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This paper is a brief survey of hyperspaces of topological spaces. In particular, the

hyperspace of all nonempty compact subsets of a space and the hyperspace of all nonempty

subcontinua of a space with the Vietoris topology. An example of a Whitney map on the

hyperspace of any metric space is then constructed.
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Chapter 1

Preliminaries

Definition 1.1 A topological space, (X, T ), is a set X together with collection, T , of subsets

of X such that:

i. ∅, X ∈ T ,

ii. If U, V ∈ T then U ∩ V ∈ T ,

iii. If U ⊂ T then ∪U ∈ T . The elements of T are called the open sets.

Definition 1.2 A collection of subsets, B, of X is a base for a topology, T , on X if:

i. For every x ∈ X there is some B ∈ B such that x ∈ B,

ii. If x ∈ B1 ∩ B2 where B1, B2 ∈ B, then there is some B3 ∈ B such that x ∈ B3 and

B3 ⊂ B1 ∩B2.

The base B is said to generate the topology on X.

Definition 1.3 C ⊂ X is closed if X \ C is open.

Definition 1.4 x ∈ X is a limit point of Y ⊂ X if every open U with x ∈ U has U ∩Y 6= ∅.

Definition 1.5 The closure of M ⊂ X, denoted M , is the set M together with its limit

points.

Definition 1.6 A topological space is Hausdorff if for every pair of distinct points there

exists a pair of disjoint open sets, each containing one point respectively.
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Definition 1.7 A topological space is regular if for every point and closed subset not

containing that point, there exist disjoint open sets such that one contains the point and

the other contains the closed subset.

Definition 1.8 A topological space is normal if for every pair of disjoint closed subsets

there exist disjoint open sets such that each contain one of the sets.

Definition 1.9 A function d : X ×X → R is called a metric if:

i. d(x, y) ≥ 0 for every x, y ∈ X and d(x, y) = 0 if and only if x = y,

ii. d(x, y) = d(y, x) for every x, y ∈ X,

iii. (Triangle Inequality) For every x, y, z ∈ X, d(x, z) + d(z, y) ≥ d(x, y).

Definition 1.10 The ε-ball about x ∈ X, denoted b(x, ε) is the set of all points y ∈ Y such

that d(x, y) < ε.

Definition 1.11 A topological space X is said to be metrizable with metric d if the set of

ε-balls generated by d form a base for the topology. X is also said to be a metric space.

Definition 1.12 An open cover of a topological space X is a collection, mathcalU , of open

subsets of X such that X ⊂ ∪U . A subset of U that contains X in its union is called a

subcover of U .

Definition 1.13 A topological space X is compact if every open cover has a finite subcover.

Definition 1.14 Let X be a topological space. Two subsets H and K of X are called

mutually separated if neither set contains a point or a limit point of the other.
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Definition 1.15 A topological space X is connected if it is not the union of two non-empty

mutually separated subsets.

Definition 1.16 A topological space X is a continuum if X is Hausdorff and both connected

and compact.

Definition 1.17 A topological space X is a metric continuum if it is a continuum and

metrizable.

Definition 1.18 If X and Y are topological spaces, a function f : X → Y is continuous if

for every open U ⊂ Y and x ∈ X with f(x) ∈ U , there exists an open V ⊂ X with x ∈ V

such that f(V ) ⊂ U . Equivalently, for every open U ⊂ Y , f−1(U) is open in X. Also, for

metric spaces in particular, for every x ∈ X and ε > o there exists δ > 0 such that for every

y ∈ X with d(x, y) < δ, f(x) and f(y) are within ε of each other in Y .

Definition 1.19 A function f : X → Y is open if for every open V ⊂ X, f(V ) is open in

the image of X.

Definition 1.20 A function f : X → Y is a homeomorphic embedding of X into Y if f is

one-to-one, continuous and open. X is said to be homeomorphic to its image in Y . If f is

onto then X and Y are said to be homeomorphic.

Most of the following basic theorems may be found in one or more of [1], [2], and [3]. The

proofs of these theorems are omitted, but may be found in [1].

Theorem 1.21 A closed subset of a compact space is compact.

Theorem 1.22 A compact subset of a Hausdorff space is closed.
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Theorem 1.23 If H and K are disjoint compact subsets of a Hausdorff space X then there

is a pair of disjoint open sets, each containing one.

Theorem 1.24 The continuous image of a compact set is compact.

Theorem 1.25 If f is a continuous one-to-one map from a compact space to a Hausdorff

space then f is a homeomorphic embedding.

Theorem 1.26 (Tychonoff) Any product of compact sets is compact.

Theorem 1.27 Let B be a basis for a topological space X. Then every open set of X is a

union of members of B.

