at M point and one Bu branch at Γ point.
Solid squares and circles represent data from calculation. Solid and dashed lines are from
a linear fitting.

a vector of the original hexagonal unit-cell. Constrained with the P21/m symmetry, we

calculated the total energies of the distorted structure for several volumes by allowing further

relaxation of both unit-cell shapes and internal coordinates. The calculated E-V curve is

shown in Figure 5.12. At volumes larger than 8.75 Å3/atom, the P21/m structure relaxes

back to the original β structure with energy minimization calculation. Yet at volumes

smaller than 8.75 Å3/atom, the P21/m phase yields a lower energy. The relaxed structure

with a volume of 8.25 Å3/atom is shown in Figure 5.11(b). After relaxation, for volume

8.25 Å3/atom, the lattice parameters a = 13.912 Å, b = 6.674 Å and c = 2.777 Å. The

length of a is slightly larger than twice that of b. The angle between a and b becomes

116.4◦ from the original 120◦ in β phase. The c/b ratio is getting larger compared to that in

β-Si3N4. This is consistent with the fact that it becomes more difficult to compress along

c axis than in the x-y plane after the structural distortion. The displacements of internal

coordinates can be described in terms of N atoms. Around each 2c N atom in β-Si3N4

there are three nearest 6h N atoms which are in the same basal plane. The displacements

of those 6h N atoms are in a way that it causes the previous planar vertical N-Si3 units

to pucker. The puckering pattern can be seen in Figure 5.11(b). In P21/m structure, two
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of the nearest N atoms become closer to the “centered” 2c N atom (no longer 2c site in

the P21/m symmetry, but it is convenient to label it consistently) but the third one moves

away from it. Consequently the “centered” 2c N atom is “pushed” away by the two closer

N atoms, which breaks the hexagonal symmetry and causes the three Si-N-Si bond angles

to be distorted from the perfect 120◦. More importantly, the interatomic distance between

the Si atoms at the 2e site and one of their 2nd nearest neighbor deceases rapidly upon

compression. At the volume of 8.25 Å3/atom, this distance is only 1.988 Å which is slightly

larger than that of previous Si-N bonds (less than 1.7 Å). This tendency of forming an extra

bond may help to stabilize the distorted structure under high pressures. The new P21/m

phase is dynamically stable at pressures up to 75 GPa.

A similar distortion calculation was performed for the soft Bu mode at Γ point. The

atomic displacements based on the corresponding vibrational pattern yields a new structure

which has a hexagonal P 6̄ symmetry. The size of the primitive unit cell is the same as β-

Si3N4 and the displacements are still within the x-y plane. The E-V curve and data points

of P 6̄ phase is shown in Figure 5.12 as the (red) dash line. Its structure returns to β

phase after fully relaxation for volumes larger than 8.75 Å3/atom. Its energy is slightly

lower than β phase at a smaller volume, however, it is higher than that of the P21/m

phase. Figure 5.11(c) shows the relaxed P 6̄ structure at the volume of 8.25 Å3/atom. The

c/a ratio increase slightly compared to β-Si3N4 and this may again be ascribed to the

less compressibility along c axis. The structure of P 6̄ can be interpreted in terms of the

puckering pattern of 6h N atoms. Unlike the P21/m structure, as shown in Figure 5.11(c),

three “in-plane” 6h N atoms move clockwise and become closer to one of the “centered” 2c

N atom, which has a z coordinate of 3
4 in term of c in our case. However, the other three

6h N atoms move counterclockwise and become away from the other “centered” 2c N atom

(z = 1
4).

We further calculated the phonon spectrum of the P 6̄ structure and discovered an

optic soft phonon mode happens at its Γ point. Based on the corresponding eigenvector,

we obtained a new structure with hexagonal P3 symmetry. The primitive unit cell is in
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the same size as the β phase, i.e., two formula Si3N4 units per cell. The E-V relation of

P3 phase is shown in Figure 5.12 as the (green) dash-dotted line. Its structure returns to

β phase beyond a volume of 8.75 Å3/atom and remains stable at a smaller volume. The

total energy of the P3 phase is lower than the other three phases below the volume of

8.37 Å3/atom. Between 8.37 Å3/atom and 8.75 Å3/atom, the P21/m phase has the lowest

energy. Structure model of P3 phase at the volume of 8.25 Å3/atom is shown in Figure

5.11(d). The c/a ratio of P3 structure is very close to that of β phase. This structure can be

understood as a further distortion of the P 6̄ phase. Relative to the P 6̄ structure, the major

difference in P3 phase is the z coordinate of the “centered” 2c N atom which is surrounded

by three closer N atoms. This “centered” 2c N atom, denoted thereafter as the puckering 2c

N, is “pushed” up or down by three approaching N atoms. As the volume getting smaller,

the puckering 2c N will be “pushed” by the three closer 6h N atoms eventually to the middle

of two “closer-N-atoms” layers (z = 1
4) and become six coordinated. The other “centered”

2c N atom remains its z coordinate because there is no “push” effect. For volume between

8.00 Å3/atom and 8.75 Å3/atom, which is before the puckering 2c N atom reach its final

position (z = 1
4), the z coordinates of other atoms deviate slightly from their previous

values. However, these z coordinates recover their previous values perfectly (z = 1
4 and 3

4 )

when the puckering 2c N atom is stabilized at z = 1
4 . Using the same criterion to verify the

formation of bonds, there are six extra bonds being formed within a primitive unit cell, i.e.,

3 extra bonds per formula unit. And for P21/m phase, it is only 1
2 extra bonds per formula

unit.

5.5 Room Temperature Metastable P3 Phase

Based on the E-V curves shown in Figure 5.12, the transition from β-Si3N4 to one of

the three candidates is determined by the common tangent line between them. The smallest

magnitude of the slope (negative) is corresponding to the lowest transition pressure, and this

is made by the P3 phase. Both P21/m and P 6̄ phases are likely bypassed. The transition

pressure is estimated to be 38.5 GPa, which is comparable to the experimentally observed
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Figure 5.11: Ball-stick models of (a) P63/m, (b) P 6̄, (c) P21/m and (d) P3 structures
viewed along the c axis. Balls in dark color represent N atoms and Si atoms are in light
color.
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Figure 5.12: The total energy of P63/m (β), P 6̄, P21/m and P3 structures as a function
of volume.
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35 GPa for the unidentified δ-phase78. The transition pressure is much smaller than 60

GPa, at which one phonon frequency becomes zero in the β-Si3N4. The predicted β-to-P3

transition is a first-order phase transition, and the predicted volume reduction is about

10.8%.

To estimate the kinetic barrier height in the β→P3 transition, we calculated the en-

thalpy landscape in terms of the atomic displacements in the x-y plane and of the z coor-

dinate of the puckering 2c N atom. At the transition pressure, we took the β phase as the

starting structure and the P3 phase as the ending structure. Two transition parameters,

fx−y and fz, are used to linearly interpret the phase transition. Initial internal coordinates

of the intermediate structure can be expressed as

x = xi + (xf − xi) fx−y

y = yi + (yf − yi) fx−y

z = zi + (zf − zi) fz

(5.4)

where the subscript “i” and “f” denote the starting (initial) and ending (final) structures,

respectively. Both fx−y and fz range from 0 to 1, and they can be set independently.

10×10 uniform grids were adopted for the intermediate structures. In the total energy

calculation of each structure, by fixing the internal coordinates, we allowed the external

parameters to relax. Because this transition is observed to occur at room temperature, it

is a good approximation to use enthalpy instead of Gibbs free energy to investigate the

phase transition. The enthalpy landscape and its contour plot as functions of fx−y and fz

at 38.5 GPa are shown in Figure 5.13. Two minimum points correspond to β (0, 0) and

P3 (1, 1) structures. The transition path is given by the gradient curve connecting the two

minimum points. It will pass the saddle point which provides the transition barrier height.

The pathway we predict is close to the linear path that fx−y and fz vary at similar paces.

The calculated saddle point locates at (0.6, 0.5) and the corresponding enthalpy barrier is

67.23 meV/atom. To overcome this barrier, certain activation temperature is necessary to
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stimulate the atomic vibrations to a level that is comparable to ∆H. Using Dulong and

Petit law E = 3kBT , the “threshold” activation temperature is estimated to be 260 K,

which is lower than the room temperature. Since all the internal coordinates are fixed in

our calculation, the activation temperature should be considered as an upper limit to its

actual value. The β→P3 transformation should be interpreted as a low-barrier transition

induced by softening phonon modes.
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Figure 5.13: Enthalpy landscape and its contour plot as a function of fxy and fz at the
transition pressure of 38.5 GPa.

It is interesting to point out that the new P3 phase is dynamically stable above the

transition pressure (i.e., 38.5 GPa). However, one of its TA branch shows a tendency to

vanish at K point below the transition pressure. The atomic displacements according to

the K-point softening mode suggest a structure which still belongs to P3 symmetry, but

the unit cell is three times larger than the previous P3 phase, i.e., six formula units per

primitive unit cell. To distinguish with the previous P3-Si3N4, we will denote this second

P3 structure as P3′ phase later on. Taking the P3′ structure as the initial structure,

we performed total energy calculations with both internal and external parameters being

full relaxed. P3′ phase is found to exist only between the volume of 8 Å3/atom and 8.75

Å3/atom. Its structure relaxes back to the β structure for volumes larger than 8.75 Å3/atom

and becomes P3 phase for volumes smaller than 8 Å3/atom. Its energy is slightly lower than
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that of P3 phase by merely a few meV/atom. The structure of P3′ phase is very similar to

P3 phase except the z coordinates of each P3 Wyckoff site split into three different values

with small deviations. In another word, the P3 phase is a special case of the P3′ structure.

As indicated in the calculated enthalpy landscape shown in Figure 5.13, the transition path

is close to the linear path along which fxy and fz vary cooperatively. If we take P3′ phase as

an intermediate state connecting β and P3 structures, the enthalpy barriers at 30 GPa and

38.5 GPa are shown in Figure 5.14 together with the barriers from direct β→P3 transition

as a comparison. The barrier heights along two paths are very comparable. The ∆H in

β→P3′→P3 path is lower than the β→P3 path by only 5.6 meV/atom at 38.5 GPa and

9.8 meV/atom at 30 GPa.
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Figure 5.14: Enthalpy barrier (relative to β phase) as a function of linearly interpreted
transition parameter at 30 GPa (thinner) and the transition pressure of 38.5 GPa (thicker).
Solid curves denote the β→P3′→P3 path and the dashed curves denote direct β→P3 path.
Horizontal axis is defined as qualitative structural similarity. The left end represents β
structure and the right end represent P3 structure.

Our predicted P3 phase has a hexagonal symmetry which is different from what Zerr

proposed based on the EDXD pattern78. However, the interplanar spacings for the six

peaks he observed could also be assigned to a crystal system with hexagonal symmetry. A

supportive evidence is that Soignard et al.81 observed a similar β→P3 metastable transition
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in Ge3N4. They claimed that Zerr’s δ-Si3N4 is likely to be analogous to their observed δ-

Ge3N4 based on comparison of the X-ray diffraction and Raman data. More experimental

works are needed to confirm the structure of δ phase.

5.6 Thermodynamic Properties

As a direct by-product of our thermodynamic potential calculation, we derived ther-

mal properties for α-, β-, and γ-Si3N4 over a wide T -P range. In our vibrational Helmholtz

free energy calculations, at each temperature, the data points of eight volumes (from 9.25

Å to 11.0 Å) were fitted to the second-order BM-EOS by the least square fitting algorithm.

Note that the static EOS Estatic(V ) is fitted with the 3rd-order BM-EOS models. Fig-

ure 5.15 shows the temperature dependence of the volume thermal expansion of β-Si3N4

at zero pressure. The experimental data are widely scattered in both low T and high T

regions which may be attributed to the lack of good-quality single crystal samples. There-

fore first-principles calculated thermal properties of bulk β-Si3N4 can serve as a guide for

interpretation of experiments. To illustrate the numerical uncertainties associated with

the choices of different thermal BM-EOS models, we also include the results that are de-

rived from the static energies fitted with 2nd-order BM-EOS. The two set of calculations

both agree reasonably with experimental data. Below room temperature the two calculated

curves are almost identical, and they gradually split as temperature increases. At T = 2000

K, the TEC is 1.19 × 10−5 K−1 for EOS-I (Estatic fitted with 2nd-order BM-EOS and Fvib

fitted with 2nd-order BM-EOS) and 1.11×10−5 K−1 for EOS-II (Estatic fitted with 3rd-order

BM-EOS and Fvib fitted with 2nd-order BM-EOS). The thermal expansivity of EOS-I fits

slightly better to the experimental results. For temperatures lower than 150 K our calcula-

tion shows negative thermal expansion, and this has also been pointed out by Kuwabara et

al. in their calculations71. At low temperatures of T < 500 K, our prediction agrees well to

the measured data except Reeber’s, which is apparently different from the others. For tem-

peratures T > 800 K, Henderson’s data has a nearly linear temperature dependence which
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is questionable. In most temperature range, our calculated thermal expansion coefficient

from EOS-I is consistent with Bruls’ results.
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Figure 5.15: Temperature dependence of volume thermal expansion coefficient of bulk β-
Si3N4 at zero pressure. Solid and dashed lines show present work with static energies
fitted to the 2nd-order BM-EOS and 3rd-order BM-EOS, respectively, and both thermal free
energies fitted to the 2nd-order BM-EOS. Discrete symbols denote experimental data83–86.

