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Anna Elżbieta Borońska was born on March 2, 1975, in Mys lowice, Poland. She grad-

uated from the mathematics and physics program of Maria Konopnicka General Lyceum in

Katowice, in 1994. She then attended the Catholic University of Lublin for five years and

graduated with a Master Degree of Arts in Law in May of 1999. Thereafter, she worked

in Department of Legal Supervision, Silesian Voivodship Office in Katowice. From 1999 to

2003, she completed curriculum of the doctoral program in Law at the Catholic University

of Lublin. She underwent legal training in the Office of the District Attorney in Katowice

from 2001 to 2004. Subsequently, she passed Prosecutor’s Examination at Court of Appeal

in Katowice. She obtained a license of a legal adviser in Poland in 2005. She entered the

Graduate Program at Auburn Univerity in August of 2007, as a collaborative student in

the PhD program in Public Administration and Public Policy, and the MS program in

Mathematics. She is married and has a son.

iv



Thesis Abstract

The Chromatic Number of the Euclidean Plane

Anna E. Borońska

Master of Science, August 10, 2009
(M.A., Catholic University of Lublin, 1999)

30 Typed Pages

Directed by Krystyna Kuperberg

We discuss the chromatic number of the plane problem. We provide a detailed history

of its origins, along with some of the recent progress. Then we describe a proof, based on

[1], of the following result.

Theorem 0.1 Every distance excluding coloring of a locally finite plane tiling, with the

property that the whole interior of any tile is colored by a single color, must employ at least

six colors.

The result was originally proved for polygonal tilings that have convex tiles, and the area

of all tiles from the tiling bounded from below by a constant. It follows from our proof

that the second condition is redundant. Moreover, using the fact that any polygon can be

triangulated, Coulson’s result is extended to tilings with non convex polygons.
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Chapter 1

History of the problem

The chromatic number of the plane problem asks for the minimum number of colors

that are needed to paint all points in the plane, so that no two points in a given distance are

colored alike. The question seems very natural and basic, but is yet to be fully answered.

The problem goes back to 1950, when Edward Nelson, a graduate student at the University

of Chicago at the time, created the problem working on the well known four-color problem.

He passed the problem to other mathematicians at the University of Chicago, and soon the

question about the chromatic number of the plane became well known in the mathematical

community (see[6]). The problem sometimes is incorrectly credited to other mathematicians

such as Paul Erdös, Martin Gardner, Hugo Hadwiger, or Leo Moser. Actually, the question

was probably published for the first time in Martin’s Gardner “Mathematical Games” col-

umn in “Scientific American” in 1960 [3]. Although in last nearly 60 years the chromatic

number of the plane resisted all efforts aiming at an ultimate answer, a considerable amount

of research discussing partial answers to this problem, or investigating related problems, ac-

cumulated in the mathematical literature. The following bounds on the chromatic number

are well known:

4 ≤ chromatic number of the plane ≤ 7.

We shall explain how these bounds are obtained. At this point, however, let us mention that

it has been recently shown by Saharon Shelah and Alexander Soifer [7], [8] that the answer

to the problem may depend on the choice of axioms of set theory. Although in the present

thesis we will consider only geometric aspects of the problem and will not explore those

which belong to set theory, in this section for completeness sake, we shall briefly describe

the results obtained by these authors.
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Nelson was the first to offer a proof of the lower bound. It was published in [4], however

credit was given to his peer John Isbell (see [6]). An independent proof for the lower bound

comes from Leo Moser and William Moser, commonly known as the Moser Spindle [5]. We

will describe the two examples from [4] and [5], starting with the Moser Spindle.

a

b

c

d

e

f

g

Figure 1.1: The Moser Spindle

Consider a graph exhibited in Figure 1.1. All edges are of unit length. Suppose this

graph can be painted by three colors only, excluding unit distance. First consider the

equilateral triangle abc. To exclude the distance 1, all three of these vertices must be of

three different colors. Since the equilateral triangle acg shares the edge [a, c], vertex g must

be of the same color as b. On the other hand, in the triangle bed we must use the same two

colors as for [a, c] in order to color the edge [e, d]. Again, the triangle fed shares an edge

[e, d] with bed, and therefore f must be colored alike to b. Clearly, g and f are colored alike

and are unit distance apart. This results in a contradiction.