Theorem 1.28 The following are equivalent:

i. f : X → Y is a continuous function from topological space X to topological space

Y .

ii. If O is a (basic) open set in Y , then f−1(O) is open in X.

Theorem 1.29 If X is a compact Hausdorff space, then X is regular.

Theorem 1.30 If X is a compact Hausdorff space, then X is normal.

Theorem 1.31 If X is metrizable, then X is Hausdorff, regular, and normal.

Theorem 1.32 If X is regular, then X is Hausdorff.

Theorem 1.33 If X is normal, then X is regular.
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Theorem 1.34 (Zorn’s Lemma) Let A be a nonempty partially ordered set. Then if every

chain has an upper bound, A has a maximal element.

Theorem 1.35 If X is a metric space and every sequence has a convergent subsequence,

then X is compact.
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Chapter 2

Basic Properties of Hyperspaces

Definition 2.1 Suppose that X is a topological space. Then the hyperspace of X, denoted

by 2X is the space of nonempty compact subsets of X together with the following types of

sets forming a base for its topology. Suppose that {U1, U2, .., Un} = U is a finite collection

of open subsets of X, then R(U) = R(U1, U2, ...Un) = {K ∈ 2X : K ⊂ ∪ni=1Ui and for all

1 ≤ i ≤ n,K ∩ Ui 6= ∅}. The topology which this base generates is called the Vietoris

topology.

Before moving on, let us indeed see that these sets form a base for a topology on 2X .

Theorem 2.2 The sets of the form R(U) = {K ∈ 2X : K ⊂ ∪ni=1Ui and for all 1 ≤ i ≤

n,K ∩Ui 6= ∅} where U = {U1, U2, ...Un} is a finite collection of open sets of X form a base

on 2X .

Proof: First, observe that every K ∈ 2X is in R(X). Now let U = {U1, ..., Un} and

V = {V1, ..., Vm} be finite collections of open subsets of X and suppose K ∈ 2X with

K ⊂ R(U) ∩ R(V). From this we can see that K ⊂ [∪ni=1Ui] ∩ [∪mj=1Vj ]. For every i ≤ n

and j ≤ m let Oi,j = Ui ∩ Vj . Define O to be those Oi,j that have K ∩Oi,j 6= ∅. It is clear

that R(O) is a member of the collection of subsets of 2X in the hypothesis. To see that

K ∈ R(O), first note that K ∩ O 6= ∅ for all O ∈ O by definition. Next, K ⊂ ∪O for if

x ∈ K then for some i ≤ n and j ≤ m, x ∈ Ui and x ∈ Vj , hence x ∈ K ∩Oi,j which implies

that Oi,j ∈ O, and so x ∈ Oi,j ⊂ ∪O. Finally, we must see that R(O) ⊂ R(U)∩R(V). First

show R(O) ⊂ R(U). Let H ∈ R(O) then H ⊂ ∪O ⊂ ∪U since each O ∈ O is a subset of

some V ∈ V. Now, if i ≤ n then since K ∩Ui 6= ∅ there exists j ≤ m so that K ∩Ui∩Vj 6= ∅
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and so Oi,j ∈ O. Since H ∈ R(O), ∅ 6= H ∩Oi,j ⊂ H ∩ Ui, and so H ∈ R(U). By a similar

argument, H ∈ R(V) and so R(O) ⊂ R(U) ∩R(V).

Theorem 2.3 If X is Hausdorff then 2X is Hausdorff.

Proof: Suppose H,K ∈ 2X such that H 6= K. Without loss of generality, assume there

exists x ∈ H \K. Then there exist disjoint open U, V ⊂ X with x ∈ U and K ⊂ V . Then

H ∈ R(U,X) and K ∈ R(V ). If L ∈ R(U,X) then L ∩U 6= ∅ and L * V , hence L /∈ R(V ).

If L ∈ R(V ) then L ⊂ V implying that L ∩U = ∅, hence L /∈ R(U,X). From this it can be

concluded that R(U,X) ∩R(V ) = ∅, thus 2X is Hausdorff.

Example 2.4 2I contains a Hilbert Cube.

It can be shown that X =
∏∞
i=1[ 1

2i ,
1

2i−1 ] is embeddable in 2I . One might ask, “How?” Well

this is how: define f : X → 2I by f(x) = {xi}∞i=1 ∪ {0} where x = (xi)∞i=1 ∈ X. It is clear

that f(x) ⊂ I for each x ∈ X and is closed since 0 ∈ f(x) and 0 being its only limit point.