The negative thermal expansion coefficient below 150 K can be related to the negative

bulk Grüneisen parameter γ in that temperature range. α = γCV /(BT V ). Figure 5.16

shows our calculated Grüneisen parameter of β-Si3N4 together with reported experimental

data. The present temperature dependence of bulk Grüneisen parameter is in good agree-

ment with Bruls’ measured data in the temperature range between 300 K and 1300 K.

The estimated percentage difference between experiment and calculation is within 10% for

300 K< T <500 K and the difference is gradually reduced to about 2% at T = 1300 K.

Also, one can notice that the Grüneisen parameter is not sensitive to the two EOS schemes

we used. The EOS-I scheme yield a larger thermal expansivity and larger volume at high

temperatures, while the EOS-II scheme yield a larger isothermal bulk modulus, and both

EOS schemes give very similar CV curves at all temperatures. The cancelation effect leads

to the similarity in the bulk Grüneisen parameter.

The bulk Grüneisen parameter is the weighted average of mode Grüneisen ratios. At

low temperature, only low-frequency phonons, which mostly have negative mode Grüneisen
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Figure 5.16: Temperature dependence of bulk Grüneisen parameter of β-Si3N4 at zero
pressure. Solid and dashed lines show present work with static energies fitted to the 2nd-
order BM-EOS and 3rd-order BM-EOS, respectively, and both thermal free energies are
fitted to the 2nd-order BM-EOS. Discrete symbols denote experimental data85.

ratios, are thermally excited. This yields the negative overall bulk Grüneisen parameters

and consequently it leads to the negative thermal expansion coefficients. The two branches

that corresponding to the most negative mode Grüneisen parameters are found to be the

softening M-point TA and Γ-point Bu modes, which are responsible for the instability of

β-Si3N4 at high pressures.

Figure 5.17 shows the calculated TEC of β-Si3N4 based on EOS-II as a function of

temperature at several pressures up to 30 GPa. As pressure increases from 0 to 30 GPa, the

TEC decreases from 1.11 × 10−5 to 0.69 × 10−5 K−1 at 2000 K temperature. The negative

TEC range extends from below 150 K at 0 GPa to 220 K at 30 GPa. The most negative

TEC value also decreases from −3.11 × 10−7 to −5.09 × 10−7 K−1. This pressure effect of

TEC in β-Si3N4 is in agreement with the calculated pressure effect on low frequency phonon

modes and the soft-phonon associated structural instability discussed in earlier sections.

Isobaric heat capacity per atom as a function of temperature at zero pressure is shown

in Figure 5.18. First, both EOS schemes yield very alike curves throughout the plotted tem-

perature region, which implies that CP is not sensitive to the equation of states adopted.
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Figure 5.17: Temperature dependence of volume thermal expansion coefficient of bulk β-
Si3N4 at pressures of 0, 10, 20 and 30 GPa.

Below room temperature our calculations are in excellent agreement with all shown exper-

imental results, and the agreement is still good above room temperature except Reeber’s

data. Note that Reeber’s data are considerably different from other experimental results

and theoretical calculations in both thermal expansivity and isobaric heat capacity. At the

same time, we find a persistent agreement with the Bruls’ measurements for both CP and

TEC.

Figure 5.19 shows the temperature dependencies of TEC for α-, β- and γ-Si3N4 at

zero pressure. The equation of state scheme we adopted is EOS-II. We also present the

experimental TEC of γ-Si3N4 in the same plot. Although the two experimental works do

not agree well with each other, our prediction is consistent with Paszkowicz et al. below

room temperature and the agreement is still reasonable in the temperature range from

300 K to 1000 K. More high quality measurements are required to assess the TEC of γ-

Si3N4. Thermal expansion coefficients of α- and β-Si3N4 are similar in magnitude over all

temperatures and their difference at 2000 K is less than 2×10−6 K−1. In Kuwabara et al.’s

calculation, TEC of α phase was predicted to be slightly smaller than that of β phase. This

might be ascribed to the sensitive nature of TEC upon the numeric fluctuation of thermal

data. Both α and β phases present negative TEC at low temperature which is consistent
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Figure 5.18: Temperature dependence of isobaric heat capacity of β-Si3N4 at zero pressure.
Solid and dashed lines show present work with static energies fitted to the 2nd-order BM-
EOS and 3rd-order BM-EOS, respectively, and both thermal free energies are fitted to the
2nd-order BM-EOS. Discrete symbols denote experimental data85–88.

with the first-principles calculation from Kuwabara et al. The lowest TEC for the α phase

is about −1.5 × 10−7 K−1 at 90 K, and for the β phase it is −3.1 × 10−7 K−1 at 100 K.

Unlike α- and β-Si3N4, TEC of γ phase is about twice as large as the that of α- or β-Si3N4

in the temperature range from room temperature to 2000 K. At 2000 K, we predict a TEC

of 2.3 × 10−5 K−1 which is in good agreement with Kuwabara et al.’s ab initio calculated

2.2 × 10−5 K−1. Paszkowicz et al. pointed out that their measured TEC tends to vanish

for T < 100 K90. However, our calculation is not clearly supportive. Similarly, two other

first-principles calculations from Paszkowicz et al. and Kuwabara et al. do not show the

negative or vanishing feature either.

5.7 Conclusions

In summary, we have theoretically studied phase transitions in silicon nitride (Si3N4)

at high pressure using a first-principles density functional theory method. We find that

α-Si3N4 remains as a metastable phase at temperatures up to 2000 K and pressures up

to 10 GPa. The equilibrium β→γ transition pressure is predicted as 7.5 GPa at 300K
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Figure 5.19: Temperature dependence of volume thermal expansion coefficient of α-, β- and
γ-Si3N4 at zero pressure. Discrete symbols represent experimental data89,90.

and it increases to 9.0 GPa at 2000K. Both α- and β-Si3N4 are dynamically stable at low

pressure. However, two competing phonon-softening mechanisms are found in the β phase

at high pressures. At room temperature, β-Si3N4 is predicted to undergo a first-order

β→P3 transition above 38.5 GPa, while α-Si3N4 shows no signs of structural instability.

The predicted metastable high-pressure P3 phase is structurally related to β-Si3N4. The

enthalpy barrier height is estimated as only 67.23 meV/atom. Our LDA predicted thermal

expansion coefficient, heat capacity and bulk Grüneisen parameter are in good agreement

with Bruls’ measured results. We find relatively large discrepancies between our calculation

with experimental data from Reeber. And we attribute the cause of predicted negative

TEC at low temperatures in α and β-Si3N4 to the low-frequency phonon modes that have

negative mode Grüneisen ratios.
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Chapter 6

FIRST-PRINCIPLES STUDY OF GALLIUM OXIDE AND GALLIUM

OXYNITRIDE

6.1 Gallium Oxide: Ga2O3

6.1.1 Introduction

The oxides of group 13 elements (Al, Ga, In) are important solid-state compounds with

applications in fields ranging from structural ceramics to catalysts and electronic materi-

als201. Monoclinic gallium oxide (Ga2O3) is usually known as a wide-band-gap semiconduc-

tor (Eg = 4.9 eV) ; however, the conductivity can be varied from insulating to conducting

behavior depending upon the preparation conditions93. Due to its tunable optical and elec-

tronic properties, β-Ga2O3 is being developed for use in a wide variety of applications, for

instance, as optical windows202, in high-temperature chemical gas sensors203, as a mag-

netic memory material204, and for dielectric thin films205. Recently, considerable effort has

been devoted to the study of low-dimensional Ga2O3 materials, and β-Ga2O3 nanowires

have been obtained through physical evaporation and arc-discharge methods101. β-Ga2O3

has also attracted recent interest as a phosphor host material for applications in thin film

electroluminescent displays206,207. Due to its chemical and thermal stability, β-Ga2O3 may

emerge as a useful alternative to sulfide based phosphors208.

It is well known that Ga2O3 can exist in several forms, including α, β, γ, δ, and ǫ poly-

morphs that all have different structure types94. Of these, the most stable form at ambient

conditions is determined to be β-Ga2O3 (monoclinic C2/m, Figure 6.1)94. However, other

metastable varieties can be prepared and they have been characterized at ambient pressure

and temperature. This is an important observation, because the different forms have dra-

matically different optoelectronic properties. For example, the band gap of the α-Ga2O3
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Figure 6.1: Crystal structure of monoclinic β-Ga2O3 phase. Note that Ga3+ cations (light
color) occupy both tetrahedral and octahedral interstices within the ccp lattice of O2− ions
(dark color).

polymorph that is isostructural with corundum (α-Al2O3) is 2.41 eV, much narrower than

that of β-Ga2O3
209.

It is of great interest to determine the pressure-induced phase transformations among

Ga2O3 polymorphs in order to establish the stable and metastable phase relations between

different crystalline modifications, and to evaluate their production under different synthe-

sis conditions. It is particularly important to understand the role of differential mechanical

stresses that are present in creation of nanoparticles or nanowires, in promoting the forma-

tion of specific polymorphic forms.

The high-pressure behavior of Al2O3 compounds has been studied extensively, par-

ticularly the corundum-structured α-Al2O3 phase, because of its importance as a mineral

structure within the deep Earth and also due to the widespread use of ruby (Cr3+-doped

α-Al2O3) as a luminescent pressure gauge for in situ high-pressure experiments in the di-

amond anvil cell1. Cr3+-doped β-Ga2O3 has likewise been proposed as a pressure gauge

material. The R1 luminescence line in this phase shows a pressure shift nearly three times

that of ruby, indicating that it would make a more sensitive pressure sensor that is especially
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useful in the lower pressure range210. In situ high-pressure and high-temperature measure-

ments on α-Al2O3 using synchrotron x-ray diffraction in a diamond anvil cell, combined

with ab initio theory predictions, have now been used to characterize a transition into the

Rh2O3-II structure occurring at P ∼ 100 GPa and T >∼ 1000 K5,8.

The high-pressure behavior of Ga2O3 has received much less attention. The vari-

ous low-density Ga2O3 structures encountered at low pressure contain the Ga3+ cations in

tetrahedral coordination (i.e., GaO4 species). The thermodynamically stable β-Ga2O3 poly-

morph is isomorphous with the metastable θ-Al2O3 structure, which represents a key phase

achieved during metastable transformations among various partially dehydrated “transi-

tional” aluminas as they evolve towards corundum211. θ-Al2O3 constitutes an intermediate

structure between the cubic close packing of anions achieved within the low-temperature

metastable aluminas, and hexagonally close-packed α-Al2O3 corundum (isomorphous with

α-Ga2O3).

In a recent study using synchrotron energy-dispersive x-ray diffraction techniques in

the diamond anvil cell, it was reported that a sample of “α-Ga2O3” transformed to a

structure assigned to be tetragonal at a pressure of approximately 13.3 GPa.212 However,

the x-ray diffraction pattern of the starting material most strongly resembled that of β-

Ga2O3, rather than the α-form, and a mixture of phases was present. Commercial Ga2O3

samples usually consist mainly of β-Ga2O3, along with some α-Ga2O3; that phase can

be removed by heat treatment94. The relative densities of β- and α-Ga2O3 are 5.94 and

6.48 g·cm−3, respectively95, indicating that a β→α transformation should occur at high

pressure. Nanocrystalline β-Ga2O3 particles embedded in a glassy matrix were also studied

at high pressure using energy-dispersive x-ray diffraction96. In that work, a β-to-α phase

transformation was found to be initiated at 6 GPa, but the process was not completed

by 15 GPa, the highest pressure achieved in the study. However, it is known that the

silica glass host matrix undergoes important structural and density changes within this

pressure range97,98, so that it is not yet known if the structural changes are intrinsic to the

β-Ga2O3 material presumably influenced by the nanocrystalline nature of the sample , or
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are promoted by anomalous densification among the SiO2 matrix. These results prompted

us to theoretically investigate the high-pressure behavior of the phase-pure bulk β-Ga2O3,

accompanied with an experimental study using Raman spectroscopy and high-resolution

synchrotron x-ray diffraction angle dispersive techniques.

Recently, two further pressure-induced phase transitions have been confirmed from

both first-principles calculations and high-pressure x-ray diffraction measurements using

laser-heated diamond-anvil cell (LHDAC). The further transition sequence found in Ga2O3

is the same as that in Al2O3, i.e., α→Rh2O3(II)→postperovskite (Cmcm CaIrO3-type).

The experimentally determined Pt for these two transitions are ∼37 GPa at 2000±100 K

and 164 GPa at 1300±500 K.

One-dimensional nanostructured forms of β-phase of gallium oxide (β-Ga2O3) such

as nanotubes, nanobelts, and nanowires, have attracted recent interest due to enhanced

optical properties99,100. Recently, Choi et al.101 synthesized β-Ga2O3 nanowires (diameter

range of 15–45 nm) with a [001] growth direction using an arc-discharge method. Gao

et al.102 synthesized [401̄] β-Ga2O3 nanowires with diameters ranging from ∼10–100 nm

in a vertical radio-frequency furnace. Interestingly, the Raman mode frequencies of the

[001] β-Ga2O3 nanowires coincide with the corresponding frequencies in bulk β-Ga2O3
101.