An alternative proof of the lower bound is provided by the example in [4]. Suppose

only three colors are used to color the entire plane, with the unit distance excluded. Let a

be a point in the plane. Consider a unit circle C around a. No point on C can be colored
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by the same color as a. Now consider also S, a circle centered at a and of radius
√

3. Let

a w

z
x

√
3

1

1

1

C

S

Cx

Figure 1.2: The example of Hadwiger

x be any point on S, and let Cx be a unit circle centered at x. Clearly Cx intersects C in

two points, say w and z. Now notice that w, z, x, a are vertices of a unit rhombus. Since

one of its diagonals is of length
√

3, the other one must be of unit length. This means that

w and z are unit distance apart and therefore they must be colored by two different colors,

both distinct from the one used to paint a. Consequently, since x is a unit distance apart

from w and z, x must be painted alike to a. However, x was chosen arbitrarily on S, and

therefore the entire S must be painted by the same color as a. This is a contradiction, since

on S there are points a unit distance apart, and they can’t be colored alike .

Isbell [4] is credited as first to estimate the upper bound using hexagonal coloring of

the plane, with seven colors (see [6]). An alternative proof comes from L. Szekely employing

tiling by squares [10]. We exhibit Isbell’s idea in the following figure. The description is
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Figure 1.3: The hexagonal 7 coloring

based on [4]. The idea is to color a hexagonal tilling by seven different colors. The hexagons

from the tiling are regular and of side length 2
5 . We choose a hexagon and color it by the

first color. Then there are six hexagons each sharing an edge with this initial one. We assign

one of the remaining six colors to each of them. Extend the coloring to the hexagonal tiling

of the plane as shown in Figure 1.3. The boundary points on a given edge are colored

arbitrarily by any of the two adjecent colors.

This coloring is unit distance excluding. To see this, first focus on interior points of

the hexagons. If we start with hexagons with a side length 2
5 then no two points of the

same color can be d distance apart, for any d between 4
5 and

√
28
5 . Clearly, no two points

from the same hexagon are in a distance grater than 4
5 apart (this is the length of the great

diameter). To obtain the other number, consider the isosceles triangle given by dotted lines

in the figure. Clearly, the side length of this triangle gives the minimal distance between
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two points colored alike, but from two different hexagons (in the figure the triangle refers

to blue color, or 5). The base of this triangle is the smaller diameter of the hexagon, and

therefore its length equals 2
√

3
5 . On the other hand, it is not hard to check that the height of

this triangle is equal to the length of the great diameter, plus side length, minus the height

of the isosceles triangle with sides of length 2
5 and base 2

√
3

5 . Therefore the height of this

dotted triangle is 4
5 + 2

5 − 1
5 = 1. Consequently the side length is

√
12 + (

√
3

5 )2 =
√

28
5 . As

far as boundary points are concerned, by the inequality on d, there is enough cushion so

that it doesn’t matter which of the two adjacent colors is assigned to each edge (see [9]).

Szekely’s example is obtained by considering infinite rows of squares in the plane. Each

square is of side length 1√
2
. We start with an arbitrary square and color it with the first

color. Moving in the row from left to right we color squares with subsequent six colors, and

then we start over again with the first one. We use a reversed order of colors when moving

to the left in this row. Now, fill in the plane by identical copies of this initial row. Moving

0 1 2 3 4 5 6 0 1 2 3 4

2 3 4 5 6 0 1 3 42 3 4

4 5 6 0 1 2 3 4 5 6 0 1

0 1 2 3 4 5 6 0 1 2 36

0 1 2 3 4 5 6 0 1 25 6

Figure 1.4: The example of Szekely

downward, let every subsequent row be shifted by 1√
2

+ 1.1 units to the left. When moving

upward shift by the same factor but to the right. Upper and right boundaries are included

in the color of each square, except for the square’s upper left and lower right corners (see

[9]). It should be clear from the picture that this coloring of the squares, with seven different

colors, is unit distance excluding. This is because the closest that two points colored alike,
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but from two different squares, can be is 1.1. On the other hand the diagonal of each of the

squares is of length 1.