Hence f(x) is compact for every x ∈ X and is in 2I . It is also clear that f is one-to-one. To

see that f is continuous, let U = {U1, U2, ..., Un} and suppose that f(x) ∈ R(U). Assume

0 ∈ U1, hence there exists an N such that if i ≥ N then [ 1
2i ,

1
2i−1 ] ⊂ U1. For each i < N

define Ui = {U ∈ U : xi ∈ U} and Xi = [ 1
2i ,

1
2i−1 ] ∩ [∩U ]. Now, if for some 1 < j ≤ n,

Uj /∈ Ui for any i < N , then since f(x) ∈ R(U) there is some i such that xi ∈ Uj since

the x′is converge to 0, so in this case define Xi = [ 1
2i ,

1
2i−1 ] ∩ Uj . For all other i’s define

Xi = [ 1
2i ,

1
2i−1 ]. So,

∏∞
i=1Xi ⊂ X is open and if y ∈

∏∞
i=1Xi, f(y) ∈ R(U) based on

the construction, hence f is continuous. Since X is compact and 2I is Hausdorff, f is a

homeomorphic embedding.

Definition 2.5 Let C(X) denote the subspace of 2X consisting of all nonempty subcontinua

in X.
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Example 2.6 C(I), where I is the unit interval.

Note that every nonempty subcontinuum of I is of the form [x, y] where x ≤ y. So, it makes

sense that perhaps C(I) might be homeomorphic to X = {(x, y) ∈ I × I : x ≤ y} ⊂ I × I,

and hence be homeomorphic to I × I. To see this, define f : X → C(I) by f((x, y)) = [x, y]

for each (x, y) ∈ I×I. It is clear that f is one-to-one and onto. To see that f is continuous,

let R(U) ⊂ C(I) be a basic open set and [x, y] ∈ R(U). Let Ux ⊂ ∩{U ∈ U : x ∈ U} and

Uy ⊂ ∩{U ∈ U : y ∈ U}, be connected open intervals in I each containing x or y respectively.

Further, assume the upper boundary of Ux is less than some element in [x, y] ∩ U and the

lower boundary of Uy is greater than the same element in [x, y] ∩ U for every U ∈ U . Now,

(x, y) ∈ Ux ×Uy ⊂ I × I which is open. Let (w, z) ∈ Ux ×Uy. If t ∈ [w, z] then at least one

of the following is true: t ∈ [w, x], t ∈ [x, y], t ∈ [y, z], all of which are covered by U and

so [w, z] ⊂ ∪U . Next, for every U ∈ U such that either x or y ∈ U then U ∩ [w, z] 6= ∅. If

U ∈ U contains neither x nor y, then by the construction of Ux and Uy, there is some t ∈ U

such that w < t < z, i.e. t ∈ [w, z] hence [w, z] ∩ U 6= ∅ and [w, z] ∈ R(U). From this we

can conclude that f is continuous and thus a homeomorphism.

Example 2.7 C(S1)

If each proper subcontinuum is identified with its length and midpoint and the entire circle

as a point at the tip it is not too difficult to see that C(S1) is a cone, and thus homeomorphic

to I × I.

Theorem 2.8 C(X) is a closed subset of 2X .

Proof: We shall see this by showing that 2X r C(X) is open. Let K ∈ 2X r C(X), then

since K is not connected, there exist U, V ⊂ X open and disjoint such that K ⊂ U ∪V and
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K has nonempty intersection with each. It is clear that K ∈ R(U, V ) and that R(U, V ) ⊂

2X r C(X), hence 2X r C(X) is open, and C(X) is closed.

Theorem 2.9 If X is a metric space then 2X is also a metric space.

Proof: Suppose X is a metric space with bounded metric d. Define D on 2X by D(H,K) =

max{supx∈H{d(x,K)}, supx∈K{d(x,H)}} for every H,K ∈ 2X . Hence forth, Bε will denote

a ball in 2X and bε will denote a ball in the underlying space X.

First let us see that D defines a metric on 2X . If H = K, d(x,K) ≤ d(x, x) = 0 for every

x ∈ H and d(x,H) ≤ d(x, x) = 0 for every x ∈ K, so D(H,K) = 0. Since each is compact

and hence closed, the implication reverses, so D(H,K) = 0 if and only if H = K. It is

also clear that symmetry holds from the definition of D. Now, suppose H,K,G ∈ 2X , and

assume D(H,K) = ε1 and D(K,G) = ε2. Since D(H,K) = ε1, d(h,K) ≤ ε1 for every

h ∈ H. So for every h ∈ H there exists kh ∈ K with d(h, kh) ≤ ε1. Similarly, there

exists gh ∈ G with d(kh, gh) ≤ ε2. So for every h ∈ H there exists gh ∈ G such that

d(h, gh) ≤ ε1 + ε2 and so d(h,G) ≤ ε1 + ε2 for every h ∈ H. Similarly d(g,H) ≤ ε1 + ε2 for

every g ∈ G and so D(H,G) ≤ ε1 + ε2. Hence D is a metric.