On the other hand102, the Raman mode frequencies of the [401̄] β-Ga2O3 nanowires are

redshifted relative to corresponding frequencies in bulk β-Ga2O3 by 4–23 cm−1. Using

plasma-enhanced chemical vapor deposition, Rao et al. have synthesized β-Ga2O3 nanowires

whose growth is along the [110] direction103, and the Raman spectrum is significantly

blueshifted in frequency104. Here we focus on the first-principles calculations of the Raman

mode frequencies under internal strains. Our calculated Raman frequency shifts suggest

that the observed shifts in the nanowires with the [401̄] and [110] growth directions can

be explained in term of different internal strains, in contrast to the previously suggested

quantum confinement effects and defect-induced effects.
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Table 6.1: Third-order BM-EOS parameters for Ga2O3 polymorphs

Source Phase V0 (Å3/atom) B (GPa) B′

This work β 10.134 177 3.84
Calculation214 10.228 142 4.1
Experiment213 202(7) 2.4(6)
Experiment96 191(5) 8.3(9)
Experiment214 10.462 134(12) 4

This work α 9.375 226 3.971
Calculation214 9.448 243 4.0
Experiment213 ∼250
Experiment214 9.632(1) 223(2) 4

This work Rh2O3(II) 9.130 234 3.98
Calculation214 9.188 244 4.3
Experiment214 9.244(4) 271(10) 4

6.1.2 Total Energy and Vibrational Properties

During the course of the experimental studies from our collaborators104,213, we began

a parallel theoretical investigation of the structures, relative energetics, and properties of

Ga2O3 phases. Our calculations are based on the first-principles density functional theory

within the local density approximation (LDA). The calculations were carried out with the

VASP codes139–142, using planewave basis sets and ultrasoft pseudopotentials (US-PP)121.

In this study, both valence (4s4p) and semi-core (3d) electrons in Ga atoms were treated

explicitly, while the core electrons were approximated with the US-PP. The energy cutoff of

the plane-wave basis was chosen as 396 eV. The Brillouin zone integration of total energy

of the unit cells was carried out using 6 × 6 × 6 grids for both phases.

Equilibrium volume V0, bulk moduli B and B′ for β, α and Rh2O3(II) phases are

obtained from the least-square fitting to the 3rd-order Birch-Murnaghan equation of state.

Fitting parameters V0, B and B′, are listed in Table 6.1. Our LDA results agree reasonably

with other calculated and experimental data. Compared with the experimental values of

V0, our prediction has an underestimation of less than 3%. The static enthalpies of three

polymorphs relative to the α phase are plotted in Figure 6.2 as a function of pressure. It
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Figure 6.2: Enthalpy differences relative to α phase for α, β and Rh2O3(II)-Ga2O3 as a
function of pressure up to 60 GPa. The β and α curves cross at 0.5 GPa, the α and
Rh2O3(II) curves cross at 40.9 GPa.

can be seen that β phase is predicted to transform into α phase at 0.5 GPa and α phase

further transforms into Rh2O3(II) phase at 40.9 GPa.

The phonon dynamical matrices Dij (k) were constructed at the Brillouin zone center

(Γ-point: k = 0) using a (realspace) force constant matrix φij (r) by calculating forces on

each atom as it is slightly displaced from its equilibrium position (e.g., by 0.015 Å). Further

approximations were adopted to calculate the Dij (k) matrix at a general k-point. In the

case of α-Ga2O3, we first obtained the real space φij (r) matrix using a 120-atom supercell

model. Because of the large size of the supercell model, and the fact that the material is

insulating wide-gap semiconducting , we can safely neglect interatomic interactions between

atoms separated by >50% of the supercell lattice constants, and thus obtain Dij (k) by

Fourier transformation of the real-space matrix elements φij (r).

Fifteen Raman-active modes are expected for the β-Ga2O3 structure (point symmetry

C3
2h) from symmetry analysis:

ΓRaman = 10Ag + 5Bg (6.1)
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Table 6.2: Calculated and experimental zone-center Raman peak positions and Grüneisen
parameter for the β-Ga2O3 phase

Frequency (cm−1) Grüneisen ratio
calculated measured

Mode This work Empirical This work
symmetry (LDA) calculation215 Machon et al.213 Rao et al.104 (LDA) (measured213)

Ag 104 113 110.2 1.39
Bg 113 114 113.6 -0.7
Bg 149 152 144.7 144 1.53 1.97(8)
Ag 165 166 169.2 169 1.00 0.35(3)
Ag 205 195 200.4 200 1.30 0.98(2)
Ag 317 308 318.6 317 1.13 0.95(1)
Ag 346 353 346.4 344 1.83 1.52(1)
Bg 356 360 1.47
Ag 418 406 415.7 416 0.58 0.78(4)
Ag 467 468 472 1.26
Bg 474 474 473.5 1.14 1.27(9)
Ag 600 628 629 1.70
Bg 626 644 628.7 0.8 1.54(3)
Ag 637 654 652.5 654 1.39 1.39(2)
Ag 732 760 763.9 767 1.23 1.11(1)

The calculated frequencies and their mode Grüneisen parameters are reported in Ta-

ble 6.2. The Raman-active modes of β-Ga2O3 can be classified into three groups: high-

frequency stretching and bending of GaO4 tetrahedra (∼770–500 cm−1), midfrequency de-

formation of Ga2O6 octahedra (∼480–310 cm−1) , and lowfrequency libration and transla-

tion (below 200 cm−1) of tetrahedra-octahedra chains215. The listed experimental values of

Machon et al. are from an unpolarized Raman spectrum of β-Ga2O3 recorded from pow-

dered material obtained by annealing a commercial sample213. Our calculated frequencies

agree well with the observed values, to within 0.1%–6%, which is typical for LDA calcula-

tions (Table 6.2). The Bg mode predicted at 356 cm−1 was likely unresolved from the Ag

mode at 346 cm−1 in the measured Raman spectrum213; however, a weak peak at this fre-

quency was recorded by Dohy et al.215. The band observed at 474 cm−1 also likely contains

contributions from the calculated Ag and Bg modes at 467 and 474 cm−1. Surprisingly,

we found no experimental evidence for the predicted Ag mode at 600 cm−1. We have no

explanation for that observation. Symmetry analysis indicates that seven Raman active

modes (2A1g + 5Eg) are expected for the corundum structure. Our theoretically calculated

frequencies agree to within 0.7%–5.5% with the observed values (Table 6.3).
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Table 6.3: Calculated and experimental zone-center Raman peak positions for the α-Ga2O3

Frequency (cm−1)
Mode symmetry (calculated) (measured)

A1g 215 217.4
Eg 239 240.8
Eg 281 286.1
Eg 344 328.7
Eg 410 432.2
A1g 551 573
Eg 680 688.1

6.1.3 T -P Phase Diagram

The monoclinic β-Ga2O3 structure is the stable polymorph at ambient pressure and

temperature. In this phase, the O2− anions form a slightly distorted fcc lattice and cations

occupy tetrahedral and octahedral interstices (Figure 6.1). This structure is quite different

from that of the α-Ga2O3 phase (corundum structure), which is based on a distorted hcp

O2− sublattice with 2/3 of the octahedral interstices occupied by Ga3+ ions . The β→α

transition is expected to result from increasing the pressure, from the observed density

relationships between the two phases. The transformation involves a change in the O2−

packing from cubic to hexagonal, accompanied by a shift in Ga3+ ions between tetrahedral

and octahedral sites. The reconstructive nature of the transition indicates that it is ther-

modynamically of the first order, and it might be expected to involve a large activation

energy, which gives rise to slow transformation kinetics at low temperature. In addition,

the high-density structure has significant possibilities for disorder among the Ga3+ positions

on octahedral sites within the hcp O2− sublattice, which might not be readily detected by

x-ray diffraction8.

β-α and α-Rh2O3(II) phase boundaries of Ga2O3 are plotted in Figure 6.3. The cal-

culated transition pressure from β to α phase is 0.3 GPa at 0 K and 1.6 GPa at 2000

K. The Clapeyron slope for this transition is positive which has the value of about +0.6

MPa/K at 1000 K. Our predicted Pt is consistent with reported LDA calculation from Yusa

et al 214. On the experimental side, α-Ga2O3 was synthesized from β-Ga2O3 at 4.4 GPa
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Figure 6.3: T -P phase diagram for β, α and Rh2O3(II)-Ga2O3 polymorphs.

and 1000 ◦C95,216. However, the room temperature compression experiments obtain much

higher transition pressures. Tu et al. have reported a β-to-α phase transition in Ga2O3 at

13.3 GPa212. But there is some uncertainty in the nature of the starting material used in

that work. Recently, x-ray diffraction and Raman scattering results from Machon et al.213

on β-Ga2O3 clearly indicate that a pressure-induced phase transformation occurs within

the P = 20 − 22 GPa range, and perhaps as low as P = 18.5 GPa. Analysis of the x-ray

diffraction data suggest that the high-density phase corresponds to corundum-structured

α-Ga2O3. However, broadening observed both in the x-ray diffraction peaks and in the

Raman spectra indicate that the material is structurally disordered. The large discrepancy

on Pt may be caused by a large kinetic barrier, which is significantly lowered under com-

pression. Our calculated α-to-Rh2O3(II) transition pressure is 40 GPa at 0 K and 37 GPa

at 2000 K, which is in excellent agreement with the experimental value (about 37 GPa at

2000±100 K)214. The phase boundary we predict shows negative Clapeyron slope which is

about -1.65 MPa/K at 1000 K. Tsuchiya et al. reported their calculated Clapeyron slope

of the α-Rh2O3(II) boundary, which is -2.2 MPa/K at 1000 K217. The discrepancy may be

ascribed to the adopted computational methodologies.
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6.1.4 Blue-Shifted Raman Scattering in Gallium Oxide Nanowires

Rao et al.104 reported the Raman and Fourier transform infrared spectra of β-Ga2O3

nanowires with [110] growth direction which is blueshifted relative to the bulk spectra by

10–40 cm−1. The blueshift in phonon frequencies of low-dimensional materials are often

attributed to the size-confinement effect218,219. However, the average diameter of the β-

Ga2O3 nanowires is around 25 nm. It is unlikely that the quantum size confinement at

this length scale is significant enough to cause the phonon shifts as large as 50 cm−1.

Furthermore, three distinctly different shift patterns have been experimentally observed for

the β-Ga2O3 nanowires of different growth directions. In contrast to the blueshift in the

Raman and FTIR spectra reported by Rao et al., Choi et al. showed that their Fourier

transform Raman spectrum of [001] β-Ga2O3 nanowires is identical to that of bulk β-

Ga2O3
101, while Gao et al. exhibited a redshift of 4–23 cm−1 in the Raman peak frequencies

of their [401̄] β-Ga2O3 nanowires relative to the corresponding Raman frequencies in bulk

β-Ga2O3
102. The size confinement effect is clearly insufficient to explain the diversity of

the observed shift patterns.

On the other hand, the redshift in the phonon frequencies has also been attributed to

the presence of impurities and defects, such as point defects, twins, and stacking faults220.

These defects are also likely to be responsible for additional vibrational modes observed

in the Raman spectra (and to a small extent in the FTIR spectrum) of nanowires. From

a detailed high-resolution transmission electron microscopy (HRTEM) study, Gao et al.

confirmed the presence of twins and edge dislocations in their nanowires102. Dai et al.221

also proposed that the O vacancies and the stacking faults caused an abnormality in the

Ga–O bond vibration and led to redshift in the Raman frequencies. Although this simple

hypothesis is plausible, there is one obvious weakness, i.e., lack of close correlation between

defect types and the growth directions. Presumably, similar defects might exist in the

nanowires with different growth directions. It is also not clear which types of defects will lead

to a blueshift in vibrational frequencies. Moreover, different regions in the nanowires contain

different defects which would imply that different shifts in the Raman and/or IR spectra
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should be observed when different regions of the same nanowire are probed. However, this

does not seem to be the case and instead overall distinct blueshifts or redshifts have been

observed for a given nanowire. Therefore, alternative models that are capable of describing

these diverse peak-shift patterns in a consistent fashion are needed.

Based on a first-principles calculation which we describe next, we propose that the

phonon frequencies in different β-Ga2O3 nanowires are shifted as a result of internal strains

in the nanowire. The basic assumption of our model is the presence of non-negligible internal

strains in the nanowires due to their large surface/volume ratio. Different growth direc-

tions will cause different surface reconstruction, and consequently lead to internal strains

of different magnitudes and directions. This model provides a consistent explanation for all

three aforementioned Raman spectra.

Direct first principles calculations of phonon frequencies of 25-nm-diam nanowires is a

computationally challenging task as large supercell models (of at least tens of thousands of

atoms) are needed. Instead, our current computation study focuses on providing a quan-

titative estimation of the internal strains which can account for the observed blue- and

redshifts in the Raman frequencies for [110] and [401̄] β-Ga2O3 nanowires, respectively.

We have calculated the strain dependencies of the bulk β-Ga2O3 using a density functional

theory (DFT) method. The internal strains of the nanowires were estimated based on the

least-squares fitting of the experimentally observed Raman frequency shifts with theoret-

ically predicted linear strain coefficients dω/dεij , where ω and εij are Raman frequencies

and components of strain tensors, respectively.