Now, let us move on to the results presented by Shelah and Soifer. The authors consider

an equivalent formulation of the chromatic number of the plane problem. Namely, let U2

be a graph on the set of all points of the plane as its vertex set, with two points adjacent iff

they are 1 distance apart. The question now is: What is the minimal number of colors that

need to be employed in order to color every vertex of this graph, with no two points adjacent

colored alike? Finite subgraphs of of U2 are called finite unit distance plane graphs. In 1951

it was shown by Erdös and Nicolaas de Bruijn [2] that the chromatic number of the plane

is attained on some finite subgraphs. This fundamental result determined much of research

to go in the direction of finite unit distance graphs, but at the same time, implicitly, was

dependent on the axiom of choice. Motivated by this result, Shelah and Soifer consider how

the above question may depend on the following axioms of set theory.

(AC)(Axiom of choice) Every family Φ of nonempty sets has a choice function; i.e., there

is a function f such that f(S) ∈ S for every S from Φ.

(ACℵ0)(Countable axiom of choice) Every countable family of nonempty sets has a choice

function.

(DC)(Principle of dependent choices) If E is a binary relation on a nonempty set A, and

for every a ∈ A there is b ∈ A with aEb, then there is a sequence a1, a2, . . . such that

anEan+1 for every natural number n.

(LM) Every set of real numbers is Lebesgue measurable.

(ZF ) Zermelo-Fraenkel system of axioms of set theory.

(ZFC) ZF with an addition of AC.

Axiom DC is a weak form of axiom AC, whereas axiom DC implies axiom ACℵ0 . In their

first paper [7] Soifer and Shelah formulate the following theorem.
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Theorem 1.1 Assume that any finite unit distance plane graph has chromatic number not

exceeding 4. Then:

(i) In ZFC the chromatic number of the plane is 4.

(ii) In ZF+DC+LM the chromatic number of the plane is 5,6, or 7.

In the second paper [8] the authors extend the ideas from the first paper, giving two inter-

esting examples that illustrate possible correlation of the above axioms of set theory and

the chromatic number of the plane. Their first example is as follows.

Let G2 be a graph with <2 as the vertex set, and the set

⋃
ε∈F
{(s, t) : s, t ∈ <, s− t− ε ∈ Q2}

as the set of edges, where Q is the set of rationals, and

F = {(
√

2, 0), (0,
√

2), (
√

2,
√

2), (−
√

2,
√

2)}.

Then

(i) In ZFC the chromatic number of G2 is equal to 4.

(ii) In ZF+ACℵ0+LM the chromatic number of G2 is not equal to any positive integer n

nor even to ℵ0.

The second example is a modification of the first one. Namely, G3 is defined exactly the

same as G2, with the only exception that now

F = {(
√

2, 0), (0,
√

2)}.

Then

(i) In ZFC the chromatic number of G3 is equal to 2.
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(ii) In ZF+ACℵ0+LM the chromatic number of G3 is not equal to any positive integer n

nor even to ℵ0.

In the present thesis we will focus our attention on yet another partial result toward a final

solution of the chromatic number problem. D. Coulson in [1] considered special type of

distance excluding coloring of the plane, associated with certain types of polygonal tilings.

He showed that such a coloring must employ at least six colors. In chapter 2 this result is

stated in details in theorem 0.1, whereas the discussion of the proof will follow in chapter 3.

This result was stated for colorings of polygonal tilings of the plane. However, the author

assumed that two polygons from such a tiling meet either at a vertex, or along an entire

common edge. Since any polygon can be triangulated without introducing new vertices, we

will consider only colorings of triangulations of the plane; i.e., polygonal tilings where each

tile is a triangle and the intersection of any two tiles is an edge of both tiles, a vertex, or

empty.

8



Chapter 2

Preliminaries

We will use the following notation. <2 denotes the Euclidean plane with the distance

between two points x, y ∈ <2 given by ||x − y|| =
√

(x1 − y1)2 + (x2 − y2)2, where x =

(x1, x2) and y = (y1, y2). For a fixed ε > 0 and x ∈ <2, by Sε(x) we will denote the circle

of radius ε centered at x. A closed disk is the region Dε(x) bounded by Sε(x).

By a tiling of the plane <2 we will understand a collection of polygons P such that

• ⋃P = <2

• if P1, P2 ∈ P then IntP1 ∩ IntP2 = ∅.