Now to see that D generates the topology on 2X , let U ⊂ 2X be open in the metric

topology, K ∈ U and ε > 0 such that Bε(K) ⊂ U . Then {bε/3(k) : k ∈ K} is an

open cover of K in X. By compactness of K, there exist k1, k2, ..., kn ∈ K such that

{bε/3(k1), bε/3(k2), ..., bε/3(kn)} = V cover K. Clearly K ∈ R(V) = R which is a basic open

set in the topology on 2X . Now, let H ∈ R then if k ∈ K, k ∈ bε/3(ki) for some i ≤ n. Since

bε/3(k1) ∩H 6= ∅ let h ∈ bε/3(k1) ∩H then d(k, h) ≤ d(k, ki) + d(ki, h) < ε/3 + ε/3 = 2ε/3

and so supk∈K{d(k,H)} ≤ 2ε/3 < ε. Also, since H ⊂ ∪ni=0bε/3(ki), suph∈H{d(h,K)} < ε

hence D(H,K) < ε. So, H ∈ Bε(K) ⊂ U which means U is open in the Vietoris topology.

Next let U ⊂ 2X be open in the Vietoris topology and let K ∈ U . Then there is a finite

collection, U , of open subsets of X so that K ∈ R(U) ⊂ U . For every k ∈ K let εk > 0 such

that bεk(k) ⊂ U for every U ∈ U containing k. Since K is compact let k1, k2, ..., kn ∈ K

9



such that {bεki
/2(k) : i ≤ n} cover K and without loss of generality, assume that for every

V ∈ U that for some i ≤ n, bεki
/2(ki) ⊂ V . Let ε = min{ εki

4 : i ≤ n}. If D(H,K) < ε

then for every i ≤ n there is an h ∈ H such that d(h, ki) < ε <
εki
2 and so V ∩ H 6= ∅

for every V ∈ U . Also, for every h ∈ H there exists a k ∈ K such that d(h, k) < ε. Since

k ∈ bεki
/2(ki) for some i ≤ n, d(h, ki) ≤ d(h, k) + d(k, ki) < ε+

εki
2 < εi, which implies that

H ⊂ ∪ni=0bεki
(ki) ⊂ ∪U , hence H ∈ R(U) ⊂ U . So U is open with respect to the metric D,

and so D generates the topology on 2X .

Note that this also makes C(X) a metric space if X is.

Example 2.10 The following metrics are equivalent to that defined in Theorem 2.9: Sup-

pose that X is a metric space with a bounded metric d . If H,K ∈ 2X define

D1(H,K) = inf{ε|H ⊂ ∪x∈Kbε(x) and K ⊂ ∪x∈Hbε(x)},

and

D2(H,K) = sup{ε| there is a point p ∈ H so that Bε(p) ∩ K = ∅ or there is a point p ∈

K so that Bε(p) ∩H = ∅}.

Not only do these metrics generate the same topology on 2X as D, but in fact for each pair

H,K ∈ 2X , these metrics produce the exact same value as D.

Suppose D(H,K) = ε. Without loss of generality, assume there is some h ∈ H such that

d(h,K) = ε. Then for every k ∈ K, h /∈ bε(k) hence, D1(H,K) ≥ ε = D(H,K).

Next, suppose D1(H,K) = ε. Without loss of generality, assume for every δ < ε, H *

∪x∈Kbδ(x). Then for each δ < ε there is some h ∈ H such that d(h,K) ≥ δ and so

bδ(h) ∩K = ∅. Hence D2(H,K) ≥ δ for each δ < ε, so D2(H,K) ≥ ε = D1(H,K).

10



Now, suppose D2(H,K) = ε. Without loss, assume that for every δ < ε, there is some

h ∈ H such that bδ(h) ∩ K = ∅. Then for each δ < ε, there is some h ∈ H such that

d(h,K) ≥ δ, and so D(H,K) ≥ δ for every δ < ε, hence D(H,K) ≥ ε = D2(H,K).

Theorem 2.11 If F1 is the subset of 2X consisting of all the singleton sets, then F1 is

homeomorphic to X.

Proof: Define f : X → 2X by f(x) = {x} for every x ∈ X. f is clearly one to one and

f(X) = F1. Now, if U ⊂ X is open, f(U) = R(U) ∩ F1 which is open in f(X), hence

f is open. Also, if R(U) is a basic open set in 2X then R(U) ∩ F1 = {{x} : x ∈ U for

every U ∈ U} and so f−1(R(U)) = ∩U which is open X. So f is continuous and thus an

embedding of X.

Corollary 2.12 If 2X is metrizable, then so is X.

Proof: Follows from Theorem 2.11.