The Γ-point phonons of bulk β-Ga2O3 were calculated with a real-space finite displace-

ment technique129. Because of its C2h space-group symmetry, the LO-TO splitting in the

optic modes of β-Ga2O3 only exist for the infrared (Au and Bu) phonon modes, not the

Raman active (Ag and Bg) phonon modes. Therefore, all our Raman frequency calculations

of β-Ga2O3 were carried out with 10-atom base-centered monoclinic unit-cell model without

the correction for the macroscopic interaction. As shown in Table 6.2, the theoretical data

for bulk β-Ga2O3 matches well with 13 out of the 15 Raman active (10Ag + 5Bg) modes
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Table 6.4: Estimated internal strains
[110] [401̄]

Strain nanowire nanowire

ε11 -0.0077 0.0029
ε22 0.0180 -0.0064
ε33 -0.0311 0.0106
ε13 0.0233 -0.0256
∆V/V -0.0208 0.0071

observed experimentally104, as well as those of the previous study of Dohy et al 215. In both

cases of the unobserved Raman modes, there is another Raman active mode in the close

proximity. For example, our LDA calculations predicted two Raman modes at 469 and 474

cm−1, and two Raman modes at 601 and 629 cm−1. This suggests that it is possible that

the two “missing” Raman modes are hidden by the stronger adjacent Raman modes.

The strain tensor of this monoclinic crystal has six independent elements, ε11, ε22,

ε33, ε23, ε13 and ε12. For simplicity, we restricted this study to linear effects, i.e., ω (ε) ≈

ω0 +
∑

(dω/dεij)× εij . This approximation is valid for small strains. We further neglected

the strain of ε23 or ε12 because their dω/dεij coefficients are zeroes due to the monoclinic

lattice symmetry. For each of four remaining types of strains (ε11, ε22, ε33, and ε13), the

Raman frequencies were calculated for five finite strain values between -0.02 and +0.02.

The calculated frequencies were then fitted with a polynomial function to obtain the linear

strain coefficients.

Fitting the experimental data within our strain-induced phonon shifts model, we predict

the internal strains in nanowires which showed the three distinct Raman spectra. The results

of the [401̄] and [110] nanowires are listed in Table 6.4, and our model predicts the strain

tensor for the [001] nanowires contain non-negligible ε11, ε22, ε33, and ε13 components. As

shown in Table 6.5, we obtain overall excellent fits for both the redshifted and blueshifted

Raman spectra, with exception of the 134 cm−1 Bg mode in the [401̄] nanowire (Gao et al.).

Our calculation shows that the [110] nanowire is compressed along its a and c axis, and

stretched along its b axis. The strain in the [401̄] nanowire exhibits a contrasting pattern

and its strain magnitude is only about 1/3 of that evaluated for the [110] nanowire. In both
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Table 6.5: Raman mode frequencies and frequency shifts in β-Ga2O3 nanowires with the
[401̄] and [110] growth directions. Overall, excellent agreement between the observed and
calculated shifts is seen for all mode frequencies except the one marked with an *.

Gao et al.102 This work
[401̄] growth direction [110] growth direction

Frequency Calculated Frequency Calculated
Bulk Nanowire shifts frequency Bulk Nanowire shifts frequency
frequency frequency ∆ω shifts frequency frequency ∆ω shifts
(cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

-4.8 12.0
1.7 -3.1

142 134 -8* -1.0 144 3.8
167 160 -7 -7.2 169 180 +11 10.6
198 194 -4 -6.5 200 213 +13 13.5
320 -3.9 317 9.5
344 332 -12 -6.7 344 16.8

-1.7 0.7
415 409 -6 -5.3 416 428 +12 12.3
473 -4.4 472 492 +20 21.1

-6.2 18.5
627 -5.7 629 645 +16 17.8

-0.3 3.6
651 641 -10 -14.8 654 697 +43 36.4
765 742 -23 -20.6 767 810 +43 47.0

cases, the a axis has the smallest change (Table 6.4). The strain-induced volume changes

are predicted to be -2% and 0.7% for the [110] and [401̄] nanowires, respectively. Seo et

al.222 studied the internal strains of GaN nanowires using x-ray measurements and they

reported the strains of εxx=2.3%, εyy=-0.734%, and εzz=-0.4% based on their experimental

x-ray measurement. The magnitudes of our predicted strains of β-Ga2O3 are comparable

to those of GaN nanowires.

6.1.5 Conclusions

For bulk Ga2O3, we have calculated the Raman frequencies and their mode Grüneisen

parameters for β and α phases. Good agreement is achieved between our results with

experiments and other calculations. We also predict the equilibrium T -P phase diagram

of Ga2O3 consists of β, α and Rh2O3(II) phases. Our LDA calculated transition pressure

from β phase to α phase is 0.3 GPa at 0 K and 1.6 GPa at 2000 K. The Clapeyron slope
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for this transition is positive which has the value of about +0.6 MPa/K at 1000 K. This is

consistent with previous calculations. However, the experimental Pt at room temperature

is much larger (20–22 GPa). The discrepancy can be attributed to the existence of a large

kinetic barrier, which may be significantly lowered under compression. Our calculated α-to-

Rh2O3(II) transition pressure is 40 GPa at 0 K and 37 GPa at 2000 K, which is in excellent

agreement with the experimental value (about 37 GPa at about 2000 K).

In the case of nanowires, based on a comparison of the experimental Raman mode

frequencies with our first-principles calculations, we find compelling evidence for growth

direction induced internal strains in β-Ga2O3 nanowires which significantly influence the

vibrational mode frequencies. Within the linear model approximation, the observed blue

and redshifts of peak frequencies in the micro-Raman spectra of the β-Ga2O3 nanowires with

different growth directions can be attributed to two small anisotropic internal strains: one

compressive strain of 2% volume change, and the other tensile strain of 0.7% volume change.

The overall high quality of the fitted models to available experimental data suggests a strong

correlation between the shifts in Raman mode frequencies and the growth direction-induced

internal strains in the Ga2O3 nanowires.

6.2 Gallium Oxynitride: Ga3O3N

6.2.1 Introduction

Semiconducting materials with a wide bandgap are of interest for applications in high-

temperature electronics and in optoelectronic devices, particularly when the gap is direct.

The oxides and nitrides of gallium are wide-gap semiconductors that give rise to materials

that are useful in the blue to UV range at short wavelength. The cubic (sphalerite) and

hexagonal (wurtzite) forms of GaN have bandgap energies of 3.3223 and 3.4 eV224, respec-

tively. When alloyed with In and Al, hexagonal GaN-based materials with a direct gap

have been developed for use in light-emitting diodes and lasers at wavelengths extending
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from the blue to the ultraviolet range225. The thermodynamically stable β-Ga2O3 poly-

morph has a direct gap of 4.7 eV, and it has also been proposed for development as a

solid-state LED material for UV applications226. The group 13 oxynitride materials have

other useful properties related to their electronic structure. α-Ga2O3 with the corundum

structure is conveniently alloyed with Al2O3 to provide selective reduction catalysts for

gaseous NOx
105, and various other Ga2O3 phases have been proposed as gas sensors, and in

nanoscale structures as electron emitters and magnetic memory materials106. Within the

Al2O3–AlN system, several important AlxOyNz ceramic alloys and compounds are known.

At high AlN contents, layered forms based on hexagonal/cubic intergrowths are present.

As the Al2O3 content is increased, cubic spinel-structured materials begin to appear. A

large family of defect spinels (γ-Al2O3, AlxOyNz) contain vacancies on both cation and

anion sites107. A stoichiometric oxynitride spinel-structured compound is obtained at the

Al3O3N composition, in which Al3+ ions are present on the octahedral and tetrahedral sites,

and O2− and N3− occupy tetrahedral anion sites108,109.

Among the related nitride compounds Si3N4 and Ge3N4, high-pressure synthesis has

recently resulted in formation of a new class of spinel structures, that contain Si4+ and Ge4+

cations on both tetrahedral and octahedral sites110–114. The new solid-state compounds are

recoverable to ambient conditions, and they possess high hardness and low compressibility,

comparable with materials such as Al2O3-corundum107. The new group 14 nitride spinels

are also predicted to be wide direct band semiconductors, with band gaps calculated to lie

within the range 2.2-4.0 eV82,227. The analogous spinel-structured compound Sn3N4 has

also been made at ambient pressure228,229, raising the possibility of future preparation of

γ-(Si,Ge)3N4 films via metastable synthesis routes, such as chemical vapor deposition, to

yield materials compatible with optoelectronics applications, for example.

Gallium oxynitride (Ga3O3N) has been predicted to form a new spinel-structured com-

pound within the Ga2O3–GaN system, with potentially useful electronic properties115,116.

It is predicted to be a direct wide bandgap semiconductor, comparable with GaN115. There
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has previously been an experimental report of a cubic gallium oxynitride phase with com-

position close to Ga2.8O3.5N0.5, that formed metastably during GaN thin film synthesis

from chemical precursors117,118. Here, we report our first-principles theoretical study of the

formation energetics, stability, and electronic properties of the Ga3O3N spinel-structured

phase, combined with experiments using a combination of high pressure-high tempera-

ture techniques to establish the formation and stability of spinel-structured Ga3O3N from

Ga2O3+GaN mixtures, and to determine the chemical composition, structure and proper-

ties of the resulting materials.

6.2.2 Total Energy Calculations of GaN and Ga3O3N

In order to obtain the Gibbs free energy of formation of gallium oxynitride, Gibbs free

energies of Ga2O3, GaN and Ga3O3N are required. As an approximation, assuming a can-

celation effect on the vibrational entropies between Ga2O3+GaN and Ga3O3N, the static

formation enthalpy ∆H (P ) is adopted as an estimation of ∆G (T, P ). Enthalpies of Ga2O3

polymorphs as a function of pressure has been shown in section 6.1.2. For GaN, previous

studies showed that the ground wurtzite structure undergoes a phase transition into the

rocksalt structure at high pressure. The experimentally observed transition pressure is at

37-52 GPa230–232 and the theoretically calculated Pt is 35-52 GPa43,233–235. In this study,

the synthesis pressure of Ga3O3N (several GPa) is much lower than the WZ-to-RS Pt of

GaN. Therefore the only polymorph we considered for GaN is the wurtzite phase, which

is one of the starting materials (99.99% Ga2O3, containing a mixture of α+β phases, and

99.99% pure GaN) in the experimental work236. Here, we first present our total energy

calculation of wurtzite-GaN and spinel-Ga3O3N. The calculation was on the basis of first-

principles density functional theory (DFT), implemented by the VASP code139–142. The

many-electron exchange-correlation interaction was approximated within the local density

approximation (LDA). For parts of the study that were associated with small energy dif-

ferences, we compared the LDA results with calculations using the generalized gradient

approximation (GGA). To improve numerical efficiency, core electrons were approximated
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Table 6.6: Third-order Birch-Murnaghan EOS parameters, zero pressure structural param-
eters for wurtzite GaN

Source B0 (GPa) B′ a (Å) c/a u

This work (LDA) 198 4.01 3.144 1.631 0.376
This work (GGA) 175 4.15 3.187 1.633 0.375
Calculation43 196 4.3 3.180 1.632 0.376
Calculation184 172 5.11 1.632 0.376
Experiment230 245 0.377
Experiment231 188 3.2 3.191 1.626
Experiment232 237 4.3 3.191 1.627 0.377

with ultrasoft pseudopotentials (US-PP)121, and only the s and p valence electrons in these

elements and the semicore 3d electrons in Ga were treated explicitly. The wave functions of

the valence and semi-core electrons were expanded using a planewave basis, with a kinetic

energy cut-off set at 348 eV for GaN and 396 eV for Ga3O3N.

The calculated static energies at various volumes are fitted to the 3rd-order Birch-

Murnaghan EOS. General agreement of fitting parameters, B0 and B′, and zero pressure

structural parameters is achieved between our calculation with other reported values (Table

6.6). GGA calculated bulk modulus is about 12% less than that of the LDA value, which

is also the case from other calculations. The experimental B0 is scattered from 188 to 245

GPa, as well. Despite of the underestimation of B0, the lattice parameter a by GGA gives

a better agreement with other reported values.

Results for Ga-O-N phases relevant to the synthesis of the spinel-structured Ga3O3N

oxynitrides and the stability and properties of that compound are described below.

6.2.3 Theoretical Study of the Synthesis, Structure, and Stability of Ga3O3N

Spinel

We performed ab initio calculations of the atomic structures and energetic properties

of the Ga3O3N systems to understand the formation and thermodynamic stability of the

spinel-structured phase. The ideal spinel crystal has an A3X4 stoichiometry (A and X

represent cations and anions, respectively) with two molecular equivalents per primitive unit
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cell corresponding to the fcc structure. Assuming a Ga:O:N ratio of 3:3:1 that corresponds

to the ideal stoichiometry , a solid of n Ga3O3N molecular units contains n tetrahedrally

coordinated Ga atoms (labeled as IV Ga), 2n octahedrally coordinated Ga atoms (V IGa),

3n O atoms, and n N atoms. The Gibbs free energy of formation of the oxynitride from a

mixture containing the corresponding oxide and nitride is defined as

∆Gformation (T, P ) = GGa3O3N (T, P ) − [GGa2O3 (T, P ) + GGaN (T, P )] (6.2)

Here G represents the Gibbs free energies for each molecular unit, and a negative ∆Gformation

corresponds to a driving force for the formation of the oxynitride. Because the oxynitride

spinel can have O or N atoms distributed among the anion sites, it is likely that there

will be a large configurational entropy term contained within ∆Gformation. A complete

statistical modeling of the Gibbs free energy of Ga3O3N material that might contain such

oxygen/nitrogen compositional disorder requires calculating a very large number of atomic

configurations using supercell models. In the first stage of our theoretical investigation, we

performed the ab initio energetic calculations with a limited number of atomic configura-

tions using (pseudo) face-centered-cubic unitcell models. We interpreted our data using a

simplified model that breaks the Gibbs energy into two terms:

GGa3O3N (T, P ) = Hground (P ) + Galloy (T, P ) (6.3)

Here Hground is the temperature-independent enthalpy of the ground-state (lowest energy)

configuration, which allows us to gain insights into the energetically favored local coordina-

tion states and their O/N ordering, and to study pressure effects on the Gibbs free energy

of formation. The temperature effects are then described by the second term, Galloy , which

models the contributions related to the O/N disorder. In this study, we ignored the entropy

contributions due to the lattice vibrations.