The interior IntP of a triangle P is the set of all points x for which there is a closed disk

G ⊆ P centered at x. An interior point of a triangulation is a point that is in the interior

of one of the elements of P. A boundary point is a point that is not an interior point. Note

that a boundary point is either a vertex of a triangle from P or it lies on an edge of such

a triangle. A polygon P is convex if for given x, y ∈ P the straight segment [x, y] joining

x and y lies entirely in P ; i.e. [x, y] ⊆ P . A tiling P is locally finite if for every point

x ∈ <2 there is a circle S centered at x that intersects only a finite number of elements

from P. A locally finite tiling P is a triangulation if every element of P is a triangle and

the intersection of any two tiles is an edge of both tiles, a vertex, or the empty set.

A coloring of the plane is a surjective function Γ : <2 → ∆, where ∆ is the set of

colors. We will denote these colors by greek letters such as α, β, γ, δ, χ. Given a point x in

the plane, and a color α ∈ ∆, we shall say that x is α-colored if Γ(x) = α. We will consider

only colorings with the following property:

• if P is an element of the tilling, α ∈ ∆ is a color, x, y ∈ IntP , and x is α-colored, then

y is α-colored as well;

9



i.e. any element of the tiling has its entire interior colored by the same color.

At this point it is important to address the following issue. We will not deal with

the coloring of the boundary points at all. It is important to stress out that this does not

mean that the coloring function is not defined for these points. Rather it means that the

main result does not depend on how these boundary points are colored. In other words, a

restriction of the coloring to interior points only already forces that the set of colors must

consists of at least six elements.

We say that a coloring Γ(x) of the plane is distance excluding if there is a distance d

such that ||x − y|| = d implies that Γ(x) 6= Γ(y); i.e. no two points of the same color can

be d distance apart. From now on let such a distance d be set once and for all.

The main result that we are going to discuss is as follows.

Theorem: If Γ : <2 → ∆ is a distance excluding coloring of a locally finite tiling P, then

∆ consists of at least six colors.

The above result was originally proved in [1] for locally finite polygonal tilings with convex

tiles, and the area of all tiles from the tiling bounded from below by a constant. However,

this last assumption is not needed to prove the above theorem, when we assume local

finiteness, as we are going to exhibit. Alternatively, one could drop local finiteness of the

triangulation, and assume the lower bound for the area of all triangles instead, and still

prove the theorem. Also, as mentioned earlier, using the fact that any polygon can be

triangulated allows us to deal only with triangulations, instead of polygonal tilings. This

also allows for a generalization of the result by Coulson, since in such a case we do not need

to state that the elements of the tilings are convex. We can start with any polygonal tiling

P, and after triangulating each of its elements we can consider a triangulation P ′. Since

such a triangulation is still locally finite and every triangle is convex, the same arguments

can be applied.

The rest of the present thesis is devoted to proving the above result. We shall present

in detail a number of arguments that were indicated as true in [1], but an actual proof of

these facts, not immediately apparent, was not given.

10



Chapter 3

Chromatic number of plane triangulations

From now on, let Γ : <2 → ∆ be a distance excluding coloring of a triangulation P

set once and for all, and let d be the excluded distance. We shall say that a vertex T is

tri-colored if T belongs to three triangles from P, each of which has its interior painted by

a color different than the interiors of the other two. Similarly, a vertex is bi-colored if it

belongs to two triangles that are not colored alike.

Lemma 3.1 There is a tri-colored vertex T in the triangulation P.

Proof: Suppose to the contrary that there is no tri-colored vertex. Choose a triangle P

and a subcollection G of the triangulation, that is maximal with respect to the following

properties:

1. P ∈ G,

2. if P̃ ∈ G then IntP and IntP̃ are colored alike,

3.
⋃G is connected.

Notice that
⋃G is bounded. Suppose it was not. Choose x ∈ IntP and consider the circle

Sd(x) of radius d centered at x. Since
⋃G is not bounded by Sd(x) there must be a point

y ∈ Sd(x)∩⋃G. If y is an interior point then we obtain a contradiction, since x and y would

be colored alike, and in distance d apart. If y is a boundary point to a triangle P̃ from G,

then choose an ε and a circle Sε(x) around x small enough so that Sε(x) ⊆ IntP . Also,

choose ε1 ≤ ε so that the circle Sε1(y) intersects the interior of P̃ . Let z ∈ Sε1(y)∩ IntP̃ and

let Sd(z) be the circle centered at z of radius d. Clearly Sd(z) intersects Sε1(x) in a point, say

w. Since Sε1(x) ⊆ Sε(x) therefore w and z are colored alike. This is a contradiction, since

11



||w− z|| = d. We have obtained that
⋃G is bounded. Consider the complement of

⋃G; i.e.

consider <2 \⋃G. There is an unbounded set U , that is a component of this complement.