Note that this also holds if 2X is replaced by C(X) since F1 ⊂ C(X).
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Chapter 3

More Properties of Hyperspaces

Definition 3.1 Suppose that {Mi}i∈N is a sequence of nonempty sets. Let M be the set to

which the point p belongs if and only if every open set containing p intersects infinitely many

sets of the sequence {Mi}i∈N, then M is called the limiting set of the sequence {Mi}i∈N.

Definition 3.2 The set M is called the sequential limiting set of the sequence of {Mi}i∈N

if and only if it is the limiting set of every infinite subsequence of {Mi}i∈N.

Lemma 3.3 If M is the limiting set of a sequence {Mi}i∈N in 2X then M is closed

Proof: Let x ∈M and U ⊂ X be open with x ∈ U . Then, there is some m ∈M such that

m ∈ U , hence U intersects infinitely many members of {Mi}i∈N and x ∈ M . Thus, M is

closed.

Theorem 3.4 Let X be a compact space and suppose that M is an element of 2X . Then

the sequence of elements {Mi}i∈N of 2X converges to M in the Vietoris topology on 2X if

and only if M is the sequential limiting set of the sequence {Mi}i∈N of sets in the topology

of X.

Proof: Suppose that {Mi}i∈N converges to M in the topology of 2X , and let {Mik}k∈N be

a subsequence of {Mi}i∈N with limiting set M ′. If p ∈ M and U ⊂ X is open with p ∈ U

then R(U,X) ⊂ 2X and M ∈ R(U,X). By hypothesis, {Mik}k∈N converges to M in 2X ,

hence there exists a J ∈ N such that if j ≥ J Mij ∈ R(U,X), in particular Mij ∩ U 6= ∅

for every j ≥ J . Hence p ∈ M ′ and so M ⊂ M ′. Now suppose that p ∈ M ′ \M . Since
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M is compact there are disjoint open U1, U2 ⊂ X such that p ∈ U1 and M ⊂ U2. Clearly

M ∈ R(U2) ⊂ 2X which is open, hence there exists a J ∈ N such that for every j ≥ J ,

Mij ∈ R(U2), in particular Mij ⊂ U2 for every j ≥ J . From this, U1 ∩Mij = ∅ for every

j ≥ J and p ∈M ′, hence M ′ ⊂M thus M ′ = M and so M is the sequential limiting set of

{Mi}i∈N. Conversely, assume M is the sequential limiting set of {Mi}i∈N in the topology

of X. It is also clear the M contains all of it’s limit points, hence M is closed, and since X

is compact, M is compact and so M ∈ 2X . Now let R(U) ⊂ 2X be open with M ∈ R(U).

Note that if p ∈ M and U ⊂ X is open with p ∈ U then there is some N ∈ N such that if

n ≥ N then Un ∩Mn 6= ∅ since M is the sequential limiting set of the sequence. So, since

for every U ∈ U , U ∩M 6= ∅ there is some NU ∈ N such that if n ≥ NU then Mn ∩ U 6= ∅.

Further, there exists an N ′ ∈ N such that if n ≥ N ′ then Mn ⊂ ∪U . If not, then there

exists an infinite subsequence {Mik}k∈N of {Mi}i∈N with Mik 6⊂ ∪U for every k. For every

k pick xk ∈ Mik \ ∪U . Then {xik}k∈N is a sequence in X, and by compactness has a limit

point or point that repeats infinitely many times, x ∈ X, not in ∪U . It is clear that x would

then be in the limiting set of {Mik}k∈N contradicting M being the sequential limiting set

of our sequence. Let N = max{{NU : U ∈ U} ∪ {N ′}}. Then, if n ≥ N , Mn ∈ R(U) and so

{Mi}i∈N converges to M in 2X .

Lemma 3.5 If X is a compact space and {Mi}i∈N is a sequence in 2X , then the limiting

set M of {Mi}i∈N is nonempty.

Proof: Choose xi ∈Mi for every i ∈ N. If one xi is repeated infinitely many times, then it

is in M and we are done. Suppose this is not the case. Then {xi}i∈N is infinite and has a

limit point x ∈ X. Then x ∈M , in particular M 6= ∅.

Lemma 3.6 If X is a compact space and {Mi}i∈N is a sequence in 2X with limiting set

M . Then if no proper subset of M is the limiting set for some subsequence of {Mi}i∈N,

{Mi}i∈N converges to M in 2X .
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Proof: Let {Mik}k∈N be a subsequence of {Mi}i∈N with limiting set M ′. Then M ′ 6= ∅ and

it is clear that M ′ ⊂ M . By hypothesis the containment cannot be proper so M ′ = M ,

hence M is the sequential limiting set of {Mi}i∈N. By Theorem, {Mi}i∈N converges to M .