We first studied the pressure effects on formation of Ga3O3N by setting T = 0 K; the

Gibbs free energy of formation ∆Gformation is thus identical to the enthalpy of formation
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Table 6.7: Parameters of the third-order Birch-Murnaghan equation of states of three unit-
cell-based atomic models of the spinel-structured Ga3O3N that have the lowest energy
calculated within the LDA.

E0 V0 a0 B0 B′

model (eV/Ga3O3N) (Å3/Ga3O3N) (Å) (GPa)

I -48.109 (0.000) 69.5424 8.2246 210 4.13
II -47.966 (0.143) 69.6928 8.2357 208 4.17
III -47.854 (0.255) 69.6181 8.2275 209 4.14

∆H (P ) = ∆E + P∆V . We first carried out a search for the lowest energy unit-cell con-

figuration of the spinel-structured Ga3O3N. Among the 8!/(6!2!) = 28 configurations, there

are three crystallographically distinct O/N arrangements for (Ga3O3N)2. We used the LDA

to calculate lattice parameters at P = 1 atm and also the V (P ) relations for these three

models: the calculated third-order Birch-Murnaghan equation of state parameters for each

of these three unit-cell models are listed in Table 6.7. The configuration labeled as model

I has a rhombohedral symmetry (R3̄m). This has the lowest equilibrium energy, and it is

considered to provide the ground-state configuration of Ga3O3N in our theoretical study.

The rhombohedral distortion from the ideal cubic structure is very small; i.e., the angles

between the pseudocubic lattice vectors are 89.33◦ within the equilibrium configuration.

The calculated equilibrium volume and the bulk modulus of this ground-state configuration

compare favorably with the experimental measurements (see below). At zero pressure, our

LDA calculations predict an endothermic enthalpy of formation, with ∆H = +272 meV per

Ga3O3N unit (26.2 kJ/mol) with respect to Ga2O3 (monoclinic β phase) + GaN (hexag-

onal wurtzite structure). The LDA calculations predict a negative d∆H/dP slope (solid

line in Figure 6.4a), so the Gibbs free energy of formation becomes negative at P > 17

GPa. However, Ga2O3 does not always remains in the monoclinic β phase at high pressure.

According to our (static) LDA calculations, a β-to-α phase transition in Ga2O3 takes place

at P ≈ 0.5 GPa. More importantly, the slope of d∆H/dP becomes positive when Ga2O3

is in the α phase (dashed line plot, Figure 6.4a). The experimental phase transition has

been reported to occur between 0.1 MPa and 4.4 GPa237,238; however, a direct transition

pressure was not recorded in those studies213. Recently, Tu et al. have reported a β-to-α
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Figure 6.4: LDA-calculated formation enthalpy ∆H (i.e., Gibbs free energy of formation
∆Gformation at zero temperature) as a function of pressure using (a) LDA methods and
(b) the GGA approach. The calculated positive ∆H suggests an endothermic formation.
The solid plots are calculated assuming the oxynitrides are synthesized from β-Ga2O3 and
wurtzite GaN, and the dashed plots are calculated assuming the oxynitrides are synthesized
from α-Ga2O3 and wurtzite GaN. The solid plot and the dashed plot cross at the pressure
of the β-to-α phase transition in Ga2O3 (predicted to be 0.5 and 6.6 GPa by LDA and GGA
methods, respectively).

phase transition in Ga2O3 at 13.3 GPa212. However, there is some uncertainty in the nature

of the starting material used in that work, and Machon et al. repeated the study: he found

that the β-to-α transition occurs at P = 22 GPa213, without heating. It is obvious that the

nature of the Ga2O3 starting material, and how it transforms under high-P , T conditions,

will affect the energetics of the high-pressure synthesis experiment.

Within the present study, we repeated our calculations within the GGA (Figure 6.4b).

The GGA calculations predict a phase transition pressure for Ga2O3 of 6.6 GPa. The

GGA formation enthalpy for the Ga3O3N synthesis reaction is predicted as +370 meV

(35.6 kJ/mol) at P = 1 atm, and this value is reduced to its minimum of +245 meV (23.6

kJ/mol) at the Ga2O3 transition pressure. Despite the quantitative differences between

the two sets of calculations, the GGA results agree qualitatively with the findings from the

LDA calculations. Both the LDA and GGA studies predict that the optimal pressure for
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synthesizing the spinel-structured Ga3O3N from Ga2O3 and GaN mixtures is around that

of the β-to-α phase transition in Ga2O3 (P ≈ 6.6 GPa, according to GGA calculations).

Next, we investigated the temperature effects on the stability of the oxynitrides systems.

A simple ideal solution model has been previously adopted to estimate the effects of O/N

disorder in spinel-structured oxynitrides116,239. Such a simple statistical model is valid

only in the cases where all the atomic configurations have very similar energies, and it

approximates the additional Gibbs free energy term with a contribution due to the alloy

disorder with a pure entropic term:

Galloy (T, P ) = −4kBT [x ln x + (1 − x) ln (1 − x)] (6.4)

(here the factor 4 is due to the presence of four possible different anion sites in the molecular

unit that are assumed to be equally accessible). It is known that such simple models can

significantly underestimate the alloy formation temperature if some of the atomic config-

urations are energetically inaccessible at the temperature of the experiment. To obtain a

better estimate of the entropic contribution to the Gibbs free energy that is more relevant

to the experimental results, we studied the correlation between the energetic properties of

the oxynitride materials and their local atomic ordering schemes among the three unit-cell

models (Table 6.8). The spinel structure is described as a packing of AX4 tetrahedra and

AX6 octahedra present in a 1:2 ratio. In the case of Ga3O3N, there are five possible types of

AX4 tetrahedra, i.e., IV GaO4, IV GaO3N, IV GaO2N2, IV GaON3, and IV GaN4. Similarly,

there exist seven types of AX6 octahedra: V IGaO6, V IGaO5N, V IGaO4N2, V IGaO3N3,

V IGaO2N4, V IGaON5, and V IGaN6. The distribution of various types of AX4 and AX6

units within the three models studied is listed in Table 6.8. No IV GaON3, IV GaN4,

V IGaON5, or V IGaN6 species were considered to simplify the statistical analysis; such

N-rich AX4 or AX6 species are expected to have low concentration because the average

O:N ratio is 3:1. The LDA calculations show a clear energetic preference for the structure

containing IV GaO3N sites over those with the combination 50% IV GaO4 + 50% IV GaO2N2
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Table 6.8: Analysis of local coordination ordering schemes within the three unit-cell models
of the spinel-structured Ga3O3N in terms of the ratio of various types of AX4 tetrahedral
and AX6 octahedral units.

tetrahedral Ga (%) octahedral Ga (%)

model IV GaO4
IV GaO3N IV GaO2N2

V IGaO6
V IGaO5N V IGaO4N2

I 100 25 75
II 100 50 50
III 50 50 50 50

and the 25% V IGaO6 +75% V IGaO4N2 combination over that with 50% V IGaO5N + 50%

V IGaO4N2.

We then constructed a three-energy-level model to investigate the consequences of this

anion site ordering on the formation energetics of the oxynitride spinel, using the ground-

state energies of the three lowest energy models found above (Table 6.7):

∆Gformation (T, P ) = ∆H (P ) − 1

2
kBT ln

[

4 + 12e−2∆ǫ1/kBT + 12e−2∆ǫ2/kBT
]

(6.5)

Here ∆H (P ) is the static formation enthalpy as discussed above, the values 4, 12, and 12

are the degeneracies of the levels corresponding to each model, and ∆ǫ1 and ∆ǫ2 are the

energies of the two “excited” states (i.e., models II and III) compared to the ground-state

energy (as listed in column 2 of Table 6.7). At a given pressure, the alloy formation tem-

perature corresponds to that at which ∆Gformation becomes zero. On the basis of our LDA

calculations, this condition occurs at Talloy = 2800 K. This result means that, according to

our model, a stoichiometric Ga3O3N spinel phase would become thermodynamically stabi-

lized with respect to other ordering schemes and could be synthesized from Ga2O3 + GaN

mixtures above P ≈ 6− 7 GPa and T = 2800 K. This temperature estimate is considerably

higher than that used experimentally to synthesize an oxynitride spinel-structured material

from the component oxides and nitrides (synthesis temperatures as low as 1200 ◦C at 5

GPa; see below). The main reasons for the discrepancy are that the oxynitride materials

obtained experimentally contain vacancies on the Ga3+ and perhaps also on the anion sites

and the O:N ratio obtained is larger than the ideal stoichiometry that was modeled. Both
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considerations will have a large effect on the relative energies of ground-state and exper-

imentally accessible “excited-state” models. Also, it is not yet clear that it is justified to

exclude high-N-content environments such as V GaON3, IV GaN4, V IGaON5, or V IGaN6

on purely statistical grounds from the thermodynamic treatment. Such species could have

special stability due to local bonding environments, including bond valence constraints128.

That will have to be tested in future investigations of local coordinations in GaxOyNz mate-

rials using appropriate experimental probes of the local structural environments (e.g., X-ray

absorption spectroscopy/EXAFS, NMR, etc.).

6.2.4 Electronic Properties

Using ab initio LDA methods, we calculated the electronic band structure within the

LDA on the basis of our atomic model of the ground-state configuration of Ga3O3N (model

I). The LDA-predicted band dispersion is plotted in Figure 6.5a from the center of the Bril-

louin zone (the Γ point) along three directions to the F , T , and L points at the zone bound-

aries. The electronic density of states function is shown in (b). Our calculations indicate

that spinel-structured gallium oxynitrides are direct wide band gap semiconductors, with

optoelectronic properties that are similar to those of wurtzite- and sphalerite-structured

GaN and gallium oxides. Because of well-known limitations of the LDA for such electronic

structure calculations, the predicted magnitude of the band gap (2.1 eV) is likely to be

underestimated in this study. The same LDA methods underestimate the band gaps of the

GaN (wurtzite) and β-Ga2O3 phases by 1.3 and 2.3 eV, respectively; we thus expect the

experimental band gap of Ga3O3N (spinel) to lie around 4 eV. Our collaborator obtained

room-temperature photoluminescence spectra of the Ga2.8N0.64O3.24 sample obtained by

high-P ,T synthesis, using 325 nm laser excitation (Figure 6.6). The onset of the photolu-

minescence signal begins just below 2.5 and extends to 1.5 eV. Because the experimentally

synthesized material contains a large quantity of defects on the Ga3+ sites, and also per-

haps on the anion sites, along with O/N disorder, it is unlikely that the photoluminescence

feature corresponds to excitations across the band gap. Instead, the observed PL band is
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Figure 6.5: (a) Electronic band structure and (b) Electronic density of states for Ga3O3N
calculated using first-principles (DFT) methods within the LDA.

likely to arise from defect related transitions between states mainly within the gap, so that

the intrinsic band gap for a stoichiometric ordered material would lie considerably above

2.5 eV, as predicted by theory.

6.2.5 Phonon Spectrum

The Raman spectrum of the new oxynitride spinel phase contains several broad bands

(Figure 6.7), indicating substantial disorder among the O and N atoms on the 32e sites in the

spinel structure and/or the presence of cation (Ga3+) or anion vacancies. The broad bands

have maxima near 700 and 800 cm−1, and also near 300 cm−1, that correspond generally

to the positions of Raman-active modes within the analogous spinel-structured compound

γ-Ge3N4
240. To aid in the interpretation of our experimentally obtained Raman spectra

of GaxOyNz phases, we calculated the Γ point phonon frequencies of the 14-atom rhombo-

hedral unit cell of Ga3O3N (model I structure) using first-principles LDA methods. The

same technique was previously used to predict the positions of the Raman-active vibrational

modes in γ-Ge3N4
114,240. The pseudocubic R3̄m model structure for Ga3O3N is predicted

to have nine Raman-active modes (4A1g + 5Eg), with zone-center frequencies calculated
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Figure 6.6: Photoluminescence spectrum of the Ga2.8N0.64O3.24 sample obtained via high-
P ,T synthesis in the multianvil experiments, using UV laser excitation (325 nm)

at 213, 219, 367, 379, 499, 512, 634, 647, and 782 cm−1. These calculated frequencies are

denoted by dashed lines in Figure 6.7. Within an anion-disordered structure, as expected

for the real GaxOyNz spinel, he predicted zone-center modes act as poles for interpreting

the broadened spectra that approach the full vibrational density of states (VDOS). The

expected mode frequencies are grouped around the five frequency values (i.e., 216, 373, 506,

640, and 782 cm−1) that are associated with the ideal spinel structure. By analogy with

the Raman spectrum of γ-Ge3N4, we expect the lowest frequency peak (216 cm−1) and the

two highest frequency peaks (640 and 782 cm−1) to have the strongest intensities, whereas

the two intermediate frequency peaks (373 and 506 cm−1) are relatively weak. We cannot

yet directly calculate the effects of the O/N disorder on the broadening patterns observed

in our Raman spectra. However, it is likely that the observed Raman spectrum provides a

first view of the VDOS functions of Ga3O3N and also γ-Ge3N4 spinels.