Notice that the boundary of U separates the plane (no point in the complement of U can

be joined by a line segment with a point in U , without crossing this boundary) therefore

this boundary must contain a closed loop, say L. L is a union of edges, each of which is

shared by a triangle from G and by a triangle from P \ G.

Consider a subcollection U of all triangles R from P \ G that intersect L. Notice that

all elements from U are colored alike. Indeed, suppose the contrary. Pick a triangle P1 from

U with an edge contained in L. Suppose, there was a triangle P2 in U , colored not alike

to P1. Choose an edge E1 ⊆ L of P1, and an edge E2 ⊆ L of P2. Since L is connected,

there is a path Y consisting of edges that joins E1 with E2 (with possible self-intersections).

By the initial assumption there is no tri-colored vertex in this path, and therefore every

vertex is bi-colored. Let α be the color of G, β be the color of P1, and γ the color of P2.

Walking from E1 to E2 along Y , let v1 be the first bi-colored vertex where α-colored and

γ-colored triangles meet. Backtrack to the previous vertex v2. At this vertex α-colored and

β-colored triangles meet. Consider the edge [v2, v1]. This edge is shared by exactly two

triangles, one of which is a triangle P3 ∈ G, which in turn must be α-colored. Let P4 be the

triangle from U sharing [v2, v1] with P3. If P4 is β-colored then v1 is tri-colored. Otherwise

v2 is tri-colored. We obtained a clear contradiction, since we assumed there is no tri-colored

vertex, and therefore all elements of U are colored alike.

Now, complete U so that
⋃U is maximal with respect to two properties:

1. if P1, P2 ∈ U then IntP1 and IntP2 are colored alike,

2.
⋃U is connected.

Choose an interior point p ∈ ⋃U . If the circle Sd(p) of radius d centered at p intersects
⋃U ,

then we obtain a contradiction by the same arguments that were used to exhibit that
⋃G is

bounded. Otherwise, repeat the same reasoning as before replacing G with G∪U . The local

finiteness of the tilling assures that the region bounded by
⋃U will be expanding (otherwise,

12



the areas of triangles would need to tend to zero, and there would be an accumulation point,

by Bolzano Weirstrass theorem-cf. proof of proposition 3.2) and, if neccesary, iterating the

above procedure finitely many times we will obtain a contradiction.

Proposition 3.2 Let C be a circle. Then there are only finitely many boundary points on

C.

Proof: Notice that by local finiteness of the tilling, C can have a nonempty intersection with

only finite number of elements from the triangulation. A contrario, suppose C intersects

infinitely many triangles from the triangulation. By Bolzano-Weirstrass theorem, applied

to a circle, there must be an x ∈ C, such that for any given circle S around x there are

points from infinitely many of these triangles in S ∩ C. Therefore the triangulation is not

locally finite at x. A contradiction.

Now, we will show that any tile can have only finitely many boundary points on C.

Suppose to the contrary that there is a tile P that has an infinite number of boundary

points on C.

First, infinitely many of these points must be interior points of edges of P , since P has

only finitely many vertices. Second, for given edge E of P there are at most 2 points in

common for E and C, since any straight arc intersects a circle in at most 2 points. This

implies that if there are infinitely many boundary points of P on C, there must be also

infinitely many edges of P . But P is a triangle. Contradiction.

Consequently, C has nonempty intersection with only finitely many tiles, each of which

has only finitely many boundary points on C.

Lemma 3.3 The set of colors ∆ must consists of at least five colors.