Lemma 3.7 Let X be a compact metric space and {Mi}i∈N be a sequence in X. Then

M = {M : M is the limiting set for some subsequence of {Mi}i∈N} ordered by reverse

inclusion is a partially ordered set and contains a maximal element, i.e. there exists a

subsequence of {Mi}i∈N with limiting set satisfying the hypothesis of the preceding lemma

and hence is convergent.

Proof: Let {Mi}i∈N be a sequence in X and M = {M : M is the limiting set for some

subsequence of {Mi}i∈N}. Then reverse inclusion is reflexive, anti-symmetric and transitive,

hence (M,⊃) is a partially ordered set. Let C ⊂ M be a chain. Then C = ∩C 6= ∅

and for every n ∈ N there is some Cn ∈ C such that Cn ⊂ ∪x∈Cb(x, 1
n) = Bn. Then

C ⊂ ∩n∈NCn ⊂ ∩n∈NBn = C, i.e. ∩n∈NCn = C. For every n ∈ N let Kn ⊂ N such that

Mn = {Mk}k∈Kn is a subsequence of {Mi}i∈N with limiting set Cn. Now, for every n ∈ N

since Cn ⊂ Bn and Bn open, there exists Nn ∈ N such that if k ∈ Kn with k ≥ Nn and

Mk ∈Mn then Mk ⊂ Bn. Choose Mk1 ∈M1 such that k1 ≥ N1. For n > 1 pick Mkn ∈Mn

such that kn ≥ Nn. Let C ′ be the limiting set of {Mkn}n∈N. Note that Bn−1 ⊂ Bn for each

n ∈ N so if x 6∈ Bn then x ∈ X \Bn+1 an open set missing Mkj
for every j ≥ n+ 1 and so

C ′ ⊂ ∩n∈NBn = C. So C ′ ∈ M with C ′ ⊂ N for every N ∈ C, i.e. C ′ is an upper bound

for C. By Zorn’s lemma, there exists a maximal M ∈M with associated subsequence MM

satisfying the hypothesis of the previous lemma.

Theorem 3.8 If X is a compact metric space then 2X is compact.
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Proof: Follows from the preceding lemmas and since sequential compactness is equivalent

to compactness in metric spaces.

Note that since C(X) is closed in 2X , it is also compact.

Definition 3.9 If n is an integer then Fn denotes the set of all elements of 2X that have

at most n points.

Theorem 3.10 Fn ⊂ 2X is closed for every n.

Proof: We shall show that 2X \Fn is open in 2X . Let K ∈ 2X \Fn, then K has at least n+1

distinct points, x1, ..., xn+1. Since X is Hausdorf, there exist disjoint open U1, .., Un+1 ⊂ 2X

each containing the respective points in K. Then K ∈ R(U1, .., Un+1, X) and it is clear that

ifH ∈ R(U1, .., Un+1, X), thenH has at least n+1 points and soR(U1, .., Un+1, X) ⊂ 2X\Fn,

i.e. 2X \ Fn is open.

Corollary 3.11 If 2X is compact, so is X.

Proof: X is homeomorphic to F1.

Note that this also holds if 2X is replaced by C(X).

Definition 3.12 If n is an integer then Kn denotes the set of all elements of 2X that have

at most n components.

Theorem 3.13 Kn ⊂ 2X is closed for every n.
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Proof: We shall again show that 2X \ Kn is open in 2X . Let H ∈ 2X \ Kn, then K

has at least n + 1 different components, H1, ...,Hn+1, each closed as a subset of H and

hence compact. Since X is Hausdorff and Hi is compact for every i ≤ n + 1, there exist

disjoint open U1, .., Un+1 ⊂ 2X each containing the respective components of H. Then

H ∈ R(U1, .., Un+1, X) and it is clear that if J ∈ R(U1, .., Un+1, X), then J has at least

n+ 1 components and so R(U1, .., Un+1, X) ⊂ 2X \Kn, i.e. 2X \Kn is open.

Theorem 3.14 The set F = ∪∞n=1Fn is dense (Fσ) in 2X .

Proof: Let R ⊂ 2X be open. Then there exists a finite collection U of open subsets of X such

that R(U) ⊂ R. Now, for each U ∈ U let xU ∈ U . Then Y = {xU : U ∈ U} ∈ R(U) ⊂ R,

and Y ∈ F|U| ⊂ F , thus F is dense in 2X .