To provide a semiquantitative estimation of the widths of the broad peaks, we cal-

culated the full phonon dispersion using a 112-atom supercell model. The Born effective

charge induced LO-TO splitting in the ionic compounds are corrected on the basis of the

interplanar force constant model proposed by Kunc and Martin156. As shown in Figure 6.7,
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Figure 6.7: (a) Raman spectrum collected for the Ga2.8N0.64O3.24 sample at an excitation
wavelength of 514.5 nm. The bold solid lines on the frequency scale below indicate the
positions of the Raman bands for the analogous spinel form of γ-Ge3N4. (b) Phonon density
of states (VDOS) calculated for the R3̄m pseudocubic Ga3O3N phase, predicted as “model
I” in the enthalpy calculations (Table 6.7 ). The dashed lines indicate the Raman-active
modes for that phase.

the highest frequency strong Raman peak (i.e., the Ag mode near 782 cm−1) is expected to

be the sharpest one. The other strong peak near 640 cm−1 is expected to have a broader

width (40-60 cm−1).

6.2.6 Conclusions

Our theoretical study showed that the most stable structure for Ga3O3N corresponds

to a rhombohedral distortion of the ideal spinel structure. The formation of Ga3O3N is

endothermic at ambient pressure and low temperature, and the optimal synthesis pressure

is predicted to lie close to that for the β-to-α phase transition in Ga2O3 (around 6.6 GPa

according to our GGA calculations). The calculated direct band gap energy for a stoichio-

metric oxynitride spinel was estimated to be around 4 eV. This value is larger than that

obtained from photoluminescence data collected on the experimentally synthesized sample,

which likely contains Ga3+ vacancies and other structural defects. The synthesis of this new

Ga-O-N phase makes contact with the important optoelectronic materials known to exist
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in the (Ga,Al,In)N system that provide light-emitting diodes and solid-state lasers in the

blue to UV range. A cubic Ga3O3N material similar to the compound synthesized here has

recently been prepared in thin film form via chemical precursor techniques241. That result

indicates that the new materials could be developed for use within novel optoelectronic

devices.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, I have adopted and further developed a series of first-principles

computational techniques to theoretically investigate the pressure-induced phase transitions

and thermodynamic properties for several representative main-group oxides and nitrides.

For Al2O3, we have systematically investigated the pressure-induced phase transforma-

tions. The sequence of transitions under compression, i.e., corundum→Rh2O3(II)→ pPV,

and the T -P phase diagram we obtained are consistent with previous theoretical and ex-

perimental studies. Results using US-PP and PAW are presented. By finding a transition

path that links the corundum and Rh2O3(II) phases with monoclinic intermediate struc-

tures which has a space group P2/c, we proposed a single-bond breaking-and-reforming

(SB-BAR) mechanism to describe the transformation between corundum and Rh2O3(II)

phase. Total energy calculation using PAW method shows that the enthalpy barrier height

of the forward corundum-to-Rh2O3(II) transition is around 130 meV/atom and remains

unchanged with varied pressures. However, the barrier height of the backward Rh2O3(II)-

to-corundum transition decreases significantly under decompression, which indicates that

the Rh2O3(II) phase may not be quenchable to ambient conditions. In addition, great simi-

larity is found in the elastic constants between corundum and Rh2O3(II) phase, except C33.

The larger C33 of Rh2O3(II) phase means that its c axis is less compressible than that of

corundum. Zero pressure Γ-point phonon frequencies and their pressure dependencies are

calculated for three stable polymorphs. Comparison with measured data of corundum and

theoretical Raman frequencies of pPV phase suggest that, within LDA, predictions using

PAW method have better results than US-PP. This conclusion is also confirmed from the

study of elastic properties. We have calculated the elastic constants and their pressure

dependencies for corundum and two high-pressure phases. PAW calculated Cij yield better
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agreement with available experimental data of α-Al2O3. The temperature dependencies

of thermal expansion coefficient from low to high pressures have been predicted for α-,

Rh2O3(II)-, and pPV-Al2O3. For corundum at zero pressure, our US-PP data is in good

agreement with Amatuni et al.’s result measured from 300 K to 2000 K, and with Aldebert

et al.’s result at temperatures above 1000 K. Our PAW data lies in the middle of the ex-

perimental data and agrees with Schauer’s data below 700 K and Wachtman et al.’s data

above 1200 K. Our calculated heat capacity CP , entropy and adiabatic bulk modulus of

corundum phase also agree well with measured results.

For AlN, we presented our ab initio calculation of activation barriers of the B4-to-B1

transition for five TPs proposed by Stokes et al. We showed that the five bond-preserving

paths can be interpreted as transformation of different long-range patterns of the “transition

units” (two different orientations). The transformation of “transition unit” is equivalent to

the path along TP1 (with Cmc21 symmetry). Our calculated kinetic barriers are comparable

for all five paths at pressures from 0 GPa to 30 GPa, which indicate that the wurtzite-to-

rocksalt transition is characterized by the transformation of the “transition unit”, while the

long-range pattern is less important. And the difference in strains of different TPs is not a

major factor for at least the transition from wurtzite to rocksalt phase in AlN. In addition,

the bond-breaking path is not energetically favored compared with the bond-preserving

paths. Besides the studies of different TPs, our estimated forward and backward barrier

heights are consistent with experimental observation and previous calculations.

For Si3N4, in summary, we have theoretically studied phase transitions in silicon nitride

(Si3N4) at high pressure using a first-principles density functional theory method. We find

that α-Si3N4 remains as a metastable phase at temperatures up to 2000 K and pressures

up to 10 GPa. The equilibrium β→γ transition pressure is predicted as 7.5 GPa at 300K

and it increases to 9.0 GPa at 2000K. Both α- and β-Si3N4 are dynamically stable at low

pressure. However, two competing phonon-softening mechanisms are found in the β phase

at high pressures. At room temperature, β-Si3N4 is predicted to undergo a first-order

β→P3 transition above 38.5 GPa, while α-Si3N4 shows no signs of structural instability.
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The predicted metastable high-pressure P3 phase is structurally related to β-Si3N4. The

enthalpy barrier height is estimated as only 67.23 meV/atom. Our LDA predicted thermal

expansion coefficient, heat capacity and bulk Grüneisen parameter are in good agreement

with Bruls’ measured results. We find relatively large discrepancies between our calculation

with experimental data from Reeber. And we attribute the cause of predicted negative

TEC at low temperatures in α and β-Si3N4 to the low-frequency phonon modes that have

negative mode Grüneisen ratios.

For bulk Ga2O3, we have calculated the Raman frequencies and their mode Grüneisen

parameters for β and α phases. Good agreement is achieved between our results with

experiments and other calculations. We also predict the equilibrium T -P phase diagram

of Ga2O3 consists of β, α and Rh2O3(II) phases. Our LDA calculated transition pressure

from β to α phase is 0.3 GPa at 0 K and 1.6 GPa at 2000 K. The Clapeyron slope for

this transition is positive which has the value of about +0.6 MPa/K at 1000 K. This is

consistent with previous calculations. However, the experimental Pt is much larger. The

large discrepancy can be attributed to a large kinetic barrier, which may be significantly

lowered under compression. Our calculated α-to-Rh2O3(II) transition pressure is 40 GPa

at 0 K and 37 GPa at 2000 K, which is in excellent agreement with experimental value

(about 37 GPa at about 2000 K). In the case of nanowires, based on a comparison of

the experimental Raman mode frequencies with our first-principles calculations, we find

compelling evidence for growth-direction-induced internal strains in β-Ga2O3 nanowires

which significantly influence the vibrational mode frequencies. Within the linear model

approximation, the observed blue and redshifts of peak frequencies in the micro-Raman

spectra of the β-Ga2O3 nanowires with different growth directions can be attributed to two

small anisotropic internal strains: one compressive strain of 2% volume change, and the

other tensile strain of 0.7% volume change. The overall high quality of the fitted models to

available experimental data suggests a strong correlation between the shifts in Raman mode

frequencies and the growth-direction-induced internal strains in the Ga2O3 nanowires.

161



For gallium oxynitride, our theoretical study showed that the most stable structure

for Ga3O3N corresponds to a rhombohedral distortion of the ideal spinel structure. The

formation of Ga3O3N is endothermic at ambient pressure and low temperature, and the

optimal synthesis pressure is predicted to lie close to that for the β-to-α phase transition in

Ga2O3 (around 6.6 GPa according to our GGA calculations). The calculated direct band

gap energy for a stoichiometric oxynitride spinel was estimated to be around 4 eV. This

value is larger than that obtained from photoluminescence data collected on the experimen-

tally synthesized sample, which likely contains Ga3+ vacancies and other structural defects.

The synthesis of this new Ga-O-N phase makes contact with the important optoelectronic

materials known to exist in the (Ga,Al,In)N system that provide light-emitting diodes and

solid-state lasers in the blue to UV range. A cubic Ga3O3N material similar to the com-

pound synthesized here has recently been prepared in thin film form via chemical precursor

techniques. That result indicates that the new materials could be developed for use within

novel optoelectronic devices.

The above results show that DFT calculations within the frame of quasi-harmonic

approximation (QHA) is successful in calculating the finite-temperature thermodynamic

potentials for hard materials. However, to improve the prediction of thermodynamic prop-

erties for normal materials at high temperatures or strongly anharmonic crystals even at

low temperatures, we are looking forward to developing and implementing an algorithm

based on the perturbation theory to add anharmonic correction to the QHA vibrational

free energy, as shown in Appendix C. The first order correction is contributed from the

3rd and 4th order lattice anharmonicity tensors. With these anharmonicity tensors, the

temperature dependence of elasticity and phonon frequencies are also within the scope.

And, for the metastable P3 phase we found in Si3N4, our collaborator who did ex-

periments showed that there is a mismatch between the observed X-ray diffraction (XRD)

pattern after phase transition at high pressure and the calculated XRD pattern from P3

structure at the same pressure. But the unknown δ phase is believed to be structurally close
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to the P3 phase. We will look at the low-frequency phonon modes with softening tendency

for β, P 6̄, P3 and P21/m phases, which may suggest other possible structures.
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Appendix A

Total Energy Calculation with VASP

The VASP package242 that we adopt in our study is implemented with ultra-soft pseu-
dopotentials (US-PP) or the projector-augmented wave (PAW). The four essential input
files needed for a VASP calculation are INCAR, POTCAR, KPOINTS and POSCAR. The
INCAR file contains a large number of parameters and most of these parameters should be
left at their default values in our calculations. One important parameter worth mentioning
here is the ISIF-tag. ISIF controls which degree of freedom (ions, cell volume, cell shape)
are allowed to change. With different crystal symmetries and purposes of calculations, one
can choose a proper value. Table A.1 shows the meaning of each ISIF tag. Taking B1 NaCl
as an example, which has cubic symmetry, if we are interested in a constant-volume total
energy calculation, ISIF=0 is the choice. The POTCAR file contains the pseudopotential
of each type of atoms. The KPOINTS file contains the k-point sampling scheme. And the
POSCAR file basically includes information of cell geometry and the atomic coordinates.

Table A.1: Value and meaning of ISIF tag

ISIF calculate
force

calculate stress
tensor

relax ions change cell
shape

change cell
volume

0 yes no yes no no
1 yes trace only yes no no
2 yes yes yes no no
3 yes yes yes yes yes
4 yes yes yes yes no
5 yes yes no yes no
6 yes yes no yes yes
7 yes yes no no yes

Although VASP allows relaxation of cell volume, it is not recommended in an energy-
volume calculation. The incompleteness of the plane wave basis set with respect to changes
of volume will cause Pulay stress, which will underestimate the equilibrium volume unless
a large plane wave cutoff is used. Nonetheless, if only volume conserving relaxations are
carried out, the Pulay stress can often be neglected. Furthermore, errors from Pulay stress
can also be reduced and reliable lattice constant, bulk modulus and other elastic properties
can be yielded by doing calculations at different volumes with the same energy cutoff for
each calculation and then fitting the total energies to an equation of state. But the interval
of volume changes should be in the order of 5%-10% to average out the errors due to the
basis set incompleteness.
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Appendix B

Elasticity Calculation

A solid responds to stress by changing its shape. Elasticity is the physical property to
represent the ability of a material to recover when the stress is released. “Elastic” implies
that the solid will restore to its original equilibrium shape if the stress is released.