Proof: Let C be a circle of radius d and centered at the tri-colored vertex T . By

proposition 3.2 there are only finitely many boundary points on C. Let z be any point on

C which is an interior point of a triangle Q. There is an ε > 0 such that z is contained in

Q with some closed disk Gε(z) of radius ε centered at z. Clearly Gε(z) is colored with the

13



T

z
w

q

Gε(z)

Sεa(T )

Sεa(z)

Figure 3.1: Five colors are needed.

same color as z. Let α, β, γ be the three colors meeting at T . Suppose z is colored by α

and let [z, T ] be the straight segment of length d joining T with z. Arbitrarily close to T

there are α-colored points. Therefore there is εα ≤ ε such that there is an α-colored point

q on the circle Sεα(T ) of radius εα centered at T . Consider the straight segment [q, T ] and

along with the segment [z, T ] extend it to a parallelogram [z, T, q, w]. Then w is a point on

the circle Sεα(z) of radius εα centered at z. Since Sεα(z) ⊆ Gε(z), w is α-colored, and in a

distance d from α-colored point q. A contradiction.

By the same arguments it can be shown that z can be neither β-colored nor γ-colored.

Now let v be a point on C in a distance d from z. By the same reasoning as above v cannot

be either α-colored, or β-colored, or γ-colored. Since it is d distance apart from z, it cannot

be of the same color as z, and therefore a fifth color is needed.

In Lemmas 3.4, 3.5, 3.6, 3.7 we assume that only five colors are used.
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Lemma 3.4 Let C be a circle of radius d and centered at the tri-colored vertex T . If

x, y ∈ C, ||x−y|| = d and x is a boundary point of two distinct tiles colored by two different

colors, then y cannot be an interior point of any tile.

Proof: Suppose ∆ = {α, β, γ, δ, χ} is the set of colors, C is the circle of radius d centered

at T and x, y ∈ C, ||x−y|| = d. Again, let α, β, γ be the three colors meeting at T . Suppose

T

x

q

y

w

Q

W

R

Figure 3.2: Proof of lemma 3.4.

that x is a boundary point of some two tiles, say W,R, colored by two different colors, but

y is an interior point of a tile Q. By the reasoning in the proof of lemma 3.3, on the circle

C there can be no interior point colored by α, β or γ. Therefore, IntW and IntR must

be colored by δ or χ. Without loss of generality, suppose IntW is δ-colored and IntR is

χ-colored. There is ε > 0 such that y is contained in Q with a closed disk Gε(y) of radius ε

centered at y. Since we assume there are only 5 colors used, y must be either δ-colored or

χ-colored. Suppose y is δ-colored. x is in the boundary of W and therefore there is εδ ≤ ε

such that there is a δ-colored point w ∈ IntW on the circle Sεδ(x) of radius εδ centered at
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x. Consider the straight segment [x,w] and along with the straight segment [y, x] extend

it to a parallelogram [y, x, w, q]. Then q is a point on the circle Sεδ(y) of radius εδ centered

at y. Since Sεδ(y) ⊆ Gε(y), q is in the interior of Q and therefore it is δ-colored, as y is.

However, q is in a distance d from δ-colored point w. This gives a contradiction. The same

arguments apply if x is χ-colored, and this concludes the proof.

Lemma 3.5 Let C be a circle of radius d and centered at the tri-colored vertex T . Then

there is a regular hexagon H inscribed into C, each vertex of which is a boundary point of

some two tiles colored by two different colors.

Proof: Let x be any point on the circle C of radius d around T , where two tiles whose

T

d

d

d

d

d

d d

x

y

H

C

Figure 3.3: The regular hexagon H around the tri-colored vertex T .

interiors are of two different colors meet. By lemma 3.4 if y is on on the circle C in the

distance d apart from x, then y is not an interior point. This process can be repeated in

order to obtain four more different points with the same property as x and y, since in a

circle of radius d one can inscribe a regular hexagon of side length d. Therefore these six

points span a regular hexagon H inscribed into C and the proof is complete.
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Let A be a circular subarc of the circle C. We will write A =< v,w > to indicate the

shorter of the two subarcs of C, with endpoints in v and w. We say that A invades the

interior of P if A ∩ IntP 6= ∅.

Lemma 3.6 Assume that the boundary of C is colored with two colors only. Let H be the

regular hexagon described in lemma 3.5. Let v, w be two vertices of H sharing an edge [v, w].

Let A =< v,w >. By definition of H there are two triangles meeting at v one δ-colored,

and the other χ-colored. Suppose Pv is one of the two with v in its boundary and such that

the arc A invades IntPv. Let Pw be defined analogously for w. Then Γ(IntPv) = Γ(IntPw);

i.e. the interiors of Pv and Pw are of the same color.