Theorem 3.15 If W ⊂ C(X) is a continuum then ∪{H|H ∈W} is a continuum.

proof: Let U be an open cover of W ′ = ∪{H|H ∈W}. Then for every H ∈W there exists

a finite UH ⊂ U covering H and so that each member of UH has nonempty intersection

with H. So, U2X = {R(UH) : H ∈ W is an open cover of W in 2X . Since W is compact,

there exist H1, H2, ..,Hn so that W ⊂ ∪ni=1R(UHi). Clearly, ∪ni=1UHi is a subset of U that

is finite and covers W ′, hence W ′ is compact. To see that W ′ is connected, assume by

way of contradiction that it is not. So, let W ′ = A ∪ B where A and B are non-empty

and mutually separated. Notice that each A and B are closed, and hence, compact and

so there exist disjoint open U, V ⊂ X such that A ⊂ U and B ⊂ V . Since each H ∈ W

is connected, either H ⊂ U or H ⊂ V and so W ⊂ R(U) ∪ R(V ) each open and having

non-empty intersection with W, a contradiction. Hence, W ′ is connected.
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Chapter 4

Construction of a Whitney Map

Lemma 4.1 Let φ : Y → X be continuous. Then Φ : 2Y → 2X , defined by

Φ(K) = φ(K) = {φ(k) : k ∈ K}

for each K ∈ 2Y , is continuous.

Proof: For each K ∈ 2Y , Φ(K) = φ(K) is compact and hence in 2X . Let V ⊂ 2X

be open, Φ(K) ∈ V and Φ(K) ∈ B(U1, ..., U2) ⊂ V . Since φ(K) = Φ(K) ⊂ ∪ni=1Ui,

K ⊂ ∪ni=1φ
−1(Ui), each of which is open in Y . Also, since for each i ≤ n, Ui ∩ Φ(K) =

Ui ∩ φ(K) 6= ∅, we have φ−1(Ui) ∩K 6= ∅, i.e. K ∈ B(φ−1(U1), .., φ−1(Un)). Further, it is

clear that if H ∈ B(φ−1(U1), .., φ−1(Un)) then Φ(H) ∈ B(U1, ..., U2).

Lemma 4.2 If K ⊂ X is compact, then 2K is homeomorphic to {H ∈ 2X : H ⊂ K}.

Proof: Let φ be the identity map. Then Φ is clearly one to one, onto and continuous by

Lemma 4.1. Since K is compact, 2K is compact and so Φ is an embedding.

In the following, let (X, d) be a metric space and assume d ≤ 1

Definition 4.3 For every n ≥ 2 define wn : Fn → [0,∞) by wn(K) = 0 if |K| < n or

wn(K) = min{d(x, y) : x, y ∈ K and x 6= y} if |K| = n.

Lemma 4.4 If H,K ∈ Fn and D(H,K) < ε
2 then |wn(H)− wn(K)| < ε
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Proof: Case 1: |H|, |K| < n, then the lemma is clear.

Case 2: |H| = n and |K| < n. Since D(H,K) < ε
2 , for each h ∈ H there is some k ∈ K

such that d(h, k) < ε
2 . Since |K| < |H| there are distinct h, h′ ∈ H such that d(k, h) < ε

2

and d(k, h′) < ε
2 for some k ∈ K. Hence

|wn(H)− wn(K)| = wn(H) ≤ d(h, h′) ≤ d(k, h) + d(k, h′) <
ε

2
+
ε

2
= ε.

Case 3: |H| = n, |K| = n. Let h, h′ ∈ H be distinct such that wn(H) = d(h, h′). If a) there

exist distinct k, k′ ∈ K such that d(k, h) < ε
2 and d(k′, h′) < ε

2 , then

wn(K) ≤ d(k, k′) ≤ d(k, h) + d(h, h′) + d(k′, h′) < wn(H) +
ε

2
+
ε

2
= wn(H) + ε.

If b) there exist distinct k, k′ ∈ K such that for some h ∈ H, d(k, h) < ε
2 and d(k′, h) < ε

2

and so

wn(K) ≤ d(k, k′) ≤ d(k, h) + d(k′, h) <
ε

2
+
ε

2
= wn(H) + ε.

Similarly, wn(H) < wn(K) + ε and so |wn(H)− wn(K)| < ε.

Theorem 4.5 wn is continuous on Fn.

Proof: follows from Lemma 4.4.

Definition 4.6 Define wn : 2X → [0,∞) by wn(K) = max{wn(H) : H ⊂ K and H ∈ Fn}.

Note: This definition matches the above definition for every K ∈ Fn because every proper

subset H of K has wn(H) = 0. Also, since Fn is closed and {H ∈ 2X : H ⊂ K} is compact

for every K ∈ 2X and so their intersection is compact, and hence achieves a maximum value

since wn is continuous on Fn.
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Theorem 4.7 wn is continuous on 2X .

Proof: Let K ∈ 2X and ε > 0. Suppose H ∈ 2X with D(H,K) < ε
2 . Let K ′ ⊂ K such

that K ′ ∈ Fn and wn(K ′) = wn(K). Since D(H,K) < ε
2 , for each k ∈ K ′ there exists

h ∈ H such that d(h, k) < ε
2 . Let H ′ be the set of those elements in H. Then H ′ ∈ Fn and

D(H ′,K ′) < ε
2 , so by preceding lemma,

wn(K) = wn(K ′) < wn(H ′) + ε ≤ wn(H) + ε.