ǫij = Sijklσkl (B.1a)

σij = Cijklǫkl (B.1b)

where ǫij and σkl are strain and stress tensors, Sijkl and Cijkl are called the elastic com-
pliance constants and elastic stiffness constants (or simply called elastic constants, stiffness
constants). ǫij is dimensionless. σij has the dimension of [force]/[area] or [energy]/[volume].
Because each suffix runs from 1 to 3 (x, y, z), there are totally 81 elastic constants or com-
pliance constants. Elastic constants are measurable and characteristic properties of a solid.

Without considering any temperature effect (entropy is zero), the change of the internal
energy density (energy per unit volume) purely caused by strain is a quadratic function of
ǫij:

E/V =
1

2

∑

ijkl

Cijklǫijǫkl (B.2)

Since ǫij and ǫji always appear together, we can define a symmetrical strain tensor η
as follows:

ηij =
1

2
(ǫij + ǫji) (B.3)

where ηij = ηji and the energy density is still in the previous form.

E/V =
1

2

∑

ijkl

Cijklηijηkl (B.4)

From the above equation it is easy to prove that Cijkl = Cijlk and Cijkl = Cjikl. These
two conditions reduce the number of independent elastic constants from 81 to 36. However,
it is cumbersome to deal with a fourth-rank tensor. Fortunately, the symmetry makes it
possible to use a matrix form. The most commonly accepted way of translation is Voigt’s
notation, by reducing the first two suffixes to one and the last two suffixes in the same way.
Accordingly, the stress and strain tensor (second-order) components will be represented
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with a single suffix.





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



 →





σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3



 (B.5a)





η11 η12 η13

η21 η22 η23

η31 η32 η33



 →





ǫ1
1
2ǫ6

1
2ǫ5

1
2ǫ6 ǫ2

1
2ǫ4

1
2ǫ5

1
2ǫ4 ǫ3



 (B.5b)

The purpose of introducing a factor of 1
2 to the off-diagonal strain components is to keep

equation B.4 in the same format. Besides the suffixes abbreviation, the elastic compliance
constants are changed by a factor of 1, 2, or 4 in the following way:







Sijkl = Smn if m and n are 1, 2 or 3
2Sijkl = Smn if either m or n are 4, 5 or 6
4Sijkl = Smn if both m and n are 4, 5 or 6

(B.6)

While at the same time, for Cijkl there are no such factors changes.

Cijukl = Cmn (B.7)

where i, j, k, l = 1, 2, 3 and m,n = 1, · · · , 6. And the energy density due to strain is written
as:

E/V =
1

2

∑

ij

Cijǫiǫj (B.8)

In equation B.8, exchanging of suffix i and j does no effect, which leads to Cij = Cji.
Thus the number of independent Cij is further reduced to 21, and this is the case for a
crystal with triclinic symmetry, which is the lowest symmetry of all. Any material with
higher symmetry has even less number of independent elastic constants. Results for all the
crystal classes are given in table B.1.
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Table B.1: Independent components of Cij for all the crystal classes

Crystal class Independent Cij

Triclinic All 21
Monoclinic unique axis b C11, C22, C33, C12, C13 , C23, C44, C55, C66, C15, C25, C35, C46

unique axis c C11, C22, C33, C12, C13, C23 , C44, C55, C66, C16, C26, C36, C45

Orthorhombic C11, C22, C33, C12, C13, C23, C44, C55, C66

Cubic C11, C12, C44

Tetragonal Classes 4, 4̄, 4/m C11, C33, C12, C13, C44, C66, C16

Classes 4mm, 4̄2m, 422, 4/mmm C11, C33, C12, C13, C44, C66

Trigonal Classes 3, 3̄ C11, C33, C12, C13, C44, C14, C15

Classes 32, 3̄m, 3m C11, C33, C12, C13, C44, C14

Hexagonal C11, C33, C12, C13, C44

Isotropic C11, C12
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Equation B.8 is the foundation for evaluating the elastic constants. The procedure
of our calculation can be summarized as three steps. 1) Based on the symmetry of the
material, we generate a series of strained POSCAR files. 2) We calculate the total energy
for each strained POSCAR. 3) Obtain the independent elastic constants.

Diagonal and off-diagonal terms of Cij are treated differently. Taking cubic system for
illustration, there are three independent elastic constants: C11, C12 and C44. For C11 and
C44, we introduce single strain ǫ1 and ǫ4, respectively, to the unstrained system. Then total
energies of the strained systems are calculated. Because C11 and C44 are both diagonal
terms, they are obtained in exactly the same way. Let’s take C11 as an instance. First,
assuming optimized CONTCAR file at a given volume is acquired in previous static total
energy calculations, it serves as the unstrained POSCAR in the elasticity calculation. When
single strain is applied to the system, the total energy will be changed due to strain and
can be expanded as a Taylor’s series of strain, provided the strain is small (usually between
0.5% and 1.5%).

E = a + bǫ +
1

2
cǫ2 +

1

6
dǫ3 +

1

24
eǫ4 + · · · (B.9)

where a, b, c, d and e are coefficients of the first five terms in Taylor’s series. We keep up
to the fifth term as a good approximation.

C11 = c (B.10)

C11 is the coefficient of the quadratic term because the elastic energy due to strain ǫ1 is
U = 1

2C11ǫ
2
1. We have implemented a “six-point” method to get this coefficient. Six single

ǫ1-strains with the amount of 3ǫ, 2ǫ, ǫ, −ǫ, −2ǫ, −3ǫ are applied to the original POSCAR
and total energy calculations are carried out for each of them.































E1 = a + 3bǫ + 9
2cǫ2 + 9

2dǫ3 + 27
8 eǫ4

E2 = a + 2bǫ + 2cǫ2 + 4
3dǫ3 + 2

3eǫ4

E3 = a + bǫ + 1
2cǫ2 + 1

6dǫ3 + 1
24eǫ4

E4 = a − bǫ + 1
2cǫ2 − 1

6dǫ3 + 1
24eǫ4

E5 = a − 2bǫ + 2cǫ2 − 4
3dǫ3 + 2

3eǫ4

E6 = a − 3bǫ + 9
2cǫ2 − 9

2dǫ3 + 27
8 eǫ4

(B.11)

By canceling the terms of no interests, we have

C11 = c =
−3E1 + 16E2 − 13E3 − 13E4 + 16E5 − 3E6

24ǫ2
(B.12)

For C12, we introduce two strains ǫ1 and ǫ2, at the same time, to the unstrained system.
The related elastic energy is

U = C12ǫ1ǫ2 + C11ǫ
2
1 + C22ǫ

2
2 (B.13)

C12 is the coefficient in the front of the ǫ1ǫ2 term. With pair strains, the total energy
of the system can also be expressed in a Taylor’s series, being cut at the fourth-order terms
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as an approximation.

E = a + bǫ1 + cǫ2 + dǫ1ǫ2 +
1

2
eǫ2

1 +
1

2
fǫ2

2 +
1

6
gǫ3

1 +
1

2
hǫ2

1ǫ2 +
1

2
iǫ1ǫ

2
2

+
1

6
jǫ3

2 +
1

24
kǫ4

1 +
1

6
lǫ3

1ǫ2 +
1

4
mǫ2

1ǫ
2
2 +

1

6
nǫ1ǫ

3
2 +

1

24
oǫ4

2 (B.14)

where C12 = d. To eliminate the unrelated coefficients, an “eight-point” algorithm is
implemented. The eight pair strains for (ǫ1, ǫ2) we apply are: (2ǫ, 2ǫ), (2ǫ,−2ǫ), (−2ǫ,−2ǫ),
(−2ǫ, 2ǫ), (ǫ, ǫ), (ǫ,−ǫ), (−ǫ,−ǫ) and (−ǫ, ǫ).



















































































































E1 = a + 2bǫ1 + 2cǫ2 + 4dǫ1ǫ2 + 2eǫ2
1 + 2fǫ2

2 + 4
3gǫ3

1 + 4hǫ2
1ǫ2 + 4iǫ1ǫ

2
2

+4
3jǫ3

2 + 2
3kǫ4

1 + 8
3 lǫ3

1ǫ2 + 2mǫ2
1ǫ

2
2 + 8

3nǫ1ǫ
3
2 + 2

3oǫ4
2

E2 = a + 2bǫ1 − 2cǫ2 − 4dǫ1ǫ2 + 2eǫ2
1 + 2fǫ2

2 + 4
3gǫ3

1 − 4hǫ2
1ǫ2 + 4iǫ1ǫ

2
2

−4
3jǫ3

2 + 2
3kǫ4

1 − 8
3 lǫ3

1ǫ2 + 2mǫ2
1ǫ

2
2 − 8

3nǫ1ǫ
3
2 + 2

3oǫ4
2

E3 = a − 2bǫ1 − 2cǫ2 + 4dǫ1ǫ2 + 2eǫ2
1 + 2fǫ2

2 − 4
3gǫ3

1 − 4hǫ2
1ǫ2 − 4iǫ1ǫ

2
2

−4
3jǫ3

2 + 2
3kǫ4

1 + 8
3 lǫ3

1ǫ2 + 2mǫ2
1ǫ

2
2 + 8

3nǫ1ǫ
3
2 + 2

3oǫ4
2

E4 = a − 2bǫ1 + 2cǫ2 − 4dǫ1ǫ2 + 2eǫ2
1 + 2fǫ2

2 − 4
3gǫ3

1 + 4hǫ2
1ǫ2 − 4iǫ1ǫ

2
2

+4
3jǫ3

2 + 2
3kǫ4

1 − 8
3 lǫ3

1ǫ2 + 2mǫ2
1ǫ

2
2 − 8

3nǫ1ǫ
3
2 + 2

3oǫ4
2

E5 = a + bǫ1 + cǫ2 + dǫ1ǫ2 + 1
2eǫ2

1 + 1
2fǫ2

2 + 1
6gǫ3

1 + 1
2hǫ2

1ǫ2 + 1
2 iǫ1ǫ

2
2

+1
6jǫ3

2 + 1
24kǫ4

1 + 1
6 lǫ3

1ǫ2 + 1
4mǫ2

1ǫ
2
2 + 1

6nǫ1ǫ
3
2 + 1

24oǫ4
2

E6 = a + bǫ1 − cǫ2 − dǫ1ǫ2 + 1
2eǫ2

1 + 1
2fǫ2

2 + 1
6gǫ3

1 − 1
2hǫ2

1ǫ2 + 1
2 iǫ1ǫ

2
2

−1
6jǫ3

2 + 1
24kǫ4

1 − 1
6 lǫ3

1ǫ2 + 1
4mǫ2

1ǫ
2
2 − 1

6nǫ1ǫ
3
2 + 1

24oǫ4
2

E7 = a − bǫ1 − cǫ2 + dǫ1ǫ2 + 1
2eǫ2

1 + 1
2fǫ2

2 − 1
6gǫ3

1 − 1
2hǫ2

1ǫ2 − 1
2 iǫ1ǫ

2
2

−1
6jǫ3

2 + 1
24kǫ4

1 + 1
6 lǫ3

1ǫ2 + 1
4mǫ2

1ǫ
2
2 + 1

6nǫ1ǫ
3
2 + 1

24oǫ4
2

E8 = a − bǫ1 + cǫ2 − dǫ1ǫ2 + 1
2eǫ2

1 + 1
2fǫ2

2 − 1
6gǫ3

1 + 1
2hǫ2

1ǫ2 − 1
2 iǫ1ǫ

2
2

+1
6jǫ3

2 + 1
24kǫ4

1 − 1
6 lǫ3

1ǫ2 + 1
4mǫ2

1ǫ
2
2 − 1

6nǫ1ǫ
3
2 + 1

24oǫ4
2

(B.15)

To solve for C12, we do addition or subtraction with these equations and find that

C12 = d =
−E1 + E2 − E3 + E4 + 16E5 − 16E6 + 16E7 − 16E8

48ǫ2
(B.16)

So far we have discussed the derivation and computation procedure of the elastic con-
stants for an unstressed solid. However, elastic constants will change under stress. Here we
follow Barron & Klein’s derivation and care only about the case of isotropic stress (hydro-
static pressure). When pressure is applied to the solid, Barron showed that the strain-energy
density relation becomes:

Cijkl =
1

V

∂E

∂ǫij∂ǫkl
+

1

2
P (2δijδkl − δilδjk − δikδjl) (B.17)

where V is the volume at that pressure, P is the pressure and δij is the Kronecker delta
(δij = 1 when i = j; δij = 0 when i 6= j). The first term in equation B.17 is obtained from
the strain-energy density relation as if the solid is not under stress. The second term is
a correction because of pressure. In Voigt’s notation, the correction terms for each elastic
constant is shown in table B.2.
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Table B.2: Correction term to Cij due to pressure

Cij Correction term Cij Correction term Cij Correction term

C11 0 C13 P C26 0
C22 0 C14 0 C34 0
C33 0 C15 0 C35 0
C44 −1

2P C16 0 C36 0
C55 −1

2P C23 P C45 0
C66 −1

2P C24 0 C46 0
C12 P C25 0 C56 0

Again, if we use cubic crystal as an example, and let C̃ represent the first term in
equation B.17, the three independent elastic constants are:







C11 = C̃11

C12 = C̃12 + P

C44 = C̃44 − 1
2P

(B.18)

At the current stage, we only calculate the elastic constant and its pressure dependence
at zero temperature condition.
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Appendix C