Proof: Let v, w, Pv, Pw be as described above. Suppose by contradiction the interiors of Pv

T

H

C
v

w
PF

Pv

u

z

y

r

Pw

Figure 3.4: Proof of lemma 3.6.

and Pw are not of the same color; i.e. let IntPv be δ-colored and IntPw be χ-colored. Let

F be the subarc of C such that F = C \ A, and let PF be a δ-colored triangle from the

triangulation that is invaded by F and meets Pw in w. The existence of such a triangle is
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guaranteed by definition of H; since we assume that Pw is χ-colored therefore PF must be

δ-colored. F invades the interior of PF and there exists a point u ∈ IntPF ∩ F . The entire

subarc < w, u > of F is δ-colored (with a possible exception for w). Let z be a point on A

in the distance d from u. Since arc A invades IntPv there must be points from Pv on the

arc < v, z >. Choose y ∈ IntPv∩ < v, z >. Clearly y is of distance d from a point r on

< w, u >. But this is a contradiction, since both z and y are δ-colored.

Lemma 3.7 Let H be the regular hexagon described in lemma 3.5, and v, w its two con-

secutive vertices. Let [v, w] be an edge of H, and Rv be a ray starting at v, that makes a

right angle with [v, w]. Then there is an ε > 0 and a disk Dε(v) around v, such that any

point on Rv ∩Dε(v) is neither χ-colored nor δ-colored (χ, δ are colors meeting at at v).

Proof: Let [u, v] be the edge of H meeting [v, w] at v. By the reasoning of lemma 3.6

T

H

C

v

w
y

u z
t

r

Figure 3.5: Proof of lemma 3.7.

without loss of generality we can assume that there is z ∈ [u,w] (close to u) such that (u, z)
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is colored by a single color. Similarly, we can assume that there is y ∈ [v, w] (close to w)

such that (y, w) is colored by a single color. Then (u, z) and (y, w) are not colored alike,

and assume that (u, z) is χ-colored, but (y, w) is δ-colored. Now, there is a point t ∈ Rv
close enough to v so that Sd(t) intersects (y, w). Clearly t cannot be δ-colored, nor any

other point on the straight arc [v, t]. Similarly, there is r ∈ Rv close enough to v so that

Sd(r) intersects (u, z). Clearly r cannot be δ-colored, nor any other point on the straight

arc [v, r]. The lemma follows with ε = min{|r − v|, |t− v|}.

Theorem: If Γ : <2 → ∆ is a distance excluding coloring of a locally finite tiling P, then

∆ consists of at least six colors.

Proof: Suppose to the contrary, that we can use 5 colors only and exclude the distance

T

B

α
βγ

δ

χ

δ

χ

p1

p2

R1

R2

c

a
b gk

Figure 3.6: Six colors are needed.

d. Consider an edge B with a vertex at T , that belongs to two triangles P1 and P2 such

that T ∈ P1 ∩ P2 and IntP1 is α-colored and IntP2 is β-colored. The ray starting at T and

containing B intersects the hexagon H in a point, say p. Let p1 and p2 be two vertices of
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the edge of the hexagon H that contains p (possibly p = p1 or p = p2). Notice that both

[p1, T ] and [p2, T ] make acute angles with B.

Consider the ray R1 starting at p1 that makes a right angle with [p1, p2], and the ray

R2 starting at p2 that makes a right angle with [p1, p2]. Close to p1 and p2, R1 and R2 are

neither δ-colored nor χ-colored.

Choose a point c on R1 and g on R2 close enough to p1 and p2 respectively, so that the

circles Sd(c),Sd(g) of radius d centered at c and g respectively, both intersect the edge B in

its interior. One can assure that ||c− p1|| = ||g − p2||.

Let k be in Sd(c) ∩ B. Observe that there is a circular arc [a, b] ⊆ Sd(c) containing k

such that the circular segment (a, k) is α-colored and the circular segment (k, b) is β-colored,

by definition of B. Therefore c cannot be either α-colored or β-colored. Consequently c

must be γ-colored. By the same arguments, assuming that only five colors are to be used,

g must also be γ-colored. However, ||c − g|| = d, since both R1 and R2 make right angle

with [p1, p2] (which is of length d) and the straight segment [c, g] is parallel to [p1, p2]. This

contradiction implies that a sixth color, say κ is needed, which completes the proof.
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