Similarly,

wn(H) < wn(K) + ε

and so

|wn(H)− wn(K)| < ε.

Hence, wn is continuous on 2X .

Definition 4.8 Let w : 2X → R be a continuous function. Then if

i. w(K) ≥ 0 for every K ∈ 2X , with w(K) = 0 if and only if |K| = 1,

ii. If H ⊂ K, then w(H) < w(K).

w is called a Whitney map. If w is continuous and has the properties that w(K) = 0 for

every K ∈ 2X with |K| = 1 and for any pair, H,K ∈ 2X such that H ⊂ K, w(H) ≤ (K)

then w is called a semi-Whitney map.

Theorem 4.9 wn is a semi-Whitney map for every n ≥ 2
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Proof: It is clear that for any K ∈ F1, wn(K) = 0. Now, let H ⊂ K and H ′ ∈ Fn such that

H ′ ⊂ H and wn(H ′) = wn(H). Then H ′ ⊂ K and so

wn(H) = wn(H ′) ≤ wn(K).

Definition 4.10 w : 2X → [0,∞) by

w(K) =
∑
n≥2

wn(K)2−n

for every K ∈ 2X . This exists for each K ∈ 2X since wn(K) ≤ 1 for every n ≥ 2.

Lemma 4.11 If fn is a semi-whitney map on 2X with ran(fn) ⊂ [0, 2−n] for every n ∈ N

then f =
∑

n∈N fn is a semi-whitney map. Further, if for each pair H,K ∈ 2X with H $ K,

there is some m ∈ N such that fm(H) < fm(K), then f is a whitney map.

Proof: It is clear that f(K) exists for every K ∈ 2X . Since each fn is continuous, f is the

uniform limit of continuous functions and hence is continuous. For every K ∈ F1,

f(K) =
∑
n∈N

fn(K) =
∑
n∈N

0 = 0.

Next, if H,K ∈ 2X with H ⊂ K since each fn is a semi-whitney map, then fn(H) ≤ fn(K)

for each n, and so

f(H) =
∑
n∈N

fn(H) ≤
∑
n∈N

fn(K) = f(K),

hence f is semi-whitney. Further, if H $ K and it is assumed that there exists an m ∈ N

such that fm(H) < fm(K), then since the series defining f(H) and f(K) are absolutely
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convergent

f(H) = fm(H) +
∑
n6=m

fn(H) < fm(K) +
∑
n6=m

fn(K) = f(K),

i.e. f would be a whitney map.

Corollary 4.12 w is a semi-whitney map.

Proof: Multiplying wn by 2−n preserves the semi-whitney properties and makes the func-

tions fulfill the first part of the lemma above.

It takes a little more to show that w is a whitney map.

Lemma 4.13 If K ∈ 2X then {wn(K)}n∈N is monotonic decreasing and limn→∞wn(K) = 0.

Proof: That the sequence is monotonic decreasing is clear. If K ∈ 2X is finite, then it is

clear that limn→∞wn(K) = 0. Let ε > 0 and let K ∈ 2X be infinite. Then since K is

compact in X there is a finite cover, U , of K by balls of diameter less than ε. Then if

H ⊂ K is finite and |H| = n > |U| = N , there exist distinct h, h′ ∈ H such that h, h′ are in

the same member of U and so wn(H) < d(h, h′) < ε. Then wn(K) ≤ ε.

Lemma 4.14 If H,K ∈ 2X and H $ K, then there exists a m ∈ N such that wm(H) <

wm(K).

Proof: Let H,K ∈ 2X and H $ K. If H is finite, let m − 1 = |H| < |K| and clearly

wm(H) = 0 < wm(K). Now, assume that H is infinite. Since H $ K, there exists k ∈ K\H,

and so there exists an ε > 0 so that b(k, ε) ∩H = ∅. By preceding lemma, wn(H) < ε for

all n sufficiently large. Note that wn(H) > 0 for every n since H is infinite, this coupled
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with the preceding lemma give us that for some m,m − 1 ∈ N, wm(H) < wm−1(H) < ε.

Let H ′ ⊂ H be in Fm−1 such that wm−1(H ′) = wm−1(H). Then K ′ = H ′ ∪ {k} ⊂ K is in

Fm. Also, since d(k, h) ≥ ε for each h ∈ H ′,

wm(H) < wm−1(H ′) = wm(K ′) ≤ wm(K).

Theorem 4.15 w is a Whitney map.

Proof: The product of wm with 2−m preserves the inequality.
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