Beyond Harmonic Approximation: Perturbation Theory of Lattice

Anharmonicity

The quasi-harmonic approximation (QHA) has achieved a great success in predicting
thermodynamic properties for many hard materials at temperatures not too close to the
melting point. However, to improve the prediction of thermodynamic properties of normal
materials at high temperatures or strongly anharmonic crystals even at low temperatures,
it is desired to add the anharmonicity contribution to the free energy as a next level ap-
proximation. This correction is usually small compare to the harmonic contribution. With
the third and fourth order anharmonicity, we can evaluate the lowest order of anharmonic
contribution to the harmonic free energy via perturbation theory. Within this theory, we
treat the anharmonic terms in the hamiltonian as perturbations. The total hamiltonian can
be written as:

H = HH + HA

= H0 + H2 + H3 + H4 + · · · (C.1)

where HH = H0 + H2 which is the harmonic part and HA =
∑∞

n=3 Hn is the anharmonic
part. Hn is the nth order term in the expansion of hamiltonian. As the anharmonic effect is
more important at high temperatures, we deal this problem within the classical limit. Then
the partition function of the system is:

Z = h−3N

∫

dx1 · · ·
∫

dx3N

∫

dp1 · · ·
∫

dp3N · e−β(HH+HA)

= ZH ·
∫

dx1 · · ·
∫

dx3N

∫

dp1 · · ·
∫

dp3N · e−βHH · e−βHA

∫

dx1 · · ·
∫

dx3N

∫

dp1 · · ·
∫

dp3N · e−βHH

= ZH · ZA (C.2)

where ZH = h−3N
∫

dx1 · · ·
∫

dx3N

∫

dp1 · · ·
∫

dp3N · e−βHH is the partition function of the
harmonic hamiltonian and ZA is the ensemble average of the quantity e−βHA over the
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unperturbed harmonic system. Expanding e−βHA into Taylor series, we have

ZA =
〈

e−βHA

〉

0

=

〈

1 +

∞
∑

n=1

(−1)n

n!
βn · Hn

A

〉

= 1 +
∞
∑

n=1

(−1)n

n!
βn · 〈Hn

A〉0 (C.3)

Since we have expressed the total partition function as a product of the harmonic
partition function and ZA, the anharmonic contribution to the Helmholtz free energy is:

FA = −kBT ln ZA

= −β−1 ln

(

1 +

∞
∑

n=1

(−1)n

n!
βn · 〈Hn

A〉0

)

(C.4)

Assuming the anharmonic terms are small compared to unity, the logarithm function
in equation C.4 can be expanded into series following ln (1 + x) = x − x2

2 + x3

3 − · · · when

−1 < x < 1. The expansion is expressed in terms of the (−β)n

n! and the coefficient of (−β)n

n!
is called the nth cumulant 〈Hn

A〉0,C

FA = −β−1
∞
∑

n=1

(−1)n

n!
βn · 〈Hn

A〉0,C (C.5)

Comparing equation C.5 with equation C.4, we have

〈HA〉0,C = 〈HA〉0 (C.6a)
〈

H2
A

〉

0,C
=

〈

H2
A

〉

0
− (〈HA〉0)2 (C.6b)

〈

H3
A

〉

0,C
=

〈

H3
A

〉

0
− 3

〈

H2
A

〉

0
〈HA〉0 + 2 (〈HA〉0)3 (C.6c)

According to pairing theorem243, the lowest order anharmonic contribution from 〈HA〉0,C

term is 〈H4〉0. The lowest order anharmonic contribution from
〈

H2
A

〉

0,C
term is

〈

H2
3

〉

0
−

(〈H4〉0)2. Other higher order terms are ignored as an approximation. The anharmonicity
correction to the free energy under this approximation is:

FA = 〈H4〉0 −
β

2

[

〈

H2
3

〉

0
− (〈H4〉0)2

]

(C.7)
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Using normal coordinates, the third and fourth order anharmonic terms of hamiltonian
can be written as:

H3 =
∑

q,q′,q′′

∑

ξ,ξ′,ξ′′

W3

(

q,q′,q′′

ξ, ξ′, ξ′′

)

Qξ (q) Qξ′
(

q′)Qξ′′
(

q′′) (C.8a)

H4 =
∑

q,q′,q′′,q′′′

∑

ξ,ξ′,ξ′′,ξ′′′

W4

(

q,q′,q′′,q′′′

ξ, ξ′, ξ′′, ξ′′′

)

Qξ (q) Qξ′
(

q′)Qξ′′
(

q′′)Qξ′′′
(

q′′′)

(C.8b)

where W3 and W4 are defined as

W3

(

q,q′,q′′

ξ, ξ′, ξ′′

)

=
1

6

∑

αβγ

∑

ijk

N− 1
2 δq+q′+q′′,G · Aαi,βj,γk

(

q′,q′′)

·eα,i (q, ξ) eβ,j

(

q′, ξ′
)

eγ,k

(

q′′, ξ′′
)

(C.9a)

W4

(

q,q′,q′′,q′′′

ξ, ξ′, ξ′′, ξ′′′

)

=
1

24

∑

αβγλ

∑

ijkl

N−1δq+q′+q′′+q′′′,G · Bαi,βj,γk,λl

(

q′,q′′,q′′′)

·eα,i (q, ξ) eβ,j

(

q′, ξ′
)

eγ,k

(

q′′, ξ′′
)

eλ,l

(

q′′′, ξ′′′
)

(C.9b)

In equation C.9, Aαi,βj,γk (q′,q′′) is the third order anharmonic dynamical tensor, which
can be derived from the real-space third order force-constant tensor through a Fourier
transformation. Bαi,βj,γk,λl (q′,q′′,q′′′) is the fourth order anharmonic dynamical tensor.

Aαi,βj,γk

(

q′,q′′) =
1

√
mimjmk

∑

h,h′

Aαi,βj,γk

(

0,h,h′) · ei(q′·h+q′′·h′) (C.10a)

Bαi,βj,γk,λl

(

q′,q′′,q′′′) =
1

√
mimjmkml

∑

h,h′,h′′

Bαi,βj,γk,λl

(

0,h,h′,h′′) · ei(q′·h+q′′·h′+q′′′·h′′)

(C.10b)

With the pairing theorem we can evaluate the averaged hamiltonian over the unper-
turbed canonical ensemble.

〈H4〉0 =
3

β3

∑

q1,q2

∑

ξ1,ξ2

W4

(

q1,−q1,q2,−q2

ξ1, ξ1, ξ2, ξ2

)

ω2
ξ1

(q1) ω2
ξ2

(q2)
(C.11a)

〈

H2
3

〉

0
=

6

β3

∑

q1,q2,q3

∑

ξ1,ξ2,ξ3

W3

(

q1,q2,q3

ξ1, ξ2, ξ3

)

W3

(

−q1,−q2,−q3

ξ1, ξ2, ξ3

)

ω2
ξ1

(q1) ω2
ξ2

(q2) ω2
ξ3

(q3)

+
9

β3

∑

q1,q2,q3

∑

ξ1,ξ2,ξ3

W3

(

q1,−q1,q3

ξ1, ξ1, ξ3

)

W3

(

q2,−q2,−q3

ξ2, ξ2, ξ3

)

ω2
ξ1

(q1) ω2
ξ2

(q2) ω2
ξ3

(q3)

(C.11b)
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where ωξ (q) is the phonon frequency of the ξth normal mode at reciprocal lattice point q.
We have proposed an algorithm to evaluate the third order force-constant tensor

Aαi,βj,γk (ℓ, ℓ′, ℓ′′). In order to get all the tensor elements, we apply a pair of displace-
ments to the system. Here we keep up to the 4th order term of the hamiltonian and the
amount of each displacement is ∆ which is much smaller than the interatomic distance.
The pair-displacement scheme we adopt is to deviate the jth atom in β direction and the
kth atom in γ direction by (∆, ∆), (∆,−∆), (−∆, ∆), and (−∆,−∆), respectively. The α
component of the H-F forces on the ith atom are:

F++
α,i (ℓ) = −

[

Φαi,βj

(

ℓ, ℓ′
)

+ Φαi,γk

(

ℓ, ℓ′′
)]

· ∆

−1

2

[

Aαi,βj,βj

(

ℓ, ℓ′, ℓ′
)

+ Aαi,γk,γk

(

ℓ, ℓ′′, ℓ′′
)

+ 2Aαi,βj,γk

(

ℓ, ℓ′, ℓ′′
)]

· ∆2

−1

6

[

Bαi,βj,βj,βj (ℓ, ℓ′, ℓ′, ℓ′) + Bαi,γk,γk,γk (ℓ, ℓ′′, ℓ′′, ℓ′′)
+2Bαi,βj,βj,γk (ℓ, ℓ′, ℓ′′, ℓ′′′) + 2Bαi,βj,γk,γk (ℓ, ℓ′, ℓ′′, ℓ′′′)

]

· ∆3

(C.12a)

F+−
α,i (ℓ) = −

[

Φαi,βj

(

ℓ, ℓ′
)

− Φαi,γk

(

ℓ, ℓ′′
)]

· ∆

−1

2

[

Aαi,βj,βj

(

ℓ, ℓ′, ℓ′
)

+ Aαi,γk,γk

(

ℓ, ℓ′′, ℓ′′
)

− 2Aαi,βj,γk

(

ℓ, ℓ′, ℓ′′
)]

· ∆2

−1

6

[

Bαi,βj,βj,βj (ℓ, ℓ′, ℓ′, ℓ′) − Bαi,γk,γk,γk (ℓ, ℓ′′, ℓ′′, ℓ′′)
−2Bαi,βj,βj,γk (ℓ, ℓ′, ℓ′′, ℓ′′′) + 2Bαi,βj,γk,γk (ℓ, ℓ′, ℓ′′, ℓ′′′)

]

· ∆3

(C.12b)

F−+
α,i (ℓ) = −

[

−Φαi,βj

(

ℓ, ℓ′
)

+ Φαi,γk

(

ℓ, ℓ′′
)]

· ∆

−1

2

[

Aαi,βj,βj

(

ℓ, ℓ′, ℓ′
)

+ Aαi,γk,γk

(

ℓ, ℓ′′, ℓ′′
)

− 2Aαi,βj,γk

(

ℓ, ℓ′, ℓ′′
)]

· ∆2

−1

6

[

−Bαi,βj,βj,βj (ℓ, ℓ′, ℓ′, ℓ′) + Bαi,γk,γk,γk (ℓ, ℓ′′, ℓ′′, ℓ′′)
+2Bαi,βj,βj,γk (ℓ, ℓ′, ℓ′′, ℓ′′′) − 2Bαi,βj,γk,γk (ℓ, ℓ′, ℓ′′, ℓ′′′)

]

· ∆3

(C.12c)

F−−
α,i (ℓ) = +

[

Φαi,βj

(

ℓ, ℓ′
)

+ Φαi,γk

(

ℓ, ℓ′′
)]

· ∆

−1

2

[

Aαi,βj,βj

(

ℓ, ℓ′, ℓ′
)

+ Aαi,γk,γk

(

ℓ, ℓ′′, ℓ′′
)

+ 2Aαi,βj,γk

(

ℓ, ℓ′, ℓ′′
)]

· ∆2

+
1

6

[

Bαi,βj,βj,βj (ℓ, ℓ′, ℓ′, ℓ′) + Bαi,γk,γk,γk (ℓ, ℓ′′, ℓ′′, ℓ′′)
+2Bαi,βj,βj,γk (ℓ, ℓ′, ℓ′′, ℓ′′′) + 2Bαi,βj,γk,γk (ℓ, ℓ′, ℓ′′, ℓ′′′)

]

· ∆3

(C.12d)

From equation C.12, simple derivation yields

Aαi,βj,γk

(

ℓ, ℓ′, ℓ′′
)

=
−F++

α,i (ℓ) + F+−
α,i (ℓ) − F−+

α,i (ℓ) + F−−
α,i (ℓ)

4∆2
(C.13)

For a 3N×3N×3N tensor, there are C2
6N +6N = 18N2+3N H-F forces required. This

number can be reduced by noticing that when (β, j, ℓ′) = (γ, k, ℓ′′), Aαi,βj,βj (ℓ, ℓ′ℓ′) can be
obtained from the single-displacement calculations which have been done when acquiring
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the second order force-constant matrix.

Aαi,βj,βj

(

ℓ, ℓ′, ℓ′
)

=
F+

α,i (ℓ) + F−
α,i (ℓ) − F 2+

α,i (ℓ) − F 2−
α,i (ℓ)

3∆2
(C.14)

However, there are still C2
6N forces needed which is not an easy task to calculate for a

supercell. Again, the crystal symmetry plays an important role to greatly reduce the number
of direct calculations. A code named as Moves Analysis.x has been implemented to figure
out the irreducible number of pair-moves. Let us take the 120-atom supercell of α-Al2O3

as an example. The total number of pair-moves is 258840 initially. After the symmetry
analysis, the number of independent pair-moves is reduced to 5168. Although this number
has been greatly deducted, it is still impractical to carry out first-principles calculations
for such a large number. At this stage, an approximation could be made that the tensor
element is typically around zero if two atoms in the atomic indices of Aαi,βj,γk (ℓ, ℓ′, ℓ′′) are
far away from each other. If we drop all the calculations involving the distance between the
jth and kth atoms that beyond the second nearest neighbor, we can reduce the number of
direct pair-move calculations down to 632, which is now a feasible job.

After the direct calculations, other tensor elements can be either reconstructed from
the irreducible ones or equal to zero.
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